WorldWideScience

Sample records for rift zone eruptions

  1. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    Science.gov (United States)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  2. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    OpenAIRE

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-01-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Dur...

  3. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    Science.gov (United States)

    Moore, Richard B.

    1992-08-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200 400 years old: 50%, 15, 14.3: (III) 400 750 years old: 20%, 54, 6.6; (IV) 750 1500 years old: 5%, 37, 20.8; (V) 1500 3000 years old: LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.

  4. Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands)

    Science.gov (United States)

    Klügel, A.; Schmincke, H.-U.; White, J. D. L.; Hoernle, K. A.

    1999-12-01

    The compositionally zoned San Juan eruption on La Palma emanated from three eruptive centers located along a north-south-trending rift zone in the south of the island. Seismic precursors began weakly in 1936 and became strong in March 1949, with their foci progressing from the north of the rift zone towards its south. This suggests that magma ascended beneath the old Taburiente shield volcano and moved southward along the rift. The eruption began on June 24, 1949, with phreatomagmatic activity at Duraznero crater on the ridgetop (ca. 1880 m above sea level), where five vents erupted tephritic lava along a 400-m-long fissure. On June 8, the Duraznero vents shut down abruptly, and the activity shifted to an off-rift fissure at Llano del Banco, located at ca. 550 m lower elevation and 3 km to the northwest. This eruptive center issued initially tephritic aa and later basanitic pahoehoe lava at high rates, producing a lava flow that entered the sea. Two days after basanite began to erupt at Llano del Banco, Hoyo Negro crater (ca. 1880 m asl), located 700 m north of Duraznero along the rift, opened on July 12 and produced ash and bombs of basanitic to phonotephritic composition in violent phreatomagmatic explosions ( White and Schmincke, 1999). Llano del Banco and Hoyo Negro were simultaneously active for 11 days and showed a co-variance of their eruption rates indicating a shallow hydraulic connection. On July 30, after 3 days of quiescence at all vents, Duraznero and Hoyo Negro became active again during a final eruptive phase. Duraznero issued basanitic lava at high rates for 12 h and produced a lava flow that descended towards the east coast. The lava contains ca. 1 vol.% crustal and mantle xenoliths consisting of 40% tholeiitic gabbros from the oceanic crust, 35% alkaline gabbros, and 20% ultramafic cumulates. The occurrence of xenoliths almost exclusively in the final lava is consistent with their origin by wall-rock collapse at depth near the end of the eruption

  5. Surface deformation in volcanic rift zones

    Science.gov (United States)

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  6. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    Science.gov (United States)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  7. Images of Kilauea East Rift Zone eruption, 1983-1993

    Science.gov (United States)

    Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.

    1995-01-01

    This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.

  8. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  9. An Isotopic Perspective into the Magmatic Evolution and Architecture of the Rift Zones of Kīlauea Volcano

    Science.gov (United States)

    Pietruszka, A. J.; Marske, J. P.; Garcia, M. O.; Heaton, D. E.; Rhodes, M. M.

    2016-12-01

    We present Pb, Sr, and Nd isotope ratios for Kīlauea's historical rift zone lavas (n=50) to examine the magmatic evolution and architecture of the volcano's East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). Our results show that Kīlauea's historical eruptive period was preceded by the delivery of a major batch of magma from the summit reservoir to the ERZ. The timing of this intrusion, most likely in the late 17th century, was probably related to the 300-yr period of explosive eruptions that followed the formation of the modern caldera (Swanson et al., 2012; JVGR). This rift-stored magma was a component in lavas from lower ERZ (LERZ) eruptions in 1790(?), 1840, 1955, and 1960. The only other components in these LERZ lavas are related to summit lavas erupted (1) after the 1924 collapse of Halemáumáu and (2) during episodes of high fountaining at Kīlauea Iki in 1959. Thus, the intrusion of magma from the summit reservoir into the LERZ is a rare occurrence that is tied to major volcanological events. Intrusions from the summit reservoir in the 1960s likely flushed most older, stored magma from the upper ERZ (UERZ) and middle ERZ (MERZ), leaving large pockets of 1960s-era magma to serve as a dominant component in many subsequent rift lavas. An increase in the duration of pre-eruptive magma storage from the UERZ ( 0-7 yr) to the MERZ ( 0-19 yr) to the LERZ (up to 335 yr) is likely controlled by a decrease in the rate of magma supply to the more distal portions of the ERZ. Lavas from several UERZ eruptions in the 1960s and 1970s have a component of mantle-derived magma that bypassed the summit reservoir. There is no evidence for a summit bypass into the MERZ, LERZ, or the volcanically active portion of the SWRZ. These results support a recent model for Kīlauea's plumbing system (Poland et al., 2014; USGS Prof. Pap. 1801): the ERZ is connected to the deeper "South Caldera" magma body and the volcanic SWRZ is connected to the shallower Halemáumáu magma body.

  10. Setting of the Father's Day Eruption at Kilauea

    Science.gov (United States)

    Swanson, D. A.

    2007-12-01

    The Father's Day eruption and associated intrusion took place within a 10-km segment of Kilauea's east rift zone between Hi`iaka and Napau Craters--a segment that has had more numerous eruptions and intrusions than any other of comparable length during the past 200, probably the past 1000, years. Fifteen known eruptions started in this area in the past 200 years: 1840, 1922, 1923, 1962, August and October 1963, March and December 1965, August and October 1968, February and May 1969, May and November 1973, and March 1980 (only 3 cubic meters!). Three others, not previously designated as distinct eruptions despite having all the appropriate characteristics, took place during on-going eruptions: two in `Alo`i Crater in 1970 and 1972, and one in Napau Crater in 1997. Two of the largest shields on the east rift zone formed during long-lasting eruptions within this area--Kane Nui o Hamo at an unknown date, perhaps the 11-12th century, and Mauna Ulu (1969-1974). In addition, many small intrusions without eruptions are known. Seven short eruptions punctuated a prolonged eruption: four within the segment during the Mauna Ulu eruption, two at the summit and southwest rift zone during that same eruption, and one in Napau Crater in 1997 during the Pu`u `O`o eruption. Thus the Father's Day eruption is not unique by virtue of taking place during an ongoing eruption elsewhere along the rift zone. The increased frequency of activity in the segment during the 20th century is obvious, particularly after 1962. For most of the past 1,000 years, eruptions were centered at Kilauea's summit, with significant but lesser activity along the rift zones. A large summit deflation in 1924 ended the nearly continuous lava lake in Halemaumau, eventually leading to the past 5 decades of dominantly east rift zone activity. This segment of the rift zone contains most of the pit craters on Kilauea and gradually changes from a SE trend near the caldera to an ENE trend that characterizes the rest of

  11. The origin of Mauna Loa's Nīnole Hills: Evidence of rift zone reorganization

    Science.gov (United States)

    Zurek, Jeffrey; Williams-Jones, Glyn; Trusdell, Frank A.; Martin, Simon

    2015-01-01

    In order to identify the origin of Mauna Loa volcano's Nīnole Hills, Bouguer gravity was used to delineate density contrasts within the edifice. Our survey identified two residual anomalies beneath the Southwest Rift Zone (SWRZ) and the Nīnole Hills. The Nīnole Hills anomaly is elongated, striking northeast, and in inversions both anomalies merge at approximately −7 km above sea level. The positive anomaly, modeled as a rock volume of ~1200 km3 beneath the Nīnole Hills, is associated with old eruptive vents. Based on the geologic and geophysical data, we propose that the gravity anomaly under the Nīnole Hills records an early SWRZ orientation, now abandoned due to geologically rapid rift-zone reorganization. Catastrophic submarine landslides from Mauna Loa's western flank are the most likely cause for the concurrent abandonment of the Nīnole Hills section of the SWRZ. Rift zone reorganization induced by mass wasting is likely more common than currently recognized.

  12. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    Science.gov (United States)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  13. Toward an Integrated Model for the Composition, Structure, and Physical Properties of the Crust in Icelandic Rift Zones

    Science.gov (United States)

    Kelley, D. F.; Panero, W. R.; Barton, M.

    2009-05-01

    The rift zones that extend across Iceland roughly southwest to northeast are the only portion of the mid-Atlantic Ridge that is exposed above sea level. This reflects anomalously high melt productivity in the mantle leading to anomalously thick oceanic crust. There are 30 active volcanic centers in the rift zones. Petrologic studies of the 30 volcanic centers in the active rift zones show that, magmas pond at a mid-crustal level as well as at the base of the crust prior to eruption. The depth of magma chambers at the base of the crust provides an estimate of crustal thickness of (20 ± 2.5 km) in these zones. Melts erupting to the surface directly from chambers at the base of the crust provide one constraint on the composition of the crust because any compositional variations within the crust must be the result of differentiation of these melts. However, the glass compositions indicate that relatively evolved magmas erupted from the deep chambers, suggesting that crystallization of compositionally more primitive magmas also occurred at the base of the crust. Knowledge of crustal thickness, the temperature of melts at the base of the crust, and the compositions of these melts allows development of comprehensive models of the composition, structure and properties of crust within the rift zones. We have developed two end member models: one with variation of mineralogy with depth in the crust due to metamorphism, and one with variation of crustal composition with depth due to fractionation processes. We have also considered models that are plausible combinations of these two end member models. We have calculated well constrained geothermal gradients and used these to predict variations in density, seismic velocity, and bulk modulus with depth. These models which include petrologic and geochemical data are consistent with published geophysical data, therefore provide important constraints on interpretation of geophysical data. In particular, results of this work provide

  14. Primative components, crustal assimilation, and magmatic degassing of the 2008 Kilauea summit eruption

    Science.gov (United States)

    Rowe, Michael C.; Thornber, Carl R.; Orr, Tim R.

    2015-01-01

    Simultaneous summit and rift zone eruptions at Kīlauea starting in 2008 reflect a shallow eruptive plumbing system inundated by a bourgeoning supply of new magma from depth. Olivine-hosted melt inclusions, host glass, and bulk lava compositions of magma erupted at both the summit and east rift zone demonstrate chemical continuity at both ends of a well-worn summit-to-rift pipeline. Analysis of glass within dense-cored lapilli erupted from the summit in March – August 2008 show these are not samplings of compositionally distinct magmas stored in the shallow summit magma reservoir, but instead result from remelting and assimilation of fragments from conduit wall and vent blocks. Summit pyroclasts show the predominant and most primitive component erupted to be a homogenous, relatively trace-element-depleted melt that is a compositionally indistinguishable from east rift lava. Based on a “top-down” model for the geochemical variation in east rift zone lava over the past 30 years, we suggest that the apparent absence of a 1982 enriched component in melt inclusions, as well as the proposed summit-rift zone connectivity based on sulfur and mineral chemistry, indicate that the last of the pre-1983 magma has been flushed out of the summit reservoir during the surge of mantle-derived magma from 2003-2007.

  15. Kilauea's 5-9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu'u 'Ō'ō: Chapter 18

    Science.gov (United States)

    Orr, Tim R.; Poland, Michael P.; Patrick, Matthew R.; Thelen, Weston A.; Sutton, A.J.; Elias, Tamar; Thornber, Carl R.; Parcheta, Carolyn; Wooten, Kelly M.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Lava output from Kīlauea's long-lived East Rift Zone eruption, ongoing since 1983, began waning in 2010 and was coupled with uplift, increased seismicity, and rising lava levels at the volcano's summit and Pu‘u ‘Ō‘ō vent. These changes culminated in the four-day-long Kamoamoa fissure eruption on the East Rift Zone starting on 5 March 2011. About 2.7 × 106 m3 of lava erupted, accompanied by ˜15 cm of summit subsidence, draining of Kīlauea's summit lava lake, a 113 m drop of Pu‘u ‘Ō‘ō's crater floor, ˜3 m of East Rift Zone widening, and eruptive SO2 emissions averaging 8500 tonnes/day. Lava effusion resumed at Pu‘u ‘Ō‘ō shortly after the Kamoamoa eruption ended, marking the onset of a new period of East Rift Zone activity. Multiparameter monitoring before and during the Kamoamoa eruption suggests that it was driven by an imbalance between magma supplied to and erupted from Kīlauea's East Rift Zone and that eruptive output is affected by changes in the geometry of the rift zone plumbing system. These results imply that intrusions and eruptive changes during ongoing activity at Kīlauea may be anticipated from the geophysical, geological, and geochemical manifestations of magma supply and magma plumbing system geometry.

  16. Episode 49 of the Pu'u 'Ō'ō-Kūpaianaha eruption of Kilauea volcano-breakdown of a steady-state eruptive era

    Science.gov (United States)

    Mangan, M.T.; Heliker, C.C.; Mattox, T.N.; Kauahikaua, J.P.; Helz, R.T.

    1995-01-01

    The Pu'u 'O'o-Kupaianaha eruption (1983-present) is the longest lived rift eruption of either Kilauea or neighboring Mauna Loa in recorded history. The initial fissure opening in January 1983 was followed by three years of episodic fire fountaining at the Pu'u 'O'o vent on Kilauea's east rift zone ∼19km from the summit (episodes 4–47). These spectacular events gave way in July 1986 to five and a half years of near-continuous, low-level effusion from the Kupaianaha vent, ∼ 3km to the cast (episode 48). A 49th episode began in November 1991 with the opening of a new fissure between Pu'u 'O'o and Kupaianaha. This three week long outburst heralded an era of more erratic eruptive behavior characterized by the shut down of Kupaianaha in February 1992 and subsequent intermittent eruption from vents on the west flank of Pu'u 'O'o (episodes 50 and 51). The events occurring over this period are due to progressive shrinkage of the rift-zone reservoir beneath the eruption site, and had limited impact on eruption temperatures and lava composition.

  17. January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS

    Science.gov (United States)

    Owen, S.; Segall, P.; Lisowski, M.; Miklius, Asta; Murray, M.; Bevis, M.; Foster, J.

    2000-01-01

    A continuous Global Positioning System (GPS) network on Kilauea Volcano captured the most recent fissure eruption in Kilauea's East Rift Zone (ERZ) in unprecedented spatial and temporal detail. The short eruption drained the lava pond at Pu'u O' o, leading to a two month long pause in its on-going eruption. Models of the GPS data indicate that the intrusion's bottom edge extended to only 2.4 km. Continuous GPS data reveal rift opening 8 hours prior to the eruption. Absence of precursory summit inflation rules out magma storage overpressurization as the eruption's cause. We infer that stresses in the shallow rift created by the continued deep rift dilation and slip on the south flank decollement caused the rift intrusion.

  18. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    Science.gov (United States)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit

  19. Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems

    Science.gov (United States)

    Wiesmaier, S.; Deegan, F. M.; Troll, V. R.; Carracedo, J. C.; Chadwick, J. P.; Chew, D. M.

    2011-09-01

    Zoned eruption deposits commonly show a lower felsic and an upper mafic member, thought to reflect eruption from large, stratified magma chambers. In contrast, the Montaña Reventada composite flow (Tenerife) consists of a lower basanite and a much thicker upper phonolite. A sharp interface separates basanite and phonolite, and chilled margins at this contact indicate the basanite was still hot upon emplacement of the phonolite, i.e. the two magmas erupted in quick succession. Four types of mafic to intermediate inclusions are found in the phonolite. Inclusion textures comprise foamy quenched ones, others with chilled margins and yet others that are physically mingled, reflecting progressive mixing with a decreasing temperature contrast between the end-members. Analysis of basanite, phonolite and inclusions for majors, traces and Sr, Nd and Pb isotopes show the inclusions to be derived from binary mixing of basanite and phonolite end-members in ratios of 2:1 to 4:1. Although, basanite and phonolite magmas were in direct contact, contrasting 206Pb/204Pb ratios show that they are genetically distinct (19.7193(21)-19.7418(31) vs. 19.7671(18)-19.7807(23), respectively). We argue that the Montaña Reventada basanite and phonolite first met just prior to eruption and had limited interaction time only. Montaña Reventada erupted from the transition zone between two plumbing systems, the phonolitic Teide-Pico Viejo complex and the basanitic Northwest rift zone. A rift zone basanite dyke most likely intersected the previously emplaced phonolite magma chamber. This led to eruption of geochemically and texturally unaffected basanite, with the inclusion-rich phonolite subsequently following into the established conduit.

  20. Concentration of strain in a marginal rift zone of the Japan backarc during post-rift compression

    Science.gov (United States)

    Sato, H.; Ishiyama, T.; Kato, N.; Abe, S.; Shiraishi, K.; Inaba, M.; Kurashimo, E.; Iwasaki, T.; Van Horne, A.; No, T.; Sato, T.; Kodaira, S.; Matsubara, M.; Takeda, T.; Abe, S.; Kodaira, C.

    2015-12-01

    Late Cenozoic deformation zones in Japan may be divided into two types: (1) arc-arc collision zones like those of Izu and the Hokkaido axial zone, and (2) reactivated back-arc marginal rift (BMR) systems. A BMR develops during a secondary rifting event that follows the opening of a back-arc basin. It forms close to the volcanic front and distant from the spreading center of the basin. In Japan, a BMR system developed along the Sea of Japan coast following the opening of the Japan Sea. The BMR appears to be the weakest, most deformable part of the arc back-arc system. When active rifting in the marginal basins ended, thermal subsidence, and then mechanical subsidence related to the onset of a compressional stress regime, allowed deposition of up to 5 km of post-rift, deep-marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, in thin-skin style deformation. Shortening reached a maximum in the BMR system compared to other parts of the back-arc, suggesting that it is the weakest part of the entire system. We examined the structure of the BMR system using active source seismic investigation and earthquake tomography. The velocity structure beneath the marginal rift basin shows higher P-wave velocity in the upper mantle/lower crust which suggests significant mafic intrusion and thinning of the upper continental crust. The syn-rift mafic intrusive forms a convex shape, and the boundary between the pre-rift crust and the mafic intrusive dips outward. In the post-rift compressional stress regime, the boundary of the mafic body reactivated as a reverse fault, forming a large-scale wedge thrust and causing further subsidence of the rift basin. The driver of the intense shortening event along the Sea of Japan coast in SW Japan was the arrival of a buoyant young (15 Ma) Shikoku basin at the Nankai Trough. Subduction stalled and the backarc was compressed. As the buoyant basin cooled, subduction resumed, and the rate of

  1. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    Science.gov (United States)

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the

  2. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    Science.gov (United States)

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  3. Edifice growth, deformation and rift zone development in basaltic setting: Insights from Piton de la Fournaise shield volcano (Réunion Island)

    Science.gov (United States)

    Michon, Laurent; Cayol, Valérie; Letourneur, Ludovic; Peltier, Aline; Villeneuve, Nicolas; Staudacher, Thomas

    2009-07-01

    The overall morphology of basaltic volcanoes mainly depends on their eruptive activity (effusive vs. explosive), the geometry of the rift zones and the characteristics of both endogenous and exogenous growth processes. The origin of the steep geometry of the central cone of Piton de la Fournaise volcano, which is unusual for a basaltic effusive volcano, and its deformation are examined with a combination of a detailed morphological analysis, field observations, GPS data from the Piton de la Fournaise Volcano Observatory and numerical models. The new caldera walls formed during the April 2007 summit collapse reveal that the steep cone is composed of a pyroclastic core, inherited from an earlier explosive phase, overlapped by a pile of thin lava flows. This suggests that exogenous processes played a major role in the building of the steep central cone. Magma injections into the cone, which mainly occur along the N25-30 and N120 rift zones, lead to an asymmetric outward inflation concentrated in the cone's eastern half. This endogenous growth progressively tilts the southeast and east flanks of the cone, and induces the development of a dense network of flank fractures. Finally, it is proposed that intrusions along the N120 rift zone are encouraged by stresses induced by magma injections along the N25-30 rift zone.

  4. High magma storage rates before the 1983 eruption of kilauea, hawaii

    Science.gov (United States)

    Cayol; Dieterich; Okamura; Miklius

    2000-06-30

    After a magnitude 7.2 earthquake in 1975 and before the start of the ongoing eruption in 1983, deformation of Kilauea volcano was the most rapid ever recorded. Three-dimensional numerical modeling shows that this deformation is consistent with the dilation of a dike within Kilauea's rift zones coupled with creep over a narrow area of a low-angle fault beneath the south flank. Magma supply is estimated to be 0.18 cubic kilometers per year, twice that of previous estimates. The 1983 eruption may be a direct consequence of the high rates of magma storage within the rift zone that followed the 1975 earthquake.

  5. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along-rift

  6. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    Science.gov (United States)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  7. Contribution of slab melting to magmatism at the active rifts zone in the middle of the Izu-Bonin arc

    Science.gov (United States)

    Hirai, Y.; Okamura, S.; Sakamoto, I.; Shinjo, R.; Wada, K.; Yoshida, T.

    2016-12-01

    The active rifts zone lies just behind the Quaternary volcanic front in the middle of the Izu-Bonin arc. Volcanism at the active rifts zone has been active since ca. 2 Ma, and late Quaternary basaltic lavas (< 0.1 Ma) and hydrothermal activity occur along the central axis of the rifts (Taylor, 1992; Ishizuka et al., 2003). In this paper we present new Sr, Nd, and Hf isotope and trace element data for the basalts erupted in the active rifts zone, including the Aogashima, Myojin and Sumisu rifts. Two geochemical groups can be identified within the active rift basalts: High-Zr basalts (HZB) and Low-Zr basalts (LZB). In the case of the Sumisu rift, the HZB exhibits higher in K2O, Na2O, Y, Zr and Ni, and also has higher Ce/Yb and Zr/Y, lower Ba/Th than the LZB. Depletion of Zr-Hf in the N-MORB spidergram characterizes the LZB from the Aogashima, Myojin and Sumisu rifts. The 176Hf/177Hf ratios are slightly lower in the HZB than in the LZB, decoupling of 176Hf/177Hf ratios and 143Nd/144Nd ratios. Estimated primary magma compositions suggest that primary magma segregation for the HZB occurred at depths less than 70 km ( 2 GPa), whereas the LZB more than 70 km (2 3 GPa). ODP Leg126 site 788, 790, and 791 reached the basaltic basement of the Sumisu rift (Gill et al., 1992). The geochemical data and stratigraphic relations of the basement indicate that the HZB is younger than the LZB. Geochemical modelling demonstrates that slab-derived melt mixed with mantle wedge produces the observed isotopic and trace elemental characteristics. The LZB volcanism at the early stage of the back-arc rifting is best explained by a partial melting of subducted slab saturated with trace quantities of zircon under low-temperature conditions in the mantle wedge. On the other hand, the HZB requires a partial melt of subducted slab accompanied by full dissolution of zircon under high-temperature conditions in the mantle wedge, which could have been caused by hot asthenospheric injection during the

  8. The NE Rift of Tenerife: towards a model on the origin and evolution of ocean island rifts; La dorsal NE de Tenerife: hacia un modelo del origen y evolucion de los rifts de islas oceanicas

    Energy Technology Data Exchange (ETDEWEB)

    Carracedo, J. C.; Guillou, H.; Rodriguez Badiola, E.; Perez-Torrado, F. J.; Rodriguez Gonzalez, A.; Peris, R.; Troll, V.; Wiesmaier, S.; Delcamp, A.; Fernandez-Turiel, J. L.

    2009-07-01

    , plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their established fissural feeding system, frequently favouring magma accumulation and residence at shallow emplacements, leading to differentiation of magmas, and intermediate to felsic nested eruptions. Rifts and their collapse may therefore act as an important factor in providing petrological variability to oceanic volcanoes. Conversely, the possibility exists that the presence of important felsic volcanism may indicate lateral collapses in oceanic shields and ridge-like volcanoes, even if they are concealed by post-collapse volcanism or partially mass-wasted by erosion. (Author) 76 refs.

  9. Pits, rifts and slumps: the summit structure of Piton de la Fournaise

    Science.gov (United States)

    Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre

    2007-06-01

    A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled

  10. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

    Science.gov (United States)

    Delcamp, A.; Troll, V. R.; van Wyk de Vries, B.; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M.

    2012-07-01

    Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North-East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth

  11. Kilauea's double eruption, 2008-2016: volatile budget and associated hazards

    Science.gov (United States)

    Sutton, A. J.; Elias, T.

    2016-12-01

    After 20 years of effusive behavior on Kilauea's East Rift Zone, a surge in magma supply brought about eruptive changes that significantly improved our understanding of volcanic processes and associated hazards. The volcano's summit deformation changes and increase in CO2 emissions signaled the supply surge beginning in 2003, and heralded the opening of the Overlook Vent in 2008. Along with the supply surge and vent opening came a dramatic spike in gas release. Summit SO2 emissions climbed from 0.2 kt/d to over 10 kt/d while East Rift discharge rose from 2 kt/d to about 6 kt/d before both summit and rift emissions began an overall decline in late 2008. In spite of the emissions decline, however, overall gas release from Kilauea remained well above the previous 20-year average through early 2014. Beginning in 2008, the annual gas budget released from the summit and rift combined, was more than 830 kt, 6.7 kt, and 3.7 kt of SO2, HCl, and HF, respectively. Effects of these elevated emissions sustained ongoing human health concerns and caused a multi-year agricultural disaster designation for the Island. The current activity of Kīlauea consists of a predominant summit gas eruption (where lava and ash discharge are trivial compared to gas release) and a more typical rift lava eruption with sufficient lava effusion to reach a community 20 km from the eruptive vent. An updated gas-based lava effusion estimate shows that Kilauea continued to erupt an average of 0.11 km^3 yr^-1 of dense rock equivalent lava between early 2012 and mid-2016. This value shows that despite the new regime of erupting most of its gas budget at the volcano's summit, the Kilauea system is still capable of pushing magma out of its rift at a rate consistent with the long term average.

  12. ALVIN-SeaBeam studies of the Sumisu Rift, Izu-Bonin arc

    Science.gov (United States)

    Taylor, B.; Brown, G.; Fryer, P.; Gill, J. B.; Hochstaedter, A. G.; Hotta, H.; Langmuir, C. H.; Leinen, M.; Nishimura, A.; Urabe, T.

    1990-10-01

    Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50-700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven ALVIN heat flow measurements at 30°48.5'N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine

  13. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    Science.gov (United States)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity

  14. Diffuse CO2 degassing monitoring for the volcanic surveillance of Tenerife North-East Rift Zone (NERZ) volcano, Canary Islands

    Science.gov (United States)

    Rodríguez, F.; Thomas, G. E.; Wong, T.; García, E.; Melián, G.; Padron, E.; Asensio-Ramos, M.; Hernández, P. A.; Perez, N. M.

    2017-12-01

    The North East Rift zone of Tenerife Island (NERZ, 210 km2) is one of the three major volcanic rift-zones of the island. The most recent eruptive activity along the NERZ took place in the 1704-1705 period with eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. Since fumarolic activity is nowadays absent at the NERZ, soil CO2 degassing monitoring represent a potential geochemical tool for its volcanic surveillance. The aim of this study is to report the results of the last CO2 efflux survey performed in June 2017, with 658 sampling sites. In-situ measurements of CO2 efflux from the surface environment of the NERZ were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) following the accumulation chamber method. To quantify the total CO2 emission, soil CO2 efflux spatial distribution maps were constructed using Sequential Gaussian Simulation (SGS) as interpolation method. The diffuse CO2 emission values ranged between 0 - 41.1 g m-2 d-1. The probability plot technique applied to the data allowed to distinguish two different geochemical populations; background (B) and peak (P) represented by 81.8% and 18.2% of the total data, respectively, with geometric means of 3.9 and 15.0 g m-2 d-1, respectively. The average map constructed with 100 equiprobable simulations showed an emission rate of 1,361±35 t d-1. This value relatively higher than the background average of CO2 emission estimated on 415 t d-1 and slightly higher than the background range of 148 t d-1 (-1σ) and 1,189 t d-1 (+1σ) observed at the NERZ. This study reinforces the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool in the NERZ.

  15. Teleseismic Investigations of the Malawi and Luangwa Rift Zones: Ongoing Observations From the SAFARI Experiment

    Science.gov (United States)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.; Chindandali, P. R. N.; Massinque, B.; Mdala, H. S.; Mutamina, D. M.

    2015-12-01

    In order to evaluate the influence of crustal and mantle heterogeneities upon the initiation of the Malawi rift zone (MRZ) and reactivation of the Zambian Luangwa rift zone (LRZ) subject to Cenozoic plate boundary stress fields and mantle buoyancy forces, we installed and operated 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia from 2012 to 2014. During the twenty-four month acquisition period, nearly 6200 radial receiver functions (RFs) were recorded. Stations situated within the MRZ, either along the coastal plains or within the Shire Graben toward the south, report an average crustal thickness of 42 km relative to approximately 46 km observed at stations located along the rift flanks. This implies the juvenile MRZ is characterized by a stretching factor not exceeding 1.1. Meanwhile, P-to-S velocity ratios within the MRZ increase from 1.71 to 1.82 in southernmost Malawi, indicating a substantial modification of the crust during Recent rifting. Time-series stacking of approximately 5500 RFs recorded by the SAFARI and 44 neighboring network stations reveals an apparent uplift of 10 to 15 km along both the 410- and 660-km mantle transition zone (MTZ) discontinuities beneath the MRZ and LRZ which, coupled with an apparently normal 250-km MTZ thickness, implies a first-order high-velocity contribution from thickened lithosphere. Preliminary manual checking of SAFARI shear-wave splitting (SWS) measurements provides roughly 650 high-quality XKS phases following a component re-orientation to correct station misalignments. Regional azimuthal variations in SWS fast orientations are observed, from rift-parallel in the vicinity of the LRZ to rift-oblique in the MRZ. A major 60° rotation in the fast orientation occurs at approximately 31°E, possibly resulting from the modulation of mantle flow around a relatively thick lithospheric keel situated between the two rift zones.

  16. The Age of Rift-Related Basalts in East Antarctica

    Science.gov (United States)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.

    2018-01-01

    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  17. Extension parallel to the rift zone during segmented fault growth: application to the evolution of the NE Atlantic

    Directory of Open Access Journals (Sweden)

    A. Bubeck

    2017-11-01

    Full Text Available The mechanical interaction of propagating normal faults is known to influence the linkage geometry of first-order faults, and the development of second-order faults and fractures, which transfer displacement within relay zones. Here we use natural examples of growth faults from two active volcanic rift zones (Koa`e, island of Hawai`i, and Krafla, northern Iceland to illustrate the importance of horizontal-plane extension (heave gradients, and associated vertical axis rotations, in evolving continental rift systems. Second-order extension and extensional-shear faults within the relay zones variably resolve components of regional extension, and components of extension and/or shortening parallel to the rift zone, to accommodate the inherently three-dimensional (3-D strains associated with relay zone development and rotation. Such a configuration involves volume increase, which is accommodated at the surface by open fractures; in the subsurface this may be accommodated by veins or dikes oriented obliquely and normal to the rift axis. To consider the scalability of the effects of relay zone rotations, we compare the geometry and kinematics of fault and fracture sets in the Koa`e and Krafla rift zones with data from exhumed contemporaneous fault and dike systems developed within a > 5×104 km2 relay system that developed during formation of the NE Atlantic margins. Based on the findings presented here we propose a new conceptual model for the evolution of segmented continental rift basins on the NE Atlantic margins.

  18. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Moore, Richard B.

    2006-01-01

    K'lauea is an active shield volcano in the southeastern part of the Island of Hawai'i. The middle east rift zone (MERZ) map includes about 27 square kilometers of the MERZ and shows the distribution of the products of 37 separate eruptions during late Holocene time. Lava flows erupted during 1983-96 have reached the mapped area. The subaerial part of the MERZ is 3-4 km wide and about 18 km long. It is a constructional ridge, 50-150 m above the adjoining terrain, marked by low spatter ramparts and cones as high as 60 m. Lava typically flowed either northeast or southeast, depending on vent location relative to the topographic crest of the rift zone. The MERZ receives more than 100 in. of rainfall annually and is covered by tropical rain forest. Vegetation begins to grow on lava a few months after its eruption. Relative heights of trees can be a guide to relative ages of underlying lava flows, but proximity to faults, presence of easily weathered cinders, and human activity also affect the rate of growth. The rocks have been grouped into five basic age groups. The framework for the ages assigned is provided by eight radiocarbon ages from previous mapping by the authors and a single date from the current mapping effort. The numerical ages are supplemented by observations of stratigraphic relations, degree of weathering, soil development, and vegetative cover.

  19. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    Energy Technology Data Exchange (ETDEWEB)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  20. Seismic Investigations of an Accommodation zone in the Northern Rio Grande Rift, New Mexico, USA

    Science.gov (United States)

    Baldridge, W. S.; Valdes, J.; Nedorub, O.; Phrampus, B.; Braile, L. W.; Ferguson, J. F.; Benage, M. C.; Litherland, M.

    2010-12-01

    Seismic reflection and refraction data acquired in the Rio Grande rift near Santa Fe, New Mexico, in 2009 and 2010 by the SAGE (Summer of Applied Geophysical Experience) program imaged the La Bajada fault (LBF) and strata offset across the associated, perpendicular Budagher fault (BF). The LBF is a major basin-bounding normal fault, offset down to the west; the smaller BF is an extensional fault that breaks the hanging wall ramp of the LBF. We chose this area because it is in a structurally complex region of the rift, comprising a small sub-basin and plunging relay ramps, where north-trending, en echelon basin-bounding faults (including the LBF) transfer crustal extension laterally between the larger Española (to north) and Albuquerque rift basins. Our data help determine the precise location and geometry of the poorly exposed LBF, which, near the survey location, offsets the rift margin vertically about 3,000 m. When integrated with industry reflection data and other SAGE seismic, gravity, and magnetotelluric surveys, we are able to map differences in offset and extension laterally (especially southward) along the fault. We interpret only about 200 m of normal offset across the BF. Our continuing work helps define multiple structural elements, partly buried by syn-rift basin-filling sedimentary rocks, of a complex intra-rift accommodation zone. We are also able to discriminate pre-Eocene (Laramide) from post-Miocene (rift) structures. Our data help determine the amount of vertical offset of pre-rift strata across structural elements of the accommodation zone, and depth and geometry of basin fill. A goal is to infer the kinematic development of this margin of the rift, linkages among faults, growth history, and possible pre-rift structural controls. This information will be potentially useful for evaluation of resources, including oil and/or gas in pre-rift strata and ground water in Late Miocene to Holocene rift-filling units.

  1. Timing of the volcanism of the southern Kivu province: Implications for the evolution of the western branch of the East African rift system

    International Nuclear Information System (INIS)

    Pasteels, P.

    1989-01-01

    New K-Ar datings of a large rock sampling from the South Kivu volcanic province (Zaire, Rwanda, Burundi) are reported. No ages older than 10 Ma have been obtained. This result contrasts with older assumptions and puts severe constraints on the relations between volcanism and rift evolution. From 10 to 7.5 Ma tholeiitic volcanism predominates corresponding to an episode of fissural eruptions; from 7.5 to 5 Ma alkali basalts and their differentiates are mainly erupted in localized rifts. A culmination of activity occurs between 6.0 and 5.5 Ma ago. Pleistocene alkalic volcanism is restricted to localized areas. The transition from tholeiites to alkali-basaltic volcanism dated around 7.5 Ma would correspond to a major rifting phase which corresponds with the initiation of Lake Kivu Basin formation. The distribution of tholeiitic rocks in the central part of the rift, and predominantly alkalic rocks along the western active border fault, strengthens the idea that the former are associated with tension, the latter with vertical, possibly also strike-slip movements. Volcanism in the Western Rift is restricted to areas where tension occurs in a zone which is located between two zones of strike-slip. In the South Kivu area normal faults intersect strike-slip faults and this seems to have determined the location of volcanic activity. Magma formation is considered to be related with shear heating combined with adiabatic decompression in ascending diapirs. This implies heating at the lithosphere-asthenosphere boundary as a result of extension. Generation of tholeiitic or alkalic magmas is connected with the variable ascent velocity of mantle diapirs or with variable shear heating along the shear zone. Changes in both magma composition and intensity of volcanic activity with time are considered to be related to major phases of rift evolution. (orig.)

  2. Volcanic geology and eruption frequency, São Miguel, Azores

    Science.gov (United States)

    Moore, Richard B.

    1990-01-01

    Six volcanic zones comprise São Miguel, the largest island in the Azores. All are Quaternary in age except the last, which is partly Pliocene. From west to east the zones are (1) the trachyte stratovolcano of Sete Cidades, (2) a field of alkali-basalt cinder cones and lava flows with minor trachyte, (3) the trachyte stratovolcano of Agua de Pau, (4) a field of alkali-basalt cinder cones and lava flows with minor trachyte and tristanite, (5) the trachyte stratovolcano of Furnas, and (6) the Nordeste shield, which includes the Povoação caldera and consists of alkali basalt, tristanite, and trachyte. New radiocarbon and K-Ar ages augment stratigraphic data obtained during recent geologic mapping of the entire island and provide improved data to interpret eruption frequency. Average dormant intervals for the past approximately 3000 years in the areas active during that time are about 400 years for Sete Cidades, 145 for zone 2, 1150 for Agua de Pau, and 370 for Furnas. However, the average dormant interval at Sete Cidades increased from 400 to about 680 years before each of the past two eruptions, and the interval at Furnas decreased from 370 to about 195 years before each of the past four eruptions. Eruptions in zone 4 occurred about once every 1000 years during latest Pleistocene and early Holocene time; none has occurred for about 3000 years. The Povoação caldera truncates part of the Nordeste shield and probably formed during the middle to late Pleistocene. Calderas formed during latest Pleistocene time at the three younger stratovolcanoes in the sequence: outer Agua de Pau (between 46 and 26.5 ka), Sete Cidades (about 22 ka), inner Agua de Pau (15.2 ka), and Furnas (about 12 ka). Normal faults are common, but many are buried by Holocene trachyte pumice. Most faults trend northwest or west-northwest and are related to the Terceira rift, whose most active segment on São Miguel passes through Sete Cidades and zone 2. A major normal fault displaces Nordeste

  3. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Science.gov (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  4. Geophysical and geochemical models of the Earth's shields and rift zones

    International Nuclear Information System (INIS)

    Chung, D.H.

    1977-01-01

    This report summarizes a collection of, synthesis of, and speculation on the geophysical and geochemical models of the earth's stable shields and rift zones. Two basic crustal types, continental and oceanic, and two basic mantle types, stable and unstable, are described. It is pointed out that both the crust and upper mantle play a strongly interactive role with surface geological phenomena ranging from the occurrence of mountains, ocean trenches, oceanic and continental rifts to geographic distributions of earthquakes, faults, and volcanoes. On the composition of the mantle, there is little doubt regarding the view that olivine constitutes a major fraction of the mineralogy of the earth's upper mantle. Studies are suggested to simulate the elasticity and composition of the earth's lower crust and upper mantle

  5. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    Science.gov (United States)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  6. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    Science.gov (United States)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  7. Variations in magma supply rate at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dvorak, John J.; Dzurisin, Daniel

    1993-01-01

    When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.

  8. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    Science.gov (United States)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  9. Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption

    KAUST Repository

    Le Corvec, Nicolas

    2014-07-01

    Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activity may occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplay may exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements and may hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing. Key Points Analyzing Mount Etna east flank dynamics during the 2001 eruption Good correlation between analogue models and GPS data Understanding the different behavior of faulting before/during/after an eruption © 2014. American Geophysical Union. All Rights Reserved.

  10. Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption

    KAUST Repository

    Le Corvec, Nicolas; Walter, Thomas R.; Ruch, Joel; Bonforte, Alessandro; Puglisi, Giuseppe

    2014-01-01

    Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activity may occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplay may exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements and may hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing. Key Points Analyzing Mount Etna east flank dynamics during the 2001 eruption Good correlation between analogue models and GPS data Understanding the different behavior of faulting before/during/after an eruption © 2014. American Geophysical Union. All Rights Reserved.

  11. Sedimentary record of relay zone evolution, Central Corinth Rift (Greece): Role of fault propagation and structural inheritance.

    Science.gov (United States)

    Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas

    2013-04-01

    Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is

  12. A shifting rift—Geophysical insights into the evolution of Rio Grande rift margins and the Embudo transfer zone near Taos, New Mexico

    Science.gov (United States)

    Grauch, V.J.S.; Bauer, Paul W.; Drenth, Benjamin J.; Kelson, Keith I.

    2017-01-01

    We present a detailed example of how a subbasin develops adjacent to a transfer zone in the Rio Grande rift. The Embudo transfer zone in the Rio Grande rift is considered one of the classic examples and has been used as the inspiration for several theoretical models. Despite this attention, the history of its development into a major rift structure is poorly known along its northern extent near Taos, New Mexico. Geologic evidence for all but its young rift history is concealed under Quaternary cover. We focus on understanding the pre-Quaternary evidence that is in the subsurface by integrating diverse pieces of geologic and geophysical information. As a result, we present a substantively new understanding of the tectonic configuration and evolution of the northern extent of the Embudo fault and its adjacent subbasin.We integrate geophysical, borehole, and geologic information to interpret the subsurface configuration of the rift margins formed by the Embudo and Sangre de Cristo faults and the geometry of the subbasin within the Taos embayment. Key features interpreted include (1) an imperfect D-shaped subbasin that slopes to the east and southeast, with the deepest point ∼2 km below the valley floor located northwest of Taos at ∼36° 26′N latitude and 105° 37′W longitude; (2) a concealed Embudo fault system that extends as much as 7 km wider than is mapped at the surface, wherein fault strands disrupt or truncate flows of Pliocene Servilleta Basalt and step down into the subbasin with a minimum of 1.8 km of vertical displacement; and (3) a similar, wider than expected (5–7 km) zone of stepped, west-down normal faults associated with the Sangre de Cristo range front fault.From the geophysical interpretations and subsurface models, we infer relations between faulting and flows of Pliocene Servilleta Basalt and older, buried basaltic rocks that, combined with geologic mapping, suggest a revised rift history involving shifts in the locus of fault activity as

  13. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    Science.gov (United States)

    Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  14. The East African rift system

    Science.gov (United States)

    Chorowicz, Jean

    2005-10-01

    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate zones of thinned continental lithosphere related to asthenospheric intrusions in the upper mantle. This hidden part of the rift structure is expressed on the surface by thermal uplift of the rift shoulders. The graben valleys and basins are organized over a major failure in the lithospheric mantle, and in the crust comprise a major border fault, linked in depth to a low angle detachment fault, inducing asymmetric roll-over pattern, eventually accompanied by smaller normal faulting and tilted blocks. Considering the kinematics, divergent movements caused the continent to split along lines of preexisting lithospheric weaknesses marked by ancient tectonic patterns that focus the extensional strain. The hypothesis favored here is SE-ward relative divergent drifting of a not yet well individualized Somalian plate, a model in agreement with the existence of NW-striking transform and transfer zones. The East African rift system comprises a unique succession of graben basins linked and segmented by intracontinental transform, transfer and accommodation zones. In an attempt to make a point on the rift system evolution through time and space, it is clear that the role of plume impacts is determinant. The main phenomenon is formation of domes related to plume effect, weakening the lithosphere and, long after, failure inducing focused upper mantle thinning, asthenospheric intrusion and related thermal uplift of shoulders. The plume that had formed first at around 30 Ma was not in the Afar but likely in Lake Tana region (Ethiopia

  15. Factors influencing seismic wave attenuation in the lithosphere in continental rift zones

    Directory of Open Access Journals (Sweden)

    А. А. Dobrynina

    2017-01-01

    Full Text Available Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia, the North Tanzanian divergence zone (Africa and the Basin and Range Province (North America. Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC, frequency parameter (n, attenuation coefficient (δ, and total attenuation (QT. In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi, and scattering attenuation (Qsc. Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ and the frequency (n with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi and scattering attenuation (Qsc show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the

  16. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  17. Magma genesis, storage and eruption processes at Aluto volcano, Ethiopia: lessons from remote sensing, gas emissions and geochemistry

    Science.gov (United States)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin; Pyle, David; Gleeson, Matthew; Lewi, Elias; Yirgu, Gezahgen; Caliro, Stefano; Chiodini, Giovanni; Fischer, Tobias

    2016-04-01

    One of the most intriguing aspects of magmatism during the transition from continental rifting to sea-floor spreading is that large silicic magmatic systems develop within the rift zone. In the Main Ethiopian Rift (MER) these silicic volcanoes not only pose a significant hazard to local populations but they also sustain major geothermal resources. Understanding the journey magma takes from source to surface beneath these volcanoes is vital for determining its eruption style and for better evaluating the geothermal resources that these complexes host. We investigate Aluto, a restless silicic volcano in the MER, and combine a wide range of geochemical and geophysical techniques to constrain magma genesis, storage and eruption processes and shed light on magmatic-hydrothermal-tectonic interactions. Magma genesis and storage processes at Aluto were evaluated using new whole-rock geochemical data from recent eruptive products. Geochemical modelling confirms that Aluto's peralkaline rhyolites, that constitute the bulk of recent erupted products, are generated from protracted fractionation (>80 %) of basalt that is compositionally similar to rift-related basalts found on the margins of the complex. Crustal melting did not play a significant role in rhyolite genesis and melt storage depths of ~5 km can reproduce almost all aspects of their geochemistry. InSAR methods were then used to investigate magma storage and fluid movement at Aluto during an episode of ground deformation that took place between 2008 and 2010. Combining new SAR imagery from different viewing geometries we identified an accelerating uplift pulse and found that source models support depths of magmatic and/or fluid intrusion at ~5 km for the uplift and shallower depths of ~4 km for the subsidence. Finally, gas samples collected on Aluto in 2014 were used to evaluate magma and fluid transport processes. Our results show that gases are predominantly emanating from major fault zones on Aluto and that they

  18. Voluminous lava flow from Axial Seamount's south rift constrains extension rate on northern Vance Segment

    Science.gov (United States)

    Le Saout, M.; Clague, D. A.; Paduan, J. B.

    2017-12-01

    Axial Seamount is characterized by a robust magma supply resulting from the interaction between the Cobb hotspot and the Juan de Fuca Ridge. During the last two decades, magmatic activity was focused within the summit caldera and upper and middle portions of the two rift zones, with eruptions in 1998, 2011, and 2015. However, the distal ends of both rift zones have experienced numerous eruptions in the past. The most voluminous flows are located near the extreme ends, greater than 40 kilometers from the caldera. Where Axial's South Rift Zone overlaps with the Vance Segment of the Juan de Fuca Ridge, the 2015 MBARI expedition mapped 16 km2 of the seafloor with our AUV, and collected 33 rocks and 33 sediment cores during two ROV dives. The data were used to confirm the boundaries of an extensive flow tentatively identified using modern ship based bathymetry. This flow is 18 km wide and 6 km long for a total surface area of 63 km2. The flow is modified by superficial ( 5 m deep) and deep (25 to 45 m deep) subsidence pits, with the deepest pits giving an indication of the minimum thickness of the flow. The maximum thickness of 100 m is measured at the margins of the flow. We thus estimate a volume between 2.5 and 6 km3, making this flow the most voluminous known on the global mid ocean ridge system. The minimum volume is equivalent to the present volume of the summit caldera. Radiocarbon ages of foraminifera from the basal sections of sediment cores suggest that this flow is 1000 years old. This flow travelled east and partially filled the axial valley of the adjacent Vance Segment. Since emplacement, this part of the flow has experienced deformation by fissures and faults aligned with the trend of the Vance Segment. The horizontal extension across these features allows us to estimate a local deformation rate of 3 cm/yr of tectonic extension on the northern end of Vance Segment during the last 1000 years.

  19. 238U–230Th–226Ra–210Pb–210Po disequilibria constraints on magma generation, ascent, and degassing during the ongoing eruption of Kīlauea

    Science.gov (United States)

    Girard, Guillaume; Reagan, Mark K.; Sims, Kenneth W. W.; Thornber, Carl; Waters, Christopher L.; Phillips, Erin H.

    2017-01-01

    The timescales of magma genesis, ascent, storage and degassing at Kīlauea volcano, Hawai‘i are addressed by measuring 238U-series radionuclide abundances in lava and tephra erupted between 1982 and 2008. Most analyzed samples represent lavas erupted by steady effusion from Pu‘u ‘Ō‘ō and Kūpahianaha from 1983 to 2008. Also included are samples erupted at the summit in April 1982 and March 2008, along the East Rift Zone at the onset of the ongoing eruption in January 1983, and during vent shifting episodes 54 and 56, at Nāpau crater in January 1997, and Kane Nui O Hamo in June 2007. In general, samples have small (∼4%) excesses of (230Th) over (238U) and ∼3 to ∼17% excesses of (226Ra) over (230Th), consistent with melting of a garnet peridotite source at melting rates between 1 × 10–3 and 5 × 10–3 kg m–3 a–1, and melting region porosity between ∼2 and ∼10%, in agreement with previous studies of the ongoing eruption and historical eruptions. A small subset of samples has near-equilibrium (230Th/238U) values, and thus were generated at higher melting rates. Based on U–Th–Ra disequilibria and Th isotopic data from this and earlier studies, melting processes and sources have been relatively stable over at least the past two centuries or more, including during the ongoing unusually long (>30 years) and voluminous (4 km3) eruption. Lavas recently erupted from the East Rift Zone have average initial (210Pb/226Ra) values of 0·80 ± 0·11 (1σ), which we interpret to be the result of partitioning of 222Rn into a persistently generated CO2-rich gas phase over a minimum of 8 years. This (210Pb) deficit implies an average magma ascent rate of ≤3·7 km a–1 from ∼30 km depth to the surface. Spatter and lava associated with vent-opening episodes erupt with variable (210Pb) deficits ranging from 0·7 to near-equilibrium values in some samples. The samples with near-equilibrium (210Pb/226Ra) are typically more

  20. Root zone of a continental rift

    DEFF Research Database (Denmark)

    Kirsch, Moritz; Svenningsen, Olaf

    2016-01-01

    melt are considered to account for the compositional range exhibited by the KIC igneous rocks. U/Pb SIMS geochronological data from zircon rims yield an emplacement age of 578 ± 9 Ma. The KIC is thus younger and more depleted than coeval mafic rocks found in the Seve Nappe, and is interpreted...... to represent a high-level magma plumbing system in a late-stage continental rift. The composition and volume of rift-related igneous rocks in the Seve Nappes are inconsistent with a mantle plume origin, but are thought to record progressive lithospheric thinning and increasing involvement of an asthenospheric......Mafic magmatic rocks formed between ca. 615 and 560 Ma along the Neoproterozoic margins of Baltica and Laurentia are classically attributed to continental rifting heralding the opening of the Iapetus Ocean. We report new data for the Kebnekaise Intrusive Complex (KIC) exposed in the Seve Nappes...

  1. Graben formation during the Bárðarbunga rifting event in central Iceland

    KAUST Repository

    Ruch, Joel

    2015-04-01

    On the 16th of August 2014, an intense seismic swarm was detected at the Bárðarbunga caldera (central Iceland), which migrated to the east and then to the northeast during the following days. The swarm, highlighting magma propagation pathway from the caldera, migrated laterally during the following two weeks over 40 km. By the end of August, a volcanic eruption had started along a north-south oriented fissure located ~45 km from the caldera. Here we focus on the near-field deformation related to the dike emplacement in the shallow crust, which generated in few days an 8 km long by 0.8 km wide graben (depression) structure. The new graben extends from the northern edge of the Vatnajökull glacier and to the north to the eruptive fissure. We analyze the temporal evolution of the graben by integrating structural mapping using multiple acquisitions of TerraSAR-X amplitude radar images, InSAR and ground-truth data with GPS and structural measurements. Pixel-offset tracking of radar amplitude images shows clearly the graben subsidence, directly above the intrusion pathway, of up to 6 meters in the satellite line-of-sight direction. We installed a GPS profile of 15 points across the graben in October 2014 and measured its depth up to 8 meters, relative to the flanks of the graben. Field structural observations show graben collapse structures that typically accompany dike intrusions, with two tilted blocks dipping toward the graben axis, bordered by two normal faults. Extensive fractures at the center of the graben and at the graben edges show a cumulative extension of ~8 meters. The formation of the graben was also accompanied by strong seismic activity locally, constraining the time frame period of the main graben formation subsidence. Our results show a rare case of a graben formation captured from space and from ground observations. Such structures are the dominant features along rift zones, however, their formation remain poorly understood. The results also provide

  2. Fault-Magma Interactions during Early Continental Rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    Science.gov (United States)

    Weinstein, A.; Oliva, S. J.; Ebinger, C.; Aman, M.; Lambert, C.; Roecker, S. W.; Tiberi, C.; Muirhead, J.

    2017-12-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2D studies. We analyze seismicity data from a 13-month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3D velocity model reveal lower crustal earthquakes along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 66 earthquakes, and a longer time period of relocated earthquakes from global arrays reveal an along-axis stress rotation of 50 o ( N150 oE) in the magmatically active zone. Using Kostrov summation of local and teleseismic mechanisms, we find opening directions of N122ºE and N92ºE north and south of the magmatically active zone. The stress rotation facilitates strain transfer from border fault systems, the locus of early stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Earthquakes are largely driven by stress state around inflating magma bodies, and more dike intrusions with surface faulting, eruptions, and earthquakes are expected.

  3. Ground Tilt Time Delays between Kilauea Volcano's Summit and East Rift Zone Caused by Magma Reservoir Buffering

    Science.gov (United States)

    Haney, M. M.; Patrick, M. R.; Anderson, K. R.

    2016-12-01

    A cyclic pattern of ground deformation, called a deflation-inflation (DI) cycle, is commonly observed at Kilauea Volcano, Hawai`i. These cycles are an important part of Kilauea's eruptive activity because they directly influence the level of the summit lava lake as well as the effusion rate (and resulting lava flow hazard) at the East Rift Zone eruption site at Pu`u `O`o. DI events normally span several days, and are measured both at the summit and at Pu`u `O`o cone (20 km distance). Signals appear first at the summit and are then observed at Pu`u `O`o after an apparent delay of between 0.5 and 10 hours, which has been previously interpreted as reflecting magma transport time. We propose an alternate explanation, in which the apparent delay is an artifact of buffering by the small magma reservoir thought to exist at Pu`u `O`o. Simple Poiseuille flow modeling demonstrates that this apparent delay can be reproduced by the changing balance of inflow (from the summit) and outflow (to surface lava flows) at the Pu`u `O`o magma reservoir. The apparent delay is sensitive to the geometry of the conduit leaving Pu`u `O`o, feeding surface lava flows. We demonstrate how the reservoir buffering is quantitatively equivalent to a causal low-pass filter, which explains both the apparent delay as well as the smoothed, skewed nature of the signal at Pu`u `O`o relative to the summit. By comparing summit and Pu`u `O`o ground tilt signals over an extended time period, it may be possible to constrain the changing geometry of the shallow magmatic system through time.

  4. The Tephra Layer From the Plinian Eruption in ™r‘faj”kull 1362, Southeast Iceland

    Science.gov (United States)

    Selbekk, R. S.

    2002-12-01

    Pyroclastic fallout from the 1362 eruption of ™r‘faj”kull forms one of the volcanic marker horizons of the North Atlantic. This contribution reports the mineralogical and geochemical characteristics of the ™r‘faj”kull 1362 fallout and its grain-size distribution. A non-rifting 120 km long volcanic lineament some 50 km east of the Eastern Rift-Zone of Iceland is defined by transitional and alkalic volcanic rocks resting unconformably on late Tertiary strata. ™r‘faj”kull which forms the southern termination of this off-rift liniment is an ice-covered stratovolcano (2200 masl) composed mostly of subglacially formed hyaloclastite ranging from basalts to rhyolites. The two historical (1100 yrs) eruptions of ™r‘faj”kull include a small explosive eruption in 1727 and a large devastating Plinian eruption associated with major lahars and a caldera collapse in 1362. Between 1 and 2 km3 dense rock equivalent or 5-10 km3 of rhyolitic pumice was erupted and the fallout was mainly towards ESE. Tentative modelling of the PT-conditions of the magma formation, based on glass/mineral equilibria, indicates that the source was a near-eutectic melt in equilibrium with fayalite, hedenbergite, oligoclase and hematite at some 0.2 GPa pressure. A profile through the fallout was sampled at elevation of about 1100 masl on the SE flank of the volcano. A deposit of 1.8 m thickness was collected in 14 units for examination of composition, mineralogy and grain-size distribution during the eruption. In the profile the fallout is fine grained vesicular glass (1-3% minerals, 3% lithic fragments) with bubble wall thickness in the low micron range. The high and even vesiculation of the glass indicates fast magma ascent and explains the extreme mechanical fragmentation within the eruptive column, yielding between 50 and 80 wt% of less than 0.25 mm grain size. A reconstruction of the Plinian phase, based on grain-size analysis and abundance of lithic fragments, reveals that the

  5. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    Science.gov (United States)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  6. Hydrogeological Modelling of the Geothermal Waters of Alaşehir in the Continental Rift Zone of the Gediz, Western Anatolia, Turkey

    Science.gov (United States)

    Ӧzgür, Nevzat; Bostancı, Yesim; Anilır Yürük, Ezgi

    2017-12-01

    In western Anatolia, Turkey, the continental rift zones of the Büyük Menderes, Küçük Menderes and Gediz were formed by extensional tectonic features striking E-W generally and representing a great number of active geothermal systems, epithermal mineralizations and volcanic rocks from Middle Miocene to recent. The geothermal waters are associated with the faults which strike preferentially NW-SE and NE-SW and locate diagonal to general strike of the rift zones of the Menderes Massif. These NW-SE and NE-SW striking faults were probably generated by compressional tectonic regimes which leads to the deformation of uplift between two extensional rift zones in the Menderes Massif. The one of these rift zones is Gediz which is distinguished by a great number of geothermal waters such as Alaşehir, Kurşunlu, Çamurlu, Pamukkale and Urganlı. The geothermal waters of Alaşehir form the biggest potential in the rift zone of Gediz with a capacity of about 100 to 200 MWe. Geologically, the gneisses from the basement rocks in the study area which are overlain by an Paleozoic to Mesozoic intercalation of mica schists, quartzites and marbles, a Miocene intercalation of conglomerates, sandstones and clay stones and Plio-Quaternary intercalation of conglomerates, sandstones and clay stones discordantly. In the study area, Paleozoic to Mesozoic quartzites and marbles form the reservoir rocks hydrogeologically. The geothermal waters anions with Na+K>Ca>Mg dominant cations and HCO3>Cl> dominant anions are of Na-HCO3 type and can be considered as partial equilibrated waters. According to the results of geochemical thermometers, the reservoir temperatures area of about 185°C in accordance with measured reservoir temperatures. Stabile isotopes of δ18O versus δ2H of geothermal waters of Alaşehir deviate from the meteoric water line showing an intensive water-rock interaction under high temperature conditions. These data are well correlated with the results of the

  7. Diachronism in the late Neoproterozoic-Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena Zone

    Science.gov (United States)

    Álvaro, J. Javier; Bellido, Félix; Gasquet, Dominique; Pereira, M. Francisco; Quesada, Cecilio; Sánchez-García, Teresa

    2014-10-01

    In the northwestern border of the West African craton (North Gondwana), a transition from late Neoproterozoic subduction/collision to Cambrian rift processes was recorded in the Anti-Atlas (Morocco) and in the Ossa-Morena Zone (Iberia). Cambrian rifting affected both Pan-African and Cadomian basements in a stepwise and diachronous way. Subsequently, both areas evolved into a syn-rift margin episodically punctuated by uplift and tilting that precluded Furongian sedimentation. A comparison of sedimentary, volcanic and geodynamic evolution is made in the late Neoproterozoic (Pan-African and Cadomian) belts and Cambrian rifts trying to solve the apparent diachronous (SW-NE-trending) propagation of an early Palaeozoic rifting regime that finally led to the opening of the Rheic Ocean.

  8. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    Science.gov (United States)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  9. Crustal thickness and Moho sharpness beneath the Midcontinent rift from receiver functions

    Directory of Open Access Journals (Sweden)

    Moikwathai Moidaki

    2013-02-01

    Full Text Available The Mesoproterozoic Midcontinent rift (MCR in the central US is an approximately 2000 km long, 100 km wide structure from Kansas to Michigan. During the 20-40 million years of rifting, a thick (up to 20 km layer of basaltic lava was deposited in the rift valleys. Quantifying the effects of the rifting and associated volcanic eruptions on the structure and composition of the crust and mantle beneath the MCR is important for the understanding of the evolution of continental lithosphere. In this study we measure the crustal thickness (H, and the sharpness of the Moho (R at about 24 portable and permanent stations in Iowa, Kansas, and South Dakota by stacking Pto- S converted waves (PmS and their multiples (PPmS and PSmS. Under the assumption that the crustal mean velocity in the study area is the same as the IASP91 earth model, we find a significantly thickened crust beneath the MCR of about 53 km. The crustal Vp/Vs ratios increases from about 1.80 off rift to as large as 1.95 within the rift, which corresponds to an increase of Poisson’s ratio from 0.28 to 0.32, suggesting a more mafic crust beneath the MCR. The R measurements are spatially variable and are relatively small in the vicinity of the MCR, indicating the disturbance of the original sharp Moho by the rifting and magmatic intrusion and volcanic eruption.

  10. IDENTIFICATION OF EARTHQUAKE AFTERSHOCK AND SWARM SEQUENCES IN THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    N. A. Radziminovich

    2013-01-01

    Full Text Available The catalog of earthquakes (КR³6.6 which occurred in the Baikal rift zone (BRZ was declastered, and the results are presented in the article. Aftershocks of seismic events (КR³12.5 were determined by the software developed by V.B. Smirnov (Lomonosov Moscow State University with application of the algorithm co-authored by G.M. Molchan and O.E. Dmitrieva. To ensure proper control of the software application, aftershocks were also selected manually. The results of declustering show that aftershocks of the earthquakes (КR³12.5 account for about 25 per cent of all seismic events in the regional catalog. Aftershocks accompanied 90 per cent of all the earthquakes considered as main shocks. Besides, earthquake swarms, including events with КR³11, were identified. The results of this study show that, in the BRZ, the swarms and strong events with aftershocks are not spatially separated, and this conclusion differs from the views of the previous studies that reviewed data from a shorter observation period. Moreover, it is noted that the swarms may consist of several main shocks accompanied by aftershocks. The data accumulated over the last fifty years of instrumental observations support the conclusion made earlier that the swarms in BRZ occur mainly in the north-eastward direction from Lake Baikal and also confirm the trend of a small number of aftershocks accompanying earthquakes in the south-western part of the Baikal rift zone.

  11. Giant caldera in the Arctic Ocean: Evidence of the catastrophic eruptive event.

    Science.gov (United States)

    Piskarev, Alexey; Elkina, Daria

    2017-04-10

    A giant caldera located in the eastern segment of the Gakkel Ridge could be firstly seen on the bathymetric map of the Arctic Ocean published in 1999. In 2014, seismic and multibeam echosounding data were acquired at the location. The caldera is 80 km long, 40 km wide and 1.2 km deep. The total volume of ejected volcanic material is estimated as no less than 3000 km 3 placing it into the same category with the largest Quaternary calderas (Yellowstone and Toba). Time of the eruption is estimated as ~1.1 Ma. Thin layers of the volcanic material related to the eruption had been identified in sedimentary cores located about 1000 km away from the Gakkel Ridge. The Gakkel Ridge Caldera is the single example of a supervolcano in the rift zone of the Mid-Oceanic Ridge System.

  12. The Pu'u 'O'o-Kupaianaha Eruption of Kilauea Volcano, Hawaii: The First 20 Years

    Science.gov (United States)

    Heliker, Christina C.; Swanson, Donald A.; Takahashi, Taeko Jane

    2003-01-01

    The Pu'u 'O'o-Kupaianaha eruption started on January 3, 1983. The ensuing 20-year period of nearly continuous eruption is the longest at Kilauea Volcano since the famous lava-lake activity of the 19th century. No rift-zone eruption in more than 600 years even comes close to matching the duration and volume of activity of these past two decades. Fortunately, such a landmark event came during a period of remarkable technological advancements in volcano monitoring. When the eruption began, the Global Positioning System (GPS) and the Geographic Information System (GIS) were but glimmers on the horizon, broadband seismology was in its infancy, and the correlation spectrometer (COSPEC), used to measure SO2 flux, was still very young. Now, all of these techniques are employed on a daily basis to track the ongoing eruption and construct models about its behavior. The 12 chapters in this volume, written by present or past Hawaiian Volcano Observatory staff members and close collaborators, celebrate the growth of understanding that has resulted from research during the past 20 years of Kilauea's eruption. The chapters range widely in emphasis, subject matter, and scope, but all present new concepts or important modifications of previous ideas - in some cases, ideas long held and cherished.

  13. The Te Rere and Okareka eruptive episodes : Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Nairn, I.A.

    1992-01-01

    The Te Rere and Okareka eruptive episodes occurred within the Okataina Volcanic Centre at c. 21 000 and 18 000 yr B.P., respectively. The widespread rhyolitic pumice fall deposits of Te Rere Ash (volume 5 km 3 ) and Okareka Ash (6 km 3 ) are only rarely exposed in near-source areas, and locations of their vent areas have been uncertain. New exposures and petrographic and chemical analyses show that the Te Rere episode eruptions occurred from multiple vents, up to 20 km apart, on the Haroharo linear vent zone. The Okareka episode eruptions occurred from vents since buried beneath the Tarawera volcanic massif. Eruption of the rhyolitic Okareka pumice fall was immediately preceded by a small basaltic scoria eruption, apparently from vents close to those for the following rhyolite eruptions. Dacitic mixed pumices scattered within the rhyolite pumice layers immediately overlying the scoria were formed by mixing of the basalt and rhyolite magmas. The Te Rere and Okareka pyroclastic eruptions were both followed by extrusion of voluminous rhyolite lavas. These eruptive episodes mark the commencement of growth of the present-day Haroharo and Tarawera volcanic complexes. (author). 27 refs., 14 figs., 6 tabs

  14. The June 2014 eruption at Piton de la Fournaise: Robust methods developed for monitoring challenging eruptive processes

    Science.gov (United States)

    Villeneuve, N.; Ferrazzini, V.; Di Muro, A.; Peltier, A.; Beauducel, F.; Roult, G. C.; Lecocq, T.; Brenguier, F.; Vlastelic, I.; Gurioli, L.; Guyard, S.; Catry, T.; Froger, J. L.; Coppola, D.; Harris, A. J. L.; Favalli, M.; Aiuppa, A.; Liuzzo, M.; Giudice, G.; Boissier, P.; Brunet, C.; Catherine, P.; Fontaine, F. J.; Henriette, L.; Lauret, F.; Riviere, A.; Kowalski, P.

    2014-12-01

    After almost 3.5 years of quiescence, Piton de la Fournaise (PdF) produced a small summit eruption on 20 June 2014 at 21:35 (GMT). The eruption lasted 20 hours and was preceded by: i) onset of deep eccentric seismicity (15-20 km bsl; 9 km NW of the volcano summit) in March and April 2014; ii) enhanced CO2 soil flux along the NW rift zone; iii) increase in the number and energy of shallow (shallow location, was not characteristic of an eruptive crisis. However, at 20:06 on 20/06 their character changed. This was 74 minutes before the onset of tremor. Deformations then began at 20:20. Since 2007, PdF has emitted small magma volumes (processing of seismic data, borehole tiltmeters and permanent monitoring of summit gas emissions, plus CO2 soil flux, were used to track precursory activity. JERK, based on an analysis of the acceleration slope of a broad-band seismometer data, allowed advanced notice of the new eruption by 50 minutes. MSNoise, based on seismic velocity determination, showed a significant decrease 7 days before the eruption. These signals were coupled with change in summit fumarole composition. Remote sensing allowed the following syn-eruptive observations: - INSAR confirmed measurements made by the OVPF geodetic network, showing that deformation was localized around the eruptive fissures; - A SPOT5 image acquired at 05:41 on 21/06 allowed definition of the flow field area (194 500 m2); - A MODIS image acquired at 06:35 on 21/06 gave a lava discharge rate of 6.9±2.8 m3 s-1, giving an erupted volume of 0.3 and 0.4 Mm3. - This rate was used with the DOWNFLOW and FLOWGO models, calibrated with the textural data from Piton's 2010 lava, to run lava flow projections; showing that the event was volume limited. Preliminary sample analyses suggest that the olivine rich lavas have a differentiated character (melt MgO: 5.8 - 6.2 wt.%); proof of chamber residence. However, some aphyric tephra are more primitive (MgO: 8.2 wt.%). This suggests eruption due to

  15. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode.

    Science.gov (United States)

    Wright, Tim J; Ebinger, Cindy; Biggs, Juliet; Ayele, Atalay; Yirgu, Gezahegn; Keir, Derek; Stork, Anna

    2006-07-20

    Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

  16. Images of the East Africa Rift System from the Joint Inversion of Body Waves, Surface Waves, and Gravity: Investigating the Role of Magma in Early-Stage Continental Rifting

    Science.gov (United States)

    Roecker, S. W.; Ebinger, C. J.; Tiberi, C.; Mulibo, G. D.; Ferdinand-Wambura, R.; Muzuka, A.; Khalfan, M.; Kianji, G.; Gautier, S.; Albaric, J.; Peyrat, S.

    2015-12-01

    With several rift segments at different stages of the rifting cycle, and the last orogenic episode more than 500 Mya, the young (Ngorongoro caldera appears to be physically cut off from the magma beneath the main part of the rift zone by a relatively thin (< 10 km) wide zone of higher shear wave speeds that lies along the western edge of the fault-bounded rift. The narrow ridge of higher velocity lower crustal material may be a consequence of flexural uplift of the rift flank in response to stretching of strong, cratonic lithosphere.

  17. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel

    2016-08-05

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  18. Monitoring diffuse degassing in monogenetic volcanic field during seismic-volcanic unrest: the case of Tenerife North-West Rift Zone (NWRZ), Canary Islands, Spain

    Science.gov (United States)

    García, E.; Botelho, A. H.; Regnier, G. S. G.; Rodríguez, F.; Alonso Cótchico, M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Hernández, P. A.; Pérez, N. M.

    2017-12-01

    Tenerife North-West Rift-Zone (NWRZ) is the most active volcano of the oceanic active volcanic island of Tenerife and the scenario of three historical eruptions (Boca Cangrejo S. XVI, Arenas Negras 1706 and Chinyero 1909). Since no visible degassing (fumaroles, etc.) at Tenerife NWRZ occurs, a geochemical monitoring program at Tenerife NWRZ was established mainly consisting on performing soil CO2 efflux surveys (50 surveys since 2000) to evaluate the temporal and spatial variations of soil CO2 efflux measurements and the diffuse CO2 emission rate. To do so, about 340 sampling sites were selected for each survey to obtain a homogeneous distribution after taking into consideration the local geology, structure, and accessibility. Measurements of soil CO2 efflux were performed in situ by means of a portable non-dispersive infrared sensor following the accumulation chamber method. The soil CO2 efflux values of the 2017 survey ranged from non-detectable to 46.6 g m-2 d-1. Statistical-graphical analysis of the 2017 data show two different geochemical populations; background (B) and peak (P) represented by 93.3% and 1.9% of the total data, respectively. The geometric means of the B and P populations are 2.4 and 19.1 g m-2 d-1, respectively. Most of the area showed B values while the P values were mainly observed at the N-W side of the volcanic rift. To estimate the diffuse CO2 emission in metric tons per day released from Tenerife NWRZ (75 km2) for the 2017 survey, we ran about 100 sGs simulations. The estimated 2017 diffuse CO2 output released to atmosphere by the Tenerife NWRZ volcano was 297 ± 13 t d-1. This 2017 diffuse CO2 emission rate value is relatively higher than the estimated background value (144 t d-1) and falls within the estimated background range (72 - 321 t d-1) observed for Tenerife NWRZ volcano during the 2000-2017 period. The observed temporal variation in the diffuse CO2 degassing output during this period does not seem to be driven by external

  19. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift

    Directory of Open Access Journals (Sweden)

    Alexander Koptev

    2016-03-01

    Full Text Available The East African Rift system (EARS provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rift, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plume-lithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western and magmatic (eastern branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to

  20. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

  1. Inter-Rifting and Inter-Seismic Strain Accumulation in a Propagating Ridge System: A Geodetic Study from South Iceland

    Science.gov (United States)

    Travis, M. E.; La Femina, P. C.; Geirsson, H.

    2012-12-01

    The Mid-Atlantic Ridge, a slow spreading (~19 mm/yr) mid-ocean ridge boundary between the North American and Eurasian plates, is exposed subaerially in Iceland as the result of ridge-hotspot interaction. Plate spreading in Iceland is accommodated along neovolcanic zones comprised of central volcanoes and their fissure swarms. In south Iceland plate motion is partitioned between the Western Volcanic Zone (WVZ) and Eastern Volcanic Zone (EVZ). The EVZ is propagating to the southwest, while the WVZ is dying out from the northeast. Plate motion across both systems has been accommodated by repeated rifting events and fissure eruptions. In this study we investigate whether the WVZ is active and accumulating strain, and how strain is partitioned between the WVZ and EVZ. We also test how strain is accumulating along fissure swarms within the EVZ (i.e. is strain accumulation localized to one fissure swarm, or are multiple systems active?). We use GPS data and elastic block models run using the program DEFNODE to investigate these issues. GPS data are processed using the GIPSY-OASIS II software, and have been truncated to the 2000.5-2011 time period to avoid co-seismic displacement from the two June 2000 South Iceland Seismic Zone earthquakes. We also truncate the time series for sites within 20 km of Eyjafjallajökull to the beginning of 2010 to eliminate deformation associated with the March 2010 eruption of that volcano. We correct for co-seismic displacement from the two May 2008 SISZ earthquakes, inflation at Hekla volcano and the horizontal component of glacial isostatic rebound (GIA). Our best-fit model for inter-rifting and inter-seismic elastic strain accumulation suggests 80-90% of spreading is accommodated in the EVZ with the other 10-20% accommodated by the WVZ. The best-fit location of the EVZ is between Veidivotn and Lakigigar in an area of no Holocene volcanic activity. We suggest the WVZ is only active at Hengill and its associated fissure swarm. Geologic and

  2. Near N-S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India-Seychelles rifting?

    Science.gov (United States)

    Misra, Achyuta Ayan; Bhattacharya, Gourab; Mukherjee, Soumyajit; Bose, Narayan

    2014-09-01

    This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India-Seychelles rifting during Late Cretaceous-Early Paleocene, was studied, and the paleostress tensors were deduced. Near N-S trending shear zones, lineaments, and faults were already reported without significant detail. An E-W extension was envisaged by the previous workers to explain the India-Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N-S brittle shear zones and also those faults (sub-vertical, ~NE-SW/~NW-SE, and few ~N-S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N-S to ~NE-SW/~NW-SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW-SE/NE-SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N-S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N-S extension is put forward that refutes the popular view of E-W India-Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE-SW and ~NW-SE, with some ~N-S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of

  3. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    Science.gov (United States)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  4. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  5. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  6. Geologic map of the northeast flank of Mauna Loa volcano, Island of Hawai'i, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Lockwood, John P.

    2017-05-01

    SummaryMauna Loa, the largest volcano on Earth, has erupted 33 times since written descriptions became available in 1832. Some eruptions were preceded by only brief seismic unrest, while others followed several months to a year of increased seismicity.The majority of the eruptions of Mauna Loa began in the summit area (>12,000-ft elevation; Lockwood and Lipman, 1987); yet the Northeast Rift Zone (NERZ) was the source of eight flank eruptions since 1843 (table 1). This zone extends from the 13,680-ft-high summit towards Hilo (population ~60,000), the second largest city in the State of Hawaii. Although most of the source vents are farther than 30 km away, the 1880 flow from one of the vents extends into Hilo, nearly reaching Hilo Bay. The city is built entirely on flows erupted from the NERZ, most older than that erupted in 1843.Once underway, Mauna Loa's eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities in their path. For example, lava flows erupted from the Southwest Rift Zone (SWRZ) in 1950 advanced at an average rate of 9.3 km per hour, and all three lobes reached the ocean within approximately 24 hours (Finch and Macdonald, 1953). The flows near the eruptive vents must have traveled even faster.In terms of eruption frequency, pre-eruption warning, and rapid flow emplacement, Mauna Loa poses an enormous volcanic-hazard threat to the Island of Hawai‘i. By documenting past activity and by alerting the public and local government officials of our findings, we can anticipate the volcanic hazards and substantially mitigate the risks associated with an eruption of this massive edifice.From the geologic record, we can deduce several generalized facts about the geologic history of the NERZ. The middle to the uppermost section of the rift zone were more active in the past 4,000 years than the lower part, perhaps due to buttressing of the lower east rift zone by Mauna Kea and Kīlauea volcanoes. The historical flows

  7. Recent Inflation of Kilauea Volcano

    Science.gov (United States)

    Miklius, A.; Poland, M.; Desmarais, E.; Sutton, A.; Orr, T.; Okubo, P.

    2006-12-01

    Over the last three years, geodetic monitoring networks and satellite radar interferometry have recorded substantial inflation of Kilauea's magma system, while the Pu`u `O`o eruption on the east rift zone has continued unabated. Combined with the approximate doubling of carbon dioxide emission rates at the summit during this period, these observations indicate that the magma supply rate to the volcano has increased. Since late 2003, the summit area has risen over 20 cm, and a 2.5 km-long GPS baseline across the summit area has extended almost half a meter. The center of inflation has been variable, with maximum uplift shifting from an area near the center of the caldera to the southeastern part of the caldera in 2004-2005. In 2006, the locus of inflation shifted again, to the location of the long-term magma reservoir in the southern part of the caldera - the same area that had subsided more than 1.5 meters during the last 23 years of the ongoing eruption. In addition, the southwest rift zone reversed its long-term trend of subsidence and began uplifting in early 2006. The east rift zone has shown slightly accelerated rates of extension, but with a year-long hiatus following the January 2005 south flank aseismic slip event. Inflation rates have varied greatly. Accelerated rates of extension and uplift in early 2005 and 2006 were also associated with increased seismicity. Seismicity occurred not only at inflation centers, but was also triggered on the normal faulting area northwest of the caldera and the strike-slip faulting area in the upper east rift zone. In early 2006, at about the time that we started recording uplift on the southwest rift zone, the rate of earthquakes extending from the summit into the southwest rift zone at least quadrupled. The most recent previous episode of inflation at Kilauea, in 2002, may have resulted from reduced lava- transport capacity, as it was associated with decreased outflow at the eruption site. In contrast, eruption volumes

  8. Rising from the ashes: Changes in salmonid fish assemblages after 30 months of the Puyehue-Cordon Caulle volcanic eruption.

    Science.gov (United States)

    Lallement, Mailén; Macchi, Patricio J; Vigliano, Pablo; Juarez, Santiago; Rechencq, Magalí; Baker, Matthew; Bouwes, Nicolaas; Crowl, Todd

    2016-01-15

    Events such as volcanic eruptions may act as disturbance agents modifying the landscape spatial diversity and increasing environmental instability. On June 4, 2011 the Puyehue-Cordon Caulle volcanic complex located on Chile (2236 m.a.s.l., 40° 02' 24" S- 70° 14' 26" W) experience a rift zone eruption ejecting during the first day 950 million metric tons into the atmosphere. Due to the westerly winds predominance, ash fell differentially upon 24 million ha of Patagonia Argentinean, been thicker deposits accumulated towards the West. In order to analyze changes on stream fish assemblages we studied seven streams 8, 19 and 30 months after the eruption along the ash deposition gradient, and compare those data to pre eruption ones. Habitat features and structure of the benthic macroinvertebrate food base of fish was studied. After the eruption, substantial environmental changes were observed in association with the large amount of ash fallout. In western sites, habitat loss due to ash accumulation, changes in the riparian zone and morphology of the main channels were observed. Turbidity was the water quality variable which reflected the most changes throughout time, with NTU values decreasing sharply from West to East sites. In west sites, increased Chironomid densities were recorded 8 months after the initial eruption as well as low EPT index values. These relationships were reversed in the less affected streams farther away from the volcano. Fish assemblages were greatly influenced both by habitat and macroinvertebrate changes. The eruption brought about an initial sharp decline in fish densities and the almost total loss of young of the year in the most western streams affecting recruitment. This effect diminished rapidly with distance from the emission center. Thirty months after the eruption, environmental changes are still occurring as a consequence of basin wide ash remobilization and transport.

  9. Rhyolites associated to Ethiopian CFB: Clues for initial rifting at the Afar plume axis

    Science.gov (United States)

    Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca

    2011-12-01

    A comprehensive tectono-magmatic model based on new geochemical and field data is discussed in order to highlight the significance of the high-TiO 2 bimodal picrite basalt/rhyolite association in the north-eastern sector of the Ethiopian Plateau, which is considered to be the axial zone of the 30 Ma Continental Flood Basalt activity related to the Afar plume (Beccaluva et al., 2009). In this area the volcanic sequence consists of approximately 1700 m of high TiO 2 (4-6.5%) picrite basalts, covered by rhyolitic ignimbrites and lavas, with an average thickness of 300 m, which discontinuously extend over an area of nearly 13,500 km 2 (ca. 3600 km 3). Petrogenetic modelling, using rock and mineral chemical data and phase equilibria calculations by PELE and MELTS, indicates that: 1) picrite basalts could generate rhyolitic, sometimes peralkaline, residual melts with persistently high titanium contents (TiO 2 0.4-1.1%; Fluorine 0.2-0.3%; H 2O 2-3%; density ca. 2.4) corresponding to liquid fractions 9-16%; 2) closed system fractional crystallisation processes developed at 0.1-0.3 GPa pressure and 1390-750 °C temperature ranges, under QFM fO 2 conditions; 3) the highest crystallisation rate - involving 10-13% of Fe-Ti oxide removal - in the temperature range 1070-950 °C, represents a transitory (short-lived) fractionation stage, which results in the absence of erupted silica intermediate products (Daly gap). The eruption of low aspect ratio fluorine-rich rhyolitic ignimbrites and lavas capping the basic volcanics implies a rapid change from open- to closed-system tectono-magmatic conditions, which favoured the trapping of parental picrite basalts and their fractionation in upwardly zoned magma chambers. This evolution resulted from the onset of continental rifting, which was accompanied by normal faulting and block tilting, and the formation of shallow - N-S elongated - fissural chambers parallel to the future Afar Escarpment. The eruption of large volumes of rhyolitic

  10. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    Science.gov (United States)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  11. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa

    Science.gov (United States)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.

    2017-07-01

    Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 × 200 km2 area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a mid-lithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho but with a more slanting direction (NE-SW) compared to the NS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding

  12. Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake

    Directory of Open Access Journals (Sweden)

    Y. Dzierma

    2010-10-01

    Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.

  13. Experimental Constraints on Forecasting the Location of Volcanic Eruptions from Pre-eruptive Surface Deformation

    Directory of Open Access Journals (Sweden)

    Frank Guldstrand

    2018-02-01

    Full Text Available Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating the emplacement of viscous magma intrusions in a brittle, cohesive Coulomb crust under lithostatic stress conditions. The intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the center of the uplifted area and the point of maximum uplift, which systematically acted as a precursor to the eruption's location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes that are not in active rifts could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  14. Morphostructural evidence for Recent/active extension in Central Tanzania beyond the southern termination of the Kenya Rift.

    Science.gov (United States)

    Le Gall, B.; Rolet, J.; Gernigon, L.; Ebinger, C.; Gloaguen, R.

    2003-04-01

    The southern tip zone of the Kenya Rift on the eastern branch of the East African System is usually thought to occur in the so-called North Tanzanian Divergence. In this region, the narrow (50 km-wide) axial graben of southern Kenya splays southwards, via a major EW-trending volcanic lineament, into a 200 km-wide broad rifted zone with three separate arms of normal faulting and tilted fault blocks (Eyasi, Manyara and Pangani arms from W to E). Remote sensing analysis from Central Tanzania demonstrates that rift morphology exists over an area lying 400 km beyond the southern termination of the Kenya Rift. The most prominent rift structures are observed in the Kilombero region and consist of a 100 km-wide range of uplifted basement blocks fringed to the west by an E-facing half-graben inferred to reach depths of 6-8 km from aeromagnetic dataset. Physiographic features (fault scarps), and river drainage anomalies suggest that the present-day rift pattern in the Kilombero extensional province principally results from Recent/Neogene deformation. That assumption is also supported by the seismogenic character of a number of faults. The Kilombero half-graben is superimposed upon an earlier rift system, Karoo in age, which is totally overprinted and is only evidenced from its sedimentary infill. On the other hand, the nature and thickness of the inferred Neogene synrift section is still unknown. The Kilombero rifted zone is assumed to connect northwards into the central rift arm (Manyara) of the South Kenya Rift via a seismically active transverse fault zone that follows ductile fabrics within the Mozambican crystalline basement. The proposed rift model implies that incipient rifting propagates hroughout the cold and strong crust/lithosphere of Central Tanzania along Proterozoic (N140=B0E) basement weakness zones and earlier Karoo (NS)rift structures. A second belt of Recent-active linked fault/basins also extends further East from the Pangani rift arm to the offshore

  15. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  16. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    -like structures and jumbled sheet flows on the floors suggest the eruption was on-going when the ponds emptied. 14C-dating of foraminifera from basal sediments on the pond floors gives a minimum age for the ponds of ~1500 years, which is older than any of the surface flows in Axial's summit caldera. Limu o Pele was abundant. Glass contents of the recovered lavas are 7.6 to 8.0 wt% MgO with few exceptions, and other than being plagioclase-phyric, the chemistry is similar to the majority of lavas at the summit. Lava samples from the floors of several ponds have a few tenths of a weight percent lower MgO than the nearby levees, suggesting the pond's molten interior or resupplied lavas had some time to cool. The varying levee rim heights and abundance of ponds in the vicinity suggest this type of activity occurred many times in this area, but it is an unusual eruption style for mid-ocean ridges. Another lava pond complex with even higher levees occurs on the north rift of Axial Volcano. Formation of these ponds requires long-lived, steady, moderate-eruption-rate lava effusion on nearly horizontal seafloor and may occur only on deep distal rift zones of central volcanoes.

  17. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    Science.gov (United States)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related

  18. Serreta Submarine Eruption 1998-2001, Azores: a new compositional end-member?

    Science.gov (United States)

    Filipa Marques, Ana; Hamelin, Cédric; Madureira, Pedro; Rosa, Carlos; Silva, Pedro; Relvas, Jorge; Lourenço, Nuno; Conceição, Patrícia; Barriga, Fernando

    2014-05-01

    The Azores platform, where the Eurasian, Nubian and American plates meet, comprises nine volcanic islands extending to both sides of the Mid-Atlantic Ridge (MAR). East of the MAR, the plate boundary between Eurasian and Nubian plates is defined by the Terceira Rift, interpreted as an intra-oceanic spreading system where the Islands of S. Miguel, Terceira and Graciosa emerge as well and the submarine D.João de Castro Bank, separated by deep avolcanic zones [1, 2]. Submarine and subaerial lavas from the Terceira Rift are characterized by small-scale elemental and isotopic variations, and several distinct compositional end-members have been identified [2,3] supporting the concept of significant mantle source heterogeneity. A recent submarine eruption (1998-2001) occurred ~4-5 NM WNW of Terceira Island, at the Serreta Ridge where lava balloons were observed floating at the surface [4]. In 2008, an oceanographic cruise was conducted to the Serreta ridge to investigate the site of the 1998-2001 eruption, map the seafloor, identify vent location, and characterize possible products of eruption [5]. An ROV from the EMEPC (Task Group for the Extension of the Continental Shelf) was used in this survey providing high-definition video footage and fresh lava samples. Three survey ROV dives (D15, D16, D17) were made on the Serreta ridge. D15 and D17 dives were located on the southern wall of the crater, whereas D16 explored the central and northern areas of the crater floor. Sr-Nd-Pb isotope compositions of representative samples from the Serreta submarine ridge are presented for the first time. On the 208Pb/204Pb vs. 206Pb/204Pb diagram Serreta samples plot on a linear array with the remaining Terceira rift samples. However, these results show that Serreta submarine volcanics lay on the most depleted end of the Terceira Rift array. Radiogenic isotopes also show that samples from the central and northern wall of the crater are distinct from the younger southern wall sector

  19. Magma Transport from Deep to Shallow Crust and Eruption

    Science.gov (United States)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  20. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution

    Science.gov (United States)

    Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu

    2018-06-01

    The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.

  1. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    Science.gov (United States)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  2. Pu'u 'Ō'ō-Kūpaianaha eruption of Kilauea, November 1991-February 1994; field data and flow maps

    Science.gov (United States)

    Heliker, C. Christina; Mangan, Margaret T.; Mattox, Tari N.; Kauahikaua, James P.

    1998-01-01

    The Pu'u 'Ō'ō-Kūpaianaha eruption on the east rift zone of Kīlauea, which began in January 1983, is the longest-lived rift zone eruption of the last two centuries. By 1994, a broad field of lava, nearly 1 km3 in volume and 12 km wide at the coast, had buried 87 km2 of the volcano's south flank. The initial six months of fissure eruptions (episodes 1-3) were followed by three years of episodic lava fountaining from the Pu'u 'Ō'ō vent (episodes 4–47). In July 1986, after two days of fissure eruptions up- and downrift from Pu'u 'Ō'ō (episodes 48a and 48b), the eruption shifted to a new vent, Kūpaianaha, 3.5 km downrift. For the next five-and-a-half years (episode 48), Kūpaianaha was the site of nearly continuous low-level effusion. The 49th episode occurred in November 1991, when several fissures opened between Pu'u 'Ō'ō and Kūpaianaha (see Mangan and others, 1995, Bulletin of Volcanology, v. 57, p. 127-135). This three-week-long outburst was the result of the waning output of the Kūpaianaha vent, which finally died in February 1992 (see Kauahikaua and others, 1996, Bulletin of Volcanology, v. 57, p. 641-648). The third epoch of the eruption began ten days later, when vents opened on the uprift slope of the Pu'u 'Ō'ō cone. Several flank vents erupted over the next two years (episodes 50-53). In the first year, from February 1992 through February 1993, the low-level effusion was interrupted by 21 brief pauses. These ended with the beginning of episode 53 in February 1993, and for the next year, lava effusion was continuous. Episode 53 was ongoing at the end of the interval covered by this report. During the years that Kūpaianaha was active, the Pu'u 'Ō'ō conduit gradually evolved into a crater 300 m in diameter as the conduit walls collapsed. Beginning in 1987, an active lava pond was intermittently visible in the bottom of the crater; from 1990 on, the pond was almost continuously present. The Pu'u 'Ō‘ō pond drained at the beginning of episode

  3. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: investigating the role of fluids in early-stage continental rifting

    Science.gov (United States)

    Roecker, S.; Ebinger, C.; Tiberi, C.; Mulibo, G.; Ferdinand-Wambura, R.; Mtelela, K.; Kianji, G.; Muzuka, A.; Gautier, S.; Albaric, J.; Peyrat, S.

    2017-08-01

    The Eastern Rift System (ERS) of northern Tanzania and southern Kenya, where a cratonic lithosphere is in the early stages of rifting, offers an ideal venue for investigating the roles of magma and other fluids in such an environment. To illuminate these roles, we jointly invert arrival times of locally recorded P and S body waves, phase delays of ambient noise generated Rayleigh waves and Bouguer anomalies from gravity observations to generate a 3-D image of P and S wave speeds in the upper 25 km of the crust. While joint inversion of gravity and arrival times requires a relationship between density and wave speeds, the improvement in resolution obtained by the combination of these disparate data sets serves to further constrain models, and reduce uncertainties. The most significant features in the 3-D model are (1) P and S wave speeds that are 10-15 per cent lower beneath the rift zone than in the surrounding regions, (2) a relatively high wave speed tabular feature located along the western edge of the Natron and Manyara rifts, and (3) low (∼1.71) values of Vp/Vs throughout the upper crust, with the lowest ratios along the boundaries of the rift zones. The low P and S wave speeds at mid-crustal levels beneath the rift valley are an expected consequence of active volcanism, and the tabular, high-wave speed feature is interpreted to be an uplifted footwall at the western edge of the rift. Given the high levels of CO2 outgassing observed at the surface along border fault zones, and the sensitivity of Vp/Vs to pore-fluid compressibility, we infer that the low Vp/Vs values in and around the rift zone are caused by the volcanic plumbing in the upper crust being suffused by a gaseous CO2 froth on top of a deeper, crystalline mush. The repository for molten rock is likely located in the lower crust and upper mantle, where the Vp/Vs ratios are significantly higher.

  4. The evolution of the western rift area of the Fimbul Ice Shelf, Antarctica

    Directory of Open Access Journals (Sweden)

    A. Humbert

    2011-10-01

    Full Text Available This paper studies the evolution of a zone in the Fimbul Ice Shelf that is characterised by large crevasses and rifts west of Jutulstraumen, an outlet glacier flowing into Fimbulisen. High-resolution radar imagery and radio echo sounding data were used to study the surface and internal structure of this rift area and to define zones of similar characteristics. The western rift area is dominated by two factors: a small ice rumple that leads to basal crevasses and disturbs the homogeneity of the ice, and a zone with fibre-like blocks. Downstream of the rumple we found down-welling of internal layers and local thinning, which we explain as a result of basal crevasses due to the basal drag at the ice rumple. North of Ahlmannryggen the ice loses its lateral constraint and forms individual blocks, which are deformed like fibres under shear, where the ice stream merges with slower moving ice masses of the western side. There, the ice loses its integrity, which initiates the western rift system. The velocity difference between the slow moving western part and the fast moving extension of Jutulstraumen produces shear stress that causes the rifts to form tails and expand them to the major rifts of up to 30 km length.

  5. Rift-drift transition in the Dangerous Grounds, South China Sea

    Science.gov (United States)

    Peng, Xi; Shen, Chuanbo; Mei, Lianfu; Zhao, Zhigang; Xie, Xiaojun

    2018-04-01

    The South China Sea (SCS) has a long record of rifting before and after subsequent seafloor spreading, affecting the wide continent of the Dangerous Grounds, and its scissor-shape opening manner results in the rifting structures that vary along this margin. Some 2000 km of regional multichannel seismic data combined with borehole and dredge data are interpreted to analyze the multistage rifting process, structural architecture and dynamic evolution across the entire Dangerous Grounds. Key sequence boundaries above the Cenozoic basement are identified and classified into the breakup unconformity and the rift end unconformity, which consist of the rift-related unconformities. Reflector T70 in the east of the Dangerous Grounds represents the breakup unconformity, which is likely corresponding to the spreading of the East Subbasin. T60 formed on the top of carbonate platform is time equivalent to the spreading of the Southwest Subbasin, marking the breakup unconformity of the central Dangerous Grounds. The termination of the spreading of the SCS is manifested by the rift end unconformity of T50 in the southwest and the final rift occurring in the northwest of the Dangerous Grounds is postponed to the rift end unconformity of T40. On the basis of the stratigraphic and structural analysis, distinct segments in the structural architecture of the syn-rift units and the ages of rift-drift transition show obvious change from the proximal zone to the distal zone. Three domains, which are the Reed Bank-Palawan Rift domain, the Dangerous Grounds Central Detachment domain and Nam Con Son Exhumation domain, reflect the propagation of the margin rifting developed initially by grabens formed by high angle faults, then large half-grabens controlled by listric faults and detachments and finally rotated fault blocks in the hyper-extended upper crust associated with missing lower crust or exhumed mantle revealing a migration and stepwise rifting process in the south margin of the SCS.

  6. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption.

    Science.gov (United States)

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett

    2016-12-16

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift. Copyright © 2016, American Association for the Advancement of Science.

  7. Delicate balance of magmatic-tectonic interaction at Kilauea Volcano, Hawai`i, revealed from slow slip events: Chapter 13

    Science.gov (United States)

    Montgomery-Brown, Emily; Poland, Michael; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Eleven slow slip events (SSEs) have occurred on the southern flank of Kilauea Volcano, Hawai’i, since 1997 through 2014. We analyze this series of SSEs in the context of Kilauea’s magma system to assess whether or not there are interactions between these tectonic events and eruptive/intrusive activity. Over time, SSEs have increased in magnitude and become more regular, with interevent times averaging 2.44 ± 0.15 years since 2003. Two notable SSEs that impacted both the flank and the magmatic system occurred in 2007, when an intrusion and small eruption on the East Rift Zone were part of a feedback with a SSE and 2012, when slow slip induced 2.5 cm of East Rift Zone opening (but without any change in eruptive activity). A summit inflation event and surge in East Rift Zone lava effusion was associated with a SSE in 2005, but the inferred triggering relation is not clear due to a poorly constrained slip onset time. Our results demonstrate that slow slip along Kilauea’s décollement has the potential to trigger and be triggered by activity within the volcano’s magma system. Since only three of the SSEs have been associated with changes in magmatic activity within the summit and rift zones, both the décollement and magma system must be close to failure for triggering to occur.

  8. Geomorphometric reconstruction of post-eruptive surfaces of the Virunga Volcanic Province (East African Rift), constraint of erosion ratio and relative chronology

    Science.gov (United States)

    Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu

    2016-04-01

    Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes

  9. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  10. Rifting-to-drifting transition of the South China Sea: Moho reflection characteristics in continental-ocean transition zone

    Science.gov (United States)

    Wen, Y.; Li, C.

    2017-12-01

    Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of

  11. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    Science.gov (United States)

    Denlinger, R.P.

    1997-01-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume

  12. Curtain eruptions from Enceladus' south-polar terrain

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  13. The regional structure of the Red Sea Rift revised

    Science.gov (United States)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Brandsdóttir, Bryndís

    2017-04-01

    The Red Sea Rift has, for decades, been considered a text book example of how young ocean basins form and mature. Nevertheless, most studies of submarine processes in the Red Sea were previously based on sparse data (mostly obtained between the late 1960's and 1980's) collected at very low resolution. This low resolution, combined with large gaps between individual datasets, required large interpolations when developing geological models. Thus, these models generally considered the Red Sea Rift a special case of young ocean basement formation, dividing it from North to South into three zones: a continental thinning zone, a "transition zone" and a fully developed spreading zone. All these zones are imagined, in most of the models, to be separated by large transform faults, potentially starting and ending on the African and Arabian continental shields. However, no consensus between models e.g. about the locations (or even the existence) of major faults, the nature of the transition zone or the extent of oceanic crust in the Red Sea Rift has been reached. Recently, high resolution bathymetry revealed detailed seafloor morphology as never seen before from the Red Sea, very comparable to other (ultra)slow spreading mid-ocean ridges such as the Gakkel Ridge, the Mid-Atlantic Ridge and SW-Indian Ridge, changing the overall picture of the Red Sea significantly. New discoveries about the extent, movement and physical properties of submarine salt deposits led to the Red Sea Rift being linked to the young Aptian-age South Atlantic. Extensive crosscutting transform faults are not evident in the modern bathymetry data, neither in teleseismic nor vertical gravity gradient data and comparisons to Gakkel Ridge and the SW-Indian Ridge suggest that the Red Sea is much simpler in terms of structural geology than was previously thought. Complicated tectonic models do not appear necessary and there appears to be large areas of oceanic crust under the Red Sea salt blankets. Based on

  14. Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia

    Science.gov (United States)

    Xu, Wenbin; Rivalta, Eleonora; Li, Xing

    2017-10-01

    Understanding the magmatic systems beneath rift volcanoes provides insights into the deeper processes associated with rift architecture and development. At the slow spreading Erta Ale segment (Afar, Ethiopia) transition from continental rifting to seafloor spreading is ongoing on land. A lava lake has been documented since the twentieth century at the summit of the Erta Ale volcano and acts as an indicator of the pressure of its magma reservoir. However, the structure of the plumbing system of the volcano feeding such persistent active lava lake and the mechanisms controlling the architecture of magma storage remain unclear. Here, we combine high-resolution satellite optical imagery and radar interferometry (InSAR) to infer the shape, location and orientation of the conduits feeding the 2017 Erta Ale eruption. We show that the lava lake was rooted in a vertical dike-shaped reservoir that had been inflating prior to the eruption. The magma was subsequently transferred into a shallower feeder dike. We also find a shallow, horizontal magma lens elongated along axis inflating beneath the volcano during the later period of the eruption. Edifice stress modeling suggests the hydraulically connected system of horizontal and vertical thin magmatic bodies able to open and close are arranged spatially according to stresses induced by loading and unloading due to topographic changes. Our combined approach may provide new constraints on the organization of magma plumbing systems beneath volcanoes in continental and marine settings.

  15. Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus

    Science.gov (United States)

    Graff, J. R.; Ernst, R. E.; Samson, C.

    2018-05-01

    Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.

  16. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    Science.gov (United States)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  17. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    Science.gov (United States)

    Dvorak, J.J.; Dzurisin, D.

    1997-01-01

    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  18. Eruptive origins of a lacustrine pyroclastic succession: insights from the middle Huka Falls Formation, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Cattell, H.J.; Cole, J.W.; Oze, C.; Allen, S.R.

    2014-01-01

    Current and ancestral lakes within the central Taupo Volcanic Zone (TVZ) provide depocentres for pyroclastic deposits, providing a reliable record of eruption history. These lakes can also be the source of explosive eruptions that directly feed pyroclast-rich density currents. The lithofacies characteristics of pyroclastic deposits allow discrimination between eruption-fed and resedimented facies. The most frequently recognised styles of subaqueous eruptions in the TVZ are shallow-water phreatomagmatic and phreatoplinian eruptions that form subaerial eruption columns. However, deeper source conditions (>150 m water depth) could generate subaqueous explosive eruptions that feed water-supported pyroclast-rich density currents, similar to neptunian eruptions. Such deep-water eruptions have not previously been recognised in the TVZ. Here we study a subsurface deposit, the middle Huka Falls Formation (MHFF), in the Wairakei-Tauhara geothermal fields (Wairakei-Tauhara), TVZ, which we interpret to be the product of a relatively deep-water pyroclastic eruption (150-250 m). The largely subsurface Huka Falls Formation records past sedimentary and volcaniclastic deposition in ancient Lake Huka. Deposits examined from eight drill cores reveal a lithic-rich lower unit, a middle volumetrically dominant pumice lapilli-tuff and an upper thinly bedded suspension-settled tuff unit. A coarse lithic lapilli-tuff within the lower unit is locally thick and coarse near well THM12, suggesting proximity to a source located beneath Lake Huka. This research provides an understanding of the origin of the MHFF deposit and offers insights for evaluating and interpreting the diversity of subaqueous volcanic lake deposits elsewhere. (author)

  19. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kīlauea volcano, Hawaii

    Science.gov (United States)

    Montgomery-Brown, E. K.; Sinnett, D.K.; Poland, M.; Segall, P.; Orr, T.; Zebker, H.; Miklius, Asta

    2010-01-01

    A series of complex events at Kīlauea Volcano, Hawaii, 17 June to 19 June 2007, began with an intrusion in the upper east rift zone (ERZ) and culminated with a small eruption (1500 m3). Surface deformation due to the intrusion was recorded in unprecedented detail by Global Positioning System (GPS) and tilt networks as well as interferometric synthetic aperture radar (InSAR) data acquired by the ENVISAT and ALOS satellites. A joint nonlinear inversion of GPS, tilt, and InSAR data yields a deflationary source beneath the summit caldera and an ENE-striking uniform-opening dislocation with ~2 m opening, a dip of ∼80° to the south, and extending from the surface to ~2 km depth. This simple model reasonably fits the overall pattern of deformation but significantly misfits data near the western end of an inferred dike-like source. Three more complex dike models are tested that allow for distributed opening including (1) a dike that follows the surface trace of the active rift zone, (2) a dike that follows the symmetry axis of InSAR deformation, and (3) two en echelon dike segments beneath mapped surface cracks and newly formed steaming areas. The en echelon dike model best fits near-field GPS and tilt data. Maximum opening of 2.4 m occurred on the eastern segment beneath the eruptive vent. Although this model represents the best fit to the ERZ data, it still fails to explain data from a coastal tiltmeter and GPS sites on Kīlauea's southwestern flank. The southwest flank GPS sites and the coastal tiltmeter exhibit deformation consistent with observations of previous slow slip events beneath Kīlauea's south flank, but inconsistent with observations of previous intrusions. Slow slip events at Kīlauea and elsewhere are thought to occur in a transition zone between locked and stably sliding zones of a fault. An inversion including slip on a basal decollement improves fit to these data and suggests a maximum of ~15 cm of seaward fault motion, comparable to previous slow

  20. Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling

    Science.gov (United States)

    Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.

    2017-08-01

    Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.

  1. The origin and evolution of silicic magmas during continental rifting: new constraints from trace elements and oxygen isotopes from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, W.; Boyce, A.; Mather, T. A.; Pyle, D. M.; Yirgu, G.; Gleeson, M. L.

    2017-12-01

    The petrologic diversity of rift magmas is generated by two key processes: interaction with the crust via partial melting or assimilation; and closed-system fractional crystallization of the parental magma. It is not yet known whether these two petrogenetic processes vary spatially between different rift settings, and whether there are any significant secular variations during rift evolution. The Ethiopian Rift is the ideal setting to test these hypotheses because it captures the transition from continental rifting to sea-floor spreading and has witnessed the eruption of large volumes of mafic and silicic volcanic rocks since 30 Ma. We use new oxygen isotope (δ18O) and trace element data to fingerprint fractional crystallisation and partial crustal melting processes in Ethiopia and evaluate spatial variations between three active rift segments. δ18O measurements are used to examine partial crustal melting processes. We find that most δ18O data from basalts to rhyolites fall within the bounds of modelled fractional crystallization trajectories (i.e., 5.5-6.5 ‰). Few samples deviate from this trend, emphasising that fractional crystallization is the dominant petrogenetic processes and that little fusible Precambrian crustal material (δ18O of 7-18 ‰) remain to be assimilated beneath the magmatic segments. Trace element systematics (e.g., Ba, Sr, Rb, Th and Zr) further underscore the dominant role of fractional crystallization but also reveal important variations in the degree of melt evolution between the volcanic systems. We find that the most evolved silicic magmas, i.e., those with greatest peralkalinity (molar Na2O+K2O>Al2O3), are promoted in regions of lowest magma flux off-axis and along rift. Our findings provide new information on the nature of the crust beneath Ethiopia's active magmatic segments and also have relevance for understanding ancient rift zones and the geotectonic settings that promote genesis of economically-valuable mineral deposits.

  2. Volcanism in the Sumisu Rift. Pt. 2

    International Nuclear Information System (INIS)

    Hochstaedter, A.G.; Gill, J.B.; Morris, J.D.

    1990-01-01

    A bimodal suite of volcanic rocks collected from the Sumisu Rift by ALVIN provide present day example of the first magmatic products of arc rifting during the initiation of back-arc spreading. The trace element and isotopic composition of these rocks, which are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, differ from those of arc rocks and N-MORB in their relative incorporation of both subduction-related and non-subduction-related components. Subduction-related components, i.e., those that distinguish volcanic arc basalts from N-MORB, are less pronounced in rift lavas than in arc lavas. Alkali and alkaline earth to high field strength element and REE ratios as well as 87 Sr/ 86 Sr are intermediate between those of N-MORB and Izu arc lavas and indicate that Sumisu Rift basalts are similar to BABB erupted in other, more mature back-arc basins. These results show that back-arc basins may begin their magmatic evolution with BABB rather than more arc-like lavas. Evidence of non-subduction related components remains after the effects of subduction related components are removed or accounted for. Compared to the arc, higher HFSE and REE concentrations, contrasting REE patterns, and ≤ε Nd in the rift reflect derivation of rift lavas from more enriched components. Although SR basalt resembles E-MORB in many trace element ratios, it is referred to as BABB because low concentrations of Nb are similar to those in volcanic arcs and H 2 O/REE and H 2 O/K 2 O exceed those of E-MORB. Differences in HREE pattern and ε Nd require that the E-MORB characteristics result from source heterogeneities and not lower degrees of melting. Enriched mantle beneath the rift may reflect enriched blobs entrained in a more depleted matrix, or injection of new, more enriched mantle. High 208 Pb/ 204 Pb and moderate 207 Pb/ 204 Pb ratios with respect to Pacific MORB also reflect ancient mantle enrichment. (orig.)

  3. Geological evolution of the Boset-Bericha Volcanic Complex, Main Ethiopian Rift: 40Ar/39Ar evidence for episodic Pleistocene to Holocene volcanism

    Science.gov (United States)

    Siegburg, Melanie; Gernon, Thomas M.; Bull, Jonathan M.; Keir, Derek; Barfod, Dan N.; Taylor, Rex N.; Abebe, Bekele; Ayele, Atalay

    2018-02-01

    The Boset-Bericha Volcanic Complex (BBVC) is one of the largest stratovolcanoes of the northern Main Ethiopian Rift (MER). However, very little is known about its eruptive history, despite the fact that approximately 4 million people live within 100 km of the complex. Here, we combine field observations, morphometric analysis using high-resolution LiDAR data, geochemistry and 40Ar/39Ar geochronology to report the first detailed account of the geological evolution of the BBVC, with a focus on extensive young lava flows covering the two edifices, Gudda and Bericha. These lavas exhibit a bimodal composition ranging dominantly from basaltic rift floor lavas and scoria cones, to pantelleritic trachytes and rhyolite flows at Gudda, and comenditic rhyolites at Bericha. Further, several intermediate compositions are associated with fissure vents along the Boset-Kone segment that also appear to link the silicic centres. We divide the BBVC broadly into four main eruptive stages, comprising: (1) early rift floor emplacement, (2) formation of Gudda Volcano within two main cycles, separated by caldera formation, (3) formation of the Bericha Volcano, and (4) sporadic fissure eruptions. Our new 40Ar/39Ar geochronology, targeting a representative array of these flows, provides evidence for episodic activity at the BBVC from 120 ka to the present-day. We find that low-volume mafic episodes are more frequent ( 10 ka cyclicity) than felsic episodes ( 100 ka cyclicity), but the latter are more voluminous. Over the last 30 ka, mafic to intermediate fissure activity might have reinvigorated felsic activity (over the last 16 ka), manifested as peralkaline lava flows and pyroclastic deposits at Gudda and Bericha. Felsic episodes have on average a higher eruption rate (2-5/1000 years) and productivity at Gudda compared to Bericha (1-2/1000 years). The young age of lavas and current fumarolic activity along the fault system, suggest that the BBVC is still potentially active. Coincident

  4. Relaxation of the south flank after the 7.2-magnitude Kalapana earthquake, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dvorak, John J.; Klein, Fred W.; Swanson, Donald A.

    1994-01-01

    An M = 7.2 earthquake on 29 November 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward several meters: a catastrophic release of compression of the south flank caused by earlier injections of magma into the adjacent segment of a rift zone. The focal mechanisms of the mainshock, the largest foreshock, and the largest aftershock suggest seaward movement of the upper block. The rate of aftershocks decreased in a familiar hyperbolic decay, reaching the pre-1975 rate of seismicity by the mid-1980s. Repeated rift-zone intrusions and eruptions after 1975, which occurred within 25 km of the summit area, compressed the adjacent portion of the south flank, apparently masking continued seaward displacement of the south flank. This is evident along a trilateration line that continued to extend, suggesting seaward displacement, immediately after the M = 7.2 earthquake, but then was compressed during a series of intrusions and eruptions that began in September 1977. Farther to the east, trilateration measurements show that the portion of the south flank above the aftershock zone, but beyond the area of compression caused by the rift-zone intrusions and eruptions, continued to move seaward at a decreasing rate until the mid-1980s, mimicking the decay in aftershock rate. Along the same portion of the south flank, the pattern of vertical surface displacements can be explained by continued seaward movement of the south flank and development of two eruptive fissures along the east rift zone, each of which extended from a depth of ∼3 km to the surface. The aftershock rate and continued seaward movement of the south flank are reminiscent of crustal response to other large earthquakes, such as the 1966 M = 6 Parkfield earthquake and the 1983 M = 6.5 Coalinga earthquake.

  5. Guidebook to Rio Grande rift in New Mexico

    Science.gov (United States)

    Hawley, J.W.

    1978-01-01

    Discusses the details of geologic features along the rift zone. Included are short papers on topics relative to the overall region. These papers and the road logs are of special interest to any one pursuing further study of the rift. This book is a comprehensive guide to the middle and late Cenozoic geology of the Rio Grande region of Colorado and New Mexico. Though initially used on field trips for the International Symposium on Tectonics and Magmatism of the Rio Grande rift, the guidebook will be useful to anyone interested in the Cenozoic history of the 600-mi-long area extending from central Colorado to El Paso, Texas.

  6. Asthenospheric flow and origin of volcanism in the Baikal rift area

    NARCIS (Netherlands)

    Lebedev, S.; Meier, T.; Hilst, R.D. van der

    2006-01-01

    The origin of low-volume, hotspot-like volcanism often observed in continental rift areas is debated, as is the nature of the flow in the mantle beneath. In this paper we assemble seismic constraints on the mantle flow below the Baikal Rift Zone. We combine new evidence from upper-mantle

  7. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  8. No Moho uplift below the Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    .4-7.6 ± 0.2 km/s), slightly offset to the northeast from the rift axis. We interpret this feature as resulting from mafic intrusions. Their presence may explain the flat Moho by compensation of lower crustal thinning by intrusion of mafic melts. The Pn wave velocities (8.15-8.2 km/s) are normal for the area...

  9. Three-armed rifts or masked radial pattern of eruptive fissures? The intriguing case of El Hierro volcano (Canary Islands)

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Martí, J.; Gudmundsson, A.

    2015-04-01

    Using new surface structural data as well as subsurface structural data obtained from seventeen water galleries, we provide a comprehensive model of the volcano-tectonic evolution of El Hierro (Canary Islands). We have identified, measured and analysed more than 1700 volcano-structural elements including vents, eruptive fissures, dykes and faults. The new data provide important information on the main structural patterns of the island and on its stress and strain fields, all of which are crucial for reliable hazard assessments. We conducted temporal and spatial analyses of the main structural elements, focusing on their relative age and association with the three main cycles in the construction of the island: the Tiñor Edifice, the El Golfo-Las Playas Edifice, and the Rift Volcanism. A radial strike distribution, which can be related to constructive episodes, is observed in the on-land structures. A similar strike distribution is seen in the submarine eruptive fissures, which are radial with respect to the centre of the island. However, the volcano-structural elements identified onshore and reflecting the entire volcano-tectonic evolution of the island also show a predominant NE-SW strike, which coincides with the main regional trend of the Canary archipelago as a whole. Two other dominant directions of structural elements, N-S and WNW-ESE, are evident from the establishment of the El Golfo-Las Playas edifice, during the second constructive cycle. We suggest that the radial-striking structures reflect comparatively uniform stress fields during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses in each of the volcanic edifices. By contrast, in the shallower parts of the edifice the NE-SW, N-S and WNW-ESE-striking structures reflect local stress fields related to the formation of mega-landslides and masking the general and regional radial patterns.

  10. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements

    Science.gov (United States)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.

    2005-12-01

    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  11. Tectonic-magmatic interplay during the early stages of oceanic rifting: temporal constraints from cosmogenic 3He dating in the Dabbahu rift segment, Afar

    Science.gov (United States)

    Williams, A.; Pik, R.; Burnard, P.; Medynski, S.; Yirgu, G.

    2009-12-01

    . Available cosmogenic 3He dating of lava flow surfaces constrains the first phase of activity at rift axis to between 51 and 45 ka, coeval with basaltic activity at Baddi Volcano. Cosmogenic 3He dating of two major fault scarps in the Gabbole Valley yields ages of about 30-31 ka and 16-20 ka. Given the depths along the fault scarps at which samples were collected, these data constrain the timing of fault initiation in the region to c. 38 ka, shortly after the cessation of the first major phase of fissural basaltic activity on the rift-floor. The most recent basalts have eruption ages younger than 2000 yrs. All these dated basalts lie on the same differentiation trend as the Baddi basalts and Dabbahu volcanics, as defined by Barberi et al. (1974), using SiO2 vs. MgO and there is a clear relationship between degree of magma evolution and eruption age. The most recent basalts in the axial region also lie on this trend, but with a primitive composition similar to that of the Baddi basalts, strongly suggesting that the renewed seismicity in the segment is associated with a renewed magmatic cycle.

  12. Geodynamics of rift-plume interaction in Iceland as constrained by new 40Ar/ 39Ar and in situ U-Pb zircon ages

    Science.gov (United States)

    Martin, E.; Paquette, J. L.; Bosse, V.; Ruffet, G.; Tiepolo, M.; Sigmarsson, O.

    2011-11-01

    The interaction between a rift zone and a mantle plume leads to exceptional situations in Iceland where the island is 1.5 wider than expected, given the North-Atlantic spreading rate. In order to give a better idea of the timeframe of this evolution, we present 32 new 40Ar/ 39Ar and in-situ U-Pb dating on zircon from 16 volcanic systems located from the west to east coasts of Iceland. The North Iceland Rift Zone (NIRZ) was initiated at least 12 Ma ago. Furthermore, during these last 12 Ma, the NIRZ half spreading rate was between 0.7 and 1.2 cm/yr and it propagated to the south at a rate of 1.0-1.2 cm/yr. The excess width of Iceland can thus not be explained by faster spreading rate in the past. Here we discuss a model that explains the ~ 200 km 'excess' of crust, taking into account the eastward relocation of the rift zone and corresponding older crustal capture over the course of Iceland's geological history. The most recent rift relocation is dated at approximately 6 Ma at Snæfellsnes Peninsula in the west, whereas the oldest volcanic systems (15-13 Ma) from the extreme north east of Iceland were most likely generated at the Kolbeinsey ridge north of Iceland rather than in the NIRZ itself. The need for rift relocations and crustal capture to explain the width of Iceland strongly suggests that during rift-plume interaction the mantle plume plays an active role. It forces the active rift zone to be frequently relocated by rift jumps above its center leaving inactive rift zones as older synclines in the geological record. This result in an eastward position of the rift zone in Iceland relative to the North Atlantic ridge, and it can be predicted that in a few tens of millions of years the Mid-Atlantic ridge and the Icelandic plume may become decoupled.

  13. Petrological constraints on melt generation beneath the Asal Rift (Djibouti) using quaternary basalts

    Science.gov (United States)

    Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves

    2013-08-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.

  14. The geology and geophysics of the Oslo rift

    Science.gov (United States)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  15. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    Science.gov (United States)

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  16. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  17. Geodetic Measurements and Numerical Models of Rifting in Northern Iceland for 1993-1999

    Science.gov (United States)

    Ali, T.; Feigl, K.; Masterlark, T.; Carr, B. B.; Sigmundsson, F.; Thurber, C. H.

    2009-12-01

    Rifting occurs as episodes of active deformation in individual rift segments of the Northern Volcanic Zone (NVZ) of Iceland. To measure the deformation, we use interferometric analysis of synthetic aperture radar (InSAR) data acquired between 1993 and 1999. Preliminary results suggest that a complex interplay of multiple inflating and deflating sources at depth is required to account for the observed deformation. In an effort to integrate heterogeneous constraining information (kinematic plate spreading, seismic tomography and anisotropy, and thermal and rheologic structures), we develop finite element models that simulate the underlying sources and processes associated with rifting events to quantitatively understand the magmatic plumbing system beneath Krafla central volcano and rift segment, the site of the most recent rifting episode in the NVZ. Calibration parameters include the positions, geometries, and flux rates for elements of the plumbing system, as well as material properties. The General Inversion for Phase Technique (GIPhT) [Feigl and Thurber, Geophys. J. Int., 2009] is used to model the InSAR phase data directly, without unwrapping parameters. It operates on wrapped phase values ranging from -1/2 to +1/2 cycles. By defining a cost function that quantifies the misfit between observed and modeled values in terms of wrapped phase, GIPhT can estimate parameters in a geophysical model by minimizing the cost function. Since this approach can handle noisy, wrapped phase data, it avoids the pitfalls of phase-unwrapping approaches. Consequently, GIPhT allows the analysis, interpretation and modeling of more interferometric pairs than approaches that require unwrapping. GIPhT also allows statistical testing of hypotheses because the wrapped phase residuals follow a Von Mises distribution. As a result, the model parameters estimated by GIPhT include formal uncertainties. We test the hypothesis that deformation in the rift zone occurred at a constant (secular

  18. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele

    2015-04-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma enhancing transient plate separations. However, the role of diking on a longer term (> 102 years) and its influence on the structure and the evolution of a divergent plate boundary is still poorly investigated. Here we use field surveys along the oceanic Icelandic and continental Ethiopian plate boundaries, along five eruptive fissures and four rift segments. Field observations have also been integrated with analogue and numerical models of dike emplacement to better understand the effect of dike emplacement at depth and at the surface. Our results show that the dike-fed eruptive fissures are systematically associated with graben structures formed by inward dipping normal faults having throws up to 10 m and commonly propagating downward. Moreover, rift segments (i.e. mature rift zones), despite any asymmetry and repetition, are characterized by the same features as the eruptive fissures, the only difference lying in the larger size (higher fault throws, up to 40 m, and wider deformation zones). Analogue and numerical models of dike intrusion confirm that all the structural features observed along the rift segments may be dike-induced; these features include downward propagating normal faults bordering graben structures, contraction at the base of the hanging walls of the faults and upward propagating faults. Simple calculations based on the deeper structure of the eroded rift segments in eastern and western Iceland also suggest that all the fault slip in the active rift segments may result from diking. These results suggest that the overall deformation pattern of eruptive fissures and rift segments may be explained only by dike emplacement. In a magmatic rift, the regional tectonic stress may rarely be high enough to be

  19. Impact of rheological layering on rift asymmetry

    Science.gov (United States)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.

  20. Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland: Constraints from Th, Sr and O isotopes

    Science.gov (United States)

    Sigmarsson, Olgeir; Condomines, Michel; Fourcade, Serge

    1992-05-01

    Along the two volcanic off-rift zones in Iceland, the Sn˦fellsnes volcanic zone (SNVZ) and the South Iceland volcanic zone (SIVZ), geochemical parameters vary regularly along the strike towards the centre of the island. Recent basalts from the SNVZ change from alkali basalts to tholeiites where the volcanic zone reaches the active rift axis, and their 87Sr/ 86Sr and Th/U ratios decrease in the same direction. These variations are interpreted as the result of mixing between mantle melts from two distinct reservoirs below Sn˦fellsnes. The mantle melt would be more depleted in incompatible elements, but with a higher 3He/ 4He ratio ( R/Ra≈ 20) beneath the centre of Iceland than at the tip of the Sn˦fellsnes volcanic zone ( R/Ra≈ 7.5). From southwest to northeast along the SIVZ, the basalts change from alkali basalts to FeTi basalts and quartz-normative tholeiites. The Th/U ratio of the Recent basalts increases and both ( 230Th/ 232Th ) and δ 18O values decrease in the same direction. This reflects an important crustal contamination of the FeTi-rich basalts and the quartz tholeiites. The two types of basalts could be produced through assimilation and fractional crystallization in which primary alkali basaltic and olivine tholeiitic melts 'erode' and assimilate the base of the crust. The increasingly tholeiitic character of the basalts towards the centre of Iceland, which reflects a higher degree of partial melting, is qualitatively consistent with increasing geothermal gradient and negative gravity anomaly. The highest Sr isotope ratio in Recent basalts from Iceland is observed inÖr˦fajökull volcano, which has a 3He/ 4He ratio ( R/Ra≈ 7.8) close to the MORB value, and this might represent a mantle source similar to that of Mauna Loa in Hawaii.

  1. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  2. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    Science.gov (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    heads measured in 72 wells. To account for the incomplete knowledge of the aquifer system several model set-ups differing in the number of transmissivity zones as well as in the implementation of fault zones, rivers, and model boundaries were evaluated using information criteria. The general pattern of the hydraulic-head distribution resulting from the plausible model set-ups agrees reasonably well with that obtained from the observations. Likewise the simulated baseflow is similar (though slightly higher) to that obtained by baseflow separation from measured discharge. The estimated transmissivity increases from the highland (in the order of 10-100 m²/day) toward the rift floor (in the order of 100-1000 m²/day). Although the rift-floor aquifers are mainly (65%) supplied by recharge from precipitation, groundwater flow from the highland (mountain block recharge) is found to provide a significant contribution (35%). At present, less than 1% of the groundwater flow is abstracted by pumping wells, suggesting a high potential for groundwater development both in the highland and the rift floor. With regard to the rift floor, potential effects of climate change on groundwater resources deserve further investigation, as the hydrological model suggests a high sensitivity of groundwater recharge to changes of precipitation and air temperature particularly within this part of the watershed.

  3. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    Science.gov (United States)

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased

  4. Large-scale variation in lithospheric structure along and across the Kenya rift

    Science.gov (United States)

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  5. Crustal thinning and exhumation along a fossil magma-poor distal margin preserved in Corsica: A hot rift to drift transition?

    Science.gov (United States)

    Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo

    2013-05-01

    Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the consecutive activity of extensional shear zones and detachment faults. High thermal gradients may delay the switch from ductile shear zone- to detachment-dominated crustal thinning, thus preventing the exhumation of middle and lower crustal rocks until the final stages of rifting.

  6. Mid-Continent Rift: Rift, LIP, or Both?

    Science.gov (United States)

    Stein, C. A.; Stein, S. A.; Kley, J.; Hindle, D.; Keller, G. R., Jr.

    2014-12-01

    North America's Midcontinent Rift (MCR) is traditionally considered to have formed by midplate extension and volcanism ~1.1 Ga that ended due to compression from the Grenville orogeny, the ~1.3 - ~0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that it formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. The MCR has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). Comparison of areas and volumes for a range of continental LIPS shows that the MCR volcanic rocks are significantly thicker than the others. The MCR flood basalts have steeper dips and thicker overlying sediments than other continental flood basalts, and were deposited in a subsiding basin after most extension ended, indicating that they are better viewed as post-rift than syn-rift rocks. Hence we view the MCR as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP.

  7. Deformation derived from GPS geodesy associated with Bárðarbunga 2014 rifting event in Iceland

    KAUST Repository

    Ofeigsson, Benedikt Gunnar; Hreinsdó ttir, Sigrú n; Sigmundsson, Freysteinn; Frið riksdó ttir, Hildur; Parks, Michelle; Dumont, Stephanie; Á rnadó ttir, Þ ó ra; Geirsson, Halldó r; Hooper, Andrew; Roberts, Matthew; Bennett, Rick; Sturkell, Erik; Jó nsson, Sigurjó n|

    2015-01-01

    On August 16, 2014 an intense seismic swarm started below the eastern part of Bárðarbunga Caldera in the north-western corner of Vatnajökull ice-cap, Iceland, marking the onset of the first rifting event in Iceland since the Krafla fires (1975-1984). The migration of the seismicity was corroborated by ground deformation in areas outside the ice cap and on nunataks within the ice cap suggesting a lateral propagation of magma, from the Bárðabunga system. The sesimicity migrated out of the caldera forming a dyke with roughly three segments, changing direction each time until August 28 when the migration stopped around 10 km south of Askja Volcano, eventually leading to a short lived eruption in Holuhraun north of Dyngjujökull. A second fissure eruption started in Holuhraun on August 31 which is still ongoing at the time of this writing. In the months prior to the onset of the activity, subtle signs of inflation where observed on continuous GPS sites around the Bárðarbunga indicating a volume increase in the roots of the volcanic system. When the activity started on August 16, the deformation pattern indicated a simultaneous deflation centered within the caldera and a lateral growth of a dyke also reflected in the migration of seismicity along segments of variable strike. A maximum widening of 1.3 m occurred between stations on opposite sides of the dyke spaced 25 km apart. Significant movements where detected on GPS site more then 80 km away from the tip of dyke. Displacements indicated the fastest rate of widening at any time in the most distal segment of the dyke throughout its evolution. After the dyke stopped propagating, the inflation continued, decaying exponentialy with time. On September 4, five days into the second fissure eruption, the movements associated with the dyke where no longer significant. As the fissure eruption continues, a slowly decaying contraction is observed around the Bárðarbunga central volcano, both shown in the piston like

  8. Deformation derived from GPS geodesy associated with Bárðarbunga 2014 rifting event in Iceland

    KAUST Repository

    Ofeigsson, Benedikt Gunnar

    2015-04-01

    On August 16, 2014 an intense seismic swarm started below the eastern part of Bárðarbunga Caldera in the north-western corner of Vatnajökull ice-cap, Iceland, marking the onset of the first rifting event in Iceland since the Krafla fires (1975-1984). The migration of the seismicity was corroborated by ground deformation in areas outside the ice cap and on nunataks within the ice cap suggesting a lateral propagation of magma, from the Bárðabunga system. The sesimicity migrated out of the caldera forming a dyke with roughly three segments, changing direction each time until August 28 when the migration stopped around 10 km south of Askja Volcano, eventually leading to a short lived eruption in Holuhraun north of Dyngjujökull. A second fissure eruption started in Holuhraun on August 31 which is still ongoing at the time of this writing. In the months prior to the onset of the activity, subtle signs of inflation where observed on continuous GPS sites around the Bárðarbunga indicating a volume increase in the roots of the volcanic system. When the activity started on August 16, the deformation pattern indicated a simultaneous deflation centered within the caldera and a lateral growth of a dyke also reflected in the migration of seismicity along segments of variable strike. A maximum widening of 1.3 m occurred between stations on opposite sides of the dyke spaced 25 km apart. Significant movements where detected on GPS site more then 80 km away from the tip of dyke. Displacements indicated the fastest rate of widening at any time in the most distal segment of the dyke throughout its evolution. After the dyke stopped propagating, the inflation continued, decaying exponentialy with time. On September 4, five days into the second fissure eruption, the movements associated with the dyke where no longer significant. As the fissure eruption continues, a slowly decaying contraction is observed around the Bárðarbunga central volcano, both shown in the piston like

  9. Fault-magma interactions during early continental rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    Science.gov (United States)

    Weinstein, A.; Oliva, S. J.; Ebinger, C. J.; Roecker, S.; Tiberi, C.; Aman, M.; Lambert, C.; Witkin, E.; Albaric, J.; Gautier, S.; Peyrat, S.; Muirhead, J. D.; Muzuka, A. N. N.; Mulibo, G.; Kianji, G.; Ferdinand-Wambura, R.; Msabi, M.; Rodzianko, A.; Hadfield, R.; Illsley-Kemp, F.; Fischer, T. P.

    2017-10-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2-D studies. We analyze seismicity data from a 13 month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3-D velocity model reveal lower crustal earthquakes beneath the central basins and along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 65 earthquakes, and 13 from a catalogue prior to our array reveal an along-axis stress rotation of ˜60° in the magmatically active zone. New and prior mechanisms show predominantly normal slip along steep nodal planes, with extension directions ˜N90°E north and south of an active volcanic chain consistent with geodetic data, and ˜N150°E in the volcanic chain. The stress rotation facilitates strain transfer from border fault systems, the locus of early-stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Results indicate that earthquakes are largely driven by stress state around inflating magma bodies.

  10. Preferential rifting of continents - A source of displaced terranes

    Science.gov (United States)

    Vink, G. E.; Morgan, W. J.; Zhao, W.-L.

    1984-01-01

    Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.

  11. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    Science.gov (United States)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  12. Phanerozoic Rifting Phases And Mineral Deposits

    Science.gov (United States)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  13. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption

    Science.gov (United States)

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judith

    2016-01-01

    The June 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ~1.3 km3 of andesite and ~4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ~10 km lateral dike that allowed the overlying rhyolite to reach the surface.

  14. Eruptive and environmental processes recorded by diatoms in volcanically-dispersed lake sediments from the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Harper, Margaret A.; Pledger, Shirley A.; Smith, Euan G. C.; Van Eaton, Alexa; Wilson, Colin J. N.

    2015-01-01

    Late Pleistocene diatomaceous sediment was widely dispersed along with volcanic ash (tephra) across and beyond New Zealand by the 25.4 ka Oruanui supereruption from Taupo volcano. We present a detailed analysis of the diatom populations in the Oruanui tephra and the newly discovered floras in two other eruptions from the same volcano: the 28.6 ka Okaia and 1.8 ka Taupo eruptions. For comparison, the diatoms were also examined in Late Pleistocene and Holocene lake sediments from the Taupo Volcanic Zone (TVZ). Our study demonstrates how these microfossils provide insights into the lake history of the TVZ since the Last Glacial Maximum. Morphometric analysis of Aulacoseira valve dimensions provides a useful quantitative tool to distinguish environmental and eruptive processes within and between individual tephras. The Oruanui and Okaia diatom species and valve dimensions are highly consistent with a shared volcanic source, paleolake and eruption style (involving large-scale magma-water interaction). They are distinct from lacustrine sediments sourced elsewhere in the TVZ. Correspondence analysis shows that small, intact samples of erupted lake sediment (i.e., lithic clasts in ignimbrite) contain heterogeneous diatom populations, reflecting local variability in species composition of the paleolake and its shallowly-buried sediments. Our analysis also shows a dramatic post-Oruanui supereruption decline in Cyclostephanos novaezelandiae, which likely reflects a combination of (1) reorganisation of the watershed in the aftermath of the eruption, and (2) overall climate warming following the Last Glacial Maximum. This decline is reflected in substantially lower proportions of C. novaezelandiae in the 1.8 ka Taupo eruption deposits, and even fewer in post-1.8 ka sediments from modern (Holocene) Lake Taupo. Our analysis highlights how the excellent preservation of siliceous microfossils in volcanic tephra may fingerprint the volcanic source region and retain a valuable record

  15. Spatial and temporal variations of diffuse CO_{2} degassing at the Tenerife North-South Rift Zone (NSRZ) volcano (Canary Islands) during the period 2002-2016

    Science.gov (United States)

    Rodríguez, Fátima; McCollum, John J. K.; Orland, Elijah D. M.; Barrancos, José; Padilla, Germán D.; Calvo, David; Amonte, Cecilia; Pérez, Nemesio M.

    2017-04-01

    Subaerial volcanic activity on Tenerife (2034 km2), the largest island of the Canary archipelago, started 14 My ago and 4 volcanic eruptions have occurred in historical times during the last 300 years. The main volcano-structural and geomorphological features of Tenerife are (i) the central volcanic complex, nowadays formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and partially filled by post-caldera volcanic products and (ii) the triple junction-shaped rift system, formed by numerous aligned monogenetic cones. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 My (Dóniz et al., 2008). The North-South Rift Zone (NSRZ) of Tenerife comprises at least 139 cones. The main structural characteristic of the NSRZ of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Since there are currently no visible gas emissions at the NSRZ, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. Five diffuse CO2 degassing surveys have been carried out at NSRZ of Tenerife since 2002, the last one in the summer period of 2016, to evaluate the spatio-temporal variations of CO2 degassing as a volcanic surveillance tool for the NSRZ of Tenerife. At each survey, around 600 sampling sites were selected to cover homogenously the study area (325 km2) using the accumulation chamber method. The diffuse CO2 output ranged from 78 to 707 t/d in the study period, with the highest emission rate measured in 2015. The backgroung emission rate was estimated in 300 t/d. The last results the soil CO2 efflux values ranged from non-detectable up to 24.7 g m-2 d-1. The spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, showed the highest CO2 values as multiple

  16. Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones

    Science.gov (United States)

    Caplan-Auerbach, J.; Dziak, R. P.; Haxel, J.; Bohnenstiehl, D. R.; Garcia, C.

    2017-04-01

    Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of the month-long 2015 event, was monitored continuously using autonomous ocean bottom hydrophones. Impulsive sounds associated with explosive lava-water interactions are identified within hydrophone records during both eruptions. Explosions within the caldera are acoustically distinguishable from those occurring in association with north rift lava flows erupting in 2015. Acoustic data also record a series of broadband diffuse events, occurring in the waning phase of the eruption, and are interpreted as submarine Hawaiian explosions. This transition from gas-poor to gas-rich eruptive activity coincides with an increase in water temperature within the caldera and with a decrease in the rate of deflation. The last recorded diffuse events coincide with the end of the eruption, represented by the onset of inflation. All the observed explosion signals couple strongly into the water column, and only weakly into the solid Earth, demonstrating the importance of hydroacoustic observations as a complement to seismic and geodetic studies of submarine eruptions.

  17. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  18. Eruption of a boundary layer induced by a 2D vortex patch

    International Nuclear Information System (INIS)

    Kudela, H; Malecha, Z M

    2009-01-01

    The boundary-layer eruption phenomenon caused by a 2D patch of vorticity above a wall was investigated. It is shown that the eruption phenomenon depends on the viscosity (or Reynolds number, Re) of the fluid. There exists a threshold value of Re above which the eruption takes place. The initiation of the eruption goes through the creation of a small recirculation zone near the solid wall, the appearance of the saddle point on streamlines inside it and the tearing off process of the recirculation zone. Further increase of the Reynolds number causes a more complex flow. One can observe that eruption is regenerative and that the vortex patch can produce a cascade of secondary vortices. The vortex-in-cell method was employed to investigate the eruption phenomenon.

  19. Correlation of Plio Pleistocene Tephra in Ethiopian and Kenyan rift basins: Temporal calibration of geological features and hominid fossil records

    Science.gov (United States)

    WoldeGabriel, Giday; Hart, William K.; Katoh, Shigehiro; Beyene, Yonas; Suwa, Gen

    2005-10-01

    The 200-m-thick fossiliferous Konso Formation and overlying terrace deposits, which crop out at the end of the southern sector of the Main Ethiopian Rift (MER), contain more than 30 distal tephra layers. Local and regional tephra correlations of more than 20 tephra units were established using major and trace element data of discrete and purified bulk glass samples within the Konso study area. Eleven correlative marker tuffs were recognized in stratigraphic sections of both the Konso Formation and the Omo-Turkana Basin sediments in southern Ethiopia and northern Kenya. The Turoha, Hope, Ivory, Bright White, and Boleshe Tuffs in the Konso Formation, and the Upper White Tuff in the overlying terrace deposits are securely correlated with the KBS, Akait, Lokapetamoi, Chari, Lower Nariokotome, and Silbo Tuffs of the Omo-Turkana Basin, using least mobile major elements (CaO, Fe 2O 3*, and TiO 2) and geochronology. Preliminary correlations are also suggested between the Konso Formation distal tephra and proximal units of the Quaternary caldera-forming silicic centers in the central sector of the MER. The strongly peralkaline tuffs of the Konso Formation are compositionally similar to proximal eruptions mostly located along the Quaternary axial rift zone of the southern, central, and northern sectors of the MER. The tephra correlation provides information about the temporal and spatial features of the volcanic and tectonic processes recorded in the evolving basins. Thickness and sedimentation rate were determined for both the Konso Formation and the Omo-Turkana Basin sections, measured between the Turoha (=KBS; 1.91 ± 0.03 Ma) and the Bright White (=Chari; 1.40 ± 0.02 Ma) Tuffs. Although the lithostratigraphic sequence at the Konso study area is younger, sedimentation rate within the Konso Formation was comparable to that of the Koobi Fora Formation, higher in the Nachukui Formation, and lower in the Shungura Formation. Local and regional differences in thickness and

  20. Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?

    Science.gov (United States)

    Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.

    2003-12-01

    Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.

  1. Advective, Diffusive and Eruptive Leakage of CO2 and Brine within Fault Zone

    Science.gov (United States)

    Jung, N. H.; Han, W. S.

    2014-12-01

    This study investigated a natural analogue for CO2 leakage near the Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined to similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m-2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations overtly exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (Xco2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only the low-k fault scenario engenders development of CO2 anticlinal trap within the shallow aquifers (Entrada and Navajo), concentrating high CO­­­2 fluxes (~1,273 g m-2 d-1) within the northern footwall of the LGW fault similar to the field. Moreover, eruptive CO2 leakage at a well

  2. Aligning petrology with geophysics: the Father's Day intrusion and eruption, Kīlauea Volcano, Hawai`i

    Science.gov (United States)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.

    2016-12-01

    The Father's Day 2007 eruption at Kīlauea Volcano, Hawai`i, is an unprecedented opportunity to align geochemical techniques with the exceptionally detailed volcano monitoring data collected by the Hawaiian Volcano Observatory (HVO). Increased CO2 emissions were measured during a period of inflation at the summit of Kilauea in 2003-2007, suggesting that the rate of magma supply to the summit had increased [Poland et al., 2012]. The June 2007 Father's Day eruption in the East Rift Zone (ERZ) occurred at the peak of the summit inflation. It offers the potential to sample magmas that have ascended on short timescales prior to 2007 from the lower crust, and perhaps mantle, with limited fractionation in the summit reservoir. The bulk rock composition of the lavas erupted are certainly consistent with this idea, with >8.5 wt% MgO compared to a typical 7.0-7.5 wt% for contemporaneous Pu`u`O`o ERZ lavas. However, our analysis of the major and trace element chemistry of olivine-hosted melt inclusions shows that the melts are in fact relatively evolved, with Mg# eruptions, e.g. Kīlauea Iki. The magma evidently entrained a crystal cargo of more primitive olivines, compositionally typical of summit eruption magma (with 81-84 mol% Fo). The melt inclusion chemistry shows homogenized and narrowly distributed trace element ratios, medium/low CO2 abundances and high concentrations of sulfur (unlike typical ERZ magmas). However, the chemistry is unlike melts that have partially bypassed the summit reservoir, e.g. those erupted at Kīlauea Iki, Mauna Ulu. We suggest that the Father's Day magma had been resident in the magma reservoir prior to the 2003-2007 inflation, and was evacuated from the reservoir into the ERZ in response to the increased rate of intrusion of magma from depth. Dissolved volatile contents along profiles in embayments ("open" melt inclusions) were measured and compared to diffusion models to predict timescales of magma decompression prior to eruption. These are

  3. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb productivity or where crustal structure inhibits magma ascent). This has important implications for understanding the geotectonic settings that promote extreme melt evolution and, potentially, genesis of economically-valuable mineral deposits in ancient rift-settings. The limited isotopic evidence for assimilation of Pan-African crustal material in Ethiopia suggests that the pre-rift crust beneath the magmatic segments has been substantially modified by rift-related magmatism over the past ∼45 Ma; consistent with geophysical observations. We argue that considerable volumes of crystal cumulate are stored beneath silicic volcanic systems (>100 km3), and estimate that crystal cumulates fill at least 16-30% of the volume generated by crustal extension under the axial volcanoes of the MER and Manda Hararo

  4. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    Science.gov (United States)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  5. Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic Ridge near 15[degree]N, 45[degree]W

    Energy Technology Data Exchange (ETDEWEB)

    Rona, P.A.; Nelson, T.A. (National Oceanic and Atmospheric Administration, Miami, FL (United States)); Bougault, H.; Charlou, J.L.; Needham, H.D. (Inst. Francais de Recherche pour I' Exploitation de la Mer, Centre de Brest (France)); Appriou, P. (Univ. of Western Brittany, Brest (France)); Trefry, J.H. (Florida Inst. of Technology, Melbourne (United States)); Eberhart, G.L.; Barone, A. (Lamont-Doherty Geological Observatory, Palisades, NY (United States))

    1992-09-01

    A hydrothermal system characterized by high ratios of methane to both manganese and suspended particulate matter was detected in seawater sampled at the eastern intersection of the rift valley of the Mid-Atlantic Ridge with the Fifteen-Twenty Fracture Zone. This finding contrasts with low ratios in black smoker-type hydrothermal systems that occur within spreading segments. Near-bottom water sampling coordinated with SeaBeam bathymetry and camera-temperature tows detected the highest concentrations of methane at fault zones in rocks with the appearance of altered ultramafic units in a large dome that forms part of the inside corner high at the intersection. The distinct chemical signatures of the two types of hydrothermal systems are inferred to be controlled by different circulation pathways related to reaction of seawater primarily with ultramafic rocks at intersections of spreading segments with fracture zones but with mafic rocks within spreading segments.

  6. Microstructural evolution and seismic anisotropy of upper mantle rocks in rift zones. Geologica Ultraiectina (300)

    NARCIS (Netherlands)

    Palasse, L.N.

    2008-01-01

    This thesis investigates field-scale fragments of subcontinental upper mantle rocks from the ancient Mesozoic North Pyrenean rift and Plio-Pleistocene xenoliths from the active Baja California rift, in order to constrain the deformation history of the uppermost mantle. The main focus of the study is

  7. Magmatic densities control erupted volumes in Icelandic volcanic systems

    Science.gov (United States)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  8. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  9. When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano

    Science.gov (United States)

    Rasmussen, Daniel J.; Plank, Terry A.; Roman, Diana C.; Power, John A.; Bodnar, Robert J.; Hauri, Erik H.

    2018-03-01

    During the run-up to eruption, volcanoes often show geophysically detectable signs of unrest. However, there are long-standing challenges in interpreting the signals and evaluating the likelihood of eruption, especially during the early stages of volcanic unrest. Considerable insight can be gained from combined geochemical and geophysical studies. Here we take such an approach to better understand the beginning of eruption run-up, viewed through the lens of the 1999 sub-Plinian basaltic eruption of Shishaldin volcano, Alaska. The eruption is of interest due to its lack of observed deformation and its apparent long run-up time (9 months), following a deep long-period earthquake swarm. We evaluate the nature and timing of recharge by examining the composition of 138 olivine macrocrysts and 53 olivine-hosted melt inclusions and through shear-wave splitting analysis of regional earthquakes. Magma mixing is recorded in three crystal populations: a dominant population of evolved olivines (Fo60-69) that are mostly reversely zoned, an intermediate population (Fo69-76) with mixed zonation, and a small population of normally zoned more primitive olivines (Fo76-80). Mixing-to-eruption timescales are obtained through modeling of Fe-Mg interdiffusion in 78 olivines. The large number of resultant timescales provides a thorough record of mixing, demonstrating at least three mixing events: a minor event ∼11 months prior to eruption, overlapping within uncertainty with the onset of deep long-period seismicity; a major event ∼50 days before eruption, coincident with a large (M5.2) shallow earthquake; and a final event about a week prior to eruption. Shear-wave splitting analysis shows a change in the orientation of the local stress field about a month after the deep long-period swarm and around the time of the M5.2 event. Earthquake depths and vapor saturation pressures of Raman-reconstructed melt inclusions indicate that the recharge magma originated from depths of at least 20

  10. Experimental constraints on forecasting the location of volcanic eruptions from pre-eruptive surface deformation

    Science.gov (United States)

    Guldstrand, Frank; Galland, Olivier; Hallot, Erwan; Burchardt, Steffi

    2018-02-01

    Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating magma intrusions in a brittle crust, during which the intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the centre of the uplifted zone and the point of maximum uplift, which systematically acted as a precursor to the eruption’s location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  11. Maps showing the development of the Pu'u 'O'o-Kupaianaha flow field, June 1984-February 1987, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Heliker, Christina; Ulrich, George E.; Margriter, Sandy C.; Hoffmann, John P.

    2001-01-01

    The Pu'u 'O'o - Kupaianaha eruption on the middle east rift zone of Kilauea began in January 1983 with intermittent activity along several fissures. By June 1983, the eruption had localized at the Pu'u 'O'o vent, and the activity settled into an increasingly regular pattern of brief eruptive episodes characterized by high lava fountains. The first 18 months of this eruption are chronicled in Wolfe and others (1988), which includes maps of the flows erupted in episodes 1-20. The maps presented here extend this series through the beginning of episode 48.

  12. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon; Xu, Wenbin

    2015-01-01

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  13. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon

    2015-04-03

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  14. Deep Structure of the Zone of Tolbachik Fissure Eruptions (Kamchatka, Klyuchevskoy Volcano Group): Evidence from a Complex of Geological and Geophysical Data

    Science.gov (United States)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorvatikov, A. V.; Stepanova, M. Yu.

    2018-05-01

    With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a stepby-step recording of the background microseismic noise in 2010-2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975-1976 and 2012-2013 and, partly, the edifice of the Ploskii (flat) Tolbachik volcano. The depth sections reflecting the distributions of the relative velocities of seismic waves in the Earth's crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipeshaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A longlived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.

  15. A First: Detailed Tracking of an Erupting Undersea Volcano and its Impacts on the Overlying Ocean via a Submarine Electro-Optical Sensor Network.

    Science.gov (United States)

    Delaney, J. R.

    2016-02-01

    The scientifically diverse and technologically advanced cabled array component of the NSF's Ocean Observatories Initiative consists of 900 km of electro-optical fiber deployed from Pacific City, OR, across active portions of the Juan de Fuca (JdF) tectonic plate, and upward into the overlying ocean. This array, completed in 2014 on time and under budget, enables real-time, high-bandwidth, 2-way communication with seafloor and water column sensor arrays across: 1. the Cascadia accretionary prism, 2. the JdF spreading center, and, 3. portions of the overlying NE Pacific. Oceanographic processes in coastal waters, the California Current, and up to 400 km offshore, are captured by six remote-controlled, profiling moorings covering full-ocean depths. Currently, 6 primary nodes, 17 junction boxes, and 85% of 150 instruments are transmitting data ashore to the Internet via the Pacific NW Gigapop (http://www.pnwgp.net/). All data are archived at the U. of Washington, pending completion of the OOI CyberInfrastructure in October 2015. In 2014, community requests to access data to assess inflation at Axial Seamount, resulted in NSF releasing real-time data from 7 seismometers and 3 pressure sensors (IRIS: http://www.iris.edu/hq/). On April 20-22, 90 participants, met in Seattle to explore scientific responses to an eruption (http://novae.ocean.washington.edu). On April 24, Axial did erupt; seismic events rose dramatically to many hundreds/hour the Axial caldera floor dropped 2.4 m in 16 hours and water temperatures rose by 0.7°C, then declined in 3 weeks to normal values. Water-borne acoustic signals indicated seafloor activity along the rift zone north of Axial. Water column observations also indicated that a large plume of hydrothermal fluid was released during the eruptions. Follow-on field programs documented a 127 m thick lava flow on the northern rift, and a thin eruption within the caldera. These events signal a new era in Ocean Sciences as instantaneous Internet

  16. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    Science.gov (United States)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often

  17. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    Science.gov (United States)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new pulse of deep magma. While erupted magma and high temperature gases were mostly provided by the shallow part of the system, distal sites and summit low temperature fumaroles recorded a deeper triggering mechanism.

  18. Petrology and geochemistry of Late Holocene felsic magmas from Rungwe volcano (Tanzania), with implications for trachytic Rungwe Pumice eruption dynamics

    NARCIS (Netherlands)

    Fontijn, K.; Elburg, M.A.; Nikogosian, I.K.; van Bergen, M.J.; Ernst, G.G.J.

    2013-01-01

    Rungwe in southern Tanzania is an active volcanic centre in the East African Rift System, characterised by Plinian-style explosive eruptions of metaluminous to slightly peralkaline trachytic silica-undersaturated magmas during its late Holocene history. Variations in whole-rock major and trace

  19. Off-axis volcano-tectonic activity during continental rifting: Insights from the transversal Goba-Bonga lineament, Main Ethiopian Rift (East Africa)

    Science.gov (United States)

    Corti, Giacomo; Sani, Federico; Agostini, Samuele; Philippon, Melody; Sokoutis, Dimitrios; Willingshofer, Ernst

    2018-03-01

    The Main Ethiopian Rift, East Africa, is characterized by the presence of major, enigmatic structures which strike approximately orthogonal to the trend of the rift valley. These structures are marked by important deformation and magmatic activity in an off-axis position in the plateaus surrounding the rift. In this study, we present new structural data based on a remote and field analysis, complemented with analogue modelling experiments, and new geochemical analysis of volcanic rocks sampled in different portions of one of these transversal structures: the Goba-Bonga volcano-tectonic lineament (GBVL). This integrated analysis shows that the GBVL is associated with roughly E-W-trending prominent volcano-tectonic activity affecting the western plateau. Within the rift floor, the approximately E-W alignment of Awasa and Corbetti calderas likely represent expressions of the GBVL. Conversely, no tectonic or volcanic features of similar (E-W) orientation have been recognized on the eastern plateau. Analogue modelling suggests that the volcano-tectonic features of the GBVL have probably been controlled by the presence of a roughly E-W striking pre-existing discontinuity beneath the western plateau, which did not extend beneath the eastern plateau. Geochemical analysis supports this interpretation and indicates that, although magmas have the same sub-lithospheric mantle source, limited differences in magma evolution displayed by products found along the GBVL may be ascribed to the different tectonic framework to the west, to the east, and in the axial zone of the rift. These results support the importance of the heterogeneous nature of the lithosphere and the spatial variations of its structure in controlling the architecture of continental rifts and the distribution of the related volcano-tectonic activity.

  20. Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

    Science.gov (United States)

    Babb, Janet L.; Wessells, Stephen M.; Neal, Christina A.

    2017-10-06

    In March 2008, a new volcanic vent opened within Halemaʻumaʻu, a crater at the summit of Kīlauea Volcano in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. This new vent is one of two ongoing eruptions on the volcano. The other is on Kīlauea’s East Rift Zone, where vents have been erupting nearly nonstop since 1983. The duration of these simultaneous summit and rift zone eruptions on Kīlauea is unmatched in at least 200 years.Since 2008, Kīlauea’s summit eruption has consisted of continuous degassing, occasional explosive events, and an active, circulating lava lake. Because of ongoing volcanic hazards associated with the summit vent, including the emission of high levels of sulfur dioxide gas and fragments of hot lava and rock explosively hurled onto the crater rim, the area around Halemaʻumaʻu remains closed to the public as of 2017.Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano’s summit lava lake—now one of the two largest lava lakes in the world. It begins with a Hawaiian chant that expresses traditional observations of a bubbling lava lake and reflects the connections between science and culture that continue on Kīlauea today.The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea’s ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond. The video is also available at the following U.S. Geological Survey Multimedia Gallery link (video hosted on YouTube): Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

  1. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    Science.gov (United States)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  2. Two-Dimensional Numerical Modeling of Intracontinental Extension: A Case Study Of the Baikal Rift Formation

    DEFF Research Database (Denmark)

    Yang, H.; Chemia, Zurab; Artemieva, Irina

    The Baikal Rift zone (BRZ) is a narrow ( 10 km) active intra-continental basin, located at the boundary between the Amurian and Eurasian Plates. Although the BRZ is one of the major tectonically active rift zones in the world andit has been a subject of numerous geological...... on topography,basin depth, the structure of the crust, lithosphere thickness, and the location of major tectonic faults. Our goal is to determine the physical models that reproduce reasonably well the ob-served deformation patterns of the BRZ.We perform a systematic analysis of the pa-rameter space in order...

  3. Elastic energy release in great earthquakes and eruptions

    Directory of Open Access Journals (Sweden)

    Agust eGudmundsson

    2014-05-01

    Full Text Available The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy associated with magma chamber rupture and contraction (shrinkage during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1 the strain energy stored in the volcano/fault zone before rupture, and (2 the external applied load (force, pressure, stress, displacement on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU during an eruption is directly proportional to the excess pressure (pe in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3, the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago and largest single (effusive Colombia River basalt lava flows (15-16 million years ago, both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  4. Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands)

    Science.gov (United States)

    White, James D. L.; Schmincke, Hans-Ulrich

    1999-12-01

    In 1949, a 5-week-long magmatic and phreatomagmatic eruption took place along the active volcanic ridge of La Palma (Canary Islands). Two vents, Duraznero and Hoyo Negro, produced significant pyroclastic deposits. The eruption began from Duraznero vent, which produced a series of deposits with an upward decrease in accidental fragments and increase in fluidal ash and spatter, together inferred to indicate decreasing phreatomagmatic interaction. Hoyo Negro erupted over a 2-week period, producing a variety of pyroclastic density currents and ballistic blocks and bombs. Hoyo Negro erupted within and modified an older crater having high walls on the northern to southeastern edges. Southwestern to western margins of the crater lay 50 to 100 m lower. Strongly contrasting deposits in the different sectors (N-SE vs. SW-W) were formed as a result of interaction between topography, weak eruptive columns and stratified pyroclastic density currents. Tephra ring deposits are thicker and coarser-grained than upper rim deposits formed along the higher edges of the crater, and beyond the crater margin, valley-confined deposits are thicker than more thinly bedded mantling deposits on higher topography. These differences indicate that the impact zone for the bulk of the collapsing, tephra-laden column lay within the crater and that the high crater walls inhibited escape of pyroclastic density currents to the north and east. The impact zone lay outside the low SW-W rims, however, thus allowing stratified pyroclastic density currents to move freely away from the crater in those directions, depositing thin sections (<30 cm) of well-bedded ash (mantling deposits) on ridges and thicker sections (1-3 m) of structureless ash beds in valleys and small basins. Such segregation of dense pyroclastic currents from more dilute ones at the crater wall is likely to be common for small eruptions from pre-existing craters and is an important factor to be taken into account in volcanic hazards

  5. Introduction to the 2012-2013 Tolbachik eruption special issue

    Science.gov (United States)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Volynets, Anna

    2015-12-01

    The Tolbachik volcanic complex in central Kamchatka holds a special place in global volcanological studies. It is one of 4 areas of extensive historic volcanic activity in the northern part of the Central Kamchatka Depression (the others being Klyuchevskoy, Bezymianny, Shiveluch), and is part of the Klyuchevskoy volcanic group, which is one of the most active areas of volcanism on Earth. Tolbachik is especially well-known due largely to the massive 1975-1976 eruption that became known as the Great Tolbachik Fissure eruption (GTFE; Fedotov, 1983; Fedotov et al., 1984). This was one of the first eruptions in Russia to be predicted based on precursory seismic activity, based on M5 earthquakes approximately one week before the eruption started, and was intensively studied during its course by a large number of Russian scientists. A summary of those studies was published, first in Russian and then in English, and it became widely read for many reasons. One in particular is that the eruption was somewhat unusual for a subduction zone setting; although many subduction zone stratovolcanoes have associated basaltic tephra cone-lava fields, this was the first such Hawaiian-style eruption to be widely observed. After the end of the eruption in 1976, the complex showed no signs of activity until 27 November 2012, when increased seismic activity was registered by the Kamchatka Branch of the Russian Geophysical Survey and a red glow from the eruption site was first noticed through the snowstorm haze. This prompted them, and then the Kamchatka Volcanic Emergency Response Team (KVERT) to issue an alert that activity was coming from the south flank of Plosky Tolbachik volcano, the younger of two volcanic edifices (the older is Ostry Tolbachik) that together make up the bulk of the complex along with tephra cone-lava fields that lie along a NE-SW fissure zone that transects Plosky Tolbachik. The new eruption lasted for more than 250 days and, like the 1975-1976 eruption, was

  6. Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins

    Science.gov (United States)

    Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.

    2017-12-01

    Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.

  7. The crustal characteristics at syn- and/or post-rifting in eastern Shikoku basin by seismic reflection survey

    Science.gov (United States)

    Yamashita, M.; Takahashi, N.; Kodaira, S.; Takizawa, K.; No, T.; Miura, S.; Kaneda, Y.

    2008-12-01

    Imaging of the arc-backarc transition zone is important in relation to the backarc opening process. Shikoku Basin locates between the Kyushu-Palau Ridge and the Izu-Ogasawara Arc, which is an important area to reveal the opening evolution of the backarc basins as a part of the growth process of the Philippine Sea. The Shikoku Basin was in the backarc rifting and spreading stage during about 30-15 Ma (e.g. Okino et al., 1994). High P-wave velocity lower crust is identified in arc-backarc transition zone by refraction survey using OBSs (Takahashi et al., 2007). Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection (MCS) survey using 12,000 cu.in. air gun and 5 km streamer with 204 ch hydrophones in the Izu-Ogasawara region since 2004. We extracted and mapped the crustal characteristics from poststack and prestack depth migrated profiles. According to obtained profiles, the deformation structure with share component is recognized in arc-backarc transition zone, which located eastern side of Shikoku Basin from Zenisu Ridge to about 500 km south. The maximum width of this deformation zone is about 100 km. The relative displacement of horizon is little; however, it is strongly deformed from upper crust beneath seafloor. This deformation zone indicates the post- rifting activity in east side of Shikoku Basin. On the other hand, some knolls are indicated along the en- echelon arrangement from Izu-Ogasawara arc. Ishizuka et al. (2003) reported post-rifting volcanism with Miocene age in en-echelon arrangement. A part of these knolls are estimated to penetrate at syn-rifting and/or post-rifting stage in backarc opening. By comparing the both side of arc-backarc transition zone, we elucidate syn- and post-rifting effect in Shikoku Basin. We also carried out high density MCS surveys in Shikoku Basin in order to IODP proposal site for reconstruction of magmatic processes since Oligocene in rear arc. In this survey, we use new

  8. Oppositely directed pairs of propagating rifts in back-arc basins: Double saloon door seafloor spreading during subduction rollback

    Science.gov (United States)

    Martin, A. K.

    2006-06-01

    When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of

  9. Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping

    Directory of Open Access Journals (Sweden)

    Cécile Vignolles

    2009-05-01

    Full Text Available This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM, rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite. Since “Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching, the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.

  10. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    Science.gov (United States)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  11. Major and micro seismo-volcanic crises in the Asal Rift, Djibouti

    Science.gov (United States)

    Peltzer, G.; Doubre, C.; Tomic, J.

    2009-05-01

    The Asal-Ghoubbet Rift is located on the eastern branch of the Afar triple junction between the Arabia, Somalia, and Nubia tectonic plates. The last major seismo-volcanic crisis on this segment occurred in November 1978, involving two earthquakes of mb=5+, a basaltic fissure eruption, the development of many open fissures across the rift and up to 80 cm of vertical slip on the bordering faults. Geodetic leveling revealed ~2 m of horizontal opening of the rift accompanied by ~70 cm of subsidence of the inner-floor, consistent with models of the elastic deformation produced by the injection of magma in a system of two dykes. InSAR data acquired at 24-day intervals during the last 12 years by the Canadian Radarsat satellite over the Asal Rift show that the two main faults activated in 1978 continue to slip with periods of steady creep at rates of 0.3-1.3 mm/yr, interrupted by sudden slip events of a few millimeters, in 2000 and 2003. Slip events are coincident with bursts of micro earthquakes distributed around and over the Fieale volcanic center in the eastern part of the Asal Rift. In both cases (the 1978 crisis and micro-slip events), the observed geodetic moment released by fault slip exceeds by a few orders of magnitude the total seismic moment released by earthquakes over the same period. Aseismic fault slip is likely to be the faults response to a changing stress field associated with a volcanic process and not due to dry friction on faults. Sustained injection of magma (1978 crisis) and/or crustal fluids (micro-slip events) in dykes and fissures is a plausible mechanism to control fluid pressure in the basal parts of faults and trigger aseismic slip. In this respect, the micro-events observed by InSAR during a 12-year period of low activity in the rift and the 1978 seismo-volcanic episode are of same nature.

  12. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  13. Transient deformation in the Asal-Ghoubbet Rift (Djibouti) since the 1978 diking event: Is deformation controlled by magma supply rates?

    Science.gov (United States)

    Smittarello, D.; Grandin, R.; de Chabalier, J. B.; Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Ibrahim Ahmed, S.

    2016-12-01

    Within the Afar Depression, the Asal-Ghoubbet Rift (AG Rift)in Djibouti lies in the subaerial continuation of the Aden ridge system. This segment constitutes a natural laboratory to study rifting processes and mechanisms involved in continental breakup and oceanic spreading. In November 1978, an exceptional rifting event occurred in the AG Rift. Regularly upgraded and improved geodetic technology has been used to monitor this event and the postdiking deformation. In light of recent results obtained for the Manda Hararo-Dabbahu rifting event (2005-2010), we propose that the horizontal and vertical geodetic data can be modeled with a double source, involving a dike-like inflation component aligned along the rift axis and a spherical pressure source located at midsegment below the Fieale caldera. By revisiting the codiking data, we propose that the reservoir below Fieale could have fed, at least partially, the 1978 injection and the contemporaneous Ardoukoba eruption and potentially induced local subsidence due to magma draining out of the central reservoir. As an alternative to previously proposed viscoelastic relaxation models, we reinterpret postdiking observations using a purely elastic rheology. We determine the relative contribution of a midsegment reservoir inflation and a dike-like opening component, together with their respective time evolutions. Our results suggest that interactions between steadily accumulating tectonic strain and temporal variations in melt supply to the shallow magma plumbing system below the AG Rift may entirely explain the geodetic observations and that viscoelastic deformation processes played a minor role in the 30 years following the 1978 rifting event.

  14. PRELIMINARY PALEOMAGNETIC RESULTS FROM OUTFLOW EOCENE-OLIGOCENE ASH FLOW TUFFS FROM THE WESTERN MARGIN OF THE SAN LUIS BASIN: IMPLICATION FOR THE KINEMATIC EVOLUTION OF THE RIO GRANDE RIFT

    Science.gov (United States)

    Mason, S. N.; Geissman, J. W.; Sussman, A. J.

    2009-12-01

    In the Rio Grande rift (RGR), a late Cenozoic continental rift from central Colorado to southern New Mexico, hanging wall margins typically contain en echelon normal fault systems with intervening areas of typically complex structure, called relay zones. Relay zones transfer displacement through complex strain patterns and eventual linkage of faults and hold clues as to how fault zones initiate and grow. The western margin of the RGR at the latitude of the San Luis basin (SLB) exposes laterally continuous Eocene-Oligocene volcanic rocks, well-correlated by 40Ar/39Ar data, and well-preserved rift structures. Ash flow tuffs are usually excellent recorders of the instantaneous geomagnetic field and five ash flow tuffs (ca. 32.3 to 27.3 Ma; including the Saguache Creek, La Jara Canyon, Masonic Park, Fish Canyon, and Carpenter Ridge tuffs) have been sampled in spatial detail along west to east transects of the eastern San Juan volcanic field to the westernmost margin of the RGR at the SLB. Data obtained from our sampling approach will yield a comprehensive definition of relative vertical-axis rotations across the area and will be used to assess the timing of RGR fault linkages. Preliminary paleomagnetic data from the Masonic Park tuff (ca. 28.2 Ma) suggest up to ~17° clockwise rotation between sample locations on the Colorado Plateau and locations to the east, nearest the western margin of the RGR. Preliminary data from the Fish Canyon tuff (ca. 27.8 Ma) show a ~12° clockwise rotation. The relative clockwise vertical-axis rotation of sampling sites in both ash flow tuffs nearest the RGR margin suggests that relay zone development with attending vertical-axis rotation played an important role in the opening of the northern RGR. Our data set is not sufficiently robust at present to test the hypothesis that rotation was taking place concurrently with eruption of these large-volume ash flow tuffs in the early Oligocene, but it is a possibility and if so, the RGR at the

  15. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    Science.gov (United States)

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  16. The role of inheritance in structuring hyperextended rift systems

    Science.gov (United States)

    Manatschal, Gianreto; Lavier, Luc; Chenin, Pauline

    2015-04-01

    A long-standing question in Earth Sciences is related to the importance of inheritance in controlling tectonic processes. In contrast to physical processes that are generally applicable, assessing the role of inheritance suffers from two major problems: firstly, it is difficult to appraise without having insights into the history of a geological system; and secondly all inherited features are not reactivated during subsequent deformation phases. Therefore, the aim of our presentation is to give some conceptual framework about how inheritance may control the architecture and evolution of hyperextended rift systems. We use the term inheritance to refer to the difference between an "ideal" layer-cake type lithosphere and a "real" lithosphere containing heterogeneities and we define 3 types of inheritance, namely structural, compositional and thermal inheritance. Moreover, we assume that the evolution of hyperextended rift systems reflects the interplay between their inheritance (innate/"genetic code") and the physical processes at play (acquired/external factors). Thus, by observing the architecture and evolution of hyperextended rift systems and integrating the physical processes, one my get hints on what may have been the original inheritance of a system. Using this approach, we focus on 3 well-studied rift systems that are the Alpine Tethys, Pyrenean-Bay of Biscay and Iberia-Newfoundland rift systems. For the studied examples we can show that: 1) strain localization on a local scale and during early stages of rifting is controlled by inherited structures and weaknesses 2) the architecture of the necking zone seems to be influenced by the distribution and importance of ductile layers during decoupled deformation and is consequently controlled by the thermal structure and/or the inherited composition of the curst 3) the location of breakup in the 3 examples is not significantly controlled by the inherited structures 4) inherited mantle composition and rift

  17. Crustal and mantle structure and anisotropy beneath the incipient segments of the East African Rift System: Preliminary results from the ongoing SAFARI

    Science.gov (United States)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; moidaki, M.; Mutamina, D. M.; Atekwana, E. A.; Ingate, S. F.; Reusch, A.; Barstow, N.

    2013-12-01

    Despite the vast wealth of research conducted toward understanding processes associated with continental rifting, the extent of our knowledge is derived primarily from studies focused on mature rift systems, such as the well-developed portions of the East African Rift System (EARS) north of Lake Malawi. To explore the dynamics of early rift evolution, the SAFARI (Seismic Arrays for African Rift Initiation) team deployed 50 PASSCAL broadband seismic stations across the Malawi, Luangwa, and Okavango rifts of the EARS during the summer of 2012. The cumulative length of the profiles is about 2500 km and the planned recording duration is 2 years. Here we present the preliminary results of systematic analyses of data obtained from the first year of acquisition for all 50 stations. A total of 446 high-quality shear-wave splitting measurements using PKS, SKKS, and SKS phases from 84 teleseismic events were used to constrain fast polarization directions and splitting times throughout the region. The Malawi and Okavango rifts are characterized by mostly NE trending fast directions with a mean splitting time of about 1 s. The fast directions on the west side of the Luangwa Rift Zone are parallel to the rift valley, and those on the east side are more N-S oriented. Stacking of approximately 1900 radial receiver functions reveals significant spatial variations of both crustal thickness and the ratio of crustal P and S wave velocities, as well as the thickness of the mantle transition zone. Stations situated within the Malawi rift demonstrate a southward increase in observed crustal thickness, which is consistent with the hypothesis that the Malawi rift originated at the northern end of the rift system and propagated southward. Both the Okavango and Luangwa rifts are associated with thinned crust and increased Vp/Vs, although additional data is required at some stations to enhance the reliability of the observations. Teleseismic P-wave travel-time residuals show a delay of about

  18. Implementing real-time GNSS monitoring to investigate continental rift initiation processes

    Science.gov (United States)

    Jones, J. R.; Stamps, D. S.; Wauthier, C.; Daniels, M. D.; Saria, E.; Ji, K. H.; Mencin, D.; Ntambila, D.

    2017-12-01

    Continental rift initiation remains an elusive, yet fundamental, process in the context of plate tectonic theory. Our early work in the Natron Rift, Tanzania, the Earth's archetype continental rift initiation setting, indicates feedback between volcanic deformation and fault slip play a key role in the rift initiation process. We found evidence that fault slip on the Natron border fault during active volcanism at Ol Doniyo Lengai in 2008 required only 0.01 MPa of Coulomb stress change. This previous study was limited by GPS constraints 18 km from the volcano, rather than immediately adjacent on the rift shoulder. We hypothesize that fault slip adjacent to the volcano creeps, and without the need for active eruption. We also hypothesize silent slip events may occur over time-scales less than 1 day. To test our hypotheses we designed a GNSS network with 4 sites on the flanks of Ol Doinyo Lengai and 1 site on the adjacent Natron border fault with the capability to calculate 1 second, 3-5 cm precision positions. Data is transmitted to UNAVCO in real-time with remote satellite internet, which we automatically import to the EarthCube building block CHORDS (Cloud Hosted Real-time Data Services for the Geosciences) using our newly developed method. We use CHORDS to monitor and evaluate the health of our network while visualizing the GNSS data in real-time. In addition to our import method we have also developed user-friendly capabilities to export GNSS positions (longitude, latitude, height) with CHORDS assuming the data are available at UNAVCO in NMEA standardized format through the Networked Transport of RTCM via Internet Protocol (NTRIP). The ability to access the GNSS data that continuously monitors volcanic deformation, tectonics, and their interactions on and around Ol Doinyo Lengai is a crucial component in our investigation of continental rift initiation in the Natron Rift, Tanzania. Our new user-friendly methods developed to access and post-process real-time GNSS

  19. The evolution of rifting process in the tectonic history of the Earth

    Science.gov (United States)

    Milanovsky, E. E.; Nikishin, A. M.

    1985-01-01

    The continental rifting is the response of the lithosphere to the oriented tension. The distribution of viscosity in the lithosphere plays an essential role during all stages of the rifting. The viscosity is a function of the temperature, the lithostatic pressure, the rock composition, the deformation rate and other factors. The temperature is the most important factor. The vertical section of continental lithosphere of the rift zone may be divided into the following layers: the upper crust, in which brittle deformation prevails; the medialcrust, in which the role of plastic deformation increases; the lower crust, in which plastic deformation prevails; and the uppermost plastic part of the mantle overlapping asthenosphere. The depth of the boundaries in the crust layers are mainly controlled by the temperature.

  20. La dorsal NE de Tenerife: hacia un modelo del origen y evolución de los rifts de islas oceánicas

    Directory of Open Access Journals (Sweden)

    Delcamp, A.

    2009-06-01

    primordial, plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their established fissural feeding system, frequently favouring magma accumulation and residence at shallow emplacements, leading to differentiation of magmas, and intermediate to felsic nested eruptions. Rifts and their collapse may therefore act as an important factor in providing petrological variability to oceanic volcanoes. Conversely, the possibility exists that the presence of important felsic volcanism may indicate lateral collapses in oceanic shields and ridge-like volcanoes, even if they are concealed by post-collapse volcanism or partially mass-wasted by erosion.El Rift NE de Tenerife, conocido localmente como la Dorsal de La Esperanza, es un excelente ejem plo de un rift persistente y recurrente. Su estudio ha aportado evidencias significativas del origen y diná mica de este tipo de estructuras volcánicas. Los rifts son posiblemente las estructuras más relevantes en la geología de las islas volcánicas oceánicas: 1. Controlan, tal vez desde su inicio, la construcción de los edificios insulares; 2. Son elementos sustanciales en la configuración (forma y topografía de estas islas; 3. Dan origen a sus principales formas del relieve y el paisaje; 4. Al concentrar la actividad eruptiva, son asimismo estructuras cruciales en la distribución del riesgo volcánico; 5. Condicionan la distribución de recursos naturales básicos, como el agua subterránea. En las Canarias están muy bien representados tanto los rifts típicos de los estadios juveniles de desarrollo en escudo, como los más tardíos, correspondientes a las fases de rejuvenecimiento post-ero sivo. El Rift NE es un buen ejemplo de este último tipo de rifts. El Rift NE se ha desarrollado en tres etapas diferentes separadas por periodos más largos de quiescencia o actividad reducida. La primera

  1. What factors control the size of an eruption?

    Science.gov (United States)

    Gudmundsson, Agust

    2017-04-01

    pressure so as to drive out magma for a much longer time during an eruption than is otherwise possible. As a consequence a much higher proportion of the magma in the chamber is driven or squeezed out during an eruption associated with caldera or graben subsidence than is possible during an ordinary poroelastic chamber behaviour. It follows that the volume of eruptive materials may approach the total volume of the chamber resulting in a large eruption. Here a large eruption is thus the consequence—not the cause—of the subsidence of the caldera/graben block. Thus, once the factors controlling large-scale subsidence of a caldera/graben block are established during a particular unrest/rifting episode, primarily using geodetic and seismic data, the probability of a large eruption can be assessed and used for reliable forecasting. Gudmundsson, A., 2015. Collapse-driven large eruptions. Journal of Volcanology and Geothermal Research, 304, 1-10. Gudmundsson, A., 2016. The mechanics of large volcanic eruptions. Earth-Science Reviews, 163, 72-93.

  2. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    Science.gov (United States)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  3. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    Science.gov (United States)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  4. Holocene eruption history in Iceland - Eruption frequency vs. Tephra layer frequency

    Science.gov (United States)

    Oladottir, B. A.; Larsen, G.

    2012-12-01

    Volcanic deposits of all kinds are used to reconstruct eruption history of volcanoes and volcanic zones. In Iceland tephra is the ideal volcanic deposit to study eruption history as two out of every three eruptions taking place there during the last 11 centuries have been explosive, leaving tephra as their only product. If eruptions producing both lava and tephra are included three out of every four eruptions have produced tephra. Tephra dispersal and deposition depends on factors such as eruption magnitude, eruption cloud height, duration of eruption and prevailing wind directions at the time of eruption. Several outcrops around a particular volcano must therefore be measured to obtain optimal information of its eruption history. Vegetation in the area of deposition is also of great importance for its preservation. Tephra deposited on un-vegetated land is rapidly eroded by wind and water, and deposits up to few tens of cm thickness may be lost from the record. Such tephra deposited on grassy or forested land is at least partly sheltered from the wind after deposition. Soon after tephra deposition (how soon depends on tephra thickness) the root system of the vegetation creates an even better shelter for the tephra and when this stage is reached the tephra is preserved in the soil for millennia, given that no soil erosion takes place. Vegetation is often boosted in the first years after tephra deposition which in turn helps tephra preservation. A setback of using soil sections for reconstructing Holocene eruption history is the lack of soil at the beginning of the era but for that time period tephra records in lake and marine sediments can be used. When tephra stratigraphy in soil sections is measured to study eruption history and eruption frequency of a volcano it must be kept in mind that what is seen is in fact the tephra layer frequency. One section only shows tephra layers deposited in that location and more importantly only the layers preserved there. The

  5. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia

    KAUST Repository

    Pallister, John S.

    2010-09-26

    The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low- and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees. © 2010 Macmillan Publishers Limited. All rights reserved.

  6. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia

    KAUST Repository

    Pallister, John S.; McCausland, Wendy A.; Jonsson, Sigurjon; Lu, Zhong; Zahran, Hani M.; El-Hadidy, Salah Y.; Aburukbah, Abdallah; Stewart, Ian C F; Lundgren, Paul R.; White, Randal A.; Moufti, Mohammed Rashad H

    2010-01-01

    The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low- and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees. © 2010 Macmillan Publishers Limited. All rights reserved.

  7. Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia

    Science.gov (United States)

    Pallister, J.S.; McCausland, W.A.; Jonsson, Sigurjon; Lu, Z.; Zahran, H.M.; El, Hadidy S.; Aburukbah, A.; Stewart, I.C.F.; Lundgren, P.R.; White, R.A.; Moufti, M.R.H.

    2010-01-01

    The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low- and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees.

  8. Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i: Chapter 8

    Science.gov (United States)

    Thornber, Carl R.; Orr, Tim R.; Heliker, Christina; Hoblitt, Richard P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic monitoring of Kīlauea Volcano from January 1983 to October 2013 has yielded an extensive record of glass, phenocryst, melt inclusion, and bulk-lava chemistry from well-quenched lava. When correlated with 30+ years of geophysical and geologic monitoring, petrologic details testify to physical maturation of summit-to-rift magma plumbing associated with sporadic intrusion and prolonged magmatic overpressurization. Changes through time in bulk-lava major- and trace-element compositions, along with glass thermometry, record shifts in the dynamic balance of fractionation, mixing, and assimilation processes inherent to magma storage and transport during near-continuous recharge and eruption. Phenocryst composition, morphology, and texture, along with the sulfur content of melt inclusions, constrain coupled changes in eruption behavior and geochemistry to processes occurring in the shallow magmatic system. For the first 17 years of eruption, magma was steadily tapped from a summit reservoir at 1–4 km depth and circulating between 1180 and 1200°C. Furthermore, magma cooled another 30°C while flowing through the 18 km long rift conduit, before erupting olivine-spinel-phyric lava at temperatures of 1150–1170°C in a pattern linked with edifice deformation, vent formation, eruptive vigor, and presumably the flux of magma into and out of the summit reservoir. During 2000–2001, a fundamental change in steady state eruption petrology to that of relatively low-temperature, low-MgO, olivine(-spinel)-clinopyroxene-plagioclase-phryic lava points to a physical transformation of the shallow volcano plumbing uprift of the vent. Preeruptive comagmatic mixing between hotter and cooler magma is documented by resorption, overgrowth, and compositional zonation in a mixed population of phenocrysts grown at higher and lower temperatures. Large variations of sulfur (50 to >1000 ppm) in melt inclusions within individual phenocrysts and among phenocrysts in most samples

  9. Dataciones radiometricas (14C y K/Ar del Teide y el Rift noroeste, Tenerife, Islas Canarias

    Directory of Open Access Journals (Sweden)

    Hansen, A.

    2003-08-01

    Full Text Available Teide volcano, the highest volcano on earth (3,718 m a.s.l., > 7 km high after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the island of Tenerife. Its most recent eruptive activity (last 20 Ka is associated with the very active NW branch of the 120" triple rift system of the island. Most of the eruptions of Tenerife during the past 20 Ka have occurred along these volcanic features, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon- 14 ages, obtained via coupled mass spectrometry (other in progress, provide important time constraints on the evoliition of Teide's volcanic system, the frequency and distribution of its eruptions, and associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1,240 f 60 years BP (between 1,287 CAL years BP and 1,007 CAL years BP, corresponding to a time interval between the VI1 and X centuries, 663 years AD to 943 years AD, but to the Pico Viejo volcano (17,570 f 150 years BP, flank parasitic vents (Mña. Abejera upper vent, 5,170 f 110 years BP; Mña. Abejera lower vent, 4,790 f 70 years BP; Mña. de La Angostura early, 2,420 f 70 years BP; Mña. La Angostura late, 2,010 f 60 years BP and Roques Blancos, 1,790 f 60 years BP and the NW rift (Mña. Chío, 3,620 f 70 years BP. Although the volcanic activity during the past 20 Ka involved at least 7 voluminous phonolitic flank vents in the northem, more

  10. Magmatic plumbing system of Kilauea Volcano: Insights from Petrologic and Geochemical Monitoring

    Science.gov (United States)

    Garcia, M. O.; Pietruszka, A. J.; Marske, J.; Greene, A.; Lynn, K. J.

    2016-12-01

    Monitoring the petrology and geochemistry of lavas from active volcanoes in near realtime affords the opportunity to formulate and evaluate models for magma transport, mixing, and storage to help predict eruption scenarios with greater confidence and better understand magmatic plumbing systems (e.g., Poland et al. 2012, Nat. Geosci. 5, 295-300). Continous petrologic and geochemical monitoring of two ongoing eruptions at the summit and east rift zone of Kilauea Volcano on the Island of Hawaii have revealed much about the dynamics of magmatic processes. When the composition of lava shifted to a more MgO-rich composition in April 1983, we predicted that the Puu Oo eruption would not be short-lived. We had no idea it would continue for over 33 years. Subsequent changes in lava composition have highlighted the interplay between mixing pockets of rift-zone stored magma with new mantle-derived magma and the cooling-induced crystal fractionation during brief (usually days) eruption hiatuses. Surprisingly, the mantle derived magma has continued to change in composition including several 10-year cycles in Pb isotope ratios superimposed on a progressive depletion in highly incompatible elements (Greene et al. 2013, G3, doi: 10.1002/ggge.20285). These compositional trends are contrary to those observed for sustained basaltic eruptions on continents and argue for melt extraction from a multi-component source with 1-3 km wide heterogeneities. Compositional zoning within olivine phenocrysts, created by diffusive re-equilibration, also provide insights into magma mixing, storage, and transport at Kilauea. Timescales modeling of Fe-Mg and Ni concentration gradients within Puu Oo olivine indicate that crystals can be stored at magmatic temperatures for months to a few years before eruption (Shea et al. 2015, Geology 43, 935-938). Kilauea's ongoing eruptions continue to provide a dynamic laboratory for positing and testing models for the generation and evolution of basaltic magma.

  11. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    Science.gov (United States)

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  12. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    Science.gov (United States)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence

    2013-06-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  13. Spatial vent opening probability map of El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    Becerril, Laura; Cappello, Annalisa; Galindo, Inés; Neri, Marco; Del Negro, Ciro

    2013-04-01

    The assessment of the probable spatial distribution of new eruptions is useful to manage and reduce the volcanic risk. It can be achieved in different ways, but it becomes especially hard when dealing with volcanic areas less studied, poorly monitored and characterized by a low frequent activity, as El Hierro. Even though it is the youngest of the Canary Islands, before the 2011 eruption in the "Las Calmas Sea", El Hierro had been the least studied volcanic Island of the Canaries, with more historically devoted attention to La Palma, Tenerife and Lanzarote. We propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the mathematical analysis of the volcano-structural data collected mostly on the Island and, secondly, on the submerged part of the volcano, up to a distance of ~10-20 km from the coast. The volcano-structural data were collected through new fieldwork measurements, bathymetric information, and analysis of geological maps, orthophotos and aerial photographs. They have been divided in different datasets and converted into separate and weighted probability density functions, which were then included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. Future eruptive events on El Hierro is mainly concentrated on the rifts zones, extending also beyond the shoreline. The major probabilities to host new eruptions are located on the distal parts of the South and West rifts, with the highest probability reached in the south-western area of the West rift. High probabilities are also observed in the Northeast and South rifts, and the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency plans and civil defence actions.

  14. Geochemical and isotopic characteristics and magma sources of the early Cretaceous trachybasalts of the Goby-Altai rift zone: an example of grabens in the Arts-Bogdo range

    International Nuclear Information System (INIS)

    Samojlov, V.S.; Yarmolyuk, V.V.; Kovalenko, V.I.; Ivanov, V.G.; Pakhol'chenko, Yu.A.

    1998-01-01

    Geochemical and isotopic-geochemical characteristics of the basalts of Early Cretaceous (Hoby-Altai rift zone; Arts-Bogdo region, Mongolia). Atomic absorption spectroscopy, X-ray fluorescence spectroscopy, photometry, mass spectroscopy and other methods were used. Mantle nature of the basalt geochemical specificity is shown as well as their initial melts. Data on the rubidium-strontium isotopic composition of Neocomian basalts are the following ones: 87 Sr/ 86 Sr 87 Sr/ 86 Sr > 0.707 and Rb/Sr > 0.06 [ru

  15. Contrasting styles of post-caldera volcanism along the Main Ethiopian Rift: Implications for contemporary volcanic hazards

    Science.gov (United States)

    Fontijn, Karen; McNamara, Keri; Zafu Tadesse, Amdemichael; Pyle, David M.; Dessalegn, Firawalin; Hutchison, William; Mather, Tamsin A.; Yirgu, Gezahegn

    2018-05-01

    The Main Ethiopian Rift (MER, 7-9°N) is the type example of a magma-assisted continental rift. The rift axis is populated with regularly spaced silicic caldera complexes and central stratovolcanoes, interspersed with large fields of small mafic scoria cones. The recent (latest Pleistocene to Holocene) history of volcanism in the MER is poorly known, and no eruptions have occurred in the living memory of the local population. Assessment of contemporary volcanic hazards and associated risk is primarily based on the study of the most recent eruptive products, typically those emplaced within the last 10-20 ky. We integrate new and published field observations and geochemical data on tephra deposits from the main Late Quaternary volcanic centres in the central MER to assess contemporary volcanic hazards. Most central volcanoes in the MER host large mid-Pleistocene calderas, with typical diameters of 5-15 km, and associated ignimbrites of trachyte and peralkaline rhyolite composition. In contrast, post-caldera activity at most centres comprises eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones. The frequency and magnitude of events varies between individual volcanoes. Some volcanoes have predominantly erupted obsidian lava flows in their most recent post-caldera stage (Fentale), whereas other have had up to 3 moderate-scale (VEI 3-4) explosive eruptions per millennium (Aluto). At some volcanoes we find evidence for multiple large explosive eruptions (Corbetti, Bora-Baricha, Boset-Bericha) which have deposited several centimetres to metres of pumice and ash in currently densely populated regions. This new overview has important implications when assessing the present-day volcanic hazard in this rapidly developing region. Supplementary Table 2 Main Ethiopian Rift outcrop localities with brief description of geology. All coordinates in Latitude - Longitude, WGS84 datum. Sample names (as listed in Supplementary Table 3a) follow outcrop name

  16. Photogrammetry surveys and mosaic: a useful tool to monitor active zones. Applications to the Indonesian Lusi eruption site.

    Science.gov (United States)

    Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano; Iarocci, Alessandro; Caramelli, Antonio

    2016-04-01

    Unmanned and remotely operated aircraft showed to be an efficient and cost effective way to explore remote or extreme environments. Comparative photogrammetry studies are an efficient way to study and monitor he evolution of geologically active areas and ongoing events and are able to highlight details that are typically lost during traditional field campaigns. The Lusi mud eruption in eastern Java (Indonesia) represents one of the most spectacular geological phenomena that is ongoing since May 2006. In the framework of the Lusi Lab project (ERC grant n° 308126) we designed and constructed a multipurpose drone to survey the eruption site. Among the numerous other payloads, the Lusi drone is equipped with Olympus EPM-2 and Go-Pro Hero3 cameras that allow the operator to collect video stills, high quality pictures and to complete photogrammetry surveys. Targeted areas have been selected for detailed studies in the 7 km2 region inside the embankment that was prevent the mud burial of the settlements in the Sidoarjo Regency. The region is characterized by the presence of the Watukosek fault zone. This strike slip system originates from the Arjuno-Welirang volcanic complex and extends to the north east of the Java Island intersecting the Lusi crater. Therefore of particular interest are the faulted surveyed areas present around the Lusi crater inside the embankment. Results reveal a surprising accuracy for the collected mosaic. Multiple surveys are able to reveal the changes and the evolution of the fault through time and to indicate more active zones. In particular this type of survey can highlight the weakness zones and is thus useful to prevent potential geohazards in the area. The poster shows the aerial survey results, including a 3d-printed slice of LuSi, obtained combining 2500 16 Mp photographs. A 3d zoomed detail is also shown, evidencing the resolution that this technique can offer.

  17. Settlement Relocation Modeling: Reacting to Merapi’s Eruption Incident

    Science.gov (United States)

    Pramitasari, A.; Buchori, I.

    2018-02-01

    Merapi eruption has made severe damages in Central Java Province. Klaten was one of the most affected area, specifically in Balerante Village. This research is made to comprehend GIS model on finding alternative locations for impacted settlement in hazardous zones of eruption. The principal objective of the research study is to identify and analyze physical condition, community characteristics, and local government regulation related to settlements relocation plan for impacted area of eruption. The output is location map which classified into four categories, i.e. not available, available with low accessibility, available with medium accessibility, and available with high accessibility.

  18. 3D numerical simulations of multiphase continental rifting

    Science.gov (United States)

    Naliboff, J.; Glerum, A.; Brune, S.

    2017-12-01

    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and

  19. Magmatic dyking and recharge in the Asal Rift, Republic of Djibouti

    Science.gov (United States)

    Peltzer, G.; Harrington, J.; Doubre, C.; Tomic, J.

    2012-12-01

    The Asal Rift, Republic of Djibouti, has been the locus of a major magmatic event in 1978 and seems to have maintained a sustained activity in the three decade following the event. We compare the dyking event of 1978 with the magmatic activity occurring in the rift during the 1997-2008 time period. We use historical air photos and satellite images to quantify the horizontal opening on the major faults activated in 1978. These observations are combined with ground based geodetic data acquired between 1973 and 1979 across the rift to constrain a kinematic model of the 1978 rifting event, including bordering faults and mid-crustal dykes under the Asal Rift and the Ghoubbet Gulf. The model indicates that extension was concentrated between the surface and a depth of 3 km in the crust, resulting in the opening of faults, dykes and fissures between the two main faults, E and gamma, and that the structure located under the Asal Rift, below 3 km, deflated. These results suggest that, during the 1978 event, magmatic fluids transferred from a mid-crustal reservoir to the shallow structures, injecting dykes and filling faults and fissures, and reaching the surface in the Ardoukoba fissural eruption. Surface deformation observed by InSAR during the 1997-2008 decade reveals a slow, yet sustained inflation and extension across the Asal Rift combined with continuous subsidence of the rift inner floor. Modeling shows that these observations cannot be explained by visco-elastic relaxation, a process, which mostly vanishes 20 to 30 years after the 1978 event. However, the InSAR observations over this decade are well explained by a kinematic model in which an inflating body is present at mid-crustal depth, approximately under the Fieale caldera, and shallow faults accommodate both horizontal opening and down-dip slip. The total geometric moment rate, or inflation rate, due to the opening of the mid-crustal structure and the deeper parts of the opening faults is 3 106 m3yr. Such a

  20. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution

    Science.gov (United States)

    Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda

    2017-10-01

    We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the

  1. Changing compositions in the Iceland plume; Isotopic and elemental constraints from the Paleogene Faroe flood basalts

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    2011-01-01

    Elemental and Sr, Nd, Hf and high precision Pb isotopic data are presented from 59 low-Ti and high-Ti lavas from the syn-break up part of the Faroe Flood Basalt Province. The depleted MORB-like low-Ti lavas erupted in the rift zone between the Faroe Islands and central East Greenland around......-type component similar in geochemistry to the Icelandic Öræfajökull lavas. This component is believed to be recycled pelagic sediments in the plume but it can alternatively be a local crustal or lithospheric mantle component. The enriched Faroe high-Ti lavas erupted inland from the rift have isotopic...... compositions very similar to the enriched Icelandic neo-volcanics and these lava suites apparently share the two enriched plume end-members IE1 and IE2 (Geochim. Cosmochim. Acta 68, 2, 2004). The lack of mixing between high and low-Ti melts at the time of break up, is explained by a zoned plume where only low...

  2. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

    DEFF Research Database (Denmark)

    Artemieva, Irina; Shulgin, Alexey

    2015-01-01

    , and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday...... interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic...... rifts, and provide alternative explanations for Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia...

  3. DISTRIBUTION OF THE TEMPERATURE IN THE ASH-GAS FLOW DURING KORYAKSKY VOLCANO ERUPTION IN 2009

    Science.gov (United States)

    Gordeev, E.; Droznin, V.

    2009-12-01

    The observations of the ash-gas plumes during the Koryaksky eruption in March 2009 by the high resolution thermovision camera allowed obtaining thermal distributions inside the ash-gas flows. The plume structure is formed by single emissions. They rise at the rate of 5.5-7 m/s. The plume structure in general is represented as 3 zones: 1. a zone of high heat exchange; 2. a zone of floating up; 3. a zone of lateral movement. The plume temperature within the zone of lateral movement exceeds the atmospheric temperature by 3-5 oC, within the zone of floating up it exceeds by 20 oC. Its rate within the zone of floating up comprises 5-7 m/s. At the boundary between the zones of high heat exchange and floating up where we know the plume section, from heat balance equation we can estimate steam rate and heat power of the fluid thermal flow. Power of the overheated steam was estimated as Q=35 kg/s. It forms the ash-gas plume from the eruption and has temperature equal to 450 oC. The total volume of water steam produced during 100 days of eruption was estimated 3*105 t, its energy - 109 MJ.

  4. Sr and Nd isotope geochemistry and tectonics during subduction and rifting in Sierra Santa Ursula, Sonora, Northwestern Mexico

    International Nuclear Information System (INIS)

    Mora-Klepeis, G.

    2000-01-01

    The western margin of North America was affected by a convergent plate boundary from the Cretaceous through the Early Tertiary. Volcanic rocks produced by subduction-related arc magmatism in northwestern Mexico are concentrated in two northwest-trending belts subparallel to the continental margin. One of these is the Sierra Madre Occidental, where mid-Tertiary magmatism consisted mostly of calc-alkaline rhyolitic ignimbrite and minor andesite produced between ∼ 46 and 28 Ma (McDowell et al., 1990). The second (younger) northwest-trending belt is located along the eastern margin of the Baja California Peninsula and in the Gulf of California region of mainland Mexico. This belt is composed mostly of andesite, but includes some basalt and dacite whose ages range from about 24 to 11 Ma (Hausback, 1984). A transition to rifting began after a mid-Tertiary cessation of subduction, eventually creating the Gulf of California extensional province. Four markedly different magma types comprising mainly tholeiitic and alkalic rocks and minor calc-alkaline and peralkaline rocks were erupted throughout the last 13 Ma and record the history of rifting of the Gulf of California (Sawlan, 1991). The aim of the present paper is to distinguish the nature of the 24-8.5 Ma magmatism emplaced on the eastern side of the Gulf of California in the state of Sonora, by the use of stratigraphic, geochemical and isotopic data. Preliminary Sr and Nd results show that three groups of magmas are present in the area suggesting a heterogeneous source. This can be interpreted as the result of magmas being erupted at different stages of subduction and rifting during the tectonic evolution of this part on North America

  5. Boundary separating the seismically active reelfoot rift from the sparsely seismic Rough Creek graben, Kentucky and Illinois

    Science.gov (United States)

    Wheeler, R.L.

    1997-01-01

    The Reelfoot rift is the most active of six Iapetan rifts and grabens in central and eastern North America. In contrast, the Rough Creek graben is one of the least active, being seismically indistinguishable from the central craton of North America. Yet the rift and graben adjoin. Hazard assessment in the rift and graben would be aided by identification of a boundary between them. Changes in the strikes of single large faults, the location of a Cambrian transfer zone, and the geographic extent of alkaline igneous rocks provide three independent estimates of the location of a structural boundary between the rift and the graben. The boundary trends north-northwest through the northeastern part of the Fluorspar Area Fault Complex of Kentucky and Illinois, and has no obvious surface expression. The boundary involves the largest faults, which are the most likely to penetrate to hypocentral depths, and the boundary coincides with the geographic change from abundant seismicity in the rift to sparse seismicity in the graben. Because the structural boundary was defined by geologic variables that are expected to be causally associated with seismicity, it may continue to bound the Reelfoot rift seismicity in the future.

  6. Fracture-zone tectonics at Zabargad Island, Red Sea (Egypt)

    Science.gov (United States)

    Marshak, Stephen; Bonatti, Enrico; Brueckner, Hannes; Paulsen, Timothy

    1992-12-01

    Zabargad Island, which lies along the western margin of the Red Sea rift, is a remarkable place because it provides fresh exposures of undepleted mantle peridotite. How this peridotite came to be exposed on Zabargad remains unclear. Our field mapping indicates that most of the contacts between peridotite and the adjacent bodies of Pan-African gneiss and Cretaceous(?) Zabargad Formation on the island are now high-angle brittle faults. Zabargad Formation strata have been complexly folded, partly in response to this faulting. Overall, the array of high-angle faults and associated folds on the island resembles those found in cross-rift transfer zones. We suggest, therefore, that the Zabargad fracture zone, a band of submarine escarpments on the floor of the Red Sea north of the island, crosses Zabargad Island and has actively resolved differential movement between the central Red Sea rift and the northern Red Sea rift. The final stage of uplift that brought the unusual peridotite to the earth's surface is related to shallow crustal transpression, which may have inverted an earlier transtensional regime.

  7. Late Pleistocene surface rupture history of the Paeroa Fault, Taupo Rift, New Zealand

    International Nuclear Information System (INIS)

    Berryman, K.R.; Villamor, P.; Nairn, I.A.; Van Dissen, R.J.; Begg, J.G.; Lee, J.M.

    2008-01-01

    The 30 km long Paeroa Fault is one of the largest and fastest slipping (c. 1.5 mm/yr vertical displacement rate) normal faults of the currently active Taupo Rift of North Island, New Zealand. Along its northern section, seven trenches excavated across 5 of 11 subparallel fault strands show that successive ruptures of individual strands probably occurred at the same time, but were individually and collectively highly variable in size and recurrence, and most fault strands have ruptured three or four times in the past 16 kyr. In the c. 16 kyr timeframe, four surface-rupturing earthquakes took place when Okataina volcano was erupting, and six occurred between eruptions. Large earthquakes on the Paeroa Fault comprise a significant component of the seismic hazard in the region between the Okataina and Taupo Volcanic Centres, and there are partial associations between these large earthquakes and volcanism. (author). 36 refs., 15 figs., 2 tabs

  8. Geodynamic modelling of the rift-drift transition: Application to the Red Sea

    Science.gov (United States)

    Fierro, E.; Schettino, A.; Capitanio, F. A.; Ranalli, G.

    2017-12-01

    The onset of oceanic accretion after a rifting phase is generally accompanied by an initial fast pulse of spreading in the case of volcanic margins, such that the effective spreading rate exceeds the relative far-field velocity between the two plates for a short time interval. This pulse has been attributed to edge-driven convention (EDC), although our numerical modelling shows that the shear stress at the base of the lithosphere cannot exceed 1 MPa. In general, we have developed a 2D numerical model of the mantle instabilities during the rifting phase, in order to determine the geodynamic conditions at the rift-drift transition. The model was tested using Underworld II software, variable rheological parameters, and temperature and stress-dependent viscosity. Our results show an increase of strain rates at the top of the lithosphere with the lithosphere thickness as well as with the initial width of the margin up to 300 km. Beyond this value, the influence of the initial rift width can be neglected. An interesting outcome of the numerical model is the existence of an axial zone characterized by higher strain rates, which is flanked by two low-strain stripes. As a consequence, the model suggests the existence of an area of syn-rift compression within the rift valley. Regarding the post-rift phase, we propose that at the onset of a seafloor spreading, a phase of transient creep allows the release of the strain energy accumulated in the mantle lithosphere during the rifting phase, through anelastic relaxation. Then, the conjugated margins would be subject to post-rift contraction and eventually to tectonic inversion of the rift structures. To explore the tenability of this model, we introduce an anelastic component in the lithosphere rheology, assuming both the classical linear Kelvin-Voigt rheology and a non-linear Kelvin model. The non-linear model predicts viable relaxation times ( 1-2Myrs) to explain the post-rift tectonic inversion observed along the Arabian

  9. Periostin is an extracellular matrix protein required for eruption of incisors in mice

    International Nuclear Information System (INIS)

    Kii, Isao; Amizuka, Norio; Minqi, Li; Kitajima, Satoshi; Saga, Yumiko; Kudo, Akira

    2006-01-01

    A characteristic tooth of rodents, the incisor continuously grows throughout life by the constant formation of dentin and enamel. Continuous eruption of the incisor is accompanied with formation of shear zone, in which the periodontal ligament is remodeled. Although the shear zone plays a role in the remodeling, its molecular biological aspect is barely understood. Here, we show that periostin is essential for formation of the shear zone. Periostin -/- mice showed an eruption disturbance of incisors. Histological observation revealed that deletion of periostin led to disappearance of the shear zone. Electron microscopy revealed that the disappearance of the shear zone resulted from a failure in digestion of collagen fibers in the periostin -/- mice. Furthermore, immunohistochemical analysis using anti-periostin antibodies demonstrated the restricted localization of periostin protein in the shear zone. Periostin is an extracellular matrix protein, and immunoelectron microscopy showed a close association of periostin with collagen fibrils in vivo. These results suggest that periostin functions in the remodeling of collagen matrix in the shear zone

  10. Imaging an off-axis volcanic field in the Main Ethiopian Rift using 3-D magnetotellurics

    Science.gov (United States)

    Huebert, J.; Whaler, K. A.; Fisseha, S.; Hogg, C.

    2017-12-01

    In active continental rifts, asthenospheric upwelling and crustal thinning result in the ascent of melt through the crust to the surface. In the Main Ethiopian Rift (MER), most volcanic activity is located in magmatic segments in the rift centre, but there are areas of significant off-axis magmatism as well. The Butajira volcanic field is part of the Silti Debre Zeyt Fault (SDZF) zone in the western Main Ethiopian Rift. It is characterized by densely clustered volcanic vents (mostly scoria cones) and by limited seismic activity, which is mainly located along the big border faults that form the edge of a steep escarpment. Seismic P-Wave tomography reveals a crustal low velocity anomaly in this area. We present newly collected Magnetotelluric (MT) data to image the electrical conductivity structure of the area. We deployed 12 LMT instruments and 27 broadband stations in the western flank of the rift to further investigate the along-rift and depth extent of a highly conductive region under the SDZF which was previously identified by MT data collected on the central volcano Aluto and along a cross-rift transverse. This large conductor was interpreted as potential pathways for magma and fluid in the crust. MT Stations were positioned in five NW-SE running 50 km long profiles, covering overall 100km along the rift and providing good coverage for a 3-D inversion of the data to image this enigmatic area of the MER.

  11. [Rift Valley fever: sporadic infection of French military personnel outside currently recognized epidemic zones].

    Science.gov (United States)

    Durand, J P; Richecoeur, L; Peyrefitte, C; Boutin, J P; Davoust, B; Zeller, H; Bouloy, M; Tolou, H

    2002-01-01

    For three years the arbovirus surveillance unit of the Tropical Medicine Institute of the French Army Medical Corps (French acronym IMTSSA) in Marseille, France has been investigating causes of benign non-malarial febrile syndromes in French military personnel serving outside mainland France. The methodology used in N'Djamena consisted of sending frozen specimens collected concomitant with viremia, to Marseille for culture. During the rainy season of 2001, specimens were collected from a total of 50 febrile soldiers. Cultures allowed isolation and identification of two strains of Rift Valley virus. The risk of contamination exists not only in the field but also in mainland hospital departments treating infected patients. Routine serological diagnosis for Rift Valley fever must be DISCUSSED for all patients in the field or returning from Africa.

  12. ACADEMICIAN N.A. LOGATCHEV AND HIS SCIENTIFIC SCHOOL: CONTRUBITION TO STUDIES OF THE CENOZOIC CONTINENTAL RIFTING

    Directory of Open Access Journals (Sweden)

    Sergey V. Rasskazov

    2010-01-01

    Full Text Available N.A. Florensov and N.A. Logatchev pioneered development of fundamental concepts of the structure and evolution of the Baikal system of rift basins. At the turn to the 21st century, in view of the wide availability of scientific research data on the Cenozoic continental rift zones located in Eurasia, Africa and North America, and taking into account the application of new research methods and options to process and analyze huge amounts of geological and geophysical data, a priority was comprehensive modeling of rifting from its origin to the current period of time. This scientific challenge was addressed by the research team under the leadership of N.A. Logachev.

  13. Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen

    Science.gov (United States)

    Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.

    2013-11-01

    Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.

  14. Stress and slip partitioning during oblique rifting: comparison between data from the Main Ethiopian Rift and laboratory experiments

    Science.gov (United States)

    Corti, G.; Philippon, M.; Sani, F.; Keir, D.

    2012-04-01

    Oblique rifting in the central and northern Main Ethiopian Rift (MER) has resulted in a complex structural pattern characterized by two differently oriented fault systems: a set of NE-SW-trending boundary faults and a system of roughly NNE-SSW-oriented fault swarms affecting the rift floor (Wonji faults). Boundary faults formed oblique to the regional extension vector, likely as a result of the oblique reactivation of a pre-existing deep-seated rheological anisotropy, whereas internal Wonji faults developed sub-orthogonal to the stretching direction. Previous works have successfully reconciled this rift architecture and fault distribution with the long-term plate kinematics; however, at a more local scale, fault-slip and earthquake data reveal significant variations in the orientation the minimum principal stress and related fault-slip direction across the rift valley. Whereas fault measurements indicate a roughly N95°E extension on the axial Wonji faults, a N105°E to N110°E directed minimum principal stress is observed along boundary faults. Both fault-slip data and analysis of seismicity indicate a roughly pure dip-slip motion on the boundary faults, despite their orientation (oblique to the regional extension vector) should result in an oblique displacement. To shed light on the process driving the variability of data derived from fault-slip (and seismicity) analysis we present crustal-scale analogue models of oblique rifting, deformed in a large-capacity centrifuge by using materials and boundary conditions described in several previous modeling works. As in these previous works, the experiments show the diachronous activation of two fault systems, boundary and internal, whose pattern strikingly resemble that observed in previous lithospheric-scale modeling, as well as that described in the MER. Internal faults arrange in two different, en-echelon segments connected by a transfer zone where strike-slip displacement dominates. Whereas internal faults develop

  15. Ore-forming environment and ore-forming system of carbonaceous-siliceous-pelitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; He Zhongbo; Wang Wenquan

    2012-01-01

    It is proposed that there are four types of ore-forming systems about carbonaceous-siliceous-pelitic rock type uranium deposit in China based on systematic study on structural environment and distribution regularity of uraniferous construction of marine carbonaceous-siliceous-pelitic rock in China: continental margin rift valley ore-forming systems, continental margin rifting deep fracture zone ore-forming systems, landmass boundary borderland basin ore-forming systems and epicontinental mobile belt downfaulted aulacogen ore-forming systems. It is propounded definitely that it is controlled by margin rift valley ore-forming systems and continental margin rifting deep fracture zone ore-forming systems for large-scale uranium mineralization of carbonaceous-siliceous-pelitic rock type uranium deposit in China, which is also controlled by uraniferous marine carbonaceous-siliceous-pelitic rock construction made up of silicalite, siliceous phosphorite and carbonaceous-siliceous-pelitic rock, which settled down accompany with submarine backwash and sub marine volcanic eruption in margin rift valley and continental margin rifting mineralizing environment. Continental mar gin rift valley and continental margin rifting thermal sedimentation or exhalation sedimentation is the mechanism of forming large-scale uraniferous marine carbonaceous-siliceous-pelitic rock construction Early Palaeozoic Era in China or large-scale uranium-polymetallic mineralization. (authors)

  16. The 2011 El Hierro submarine eruption: estimation of erupted lava flow volume on the basis of helicopter thermal surveys

    Science.gov (United States)

    Hernández, P. A.; Calvari, S.; Calvo, D.; Marquez, A.; Padron, E.; Pérez, N.; Melian, G.; Padilla, G.; Barrancos, J.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Hernández, I.

    2012-04-01

    El Hierro represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. After the occurrence of more than 10,000 seismic events, volcanic tremor started at 05:15 on 10 October, followed on the afternoon of 12 October by a green discolouration of seawater, strong bubbling and degassing, and abundant bombs on a decimetre scale found floating on the ocean surface offshore, southwest of La Restinga village. The Canary Government raised the alert level from green to yellow on 10 October (3 colour basis: green, yellow, and red). Further episodes have occurred during November, December 2011 and January 2012, with turbulent water, foam rings, and volcanic material again reaching the sea surface. Colour of the discoloured area has changed frequently from light green to dark brown, depending on the eruptive activity. During the whole eruptive period, The Volcanological Institute of Canary Islands and the Helicopter Unit of the Spanish Civil Guard have carried out regularly thermal surveys with a hand held FLIR Thermal Camera P65. The images have been collected taking care of avoiding solar reflection (with cloudy weather) or at times of the day without direct sun light. Air temperature and humidity were measured with a handled thermo-hygrometer every time before the thermal image collection, and measurements were always performed at two fixed heights: 2000 and 1000 feet, and images were collected as perpendicular as possible to the surface. Together with thermal images, digital photos of the surface have

  17. Fluids circulation during the Miocene rifting of the Penedès half-graben, NE Iberian Peninsula

    Science.gov (United States)

    Baqués, Vinyet; Travé, Anna; Cantarero, Irene

    2013-04-01

    The Penedès half-graben, located in the north-western part of the Mediterranean, is a NE-SW oriented basin generated during the Miocene rifting. This graben is bounded to the northwest by the SE-dipping Vallès-Penedès fault, which places the Mesozoic rocks in contact with the Miocene basin-fill. The basin is filled with an up to 4 km thick succession of sediments divided into three lithostratigraphic units. From base to top: (1) a lower continental complex, (2) a continental to marine complex and (3) an upper continental complex. These units are covered by Pliocene deposits which onlap a Messinian regional erosive surface. The structural features within the Penedès half-graben allow defining three deformational phases during the Miocene rifting. The first, during the syn-rift, two successive stages of NE-SW normal faults were formed. The second, during the early post-rift, one stage of NE-SW normal faults and one minor compression phase with a dextral directional developed. The third, during the late post-rift, two successive stages of N-S trending extensional fractures (faults and joints) and one minor compression with a sinistral component developed. The fractures related to the syn-rift stage acted as conduits for meteoric fluids both, in the phreatic and in the vadose zone. During the early post-rift, Fe2+- rich fluids precipitated oxides along the NE-SW fault planes. The dextral directional faults served as conduits for meteoric fluids which reequilibrated totally the marine Miocene host rocks under the phreatic environment. The late post-rift stage was characterized by marine fluids upflowing through the N-S fractures, probably derived from the Miocene marine interval, which mixed with meteoric fluids producing dolomitization. The second set of N-S fractures served as conduits for meteoric fluids characterised by δ13C-depleted soil-derived CO2 attributed to precipitation in the vadose zone. The change from phreatic to vadose meteoric environment and the

  18. The Role of Rift Obliquity in Formation of the Gulf of California

    Science.gov (United States)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly

  19. A new approach to the unrest and subsequent eruption at El Hierro Island (2011) based on petrological, seismological, geodetical and gravimetric data

    Science.gov (United States)

    Meletlidis, Stavros; Di Roberto, Alessio; Domínguez Cerdeña, Itahiza; Pompilio, Massimo; García-Cañada, Laura; Bertagnini, Antonella; Benito Saz, Maria Angeles; Del Carlo, Paola; Sainz-Maza Aparicio, Sergio; Lopez Moreno, Carmen; Moure García, David

    2014-05-01

    A shallow submarine eruption took place on 10th October 2011, about 1.8 km off the coast of La Restinga, a small village located in El Hierro (Canary Islands, Spain). The eruption lasted for about four months and ended by early March 2012. The eruption was preceded by an unrest episode that initiated about three months before, in July 2011, and characterized by more than 10,000 localized earthquakes accompanied by up to 5 cm of vertical ground deformation. In the Canary Islands, this event represents the first case of an eruption that was monitored since the unrest to the end by the monitoring network of IGN (Instituto Geográfico National), providing a huge dataset that includes geophysical (seismic, magnetic and gravimetric), geodetic, geochemistry and petrological data. In this work we use the seismic, GPS and gravity records collected by IGN along with the petrological data derived from the study of various lava balloons, scoriaceous fragments and ash.Geophysical and geochemical monitoring tools provide a variety of information that need to be interpreted in terms of magma movement and/or interaction of magma with host rocks. We present a model, based on this data, which describes the intrusion and ascent of the magma. According to this model, a major intrusion beneath and around preexisting high-density magmatic bodies, localized in the central sector of the island, led to an eruption in the Southern sector of the island. After a failed attempt to reach the surface, while various dykes were emplaced, through a low fractured area in the Central and Northern parts of the island, the ascending magma finally found its way in the submarine area of La Restinga, in the South rift zone, at a depth of 350 m below sea level. Feeding of the eruption was achieved by the ascension of an important volume of material from the upper mantle which was emplaced near the crust-mantle boundary. However, the very energetic post-eruptive unrests - we had five episodes up today with

  20. Post-rift deformation of the Red Sea Arabian margin

    Science.gov (United States)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb

    2017-04-01

    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent

  1. 3D Numerical Rift Modeling with Application to the East African Rift System

    Science.gov (United States)

    Glerum, A.; Brune, S.; Naliboff, J.

    2017-12-01

    As key components of plate tectonics, continental rifting and the formation of passive margins have been extensively studied with both analogue models and numerical techniques. Only recently however, technical advances have enabled numerical investigations into rift evolution in three dimensions, as is actually required for including those processes that cause rift-parallel variability, such as structural inheritance and oblique extension (Brune 2016). We use the massively parallel finite element code ASPECT (Kronbichler et al. 2012; Heister et al. 2017) to investigate rift evolution. ASPECT's adaptive mesh refinement enables us to focus resolution on the regions of interest (i.e. the rift center), while leaving other areas such as the asthenospheric mantle at coarse resolution, leading to kilometer-scale local mesh resolution in 3D. Furthermore, we implemented plastic and viscous strain weakening of the nonlinear viscoplastic rheology required to develop asymmetric rift geometries (e.g. Huismans and Beaumont 2003). Additionally created plugins to ASPECT allow us to specify initial temperature and composition conditions based on geophysical data (e.g. LITHO1.0, Pasyanos et al. 2014) or to prescribe more general along-strike variation in the initial strain seeding the rift. Employing the above functionality, we construct regional models of the East African Rift System (EARS), the world's largest currently active rift. As the EARS is characterized by both orthogonal and oblique rift sections, multi-phase extension histories as well as magmatic and a-magmatic branches (e.g. Chorowicz 2005; Ebinger and Scholz 2011), it constitutes an extensive natural laboratory for our research into the 3D nature of continental rifting. References:Brune, S. (2016), in Plate boundaries and natural hazards, AGU Geophysical Monograph 219, J. C. Duarte and W. P. Schellart (Eds.). Chorowicz, J. (2005). J. Afr. Earth Sci., 43, 379-410. Ebinger, C. and Scholz, C. A. (2011), in Tectonics of

  2. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  3. Temperatures and Melt Water Contents at the Onset of Phenocryst Growth in Quaternary Nepheline-Normative Basalts Erupted along the Tepic-Zacoalco Rift in Western Mexico

    Science.gov (United States)

    Mesa, J.; Lange, R. A.; Pu, X.

    2017-12-01

    Nepheline-normative, high-Mg basalts erupted from the western Mexican arc, along the Tepic-Zacoalco rift (TZR), have a trace-element signature consistent with an asthenosphere source, whereas calc-alkaline basalts erupted from the central Mexican arc in the Michoacan-Guanajuato volcanic field (MGVF) have a trace-element signature consistent with a mantle source strongly affected by subduction fluids. In this study, olivine-melt thermometry and plagioclase-liquid hygrometry are used to constrain the temperature and melt water content of the alkaline TZR basalts. The presence of diffusion-limited growth textures in olivine and plagioclase phenocrysts provide preliminary evidence of rapid growth during ascent. For each basalt sample, a histogram of all analyzed olivines in each sample allows the most Fo-rich composition to be identified, which matches the calculated composition at the liquidus via MELTS (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) at fO2 values of QFM +2. Therefore a newly developed olivine-melt thermometer, based on DNiol/liq (Pu et al., 2017) was used to calculate temperature at the onset of olivine crystallization during ascent. Temperatures range from 1076-1247°C, whereas those calculated using an olivine-melt thermometer based on DMgol/liq range from 1141-1236 °C. Olivine-melt thermometers based on DMgol/liq are sensitive to melt H2O content, therefore ΔT = TMg - TNi (≤ 82 degrees) may be used as a qualitative indicator of melt H2O (≤ 2.6 wt% H2O; Pu et al., 2017). When temperatures from the Ni-thermometer are applied to the most calcic plagioclase in each sample (Waters & Lange, 2015), calculated melt H2O contents range from 1.3-1.9 (± 0.4) wt%. These values are significantly lower than those obtained from high-Mg calc-alkaline basalts from the MGVF using similar methods (1.9-5.0 wt%; Pu et al., 2017), consistent with a reduced involvement of slab-derived fluids in the origin of the alkaline TZR basalts from western Mexico.

  4. Eruptive history of Mammoth Mountain and its mafic periphery, California

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-07-13

    This report and accompanying geologic map portray the eruptive history of Mammoth Mountain and a surrounding array of contemporaneous volcanic units that erupted in its near periphery. The moderately alkaline Mammoth eruptive suite, basaltic to rhyodacitic, represents a discrete new magmatic system, less than 250,000 years old, that followed decline of the subalkaline rhyolitic system active beneath adjacent Long Valley Caldera since 2.2 Ma (Hildreth, 2004). The scattered vent array of the Mammoth system, 10 by 20 km wide, is unrelated to the rangefront fault zone, and its broad nonlinear footprint ignores both Long Valley Caldera and the younger Mono-Inyo rangefront vent alignment.

  5. Geodetic measurements and models of rifting in Northern Iceland for 1993-1998 (Invited)

    Science.gov (United States)

    Ali, T.; Feigl, K.; Thurber, C. H.; Masterlark, T.; Carr, B.; Sigmundsson, F.

    2010-12-01

    Rifting occurs as episodes of active deformation in individual rift segments of the Northern Volcanic Zone (NVZ) in Iceland. Here we simulate deformation around the Krafla central volcano and rift system in NVZ in order to explain InSAR data acquired between 1993 and 1998. The General Inversion for Phase Technique (GIPhT) is used to model the InSAR phase data directly, without unwrapping [Feigl and Thurber, Geophys. J. Int., 2009]. Using a parallel simulated annealing algorithm, GIPhT minimizes the non-linear cost function that quantifies the misfit between observed and modeled values of the phase. We test the hypothesis that the observed deformation can be explained by a combination of at least three processes including: (i) secular plate spreading, (ii) post rifting relaxation following the Krafla rifting episode (1975-1984), and (iii) deflation of a shallow magma chamber beneath the central volcano. The calibration parameters include material properties of upper/lower crust and mantle as well as flux rates for the elements of the plumbing system. The best fitting Maxwell model favors a stronger lower crust (~1.0E+20 Pa.s) and a mantle viscosity of ~1.0E+18 Pa.s as well as a shallow deflating magma chamber. The deformation appears to be linear in time over the observed interval.

  6. ODP Leg 210 Drills the Newfoundland Margin in the Newfoundland-Iberia Non-Volcanic Rift

    Science.gov (United States)

    Tucholke, B. E.; Sibuet, J.

    2003-12-01

    The final leg of the Ocean Drilling Project (Leg 210, July-September 2003) was devoted to studying the history of rifting and post-rift sedimentation in the Newfoundland-Iberia rift. For the first time, drilling was conducted in the Newfoundland Basin along a transect conjugate to previous drill sites on the Iberia margin (Legs 149 and 173) to obtain data on a complete `non-volcanic' rift system. The prime site during this leg (Site 1276) was drilled in the transition zone between known continental crust and known oceanic crust at chrons M3 and younger. Extensive geophysical work and deep-sea drilling have shown that this transition-zone crust on the conjugate Iberia margin is exhumed continental mantle that is strongly serpentinized in its upper part. Transition-zone crust on the Newfoundland side, however, is typically a kilometer or more shallower and has much smoother topography, and seismic refraction data suggest that the crust may be thin (about 4 km) oceanic crust. A major goal of Site 1276 was to investigate these differences by sampling basement and a strong, basinwide reflection (U) overlying basement. Site 1276 was cored from 800 to 1737 m below seafloor with excellent recovery (avg. 85%), bottoming in two alkaline diabase sills >10 m thick that are estimated to be 100-200 meters above basement. The sills have sedimentary contacts that show extensive hydrothermal metamorphism. Associated sediment structural features indicate that the sills were intruded at shallow levels within highly porous sediments. The upper sill likely is at the level of the U reflection, which correlates with lower Albian - uppermost Aptian(?) fine- to coarse-grained gravity-flow deposits. Overlying lower Albian to lower Oligocene sediments record paleoceanographic conditions similar to those on the Iberia margin and in the main North Atlantic basin, including deposition of `black shales'; however, they show an extensive component of gravity-flow deposits throughout.

  7. The submarine eruption of La Restinga (El Hierro, Canary Islands): October 2011-March 2012; La erupcion submarina de La Restinga en la isla de El Hierro, Canarias: Octubre 2011-Marzo 2012

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Torrado, F J; Carracedo, J C; Rodriguez-Gonzalez, A; Soler, V; Troll, V R; Wiesmaier, S

    2012-11-01

    The first signs of renewed volcanic activity at El Hierro began in July 2011 with the occurrence of abundant, low-magnitude earthquakes. The increasing seismicity culminated on October 10, 2011, with the onset of a submarine eruption about 2 km offshore from La Restinga, the southernmost village on El Hierro. The analysis of seismic and deformation records prior to, and throughout, the eruption allowed the reconstruction of its main phases: 1) ascent of magma and migration of hypo centres from beneath the northern coast (El Golfo) towards the south rift zone, close to La Restinga, probably marking the hydraulic fracturing and the opening of the eruptive conduit; and 2) onset and development of a volcanic eruption indicated by sustained and prolonged harmonic tremor whose intensity varied with time. The features monitored during the eruption include location, depth and morphological evolution of the eruptive source and emission of floating volcanic bombs. These bombs initially showed white, vesiculated cores (originated by partial melting of underlying pre-volcanic sediments upon which the island of El Hierro was constructed) and black basanite rims, and later exclusively hollow basanitic lava balloons. The eruptive products have been matched with a fissural submarine eruption without ever having attained surtseyan explosiveness. The eruption has been active for about five months and ended in March 2012, thus becoming the second longest reported historical eruption in the Canary Islands after the Timanfaya eruption in Lanzarote (1730-1736). This eruption provided the first opportunity in 40 years to manage a volcanic crisis in the Canary Islands and to assess the interpretations and decisions taken, thereby gaining experience for improved management of future volcanic activity. Seismicity and deformation during the eruption were recorded and analysed by the Instituto Geografico Nacional (IGN). Unfortunately, a lack of systematic sampling of erupted pyroclasts and

  8. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 2. Phase chemistry and crystallization history

    Science.gov (United States)

    Perfit, Michael R.; Fornari, Daniel J.

    1983-12-01

    Ti basalt liquids. The presence of partially resorbed mafic xenocrysts in some andesites, FeTi basalt inclusions in these xenocrysts, high-silica glass inclusions in basaltic andesites, and the transitional chemistry of basaltic andesites are evidence that some magma mixing occurred during crystal fractionation. The diversity of lava types recovered at single dive sites suggests that low-pressure fractional crystallization is a very efficient process beneath the eastern Galapagos rift and that isolated magma bodies must be present at shallow levels beneath the accretionary locus. Voluminous FeTi basalts erupted at the rift-transform intersection are genetically related to the rift lavas, but their restricted chemistry reflects different thermal and tectonic controls on their petrogenesis.

  9. Magma transport and storage at Kilauea volcano, Hawaii I: 1790-1952

    Science.gov (United States)

    Wright, T. L.; Klein, F.

    2011-12-01

    We trace the evolution of Kilauea from the time of the first oral records of an explosive eruption in 1790 to the long eruption in Halemaumau crater in 1952. The establishment of modern seismic and geodetic networks in the early 1960s showed that eruptions and intrusions were fed from two magma sources beneath the summit at depths of 2-6 and ~1 km respectively (sources 1 and 2), and that seaward spreading of the south flank took place on a decollement at 10-12 km depth at the base of the Kilauea edifice. A third diffuse, pressure-transmitting magma system (source 3) between the shallow East rift zone and the decollement was also identified. We test the null hypothesis that the volcano has behaved similarly throughout its lifetime, and conclude that the null hypothesis is not met for the period preceding the 1952 summit eruption because of changes in magma supply rate and differences in ground deformation patterns. The western missionaries arriving at Kilauea in 1823 were confronted with a caldera-wide lava lake. Filling rates determined by visual observation correspond to magma supply rates that averaged more than 0.3 km3/yr prior to 1840 and declined to 1894, when lava disappeared altogether at Halemaumau crater. The Hawaiian Volcano Observatory (HVO) was established by Thomas A. Jaggar in 1912 adjacent to the Volcano House Hotel on the rim of Kilauea. Instrumental observation at HVO began using a seismometer that doubled as a tiltmeter. A 1912-1924 magma supply rate of 0.024 km3/yr agreed with the rate of filling of Kilauea caldera from 1840-1894. 1924 was a critical year. An intrusion that moved down Kilauea's East rift zone beginning in February culminated beneath the lower East rift zone in April. In May, explosive eruptions accompanied a dramatic draining of Halemaumau. Triangulation results between 1912 and 1921 showed uplift extending far beyond Kilauea caldera and an equally large regional subsidence occurred between 1921 and 1927. HVO tilt narrows the

  10. Plate Speed-up and Deceleration during Continental Rifting: Insights from Global 2D Mantle Convection Models.

    Science.gov (United States)

    Brune, S.; Ulvrova, M.; Williams, S.

    2017-12-01

    The surface of the Earth is divided into a jigsaw of tectonic plates, some carrrying continents that disperse and aggregate through time, forming transient supercontinents like Pangea and Rodinia. Here, we study continental rifting using large-scale numerical simulations with self-consistent evolution of plate boundaries, where continental break-up emerges spontaneously due to slab pull, basal drag and trench suction forces.We use the StagYY convection code employing a visco-plastic rheology in a spherical annulus geometry. We consider an incompressible mantle under the Boussinesq approximation that is basally and internally heated.We show that continental separation follows a characteristic evolution with three distinctive phases: (1) A pre-rift phase that typically lasts for several hundreds of millions of years with tectonic quiescence in the suture and extensional stresses that are slowly building up. (2) A rift phase that further divides into a slow rift period of several tens of millions of years where stresses continuously increase followed by a rift acceleration period featuring an abrupt stress drop within several millions of years. The speed-up takes place before lithospheric break-up and therefore affects the structural architecture of the rifted margins. (3) The drifting phase with initially high divergence rates persists over tens of millions of years until the system adjust to new conditions and the spreading typically slows down.By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration within the second phase of rifting is compensated by enhanced convergence rates at subduction zones. This model outcome predicts enhanced subduction velocities, e.g. between North America and the Farallon plate during Central Atlantic rifting 200 My ago, or closure of potential back-arc basins such as in the proto-Andean ranges of South America

  11. Analysis of the pre-rift/rifte transition interval (Serraria and Barra de Itiuba formations) from the Sergipe-Alagoas basin; Analise da secao de transicao pre-rifte/rifte (formacoes Serraria e Barra de Itiuba) da Bacia Sergipe-Alagoas

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, C.B.; Mizusaki, A.M.P. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)]. E-mail: camilita@terra.com.br; ana.misuzaki@ufrgs.br; Garcia, A.J.V. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)]. E-mail: garcia@euler.unisinos.br

    2003-07-01

    The pre-rift/rift transition is represented by the Serraria and Barra de Itiuba formations. This interval was analyzed through qualitative and quantitative descriptions of cores, electric log analysis and studies of outcropping sections. The integration of surface and subsurface data allowed the stratigraphic characterization of sandstone bodies in the pre-rift/rift. These sandstones bodies were deposited by fluvial braided, lacustrine and deltaic systems (delta plain, delta front and pro delta). The sedimentary deposits characterized in the Serraria Formation are of channel, flooding of the fluvial system and eolic. The upper interval of this formation is characterized by to coarse medium-grained sandstones identified as the Caioba Sandstone. The Barra de Itiuba Formation contains lake, pro delta, frontal bar, distributary mouth, crevasse and distributary channel deposits. The sandstone units were specifically characterized in terms of their potential reservoir quality, and they were characterized the reservoirs R1 (good to medium quality) and Caioba (good quality) from the pre-rift phase, and reservoirs R2 (medium quality) and R3 (medium to good quality) from the rift phase. The reservoirs from pre-rift phase phase show the better reservoirs quality potential of the pre-rift/rift transition in the Sergipe-Alagoas Basin. (author)

  12. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    Science.gov (United States)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  13. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    Science.gov (United States)

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the

  14. Rift systems in the southern North Atlantic: why did some fail and others not?

    Science.gov (United States)

    Nirrengarten, M.; Manatschal, G.; Tugend, J.; Kusznir, N. J.; Sauter, D.

    2017-12-01

    Orphan, Rockall, Porcupine, Parentis and Pyrenean Basins are failed rift systems surrounding the southern North Atlantic Ocean. The failure or succeessing of a rift system is intimately linked to the question of what controls lithospheric breakup and what keeps oceanic spreading alive. Extension rates and the thermal structure are usually the main parameters invoked. However, between the rifts that succeeded and those that failed, the relative control and relative importance of these parameters is not clear. Cessation of driving forces, strain hardening or competition between concurrent rifts are hypotheses often used to explain rift failure. In this work, we aim to analyze the influence of far field forces on the abandon of rift systems in the southern North Atlantic domain using plate kinematic modeling. A new reconstruction approach that integrates the spatio-temporal evolution of rifted basins has been developed. The plate modeling is based on the definition, mapping and restoration of rift domains using 3D gravity inversions methods that provide crustal thickness maps. The kinematic description of each rift system enables us to discuss the local rift evolution relative to the far field kinematic framework. The resulting model shows a strong segmentation of the different rift systems during extreme crustal thinning that are crosscut by V-shape propagators linked to the exhumation of mantle and emplacement of first oceanic crust. The northward propagating lithospheric breakup of the southern North Atlantic may be partly triggered and channeled by extreme lithospheric thinning. However, at Aptian-Albian time, the northward propagating lithospheric breakup diverts and is partitioned along a transtensional system resulting in the abandon of the Orphan and Rockall basins. The change in the propagation direction may be related to a local strain weakening along existing/inherited transfer zones and/or, alternatively, to a more global plate reorganization. The

  15. Using Geological Implications of a Physical Libration to Constrain Enceladus' Libration State

    Science.gov (United States)

    Hurford, T. A.; Bills, B. G.; Helfenstein, P.; Greenberg, R.; Hoppa, G. V.; Hamilton, D. P.

    2009-01-01

    Observations of Enceladus' south pole revealed large rifts in the crust, called "tiger stripes", which exhibit higher temperatures than the surrounding terrain and are likely sources of observed eruptions. Tidal stress may periodically open the tiger stripe rifts, controlling the timing and location of eruptions. Moreover, shear motion along rifts may produce the heat to drive eruptions.

  16. The major tectonic boundaries of the Northern Red Sea rift, Egypt derived from geophysical data analysis

    Science.gov (United States)

    Saleh, Salah; Pamukçu, Oya; Brimich, Ladislav

    2017-09-01

    In the present study, we have attempted to map the plate boundary between Arabia and Africa at the Northern Red Sea rift region including the Suez rift, Gulf of Aqaba-Dead Sea transform and southeastern Mediterranean region by using gravity data analysis. In the boundary analysis method which was used; low-pass filtered gravity anomalies of the Northern Red Sea rift region were computed. Different crustal types and thicknesses, sediment thicknesses and different heat flow anomalies were evaluated. According to the results, there are six subzones (crustal blocks) separated from each other by tectonic plate boundaries and/or lineaments. It seems that these tectonic boundaries reveal complex structural lineaments, which are mostly influenced by a predominant set of NNW-SSE to NW-SE trending lineaments bordering the Red Sea and Suez rift regions. On the other side, the E-W and N-S to NNE-SSW trended lineaments bordering the South-eastern Mediterranean, Northern Sinai and Aqaba-Dead Sea transform regions, respectively. The analysis of the low pass filtered Bouguer anomaly maps reveals that the positive regional anomaly over both the Red Sea rift and South-eastern Mediterranean basin subzones are considered to be caused by the high density of the oceanic crust and/or the anomalous upper mantle structures beneath these regions whereas, the broad medium anomalies along the western half of Central Sinai with the Suez rift and the Eastern Desert subzones are attributed to low-density sediments of the Suez rift and/or the thick upper continental crustal thickness below these zones. There are observable negative anomalies over the Northern Arabia subzone, particularly in the areas covered by Cenozoic volcanics. These negative anomalies may be attributed to both the low densities of the surface volcanics and/or to a very thick upper continental crust. On the contrary, the negative anomaly which belongs to the Gulf of Aqaba-Dead Sea transform zone is due to crustal thickening

  17. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  18. How sedimentation affects rift segment interaction during oblique extension: a 4D analogue modelling study

    Science.gov (United States)

    Zwaan, Frank; Schreurs, Guido; Adam, Jürgen

    2017-04-01

    During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. Previous modelling of rift interaction structures has shown the dominant influence of oblique extension, promoting rift segment linkage (e.g. Zwaan et al., 2016) and eventual continent break-up (Brune et al., 2012). However, these studies did not incorporate sedimentation, which can have important implications for rift evolution (e.g. Bialas and Buck, 2009). Here we present a series of analogue model experiments investigating the influence of sedimentation on rift interaction structures under oblique extension conditions. Our set-up involves a base of compressed foam and plexiglass that forces distributed extension in the overlying analogue materials when the model sidewalls move apart. A sand layer simulates the brittle upper crust and a viscous sand/silicone mixture the ductile lower crust. One of the underlying base plates can move laterally allowing oblique extension. Right-stepping offset and disconnected lines of silicone (seeds) on top of the basal viscous serve as inherited structures since the strong sand cover is locally thinner. We apply syn-rift sediments by filling in the developing rift and transfer zone basins with sand at fixed time steps. Models are run either with sedimentation or without to allow comparison. The first results suggest that the gross structures are similar with or without sedimentation. As seen by Zwaan et al. (2016), dextral oblique extension promotes rift linkage because rift propagation aligns itself perpendicular to the extension direction. This causes the rift segments to grow towards each other and to establish a continuous rift structure. However, the structures within the rift segments show quite different behaviour when sedimentation is applied. The extra sediment loading in the rift basin

  19. A Comparative Study of the Eruptive and Non-eruptive Flares Produced by the Largest Active Region of Solar Cycle 24

    Science.gov (United States)

    Sarkar, Ranadeep; Srivastava, Nandita

    2018-02-01

    We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.

  20. Russian eruption warning systems for aviation

    Science.gov (United States)

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  1. Tidal Control of Jet Eruptions Observed by Cassini ISS

    Science.gov (United States)

    Hurford, T. A.; Helfenstein, P.; Spitale, J. N.

    2012-01-01

    Observations by Cassini's Imaging Science Subsystem (ISS) of Enceladus' south polar region at high phase angles has revealed jets of material venting into space. Observations by Cassini's Composite Infrared Spectrometer (CIRS) have also shown that the south polar region is anomalously warm with hotspots associated with geological features called the Tiger Stripes. The Tiger Stripes are large rifts near the south pole of Enceladus, which are typically about 130 km in length, 2 km wide, with a trough 500 m deep, and are l1anked on each side by 100m tall ridges. Preliminary triangulation of jets as viewed at different times and with different viewing geometries in Cassini ISS images taken between 2005 and 2007 have constrained the locations of eight major eruptions of material and found all of them associated with the south polar fractures unofficially the 'Tiger Stripes', and found four of them coincident with the hotspots reported in 2006 by CIRS. While published ISS observations of jet activity suggest that individual eruption sites stay active on the timescale of years, any shorter temporal variability (on timescales of an orbital period, or 1.3 Earth days, for example) is more difficult to establish because of the spotty temporal coverage and the difficulty of visually isolating one jet from the forest of many seen in a typical image. Consequently, it is not known whether individual jets are continuously active, randomly active, or if they erupt on a predictable, periodic schedule. One mechanism that may control the timing of eruptions is diurnal tidal stress, which oscillates between compression/tension as well as right and left lateral shear at any given location throughout Enceladus' orbit and may allow the cracks to open and close regularly. We examine the stresses on the Tiger Stripe regions to see how well diurnal tidal stress caused by Enceladus' orbital eccentricity may possibly correlate with and thus control the observed eruptions. We then identify

  2. Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes

    Science.gov (United States)

    Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.

  3. Rifts of deeply eroded Hawaiian basaltic shields: a structural analog for large Martian volcanoes

    International Nuclear Information System (INIS)

    Knight, M.D.; Walker, G.P.L.; Mouginis-Mark, P.J.; Rowland, S.K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars

  4. Continental rift architecture and patterns of magma migration: a dynamic analysis based on centrifuge models.

    NARCIS (Netherlands)

    Corti, G.; Bonini, M.; Sokoutis, D.; Innocenti, F.; Manetti, P.; Cloetingh, S.A.P.L.; Mulugeta, G.

    2004-01-01

    Small-scale centrifuge models were used to investigate the role of continental rift structure in controlling patterns of magma migration and emplacement. Experiments considered the reactivation of weakness zones in the lower crust and the presence of magma at Moho depths. Results suggest that

  5. Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea's caldera in about 1500 CE

    Science.gov (United States)

    Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.

    2012-01-01

    The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanak

  6. Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea's caldera in about 1500 CE

    Science.gov (United States)

    Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.

    2012-01-01

    The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanak

  7. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  8. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    Science.gov (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  9. Rayleigh Wave Phase Velocities Beneath the Central and Southern East African Rift System

    Science.gov (United States)

    Adams, A. N.; Miller, J. C.

    2017-12-01

    This study uses the Automated Generalized Seismological Data Function (AGSDF) method to develop a model of Rayleigh wave phase velocities in the central and southern portions of the East African Rift System (EARS). These phase velocity models at periods of 20-100s lend insight into the lithospheric structures associated with surficial rifting and volcanism, as well as basement structures that pre-date and affect the course of rifting. A large dataset of >700 earthquakes is used, comprised of Mw=6.0+ events that occurred between the years 1995 and 2016. These events were recorded by a composite array of 176 stations from twelve non-contemporaneous seismic networks, each with a distinctive array geometry and station spacing. Several first-order features are resolved in this phase velocity model, confirming findings from previous studies. (1) Low velocities are observed in isolated regions along the Western Rift Branch and across the Eastern Rift Branch, corresponding to areas of active volcanism. (2) Two linear low velocity zones are imaged trending southeast and southwest from the Eastern Rift Branch in Tanzania, corresponding with areas of seismic activity and indicating possible incipient rifting. (3) High velocity regions are observed beneath both the Tanzania Craton and the Bangweulu Block. Furthermore, this model indicates several new findings. (1) High velocities beneath the Bangweulu Block extend to longer periods than those found beneath the Tanzania Craton, perhaps indicating that rifting processes have not altered the Bangweulu Block as extensively as the Tanzania Craton. (2) At long periods, the fast velocities beneath the Bangweulu Block extend eastwards beyond the surficial boundaries, to and possibly across the Malawi Rift. This may suggest the presence of older, thick blocks of lithosphere in regions where they are not exposed at the surface. (3) Finally, while the findings of this study correspond well with previous studies in regions of overlapping

  10. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magmatic Rifts

    Science.gov (United States)

    Siler, D. L.; Karson, J. A.

    2017-10-01

    Magmatic rift systems are composed of discrete spreading segments defined by morphologic, structural, and volcanic features that vary systematically along strike. In Iceland, structural features mapped in the glaciated and exhumed Miocene age upper crust correlate with analogous features in the seismically and volcanically active neovolcanic zone. Integrating information from both the active rift zones and ancient crust provides a three-dimensional perspective of crustal structure and the volcanic and tectonic processes that construct crust along spreading segments. Crustal exposures in the Skagi region of northern Iceland reveal significant along-strike variations in geologic structure. The upper crust at exhumed magmatic centers (segment centers) is characterized by a variety of intrusive rocks, high-temperature hydrothermal alteration, and geologic evidence for kilometer-scale subsidence. In contrast, the upper crust along segment limbs, which extend along strike from magmatic centers, is characterized by thick sections of gently dipping lava flows, cut by varying proportions of subvertical dikes. This structure implies relatively minor upper crustal subsidence and lateral dike intrusion. The differing modes of subsidence beneath segment centers and segment limbs require along-axis mass redistribution in the underlying upper, middle, and lower crust during crustal construction. This along-axis material transport is accomplished through lateral dike intrusion in the upper crust and by along-axis flow of magmatic to high-temperature solid-state gabbroic material in the middle and lower crust. These processes, inferred from outcrop evidence in Skagi, are consistent with processes inferred to be important during active rifting in Iceland and at analogous magmatic oceanic and continental rifts.

  11. Precursory diffuse CO2 emission signature of the 2011 El Hierro submarine eruption, Canary Islands

    Science.gov (United States)

    Pérez, N. M.; Padilla, G. D.; Padrón, E.; Hernández, P. A.; Melián, G. V.; Barrancos, J.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Calvo, D.; Hernández, I.; Peraza, M. D.

    2012-04-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since 16 July, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 on 10 October, followed on the afternoon of 12 October by a green discolouration of seawater, strong bubbling and degassing, and abundant bombs on a decimetre scale found floating on the ocean surface offshore, southwest of La Restinga village, indicating the occurrence of a submarine volcanic eruption at approximately 2 km far the coast line of La Restinga. Further episodes have occurred during November, December 2011 and January 2012, with turbulent water, foam rings, and volcanic material again reaching the sea surface. In order to improve the volcanic surveillance program of El Hierro Island and to provide a multidisciplinary approach, a continuous geochemical station to measure CO2 efflux was installed on September 2003 in Llanos de Guillen, the interception center of the three volcanic-rift zones of the island, with the aim of detecting changes in the diffuse emission of CO2 related to the seismic or volcanic activity. The station measures on an hourly basis the CO2 and H2S efflux, the CO2 and H2S air concentrations, the soil water content and temperature and the atmospheric parameters: wind speed and direction, air temperature and humidity and barometric pressure. The meteorological parameters together with the air CO2 concentration are measured 1 m above the ground and the soil water content and soil temperature

  12. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    Science.gov (United States)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  13. Zoning and exsolution in cumulate alkali feldspars from the eruption (12.9 Ka) of Laacher see volcano (Western Germany) as an indicator of time-scales and dynamics of carbonate-silicate unmixing

    Science.gov (United States)

    Sourav Rout, Smruti; Wörner, Gerhard

    2017-04-01

    Time-scales extracted from the detailed analysis of chemically zoned minerals provide insights into crystal ages, magma storage and compositional evolution, including mixing and unmixing events. This allows having a better understanding of pre-eruptive history of large and potentially dangerous magma chambers. We present a comprehensive study of chemical diffusion across zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) eruption 12.9 ka ago. The Laacher See volcano is located in the Quaternary East Eifel volcanic field of the Paleozoic Rhenish Massif in Western Germany and has produced a compositionally variable sequence in a single eruption from a magma chamber that was zoned from mafic phonolite at the base to highly evolved, actively degassing phonolite magma at the top. Diffusion chronometry is applied to major and trace element compositions obtained on alkali feldspars from carbonate-bearing syenitic cumulates. Methods used were laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) in combination with energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS & WDS-EMPA). The grey scale values extracted from multiple accumulations of back-scattered electron images represent the K/Na ratio owing to the extremely low concentrations of Ba and Sr (transition and phase separation). A distinctive uphill diffusive analysis is used specifically for the phase separation in the case of exsolution features (comprising of albite- and orthoclase-rich phases) in sanidines. The error values are aggregates of propagated error through calculations and the uncertainty in temperature values. Trace element compositional data of distinct feldspar compositions that are assumed to have grown before and after silicate-carbonate unmixing are used to estimate partition coefficients between carbonate and silicate melt. The resulting values correlate

  14. Venus - Limited extension and volcanism along zones of lithospheric weakness

    Science.gov (United States)

    Schaber, G. G.

    1982-01-01

    Three global-scale zones of possible tectonic origin are described as occurring along broad, low rises within the Equatorial Highlands on Venus (lat 50 deg N to 50 deg S, long 60 deg to 310 deg). The two longest of these tectonic zones, the Aphrodite-Beta and Themis-Atla zones, extend for 21,000 and 14,000 km, respectively. Several lines of evidence indicate that Beta and Atla Regiones, located at the only two intersections of the three major tectonic zones, are dynamically supported volcanic terranes associated with currently active volcanism. Rift valleys south of Aphrodite Terra and between Beta and Phoebe Regiones are characterized by 75- to 100-km widths, raised rims, and extensions of only a few tens of kilometers, about the same magnitudes as in continental rifts on the earth. Horizontal extension on Venus was probably restricted by an early choking-off of plate motion by high crustal and upper-mantle temperatures, and the subsequent loss of water and an asthenosphere.

  15. Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift

    Energy Technology Data Exchange (ETDEWEB)

    Abiye, Tamiru A. [School of Geosciences, Faculty of Science, University of the Witwatersrand, Private Bag X3, P.O. Box Wits, 2050 Johannesburg (South Africa); Tigistu Haile [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2008-12-15

    The Boku central volcano is located within the axial zone of the Central Ethiopian Rift near the town of Nazareth, Ethiopia. An integrated geophysical survey involving thermal, magnetic, electrical and gravimetric methods has been carried out over the Boku geothermal area in order to understand the circulation of fluids in the subsurface, and to localize the 'hot spot' providing heat to the downward migrating groundwaters before they return to the surface. The aim of the investigations was to reconstruct the geometry of the aquifers and the fluid flow paths in the Boku geothermal system, the country's least studied. Geological studies show that it taps heat from the shallow acidic Quaternary volcanic rocks of the Rift floor. The aquifer system is hosted in Quaternary Rift floor ignimbrites that are intensively fractured and receive regional meteoric water recharge from the adjacent escarpment and locally from precipitation and the Awash River. Geophysical surveys have mapped Quaternary faults that are the major geologic structures that allow the ascent of the hotter fluids towards the surface, as well as the cold-water recharge of the geothermal system. The shallow aquifers are mapped, preferred borehole sites for the extraction of thermal fluids are delineated and the depths to deeper thermal aquifers are estimated. (author)

  16. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    Science.gov (United States)

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  17. Complexities in Shallow Magma Transport at Kilauea (Invited)

    Science.gov (United States)

    Swanson, D. A.

    2013-12-01

    The standard model of Kilauea's shallow plumbing system includes magma storage under the caldera and conduits in the southwest rift zone (SWRZ) and the east rift zone (ERZ). As a field geologist, I find that seemingly aberrant locations and trends of some eruptive vents indicate complexities in shallow magma transport not addressed by the standard model. This model is not wrong but instead incomplete, because it does not account for the development of offshoots from the main plumbing. These offshoots supply magma to the surface at places that tell us much about the complicated stress system within the volcano. Perhaps most readily grasped are fissures peripheral to the north and south sides of the caldera. Somehow magma can apparently be injected into caldera-bounding faults from the summit reservoir complex, but the process and pathways are unclear. Of more importance is the presence of fissures with ENE trends on the east side of the caldera, including Kilauea Iki. Is this a rift zone that forms an acute angle with the ERZ? I think there is another explanation: the main part of the ERZ has migrated ~5 km SSE during the past few tens of thousands of years owing to seaward movement of the south flank, but older parts of the rift zone can be reactivated. The fissures east of the caldera have the ERZ trend and may record such reactivation; this interpretation includes the location of the largest eruption (15th century) known from Kilauea. Whether or not this interpretation has validity, the question remains: what changes in the plumbing system allow magma to erupt east of the caldera? The SWRZ can be divided into two sections, the SWRZ proper and the seismically active part (SASWRZ) southeast of the SWRZ. The total width of both sections is ~4 km. The SWRZ might be migrating SSE, as is the ERZ. Fissures in the SWRZ proper trend SW. Fissures in the SASWRZ, however, have ENE trends like that of the ERZ, although, because of en echelon offsets, the fissure zone itself

  18. Fluid flow and permeabilities in basement fault zones

    Science.gov (United States)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  19. Comparative Riftology: Insights into the Evolution of Passive Continental Margins and Continental Rifts from the Failed Midcontinent Rift (MCR)

    Science.gov (United States)

    Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.

    2017-12-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed

  20. The temporal and spatial distribution of upper crustal faulting and magmatism in the south Lake Turkana rift, East Africa

    Science.gov (United States)

    Muirhead, J.; Scholz, C. A.

    2017-12-01

    During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper

  1. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta

    2011-01-01

    Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.

  2. Melt inclusion constraints on petrogenesis of the 2014-2015 Holuhraun eruption, Iceland

    Science.gov (United States)

    Hartley, Margaret E.; Bali, Enikö; Maclennan, John; Neave, David A.; Halldórsson, Sæmundur A.

    2018-02-01

    The 2014-2015 Holuhraun eruption, on the Bárðarbunga volcanic system in central Iceland, was one of the best-monitored basaltic fissure eruptions that has ever occurred, and presents a unique opportunity to link petrological and geochemical data with geophysical observations during a major rifting episode. We present major and trace element analyses of melt inclusions and matrix glasses from a suite of ten samples collected over the course of the Holuhraun eruption. The diversity of trace element ratios such as La/Yb in Holuhraun melt inclusions reveals that the magma evolved via concurrent mixing and crystallization of diverse primary melts in the mid-crust. Using olivine-plagioclase-augite-melt (OPAM) barometry, we calculate that the Holuhraun carrier melt equilibrated at 2.1 ± 0.7 kbar (7.5 ± 2.5 km), which is in agreement with the depths of earthquakes (6 ± 1 km) between Bárðarbunga central volcano and the eruption site in the days preceding eruption onset. Using the same approach, melt inclusions equilibrated at pressures between 0.5 and 8.0 kbar, with the most probable pressure being 3.2 kbar. Diffusion chronometry reveals minimum residence timescales of 1-12 days for melt inclusion-bearing macrocrysts in the Holuhraun carrier melt. By combining timescales of diffusive dehydration of melt inclusions with the calculated pressure of H2O saturation for the Holuhraun magma, we calculate indicative magma ascent rates of 0.12-0.29 m s-1. Our petrological and geochemical data are consistent with lateral magma transport from Bárðarbunga volcano to the eruption site in a shallow- to mid-crustal dyke, as has been suggested on the basis of seismic and geodetic datasets. This result is a significant step forward in reconciling petrological and geophysical interpretations of magma transport during volcano-tectonic episodes, and provides a critical framework for the interpretation of premonitory seismic and geodetic data in volcanically active regions.

  3. Diverse, discrete, mantle-derived batches of basalt erupted along a short normal fault zone: The Poison Lake chain, southernmost Cascades

    Science.gov (United States)

    Muffler, L.J.P.; Clynne, M.A.; Calvert, A.T.; Champion, D.E.

    2011-01-01

    The Poison Lake chain consists of small, monogenetic, calc-alkaline basaltic volcanoes located east of the Cascade arc axis, 30 km ENE of Lassen Peak in northeastern California. This chain consists of 39 distinguishable units in a 14-km-long and 2-kmwide zone trending NNW, parallel to nearby Quaternary normal faults. The 39 units fall into nine coherent groups based on stratigraphy, field characteristics, petrography, and major-element compositions. Petrographic differences among groups are expressed by different amounts and proportions of phenocrysts. MgO-SiO 2, K 2O-SiO 2, and TiO 2-SiO 2 variation diagrams illustrate clear differences in compatible and incompatible elements among the groups. Variation of K 2O/ TiO 2 and K 2O/P 2O 5 with MgO indicates that most of the basalts of the Poison Lake chain cannot be related by crystal fractionation at different pressures and that compositions have not been affected significantly by incorporation of low-degree silicic crustal melt or interaction with sialic crust. Limited traceelement and whole-rock isotopic data also suggest little if any incorporation of uppercrustal material, and that compositional variation among groups primarily reflects source compositional differences. Precise 40Ar/ 39Ar determinations show that the lavas were erupted between 100 and 110 ka. The migration of paleomagnetic remanent directions over 30?? suggests that the entire Poison Lake chain could represent three short-lived episodes of volcanism within a period as brief as 500 yr. The diverse geologic, petrographic, chemical, paleomagnetic, and age data indicate that each of the nine groups represents a small, discrete magma batch generated in the mantle and stored briefly in the lower crust. A NNW normal fault zone provided episodic conduits that allowed rapid ascent of these batches to the surface, where they erupted as distinct volcanic groups, each aligned along a segment of the Poison Lake chain. Compositional diversity of these primitive

  4. The 2007-8 volcanic eruption on Jebel at Tair island (Red Sea) observed by satellite radar and optical images

    KAUST Repository

    Xu, Wenbin; Jonsson, Sigurjon

    2014-01-01

    We use high-resolution optical images and Interferometric Synthetic Aperture Radar (InSAR) data to study the September 2007-January 2008 Jebel at Tair eruption. Comparison of pre- and post-eruption optical images reveals several fresh ground fissures, a new scoria cone near the summit, and that 5.9 ± 0.1 km2 of new lava covered about half of the island. Decorrelation in the InSAR images indicates that lava flowed both to the western and to the northeastern part of the island after the start of the eruption, while later lavas were mainly deposited near the summit and onto the north flank of the volcano. From the InSAR data, we also estimate that the average thickness of the lava flows is 3.8 m, resulting in a bulk volume of around 2.2 × 107 m3. We observe no volcano-wide pre- or post-eruption uplift, which suggests that the magma source may be deep. The co-eruption interferograms, on the other hand, reveal local and rather complex deformation. We use these observations to constrain a tensile dislocation model that represents the dike intrusion that fed the eruption. The model results show that the orientation of the dike is perpendicular to the Red Sea rift, implying that the local stresses within the volcanic edifice are decoupled from the regional stress field. © 2014 Springer-Verlag Berlin Heidelberg.

  5. The 2007-8 volcanic eruption on Jebel at Tair island (Red Sea) observed by satellite radar and optical images

    KAUST Repository

    Xu, Wenbin

    2014-01-31

    We use high-resolution optical images and Interferometric Synthetic Aperture Radar (InSAR) data to study the September 2007-January 2008 Jebel at Tair eruption. Comparison of pre- and post-eruption optical images reveals several fresh ground fissures, a new scoria cone near the summit, and that 5.9 ± 0.1 km2 of new lava covered about half of the island. Decorrelation in the InSAR images indicates that lava flowed both to the western and to the northeastern part of the island after the start of the eruption, while later lavas were mainly deposited near the summit and onto the north flank of the volcano. From the InSAR data, we also estimate that the average thickness of the lava flows is 3.8 m, resulting in a bulk volume of around 2.2 × 107 m3. We observe no volcano-wide pre- or post-eruption uplift, which suggests that the magma source may be deep. The co-eruption interferograms, on the other hand, reveal local and rather complex deformation. We use these observations to constrain a tensile dislocation model that represents the dike intrusion that fed the eruption. The model results show that the orientation of the dike is perpendicular to the Red Sea rift, implying that the local stresses within the volcanic edifice are decoupled from the regional stress field. © 2014 Springer-Verlag Berlin Heidelberg.

  6. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    Science.gov (United States)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  7. Fault zone architecture within Miocene–Pliocene syn-rift sediments ...

    Indian Academy of Sciences (India)

    The present study focusses on field description of small normal fault zones in Upper Miocene–Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW–SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE–SW.

  8. Yield gaps and resource use across farming zones in the central rift valley of Ethiopia

    NARCIS (Netherlands)

    Getnet, Mezegebu; Ittersum, van Martin; Hengsdijk, Huib; Descheemaeker, Katrien

    2016-01-01

    In the Central Rift Valley (CRV) of Ethiopia, low productive cereal systems and a declining resource base call for options to increase crop productivity and improve resource use efficiency to meet the growing demand of food. We compiled and analysed a large amount of data from farmers’ fields

  9. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    Science.gov (United States)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  10. Sulfur Dioxide Emission Rates of Kilauea Volcano, Hawaii, 1979-1997

    Science.gov (United States)

    Elias, Tamar; Sutton, A.J.; Stokes, J.B.; Casadevall, T.J.

    1998-01-01

    INTRODUCTION Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Casadevall and others, 1987; Greenland and others, 1985; Elias and others, 1993; Elias and Sutton, 1996). The purpose of this report is to present a compilation of Kilauea SO2 emission rate data from 1979 through 1997 with ancillary meteorological data (wind speed and wind direction). We have included measurements previously reported by Casadevall and others (1987) for completeness and to improve the usefulness of this current database compilation. Kilauea releases SO2 gas predominantly from its summit caldera and rift zones (fig. 1). From 1979 through 1982, vehicle-based COSPEC measurements made within the summit caldera were adequate to quantify most of the SO2 emitted from the volcano. Beginning in 1983. the focus of SO2 release shifted from the summit to the east rift zone (ERZ) eruption site at Pu'u 'O'o and, later, Kupaianaha. Since 1984, the Kilauea gas measurement effort has been augmented with intermittent airborne and tripod-based surveys made near the ERZ eruption site. In addition, beginning in 1992 vehicle-based measurements have been made along a section of Chain of Craters Road approximately 9 km downwind of the eruption site. These several types of COSPEC measurements continue to the present.

  11. Contrasted continental rifting via plume-craton interaction : Applications to Central East African Rift

    NARCIS (Netherlands)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the

  12. Nuclear free zone

    International Nuclear Information System (INIS)

    Christoffel, T.

    1987-01-01

    Health professionals have played a leading role in alerting and educating the public regarding the danger of nuclear war which has been described as the last epidemic our civilization will know. Having convinced most people that the use of nuclear weapons would mean intolerable consequences, groups such as Physicians for Social Responsibility have focused on the second critical question how likely is it that these weapons will be used? The oultlook is grim. This article describes the nuclear free zone movement, explores relevant legal questions, and shows how the political potential of nuclear free zones threatens to open a deep rift in the American constitutional system

  13. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  14. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  15. Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa

    Science.gov (United States)

    Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.

    2016-12-01

    Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that

  16. Volcanic geothermal system in the Main Ethiopian Rift: insights from 3D MT finite-element inversion and other exploration methods

    Science.gov (United States)

    Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.

    2017-12-01

    In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.

  17. Petrologic characteristics of the 1982 and pre-1982 eruptive products of El Chichon volcano, Chiapas, Mexico.

    Science.gov (United States)

    McGee, J.J.; Tilling, R.I.; Duffield, W.A.

    1987-01-01

    Studies on a suite of rocks from this volcano indicate that the juvenile materials of the 1982 and pre-1982 eruptions of the volcano have essentially the same mineralogy and chemistry. Data suggest that chemical composition changed little over the 0.3 m.y. sample period. Modally, plagioclase is the dominant phenocryst, followed by amphibole, clinopyroxene and minor phases including anhydrite. Plagioclase phenocrysts show complex zoning: the anorthite-rich zones are probably the result of changing volatile P on the magma and may reflect the changes in the volcano's magma reservoir in response to repetitive, explosive eruptive activity.-R.E.S.

  18. Using quartz and plagioclase to gain insight into chemical and thermal evolution of the Rotoiti magma prior to the caldera-forming eruption {+-}55 ka, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Victoria [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen' s Road, Bristol BS8 1RJ (United Kingdom); Shane, Phil [School of Geography, Geology and Environmental Science, University of Auckland, Private Bag 92019, Auckland (New Zealand); Nairn, Ian [45 Summit Road, Rotorua RD5, New Zealand and GNS Science, Wairakei Research Centre, Taupo (New Zealand)], E-mail: Victoria.Smith@bristol.ac.uk

    2008-10-01

    The zoned plagioclase and quartz crystals within the multiple magmas that erupted during the {approx}55 ka Rotoiti caldera forming eruption appear to have had complex thermal and compositional histories. Compositional zoning suggests that magmatic systems were open, and received multiple pulses of hotter and more mafic magma. Limited diffusion across the crystals indicates that crystals did not dwell at magmatic temperatures for prolonged periods (<100 years), and suggest that the melts were generated and erupted quickly.

  19. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    Science.gov (United States)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  20. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    Science.gov (United States)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be

  1. Along strike behavior of the Tizi n' Firest fault during the Lower Jurassic rifting (Central High Atlas Carbonate basin, Morocco)

    Science.gov (United States)

    Sarih, S.; Quiquerez, A.; Allemand, P.; Garcia, J. P.; El Hariri, K.

    2018-03-01

    The purpose of this study is to document the along-strike early syn-rift history of the Lower Jurassic Carbonate basin of the Central High Atlas (Morocco) by combining sedimentological observations and high-resolution biostratigraphy. Six sections, each from the Sinemurian to the Upper Pliensbachian, were investigated along a 75 km-long transect at the hanging wall of a major fault of the Lower Jurassic Basin (i.e. the Tizi n' Firest fault). Depositional geometries of the early syn-rift deposits were reconstructed from the correlation between eight main timelines dated by biochronological markers for a time span covering about 6 Ma. Depocentre migration was examined and accommodation rates were calculated at the sub-zone timescale to discuss the along-strike-fault behavior of the Lower Jurassic basin formation. The early stages of extension are marked by contrasted along-strike variations in depositional geometry thickness, depocentre migration and accommodation rates, leading to the growth of three independent sub-basins (i.e. western, central, and eastern), ranging in size from 30 to 50 km, and displaying three contrasted tectono-sedimentary histories. Our results suggest that, during the early rifting phase, tectonic activity was not a continuous and progressive process evolving towards a rift climax stage, but rather a series of acceleration periods that alternated with periods of much reduced activity. The length of active fault segments is estimated at about 15-20 km, with a lifespan of a few ammonite sub-zones (> 2-3 Ma).

  2. Worldwide environmental impacts from the eruption of Thera

    Science.gov (United States)

    Lamoreaux, P. E.

    1995-10-01

    The eruptions of Thera (Santorini) between 1628 and 1450 BC constituted a natural catastrophe unparalleled in all of history. The last major eruption in 1450 BC destroyed the entire Minoan Fleet at Crete at a time when the Minoans dominated the Mediterranean world. In addition, there had to be massive loss of life from ejecta gases, volcanic ash, bombs, and flows. The collapse of a majestic mountain into a caldera 15 km in diameter caused a giant ocean wave, a tsunami, that at its source was estimated in excess of 46 m high. The tsunami destroyed ships as far away as Crete (105 km) and killed thousands of people along the shorelines in the eastern Mediterranean area. At distant points in Asia Minor and Africa, there was darkness from ash fallout, lightning, and destructive earthquakes. Earthquake waves emanating from the epicenter near the ancient volcano were felt as far away as the Norwegian countries. These disturbances caused great physical damage in the eastern Mediterranean and along the rift valley system from Turkey to the south into central Africa. They caused major damage and fires in north Africa from Sinai to Alexandria, Egypt. Volcanic ash spread upward as a pillar of fire and clouds into the atmosphere and blocked out the sun for many days. The ash reached the stratosphere and moved around the world where the associated gases and fine particulate matter impacted the atmosphere, soils, and waters. Ground-hugging, billowing gases moved along the water surface and destroyed all life downwind, probably killing those who attempted to flee from Thera. The deadly gases probably reached the shores of north Africa. Climatic changes were the aftermath of the eruption and the atmospheric plume was to eventually affect the bristlecone pine of California; the bog oaks of Ireland, England, and Germany, and the grain crops of China. Historical eruptions at Krakatau, Tambora, Vesuvius, and, more currently, eruptions at Nevado del Ruiz, Pinatubo, and Mount Saint

  3. A joint inversion for shear velocity and anisotropy: the Woodlark Rift, Papua New Guinea

    Science.gov (United States)

    Eilon, Zachary; Abers, Geoffrey A.; Gaherty, James B.

    2016-08-01

    Trade-offs between velocity and anisotropy heterogeneity complicate the interpretation of differential traveltime data and have the potential to bias isotropic tomographic models. By constructing a simple parametrisation to describe an elastic tensor with hexagonal symmetry, we find analytic solutions to the Christoffel equations in terms of fast and slow horizontal velocities that allow us to simultaneously invert differential traveltime data and splitting data from teleseismic S arrivals to recover 3-D velocity and anisotropy structure. This technique provides a constraint on the depth-extent of shallow anisotropy, otherwise absent from interpretations based on SKS splitting alone. This approach is well suited to the young Woodlark Rift, where previous studies have found strong velocity variation and substantial SKS splitting in a continental rift with relatively simple geometry. This study images a low-velocity rift axis with ≤4 per cent spreading-parallel anisotropy at 50-100 km depth that separates regions of pre-existing lithospheric fabric, indicating the synchronous development of extensional crystallographic preferred orientation and lithospheric thinning. A high-velocity slab fragment north of the rift axis is associated with strike-parallel anisotropic fast axes, similar to that seen in the shallow mantle of some subduction zones. In addition to the insights provided by the anisotropy structure, the improvement in fit to the differential traveltime data demonstrates the merit to a joint inversion that accounts for anisotropy.

  4. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    Science.gov (United States)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  5. Using quartz and plagioclase to gain insight into chemical and thermal evolution of the Rotoiti magma prior to the caldera-forming eruption ±55 ka, New Zealand

    International Nuclear Information System (INIS)

    Smith, Victoria; Shane, Phil; Nairn, Ian

    2008-01-01

    The zoned plagioclase and quartz crystals within the multiple magmas that erupted during the ∼55 ka Rotoiti caldera forming eruption appear to have had complex thermal and compositional histories. Compositional zoning suggests that magmatic systems were open, and received multiple pulses of hotter and more mafic magma. Limited diffusion across the crystals indicates that crystals did not dwell at magmatic temperatures for prolonged periods (<100 years), and suggest that the melts were generated and erupted quickly.

  6. Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression

    Science.gov (United States)

    Brune, Sascha; Corti, Giacomo; Ranalli, Giorgio

    2017-09-01

    Inherited rheological structures in the lithosphere are expected to have large impact on the architecture of continental rifts. The Turkana depression in the East African Rift connects the Main Ethiopian Rift to the north with the Kenya rift in the south. This region is characterized by a NW-SE trending band of thinned crust inherited from a Mesozoic rifting event, which is cutting the present-day N-S rift trend at high angle. In striking contrast to the narrow rifts in Ethiopia and Kenya, extension in the Turkana region is accommodated in subparallel deformation domains that are laterally distributed over several hundred kilometers. We present both analog experiments and numerical models that reproduce the along-axis transition from narrow rifting in Ethiopia and Kenya to a distributed deformation within the Turkana depression. Similarly to natural observations, our models show that the Ethiopian and Kenyan rifts bend away from each other within the Turkana region, thus forming a right-lateral step over and avoiding a direct link to form a continuous N-S depression. The models reveal five potential types of rift linkage across the preexisting basin: three types where rifts bend away from the inherited structure connecting via a (1) wide or (2) narrow rift or by (3) forming a rotating microplate, (4) a type where rifts bend towards it, and (5) straight rift linkage. The fact that linkage type 1 is realized in the Turkana region provides new insights on the rheological configuration of the Mesozoic rift system at the onset of the recent rift episode.

  7. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    Science.gov (United States)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  8. Proterozoic rifting and major unconformities in Rajasthan, and their implications for uranium mineralisation

    International Nuclear Information System (INIS)

    Sinha-Roy, S.

    2004-01-01

    Evolution of the Precambrian terrain in Rajasthan has taken place via crustal consolidation of the basement at ca. 2.9 Ga, its cratonisation at ca. 2.5 Ga, through protracted tectonostratigraphic evolution of the Proterozoic cover sequences, following repeated rifting and Wilson cycles in the Aravalli and Delhi foldbelts. Consequently, the Proterozoic rift basins are characterised by growth faults and pull-aparts, and multitier volcanose dimentary sequences that contain a number of unconformities and stratigraphic breaks. The Archaean basement of the Mewar terrain that witnessed end-Archaean K-magmatism and ductile shearing, led to the creation of a possible uranium province, namely uranium enriched basement. This province acted as the source of remobilised uranium and its concentration at suitable multilevel structural and stratigraphic traps within the Proterozoic rift basins to give rise to unconformity-related syngenetic uranium mineralisation. Late Neoproterozoic to Pan-African tectonothermal reworking of the basement rocks produced fracture zones and caused Na-metasomatism giving rise to albitite-related uranium mineralisation. Based on an analysis of Proterozoic rift kinematics and lithofacies characteristics, five possible uranium-enriched stratigraphic horizons have been identified in the Aravalli and its equivalent sequences as well as in the North Delhi foldbelt sequences. From a regional synthesis, ten possible uranium metallogenic events, spanning ca. 2.5-0.5 Ga, are recognised in Rajasthan. These uranium events have predictive value for delineation of target areas for exploration. (author)

  9. Silicate Veining Above an Ascending Mantle Plume - Evidence from New Ethiopian Xenolith Localities

    Science.gov (United States)

    Rooney, T. O.; Furman, T.; Ayalew, D.; Yirgu, G.

    2004-12-01

    Quaternary basaltic eruptions in the Debre Zeyit (Bishoftu) and Butajira regions of the Main Ethiopian Rift host Al-augite, norite and rare lherzolite xenoliths, xenocrysts and megacrysts. These explosive basaltic eruptions are located 20 km to the west of the main rift axis and are characterized by cinder cones and maars. The host basalt was generated as a small degree partial melt of fertile peridotite between 15 and 25 kb and host abundant Al-augite (Type II) xenoliths derived from pressures up to 10 kb. The central Main Ethiopian Rift lies in a transitional zone between the continental rifting of East Africa and the sea floor spreading associated with the Red Sea. Lithospheric and sub-lithospheric processes that occur during the transition from continental to oceanic magmatism may be investigated using these xenolith-bearing basalts. Neither carbonatitic nor hydrous (amphibole + phlogopite) metasomatism is evident in either the xenoliths or host basalts, suggesting that infiltration of silicate melts that produced Al-augite veining dominates the regional lower crust and lithospheric mantle. These veins are significantly hotter (200 - 300 ° C) than the lherzolite wall rock they intrude suggesting the thermal influence of the Afar plume. Recent geophysical tomography indicates that this veining is pervasive and segmented, supporting the association of these Al-augite veins with the formation of a proto-ridge axis. Al-augite xenoliths and megacrysts have been observed in other continental rift settings such as Durango (Luhr, 2001) and Lake Baikal (Litasov, 2000), indicating Al-augite silicate melt metasomatism is a fundamental process associated with continental rift development.

  10. Geodetic measurements and numerical models of the Afar rifting sequence 2005-2010

    Science.gov (United States)

    Ali, T.; Feigl, K.; Calais, E.; Hamling, I. J.; Wright, T. J.

    2012-12-01

    Rifting episodes are characterized by magma migration and dike intrusions that perturb the stress field within the surrounding lithosphere, inducing viscous flow in the lower crust and upper mantle that leads to observable, transient surface deformation. The Manda Hararo-Dabbahu rifting episode that occurred in the Afar depression between 2005 and 2010 is the first such episode to unfold fully in the era of satellite geodesy, thus providing a unique opportunity to probe the rheology of lithosphere at a divergent plate boundary. GPS and SAR measurements over the region since 2005 show accelerated surface deformation rates during post-diking intervals [Wright et al., Nature Geosci., 2012]. Using these observations in combination with a numerical model, we estimate model parameters that best explain the deformation signal. Our model accounts for three distinct processes: (i) secular plate spreading between Nubian and Arabian plates, (ii) time dependent post-rifting viscoelastic relaxation following the 14 dike intrusions that occurred between 2005 and 2010, including the 60 km long mega dike intrusion of September 2005, and (iii) magma accumulation within crustal reservoirs that feed the dikes. To model the time dependent deformation field, we use the open-source unstructured finite element code, Defmod [Ali, 2011, http://defmod.googlecode.com/]. Using a gradient-based iterative scheme [Ali and Feigl, Geochem. Geophys. Geosyst., 2012], we optimize the fit between observed and modeled deformation to estimate parameters in the model, including the locking depth of the rift zone, geometry and depth of magma reservoirs and rheological properties of lower crust and upper mantle, along with their formal uncertainties.

  11. Fleeing to Fault Zones: Incorporating Syrian Refugees into Earthquake Risk Analysis along the East Anatolian and Dead Sea Rift Fault Zones

    Science.gov (United States)

    Wilson, B.; Paradise, T. R.

    2016-12-01

    The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian Fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into cities, towns, and villages—placing stress on urban settings and increasing potential exposure to strong shaking. Yet, displaced populations are not traditionally captured in data sources used in earthquake risk analysis or loss estimations. Accordingly, we present a district-level analysis assessing the spatial overlap of earthquake hazards and refugee locations in southeastern Turkey to determine how migration patterns are altering seismic risk in the region. Using migration estimates from the U.S. Humanitarian Information Unit, we create three district-level population scenarios that combine official population statistics, refugee camp populations, and low, median, and high bounds for integrated refugee populations. We perform probabilistic seismic hazard analysis alongside these population scenarios to map spatial variations in seismic risk between 2011 and late 2015. Our results show a significant relative southward increase of seismic risk for this period due to refugee migration. Additionally, we calculate earthquake fatalities for simulated earthquakes using a semi-empirical loss estimation technique to determine degree of under-estimation resulting from forgoing migration data in loss modeling. We find that including refugee populations increased casualties by 11-12% using median population estimates, and upwards of 20% using high population estimates. These results communicate the ongoing importance of placing environmental hazards in their appropriate regional and temporal context which unites physical, political, cultural, and socio-economic landscapes. Keywords: Earthquakes, Hazards, Loss-Estimation, Syrian Crisis, Migration

  12. The 2008 Puipui eruption and morphology of the Northeast Lau Spreading Center between Maka and Tafu (Invited)

    Science.gov (United States)

    Clague, D. A.; Caress, D. W.; Rubin, K. H.; Paduan, J. B.

    2010-12-01

    An event plume was discovered in the water column between Maka and Tafu volcanoes on the Northeast Lau Spreading Center in Nov. 2008. A Rapid Response cruise in May 2009 found that eruptive activity had ceased after observations on two Jason II ROV dives and one MBARI Mapping AUV survey that mapped most of the axis and flanks at 1.5-m resolution. Jason II located a recent lava flow, which was named Puipui. The small ridge of mounds aligned along two overlapping fissures extend for 1.8 km. The pillow ridge cuts obliquely across the ridge axis. The dive observations show mainly pillow lavas near the NE end and sheet flows near the SE end. A central 340 m portion observed by Jason II as predominantly ponded lobate flows was not mapped by the AUV. The Puipui and prior eruptions produced abundant vesicular angular glass fragments, Pele’s hair, and less abundant limu o Pele pyroclasts that thinly blanket the axial plateau and cascade down the steep flanks, mixing debris from many eruptions. Electron probe analyses of 91 fragments show that 15 Puipui pyroclasts are compositionally variable (normalized 6.5-7.2% MgO, ~49.6% SiO2) and distinct from prior eruptions in the area that have lower TiO2, K2O, Na2O, and K2O; and 52.3-53.7% SiO2. Pyroclasts of all compositions are highly degassed (<0.025% S) prior to eruption. The NE-trending segment, anchored by Maka volcano at the SE end, includes the Puipui flow. The morphology changes dramatically over short distances. The 1 km SW end is characterized by multiple extensional faults that parallel the ridge axis. The AUV survey ends on a sheet flow with drained ponds. To the NE, Maka is a 1.2 km diameter central volcano rising 300 m above the adjacent ridge to a summit at 1515 m. The ridge axis deepens steadily to 2140 m at the NE survey end and 1900 m to the SW. Rift zones on Maka parallel the ridge axis and are constructed of overlapping lava deltas. The NW and SE flanks are smooth like those at actively erupting West Mata

  13. Deepening, and repairing, the metabolic rift.

    Science.gov (United States)

    Schneider, Mindi; McMichael, Philip

    2010-01-01

    This paper critically assesses the metabolic rift as a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism. As a social concept, the metabolic rift presumes that metabolism is understood in relation to the labour process. This conception, however, privileges the organisation of labour to the exclusion of the practice of labour, which we argue challenges its utility for analysing contemporary socio-environmental crises. As an ecological concept, the metabolic rift is based on outmoded understandings of (agro) ecosystems and inadequately describes relations and interactions between labour and ecological processes. Historically, the metabolic rift is integral to debates about the definitions and relations of capitalism, industrialism, and modernity as historical concepts. At the same time, it gives rise to an epistemic rift, insofar as the separation of the natural and social worlds comes to be expressed in social thought and critical theory, which have one-sidedly focused on the social. We argue that a reunification of the social and the ecological, in historical practice and in historical thought, is the key to repairing the metabolic rift, both conceptually and practically. The food sovereignty movement in this respect is exemplary.

  14. Analysis of Ballistic Blocks and Eruption History of Montaña Colorada, Lanzarote, Canary Islands

    Science.gov (United States)

    Semple Domagall, A. M.; Kobs-Nawotniak, S. E.

    2015-12-01

    From September 1730 to April 1736, more than 30 vents formed along a ~18 km long rift on the island of Lanzarote in the Canary Islands. Little actual data of these eruptions exist with the exception of court records and the diary of a priest from Yaiza. Previous research has broken this five and a half year period into 5 major eruptive phases (Carracedo et al., 1992).Montaña Colorada - a 150 m-tall, 600 m wide cinder cone - is the final vent associated with this eruption, and likely formed in 10 km long), large spatter clasts, spatter within the cinder cone, and a minor ash blanket are associated with this vent. These are typical of the 1730-1736 vents on Lanzarote. Unique to Montaña Colorada is the presence of a solidified lava pond within the vent, and an array of large (~1-4 m diameter), dense (2800 kg/m3), basaltic blocks roughly 500-1000 m from the vent. Additionally, peridotite nodules (up to 15 cm diameter) are found both within the lava flows and the tephra: the nodules are seen only here and at the, nearby, first vent associated with the eruptions. Lava flows, possibly from a fissure vent, started the eruption at Montaña Colorada: an effusion rate of 74.9 ± 25.9 m3s-1 is estimated for the 10.6 km-long, peridotite-bearing, flow, giving an emplacement time of ~1-3 days. As the eruption rate decreased, agglutinated spatter collected closer to the vent with loose tephra distally forming the main cinder cone. Towards the end of the eruption it appears the vent was filled with a lava pond, which breached to the north. The large, dense, blocks surrounding Montaña Colorada are here suggested to be the result of a transient explosion of a previous lava pond that occupied the vent. A lack of peridotite nodules or vesicles would be consistent with basalt that had pooled within the vent for some time. Eruption velocities on the order of 70-300 ms-1 are calculated for these blocks.

  15. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.

    2011-01-01

    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  16. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    Science.gov (United States)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  17. Vents Pattern Analysis at Etna volcano (Sicily, Italy).

    Science.gov (United States)

    Brancato, Alfonso; Tusa, Giuseppina; Coltelli, Mauro; Proietti, Cristina; Branca, Stefano

    2014-05-01

    Mount Etna is a composite stratovolcano located along the Ionian coast of eastern Sicily. It is characterized by basaltic eruptions, both effusive and explosive, occurred during a complex eruptive history over the last 500 ka. Flank eruptions occur at an interval of decades, mostly concentrated along the NE, S and W rift zones. A vent clustering at various scales is a common feature in many volcanic settings. In order to identify the clusters within the studied area, a spatial point pattern analysis is undertaken using vent positions, both known and reconstructed. It reveals both clustering and spatial regularity in the Etna region at different distances. The visual inspection of the vent spatial distribution suggests a clustering on the rift zones of Etna volcano. To confirm this evidence, a coarse analysis is performed by the application of Ξ2- and t-test simple statistics. Then, a refined analysis is performed by using the Ripley K-function (Ripley, 1976), whose estimator K(d), knowing the area of the study region and the number of vents, allow us to calculate the distance among two different location of events. The above estimator can be easier transformed by using the Besag L-function (Besag, 1977); the peaks of positive L(d)=[K(d)/π]1/2 -d values indicate clustering while troughs of negative values stand for regularity for their corresponding distances d (L(d)=0 indicates complete spatial randomness). Spatial pattern of flank vents is investigated in order to model the spatial distribution of likely eruptive vents for the next event, basically in terms of relative probabilities. For this, a Gaussian kernel technique is used, and the L(d) function is adopted to generate an optimal smoothing bandwidth based on the clustering behaviour of the Etna volcano. A total of 154 vents (among which 36 are reconstructed), related to Etna flank activity of the last 4.0 ka, is used to model future vent opening. The investigated region covers an area of 850 km2, divided

  18. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    Science.gov (United States)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  19. Subsidence history, crustal structure and evolution of the Nogal Rift, Northern Somalia

    Science.gov (United States)

    Ali, M. Y.; Watts, A. B.

    2013-12-01

    Seismic reflection profile, gravity anomaly, and biostratigraphic data from deep exploration wells have been used to determine the tectonic subsidence, structure and evolution of the Nogal basin, Northern Somalia, one of a number of ENE-WSW trending early Mesozoic rifts that formed prior to opening of the Gulf of Aden. Backstripping of biostratigraphic data at the Nogal-1 and Kali-1 wells provides new constraints on the age of rifting, and the amount of crustal and mantle extension. The tectonic subsidence and uplift history at the wells can be generally explained as a consequence of two, possibly three, major rifting events. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr. We interpret the rift as a late stage event associated with the break-up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi-rift extensional model with a stretching factor, β, in the range 1.17-1.38. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift only developed at the centre of the basin close to Nogal-1 well, and is related to the opening of the Gulf of Aden. The amount of crustal thinning inferred at the Kali-1 well is consistent with the results of Process-Oriented Gravity and Flexure (POGM) modelling, assuming an elastic thickness of ~30 km. The thinning at the Nogal-1 well, however, is greater by ~ 7 km than predicted suggesting that the basin may be locally underplated by magmatic material. Irrespective, POGM suggests the transition between thick crust beneath Northern Somalia to thin crust beneath the Indian Ocean forms a ~500 km wide

  20. Thirteen million years of silicic magma production in Iceland: Links between petrogenesis and tectonic settings

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2010-04-01

    The origin of the Quaternary silicic rocks in Iceland is thought to be linked to the thermal state of the crust, which in turn depends on the regional tectonic settings. This simple model is tested here on rocks from the Miocene to present, both to suggest an internally consistent model for silicic magma formation in Iceland and to constrain the link between tectonic settings and silicic magma petrogenesis. New major and trace-element compositions together with O-, Sr- and Nd-isotope ratios have been obtained on silicic rocks from 19 volcanic systems ranging in age from 13 Ma to present. This allows us to trace the spatial and temporal evolution of both magma generation and the corresponding sources. Low δ18O (geothermal gradient. But later than 5.5 Ma they were produced in a flank zone environment by fractional crystallisation alone, probably due to decreasing geothermal gradient, of basalts derived from a mantle source with lower 143Nd/ 144Nd. This is in agreement with an eastwards rift-jump, from Snæfellsnes towards the present Reykjanes Rift Zone, between 7 and 5.5 Ma. In the South Iceland Volcanic Zone (SIVZ), the intermediate Nd-signature observed in silicic rocks from the Torfajökull central volcano reflects the transitional character of the basalts erupted at this propagating rift segment. Therefore, the abundant evolved rocks at this major silicic complex result from partial melting of the transitional alkaline basaltic crust (Iceland can, therefore, be used for deciphering past geodynamic settings characterized by rift- and off-rift zones resulting from interaction of a mantle plume and divergent plate boundaries.

  1. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  2. Contrastive research of ionospheric precursor anomalies between Calbuco volcanic eruption on April 23 and Nepal earthquake on April 25, 2015

    Science.gov (United States)

    Li, Wang; Guo, Jinyun; Yue, Jianping; Yang, Yang; Li, Zhen; Lu, Deikai

    2016-05-01

    On April 23, 2015, the VEI4 (volcanic explosive index) Calbuco volcano abruptly erupted in Chile and the Mw7.9 Nepal earthquake occurred on April 25. In order to investigate the similarities and differences between total electron content (TEC) anomalies preceding these two types of geophysical activities, the TEC time series over preparation zones before the volcanic eruption and earthquake extracted from global ionosphere map were analyzed. We used sunspot numbers (SSN), Bz, Dst, and Kp indices to represent the solar-terrestrial environment and eliminate the effects of solar and geomagnetic activities on ionosphere by the sliding interquartile range method with the 27-day window. The results indicate that TEC-negative and -positive anomalies appeared in the 14th and 6th day before the eruption, respectively. The anomalies lasted about 4-6 h with a magnitude of 15-20 TECU. The TEC anomalies were also observed on the 14th and 6th day before the Nepal earthquake with a duration of 6-8 h, and the absolute magnitude of TEC anomalies was within 12-20 TECU. These findings indicate that the magnitude of TEC anomalies preceding volcanic eruption was larger, and the duration of TEC anomalies before the earthquake was longer, which may be associated with their particular physical mechanisms. The TEC anomalies before the Nepal earthquake in the Eastern hemisphere occurred in the afternoon local time, but those before the eruption were observed in the night local time. Peak regions of TEC anomalies did not coincide with the epicenters of geophysical activities, and the TEC anomalies also appeared in the magnetic conjugated region. Both the TEC anomalies in the preparation zone and conjugated region were distributed near the boundaries of equatorial anomaly zone and moved along the boundaries. In the moving process, sometimes the extent or magnitude of TEC anomalies in the conjugated region was larger than that in the preparation zone. Many more GPS stations and receivers

  3. Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra, Indonesia

    Science.gov (United States)

    Natawidjaja, Danny Hilman; Bradley, Kyle; Daryono, Mudrik R.; Aribowo, Sonny; Herrin, Jason

    2017-12-01

    Over the last decade, studies of natural hazards in Sumatra have focused primarily on great earthquakes and associated tsunamis produced by rupture of the Sunda megathrust. However, the Sumatran Fault and the active volcanic arc present proximal hazards to populations on mainland Sumatra. At present, there is little reliable information on the maximum magnitudes and recurrence intervals of Sumatran Fault earthquakes, or the frequency of paroxysmal caldera-forming (VEI 7-8) eruptions. Here, we present new radiocarbon dates of paleosols buried under the voluminous Ranau Tuff that constrain the large caldera-forming eruption to around 33,830-33,450 calender year BP (95% probability). We use the lateral displacement of river channels incised into the Ranau Tuff to constrain the long-term slip rate of two segments of the Sumatran Fault. South of Ranau Lake, the Kumering segment preserves isochronous right-lateral channel offsets of approximately 350 ± 50 m, yielding a minimum slip rate of 10.4 ± 1.5 mm/year for the primary active fault trace. South of Suoh pull-apart depression, the West Semangko segment offsets the Semangko River by 230 ± 60 m, yielding an inferred slip rate of 6.8 ± 1.8 mm/year. Compared with previous studies, these results indicate more recent high-volume volcanism in South Sumatra and increased seismic potency of the southernmost segments of the Sumatran Fault Zone.

  4. A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift

    Science.gov (United States)

    Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.

    2017-12-01

    findings motivate a suite of 3D models of the early plate boundary evolution in the Gulf, and highlight the importance of local stress field perturbations as a mechanism for broadening the deformation zone in other regions such as the Basin and Range, Rio Grande Rift and Malawi Rift.

  5. Constraining the dynamic response of subcontinental lithospheric mantle to rifting using Re-Os model ages in the Western Ross Sea, Antarctica

    Science.gov (United States)

    Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.

    2012-12-01

    In order to understand the dynamic response of the subcontinental lithospheric mantle (SCLM) to rifting, it is important to be able to distinguish the geochemical signatures of SCLM vs. asthenosphere. Recent work demonstrates that unradiogenic Os isotope ratios can indicate old depletion events in the convecting upper mantle (e.g. Rudnick & Walker, 2009), and allow us to make these distinctions. Thus, if SCLM can be traced across a rifted margin, its fate during rifting can be established. The Western Ross Sea provides favorable conditions to test the dynamic response of SCLM to rifting. Re-Os measurements from 8 locations extending from the rift shoulder to 200 km into the rift basin reveal 187Os/188Os ranging from 0.1056 at Foster Crater on the shoulder, to 0.1265 on Ross Island within the rift. While individual sample model ages vary widely throughout the margin, 'aluminochron' ages (Reisberg & Lorand, 1995) reveal a narrower range of lithospheric stabilization ages. Franklin Island and Sulfur Cones show a range of Re-depletion ages (603-1522 Ma and 436-1497 Ma) but aluminochrons yield Paleoproterozoic stabilization ages of 1680 Ma and 1789 Ma, respectively. These ages coincide with U-Pb zircon ages from Transantarctic Mountain (TAM) crustal rocks, in support of SCLM stabilization at the time of crust formation along the central TAM. The Paleoproterozoic stabilization age recorded at Franklin Island is especially significant, since it lies 200km off of the rift shoulder. The similar ages beneath the rift shoulder and within the rift suggests stretched SCLM reaches into the rift and thus precludes replacement by asthenospheric mantle. The persistence of thinned Paleoproterozoic SCLM into the rifted zone in WARS suggests that it represents a 'type I' margin of Huismans and Beaumont (2011), which is characterized by crustal breakup before loss of lithospheric mantle. The Archean Re-depletion age of 3.2 Ga observed on the rift shoulder suggests that cratonic

  6. Sunspot splitting triggering an eruptive flare

    Science.gov (United States)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  7. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2012-01-01

    The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout

  8. Stress-induced comenditic trachyte effusion triggered by trachybasalt intrusion : multidisciplinary study of the AD 1761 eruption at Terceira Island (Azores)

    NARCIS (Netherlands)

    Pimentel, A.; Zanon, V.; de Groot, Lennart; Hipólito, A.; Di Chiara, A.; Self, S.

    2016-01-01

    The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known

  9. Evidence for cross rift structural controls on deformation and seismicity at a continental rift caldera

    Science.gov (United States)

    Lloyd, Ryan; Biggs, Juliet; Wilks, Matthew; Nowacki, Andy; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias; Eysteinsson, Hjálmar

    2018-04-01

    In continental rifts structural heterogeneities, such as pre-existing faults and foliations, are thought to influence shallow crustal processes, particularly the formation of rift faults, magma reservoirs and surface volcanism. We focus on the Corbetti caldera, in the southern central Main Ethiopian Rift. We measure the surface deformation between 22nd June 2007 and 25th March 2009 using ALOS and ENVISAT SAR interferograms and observe a semi-circular pattern of deformation bounded by a sharp linear feature cross-cutting the caldera, coincident with the caldera long axis. The signal reverses in sign but is not seasonal: from June to December 2007 the region south of this structure moves upwards 3 cm relative to the north, while from December 2007 until November 2008 it subsides by 2 cm. Comparison of data taken from two different satellite look directions show that the displacement is primarily vertical. We discuss potential mechanisms and conclude that this deformation is associated with pressure changes within a shallow (statistically consistent with this fault structure, indicating that the fault has also controlled the migration of magma from a reservoir to the surface over tens of thousands of years. Spatial patterns of seismicity are consistent with a cross-rift structure that extents outside the caldera and to a depth of ∼30 km, and patterns of seismic anisotropy suggests stress partitioning occurs across the structure. We discuss the possible nature of this structure, and conclude that it is most likely associated with the Goba-Bonga lineament, which cross-cuts and pre-dates the current rift. Our observations show that pre-rift structures play an important role in magma transport and shallow hydrothermal processes, and therefore they should not be neglected when discussing these processes.

  10. Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption

    Science.gov (United States)

    Bouvet de Maisonneuve, Caroline; Bachmann, Olivier; Burgisser, Alain

    2009-08-01

    Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000 years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90 vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) “frothy” pumice (highly porous with large, sub-rounded vesicles), which form 5-10 vol.% of the coarsest pyroclastic flow deposits, (2) dominantly “microvesicular” and systematically crystal-poor pumices, which are found in early erupted, fine-grained pyroclastic flow units, and are characterized by many small (<50 μm in diameter) vesicles and few mm-sized, irregular voids, (3) grey or banded pumices, indicating the interaction between the rhyolite and a more mafic magma, which are found throughout the eruption sequence and display highly irregular bubble shapes. Except for the grey-banded pumices, all three other types are compositionally identical and were generated synchronously as they are found in the same pyroclastic units. They, therefore, record different conditions in the volcanic conduit leading to variable bubble nucleation, growth and coalescence. A total of 74 pumice samples have been characterized using thin section observation, SEM imagery, porosimetry, and permeametry. We show that the four pumice types have distinct total and connected porosity, tortuosity and permeability. Grey-banded pumices show large variations in petrophysical characteristics as a response to mingling of two different magmas. The microvesicular, crystal-poor, pumices have a bimodal bubble size distribution, interpreted as reflecting an early heterogeneous bubble nucleation event followed by homogeneous bubble nucleation close to fragmentation. Finally, the significant differences in

  11. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Science.gov (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  12. Geomorphic Response to Spatial and Temporal Tectonic uplift on the Kenya Rift of East African Rift System

    Science.gov (United States)

    Xue, L.; Abdelsalam, M. G.

    2017-12-01

    Tectonic uplifts of the shoulders of the East Africa Rift System (EARS) have significant impact on the geological record by reorganizing drainage systems, increasing sediment supply, and changing climate and biogeography. Recent studies in geochronology, geomorphology and geophysics have provided some understanding of the timing of tectonic uplift and its distribution pattern of the (EARS). We do not know how the vertical motion is localized along the rift axis and the relative roles of upwelling of magma and rift extensional processes play in tectonic uplift history. This work presents detailed morphometric study of the fluvial landscape response to the tectonic uplift and climate shifting of the Kenya Rift shoulders in order to reconstruct their incision history, with special attention to timing, location, and intensity of uplift episodes. This work compiles the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and Sentinel-2A data, summarized previous 39Ar-40Ar and thermochronology data, and calculates long-term incision rate and geomorphic proxies (normalized steepness and chi-integral) along the Kenya Rift. It also models the age of tectonic/climatic events by using knickpoint celerity model and R/SR integrative approach. It found that the maximum long-term incision rates of 300 mm/kyr to be at the central Kenya Rift, possibly related to the mantle-driven process and rapid tectonic uplift. The geomorphic proxies indicate southward decreasing pattern of the short-term incision rate, possibly related to the migration of the mantle plume.

  13. Mechanism of human tooth eruption

    DEFF Research Database (Denmark)

    Kjær, Inger

    2014-01-01

    Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly ...... keeps this new theory in mind. Understanding the aetiology of the eruption process is necessary for treating deviant eruption courses....... to insight into the aetiology behind eruption. A new theory on the eruption mechanism is presented. Accordingly, the mechanism of eruption depends on the correlation between space in the eruption course, created by the crown follicle, eruption pressure triggered by innervation in the apical root membrane......, and the ability of the periodontal ligament to adapt to eruptive movements. Animal studies and studies on normal and pathological eruption in humans can support and explain different aspects in the new theory. The eruption mechanism still needs elucidation and the paper recommends that future research on eruption...

  14. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  15. Long wavelength magnetic anomalies over continental rifts in cratonic region

    Science.gov (United States)

    Friedman, S. A.; Persaud, P.; Ferre, E. C.; Martín-Hernández, F.; Feinberg, J. M.

    2017-12-01

    New collections of unaltered mantle xenoliths shed light on potential upper mantle contributions to long wavelength magnetic anomalies (LWMA) in continental rifts in cratonic / shield areas. The new material originates from the East African Rift (Tanzania), the Rio Grande Rift (U.S.A.), the Rhine Rift (Germany), and the West Antarctic Rift (Antarctica). The xenoliths sample the uppermost ( 0.2 or Fe geotherms (>60ºC/km) that are characteristic of rifted regions preclude any contribution to LWMA at depths >10 km. Hence, only upper basalts and hypovolcanic mafic sills would constitute potential magnetic sources. In contrast, the margins of these rifted regions consist of refractory cratonic domains, often characterized by oxidized sublithospheric mantle that host significant concentrations of primary magnetite. The higher NRMs of these peridotites (up to 15 A/m, Qn > 2.5) combined with much lower geotherms (as low as 15ºC/km) allows for a 5 to 10 km layer of uppermost mantle to potentially contribute to LWMA. Assuming that Qn values in rift margins are also gradient across the rift would primarily reflect thermal equilibration over time.

  16. Strengths and strain energies of volcanic edifices: implications for eruptions, collapse calderas, and landslides

    Directory of Open Access Journals (Sweden)

    A. Gudmundsson

    2012-07-01

    Full Text Available Natural hazards associated with volcanic edifices depend partly on how fracture resistant the edifices are, i.e. on their strengths. Observations worldwide indicate that large fluid-driven extension fractures (dikes, inclined sheets, shear fractures (landslides, and mixed-mode fractures (ring dikes and ring faults normally propagate more easily in a basaltic edifice (shield volcano than in a stratovolcano. For example, dike-fed eruptions occur once every few years in many basaltic edifices but once every 102-3 yr in many stratovolcanoes. Large landslides and caldera collapses also appear to be more common in a typical basaltic edifice/shield volcano than in a typical stratovolcano. In contrast to a basaltic edifice, a stratovolcano is composed of mechanically dissimilar rock layers, i.e. layers with mismatching elastic properties (primarily Young's modulus. Elastic mismatch encourages fracture deflection and arrest at contacts and increases the amount of energy needed for a large-scale edifice failure. Fracture-related hazards depend on the potential energy available to propagate the fractures which, in turn, depends on the boundary conditions during fracture propagation. Here there are two possible scenarios: one in which the outer boundary of the volcanic edifice or rift zone does not move during the fracture propagation (constant displacement; the other in which the boundary moves (constant load. In the former, the total potential energy is the strain energy stored in the volcano before fracture formation; in the latter, the total potential energy is the strain energy plus the work done by the forces moving the boundary. Constant-displacement boundary conditions favor small eruptions, landslides, and caldera collapses, whereas constant-load conditions favor comparatively large eruptions, landslides, and collapses. For a typical magma chamber (sill-like with a diameter of 8 km, the strain energy change due to magma-chamber inflation

  17. Thermomechanical Controls on the Success and Failure of Continental Rift Systems

    Science.gov (United States)

    Brune, S.

    2017-12-01

    Studies of long-term continental rift evolution are often biased towards rifts that succeed in breaking the continent like the North Atlantic, South China Sea, or South Atlantic rifts. However there are many prominent rift systems on Earth where activity stopped before the formation of a new ocean basin such as the North Sea, the West and Central African Rifts, or the West Antarctic Rift System. The factors controlling the success and failure of rifts can be divided in two groups: (1) Intrinsic processes - for instance frictional weakening, lithospheric thinning, shear heating or the strain-dependent growth of rift strength by replacing weak crust with strong mantle. (2) External processes - such as a change of plate divergence rate, the waning of a far-field driving force, or the arrival of a mantle plume. Here I use numerical and analytical modeling to investigate the role of these processes for the success and failure of rift systems. These models show that a change of plate divergence rate under constant force extension is controlled by the non-linearity of lithospheric materials. For successful rifts, a strong increase in divergence velocity can be expected to take place within few million years, a prediction that agrees with independent plate tectonic reconstructions of major Mesozoic and Cenozoic ocean-forming rift systems. Another model prediction is that oblique rifting is mechanically favored over orthogonal rifting, which means that simultaneous deformation within neighboring rift systems of different obliquity and otherwise identical properties will lead to success and failure of the more and less oblique rift, respectively. This can be exemplified by the Cretaceous activity within the Equatorial Atlantic and the West African Rifts that lead to the formation of a highly oblique oceanic spreading center and the failure of the West African Rift System. While in nature the circumstances of rift success or failure may be manifold, simplified numerical and

  18. Long-period seismicity reveals magma pathways above a laterally propagating dyke during the 2014-15 Bárðarbunga rifting event, Iceland

    Science.gov (United States)

    Woods, Jennifer; Donaldson, Clare; White, Robert S.; Caudron, Corentin; Brandsdóttir, Bryndís; Hudson, Thomas S.; Ágústsdóttir, Thorbjörg

    2018-05-01

    The 2014-15 Bárðarbunga-Holuhraun rifting event comprised the best-monitored dyke intrusion to date and the largest eruption in Iceland in 230 years. A huge variety of seismicity was produced, including over 30,000 volcano-tectonic earthquakes (VTs) associated with the dyke propagation at ∼6 km depth below sea level, and large-magnitude earthquakes accompanying the collapse of Bárðarbunga caldera. We here study the long-period seismicity associated with the rifting event. We systematically detect and locate both long-period events (LPs) and tremor during the dyke propagation phase and the first week of the eruption. We identify clusters of highly similar, repetitive LPs, which have a peak frequency of ∼1 Hz and clear P and S phases followed by a long-duration coda. The source mechanisms are remarkably consistent between clusters and also fundamentally different to those of the VTs. We accurately locate LP clusters near each of three ice cauldrons (depressions formed by basal melting) that were observed on the surface of Dyngjujökull glacier above the path of the dyke. Most events are in the vicinity of the northernmost cauldron, at shallower depth than the VTs associated with lateral dyke propagation. At the two northerly cauldrons, periods of shallow seismic tremor following the clusters of LPs are also observed. Given that the LPs occur at ∼4 km depth and in swarms during times of dyke-stalling, we infer that they result from excitation of magmatic fluid-filled cavities and indicate magma ascent. We suggest that the tremor is the climax of the vertical melt movement, arising from either rapid, repeated excitation of the same LP cavities, or sub-glacial eruption processes. This long-period seismicity therefore represents magma pathways between the depth of the dyke-VT earthquakes and the surface. Notably, we do not detect tremor associated with each cauldron, despite melt reaching the base of the overlying ice cap, a concern for hazard monitoring.

  19. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    OpenAIRE

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, Maria Luísa; Solá, Ana Rita

    2015-01-01

    The Cambrian Tamdroust and Bab n’Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran–Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometrie...

  20. Timescales and conditions of crystallization in the Pokai and Chimpanzee Ignimbrites, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Connor, M.; Gualda, G. A.; Gravley, D. M.

    2013-12-01

    Silicic magmas give rise to explosive eruptions that are both of scientific and societal interest. The central Taupo Volcanic Zone in New Zealand has been volcanically active for 2 Ma and represents the most active volcanic area in the world today. Particularly intense volcanic activity took place as part of a flare-up event that occurred from ~340 to ~240 ka, when 7 large ignimbrite eruptions took place, as well as many smaller eruptions, which erupted a total of at least 3000 km3 of magma. This project seeks to identify the conditions and timescales over which magma bodies that gave rise to these ignimbrite eruptions evolved. We aim to understand how much of the tens of thousands of years between successive eruptions were characterized by the presence of large bodies of silicic magma within the crust, as well the magma distribution within the crust during those times. We focus on the Chimpanzee and Pokai ignimbrites, which together erupted ~150 km3 of magma. The Pokai ignimbrite erupted at ~275 ka, while the Chimpanzee ignimbrite (undated) erupted between ~320 and 275 ka. Pumice clasts from the Chimpanzee and Pokai ignimbrite were collected in the field. Pumice bulk densities were measured using a submersion technique. Quartz and plagioclase crystals were extracted through a crushing, sieving, and winnowing procedure. Whole crystals were hand-picked under a conventional microscope, mounted on epoxy, and polished to expose grain interiors. Grain mounts were analyzed under an SEM using back-scattered electron, cathodoluminescence (CL), and energy-dispersive x-ray (EDX) imaging. Bulk-densities vary from 0.42 to 0.81 g/cm3 for Pokai and between 0.52 and 0.64 g/cm3 for Chimpanzee pumice clasts. Plagioclase is the dominant crystal phase in both units. Several plagioclase crystals have inclusions of orthopyroxene, ilmenite, magnetite, and zircon, which in some cases form clusters. Quartz is rare but is present in pumice from both deposits. Both plagioclase and quartz

  1. Is the Okavango Delta the terminus of the East African Rift System? Towards a new geodynamic model: Geodetic study and geophysical review

    Science.gov (United States)

    Pastier, Anne-Morwenn; Dauteuil, Olivier; Murray-Hudson, Michael; Moreau, Frédérique; Walpersdorf, Andrea; Makati, Kaelo

    2017-08-01

    The Okavango Graben (OG) has been considered as the terminus of the southwestern branch of the East African Rift System (EARS) since the 1970s based on fault morphology and early seismic and geophysical data. Thus it has been assumed to be an incipient rifting zone, analogous to the early stage of mature rifts in the EARS. Recent geodetic data and geophysical studies in the area bring new insights into the local crust and lithosphere, mantle activity and fault activity. In this study, we computed the velocities for three permanent GPS stations surrounding the graben and undertook a review of the new geophysical data available for the area. The northern and southern blocks of the graben show an exclusively low strike-slip displacement rate of about 1mm/year, revealing the transtensional nature of this basin. The seismic record of central and southern Africa was found to be instrumentally biased for the events recorded before 2004 and the OG may not represent the most seismically active area in Botswana anymore. Moreover, no significant lithosphere and crustal thinning is found in the tectonic structure nor any strong negative Bouguer anomaly and surface heat flux. Thus the OG does not match the classical model for a rifting zone. We propose a new geodynamic model for the deformation observed west of the EARS based on accommodation of far-field deformation due to the differential extension rates of the EARS and the displacement of the Kalahari craton relative to the Nubian plate.

  2. Changes in heat released by hydrothermal circulation monitored during an eruptive cycle at Mt. Etna (Italy)

    Science.gov (United States)

    Diliberto, I. S.; Gagliano Candela, E.; Morici, S.; Pecoraino, G.; Bellomo, S.; Bitetto, M.; Longo, M.

    2018-04-01

    The shallow vertical temperature profile has been measured in the proximity of an eruptive fissure far about 4 km north-northeast from Mt. Etna central craters. The monitoring site was a steam-heated soil lying between a group of flank fractures on the upper northeast flank of Mt. Etna (Italy), i.e., on the northeast rift. We chose this area because it was close to an eruptive fissure, that opened in 2002 and extended from about 2500 to about 1500 m a.s.l., with our aim being to determine a connection between this fracture system and the ongoing volcanic activity. Heat flux anomalies from the ground from September 2009 to September 2012 were evaluated. Changes in the hydrothermal release—which can be related to variations in volcanic activity—are discussed and compared to the published geophysical data. The heat flux ranges varied during the pre-eruptive (from about 7 to 38 W × m-2), syn-eruptive (from about 3 to 49 W × m-2), and post-eruptive phases, with the heat released being lowest at the latter phase (from about 1 to 20 W × m-2). Moreover, the heat flux time variation was strongly correlated with the eruption rate from the new southeast crater between January 2011 and April 2012. The migration of magma through active conduits acts as a changing heating source for steam-heated soils located above the active fractures. Our findings suggest that tracking the heat flux above active fractures constitutes a useful investigation field for low-cost thermal monitoring of volcanic activity. Time variations in their emissions could highlight the relationship between a hydrothermal circuit and the local network of fractures, possibly indicating variation in the structural weakness of a volcanic edifice. Continuous monitoring of heat flux, combined with a realistic model, would contribute to multidisciplinary investigations aimed at evaluating changes in volcano dynamics.

  3. SEISMODYNAMICS AND DEEP INTERNAL ORIGIN OF THE NORTH CHINA ZONE OF STRONG EARTHQUAKES

    Directory of Open Access Journals (Sweden)

    Andrey A. Stepashko

    2011-01-01

    Full Text Available Space-and-time regularities of seismicity of the North China (Tan-Lu zone are studies, and tectonic nature of strong earthquakes is analyzed. The concept of its genesis is still a matter of debate as this zone is located in the centre of the ancient SinoKorean craton, i.e. thousand kilometers away from convergent margins of Eurasia and the Pacific оcean and IndoAustralian plates (Figure 1. The information on the regional cycling dynamics [Xu, Deng, 1996] is updated. Two cycles, in which strong earthquakes (14 shocks with М≥7.0 occurred in the region under study, are distinguished, i.e. from 1500 to 1700, and from 1800 to 1980 (Figure 2. The seismodynamics of the North China zone is consistent with the Circum Pacific оcean deformation wave that occurs once in 300 years at the margin between Asia and the ocean and thus causes the strongest earthquakes (М≥8.8 and eruptions of volcanoes in the Pacific оcean belt [Vikulin et al., 2009, 2010]. This wave came to the northern regions of China in the years of 1500 and 1800 (Figure 3 and triggered seismic activity cycles. The second factor predetermining the seismicity of the Northern China is a specific structure of the region which can manifest seismic activity due to the impact of deformation waves. The genesis of the metastable structure of the region is related to tectonic restructuring of the lithosphere of the SinoKorean craton due to shear displacements in the Tan-Lu megazone. Regional variations of compositions of mantle xenoliths of the Sikhote Alin orogeny demonstrate that the latent strike of the Tan-Lu faults can be traced across the south-eastern areas of Russia to the Tatar Strait. These faults are borders of the Vshaped mantle block (400 x 1500 km (Figure 5, which composition is characterized by an anomalous content of iron and a low depletion of peridotites. The tectonic mantle block maintains its activity; being impacted by compression from the west, it is squeezed out towards

  4. Stress-induced comenditic trachyte effusion triggered by trachybasalt intrusion: multidisciplinary study of the AD 1761 eruption at Terceira Island (Azores)

    Science.gov (United States)

    Pimentel, A.; Zanon, V.; de Groot, L. V.; Hipólito, A.; Di Chiara, A.; Self, S.

    2016-03-01

    The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known as Mistérios Negros) were also thought by some to have formed simultaneously on the eastern flank of Santa Bárbara Volcano. Following a multidisciplinary approach, we combined geological mapping, paleomagnetic, petrographic, mineral and whole-rock geochemical and structural analyses to study this eruption. The paleomagnetic dating method compared geomagnetic vectors (directions and intensities) recorded by both the AD 1761 lava flow and Mistérios Negros domes and revealed that the two events were indeed coeval. Based on new data and interpretation of historical records, we have accordingly reconstructed the AD 1761 eruptive dynamics and distinguished three phases: (1) a precursory phase characterized by decreased degassing in the fumarolic field of Pico Alto Volcano and a gradual increase of seismic activity, which marked the intrusion of trachybasalt magma; (2) a first eruptive phase that started with phreatic explosions on the eastern flank of Santa Bárbara Volcano, followed by the inconspicuous effusion of comenditic trachyte (66 wt% SiO2), forming a WNW-ESE-oriented chain of lava domes; and (3) a second eruptive phase on the central part of the fissure zone, where a Hawaiian to Strombolian-style eruption formed small scoria cones (E-W to ENE-WSW-oriented) and a trachybasalt lava flow (50 wt% SiO2) which buried 27 houses in Biscoitos village. Petrological analyses show that the two batches of magma were emitted independently without evidence of interaction. We envisage that the dome-forming event was triggered by local stress changes induced by intrusion of the trachybasalt dyke along the fissure zone, which created tensile stress conditions that promoted ascent

  5. Tectonics and stratigraphy of the East Brazil Rift system: an overview

    Science.gov (United States)

    Hung Kiang Chang; Kowsmann, Renato Oscar; Figueiredo, Antonio Manuel Ferreira; Bender, AndréAdriano

    1992-10-01

    The East Brazilian Rift system (Ebris) constitutes the northern segment of the South Atlantic rift system which developed during the Mesozoic breakup of South America and Africa. Following crustal separation in the Late Aptian, it evolved into a passive continental margin. Along the continental margin six basins are recognized, while three onshore basins form part of an aborted rift. Three continental syn-rift stratigraphic sequences are recognized, spanning Jurassic to Barremian times. The Jurassic (Syn-rift I) and Neocomian (Syn-rift II) phases were most active in the interior rift basins. During the Barremian (Syn-rift III), rift subsidence rates were twice as large as during the Neocomian (Syn-rift II), both in the interior rift and in the marginal rift segments, indicating that rift axis did not migrate from the interior to the marginal setting. Rift magmatism was centered on the southern EBRIS and peaked between 130 and 120 Ma during syn-rift phase II. Rift phase III was followed by a transitional marine, evaporitic megasequence of Aptian age, which directly overlies the rift unconformity and a marine drift megasequence which spans Albian to Recent times. During the Late Cretaceous, sedimentation rates responded to first-order eustatic sea-level fluctuations. Tertiary accelerated sedimentation rates can be related to local clastic supply which filled in spaces inherited from previous starved conditions. Between 60 and 40 Ma, post-rift magmatism, centered on the Abrolhos and Royal Charlotte banks, is probably related to development of a hot spot associated with the Vitória-Trindade Seamount Chain. Although crossing three distinct Precambrian tectono-thermal provinces, ranging from Archean through Late Proterozoic, rift structures follow a general NE trend, subparallel to the principal basement fabric. A NW-SE oriented stress field appears to be compatible with both Neocomian and Barremian phases of crustal extension. Profiles transverse to the rift axis

  6. Lidar observations of stratospheric aerosol layer after the Mt. Pinatubo volcanic eruption

    International Nuclear Information System (INIS)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi.

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser

  7. Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption

    Science.gov (United States)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.

  8. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma.

    Science.gov (United States)

    Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B

    2017-12-13

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  9. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma

    Science.gov (United States)

    di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.

    2017-12-01

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  10. The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska

    Science.gov (United States)

    Hildreth, W.

    1983-01-01

    andesite. The zoning ranges of phenocrysts in the rhyolitic and intermediate ejecta do not overlap. New chemical data show the bulk SiO2 range to be: rhyolite 77 ?? 0.6, dacite 66-64.5, and andesite 61.5-58.5%. The dacitic and andesitic ejecta contrast in color and density, and it is not certain whether they form a compositional continuum. Analyses reported by Fenner within the 66-76% SiO2 range were of banded pumice and lava and of bulk tephra that mechanically fractionated and mixed during flight. Despite the gap of 10% SiO2, Fe-Ti-oxide temperatures show a continuous range from rhyolite (805-850??C) through dacite (855-955??C) to andesite (955-990??C). Thermal continuity and isotopic and trace-element data suggest that all were derived from a single magmatic system, whether or not they were physically contiguous before eruption. If the rhyolitic liquid separated from dacitic magma, extraction was so efficient that no dacitic phenocrysts were retained and no bulk compositions in the range 66-76% SiO2 were created; if it were a partial me

  11. The evolution of shallow crustal structures in early rift-transform interaction: a case study in the northern Gulf of California.

    Science.gov (United States)

    Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.

    2017-04-01

    The Gulf of California represents a young oblique rift/transtensional plate boundary in which all of the transform faults are actively shearing the crust, separated by active rift segments. Previous workers have shown that in the northern Gulf of California, the relative plate motion between the Pacific and North American plates is distributed between: a) the Cerro Prieto Fault (CPF) in the NE b) the Ballenas Transform Fault (BTF) in the SW and c) a pull-apart structure located between these two faults consisting of a number of extensional basins (the Wagner, Consag, and Upper and Lower Delfin basins). A plate boundary relocation at approximately 2 Ma, continued to separate Isla Angel de la Guarda from the Baja California peninsula and created the 200x70 km2 NE-SW pull-apart structure located northeast of the BTF. Here we use seismic stratigraphy analysis of the UL9905 high resolution reflection seismic dataset acquired by the Lamont-Doherty Earth Observatory, Caltech, and the Centro de Investigación Científica y de Educación Superior de Ensenada to build on previous structural interpretations and seek to further understand the processes that formed the structural and sedimentary architecture of the pull-apart basin in the northern Gulf of California. We examine the formation of depositional and deformation structures in relation to the regional tectonics to provide insight into the development of structural patterns and related seismic-stratigraphic features in young rift-transform interactions. Using bathymetric data, characteristic seismic-stratigraphic packages, and seismic evidence of faulting, we confirm the existence of three major structural domains in the northern Gulf of California and examine the interaction of the seismic stratigraphy and tectonic processes in each zone. The first and most distinctive is an abrupt NE-SW 28x5 km2 depression on the seabed of the Lower Delfin Basin. This is aligned orthogonally to the BTF, is situated at its northern

  12. Linking the tectonic evolution with fluid history in magma-poor rifted margins: tracking mantle- and continental crust-related fluids

    Science.gov (United States)

    Pinto, V. H. G.; Manatschal, G.; Karpoff, A. M.

    2014-12-01

    The thinning of the crust and the exhumation of subcontinental mantle is accompanied by a series of extensional detachment faults. Exhumation of mantle and crustal rocks is intimately related to percolation of fluids along detachment faults leading to changes in mineralogy and chemistry of the mantle, crustal and sedimentary rocks. Field observation, analytical methods, refraction/reflection and well-core data, allowed us to investigate the role of fluids in the Iberian margin and former Alpine Tethys distal margins and the Pyrenees rifted system. In the continental crust, fluid-rock interaction leads to saussuritization that produces Si and Ca enriched fluids found in forms of veins along the fault zone. In the zone of exhumed mantle, large amounts of water are absorbed in the first 5-6 km of serpentinized mantle, which has the counter-effect of depleting the mantle of elements (e.g., Si, Ca, Mg, Fe, Mn, Ni and Cr) forming mantle-related fluids. Using Cr-Ni-V and Fe-Mn as tracers, we show that in the distal margin, mantle-related fluids used detachment faults as pathways and interacted with the overlying crust, the sedimentary basin and the seawater, while further inward parts of the margin, continental crust-related fluids enriched in Si and Ca impregnated the fault zone and may have affected the sedimentary basin. The overall observations and results enable us to show when, where and how these interactions occurred during the formation of the rifted margin. In a first stage, continental crust-related fluids dominated the rifted systems. During the second stage, mantle-related fluids affected the overlying syn-tectonic sediments through direct migration along detachment faults at the future distal margin. In a third stage, these fluids reached the seafloor, "polluted" the seawater and were absorbed by post-tectonic sediments. We conclude that a significant amount of serpentinization occurred underneath the thinned continental crust, that the mantle-related fluids

  13. Polyphase Rifting and Breakup of the Central Mozambique Margin

    Science.gov (United States)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi

    2017-04-01

    from strike-slip deformation localised along a proposed crustal weakness, represented by the Lurio-Pebane shear zone. A more north-south oriented extension is recorded by the continental breakup and oceanisation. A failed rift is initially formed between the Beira High and the African continent followed by the successful rifting of its southern margin. This study proposes a segmentation of the Central Mozambique margin, with oceanisation first occurring in the Angoche segment. The formation of the first oceanic crust in the Beira segment followed, likely delayed by the formation and failure of the northern Beira High rift. *The PAMELA project (PAssive Margin Exploration Laboratories) is a scientific project led by Ifremer and TOTAL in collaboration with Université Rennes 1, Université Pierre and Marie Curie, Université de Bretagne Occidentale, CNRS and IFPEN.

  14. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    Science.gov (United States)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  15. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study

    Energy Technology Data Exchange (ETDEWEB)

    Olaka, Lydia A., E-mail: lydiaolaka@gmail.com [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Wilke, Franziska D.H. [Geoforschungs Zentrum, Telegrafenberg, 14473 Potsdam (Germany); Olago, Daniel O.; Odada, Eric O. [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Mulch, Andreas [Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Germany); Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt (Germany); Musolff, Andreas [UFZ-Helmholtz-Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany)

    2016-03-01

    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02–75 mg/L. 73% exceed the health limit (1.5 mg/L) in both dry and wet seasons. F{sup −} concentrations in rivers are lower (0.2–9.2 mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27–75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ{sup 18}O) and hydrogen (δD) isotopic values range from − 6.2 to + 5.8‰ and − 31.3 to + 33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750–6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (< 1000 ppm). Thus, geochemical F{sup −} enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management

  16. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    Science.gov (United States)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  17. Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Directory of Open Access Journals (Sweden)

    Feifei Qu

    2015-12-01

    Full Text Available Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July–August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48–130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the six years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  18. Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014

    Science.gov (United States)

    Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup

    2016-01-01

    Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.

  19. Geochemical surveys in the Lusi mud eruption

    Science.gov (United States)

    Sciarra, Alessandra; Mazzini, Adriano; Etiope, Giuseppe; Inguaggiato, Salvatore; Hussein, Alwi; Hadi J., Soffian

    2016-04-01

    The Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the Java Island. In the framework of the Lusi Lab project (ERC grant n° 308126) we carried out geochemical surveys in the Sidoarjo district (Eastern Java Island, Indonesia) to investigate the gas bearing properties of the Watukosek fault system that crosses the Lusi mud eruption area. Soil gas (222Rn, CO2, CH4) concentration and flux measurements were performed 1) along two detailed profiles (~ 1km long), trending almost W-E direction, and 2) inside the Lusi embankment (about 7 km2) built to contain the erupted mud. Higher gas concentrations and fluxes were detected at the intersection with the Watukosek fault and the antithetic fault system. These zones characterized by the association of higher soil gas values constitute preferential migration pathways for fluids towards surface. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). The main shear zones are populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude higher for φCH4. An additional geochemical profile was completed perpendicularly to the Watukosek fault escarpement (W-E direction) at the foots of the Penanngungang volcano. Results reveal CO2 and CH4 flux values significantly lower than those measured in the embankment, however an increase of radon and flux measurements is observed approaching the foots of the escarpment. These measurements are complemented with a database of ~350 CH4 and CO2 flux measurements and some soil gas concentrations (He, H2, CO2, CH4 and C2H6) and their isotopic analyses (δ13C-CH4, δD-CH4 and δ13C-CO2). Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. The collected results shed light on the origin of the

  20. Lithospheric discontinuities beneath the U.S. Midcontinent - signatures of Proterozoic terrane accretion and failed rifting

    Science.gov (United States)

    Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao

    2018-01-01

    Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a

  1. Latest Miocene transtensional rifting of northeast Isla Tiburón, eastern margin of the Gulf of California

    Science.gov (United States)

    Bennett, Scott E. K.; Oskin, Michael E.; Iriondo, Alexander

    2017-11-01

    Details about the timing and kinematics of rifting are crucial to understand the conditions that led to strain localization, continental rupture, and formation of the Gulf of California ocean basin. We integrate detailed geologic and structural mapping, basin analysis, and geochronology to characterize transtensional rifting on northeastern Isla Tiburón, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. Slip on the Kunkaak normal fault tilted its hanging wall down-to-the-east 70° and formed the non-marine Tecomate basin, deposited across a 20° angular unconformity. From 7.1-6.4 Ma, the hanging wall tilted at 35 ± 5°/Myr, while non-marine sandstone and conglomerate accumulated at 1.4 ± 0.2 mm/yr. At least 1.8 ± 0.1 km of sediments and pyroclastic deposits accumulated in the Tecomate basin concurrent with clockwise vertical-axis block rotation and 2.8 km of total dip-slip motion on the Kunkaak fault. Linear extrapolation of tilting and sedimentation rates suggests that faulting and basin deposition initiated 7.6-7.4 Ma, but an older history involving initially slower rates is permissible. The Kunkaak fault and Tecomate basin are truncated by NW-striking, dextral-oblique structures, including the Yawassag fault, which accrued > 8 km of post-6.4 Ma dextral displacement. The Coastal Sonora fault zone on mainland Sonora, which accrued several tens of kilometers of late Miocene dextral offset, continues to the northwest, across northeastern Isla Tiburón and offshore into the Gulf of California. The establishment of rapid, latest Miocene transtension in the Coastal Sonora fault zone was synchronous with the 8-7 Ma onset of transform faulting and basin formation along the nascent Pacific-North America plate boundary throughout northwestern Mexico and southern California. Plate boundary strain localized into this Gulf of California shear zone, a narrow transtensional belt that subsequently hosted the

  2. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

    Science.gov (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún

    2018-04-01

    Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

  3. High-resolution AUV mapping of the 2015 flows at Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Paduan, J. B.; Chadwick, W. W., Jr.; Clague, D. A.; Le Saout, M.; Caress, D. W.; Thomas, H. J.; Yoerger, D.

    2016-12-01

    Lava flows erupted in April 2015 at Axial Seamount were mapped at 1-m resolution with the AUV Sentry in August 2015 and the MBARI Mapping AUVs in July 2016 and observed and sampled with ROVs on those same expeditions. Thirty percent of terrain covered by new flows had been mapped by the MBARI AUVs prior to the eruption. Differencing of before and after maps (using ship-collected bathymetry where the AUV had not mapped before) allows calculation of extents and volumes of flows and shows new fissures. The maps reveal unexpected fissure patterns and shifts in the style of flow emplacement through a single eruption. There were 11 separate flows totaling 1.48 x 108 m3 of lava erupted from numerous en echelon fissures over 19 km on the NE caldera floor, on the NE flank, and down the N rift zone. Flows in and around the caldera have maximum thicknesses of 5-19 m. Most erupted as sheet flows and spread along intricate channels that terminated in thin margins. Some utilized pre-existing fissures. Some flows erupted from short fissures, while at least two longer new fissures produced little or no lava. A flow on the upper N rift has a spectacular lava channel flanked by narrow lava pillars supporting a thin roof left after the flow drained. A shatter ring still emanating warm fluid is visible in the map as a 15-m wide low cone. Hundreds of exploded pillows were observed but are not discernable in the bathymetry. The northern-most three flows deep on the N rift are similar in area to the others but comprise the bulk of the eruption volume. Differencing of ship-based bathymetry shows only these flows. Near the eruptive fissures they are sheet flows, but as they flowed downslope they built complexes of coalesced pillow mounds up to 67-128 m thick. Changes in flow morphology occurred through the course of the eruption. Large pillow mounds had molten cores that deformed as the eruption progressed. One flow began as a thin, effusive sheet flow but as the eruption rate decreased, a

  4. The Ongoing 2011 Eruption of Cordón Caulle (Southern Andes) and its Related Hazards

    Science.gov (United States)

    Amigo, A.; Lara, L. E.; Silva, C.; Orozco, G.; Bertin, D.

    2011-12-01

    On June 4, 2011, at 18:45 UTC, Cordón Caulle volcano (Southern Andes, 40.52S, 72.14W) erupted explosively after 51 years of quiescence. The last eruption occurred in 1960 and was triggered by the great Mw 9.5 Chile earthquake. The ongoing eruption started after 2 months of increased shallow seismicity as recorded by OVDAS (the volcano observatory at Sernageomin). This close monitoring effort allowed a timely eruption forecast with at least 3 hours of warning, which facilitated the crisis response. In addition to this successful performance, for the first time in Chile volcanic hazards were assessed in advance supporting the emergency management. In particular, tephra dispersal was daily forecasted using the ASHFALL advection-diffusion model and potential lahars and PDC impact zones were delineated according to numerical approaches. The first eruptive stage lasted 27 hours. It was characterized by ca. 15-km strong Plinian-like column, associated with the emission of 0.2 - 0.4 km3 of magma (DRE). Tephra fallout mostly occurred in Chile and Argentina, although fine particles and aerosols circumnavigated the globe twice, causing disruptions on air navigation across the Southern Hemisphere. The second ongoing eruptive stage has been characterized by persistent weak plumes and lava emission at effusion rates in the range of 20 and 60 m3/s, which total volume is estimated case of successful eruption forecast and hazards assessment but it is also an important case-study of silicic eruptions in an arc segment where mostly mafic magmas have been erupted during the Holocene.

  5. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    Science.gov (United States)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  6. Introduction to the structures and processes of subduction zones

    Science.gov (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn

  7. Seismicity of the Earth 1900-2013 East African Rift

    Science.gov (United States)

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    The East African Rift system (EARS) is a 3,000-km-long Cenozoic age continental rift extending from the Afar triple junction, between the horn of Africa and the Middle East, to western Mozambique. Sectors of active extension occur from the Indian Ocean, west to Botswana and the Democratic Republic of the Congo (DRC). It is the only rift system in the world that is active on a continent-wide scale, providing geologists with a view of how continental rifts develop over time into oceanic spreading centers like the Mid-Atlantic Ridge.

  8. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources.

    Science.gov (United States)

    Cuoco, Emilio; Tedesco, Dario; Poreda, Robert J; Williams, Jeremy C; De Francesco, Stefano; Balagizi, Charles; Darrah, Thomas H

    2013-01-15

    On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  10. A cascade of magmatic events during the assembly and eruption of a super-sized magma body

    Science.gov (United States)

    Allan, Aidan. S. R.; Barker, Simon J.; Millet, Marc-Alban; Morgan, Daniel J.; Rooyakkers, Shane M.; Schipper, C. Ian; Wilson, Colin J. N.

    2017-07-01

    We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10-15 kyr before the eruption. The mush top was quartz-bearing and as shallow as 3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of 840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of 790 °C, reflecting rapid cooling from the 840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3-5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic

  11. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  12. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    Science.gov (United States)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  13. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  14. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    Science.gov (United States)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic

  15. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  16. Monitoring of the Syrian rift valley using radon measurement technique in groundwater

    International Nuclear Information System (INIS)

    Jubeli, Y.; Al-Ali, M.A.; Al-Hilall, M.

    1999-07-01

    Radon concentrations in groundwater were measured from six monitoring stations that were distributed along the Syrian rift valley, with time intervals of one month over a span of more than six years from 1992 to 1998. This set of data was integrated and statistically handled in order to be used as a significant base for estimating the range of natural radon background variations in groundwater along the concerned zone. The results reveal that only few anomalous radon values were recorded during the given time-window, which might be caused by tectonic disturbances or otherwise in the study region. (author)

  17. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2011-12-01

    Full Text Available Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD, clear-sky and all-sky shortwave (SW radiative flux is quantified by first integrating each field for four years after the eruption, then calculating for each cumulative field the absolute or percent difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~75 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for Pinatubo-magnitude eruption, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to

  18. From continental to oceanic rifting in the Gulf of California

    Science.gov (United States)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo

    2017-11-01

    The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal

  19. On abrupt transpression to transtension transition in the South Baikal rift system (Tunka - South Baikal segment)

    Science.gov (United States)

    Sankov, Vladimir; Parfeevets, Anna; Lukhnev, Andrey; Miroshnitchenko, Andrey; Ashurkov, Sergey; Sankov, Alexey; Usynin, Leonid; Eskin, Alexander; Bryzhak, Evgeny

    2013-04-01

    This work addresses to relation of transpression and extension stress-strain conditions in intracontinental rift system. In our investigation we use a new structural, shallow geophysics, GPS geodetic data and paleostress reconstructions. The surroundings of southern tip of Siberian platform is the region of three Late Cenozoic structures conjugation: sublatitudinal Obruchev fault (OF) controlling the northern boundary of the South Baikal basin, NW trending Main Sayan fault (MSF) as the strike-slip boundary between Siberian platform and East Sayan block and WNW trending eastern segment of Tunka fault (TF) as part of the Tunka basins system northern boundary. A new evidences of superposition of compression and extension fault structures were revealed near the southern extremity of Baikal lake. We've find a very close vicinity of Late Pleistocene - Holocene strike-slip, thrust and normal faulting in the MSF and OF junction zone. The on-land Holocene normal faulting can be considered as secondary fault paragenesis within the main strike-slip zone (Sankov et al., 2009). Active strike-slip, thrust and reverse faulting characterize the MSF and TF junction zone. The transpression conditions are replaced very sharply by transtension and extension ones in eastern direction from zone of structures conjugation - the active normal faulting is dominated within the South Baikal basin. The Bystraya rift basin located in the west shows the tectonic inversion since Middle Pleistocene as a result of the strike-slip movements partitioning between TF and MSF and inset of edition compression stress. The active strike-slip and intrabasin extension conditions are dominated father to the west in Tunka basin. The results of our GPS measurements show the present day convergence and east movements of Khamar-Daban block and eastern Tunka basins relative to Siberian platform along MSF and TF with NE-SW shortening domination. The clear NW-SE divergence across Baikal basin is documented. Holocene

  20. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  1. A new perspective on evolution of the Baikal Rift

    Directory of Open Access Journals (Sweden)

    Victor D. Mats

    2011-07-01

    The three-stage model of the rift history does not rule out the previous division into two major stages but rather extends its limits back into time as far as the Maastrichtian. Our model is consistent with geological, stratigraphic, structural, and geophysical data and provides further insights into the understanding of rifting in the Baikal region in particular and continental rifting in general.

  2. Imaging rifting at the lithospheric scale in the northern East African Rift using S-to-P receiver functions

    Science.gov (United States)

    Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.

    2017-12-01

    The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.

  3. Recolonization of the intertidal and shallow subtidal community following the 2008 eruption of Alaska's Kasatochi Volcano

    Science.gov (United States)

    Jewett, S. C.; Drew, G. S.

    2014-03-01

    The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.

  4. Discussion on final rifting evolution and breakup : insights from the Mid Norwegian - North East Greenland rifted system

    Science.gov (United States)

    Peron-Pinvidic, Gwenn; Terje Osmundsen, Per

    2016-04-01

    In terms of rifted margin studies, the characteristics of the distal and outer domains are among the today's most debated questions. The architecture and composition of deep margins are rarely well constrained and hence little understood. Except from in a handful number of cases (eg. Iberia-Newfoundland, Southern Australia, Red Sea), basement samples are not available to decipher between the various interpretations allowed by geophysical models. No consensus has been reached on the basement composition, tectonic structures, sedimentary geometries or magmatic content. The result is that non-unique end-member interpretations and models are still proposed in the literature. So, although these domains mark the connection between continents and oceans, and thus correspond to unique stages in the Earth's lithospheric life cycle, their spatial and temporal evolution are still unresolved. The Norwegian-Greenland Sea rift system represents an exceptional laboratory to work on questions related to rifting, rifted margin formation and sedimentary basin evolution. It has been extensively studied for decades by both the academic and the industry communities. The proven and expected oil and gas potentials led to the methodical acquisition of world-class geophysical datasets, which permit the detailed research and thorough testing of concepts at local and regional scales. This contribution is issued from a three years project funded by ExxonMobil aiming at better understanding the crustal-scale nature and evolution of the Norwegian-Greenland Sea. The idea was to take advantage of the data availability on this specific rift system to investigate further the full crustal conjugate scale history of rifting, confronting the various available datasets. In this contribution, we will review the possible structural and sedimentary geometries of the distal margin, and their connection to the oceanic domain. We will discuss the definition of 'breakup' and introduce a first order conceptual

  5. Evidence for Strong Controls from Preexisting Structures on Border Fault Development and Basin Evolution in the Malawi Rift from 3D Lacustrine Refraction Data

    Science.gov (United States)

    Accardo, N. J.; Shillington, D. J.; Gaherty, J. B.; Scholz, C. A.; Ebinger, C.; Nyblade, A.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Ferdinand-Wambura, R.

    2017-12-01

    A long-standing debate surrounds controls on the development and ultimately abandonment of basin bounding border faults. The Malawi Rift in the the Western Branch of the East African Rift System presents an ideal location to investigate normal fault development. The rift is composed of a series of half graben basins bound by large border faults, which cross several terranes and pre-existing features. To delineate rift basin structure, we undertook 3D first arrival tomography across the North and Central basins of the Malawi Rift based on seismic refraction data acquired in Lake Malawi. The resulting 3D velocity model allows for the first-ever mapping of 3D basin structure in the Western Branch of the EAR. We estimate fault displacement profiles along the two border faults and find that each accommodated 7.2 km of throw. Previous modeling studies suggest that given the significant lengths (>140 km) and throws of these faults, they may be nearing their maximum dimensions or may have already been abandoned. While both faults accommodate similar throws, their lengths differ by 40 km, likely due to the influence of both preexisting basement fabric and large-scale preexisting structures crossing the rift. Over 4 km of sediment exists where the border faults overlap in the accommodation zone indicating that these faults likely established their lengths early. Portions of both basins contain packages of sediment with anomalously fast velocities (> 4 km/s), which we interpret to represent sediment packages from prior rifting episodes. In the Central Basin, this preexisting sediment traces along the inferred offshore continuation of the Karoo-aged Ruhuhu Basin that intersects Lake Malawi at the junction between the North and Central basins. This feature may have influenced the length of the border fault bounding the Central Basin. In the North Basin, the preexisting sediment is thicker ( 4 km) and likely represents the offshore continuation of a series of preexisting rift

  6. Kanda fault: A major seismogenic element west of the Rukwa Rift (Tanzania, East Africa)

    Science.gov (United States)

    Vittori, Eutizio; Delvaux, Damien; Kervyn, François

    1997-09-01

    The NW-SE trending Rukwa Rift, part of the East African Rift System, links the approximately N-S oriented Tanganyika and Nyassa (Malawi) depressions. The rift has a complex half-graben structure, generally interpreted as the result of normal and strike-slip faulting. Morphological and structural data (e.g. fault scarps, faceted spurs, tilting of Quaternary continental deposits, volcanism, seismicity) indicate Late Quaternary activity within the rift. In 1910 an earthquake of M = 7.4 (historically the largest felt in Africa) struck the Rukwa region. The epicentre was located near the Kanda fault, which affects the Ufipa plateau, separating the Rukwa depression from the south-Tanganyika basin. The geomorphic expression of the Kanda fault is a prominent fresh-looking scarp more than 180 km long, from Tunduma to north of Sumbawanga, that strikes roughly NW-SE, and dips constantly northeast. No evidence for horizontal slip was observed. Generally, the active faulting affects a very narrow zone, and is only locally distributed over several subparallel scarps. The height of the scarp progressively decreases towards the northwest, from about 40-50 m to a few metres north of Sumbawanga. Faulted lacustrine deposits exposed in a road cut near Kaengesa were dated as 8340 ± 700 and 13 600 ± 1240 radiocarbon years. These low-energy deposits now hang more than 15 m above the present-day valley floor, suggesting rapid uplift during the Holocene. Due to its high rate of activity in very recent times, the Kanda Fault could have produced the 1910 earthquake. Detailed paleoseismological studies are used to characterize its recent history. In addition, the seismic hazard posed by this fault, which crosses the fast growing town of Sumbawanga, must be seriously considered in urban planning.

  7. Commerce geophysical lineament - Its source, geometry, and relation to the Reelfoot rift and New Madrid seismic zone

    Science.gov (United States)

    Langenheim, V.E.; Hildenbrand, T.G.

    1997-01-01

    The Commerce geophysical lineament is a northeast-trending magnetic and gravity feature that extends from central Arkansas to southern Illinois over a distance of ???400 km. It is parallel to the trend of the Reelfoot graben, but offset ???40 km to the northwest of the western margin of the rift floor. Modeling indicates that the source of the aeromagnetic and gravity anomalies is probably a mafic dike swarm. The age of the source of the Commerce geophysical lineament is not known, but the linearity and trend of the anomalies suggest a relationship with the Reelfoot rift, which has undergone episodic igneous activity. The Commerce geophysical lineament coincides with several topographic lineaments, movement on associated faults at least as young as Quaternary, and intrusions of various ages. Several earthquakes (Mb > 3) coincide with the Commerce geophysical lineament, but the diversity of associated focal mechanisms and the variety of surface structural features along the length of the Commerce geophysical lineament obscure its relation to the release of present-day strain. With the available seismicity data, it is difficult to attribute individual earthquakes to a specific structural lineament such as the Commerce geophysical lineament. However, the close correspondence between Quaternary faulting and present-day seismicity along the Commerce geophysical lineament is intriguing and warrants further study.

  8. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  9. New Proposed Drilling at Surtsey Volcano, Iceland

    Science.gov (United States)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  10. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  11. Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone

    Directory of Open Access Journals (Sweden)

    M.L. Renjith

    2014-01-01

    Full Text Available A systematic account of micro-textures and a few compositional profiles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994–1995, from Barren Island Volcano, NE India ocean, are presented for the first time. The identified micro-textures can be grouped into two categories: (i Growth related textures in the form of coarse/fine-sieve morphology, fine-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fluctuated due to change in temperature or H2O or pressure or composition of the crystallizing melt; and (ii morphological texture, like glomerocryst, synneusis, swallow-tailed crystal, microlite and broken crystals, formed by the influence of dynamic behavior of the crystallizing magma (convection, turbulence, degassing, etc.. Each micro-texture has developed in a specific magmatic environment, accordingly, a first order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit. Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth. Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective self-mixing environment. Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit. Intermittent degassing and eruption related decompression have also played a major role in the final stage of crystallization dynamics.

  12. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    Science.gov (United States)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of

  13. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  14. An overview of the Icelandic Volcano Observatory response to the on-going rifting event at Bárðarbunga (Iceland) and the SO2 emergency associated with the gas-rich eruption in Holuhraun

    Science.gov (United States)

    Barsotti, Sara; Jonsdottir, Kristin; Roberts, Matthew J.; Pfeffer, Melissa A.; Ófeigsson, Benedikt G.; Vögfjord, Kristin; Stefánsdóttir, Gerður; Jónasdóttir, Elin B.

    2015-04-01

    been initialized daily and run to provide the dispersal of the SO2 volcanic cloud across the country. Daily 72-hours forecasts of SO2 ground concentration are available on the IMO webpage. If critical concentration are expected in inhabited areas, the meteorologist on duty is in charge to promptly issuing a specific warning on the web. The IMO web-page has also been improved with a registration form, open to the public, for reporting SO2 contamination and poor air quality conditions due to the eruption. A long-term hazard assessment for the high concentrations of SO2 affecting the country has also been requested from IVO (IMO) by the Icelandic Civil Protection. For this purpose two hazard zoning maps, showing the areas potentially affected by specific concentration levels have been produced. The two maps have been constructed for probability of occurrence equaling 50% and 90%, respectively. Based on all these information and advices, the Civil Protection is taking decisions for what concerns precautionary measures like for example the limitation of accessibility to the eruption site, the evacuation of exposed areas, and the issuing of warnings and information for mitigating discomforts to inhabitants and tourists.

  15. Real-time monitoring of seismicity and deformation during the Bárdarbunga rifting event and associated caldera subsidence

    Science.gov (United States)

    Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn

    2015-04-01

    We present a monitoring overview of a rifting event and associated caldera subsidence in a glaciated environment during the Bárðarbunga volcanic crisis. Following a slight increase in seismicity and a weak deformation signal, noticed a few months before the unrest by the SIL monitoring team, an intense seismic swarm began in the subglacial Bárðarbunga caldera on August 16 2014. During the following two weeks, a dyke intruded into the crust beneath the Vatnajökull ice cap, propagating 48 km from the caldera to the east-north-east and north of the glacier where an effusive eruption started in Holuhraun. The eruption is still ongoing at the time of writing and has become the largest eruption in over 200 years in Iceland. The dyke propagation was episodic with a variable rate and on several occasions low frequency seismic tremor was observed. Four ice cauldrons, manifestations of small subglacial eruptions, were detected. Soon after the swarm began the 7x11 km wide caldera started to subside and is still subsiding (although at slower rates) and has in total subsided over 60 meters. Unrest in subglacial volcanoes always calls for interdisciplinary efforts and teamwork plays a key role for efficient monitoring. Iceland has experienced six subglacial volcanic crises since modern digital monitoring started in the early 90s. With every crisis the monitoring capabilities, data interpretations, communication and information dissemination procedures have improved. The Civil Protection calls for a board of experts and scientists (Civil Protection Science Board, CPSB) to share their knowledge and provide up-to-date information on the current status of the volcano, the relevant hazards and most likely scenarios. The evolution of the rifting was monitored in real-time by the joint interpretation of seismic and cGPS data. The dyke propagation could be tracked and new, updated models of the dyke volume were presented at the CPSB meetings, often daily. In addition, deformation

  16. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jonsson, Sigurjon

    2016-01-01

    -field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit

  17. Structure of the la VELA Offshore Basin, Western Venezuela: AN Obliquely-Opening Rift Basin Within the South America-Caribbean Strike-Slip Plate Boundary

    Science.gov (United States)

    Blanco, J. M.; Mann, P.

    2015-12-01

    Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.

  18. The effect of tectonic evolution on lacustrine syn-rift sediment patters in Qikou Sag, Bohaiwan Basin, eastern China

    Science.gov (United States)

    Liao, Y.; Wang, H.; Xu, W.

    2013-12-01

    Normal fault arrays and associated relay ramps between two overlapping en-echelon normal faults are well known to control the deposition and distribution of sediments in alluvial, fluvial and deltaic systems in rift settings. The influence of transfer zones or relay ramps on sediment routes and dispersal patterns in subaqueous (deeper marine/lacustrine), however, is barely studied and hence less clear. Previous experimental studies indicate that subaqueous relay ramps may act as sediment transportation pathways if certain conditions are available. In this study, we integrate detailed structural and stratigraphic analysis with three-dimensional seismic data and limited well log data from the Qikou Sag to examine the tectonic evolution and the syn-rift sediment patterns response to fault growth and linkage in an active rift setting. Qikou Sag is located at the center of Huanghua Depression, Bohaiwan Basin of eastern China. Structurally, it is a typical continental rift basin characterized by a linked system of two NEE-SWW-striking half-grabens and one E-W-striking graben. Qikou sag is filled with Eocene-Oligocene syn-rift sediments and Miocene to Quaternary post-rift sediments. The Eocene-Oligocene rifting stage can be divided into early rifting period (43-36.5 Ma, the third member and second member of Shahejie Formation, Es3 and Es2), stable rifting period (36.5-29Ma, the first member of Shaehejie Formation, Es1) and fault-depressed diversionary period (29-24.6Ma, the Dongying Formation, Ed). This study focus on the early syn-rift, the third and second member of Shehejie Formation, which is mostly dark-grey mudstone interbedded with fine to coarse-grained sandstone deposited by large-scale turbidity currents in deep-lake. In particular, we use a combination of thickness variability and facies distributions, onlap patterns within a high-resolution sequence stratigraphic framework, integrated with structural geometry, fault activity and subsidence history analysis to

  19. Recolonization of the intertidal and shallow subtidal community following the 2008 eruption of Alaska’s Kasatochi Volcano

    Science.gov (United States)

    Jewett, S.C.; Drew, Gary S.

    2014-01-01

    The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.

  20. On the likelihood of future eruptions in the Chilean Southern Volcanic Zone: interpreting the past century's eruption record based on statistical analyses Probabilidades de futuras erupciones en la Zona Volcánica del Sur de Chile: interpretación estadística de la serie temporal de erupciones del siglo pasado

    Directory of Open Access Journals (Sweden)

    Yvonne Dzierma

    2012-09-01

    Full Text Available A sequence of 150 explosive eruptions recorded during the past century at the Chilean Southern Volcanic Zone (SVZ is subjected to statistical time series analysis. The exponential, Weibull, and log-logistic distribution functions are fit to the eruption record, separately for literature-assigned volcanic exploslvlty indices (VEI ≥ 2 and VEI ≥ 3. Since statistical tests confirm the adequacy of all the fits to describe the data, all models are used to estimate the likelihood of future eruptions. Only small differences are observed between the different distribution functions with regard to the eruption forecast, whereby the log-logistic distribution predicts the lowest probabilities. There is a 50% probability for VEI ≥ 2 eruptions to occur in the SVZ within less than a year, and 90% probability to occur within the next 2-3 years. For the larger VEI ≥ 3 eruptions, the 50% probability is reached in 3-4 years, while the 90% level is reached in 9-11 years.Se presenta un análisis estadístico de la serie temporal de 150 erupciones volcánicas explosivas registradas durante el siglo pasado en la Zona Volcánica del Sur de Chile. Se modeló el conjunto de erupciones mediante la distribución exponencial, de Weibull y log-logística, restringiendo el análisis a erupciones de índice de explosividad volcánica (IEV mayores a 2 y 3, respectivamente. Como los modelos pasan las pruebas estadísticas, los tres modelos se aplican para estimar la probabilidad de erupciones futuras. Se observan solo diferencias menores entre las predicciones mediante los distintos modelos, con la distribución log-logística dando las probabilidades más bajas. Para erupciones de IEV ≥ 2, la probabilidad de producirse una erupción dentro de un año es más del 50%, creciendo al 90% en 2-3 años. Para erupciones más grandes, de IEV ≥ 3, el 50% de probabilidad se alcanza dentro de 3-4 años, y el 90% dentro de 9-11 años.

  1. Investigating the Watukosek fault system using combined geophysical methods around Lusi eruption site

    Science.gov (United States)

    Husein, Alwi; Mazzini, Adriano; Lupi, Matteo; Mauri, Guillaume; Kemna, Andreas; Santosa, Bagus; Hadi, Soffian

    2017-04-01

    The Lusi mud eruption is located in the Sidoarjo area, Indonesia and is continuously erupting hot mud since its birth in May 2006. Lusi sits upon the Watukosek fault system that originates from the neighboring Arjuno-Welirang volcanic complex and develops in back-arc basin extending towards the NE of Java. After the 27-06-2006 M 6.3 earthquake this fault system was reactivated and hosted numerous hot mud eruptions in the Sidoarjo area. Until now, no targeted investigations have been conducted to understand the geometry of the faults system crossing the Lusi eruption site. A comprehensive combined electrical resistivity and self-potential (SP) survey was performed in the 7 km2 area inside the Lusi embankment that was built to contain the erupted mud and to prevent flooding of the surrounding roads and settlements. Additional profiles were also acquired outside the SW part of the embankment towards the Watukosek escarpment and on the west of Lusi. The goal of the geophysical survey is to map the near-surface occurrence of the Watukosek fault system, delineate its spatial pattern, and monitor its development. In total nine lines of resistivity measurements using Wenner and Wenner-Schlumberger configuration and SP measurements using roll-along technique were completed. The resistivity data were inverted into 2-D resistivity images with a maximum penetration depth of almost 200 m. The profiles collected in the region inside the Lusi embankment consistently reveal the presence of a region of 300 m in width (between 30-90 m depth) characterized by anomalous resistivities, which are lower than the values observed in the surrounding area. The profiles outside the embankment show consistent results. Here the contrast between anomalous low resistivity zones (perceived as the fault system) and the surrounding area with higher resistivity value is more pronounced. The profiles also shows that the distance between the main crater and the boundary of mud body observed on the

  2. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    Science.gov (United States)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  3. Earthquake induced variations in extrusion rate: A numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia)

    Science.gov (United States)

    Carr, Brett B.; Clarke, Amanda B.; de'Michieli Vitturi, Mattia

    2018-01-01

    Extrusion rates during lava dome-building eruptions are variable and eruption sequences at these volcanoes generally have multiple phases. Merapi Volcano, Java, Indonesia, exemplifies this common style of activity. Merapi is one of Indonesia's most active volcanoes and during the 20th and early 21st centuries effusive activity has been characterized by long periods of very slow (work has suggested that the peak extrusion rates observed in early June were triggered by the earthquake through either dynamic stress-induced overpressure or the addition of CO2 due to decarbonation and gas escape from new fractures in the bedrock. We use the numerical model to test the feasibility of these proposed hypotheses and show that, in order to explain the observed change in extrusion rate, an increase of approximately 5-7 MPa in magma storage zone overpressure is required. We also find that the addition of ∼1000 ppm CO2 to some portion of the magma in the storage zone following the earthquake reduces water solubility such that gas exsolution is sufficient to generate the required overpressure. Thus, the proposed mechanism of CO2 addition is a viable explanation for the peak phase of the Merapi 2006 eruption. A time-series of extrusion rate shows a sudden increase three days following the earthquake. We explain this three-day delay by the combined time required for the effects of the earthquake and corresponding CO2 increase to develop in the magma storage system (1-2 days), and the time we calculate for the affected magma to ascend from storage zone to surface (40 h). The increased extrusion rate was sustained for 2-7 days before dissipating and returning to pre-earthquake levels. During this phase, we estimate that 3.5 million m3 DRE of magma was erupted along with 11 ktons of CO2. The final phase of the 2006 eruption was characterized by highly variable extrusion rates. We demonstrate that those changes were likely controlled by failure of the edifice that had been confining

  4. Mantle convection patterns reveal the enigma of the Red Sea rifting

    Science.gov (United States)

    Petrunin, Alexey; Kaban, Mikhail; El Khrepy, Sami; Al-Arifi, Nassir

    2017-04-01

    Initiation and further development of the Red Sea rift (RSR) is usually associated with the Afar plume at the Oligocene-Miocene separating the Arabian plate from the rest of the continent. Usually, the RSR is divided into three parts with different geological, tectonic and geophysical characteristics, but the nature of this partitioning is still debatable. To understand origin and driving forces responsible for the tectonic partitioning of the RSR, we have developed a global mantle convection model based on the refined density model and viscosity distribution derived from tectonic, rheological and seismic data. The global density model of the upper mantle is refined for the Middle East based on the high-resolution 3D model (Kaban et al., 2016). This model based on a joint inversion of the residual gravity and residual topography provides much better constraints on the 3D density structure compared to the global model based on seismic tomography. The refined density model and the viscosity distribution based on a homologous temperature approach provide an initial setup for further numerical calculations. The present-day snapshot of the mantle convection is calculated by using the code ProSpher 3D that allows for strong lateral variations of viscosity (Petrunin et al., 2013). The setup includes weak plate boundaries, while the measured GPS velocities are used to constrain the solution. The resulting mantle flow patterns show clear distinctions among the mantle flow patterns below the three parts of the RSR. According to the modeling results, tectonics of the southern part of the Red Sea is mainly determined by the Afar plume and the Ethiopian rift opening. It is characterized by a divergent mantle flow, which is connected to the East African Rift activity. The rising mantle flow is traced down to the transition zone and continues in the lower mantle for a few thousand kilometers south-west of Afar. The hot mantle anomaly below the central part of the RSR can be

  5. The Tarawera eruption, Lake Rotomahana, and the origin of the Pink and White Terraces

    Science.gov (United States)

    Keam, Ronald F.

    2016-03-01

    This chapter introduces the historical and geographical background for the scientific studies at Tarawera and Lake Rotomahana in the Taupo Volcanic Zone of New Zealand as detailed in this Special Issue of the Journal of Volcanology and Geothermal Research. It also presents the results of some original investigations. These are based partly on the large body of historical information that exists about the 1886 Tarawera eruption and the geothermal system at Rotomahana, and partly on the results of dedicated geological studies by other researchers within the Okataina Volcanic Centre where the historical events took place. Specifically, the new material here presented includes a detailed analysis of a previously almost neglected narrative by the only observer to witness the 1886 eruption from the southeast of the erupting craters and leave an account of his observations. The importance of a co-operative interplay between pre-existing tectonic deformation and its responses to strong seismic activity induced by magmatic intrusion is emphasised as being a major determinant in the course of the eruption, and as the main trigger of the eruption explosions that were audible throughout half of the land area of New Zealand. The chapter then concentrates on showing how the recent geological studies, in conjunction with ideas on the architecture of geysers, permit an explanation to be given as to how the unique Pink and White Terraces came to be formed.

  6. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    Science.gov (United States)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  7. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. (paper)

  8. SYN-RIFT SANDSTONЕS: THE FEATURES OF BULK CHEMICAL COMPOSITIONS, AND POSITIONS ON PALEOGEODYNAMIC DISCRIMINANT DIAGRAMS

    Directory of Open Access Journals (Sweden)

    A. V. Maslov

    2018-01-01

    Full Text Available From the early 1980s, the data on the bulk chemical composition of sandstones and mudstones are actively involved for interpretation of the paleogeodynamic settings for sedimentary sequences. Discriminant diagrams such as K2O/Na2O–SiO2/Al2O3 [Maynard et al., 1982], (Fe2O3*+MgO–K2O/Na2O and others [Bhatia, 1983], SiO2–K2O/Na2O [Roser, Korsch, 1986], (K2O+Na2O–SiO2/20–(TiO2+Fe2O3+MgO [Kroonenberg, 1994] etc., are now widely used in regional investigations to classify terrigenous rocks from several paleogeodynamic settings (passive and active continental margins, oceanic and continental volcanic arcs etc. with a certain ‘percentage of consistency’. The first diagrams DF1–DF2 for syn-rift compositions were published in the early 2010s [Verma, Armstrong-Altrin, 2013]. This article analyzes the bulk chemical compositions of syn-rift sandstones from intracratonic rifts and rifts formed during the break-up of the Columbia and Gondwana supercontinents, rifts within volcanic arcs and related to the collapse of collision orogens (for example, Permian sandstones of the Malužiná formation, Western Carpathians, Slovakia. Our database includes the Neoproterozoic Uinta Mountain Group (USA, the Cretaceous Omdurman formation of the Khartoum Basin (Sudan, the siliciclastic deposits of the Kalahari Basin (East African rift zone, the sandstones of the Vindhyan Supergroup (India, the Neoproterozoic Ui Group of the Uchur-Maya region (Southeast Siberia, the Meso-Neoproterozoic Banxi Group (Southern China, the Mesoproterozoic Belt-Purcell Supergroup (USA, the Oronto and Bayfield Groups of the Midcontinent (USA, as well as the sandstones of the Upper Precambrian Ai and Mashak formations, and the metasedimentary rocks of the Arsha Group (Southern Urals. The article examines: (1 the position of the syn-rift sandstone compositions (fields on the log(SiO2/Al2O3–log(Na2O/K2O classification diagram and the F1–F2 diagram, which gives the possible

  9. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes - Lake Chapala, Citala Rift, western Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarate del Valle, Pedro F. [Departamento de Quimica, Universidad de Guadalajara - CUCEI, Ap. Postal 4-021, Guadalajara, Jalisco CP 44410 (Mexico); Simoneit, Bernd R.T. [Environmental and Petroleum Geochemistry Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Building 104, Corvallis, OR 97331-5503 (United States)]. E-mail: simoneit@coas.oregonstate.edu

    2005-12-15

    Lake Chapala is in the Citala Rift of western Mexico, which in association with the Tepic-Zacoalco and Colima Rifts, form the well-known neotectonic Jalisco continental triple junction. The rifts are characterized by evidence for both paleo- and active hydrothermal activity. At the south shore of the lake, near the Los Gorgos sublacustrine hydrothermal field, there are two tar emanations that appear as small islands composed of solid, viscous and black bitumen. Aliquots of tar were analyzed by GC-MS and the mixtures are comprised of geologically mature biomarkers and an UCM. PAH and n-alkanes are not detectable. The biomarkers consist mainly of hopanes, gammacerane, tricyclic terpanes, carotane and its cracking products, steranes, and drimanes. The biomarker composition and bulk C isotope composition ({delta} {sup 13}C = -21.4%) indicate an organic matter source from bacteria and algae, typical of lacustrine ecosystems. The overall composition of these tars indicates that they are hydrothermal petroleum formed from lacustrine organic matter in the deeper sediments of Lake Chapala exceeding 40 ka ({sup 14}C) in age and then forced to the lakebed by tectonic activity. The absence of alkanes and the presence of an UCM with mature biomarkers are consistent with rapid hydrothermal oil generation and expulsion at temperatures of 200-250 deg. C. The occurrence of hydrothermal petroleum in continental rift systems is now well known and should be considered in future energy resource exploration in such regions.

  10. Topographic and Structural Effects on Dike Propagation and Eruption

    International Nuclear Information System (INIS)

    E. Gaffney

    2006-01-01

    We have modeled magma flow in a dike rising in a crack whose strike runs from a highland or ridge to an adjacent lowland to determine the effect of topography on the flow, using a 3D hydromechanical code, FLAC3D (http://www.itascacg.com). The aperture, a, is calculated as a variable in a sheet of zones of fixed width d during the simulation as a function of model deformation. The permeability tensor of each zone is adjusted at each time step in response to the pressure in the cell according to the relationship k ij = (delta) ij α 3 /12μd, which is obtained by equating the flow through the layer of permeable zones from Darcy's law with Poiseuille's law under the same gradient. The fluid viscosity is μ, and the crack width is a We found a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. For the 4-km long strike length we modeled, eruption was offset between 500 and 1250 m toward the lowland from the center of the strike length. Separation of the geometric effect of the topography from the topographic overburden effect on lateral confining stresses at the crack indicates that both contribute to the effect. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. If the strike on the dike is parallel to the length of a ridge, the effect described here will not operate. Another possibility is that the strike length of a dike may be so short that its strike does not extend far beyond the edge of the ridge. A separate simulation used a 2D discrete element code, UDEC (http://www.itascacg.com) to investigate the interaction of magma in a vertical dike with normal faults and stratigraphy. We found that steeper faults are more easily intruded and that, as the magma rises to within a few hundred meters of the surface, sills are intruded into stratigraphic discontinuities in the hanging wall but not into the foot wall. The particular

  11. Guided tooth eruption: Comparison of open and closed eruption techniques in labially impacted maxillary canines

    Directory of Open Access Journals (Sweden)

    S M londhe

    2014-01-01

    Full Text Available Background: After third molars, the maxillary canines are the most commonly impacted permanent teeth and one-third of these are labial impactions. Impacted canines often require orthodontic guidance in the eruption. This study was conducted to assess the posttreatment results of surgically exposed and orthodontically aligned labially impacted maxillary canines comparing two different surgical techniques. Materials and Methods: The study was conducted in two phases, a surgical phase and an orthodontic phase. In surgical phase, events during surgical exposure and recovery of 31 patients with labially impacted maxillary canine were recorded. Patients were managed with open and closed eruption technique. The assessment included comparison of two techniques of surgical exposure, postoperative pain, mobility, vitality, periodontal health, level of impaction, and duration of orthodontic treatment. Results: The postoperative recovery was longer after open eruption than close eruption technique (P = 0.000. Postoperative pain experienced by patients was similar, but regression of pain was faster in closed eruption technique. The mean surgical time for open eruption technique was lesser when compared with closed eruption technique (P = 0.000. The total duration of orthodontic treatment was directly dependent upon the level of impaction, with deeper level of impaction having longer duration of orthodontic treatment. The mobility and vitality of guided canine was similar in both techniques. Conclusion: The closed eruption technique was a longer surgical procedure, but the postoperative pain regression was faster. The duration of orthodontic treatment was longer with deeper level of impaction. The closed eruption surgical techniques provide better periodontal tissues around the guided erupted teeth.

  12. Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events

    Science.gov (United States)

    Mori, A.; Kumagai, H.

    2016-12-01

    It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.

  13. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  14. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-03-31

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  15. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-01-01

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  16. Seismic investigation of an ocean-continent transition zone in the northern South China Sea

    Science.gov (United States)

    Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.

    2011-12-01

    Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.

  17. Consequences of magma eruption dynamics: Intraflow variations in petrography and mineral chemistry within a single eruptive unit from Whitewater Canyon, Oregon

    Science.gov (United States)

    Ustunisik, G. K.; Nielsen, R. L.

    2012-12-01

    Individual lava flows are sometimes characterized by progressive changes in petrography and mineral chemistry which have been attributed to progressive magma chamber evacuation. In the case of Whitewater Canyon flow, a glacially quenched andesite unit on the NW flank of Mt. Jefferson, significant changes have been observed in phenocryst content and mineral chemistry within a transect from the early erupted components (inferred by flow morphology to be quenched against glacial ice ~10000 ybp), to the top of the 30 m thick flow unit. With the increasing distance from the quenched interface, the matrix changes from glassy to microcrystalline. The matrix material is generally similar in composition to the glassy melt inclusions rhyolitic in composition yet relatively degassed (lower Cl, S). Based on their morphology, we have identified at least 4 populations of plagioclase phenocrysts within the single flow: (1) Relatively unzoned high An cores (>An80) with oscillatory overgrowth, (2) Lower An cores (An50-60), associated with dacitic melt inclusions, (3) Cellular low An cores (An50-60) with higher An overgrowths (~An65-75), and (4) Lath shaped, sometimes oscillatory zoned moderately high An phenocrysts (An65-75) -often associated with olivine:cpx:plagioclase glomerocrysts. Melt inclusions are present in orthopyroxene and plagioclase, but only in the earliest erupted samples (within 5-10 meters of the quenched interface). This mafic component, characterized by olivine, intermediate plagioclase (An60-75), clinopyroxene, orthopyroxene, and oxides, was present at a range of scales from glomerocrysts to 10 cm+ enclaves. Amphibole and quartz are present only in samples from the interior of the flow unit. The width of reaction rims on amphibole increase as one progress upwards towards the flow interior. Our initial conclusions are this eruptive unit represents the progressive evacuation of a shallow magma chamber where the upper parts of the chamber had already been partially

  18. Basement control in the development of the early cretaceous West and Central African rift system

    Science.gov (United States)

    Maurin, Jean-Christophe; Guiraud, René

    1993-12-01

    The structural framework of the Precambrian basement of the West and Central African Rift System (WCARS) is described in order to examine the role of ancient structures in the development of this Early Cretaceous rift system. Basement structures are represented in the region by large Pan-African mobile belts (built at ca. 600 Ma) surrounding the > 2 Ga West African, Congo and Sao Francisco cratons. Except for the small Gao trough (eastern Mali) located near the contact nappe of the Pan-African Iforas suture zone along the edge of the West African craton, the entire WCARS is located within the internal domains of the Pan-African mobile belts. Within these domains, two main structural features occur as the main basement control of the WCARS: (1) an extensive network of near vertical shear zones which trend north-south through the Congo, Brazil, Nigeria, Niger and Algeria, and roughly east-west through northeastern Brazil and Central Africa. The shear zones correspond to intra-continental strike-slip faults which accompanied the oblique collision between the West African, Congo, and Sao Francisco cratons during the Late Proterozoic; (2) a steep metamorphic NW-SE-trending belt which corresponds to a pre-Pan-African (ca. 730 Ma) ophiolitic suture zone along the eastern edge of the Trans-Saharian mobile belt. The post-Pan-African magmatic and tectonic evolution of the basement is also described in order to examine the state of the lithosphere prior to the break-up which occurred in the earliest Cretaceous. After the Pan-African thermo-tectonic event, the basement of the WCARS experienced a long period of intra-plate magmatic activity. This widespread magmatism in part relates to the activity of intra-plate hotspots which have controlled relative uplift, subsidence and occasionally block faulting. During the Paleozoic and the early Mesozoic, this tectonic activity was restricted to west of the Hoggar, west of Aïr and northern Cameroon. During the Late Jurassic

  19. Signature recognition for rift structures of different sediment strata in ordos basin

    International Nuclear Information System (INIS)

    Zhao Xigang

    2006-10-01

    The rift structure weak information of high Bouguer gravity anomaly data among different Sediment strata are extracted By the horizontal gradient Maximum modulus, the wavelet variation, stripped gravity anomaly of basement and interfaces above/under researched layer, image processing method. So the linear rift structures of different Sediment strata are recognized on data images, such as Cretaceous, Jurassic, Triassic, Permian and Carboniferous, Ordovician System. Development rifts of different Sediment strata occur in stereo structure with quasi-uniform spacing, the rift density of above Sediment stratum is more than lower in different Sediment strata, but the north rift density of the same Sediment stratum is less than south's. It is useful to study rift structure and co-explore for oil, gas, coal and uranium resources in Ordos Basin. (authors)

  20. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska

    Science.gov (United States)

    Larsen, Jessica F.

    2016-11-01

    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  1. Co-eruptive subsidence and post-eruptive uplift associated with the 2011-2012 eruption of Puyehue-Cordón Caulle, Chile, revealed by DInSAR

    Science.gov (United States)

    Euillades, Pablo Andrés; Euillades, Leonardo Daniel; Blanco, Mauro Hugo; Velez, María Laura; Grosse, Pablo; Sosa, Gustavo Javier

    2017-09-01

    The 2011-2012 eruption of the Puyehue-Cordón Caulle volcanic complex, southern Andes (Chile), was associated with complex surface deformation affecting an area of roughly 50 by 50 km. We report here differential SAR interferometry (DInSAR) results of pre-, co- and post-eruptive deformation from ENVISAT ASAR, COSMO-Skymed, and ALOS-2/PALSAR scenes acquired between early 2011 and early 2017. No clear pre-eruptive deformation is observed during five months before the eruption, although some patterns could be interpreted as showing inflation occurring between April and May 2011. Co-eruptive interferograms show a complex deformation pattern consisting in a major deflation lobe (120 cm LOS lengthening) centered 10 km NW of the eruption vent accompanied by smaller uplift and subsidence regions in the vicinity of the vent. Re-inflation began immediately after the end of the eruption. A first pulse lasted 3 years between 2012 and 2015, accumulating 70 cm uplift. We detect here a second pulse, beginning in June 2016 and still ongoing in February 2017, reaching 12 cm in half a year. Inverse modeling with spherical cavity and spheroidal sources locates re-inflation sources at a depth ranging between 8 and 11 km under the surface. It suggests re-filling of the reservoir occurring after the draining of a shallow magma chamber during the 2011-2012 eruption.

  2. The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME

    Science.gov (United States)

    Man, W.; Zuo, M.

    2017-12-01

    The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.

  3. Eruptive history of Mount Katmai, Alaska

    Science.gov (United States)

    Hildreth, Edward; Fierstein, Judith

    2012-01-01

    Mount Katmai has long been recognized for its caldera collapse during the great pyroclastic eruption of 1912 (which vented 10 km away at Novarupta in the Valley of Ten Thousand Smokes), but little has previously been reported about the geology of the remote ice-clad stratovolcano itself. Over several seasons, we reconnoitered all parts of the edifice and sampled most of the lava flows exposed on its flanks and caldera rim. The precipitous inner walls of the 1912 caldera remain too unstable for systematic sampling; so we provide instead a photographic and interpretive record of the wall sequences exposed. In contrast to the several andesite-dacite stratovolcanoes nearby, products of Mount Katmai range from basalt to rhyolite. Before collapse in 1912, there were two overlapping cones with separate vent complexes and craters; their products are here divided into eight sequences of lava flows, agglutinates, and phreatomagmatic ejecta. Latest Pleistocene and Holocene eruptive units include rhyodacite and rhyolite lava flows along the south rim; a major 22.8-ka rhyolitic plinian fall and ignimbrite deposit; a dacite-andesite zoned scoria fall; a thick sheet of dacite agglutinate that filled a paleocrater and draped the west side of the edifice; unglaciated leveed dacite lava flows on the southeast slope; and the Horseshoe Island dacite dome that extruded on the caldera floor after collapse. Pre-collapse volume of the glaciated Katmai edifice was ∼30 km3, and eruptive volume is estimated to have been 57±13 km3. The latter figure includes ∼40±6 km3 for the edifice, 5±2 km3 for off-edifice dacite pyroclastic deposits, and 12±5 km3 for the 22.8-ka rhyolitic pyroclastic deposits. To these can be added 13.5 km3 of magma that erupted at Novarupta in 1912, all or much of which is inferred to have been withdrawn from beneath Mount Katmai. The oldest part of the edifice exposed is a basaltic cone, which gave a 40Ar/39Ar plateau age of 89 ± 25 ka.

  4. Premature dental eruption: report of case.

    LENUS (Irish Health Repository)

    McNamara, C M

    2011-08-05

    This case report reviews the variability of dental eruption and the possible sequelae. Dental eruption of the permanent teeth in cleft palate children may be variable, with delayed eruption the most common phenomenon. A case of premature dental eruption of a maxillary left first premolar is demonstrated, however, in a five-year-old male. This localized premature dental eruption anomaly was attributed to early extraction of the primary dentition, due to caries.

  5. Magma storage constrains by compositional zoning of plagioclase from dacites of the caldera forming eruptions of Vetrovoy Isthmus and Lvinaya Past’ Bay (Iturup Island, Kurile Islands)

    Science.gov (United States)

    Maksimovich, I. A.; Smirnov, S. Z.; Kotov, A. A.; Timina, T. Yu; Shevko, A. V.

    2017-12-01

    The Vetrovoy Isthmus and the Lvinaya Past’ Bay on the Iturup island (Kuril island arc) are the results of large Plinian eruptions of compositionally similar dacitic magmas. This study is devoted to a comparative analysis of the storage and crystallization conditions for magma reservoirs, which were a source of large-scale explosive eruptions. The plagioclase is most informative mineral in studying of the melt evolution. The studied plagioclases possess a complex zoning patterns, which are not typical for silicic rocks in island-arc systems. It was shown that increase of Ca in the plagioclase up to unusually high An95 is related to increase of H2O pressure in both volcanic magma chambers. The study revealed that minerals of the Vetrovoy Isthmus and Lvinaya Past’ crystallized from compositionally similar melts. Despite the compositional similarity of the melts, the phenocryst assemblage of the Lvinaya Past’ differs from the Vetrovoy Isthmus by the presence of the amphibole, which indicates that the pressure in the magmatic chamber exceeded 1-2 kbar at a 4-6 wt. % of H2O in the melt. The rocks of the Vetrovoy Isthmus do not contain amphibole phenocrysts, but melt and fluid inclusions assemblages in plagioclase demonstrate that the magma degassed in the course of evolution. This is an indication that the pressure did not exceed significantly 1-2 kbar.

  6. Premature eruption of the premolars.

    Science.gov (United States)

    Camm, J H; Schuler, J L

    1990-01-01

    This paper presents a variety of cases in which very early loss of abscessed primary molars caused early eruption of the permanent successors. Clinical sequelae including ectopic eruption, alteration of eruption sequence, arch-length inadequacy and tooth impaction are illustrated by five case reports.

  7. Reconsidering Volcanic Ocean Island Hydrology: Recent Geophysical and Drilling Results

    Science.gov (United States)

    Thomas, D. M.; Pierce, H. A.; Lautze, N. C.

    2017-12-01

    Recent results of geophysical surveys and exploratory drilling in Hawaii have suggested that Hawaii's hydrogeology may be more complex than has been generally recognized. Instead of a more-or-less homogeneous pile of highly permeable eruptive basalts that are intermittently punctuated by volcanic dikes confined to calderas and rift zones, we are finding that dike compartmentalization is occurring outside of recognized rift zones, leading to significantly higher volumes of stored groundwater within the island. Analysis of recent geophysical surveys have shown local water table elevations that are substantially higher than can be accounted for by the high hydraulic conductivities of Hawaiian basalts. Recent diamond wireline drilling results have also shown that sub-horizontal variations in permeability, associated with significant changes in eruptive character (e.g. explosive vs effusive activity) are acting as significant perching and confining bodies over significant aerial extents and suggest that these features also contribute to increased storage of recharge. Not only is storage much higher than previously assumed, these features appear to impact subsurface groundwater flow in ways that are not accounted for in traditional methods of computing sustainable yields for near shore aquifers: where buried confining formations extend to depths well below sea level, higher elevation recharge is being intercepted and diverted to deep submarine groundwater discharge well below depths that are typically investigated or quantified. We will provide a summary of the recent geophysical survey results along with a revised conceptual model for groundwater circulation within volcanic ocean islands.

  8. Prediction of Solar Eruptions Using Filament Metadata

    Science.gov (United States)

    Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal

    2018-05-01

    We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.

  9. From an ocean floor wrench zone origin to transpressional tectonic emplacement of the Sithonia ophiolite, eastern Vardar Suture Zone, northern Greece

    Science.gov (United States)

    Bonev, Nikolay; Filipov, Petyo

    2017-12-01

    In the Hellenides of northern Greece, the Sithonia back-arc ophiolite constitute an element of the Vardar suture zone against the Chortiatis island arc magmatic suite, the Melissochori Formation and the Serbo-Macedonian Massif further north at the Mesozoic continental margin of Eurasia. A granodiorite from the Chortiatis island arc magmatic suite crystallized at 160 Ma as derived from new U-Pb zircon geochronology and confirms the end of arc magmatic activity that started at around 173 Ma. Located southerly of the Chortiatis island arc magmatic suite, the Sithonia ophiolite had igneous life from 159 to 149 Ma, and the ophiolite interfinger with clastic-carbonate Kimmeridgian sediments. Magmatic structures (i.e., sheeted dykes) in the ophiolite witness for NE-trending rift axis, while the transform faults and fracture zones sketch NW-SE transcurrent transtension-like propagation of the rift-spreading center at Sithonia that is consistent with a dextral wrench corridor already proposed for the ophiolite origin in the eastern Vardar zone. The tectonic emplacement of the Sithonia ophiolite involved dextral ENE to SE strike-slip sense of shear and SW and NE reverse thrust sense of shear on mostly steep foliation S1, subhorizontal lineation L1 and associated variably inclined F1 fold axes. This structural grain and kinematics are shared by adjacent Chortiatis island arc magmatic suite and the Melissochori Formation. The coexistence of strike-parallel and thrust components of displacement along discrete dextral strike-slip shear zones and internal deformation of the mentioned units is interpreted to result from a bulk dextral transpressive deformation regime developed in greenschist-facies metamorphic conditions. The back-arc ocean floor previous structural architecture with faults and fracture zones where Kimmeridgian sediments deposited in troughs was used by discrete strike-slip shear zones in which these sediments involved, and the shear zones become the sites for

  10. The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting

    Science.gov (United States)

    Stockli, D. F.; Bosworth, W.

    2017-12-01

    The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no

  11. Tectono-stratigraphy of the Lower Cretaceous Syn-rift Succession in Bongor Basin, Chad: Insights into Structural Controls on Sedimentary Infill of a Continental Rift

    Science.gov (United States)

    Chen, C.; Ji, Y.; Wei, X.; An, F.; Li, D.; Zhu, R.

    2017-12-01

    In a rift basin, the dispersal and deposition of sediments is significantly influenced by the paleo-topography, which is highly controlled by the evolution and interaction of normal faults in different scales. To figure out the impact of faults evolution and topographic elements towards sedimentary fillings, we investigated the Lower Cretaceous syn-rift package in Bongor Basin, south of Chad Republic. Constrained with 2D and 3D seismic data, core data and logging information, a sequence stratigraphy architecture and a variety of depositional systems are recognized, including fan delta, braided delta, sub-lacustrine fan and lacustrine system. We also studied the spatial distribution and temporal evolution of clastic depositional systems of the syn-rift complex, and valuable insights into structural controls of sequence architectures and depositional systems are provided. During the evolution of rift basin, marginal structures such as relay ramps and strike-slipping boundary transfer fault are major elements that influence the main sediments influx points. Release faults in the hanging-wall could form a differential evolution pattern for accommodation, and effect the deposition systems in the early stage of rift evolution. Oblique crossing-faults, minor faults that develop on the erosional uplift in the interior foot-wall, would cut the uplifts and provide faulted-through paths for the over-filled sediments in the accommodation space, making it possible to develop sedimentary systems towards the center of basin during the early stage of rift evolution, although the origins of such minor faults still need further discussion. The results of this research indicate that different types of fault interactions have a fundamental control on patterns of sediment dispersal during early stage of rift basins.

  12. Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii

    Science.gov (United States)

    Hammer, Julia E.; Coombs, Michelle L.; Shamberger, Patrick J.; Kimura, Jun-Ichi

    2006-01-01

    Two manned submersible dives examined the Hualalai Northwest rift zone and an elongate ridge cresting at 3900 mbsl during a 2002 JAMSTEC cruise. The rift zone flank at dive site S690 (water depth 3412–2104 m) is draped by elongated and truncated pillow lavas. These olivine-rich tholeiitic lavas are compositionally indistinguishable from those examined further south along the bench, except that they span a wider range in dissolved sulfur content (200–1400 ppm). The elongate ridge investigated in dive S692, located at the base of the bench, is a package of distinct lithologic units containing volcaniclastic materials, glassy pillow breccias, and lava blocks; these units contain a range of compositions including tholeiitic basalt, transitional basalt, and hawaiite. The textures, compositions, and stratigraphic relationships of materials within the elongate ridge require that a variety of transport mechanisms juxtaposed materials from multiple eruptions into individual beds, compacted them into a coherent package of units, and brought the package to its present depth 10 km from the edge of the North Kona slump bench.

  13. Geologic map and cross sections of the Embudo Fault Zone in the Southern Taos Valley, Taos County, New Mexico

    Science.gov (United States)

    Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte

    2016-01-01

    The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to

  14. Transition From a Magmatic to a Tectonic Rift System : Seismotectonics of the Eyasi- Manyara Region, Northern Tanzania, East Africa

    Science.gov (United States)

    Albaric, J.; Perrot, J.; Deschamps, A.; Deverchere, J.; Wambura, R. F.; Tiberi, C.; Petit, C.; Le Gall, B.; Sue, C.

    2008-12-01

    How a rift system propagates and breaks throughout a cold and thick continental crust remains poorly known. Only few places allow to address the question. In the East African Rift System (EARS), the eastern magma- rich branch abruptly splits into two amagmatic arms (the Eyasi and Manyara faulted systems), south of a E-W volcanic chain (the Ngorongoro-Kilimanjaro transverse volcanic belt), as crossing the Archaean Tanzanian craton margin. We present the first detailed seismotectonic picture of the Eyasi-Manyara rifts where a network of ~25 seismometers was settled from June to November 2007 (SEISMO-TANZ'07 seismological experiment). From the seismicity recorded by the network, we identify active faults and discuss the stress field framework obtained from the inversion of focal mechanisms. We use the determined depth of earthquakes (1) to discuss the crustal structure of the transition zone from a magma-rich to a magma-starved section of the EARS and (2) to further emphasize the rheological control on depth distributions in the EARS (Albaric et al., Tectonophysics, 2008). The stress and strain directions deduced from our work are also used to question recently published kinematics and conceptual models of the EARS (Calais et al., Geol. Soc. London, 2006 ; Le Gall et al., Tectonophysics, 2008).

  15. Serreta 1998-2001 submarine volcanic eruption, offshore Terceira (Azores): Characterization of the vent and inferences about the eruptive dynamics

    Science.gov (United States)

    Casas, David; Pimentel, Adriano; Pacheco, José; Martorelli, Eleonora; Sposato, Andrea; Ercilla, Gemma; Alonso, Belen; Chiocci, Francesco

    2018-05-01

    High-resolution bathymetric data and seafloor sampling were used to characterize the most recent volcanic eruption in the Azores region, the 1998-2001 Serreta submarine eruption. The vent of the eruption is proposed to be an asymmetric topographic high, composed of two coalescing volcanic cones, underlying the location where lava balloons had been observed at the sea surface during the eruption. The volcanic products related to the 1998-2001 eruption are constrained to an area of 0.5 km2 around the proposed vent position. A submarine Strombolian-style eruption producing basaltic lava balloons, ash and coarse scoriaceous materials with limited lateral dispersion led to the buildup of the cones. The 1998-2001 Serreta eruption shares many similarities with other intermediate-depth lava balloon-forming eruptions (e.g., the 1891 eruption offshore Pantelleria and the 2011-2012 eruption south of El Hierro), revealing the particular conditions needed for the production of this unusual and scarcely documented volcanic product.

  16. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    Science.gov (United States)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  17. Shyok Suture Zone, N Pakistan: late Mesozoic Tertiary evolution of a critical suture separating the oceanic Ladakh Arc from the Asian continental margin

    Science.gov (United States)

    Robertson, Alastair H. F.; Collins, Alan S.

    2002-02-01

    The Shyok Suture Zone (Northern Suture) of North Pakistan is an important Cretaceous-Tertiary suture separating the Asian continent (Karakoram) from the Cretaceous Kohistan-Ladakh oceanic arc to the south. In previously published interpretations, the Shyok Suture Zone marks either the site of subduction of a wide Tethyan ocean, or represents an Early Cretaceous intra-continental marginal basin along the southern margin of Asia. To shed light on alternative hypotheses, a sedimentological, structural and igneous geochemical study was made of a well-exposed traverse in North Pakistan, in the Skardu area (Baltistan). To the south of the Shyok Suture Zone in this area is the Ladakh Arc and its Late Cretaceous, mainly volcanogenic, sedimentary cover (Burje-La Formation). The Shyok Suture Zone extends northwards (ca. 30 km) to the late Tertiary Main Karakoram Thrust that transported Asian, mainly high-grade metamorphic rocks southwards over the suture zone. The Shyok Suture Zone is dominated by four contrasting units separated by thrusts, as follows: (1). The lowermost, Askore amphibolite, is mainly amphibolite facies meta-basites and turbiditic meta-sediments interpreted as early marginal basin rift products, or trapped Tethyan oceanic crust, metamorphosed during later arc rifting. (2). The overlying Pakora Formation is a very thick (ca. 7 km in outcrop) succession of greenschist facies volcaniclastic sandstones, redeposited limestones and subordinate basaltic-andesitic extrusives and flow breccias of at least partly Early Cretaceous age. The Pakora Formation lacks terrigenous continental detritus and is interpreted as a proximal base-of-slope apron related to rifting of the oceanic Ladakh Arc; (3). The Tectonic Melange (ocean ridge-type volcanics and recrystallised radiolarian cherts, interpreted as accreted oceanic crust. (4). The Bauma-Harel Group (structurally highest) is a thick succession (several km) of Ordovician and Carboniferous to Permian-Triassic, low

  18. Stress development in heterogenetic lithosphere: Insights into earthquake processes in the New Madrid Seismic Zone

    Science.gov (United States)

    Zhan, Yan; Hou, Guiting; Kusky, Timothy; Gregg, Patricia M.

    2016-03-01

    The New Madrid Seismic Zone (NMSZ) in the Midwestern United States was the site of several major M 6.8-8 earthquakes in 1811-1812, and remains seismically active. Although this region has been investigated extensively, the ultimate controls on earthquake initiation and the duration of the seismicity remain unclear. In this study, we develop a finite element model for the Central United States to conduct a series of numerical experiments with the goal of determining the impact of heterogeneity in the upper crust, the lower crust, and the mantle on earthquake nucleation and rupture processes. Regional seismic tomography data (CITE) are utilized to infer the viscosity structure of the lithosphere which provide an important input to the numerical models. Results indicate that when differential stresses build in the Central United States, the stresses accumulating beneath the Reelfoot Rift in the NMSZ are highly concentrated, whereas the stresses below the geologically similar Midcontinent Rift System are comparatively low. The numerical observations coincide with the observed distribution of seismicity throughout the region. By comparing the numerical results with three reference models, we argue that an extensive mantle low velocity zone beneath the NMSZ produces differential stress localization in the layers above. Furthermore, the relatively strong crust in this region, exhibited by high seismic velocities, enables the elevated stress to extend to the base of the ancient rift system, reactivating fossil rifting faults and therefore triggering earthquakes. These results show that, if boundary displacements are significant, the NMSZ is able to localize tectonic stresses, which may be released when faults close to failure are triggered by external processes such as melting of the Laurentide ice sheet or rapid river incision.

  19. Transient shallow reservoirs beneath small eruptive centres: Constraints from Mg-Fe interdiffusion in olivine

    Science.gov (United States)

    Morgado, E.; Parada, M. A.; Morgan, D. J.; Gutiérrez, F.; Castruccio, A.; Contreras, C.

    2017-11-01

    Small eruptive centres commonly have more primitive lavas than those associated with stratovolcanoes, an observation that has been taken to indicate a short magma residence in the crust relative to those reservoirs below stratovolcanoes. The Caburgua cones of the Andean Southern Volcanic Zone from a basaltic small eruptive centre where this can be tested. Here, we use MELTS simulations, and the available thermobarometry data to determine the conditions of olivine crystal rim formation and the Mg-Fe diffusion modelling to determine the magma residence times of those rims in the crust. Results yield timescales varying from a few days to dozens of days, and if freezing is to be avoided, can only be explained by some form of storage or slow transport through at least one shallow magma body. The longest durations of magma residence seen in the olivine rim zones are up to 471 days. These timescales are shorter than those estimated (decadal) from the nearby, more-differentiated, and well-established stratovolcano, Villarrica, which has a dominantly basaltic andesite composition. For Caburgua cones, we propose the existence of a transient reservoir, in contrast to a long-lived reservoir such as that inferred beneath the adjacent Villarrica stratovolcano.

  20. Volcanology and hazards of phreatomagmatic basaltic eruptions

    DEFF Research Database (Denmark)

    Schmith, Johanne

    Iceland is one of the most active terrestrial volcanic regions on Earth with an average of more than 20 eruptions per century. Around 80% of all events are tephra generating explosive eruptions, but less than 10 % of all known tephra layers have been mapped. Recent hazard assessment models show...... that the two key parameters for hazard assessment modeling are total grain size distribution (TGSD) and eruptive style. These two parameters have been determined for even fewer eruptive events in Iceland. One of the most hazardous volcanoes in Iceland is Katla and no data set of TGSD or other eruptive...... parameters exist. Katla has not erupted for 99 years, but at least 2 of the 20 eruptions since the settlement of Iceland in 871 have reached Northern Europe as visible tephra fall. These eruptions occurred in 1755 and 1625 and remain enigmatic both in terms of actual size and eruption dynamics. This work...

  1. Constraints on the Lithospheric Strength at Volcanic Rifted Margins from the Geometry of Seaward Dipping Reflectors Using Analytic and Numerical Models

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2017-12-01

    Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric

  2. Eruption products of the 1883 eruption of Krakatau and their final settlement

    Directory of Open Access Journals (Sweden)

    Izumi Yokoyama

    2015-06-01

    Full Text Available Firstly the volume of pyroclastic ejecta during the 1883 eruption of Krakatau is re-examined. To revise the volume of flow deposits, the author basically follows Verbeek’s observation while to estimate the fall deposits, as the last resort, the author assumes that volume ratios fall / flow are common to similar caldera eruptions, and the ratios determined by the caldera- forming eruptions of Novarupta and Pinatubo are applied to the Krakatau eruption. Verbeek’s estimation of the total volume of ejecta, 12 km3 is revised to 19 km3. This is significantly different from the volume of disrupted volcano edifice, 8 km3. Such a result does not support the predecessors’ hypothesis that calderas are formed by collapses of volcano edifices into magma reservoirs in replacement of the total ejecta. Through the discussion on the volume estimation of volcanic ejecta on and around Krakatau, the author recognizes that such estimation should be originally very difficult to attain enough accuracy. Much importance of “caldera deposits” to post-eruption settlements of the ejecta is emphasized. In relation to caldera formation, mechanical stability of a cavity in the crust is discussed. Lastly, upon the basis of subsurface structure, especially caldera deposits, a structural image of Krakatau caldera is presented.

  3. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin

    DEFF Research Database (Denmark)

    Fyhn, Michael B.W.; Boldreel, Lars Ole; Nielsen, Lars H

    2010-01-01

    The Malay Basin represents one of the largest rift basins of SE Asia. Based on a comprehensive 2-D seismic database tied to wells covering mainly Vietnamese acreage, the evolution of the Vietnamese part of the basin is outlined and a new tectonic model is proposed for the development of the basin....... The Vietnamese part of the Malay Basin comprises a large and deep Paleogene pull-apart basin formed through Middle or Late Eocene to Oligocene left-lateral strike-slip along NNW-trending fault zones. The Tho Chu Fault Zone constitutes a significant Paleogene left-lateral strike-slip zone most likely associated......–Strending faults in the central part of the basin. However, the lack of inversion in Vietnamese territory only seems to merit a few kilometers of dextral inversion....

  4. Topographic and Structural Effects on Dike Propagation and Eruption

    Energy Technology Data Exchange (ETDEWEB)

    E. Gaffney

    2006-04-13

    We have modeled magma flow in a dike rising in a crack whose strike runs from a highland or ridge to an adjacent lowland to determine the effect of topography on the flow, using a 3D hydromechanical code, FLAC3D (http://www.itascacg.com). The aperture, a, is calculated as a variable in a sheet of zones of fixed width d during the simulation as a function of model deformation. The permeability tensor of each zone is adjusted at each time step in response to the pressure in the cell according to the relationship k{sub ij} = {delta}{sub ij} {alpha}{sup 3}/12{mu}d, which is obtained by equating the flow through the layer of permeable zones from Darcy's law with Poiseuille's law under the same gradient. The fluid viscosity is {mu}, and the crack width is a We found a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. For the 4-km long strike length we modeled, eruption was offset between 500 and 1250 m toward the lowland from the center of the strike length. Separation of the geometric effect of the topography from the topographic overburden effect on lateral confining stresses at the crack indicates that both contribute to the effect. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. If the strike on the dike is parallel to the length of a ridge, the effect described here will not operate. Another possibility is that the strike length of a dike may be so short that its strike does not extend far beyond the edge of the ridge. A separate simulation used a 2D discrete element code, UDEC (http://www.itascacg.com) to investigate the interaction of magma in a vertical dike with normal faults and stratigraphy. We found that steeper faults are more easily intruded and that, as the magma rises to within a few hundred meters of the surface, sills are intruded into stratigraphic discontinuities in the hanging wall but not into the

  5. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  6. Ar-40/Ar-39 age determinations for the Rotoiti eruption, New Zealand

    Science.gov (United States)

    Flude, S.; Storey, M.

    2013-12-01

    The contemporaneous Rotoiti and Earthquake Flat ignimbrites, erupted from the Taupo Volcanic zone, New Zealand, form a distinctive tephrostratigraphic horizon in the Southern Pacific. Radioisotopic dating results for these eruptions remain controversial, with published ages ranging from 35.1 × 2.8 ka [1] to 71 × 6 ka [2], with 61.0 × 1.5 ka [3] often being cited as the most widely accepted age. These eruptions are difficult to date as their age is near the limit for various radiometric dating techniques, which are complicated by a large proportion of inherited material (xenocrysts) and a lack of phases suitable for dating. Glass-bearing plutonic blocks erupted with the Rotoiti and Earthquake Flat ignimbrites have previously been interpreted as deriving from a slowly cooled and incompletely solidified magma body that was sampled by the eruptions. They contain large vugs lined with euhedral quartz, sanidine and biotite crystals, indicating that these crystals grew in a gas or aqueous fluid rich environment and are interpreted to have formed shortly before or during eruption. Here we will present Ar-40/Ar-39 ages for sanidines and biotites extracted from vugs in lithic blocks erupted as part of the Earthquake Flat ignimbrite. We show that, even for vug-lining material, inherited ages remain a problem and are the likely source of the wide variation in published radiometric ages. Nevertheless, many of the Ar-40/Ar-39 ages are much younger than the 61 ka age [3] and are more consistent with the recent stratigraphic, C-14 and U-238/Th-230+(U-Th)/He ages that have been suggested (e.g. [4,5]). 1. Whitehead, N. & Ditchburn, R. New Zealand Journal of Geology and Geophysics 37, 381-383 (1994). 2. Ota, Y., Omura, A. & Iwata, H. New Zealand Journal of Geology and Geophysics 32, 327-331 (1989). 3. Wilson, C. J. N. et al. Quaternary Science Reviews 26, 1861-1870 (2007). 4. Molloy, C., Shane, P. & Augustinus, P. Geological Society of America Bulletin 121, 1666-1677 (2009). 5

  7. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  8. Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions

    Science.gov (United States)

    Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.

    2014-12-01

    Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five

  9. SOLAR ERUPTION AND LOCAL MAGNETIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-11-10

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5–1.5) and high decay index (0.9–1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.

  10. The MOZART Project - MOZAmbique Rift Tomography

    Science.gov (United States)

    Fonseca, J. F.; Chamussa, J. R.; Domingues, A.; Helffrich, G. R.; Fishwick, S.; Ferreira, A. M.; Custodio, S.; Brisbourne, A. M.; Grobbelaar, M.

    2012-12-01

    Project MOZART (MOZAmbique Rift Tomography) is an ongoing joint effort of Portuguese, Mozambican and British research groups to investigate the geological structure and current tectonic activity of the southernmost tip of the East African Rift System (EARS) through the deployment of a network of 30 broad band seismic stations in Central and Southern Mozambique. In contrast with other stretches of the EARS to the North and with the Kapvaal craton to the West and South, the lithosphere of Mozambique was not previously studied with a dense seismographic deployment on account of past political instability, and many questions remain unanswered with respect to the location and characteristics of the EARS to the south of Tanzania. In recent years, space geodesy revealed the existence of three microplates in and off Mozambique - Victoria, Rovuma, Lwandle - whose borders provide a connection of the EARS to the South West Indian Ridge as required by plate tectonics. However, the picture is still coarse concerning the location of the rift structures. The 2006 M7 Machaze earthquake in Central Mozambique highlighted the current tectonic activity of the region and added a further clue to the location of the continental rift, prompting the MOZART deployment. Besides helping unravel the current tectonics, the project is expected to shed light on the poorly known Mesoproterozoic structure described by Arthur Holmes in 1951 as the Mozambique Belt, and on the mechanisms of transition from stable craton to rifted continental crust, through the development of a tomographic model for the lithosphere. The MOZART network is distributed South of the Zambezi river at average inter-station spaces of the order of 100 km and includes four stations across the border in South Africa. Data exchange was agreed with AfricaArray. The deployment proceeded in two phases in March 2011, and November and December 2011. Decommissioning is foreseen for August 2013. We report preliminary results for this

  11. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  12. Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys

    Science.gov (United States)

    Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo

    2018-04-01

    We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.

  13. CME Eruption Onset Observations from EIT and SXT

    Science.gov (United States)

    Sterling, A. C.

    2004-01-01

    Why CMEs erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations in EUV from SOHO/EIT and in soft X-rays from Yohkoh/SXT of the re-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  14. Upper crustal structure of the northern part of the Bohemian ­Massif in ­rel­ation­ t­o geological, potential field data and new deep seismic data (Eger/Ohře Rift, Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Skácelová, Z.; Mlčoch, B.; Novotný, Miroslav; Mrlina, Jan

    2011-01-01

    Roč. 39, č. 1 (2011), s. 1-18 ISSN 0303-4534 R&D Projects: GA AV ČR IAA300460602; GA MŽP SB/630/3/02 Institutional research plan: CEZ:AV0Z30120515 Keywords : upper crustal structure * Bohemian Massif * Eger/Ohře Rift * Saxothuringian Zone * Teplá-Barrandian Unit * Moldanubian Zone Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  15. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  16. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  17. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    Science.gov (United States)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective

  18. The Livelihood Analysis in Merapi Prone Area After 2010 Eruption

    Directory of Open Access Journals (Sweden)

    Susy Nofrita

    2014-12-01

    Full Text Available As stated in Regent Regulation No. 20 Year 2011 about Merapi Volcano Disaster-Prone Area, Merapi eruption in 2010 affected larger area than before included Kalitengah Lor, Kalitengah Kidul and Srunen hamlet which was now categorized as prone area zone III or the most dangerous area related to Merapi volcano hazard and was forbidden to live at. But its local people agreed to oppose the regulation and this area had been 100% reoccupied. This research examined about the existing livelihood condition in Kalitengah Lor, Kalitengah Kidul and Srunen that had been changed and degraded after 2010 great eruption. The grounded based information found that 80% of households sample were at the middle level of welfare status, meanwhile the high and low were at 13% and 7% respectively. Each status represented different livelihood strategy in facing the life in prone area with no one considered the Merapi hazard, but more economic motivation and assets preservation. The diversity in strategy was found in diversification of livelihood resources which were dominated by sand mining, farming and dairy farming.

  19. Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    Science.gov (United States)

    Vigny, Christophe; de Chabalier, Jean-Bernard; Ruegg, Jean-Claude; Huchon, Philippe; Feigl, Kurt L.; Cattin, Rodolphe; Asfaw, Laike; Kanbari, Khaled

    2007-06-01

    Since most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through 2003. The surveys used triangulation (1973), trilateration (1973, 1979, and 1981-1986), leveling (1973, 1979, 1984-1985, and 2000), and the Global Positioning System (GPS, in 1991, 1993, 1995, 1997, 1999, 2001, and 2003). A network of about 30 GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia. Stations lying in the Danakil block have almost the same velocity as Arabian plate, indicating that opening near the southern tip of the Red Sea is almost totally accommodated in the Afar depression. Inside Djibouti, the Asal-Ghoubbet rift system accommodates 16 ± 1 mm/yr of opening perpendicular to the rift axis and exhibits a pronounced asymmetry with essentially null deformation on its southwestern side and significant deformation on its northeastern side. This rate, slightly higher than the large-scale Arabia-Somalia motion (13 ± 1 mm/yr), suggests transient variations associated with relaxation processes following the Asal-Ghoubbet seismovolcanic sequence of 1978. Inside the rift, the deformation pattern exhibits a clear two-dimensional pattern. Along the rift axis, the rate decreases to the northwest, suggesting propagation in the same direction. Perpendicular to the rift axis, the focus of the opening is clearly shifted to the northeast, relative to the topographic rift axis, in the "Petit Rift," a rift-in-rift structure, containing most of the active faults and the seismicity. Vertical motions, measured by differential leveling, show the same asymmetric pattern with a bulge of the northeastern shoulder. Although the inner floor of the rift is subsiding with respect to the shoulders, all sites within the

  20. Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows

    Directory of Open Access Journals (Sweden)

    Heryadi Rachmat

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.107-126After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample. The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.

  1. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  2. Processes of Compression-Expansion and Subsidence-Uplift detected by the Spatial Inclinometer (IESHI) in the El Hierro Island eruption (October, 2011)

    Science.gov (United States)

    Prates, G.; Berrocoso, M.; Fernández-Ros, A.; García, A.; Ortiz, R.

    2012-04-01

    El Hierro Island (Canary Islands, Spain) has undergone a submarine eruption a few kilometers to its southeast, detected October 10, on the rift alignment that cuts across the island. However, the seismicity level suddenly increased around July 17 and ground deformation was detected by the only continuously observed GNSS-GPS (Global Navigation Satellite Systems - Global Positioning System) benchmark FRON in the El Golfo area. Based on that information several other GNSS-GPS benchmarks were installed, some of which continuously observed as well. A normal vector analysis was applied to these collected data. The normal vector magnitude variation identified local extension-compression regimes, while the normal vector inclination showed the relative height variation between the three benchmarks that define the plan to which normal vector is analyzed. To accomplish this analysis the data was previously processed to achieve positioning solutions every 30 minutes using the Bernese GPS Software 5.0, further enhanced by a Discrete Kalman Filter, giving an overall millimeter level precision. These solutions were reached using the IGS (International GNSS Service) ultra-rapid orbits and the double-differenced ionosphere-free combination. With this strategy the positioning solutions were attained in near real-time. Later with the IGS rapid orbits the data was reprocessed to provide added confidence to the solutions. Two triangles were then considered, a smaller one located in the El Golfo area within the historically collapsed caldera, and a larger one defined by benchmarks placed in Valverde, El Golfo and La Restinga, the town closest to the eruption's location, covering almost the entire Island's surface above sea level. With these two triangles the pre-eruption and post-eruption deformation suffered by El Hierro's surface will be further analyzed.

  3. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    Science.gov (United States)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  4. Salt Lakes of the African Rift System: A Valuable Research ...

    African Journals Online (AJOL)

    Salt Lakes of the African Rift System: A Valuable Research Opportunity for Insight into Nature's Concenrtated Multi-Electrolyte Science. JYN Philip, DMS Mosha. Abstract. The Tanzanian rift system salt lakes present significant cultural, ecological, recreational and economical values. Beyond the wealth of minerals, resources ...

  5. Low-Ti basalts from the Faroe Islands constrain the early Iceland depleted plume component

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    New Sr, Nd, Hf and high precision Pb isotope analyses of 46 Faroese low-Ti lavas erupted at the rifting of the proto-North Atlantic ~56-55 Ma ago are presented. The low-Ti lavas are depleted, MORB-like basalts erupted close to the riftzone at the same time as enriched high-Ti basalts were erupted...... away from the rift . The low-Ti samples include a large proportion of high-MgO basalts and can be related by a common model of low-pressure fractionation. Fractionation correction to 13 % MgO shows only little variation in their primitive major element contents, suggesting very similar origins...

  6. Monitoring of the Syrian rift valley using radon technique

    International Nuclear Information System (INIS)

    Al-Hilal, M.; Al-Ali, A.; Jubeli, Y.

    1997-02-01

    Groundwater radon data were recorded once every two months from six monitoring sites of the Syrian rift valley during the year 1996. Radon samples were measured from deep artesian wells and from continuously-flowing springs that are distributed along this most active seismic zone in Syria. The available data were integrated with previously measured groundwater radon data from the same stations in order to estimate the range of normal radon fluctuations in the region. The estimation of such range may enable the separation between usual groundwater radon variations from other outliers which may indicate possible tectonic activities or earthquake hazards in the study area. Periodical radon measurements based on two months intervals and long distance between sampling stations does not enable us to trust with high level of confidence the connection between radon values and any possible earth dynamics. Therefore, shorter measuring time with closer monitoring sites are highly recommended to achieve the optimum advantage of such application. (Author). 8 Figs., 2 Tabs., 10 Refs

  7. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  8. Mesozoic strike-slip movement of the Dunhua-Mishan Fault Zone in NE China: A response to oceanic plate subduction

    Science.gov (United States)

    Liu, Cheng; Zhu, Guang; Zhang, Shuai; Gu, Chengchuan; Li, Yunjian; Su, Nan; Xiao, Shiye

    2018-01-01

    The NE-striking Dunhua-Mishan Fault Zone (DMFZ) is one of two branches of the continental-scale sinistral Tan-Lu Fault Zone in NE China. The field data presented here indicate that the ca. 1000 km long DMFZ records two phases of sinistral faulting. The structures produced by these two phases of faulting include NE-SW-striking ductile shear belts and brittle faults, respectively. Mylonite-hosted microstructures and quartz c-axis fabrics suggest deformation temperatures of 450 °C-500 °C for the ductile shear belts. Combining new zircon U-Pb dates for 14 igneous rock samples analyzed during this study with the geology of this region indicates these shear belts formed during the earliest Early Cretaceous. This phase of sinistral displacement represents the initial formation of the DMFZ in response to the northward propagation of the Tan-Lu Fault Zone into NE China. A phase of Early Cretaceous rifting was followed by a second phase of sinistral faulting at 102-96 Ma, as evidenced by our new U-Pb ages for associated igneous rocks. Combining our new data with the results of previous research indicates that the DFMZ records a four-stage Cretaceous evolutionary history, where initial sinistral faulting at the beginning of the Early Cretaceous gave way to rifting during the rest of the Early Cretaceous. This was followed by a second phase of sinistral faulting at the beginning of the Late Cretaceous and a second phase of local rifting during the rest of the Late Cretaceous. The Cretaceous evolution of the DMFZ records the synchronous tectonic evolution of the NE China continent bordering the Pacific Ocean. Two phases of regional N-S compression generated the two phases of sinistral faulting within the DMFZ, whereas two-stage regional extension generated the two phases of rifting. The two compressive events were the result of the rapid low-angle subduction of the Izanagi and Pacific plates, whereas the two-stage extension was caused by the roll-back of these respective

  9. The Porcupine Basin: from rifting to continental breakup

    Science.gov (United States)

    Reston, Timothy; Gaw, Viola; Klaeschen, Dirk; McDermott, Ken

    2015-04-01

    Southwest of Ireland, the Porcupine Basin is characterized by axial stretching factors that increase southward to values greater than six and typical of rifted margins. As such, the basin can be regarded as a natural laboratory to investigate the evolution and symmetry of rifting leading towards continental separation and breakup, and in particular the processes of mantle serpentinisation, and the onset of detachment faulting. We have processed through to prestack depth migration a series of E-W profiles crossing the basin at different axial stretching factors and linked by a N-S profile running close to the rift axis. Our results constrain the structure of the basin and have implications for the evolution of rifted margins. In the north at a latitude of 52.25N, no clear detachment is imaged, although faults do appear to cut down into the mantle, so that serpentinisation may have started. Further south (51.75N), a bright reflection (here named P) cuts down to the west from the base of the sedimentary section, is overlain by small fault blocks and appears to represent a detachment fault. P may in part follow the top of partially serpentinized mantle: this interpretation is consistent with gravity modelling, with numerical models of crustal embrittlement and mantle serpentinization during extension and with wide-angle data (see posters of Prada and of Watremez). Furthermore, P closely resembles the S reflection west of Iberia, where such serpentinites are well documented. P develops where the crust was thinned to less than 3 km during rifting, again similar to S. Although overall the basin remains symmetrical, the consistent westward structural dip of the detachment implies that, at high stretching factors, extension became asymmetric. Analysis of the depth sections suggests that the detachment may have been active as a rolling hinge rooting at low-angle beneath the Porcupine Bank, consistent with the presence of a footwall of serpentinites. This requires very weak

  10. Metasomatism and the Weakening of Cratons: A Mechanism to Rift Cratons

    Science.gov (United States)

    Wenker, Stefanie; Beaumont, Christopher

    2016-04-01

    The preservation of cratons is a demonstration of their strength and resistance to deformation. However, several cratons are rifting now (e.g. Tanzania and North China Craton) or have rifted in the past (e.g. North Atlantic Craton). To explain this paradox, we suggest that widespread metasomatism of the originally cold depleted dehydrated craton mantle lithosphere root can act as a potential weakening mechanism. This process, particularly melt metasomatism, increases root density through a melt-peridotite reaction, and reduces root viscosity by increasing the temperature and rehydrating the cratonic mantle lithosphere. Using 2D numerical models, we model silicate-melt metasomatism and rehydration of cold cratonic mantle lithosphere that is positioned beside standard Phanerozoic lithosphere. The models are designed to investigate when a craton is sufficiently weakened to undergo rifting and is no longer protected by the initially weaker adjacent standard Phanerozoic lithosphere. Melt is added to specified layers in the cratonic mantle lithosphere at a uniform volumetric rate determined by the duration of metasomatism (3 Myr, 10 Myr or 30 Myr), until a total of ~30% by volume of melt has been added. During melt addition heat and mass are properly conserved and the density and volume increase by the respective amounts required by the reaction with the peridotite. No extensional boundary conditions are applied to the models during the metasomatism process. As expected, significant refertilization leads to removal and thinning of progressively more gravitationally unstable cratonic mantle lithosphere. We show that the duration of metasomatism dictates the final temperature in the cratonic upper mantle lithosphere. Consequently, when extensional boundary conditions are applied in our rifting tests in most cases the Phanerozoic lithosphere rifts. The craton rifts only in the models with the hottest cratonic upper mantle lithosphere. Our results indicate rifting of cratons

  11. Inherited retarded eruption in the permanent dentition.

    Science.gov (United States)

    Rasmussen, P; Kotsaki, A

    1997-01-01

    The term retarded eruption, may be used in cases where eruption is inhibited, causing an interruption in the coordination of tooth formation and tooth eruption. The phenomenon may be local or general, and several etiological factors for retarded eruption have been listed, comprising a lack of space, ankylosis, cysts, supernumerary teeth, hormone and vitamin deficiencies and several developmental disturbances and syndromes. The present paper describes several cases of retarded eruption where no factors other than inheritance have been evident. So far 14 cases have been evaluated, 9 boys and 5 girls. In addition several cases have been registered among parents and grandparents of the probands. Typical features are: retarded eruption, defined as more than 3 SD beyond mean eruption figures, comprises all teeth in the permanent dentition, and in 5 cases also second primary molars. The chronology of tooth formation are within normal limits. Consequently the teeth finish development still laying deeply buried in the jaws, often in aberrant positions and with curves or hooks on the roots. When the teeth finally get the "signal" for eruption, 5-15 years beyond normal eruption time, they move rather quickly into right positions, despite the long eruption paths and the hooked roots. Permanent teeth without, as well as with predecessors, are affected. Extraction of predecessors does not seem to provoke eruption. The main features in management are to take care of the primary teeth, to improve-esthetics, and offer surgery and orthodontics when needed. Analyses of pedigrees indicates that the genetic transmittance may be autosomal dominant as both sexes are affected, about half of the siblings show the trait, and the trait shows continuity through generations.

  12. New evidence of CO2 soil degassing anomalies on Piton de la Fournaise volcano and the link with volcano tectonic structures

    Science.gov (United States)

    Liuzzo, M.; Di Muro, A.; Giudice, G.; Michon, L.; Ferrazzini, V.; Gurrieri, S.

    2015-12-01

    Piton de la Fournaise (PdF) is recognized as one of the world's most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short-lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (e.g., rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 concentration in the soil. CO2 flux values range from 10 to 1300 g m-2 d-1 while δ13C are between -26.6 and -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO2 fluxes show a δ13C signature clearly related to a magmatic origin.

  13. LATE CREATACEOUS-CENOZOIC SEDIMENTS OF THE BAIKAL RIFT BASIN AND CHANGING NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Viktor D. Mats

    2010-01-01

    Full Text Available The late Cretaceous-Cenozoic sediments of fossil soils and weathering crusts of the Baikal rift have been subject to long-term studies. Based on our research results, it is possible to distinguish the following litho-stratigraphic complexes which are related to particular stages of the rift development: the late Cretaceous–early Oligocene (crypto-rift Arheo-baikalian, the late Oligocene–early Pliocene (ecto-rift early orogenic Pra-baikalian, and the late Pliocene-Quaternary (ecto-rift late orogenic Pra-baikalian – Baikalian complexes. Changes of weathering modes (Cretaceous-quarter, soil formation (Miocene-quarter and differences of precipitation by vertical and lateral stratigraphy are analysed with regard to specific features of climate, tectonics and facial conditions of sedimentation. Tectonic phases are defined in the Cenozoic period of the Pribaikalie.

  14. The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)

    Science.gov (United States)

    Weiß, B. J.; Hübscher, C.; Lüdmann, T.

    2015-07-01

    The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.

  15. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone

    Science.gov (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2017-11-01

    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  16. Origin, Composition and Relative Timing of Seaward Dipping Reflectors on the Pelotas Rifted Margin, South Atlantic

    Science.gov (United States)

    Harkin, C. J.; Kusznir, N.; Roberts, A.; Manatschal, G.; McDermott, K.

    2017-12-01

    Deep-seismic reflection data from the Pelotas Basin, offshore Brazil displays a large package of seaward dipping reflectors (SDRs) with an approximate width of 200 km and a varying thickness of 10km to 17km. These have previously been interpreted as volcanic SDRs, a common feature of magma-rich rifted margins. Detailed observations show a change in seismic character within the SDR package possibly indicating a change depositional environments as the package evolved. Using gravity anomaly inversion, we examine the SDRs to investigate whether they are likely to be composed predominantly of massive basaltic flows or sedimentary-volcaniclastic material through the use of gravity inversion. By matching the Moho in depth and two-way travel time from gravity and seismic data, we test the likely proportion of sediments to basalt (the basalt fraction). The results are used to determine the lateral variation in basalt fraction within the SDRs. In addition, we use 2D flexural-backstripping and reverse thermal-subsidence modelling for palaeobathymetric analysis, investigating whether each sub-package was deposited in a sub-aerial or marine environment. Our analysis suggests that the overall SDR basalt fraction and bulk density decrease oceanwards, possibly due to increasing sediment content or perhaps resulting from a change in basalt flows to hyaloclastites as water depth increases. Additionally, we find that the SDRs can be split into two major sub-packages. The inner SDR package consists of lava flows from syn-tectonic eruptions in a sub-aerial environment, associated with the onshore Paraná Large Igneous Province, flowing eastwards into an extensional basin. The outer SDR package has reflectors that appear to progressively offlap oceanwards in a similar fashion to those described previously, inferring extrusion within a marine environment sourced from an eastwards migrating ocean ridge. We are able to determine that two separate and independently-sourced SDR packages

  17. Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands)

    Science.gov (United States)

    Pedrazzi, Dario; Martí, Joan; Geyer, Adelina

    2013-07-01

    The tuff cone of El Golfo on the western coast of Lanzarote (Canary Islands) is a typical hydrovolcanic edifice. Along with other edifices of the same age, it was constructed along a fracture oriented NEE-SWW that coincides with the main structural trend of recent volcanism in this part of the island. We conducted a detailed stratigraphic study of the succession of deposits present in this tuff cone and here interpret them in light of the depositional processes and eruptive dynamics that we were able to infer. The eruptive sequence is represented by a succession of pyroclastic deposits, most of which were emplaced by flow, plus a number of air-fall deposits and ballistic blocks and bombs. We distinguished five different eruptive/depositional stages on the basis of differences in inferred current flow regimes and fragmentation efficiencies represented by the resulting deposits; the different stages may be related to variations in the explosive energy. Eight lithofacies were identified based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms. The volcanic edifice was constructed very rapidly around the vent, and this is inferred to have controlled the amount of water that was able to enter the eruption conduit. The sedimentological characteristics of the deposits and the nature and distribution of palagonitic alteration suggest that most of the pyroclastic succession in El Golfo was deposited in a subaerial environment. This type of hydrovolcanic explosive activity is common in the coastal zones of Lanzarote and the other Canary Islands and is one of the main potential hazards that could threaten the human population of this archipelago. Detailed studies of these hydrovolcanic eruptions such as the one we present here can help volcanologists understand the hazards that this type of eruption can generate and provide essential information for undertaking risk assessment in similar volcanic environments.

  18. Geometry of the Arabia-Somalia Plate Boundary into Afar: Preliminary Results from the Seismic Profile Across the Asal Rift (Djibouti)

    Science.gov (United States)

    Vergne, J.; Doubre, C.; Mohamed, K.; Tiberi, C.; Leroy, S.; Maggi, A.

    2010-12-01

    In the Afar Depression, the Asal-Ghoubbet Rift in Djibouti is a young segment on land at the propagating tip of the Aden Ridge. This segment represents an ideal laboratory to observe the mechanisms of extension and the structural evolutions involved, from the continental break-up to the first stage of oceanic spreading. However, we lack first order information about the crustal and upper mantle structure in this region, which for example prevent detailed numerical modeling of the deformations observed at the surface from GPS or InSAR. Moreover the current permanent network is not well suited to precisely constrain the ratio of seismic/aseismic deformation and to characterize the active deformation and the rifting dynamics. Since November 2009 we have maintained a temporary network of 25 seismic stations deployed along a 150 km-long profile. Because we expect rapid variations of the lithospheric structure across the 10 km-wide central part of the rift, we gradually decreased the inter-stations spacing to less than 1 km in the middle section of the profile. In order to obtain a continuous image of the plate boundary, from the topographic surface to the upper mantle, several techniques and methods will be applied: P and S wave receiver functions, tomographies based on body waves, surface waves and seismic noise correlation, anisotropy, and finally a gravity-seismic joint inversion. We present some preliminary results deduced from the receiver functions applied to the data acquired during the first months of the experiment. We migrate several sets of receiver functions computed in various frequency bands to resolve both mantle interfaces and fine scale structures within the thin crust in the center of the rift. These first images confirm a rapid variation of the Moho depth on both sides of the rift and a very complex lithospheric structure in the central section with several low velocity zones within the top 50km that might correspond to magma lenses.

  19. Reduced cooling following future volcanic eruptions

    Science.gov (United States)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  20. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  1. East Antarctic rifting triggers uplift of the Gamburtsev Mountains

    Science.gov (United States)

    Ferraccioli, F.; Finn, Carol A.; Jordan, Tom A.; Bell, Robin E.; Anderson, Lester M.; Damaske, Detlef

    2011-01-01

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

  2. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  3. The Surtsey Magma Series.

    Science.gov (United States)

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  4. Complicated lichenoid drug eruption.

    Science.gov (United States)

    Armour, Katherine; Lowe, Patricia

    2005-02-01

    We report a case of severe lichenoid drug eruption with multiple possible causative agents. A hepatitis C-positive male presented with a short history of painful erosions of the vermilion, lichenoid lesions on the buccal mucosa and glans penis, and erosions and lichenification of the scrotum. In addition, he had a pruritic polymorphic eruption over the scalp, trunk and limbs, comprising psoriasiform and eczematous lesions. He had received combination therapy of pegylated interferon-alpha-2a and ribavirin, along with granulocyte colony-stimulating factor for interferon-induced leucopenia, and propranolol for portal hypertension. The former three agents were ceased 3 weeks prior to presentation, but he remained on propranolol at the initial dermatology consultation. The polymorphous clinical picture was consistent with lichenoid drug eruption, which was confirmed on histology. The papulosquamous eruption responded quickly to 2 weeks of oral prednisone 25 mg daily, which was tapered to 1 mg over 3 months and then ceased. The mucosal lesions were slow to improve and required the addition of tacrolimus 0.03% solution t.d.s. for complete resolution.

  5. The influence of inherited structures on magmatic and amagmatic processes in the East African Rift.

    Science.gov (United States)

    Biggs, J.; Lloyd, R.; Hodge, M.; Robertson, E.; Wilks, M.; Fagereng, A.; Kendall, J. M.; Mdala, H. S.; Lewi, E.; Ayele, A.

    2017-12-01

    The idea that crustal heterogeneities, particularly inherited structures, influence the initiation and evolution of continental rifts is not new, but now modern techniques allow us to explore these controls from a fresh perspective, over a range of lengthscales, timescales and depths. In amagmatic rifts, I will demonstrate that deep fault structure is controlled by the stress orientation during the earliest phase of rifting, while the surface expression exploits near-surface weaknesses. I will show that pre-existing structures control the storage and orientation of deeper magma reservoirs in magmatic rifts, while the tectonic stress regime controls intra-rift faulting and shallow magmatism and stresses related to surface loading and cycles of inflation and deflation dominate at volcanic edifices. Finally, I will show how cross-rift structures influence short-term processes such as deformation and seismicity. I will illustrate the talk throughout using examples from along the East African Rift, including Malawi, Tanzania, Kenya and Ethiopia.

  6. Erupted Compound Odontomas: A Case Report

    Directory of Open Access Journals (Sweden)

    Avinash Tejasvi M.L.

    2011-03-01

    Full Text Available The tumors in which odontogenic differentiation is fully expressed are the odontomas. Odontomas are considered as hamartomas rather than a true neoplasm. These tumors are composed of enamel, dentine, cementum and pulp tissue. It is most commonly associated with the eruption of the teeth. They are usually discovered on routine radiographic examination. In exceptional cases, the odontoma erupts in to the mouth. Nine cases of erupted compound odontomas are reported in the English literature, and the present paper reports another case of an erupted compound odontoma in a 22-year-old female patient.

  7. Petrogenesis and tectonic setting of an basalt-Trachyte-Rhyolite suite in the Spilli area (south of Siahkal, north of Iran: evidences of continental rift-related bimodal magmatism in Alborz

    Directory of Open Access Journals (Sweden)

    Shahrooz Haghnazar

    2016-09-01

    Full Text Available The spilli volcanic rocks suite consisting of Basalt- Trachyte- Rhyolite with upper Cretaceous, outcrop in the northern part of Alborz and south of Siahkal area (east of the Guilan province. Based on geochemical data, the studied suite attributed to transitional to alkali series. Negative correlation of Al2O3, CaO, P2O5 and positive correlation of Rb and Th versus SiO2 reveal the occurrence of fractional crystallization process. Also, the negative correlation of Sr versus Y, Sr/Zr versus Sr and CaO/Al2O3 versus SiO2 show that fractionation of plagioclase has played an important role in petrogenesis of the spilli Suite. The hypotheses is supported by the negative anomalies of Eu, Ba and Sr. The overall geochemical evidences indicate that the basic rocks belong to intra-continental rift zone whereas the felsic rocks are classified as A1 type derived from parent basaltic magmas via fractional crystallization in an anorogenic setting. The studied magmatism share many similarities with bimodal magmatism in continental rift zones.

  8. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    Science.gov (United States)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  9. Sulphur-rich volcanic eruptions and stratospheric aerosols

    Science.gov (United States)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  10. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    Science.gov (United States)

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  11. Space radar image of Mauna Loa, Hawaii

    Science.gov (United States)

    1995-01-01

    This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows

  12. Inflation rates, rifts, and bands in a pāhoehoe sheet flow

    Science.gov (United States)

    Hoblitt, Richard P.; Orr, Tim R.; Heliker, Christina; Denlinger, Roger P.; Hon, Ken; Cervelli, Peter F.

    2012-01-01

    The margins of sheet flows—pāhoehoe lavas emplaced on surfaces sloping Inflation and rift-band formation is probably cyclic, because the pattern we observed suggests episodic or crude cyclic behavior. Furthermore, some inflation rifts contain numerous bands whose spacing and general appearances are remarkably similar. We propose a conceptual model wherein the inferred cyclicity is due to the competition between the fluid pressure in the flow's liquid core and the tensile strength of the viscoelastic layer where it is weakest—in inflation rifts. The viscoelastic layer consists of lava that has cooled to temperatures between 800 and 1070 °C. This layer is the key parameter in our model because, in its absence, rift banding and stepwise changes in the flow height would not occur.

  13. Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards

    Science.gov (United States)

    Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura

    2016-04-01

    The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess

  14. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  15. Petrography and petrology of the Nornahraun eruption of the Bárðarbunga volcanic system, Iceland

    Science.gov (United States)

    Guðfinnsson, Guðmundur H.; Halldórsson, Sæmundur Ari; Bali, Enikő; Jakobsson, Sigurður; Sverrisdóttir, Guðrún; Höskuldssson, Ármann; Riishuus, Morten S.; Þórðarson, Þorvaldur; The 2014 Nornahraun Eruption Team

    2015-04-01

    also shown by the presence of sulfide globules in groundmass glass and sometimes as inclusions in groundmass minerals. The globules are always Fe-rich with considerable Cu and Ni contents and minor Co content. Sulfide globules are, however, missing in phenocryst phases crystallized at higher pressures, suggesting that sulfide saturation is a late process occurring during the crystallization of the groundmass minerals due to an increase in the sulfide content of the remaining melt. The presentation will contain more detailed petrographic observations and mineral chemistry of the eruption products that will be acquired with the newly installed EPMA (JEOL JXA-8230) at the Institute of Earth Sciences, University of Iceland. References: Bali et al., this session: Volatile budget of the Nornahraun eruption of the Bárðarbunga volcanic system, Iceland. Halldórsson et al. (a), this session: Geochemistry of the Nornahraun eruption of the Bárðarbunga volcanic system, Iceland. Halldórsson et al. (b), this session: Magma types and mantle sources of the Bárðarbunga volcanic system, Iceland Sigmundsson et al. (2015): Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature, in press. Yang et al. (1996): Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol. 124 1-18.

  16. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador

    Science.gov (United States)

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc

    2012-01-01

    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  17. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  18. Naples between two fires: eruptive scenarios for the next eruptions by an integrated volcanological-probabilistic approach.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.

    2009-04-01

    Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.

  19. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  20. Esophageal cancer in north rift valley of western Kenya | Wakhisi ...

    African Journals Online (AJOL)

    Esophageal cancer in north rift valley of western Kenya. ... Our finding also contrast with an earlier reported study that indicated that Rift Valley is a low prevalence area for this type of cancer. The mean age ... This may lead to identification of molecular biomarkers to be used in future for the early detection of this neoplasm.