WorldWideScience

Sample records for riemann metric

  1. Representation of symmetric metric connection via Riemann-Christoffel curvature tensor

    International Nuclear Information System (INIS)

    Selikhov, A.V.

    1989-01-01

    Bivector σ-bar μ ν ' which is the Jacoby matrix of the transformation to the Riemanian coordinates is considered in the paper. Basing on the dual nature of σ-bar μ ν ' the representation of metric connection (Christoffel symbols) have been obtained at the Riemanian coordinates via Riemann-Christoffel curvature tensor; the covariant conserved four-momentum in the general theory of relativity have been constructed. 11 refs

  2. Bernhard Riemann

    Indian Academy of Sciences (India)

    the basis for various fields of mathematics and the general relativity theory of Einstein. In 1857 ... This idea explained the work on algebraic ... theory, Riemann found the key to the problem of the distribution of primes, in that he associated it ...

  3. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  4. Riemann, topology, and physics

    CERN Document Server

    Monastyrsky, Michael I

    2008-01-01

    This significantly expanded second edition of Riemann, Topology, and Physics combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter such as the quantum Hall effect, quasicrystals, membranes with nontrivial topology, "fake" differential structures on 4-dimensional Euclidean space, new invariants of knots and more. In his relatively short lifetime, this great mathematician made outstanding contributions to nearly all branches of mathematics; today Riemann’s name appears prom...

  5. Riemann quasi-invariants

    International Nuclear Information System (INIS)

    Pokhozhaev, Stanislav I

    2011-01-01

    The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.

  6. Fuzzy Riemann surfaces

    International Nuclear Information System (INIS)

    Arnlind, Joakim; Hofer, Laurent; Hoppe, Jens; Bordemann, Martin; Shimada, Hidehiko

    2009-01-01

    We introduce C-Algebras (quantum analogues of compact Riemann surfaces), defined by polynomial relations in non-commutative variables and containing a real parameter that, when taken to zero, provides a classical non-linear, Poisson-bracket, obtainable from a single polynomial C(onstraint) function. For a continuous class of quartic constraints, we explicitly work out finite dimensional representations of the corresponding C-Algebras.

  7. Deformations of super Riemann surfaces

    International Nuclear Information System (INIS)

    Ninnemann, H.

    1992-01-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.)

  8. Deformations of super Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ninnemann, H [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1992-11-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.).

  9. Conformal mapping on Riemann surfaces

    CERN Document Server

    Cohn, Harvey

    2010-01-01

    The subject matter loosely called ""Riemann surface theory"" has been the starting point for the development of topology, functional analysis, modern algebra, and any one of a dozen recent branches of mathematics; it is one of the most valuable bodies of knowledge within mathematics for a student to learn.Professor Cohn's lucid and insightful book presents an ideal coverage of the subject in five pans. Part I is a review of complex analysis analytic behavior, the Riemann sphere, geometric constructions, and presents (as a review) a microcosm of the course. The Riemann manifold is introduced in

  10. Computational approach to Riemann surfaces

    CERN Document Server

    Klein, Christian

    2011-01-01

    This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first...

  11. The continuous determination of spacetime geometry by the Riemann curvature tensor

    International Nuclear Information System (INIS)

    Rendall, A.D.

    1988-01-01

    It is shown that generically the Riemann tensor of a Lorentz metric on an n-dimensional manifold (n ≥ 4) determines the metric up to a constant factor and hence determines the associated torsion-free connection uniquely. The resulting map from Riemann tensors to connections is continuous in the Whitney Csup(∞) topology but, at least for some manifolds, constant factors cannot be chosen so as to make the map from Riemann tensors to metrics continuous in that topology. The latter map is, however, continuous in the compact open Csup(∞) topology so that estimates of the metric and its derivatives on a compact set can be obtained from similar estimates on the curvature and its derivatives. (author)

  12. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  13. Riemann's and Helmholtz-Lie's problems of space from Weyl's relativistic perspective

    Science.gov (United States)

    Bernard, Julien

    2018-02-01

    I reconstruct Riemann's and Helmholtz-Lie's problems of space, from some perspectives that allow for a fruitful comparison with Weyl. In Part II. of his inaugural lecture, Riemann justifies that the infinitesimal metric is the square root of a quadratic form. Thanks to Finsler geometry, I clarify both the implicit and explicit hypotheses used for this justification. I explain that Riemann-Finsler's kind of method is also appropriate to deal with indefinite metrics. Nevertheless, Weyl shares with Helmholtz a strong commitment to the idea that the notion of group should be at the center of the foundations of geometry. Riemann missed this point, and that is why, according to Weyl, he dealt with the problem of space in a "too formal" way. As a consequence, to solve the problem of space, Weyl abandoned Riemann-Finsler's methods for group-theoretical ones. However, from a philosophical point of view, I show that Weyl and Helmholtz are in strong opposition. The meditation on Riemann's inaugural lecture, and its clear methodological separation between the infinitesimal and the finite parts of the problem of space, must have been crucial for Weyl, while searching for strong epistemological foundations for the group-theoretical methods, avoiding Helmholtz's unjustified transition from the finite to the infinitesimal.

  14. Riemann surfaces with boundaries and string theory

    International Nuclear Information System (INIS)

    Morozov, A.Yu.; Roslyj, A.A.

    1989-01-01

    A consideration of the cutting and joining operations for Riemann surfaces permits one to express the functional integral on a Riemann surface in terms of integrals over its pieces which are suarfaces with boundaries. This yields an expression for the determinant of the Laplacian on a Riemann surface in terms of Krichever maps for its pieces. Possible applications of the methods proposed to a study of the string perturbation theory in terms of an universal moduli space are mentioned

  15. The Riemann-Lovelock Curvature Tensor

    OpenAIRE

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D

  16. Exploring the Riemann zeta function 190 years from Riemann's birth

    CERN Document Server

    Nikeghbali, Ashkan; Rassias, Michael

    2017-01-01

    This book is concerned with the Riemann Zeta Function, its generalizations, and various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis and Probability Theory. Eminent experts in the field illustrate both old and new results towards the solution of long-standing problems and include key historical remarks. Offering a unified, self-contained treatment of broad and deep areas of research, this book will be an excellent tool for researchers and graduate students working in Mathematics, Mathematical Physics, Engineering and Cryptography.

  17. Fourier-Laplace transform of irreducible regular differential systems on the Riemann sphere

    International Nuclear Information System (INIS)

    Sabbah, C

    2004-01-01

    It is shown that the Fourier-Laplace transform of an irreducible regular differential system on the Riemann sphere underlies a polarizable regular twistor D-module if one considers only the part at finite distance. The associated holomorphic bundle defined away from the origin of the complex plane is therefore equipped with a natural harmonic metric having a tame behaviour near the origin

  18. Functionals of finite Riemann surfaces

    CERN Document Server

    Schiffer, Menahem

    1954-01-01

    This advanced monograph on finite Riemann surfaces, based on the authors' 1949-50 lectures at Princeton University, remains a fundamental book for graduate students. The Bulletin of the American Mathematical Society hailed the self-contained treatment as the source of ""a plethora of ideas, each interesting in its own right,"" noting that ""the patient reader will be richly rewarded."" Suitable for graduate-level courses, the text begins with three chapters that offer a development of the classical theory along historical lines, examining geometrical and physical considerations, existence theo

  19. Bosonization in a two-dimensional Riemann Cartan geometry

    International Nuclear Information System (INIS)

    Denardo, G.; Spallucci, E.

    1987-01-01

    We study the vacuum functional for a Dirac field in a two dimensional Riemann-Cartan geometry. Torsion is treated as a quantum variable while the metric is considered as a classical background field. Decoupling spinors from the non-Riemannian part of the geometry introduces a chiral Jacobian into the vacuum generating functional. We compute this functional Jacobian determinant by means of the Alvarez method. Finally, we show that the effective action for the background geometry is of the Liouville type and does not preserve any memory of the initial torsion field. (author)

  20. Riemann-Roch Spaces and Linear Network Codes

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal...... number of points for curves of their respective genera. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possibly altered vector space. Ralf Koetter and Frank R. Kschischang %\\cite{DBLP:journals/tit/KoetterK08} introduced...... in the above metric making them suitable for linear network coding....

  1. A Polyakov action on Riemann surfaces

    International Nuclear Information System (INIS)

    Zucchini, R.

    1991-02-01

    A calculation of the effective action for induced conformal gravity on higher genus Riemann surfaces is presented. Our expression, generalizing Polyakov's formula, depends holomorphically on the Beltrami and integrates the diffeomorphism anomaly. A solution of the conformal Ward identity on an arbitrary compact Riemann surfaces without boundary is presented, and its remarkable properties are studied. (K.A.) 16 refs., 2 figs

  2. The Riemann-Lovelock curvature tensor

    International Nuclear Information System (INIS)

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)

  3. Sharp metric obstructions for quasi-Einstein metrics

    Science.gov (United States)

    Case, Jeffrey S.

    2013-02-01

    Using the tractor calculus to study smooth metric measure spaces, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the Weyl tractor W to the setting of smooth metric measure spaces. The obstructions we obtain can be realized as tensorial invariants which are polynomial in the Riemann curvature tensor and its divergence. By taking suitable limits of their tensorial forms, we then find obstructions to the existence of static potentials, generalizing to higher dimensions a result of Bartnik and Tod, and to the existence of potentials for gradient Ricci solitons.

  4. Riemann y los Números Primos

    Directory of Open Access Journals (Sweden)

    José Manuel Sánchez Muñoz

    2011-10-01

    Full Text Available En el mes de noviembre de 1859, durante la presentación mensual de losinformes de la Academia de Berlín, el alemán Bernhard Riemann presentóun trabajo que cambiaría los designios futuros de la ciencia matemática. El tema central de su informe se centraba en los números primos, presentando el que hoy día, una vez demostrada la Conjetura de Poincaré, puede ser considerado el problema matemático abierto más importante. El presente artículo muestra en su tercera sección una traducción al castellano de dicho trabajo.

  5. Conformal algebra of Riemann surfaces

    International Nuclear Information System (INIS)

    Vafa, C.

    1988-01-01

    It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view

  6. A variational principle giving gravitational 'superpotentials', the affine connection, Riemann tensor, and Einstein field equations

    International Nuclear Information System (INIS)

    Stachel, J.

    1977-01-01

    A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)

  7. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  8. Lectures on the Riemann zeta function

    CERN Document Server

    Iwaniec, H

    2014-01-01

    The Riemann zeta function was introduced by L. Euler (1737) in connection with questions about the distribution of prime numbers. Later, B. Riemann (1859) derived deeper results about the prime numbers by considering the zeta function in the complex variable. The famous Riemann Hypothesis, asserting that all of the non-trivial zeros of zeta are on a critical line in the complex plane, is one of the most important unsolved problems in modern mathematics. The present book consists of two parts. The first part covers classical material about the zeros of the Riemann zeta function with applications to the distribution of prime numbers, including those made by Riemann himself, F. Carlson, and Hardy-Littlewood. The second part gives a complete presentation of Levinson's method for zeros on the critical line, which allows one to prove, in particular, that more than one-third of non-trivial zeros of zeta are on the critical line. This approach and some results concerning integrals of Dirichlet polynomials are new. Th...

  9. Temperature duality on Riemann surface and cosmological solutions for genus g = 1 and 2

    International Nuclear Information System (INIS)

    Yan Jun; Wang Shunjin

    1999-01-01

    A bosonic string model at finite temperature on the gravitation g μν and the dilaton φ background field is examined. Moreover, the duality relation of energy momentum tensor on high genus Riemann surface is derived. At the same time, the temperature duality invariance for the action of string gas matter is proved in 4-D Robertson-Walker metric, the string cosmological solutions and temperature duality of the equations of motion for genus g = 1 and 2 are also investigated

  10. Quantum Hall effect on Riemann surfaces

    Science.gov (United States)

    Tejero Prieto, Carlos

    2009-06-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  11. Quantum Hall effect on Riemann surfaces

    International Nuclear Information System (INIS)

    Tejero Prieto, Carlos

    2009-01-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  12. Chiral bosonization on a Riemann surface

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Ooguri, Hirosi

    1987-01-01

    We point out that the basic addition theorem of θ-functions, Fay's identity, implies an equivalence between bosons and chiral fermions on Riemann surfaces with arbitrary genus. We present a rule for a bosonized calculation of correlation functions. We also discuss ghost systems of n and (1-n) tensors and derive formulas for their chiral determinants. (orig.)

  13. Gaussian curvature on hyperelliptic Riemann surfaces

    Indian Academy of Sciences (India)

    Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 155–167. c Indian Academy of Sciences. Gaussian curvature on hyperelliptic Riemann surfaces. ABEL CASTORENA. Centro de Ciencias Matemáticas (Universidad Nacional Autónoma de México,. Campus Morelia) Apdo. Postal 61-3 Xangari, C.P. 58089 Morelia,.

  14. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  15. Study Paths, Riemann Surfaces, and Strebel Differentials

    Science.gov (United States)

    Buser, Peter; Semmler, Klaus-Dieter

    2017-01-01

    These pages aim to explain and interpret why the late Mika Seppälä, a conformal geometer, proposed to model student study behaviour using concepts from conformal geometry, such as Riemann surfaces and Strebel differentials. Over many years Mika Seppälä taught online calculus courses to students at Florida State University in the United States, as…

  16. Hysteresis rarefaction in the Riemann problem

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel

    2008-01-01

    Roč. 138, - (2008), s. 1-10 ISSN 1742-6588. [International Workshop on Multi-Rate Processes and Hysteresis. Cork , 31.03.2008-05.04.2008] Institutional research plan: CEZ:AV0Z10190503 Keywords : Preisach hysteresis * Riemann problem Subject RIV: BA - General Mathematics http://iopscience.iop.org/1742-6596/138/1/012010

  17. Generalized Riemann problem for reactive flows

    International Nuclear Information System (INIS)

    Ben-Artzi, M.

    1989-01-01

    A generalized Riemann problem is introduced for the equations of reactive non-viscous compressible flow in one space dimension. Initial data are assumed to be linearly distributed on both sides of a jump discontinuity. The resolution of the singularity is studied and the first-order variation (in time) of flow variables is given in exact form. copyright 1989 Academic Press, Inc

  18. Deduction of Einstein equation from homogeneity of Riemann spacetime

    Science.gov (United States)

    Ni, Jun

    2012-03-01

    The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).

  19. On Lovelock analogs of the Riemann tensor

    Science.gov (United States)

    Camanho, Xián O.; Dadhich, Naresh

    2016-03-01

    It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.

  20. Do extended objects move along the geodesics in the Riemann space-time

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.

    1981-01-01

    Movement of an extended self-gravitating body in the gravitational field of another distant body is studied in the postnewtonian approximation of arbitrary metrical gravitational theory. Comparison of the mass center acceleration of the extended body with the acceleration of a point body moving in the Riemann space-time, the metrics of which is formally equivalent to the metrics of two moving extended bodies, shows that in any metrical gravitation theory with conservation laws of energy and momentum of the matter and gravitational field taken together, the mass center of the extended body does not, in general case, move along the geodesics of the Riemann space-time. Application of the general formulas obtained to the system Sun-Earth combined with the experimental data of the lunar laser ranging, shows that the Earth in its orbital motion is oscillating with respect to reference geodesics, with the period about one hour and the amplitude not less than 10 -2 cm. This amplitude is of the postnewtonian magnitude and as a consequence, the deviation of the Earth movement from the geodesical movement can be observed in the experiment possessing the postnewtonian accuracy. The difference between the acceleration of the Earth mass center and that of a test body in the postnewtonian approximation is equal to 10 -7 part of the Earth acceleration. The ratio of the passive gravitational mass of the Earth (defined according to Will) and its inert mass differs from 1 by 10 -8 approximately [ru

  1. The KZB equations on Riemann surfaces

    OpenAIRE

    Felder, Giovanni

    1996-01-01

    In this paper, based on the author's lectures at the 1995 les Houches Summer school, explicit expressions for the Friedan--Shenker connection on the vector bundle of WZW conformal blocks on the moduli space of curves with tangent vectors at $n$ marked points are given. The covariant derivatives are expressed in terms of ``dynamical $r$-matrices'', a notion borrowed from integrable systems. The case of marked points moving on a fixed Riemann surface is studied more closely. We prove a universa...

  2. Analytic convergence of harmonic metrics for parabolic Higgs bundles

    Science.gov (United States)

    Kim, Semin; Wilkin, Graeme

    2018-04-01

    In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.

  3. Post-Quantum Cryptography: Riemann Primitives and Chrysalis

    OpenAIRE

    Malloy, Ian; Hollenbeck, Dennis

    2018-01-01

    The Chrysalis project is a proposed method for post-quantum cryptography using the Riemann sphere. To this end, Riemann primitives are introduced in addition to a novel implementation of this new method. Chrysalis itself is the first cryptographic scheme to rely on Holomorphic Learning with Errors, which is a complex form of Learning with Errors relying on the Gauss Circle Problem within the Riemann sphere. The principle security reduction proposed by this novel cryptographic scheme applies c...

  4. Operator bosonization on Riemann surfaces: new vertex operators

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1989-01-01

    A new formalism is proposed for the construction of an operator theory of generalized ghost systems (bc theories of spin J) on Riemann surfaces (loop diagrams of the theory of closed strings). The operators of the bc system are expressed in terms of operators of the bosonic conformal theory on a Riemann surface. In contrast to the standard bosonization formulas, which have meaning only locally, operator Baker-Akhiezer functions, which are well defined globally on a Riemann surface of arbitrary genus, are introduced. The operator algebra of the Baker-Akhiezer functions generates explicitly the algebraic-geometric τ function and correlation functions of bc systems on Riemann surfaces

  5. Ernst Equation and Riemann Surfaces: Analytical and Numerical Methods

    International Nuclear Information System (INIS)

    Ernst, Frederick J

    2007-01-01

    metric tensor components. The first two chapters of this book are devoted to some basic ideas: in the introductory chapter 1 the authors discuss the concept of integrability, comparing the integrability of the vacuum Ernst equation with the integrability of nonlinear equations of Korteweg-de Vries (KdV) type, while in chapter 2 they describe various circumstances in which the vacuum Ernst equation has been determined to be relevant, not only in connection with gravitation but also, for example, in the construction of solutions of the self-dual Yang-Mills equations. It is also in this chapter that one of several equivalent linear systems for the Ernst equation is described. The next two chapters are devoted to Dmitry Korotkin's concept of algebro-geometric solutions of a linear system: in chapter 3 the structure of such solutions of the vacuum Ernst equation, which involve Riemann theta functions of hyperelliptic algebraic curves of any genus, is contrasted with the periodic structure of such solutions of the KdV equation. How such solutions can be obtained, for example, by solving a matrix Riemann-Hilbert problem and how the metric tensor of the associated spacetime can be evaluated is described in detail. In chapter 4 the asymptotic behaviour and the similarity structure of the general algebro-geometric solutions of the Ernst equation are described, and the relationship of such solutions to the perhaps more familiar multi-soliton solutions is discussed. The next three chapters are based upon the authors' own published research: in chapter 5 it is shown that a problem involving counter-rotating infinitely thin disks of matter can be solved in terms of genus two Riemann theta functions, while in chapter 6 the authors describe numerical methods that facilitate the construction of such solutions, and in chapter 7 three-dimensional graphs are displayed that depict all metrical fields of the associated spacetime. Finally, in chapter 8, the difficulties associated with

  6. The concept of a Riemann surface

    CERN Document Server

    Weyl, Hermann

    2009-01-01

    This classic on the general history of functions was written by one of the twentieth century's best-known mathematicians. Hermann Weyl, who worked with Einstein at Princeton, combined function theory and geometry in this high-level landmark work, forming a new branch of mathematics and the basis of the modern approach to analysis, geometry, and topology.The author intended this book not only to develop the basic ideas of Riemann's theory of algebraic functions and their integrals but also to examine the related ideas and theorems with an unprecedented degree of rigor. Weyl's two-part treatment

  7. Riemann monodromy problem and conformal field theories

    International Nuclear Information System (INIS)

    Blok, B.

    1989-01-01

    A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)

  8. Quantum field theory on higher-genus Riemann surfaces

    International Nuclear Information System (INIS)

    Kubo, Reijiro; Yoshii, Hisahiro; Ojima, Shuichi; Paul, S.K.

    1989-07-01

    Quantum field theory for b-c systems is formulated on Riemann surfaces with arbitrary genus. We make use of the formalism recently developed by Krichever and Novikov. Hamiltonian is defined properly, and the Ward-Takahashi identities are derived on higher-genus Riemann surfaces. (author)

  9. Non-abelian bosonization in higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Koh, I.G.; Yu, M.

    1988-01-01

    We propose a generalization of the character formulas of the SU(2) Kac-Moody algebra to higher genus Riemann surfaces. With this construction, we show that the modular invariant partition funciton of the SO(4) k = 1 Wess-Zumino model is equivalent, in arbitrary genus Riemann surfaces, to that of free fermion theory. (orig.)

  10. Collisionless analogs of Riemann S ellipsoids with halo

    International Nuclear Information System (INIS)

    Abramyan, M.G.

    1987-01-01

    A spheroidal halo ensures equilibrium of the collisionless analogs of the Riemann S ellipsoids with oscillations of the particles along the direction of their rotation. Sequences of collisionless triaxial ellipsoids begin and end with dynamically stable members of collisionless embedded spheroids. Both liquid and collisionless Riemann S ellipsoids with weak halo have properties that resemble those of bars of SB galaxies

  11. A Riemann problem with small viscosity and dispersion

    Directory of Open Access Journals (Sweden)

    Kayyunnapara Thomas Joseph

    2006-09-01

    Full Text Available In this paper we prove existence of global solutions to a hyperbolic system in elastodynamics, with small viscosity and dispersion terms and derive estimates uniform in the viscosity-dispersion parameters. By passing to the limit, we prove the existence of solution the Riemann problem for the hyperbolic system with arbitrary Riemann data.

  12. Getting superstring amplitudes by degenerating Riemann surfaces

    International Nuclear Information System (INIS)

    Matone, Marco; Volpato, Roberto

    2010-01-01

    We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.

  13. Ice cream and orbifold Riemann-Roch

    International Nuclear Information System (INIS)

    Buckley, Anita; Reid, Miles; Zhou Shengtian

    2013-01-01

    We give an orbifold Riemann-Roch formula in closed form for the Hilbert series of a quasismooth polarized n-fold (X,D), under the assumption that X is projectively Gorenstein with only isolated orbifold points. Our formula is a sum of parts each of which is integral and Gorenstein symmetric of the same canonical weight; the orbifold parts are called ice cream functions. This form of the Hilbert series is particularly useful for computer algebra, and we illustrate it on examples of K3 surfaces and Calabi-Yau 3-folds. These results apply also with higher dimensional orbifold strata (see [1] and [2]), although the precise statements are considerably trickier. We expect to return to this in future publications.

  14. E-string theory on Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Cheol; Vafa, Cumrun [Jefferson Physical Laboratory, Harvard University, Cambridge, MA (United States); Razamat, Shlomo S. [Physics Department, Technion, Haifa (Israel); Zafrir, Gabi [Kavli IPMU (WPI), UTIAS, the University of Tokyo, Kashiwa, Chiba (Japan)

    2018-01-15

    We study compactifications of the 6d E-string theory, the theory of a small E{sub 8} instanton, to four dimensions. In particular we identify N = 1 field theories in four dimensions corresponding to compactifications on arbitrary Riemann surfaces with punctures and with arbitrary non-abelian flat connections as well as fluxes for the abelian sub-groups of the E{sub 8} flavor symmetry. This sheds light on emergent symmetries in a number of 4d N = 1 SCFTs (including the 'E7 surprise' theory) as well as leads to new predictions for a large number of 4-dimensional exceptional dualities and symmetries. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Moduli of Riemann surfaces, transcendental aspects

    International Nuclear Information System (INIS)

    Hain, R.

    2000-01-01

    These notes are an informal introduction to moduli spaces of compact Riemann surfaces via complex analysis, topology and Hodge Theory. The prerequisites for the first lecture are just basic complex variables, basic Riemann surface theory up to at least the Riemann-Roch formula, and some algebraic topology, especially covering space theory. The first lecture covers moduli in genus 0 and genus 1 as these can be understood using relatively elementary methods, but illustrate many of the points which arise in higher genus. The notes cover more material than was covered in the lectures, and sometimes the order of topics in the notes differs from that in the lectures. We have seen in genus 1 case that M 1 is the quotient Γ 1 /X 1 of a contractible complex manifold X 1 = H by a discrete group Γ 1 = SL 2 (Z). The action of Γ 1 on X 1 is said to be virtually free - that is, Γ 1 has a finite index subgroup which acts (fixed point) freely on X 1 . In this section we will generalize this to all g >= 1 - we will sketch a proof that there is a contractible complex manifold Xg, called Teichmueller space, and a group Γ g , called the mapping class group, which acts virtually freely on X g . The moduli space of genus g compact Riemann surfaces is the quotient: M g = Γ g /X g . This will imply that M g has the structure of a complex analytic variety with finite quotient singularities. Teichmueller theory is a difficult and technical subject. Because of this, it is only possible to give an overview. In this lecture, we compute the orbifold Picard group of M g for all g >= 1. Recall that an orbifold line bundle over M g is a holomorphic line bundle L over Teichmueller space X g together with an action of the mapping class group Γ g on it such that the projection L → X g is Γ g -equivariant. An orbifold section of this line bundle is a holomorphic Γ g -equivariant section X g → L of L. This is easily seen to be equivalent to fixing a level l>= 3 and considering holomorphic

  16. Transformation optics with artificial Riemann sheets

    Science.gov (United States)

    Xu, Lin; Chen, Huanyang

    2013-11-01

    The two original versions of ‘invisibility’ cloaks (Leonhardt 2006 Science 312 1777-80 and Pendry et al 2006 Science 312 1780-2) show perfect cloaking but require unphysical singularities in material properties. A non-Euclidean version of cloaking (Leonhardt 2009 Science 323 110-12) was later presented to address these problems, using a very complicated non-Euclidean geometry. In this work, we combine the two original approaches to transformation optics into a more general concept: transformation optics with artificial Riemann sheets. Our method is straightforward and can be utilized to design new kinds of cloaks that can work not only in the realm of geometric optics but also using wave optics. The physics behind this design is similar to that of the conformal cloak for waves. The resonances in the interior region make the phase delay disappear and induce the cloaking effect. Numerical simulations confirm our theoretical results.

  17. Transformation optics with artificial Riemann sheets

    International Nuclear Information System (INIS)

    Xu, Lin; Chen, Huanyang

    2013-01-01

    The two original versions of ‘invisibility’ cloaks (Leonhardt 2006 Science 312 1777–80 and Pendry et al 2006 Science 312 1780–2) show perfect cloaking but require unphysical singularities in material properties. A non-Euclidean version of cloaking (Leonhardt 2009 Science 323 110–12) was later presented to address these problems, using a very complicated non-Euclidean geometry. In this work, we combine the two original approaches to transformation optics into a more general concept: transformation optics with artificial Riemann sheets. Our method is straightforward and can be utilized to design new kinds of cloaks that can work not only in the realm of geometric optics but also using wave optics. The physics behind this design is similar to that of the conformal cloak for waves. The resonances in the interior region make the phase delay disappear and induce the cloaking effect. Numerical simulations confirm our theoretical results. (paper)

  18. Ice cream and orbifold Riemann-Roch

    Science.gov (United States)

    Buckley, Anita; Reid, Miles; Zhou, Shengtian

    2013-06-01

    We give an orbifold Riemann-Roch formula in closed form for the Hilbert series of a quasismooth polarized n-fold (X,D), under the assumption that X is projectively Gorenstein with only isolated orbifold points. Our formula is a sum of parts each of which is integral and Gorenstein symmetric of the same canonical weight; the orbifold parts are called ice cream functions. This form of the Hilbert series is particularly useful for computer algebra, and we illustrate it on examples of {K3} surfaces and Calabi-Yau 3-folds. These results apply also with higher dimensional orbifold strata (see [1] and [2]), although the precise statements are considerably trickier. We expect to return to this in future publications.

  19. From Riemann to differential geometry and relativity

    CERN Document Server

    Papadopoulos, Athanase; Yamada, Sumio

    2017-01-01

    This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.

  20. Interpolating and sampling sequences in finite Riemann surfaces

    OpenAIRE

    Ortega-Cerda, Joaquim

    2007-01-01

    We provide a description of the interpolating and sampling sequences on a space of holomorphic functions on a finite Riemann surface, where a uniform growth restriction is imposed on the holomorphic functions.

  1. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  2. The exchange algebra for Liouville theory on punctured Riemann sphere

    International Nuclear Information System (INIS)

    Shen Jianmin; Sheng Zhengmao

    1991-11-01

    We consider in this paper the classical Liouville field theory on the Riemann sphere with n punctures. In terms of the uniformization theorem of Riemann surface, we show explicitly the classical exchange algebra (CEA) for the chiral components of the Liouville fields. We find that the matrice which dominate the CEA is related to the symmetry of the Lie group SL(n) in a nontrivial manner with n>3. (author). 10 refs

  3. Meromorphic functions and cohomology on a Riemann surface

    International Nuclear Information System (INIS)

    Gomez-Mont, X.

    1989-01-01

    The objective of this set of notes is to introduce a series of concepts of Complex Analytic Geometry on a Riemann Surface. We motivate the introduction of cohomology groups through the analysis of meromorphic functions. We finish by showing that the set of infinitesimal deformations of a Riemann surface (the tangent space to Teichmueller space) may be computed as a Cohomology group. (author). 6 refs

  4. Robinson manifolds and Cauchy-Riemann spaces

    CERN Document Server

    Trautman, A

    2002-01-01

    A Robinson manifold is defined as a Lorentz manifold (M, g) of dimension 2n >= 4 with a bundle N subset of C centre dot TM such that the fibres of N are maximal totally null and there holds the integrability condition [Sec N, Sec N] subset of Sec N. The real part of N intersection N-bar is a bundle of null directions tangent to a congruence of null geodesics. This generalizes the notion of a shear-free congruence of null geodesics (SNG) in dimension 4. Under a natural regularity assumption, the set M of all these geodesics has the structure of a Cauchy-Riemann manifold of dimension 2n - 1. Conversely, every such CR manifold lifts to many Robinson manifolds. Three definitions of a CR manifold are described here in considerable detail; they are equivalent under the assumption of real analyticity, but not in the smooth category. The distinctions between these definitions have a bearing on the validity of the Robinson theorem on the existence of null Maxwell fields associated with SNGs. This paper is largely a re...

  5. AdS5 solutions from M5-branes on Riemann surface and D6-branes sources

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Ibrahima [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France)

    2015-09-24

    We describe the gravity duals of four-dimensional N=1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS{sub 5} factor, generically preserves two U(1)s, with generators (J{sup +},J{sup −}), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N=1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We use this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural (p,q) label associated to the circle dual to the killing vector pJ{sup +}+qJ{sup −} which shrinks near the source. In the generic case the world volume of the D6-branes is AdS{sub 5}×S{sup 2} and they locally preserve N=2 supersymmetry. When p=−q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS{sub 5} factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS{sub 5} and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS{sub 5} and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.

  6. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    Science.gov (United States)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  7. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  8. Riemann solvers and undercompressive shocks of convex FPU chains

    International Nuclear Information System (INIS)

    Herrmann, Michael; Rademacher, Jens D M

    2010-01-01

    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space–time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax shocks are replaced by so-called dispersive shocks. For convex–concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave–convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

  9. Riemann surfaces, Clifford algebras and infinite dimensional groups

    International Nuclear Information System (INIS)

    Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.

    1990-01-01

    We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)

  10. BRST quantization of superconformal theories on higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Leman Kuang

    1992-01-01

    A complex contour integral method is constructed and applied to the Becchi-Rouet-Stora-Tyutin (BRST) quantization procedure of string theories on higher genus Riemann surfaces with N=0 and 1 Krichever-Novikov (KN) algebras. This method makes calculations very simple. It is shown that the critical spacetime dimension of the string theories on a genus-g Riemann surface equals that of the string theories on a genus-zero Riemann surface, and that the 'Regge intercepts' in the genus-g case are α(g)=1-3/4g-9/8g 2 and 1/2-3/4g-17/16g 2 for bosonic strings and superstrings, respectively. (orig.)

  11. Semantic metrics

    OpenAIRE

    Hu, Bo; Kalfoglou, Yannis; Dupplaw, David; Alani, Harith; Lewis, Paul; Shadbolt, Nigel

    2006-01-01

    In the context of the Semantic Web, many ontology-related operations, e.g. ontology ranking, segmentation, alignment, articulation, reuse, evaluation, can be boiled down to one fundamental operation: computing the similarity and/or dissimilarity among ontological entities, and in some cases among ontologies themselves. In this paper, we review standard metrics for computing distance measures and we propose a series of semantic metrics. We give a formal account of semantic metrics drawn from a...

  12. Compact Riemann surfaces an introduction to contemporary mathematics

    CERN Document Server

    Jost, Jürgen

    2006-01-01

    Although Riemann surfaces are a time-honoured field, this book is novel in its broad perspective that systematically explores the connection with other fields of mathematics. It can serve as an introduction to contemporary mathematics as a whole as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. It is unique among textbooks on Riemann surfaces in including an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

  13. The sewing technique and correlation functions on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Di Vecchia, P.

    1989-01-01

    We describe in the case of free bosonic and fermionic theories the sewing procedure, that is a very convenient way for constructing correlation functions of these theories on an arbitrary Riemann surface from their knowledge on the sphere. The fundamental object that results from this construction is the N-point g-loop vertex. It summarizes the information of all correlation functions of the theory on an arbitrary Riemann surface. We then check explicitly the bosonization rules and derive some useful formulas. (orig.)

  14. Line operators from M-branes on compact Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Amariti, Antonio [Physics Department, The City College of the CUNY, 160 Convent Avenue, New York, NY 10031 (United States); Orlando, Domenico [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Reffert, Susanne, E-mail: sreffert@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2016-12-15

    In this paper, we determine the charge lattice of mutually local Wilson and 't Hooft line operators for class S theories living on M5-branes wrapped on compact Riemann surfaces. The main ingredients of our analysis are the fundamental group of the N-cover of the Riemann surface, and a quantum constraint on the six-dimensional theory. The latter plays a central role in excluding some of the possible lattices and imposing consistency conditions on the charges. This construction gives a geometric explanation for the mutual locality among the lines, fixing their charge lattice and the structure of the four-dimensional gauge group.

  15. On Riemann zeroes, lognormal multiplicative chaos, and Selberg integral

    International Nuclear Information System (INIS)

    Ostrovsky, Dmitry

    2016-01-01

    Rescaled Mellin-type transforms of the exponential functional of the Bourgade–Kuan–Rodgers statistic of Riemann zeroes are conjecturally related to the distribution of the total mass of the limit lognormal stochastic measure of Mandelbrot–Bacry–Muzy. The conjecture implies that a non-trivial, log-infinitely divisible probability distribution is associated with Riemann zeroes. For application, integral moments, covariance structure, multiscaling spectrum, and asymptotics associated with the exponential functional are computed in closed form using the known meromorphic extension of the Selberg integral. (paper)

  16. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

  17. Integrability of Liouville system on high genus Riemann surface: Pt. 1

    International Nuclear Information System (INIS)

    Chen Yixin; Gao Hongbo

    1992-01-01

    By using the theory of uniformization of Riemann-surfaces, we study properties of the Liouville equation and its general solution on a Riemann surface of genus g>1. After obtaining Hamiltonian formalism in terms of free fields and calculating classical exchange matrices, we prove the classical integrability of Liouville system on high genus Riemann surface

  18. On an isospectrality question over compact Riemann surfaces

    International Nuclear Information System (INIS)

    Srinivas Rau, S.

    1990-01-01

    It is proved that for a generic compact Riemann surface X of genus g>1,(i) there are at most 2 2g unitary characters of π 1 (X) whose associated line bundles have laplacians of identical spectrum, (ii) generating cycles for π 1 (X) can be chosen to be closed geodesics whose length multiplicity is 1. (author). 5 refs

  19. Quantum Riemann surfaces. Pt. 2; The discrete series

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S. (Dept. of Mathematics, IUPUI, Indianapolis, IN (United States)); Lesniewski, A. (Dept. of Physics, Harvard Univ., Cambridge, MA (United States))

    1992-02-01

    We continue our study of noncommutative deformations of two-dimensional hyperbolic manifolds which we initiated in Part I. We construct a sequence of C{sup *}-algebras which are quantizations of a compact Riemann surface of genus g corresponding to special values of the Planck constant. These algebras are direct integrals of finite-dimensional C{sup *}-algebras. (orig.).

  20. Colliding holes in Riemann surfaces and quantum cluster algebras

    Science.gov (United States)

    Chekhov, Leonid; Mazzocco, Marta

    2018-01-01

    In this paper, we describe a new type of surgery for non-compact Riemann surfaces that naturally appears when colliding two holes or two sides of the same hole in an orientable Riemann surface with boundary (and possibly orbifold points). As a result of this surgery, bordered cusps appear on the boundary components of the Riemann surface. In Poincaré uniformization, these bordered cusps correspond to ideal triangles in the fundamental domain. We introduce the notion of bordered cusped Teichmüller space and endow it with a Poisson structure, quantization of which is achieved with a canonical quantum ordering. We give a complete combinatorial description of the bordered cusped Teichmüller space by introducing the notion of maximal cusped lamination, a lamination consisting of geodesic arcs between bordered cusps and closed geodesics homotopic to the boundaries such that it triangulates the Riemann surface. We show that each bordered cusp carries a natural decoration, i.e. a choice of a horocycle, so that the lengths of the arcs in the maximal cusped lamination are defined as λ-lengths in Thurston-Penner terminology. We compute the Goldman bracket explicitly in terms of these λ-lengths and show that the groupoid of flip morphisms acts as a generalized cluster algebra mutation. From the physical point of view, our construction provides an explicit coordinatization of moduli spaces of open/closed string worldsheets and their quantization.

  1. Weyl transforms associated with the Riemann-Liouville operator

    Directory of Open Access Journals (Sweden)

    N. B. Hamadi

    2006-01-01

    Full Text Available For the Riemann-Liouville transform ℛα, α∈ℝ+, associated with singular partial differential operators, we define and study the Weyl transforms Wσ connected with ℛα, where σ is a symbol in Sm, m∈ℝ. We give criteria in terms of σ for boundedness and compactness of the transform Wσ.

  2. Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2007-01-01

    This paper considers two new multifractional stochastic processes, namely the Weyl multifractional Ornstein-Uhlenbeck process and the Riemann-Liouville multifractional Ornstein-Uhlenbeck process. Basic properties of these processes such as locally self-similar property and Hausdorff dimension are studied. The relationship between the multifractional Ornstein-Uhlenbeck processes and the corresponding multifractional Brownian motions is established

  3. Toeplitz operators on higher Cauchy-Riemann spaces

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav; Zhang, G.

    2017-01-01

    Roč. 22, č. 22 (2017), s. 1081-1116 ISSN 1431-0643 Institutional support: RVO:67985840 Keywords : Toeplitz operator * Hankel operator * Cauchy-Riemann operators Subject RIV: BA - General Math ematics OBOR OECD: Pure math ematics Impact factor: 0.800, year: 2016 https://www. math .uni-bielefeld.de/documenta/vol-22/32.html

  4. The beauty of the Riemann-Silberstein vector

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.

    2005-01-01

    Beams of light carrying angular momentum have recently been widely studied theoretically and experimentally. In my talk I will show that the description of these beams in terms of the Riemann-Silberstein vector offers many advantages. In particular, it provides a natural bridge between the classical and the quantum description. (author)

  5. (Anti-) selfdual Riemann curvature tensor in four spacelike compactified dimensions, O5 isometry group and chiral fermion zero modes

    International Nuclear Information System (INIS)

    Minkowski, P.

    1986-01-01

    The metric and contorsion tensors are constructed which yield a combined Riemann curvature tensor of the form Rsup(+-)sub(μνsigmatau)=(1/2a 2 )(gsub(μsigma)gsub(νtau) - gsub(μtau)gsub(νsigma)+-√g epsilonsub(μνsigmatau)). The metric with euclidean signature (++++) describes a sphere S 4 with radius a, i.e. admits the isometry group O5. For selfdual (antiselfdual) curvature tensor the contorsion tensor is given by the antiselfdual (selfdual) instanton configuration with respect to the spin gauge group SU2sub(R) (SU2sub(L)). The selfdual (antiselfdual) Riemann tensor admits two covariantly constant right-handed (left-handed) spin 1/2 fermion zero modes, one J=1/2 and one J=3/2 right-handed (left-handed) multiplet corresponding to L=1, transforming as a pseudoreal representation of O4 (SU2sub(R(L))). The hermitean Dirac equation retains only the two constant chiral modes. (orig.)

  6. Scale-invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    International Nuclear Information System (INIS)

    Anabitarte, M.; Bellini, M.; Madriz Aguilar, Jose Edgar

    2010-01-01

    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values. (orig.)

  7. Approximate Riemann solver for the two-fluid plasma model

    International Nuclear Information System (INIS)

    Shumlak, U.; Loverich, J.

    2003-01-01

    An algorithm is presented for the simulation of plasma dynamics using the two-fluid plasma model. The two-fluid plasma model is more general than the magnetohydrodynamic (MHD) model often used for plasma dynamic simulations. The two-fluid equations are derived in divergence form and an approximate Riemann solver is developed to compute the fluxes of the electron and ion fluids at the computational cell interfaces and an upwind characteristic-based solver to compute the electromagnetic fields. The source terms that couple the fluids and fields are treated implicitly to relax the stiffness. The algorithm is validated with the coplanar Riemann problem, Langmuir plasma oscillations, and the electromagnetic shock problem that has been simulated with the MHD plasma model. A numerical dispersion relation is also presented that demonstrates agreement with analytical plasma waves

  8. Riemann-Theta Boltzmann Machine arXiv

    CERN Document Server

    Krefl, Daniel; Haghighat, Babak; Kahlen, Jens

    A general Boltzmann machine with continuous visible and discrete integer valued hidden states is introduced. Under mild assumptions about the connection matrices, the probability density function of the visible units can be solved for analytically, yielding a novel parametric density function involving a ratio of Riemann-Theta functions. The conditional expectation of a hidden state for given visible states can also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta function. The conditional expectation can be used as activation function in a feedforward neural network, thereby increasing the modelling capacity of the network. Both the Boltzmann machine and the derived feedforward neural network can be successfully trained via standard gradient- and non-gradient-based optimization techniques.

  9. Exploration and extension of an improved Riemann track fitting algorithm

    Science.gov (United States)

    Strandlie, A.; Frühwirth, R.

    2017-09-01

    Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.

  10. Pseudo-periodic maps and degeneration of Riemann surfaces

    CERN Document Server

    Matsumoto, Yukio

    2011-01-01

    The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen’s incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.

  11. Erratum A variational proof for the existence of a conformal metric ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Theorem 0.1 . Let M be a compact Riemann surface of genus g > 1. The infimum S0 is attained at σ ∈ C∞(M), i.e., the minimizing sequence {σn} contains a subsequence that converges in W2,2(M) to σ ∈ C∞(M) and S(σ) = 0. The corresponding metric e σ hdz ⊗ d¯z is the unique metric on M of negative curvature K.

  12. Metric learning

    CERN Document Server

    Bellet, Aurelien; Sebban, Marc

    2015-01-01

    Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learnin

  13. Extended Riemann-Liouville type fractional derivative operator with applications

    Directory of Open Access Journals (Sweden)

    Agarwal P.

    2017-12-01

    Full Text Available The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by defining the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox’s H-function are also presented.

  14. Quantum field theory on higher-genus Riemann surfaces, 2

    International Nuclear Information System (INIS)

    Kubo, Reijiro; Ojima, Shuichi.

    1990-08-01

    Quantum field theory for closed bosonic string systems is formulated on arbitrary higher-genus Riemann surfaces in global operator formalism. Canonical commutation relations between bosonic string field X μ and their conjugate momenta P ν are derived in the framework of conventional quantum field theory. Problems arising in quantizing bosonic systems are considered in detail. Applying the method exploited in the preceding paper we calculate Ward-Takahashi identities. (author)

  15. A contribution to the great Riemann solver debate

    Science.gov (United States)

    Quirk, James J.

    1992-01-01

    The aims of this paper are threefold: to increase the level of awareness within the shock capturing community to the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very high resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.

  16. Submaximal Riemann-Roch expected curves and symplectic packing.

    Directory of Open Access Journals (Sweden)

    Wioletta Syzdek

    2007-06-01

    Full Text Available We study Riemann-Roch expected curves on $mathbb{P}^1 imes mathbb{P}^1$ in the context of the Nagata-Biran conjecture. This conjecture predicts that for sufficiently large number of points multiple points Seshadri constants of an ample line bundle on algebraic surface are maximal. Biran gives an effective lower bound $N_0$. We construct examples verifying to the effect that the assertions of the Nagata-Biran conjecture can not hold for small number of points. We discuss cases where our construction fails. We observe also that there exists a strong relation between Riemann-Roch expected curves on $mathbb{P}^1 imes mathbb{P}^1$ and the symplectic packing problem. Biran relates the packing problem to the existence of solutions of certain Diophantine equations. We construct such solutions for any ample line bundle on $mathbb{P}^1 imes mathbb{P}^1$ and a relatively smallnumber of points. The solutions geometrically correspond to Riemann-Roch expected curves. Finally we discuss in how far the Biran number $N_0$ is optimal in the case of mathbb{P}^1 imes mathbb{P}^1. In fact we conjecture that it can be replaced by a lower number and we provide evidence justifying this conjecture.

  17. Conformal scalar fields and chiral splitting on super Riemann surfaces

    International Nuclear Information System (INIS)

    D'Hoker, E.; Phong, D.H.

    1989-01-01

    We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)

  18. Method of construction of the Riemann function for a second-order hyperbolic equation

    Science.gov (United States)

    Aksenov, A. V.

    2017-12-01

    A linear hyperbolic equation of the second order in two independent variables is considered. The Riemann function of the adjoint equation is shown to be invariant with respect to the fundamental solutions transformation group. Symmetries and symmetries of fundamental solutions of the Euler-Poisson-Darboux equation are found. The Riemann function is constructed with the aid of fundamental solutions symmetries. Examples of the application of the algorithm for constructing Riemann function are given.

  19. Derivative-Based Trapezoid Rule for the Riemann-Stieltjes Integral

    Directory of Open Access Journals (Sweden)

    Weijing Zhao

    2014-01-01

    Full Text Available The derivative-based trapezoid rule for the Riemann-Stieltjes integral is presented which uses 2 derivative values at the endpoints. This kind of quadrature rule obtains an increase of two orders of precision over the trapezoid rule for the Riemann-Stieltjes integral and the error term is investigated. At last, the rationality of the generalization of derivative-based trapezoid rule for Riemann-Stieltjes integral is demonstrated.

  20. Metrication manual

    International Nuclear Information System (INIS)

    Harper, A.F.A.; Digby, R.B.; Thong, S.P.; Lacey, F.

    1978-04-01

    In April 1978 a meeting of senior metrication officers convened by the Commonwealth Science Council of the Commonwealth Secretariat, was held in London. The participants were drawn from Australia, Bangladesh, Britain, Canada, Ghana, Guyana, India, Jamaica, Papua New Guinea, Solomon Islands and Trinidad and Tobago. Among other things, the meeting resolved to develop a set of guidelines to assist countries to change to SI and to compile such guidelines in the form of a working manual

  1. On the $a$-points of the derivatives of the Riemann zeta function

    OpenAIRE

    Onozuka, Tomokazu

    2016-01-01

    We prove three results on the $a$-points of the derivatives of the Riemann zeta function. The first result is a formula of the Riemann-von Mangoldt type; we estimate the number of the $a$-points of the derivatives of the Riemann zeta function. The second result is on certain exponential sum involving $a$-points. The third result is an analogue of the zero density theorem. We count the $a$-points of the derivatives of the Riemann zeta function in $1/2-(\\log\\log T)^2/\\log T

  2. Integrable systems twistors, loop groups, and Riemann surfaces

    CERN Document Server

    Hitchin, NJ; Ward, RS

    2013-01-01

    This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do werecognize an integrable system? His own contribution then develops connections with algebraic geometry, and inclu

  3. The Riemann zeta-function theory and applications

    CERN Document Server

    Ivic, Aleksandar

    2003-01-01

    ""A thorough and easily accessible account.""-MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting with elementary theory, it examines exponential integrals and exponential sums, the Voronoi summation formula, the approximate functional equation, the fourth power moment, the zero-free region, mean value estimates over short intervals, higher power moments, and omega results. Additional topics include zeros on the critical line, zero-density estim

  4. On the properties of torsions in Riemann-Cartan space-times

    International Nuclear Information System (INIS)

    Baker, W.M.; Atkins, W.K.; Davis, W.R.

    1978-01-01

    This paper is the first paper in a series of three papers dealing with the physical properties of torsions in Riemann-Cartan space-times (U 4 ). Paper one deals with the particular types of torsion that can be associated with the U 4 reinterpretation of a special class of null electromagnetic solutions of the standard form of Einstein's equations. In particular, for plane null electromagnetic solutions, three types of torsion solutions are associated with this type of reinterpretation. Two of these solutions, the trivector and semi-symmetric torsions, although rather special, serve as examples of what could be done to find the associated torsions in terms of simple requirements on identities in U 4 . The third class is obtained by relating the contorsion to the Lanczos ''spin'' tensor. Paper two, dealing with gravitational radiation, provides the proper background relating to the physical significance of the Lanczos tensor. This series of papers is primarily concerned with the question of the possible physical role of all types of torsion, compatible with an extension or an U 4 reinterpretation of Einstein's theory, consistent with the broadest possible interpretation of the present form of the Einstein-Cartan-Sciama-Kibble theory. However, in paper three some consideration will be given on theories with simpler metrical generalizations of U 4 and the related types of torsion. We emphasize that the content of paper one and two should be viewed mainly as special formal results that introduce the more general considerations of paper three

  5. Extended KN algebras and extended conformal field theories over higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Ceresole, A.; Huang Chaoshang

    1990-01-01

    A global operator formalism for extended conformal field theories over higher genus Riemann surfaces is introduced and extended KN algebra are obtained by means of the KN bases. The BBSS construction of the spin-3 operator is carried out for Kac-Moody algebra A 2 over a Riemann surface of arbitrary genus. (orig.)

  6. Superconformal structures and holomorphic 1/2-superdifferentials on N=1 super Riemann surfaces

    International Nuclear Information System (INIS)

    Kachkachi, H.; Kachkachi, M.

    1992-07-01

    Using the Super Riemann-Roch theorem we give a local expression for a holomorphic 1/2-superdifferential in a superconformal structure parametrized by special isothermal coordinates on an N=1 Super Riemann Surface (SRS). This construction is done by choosing a suitable origin for these coordinates. The holomorphy of the latter with respect to super Beltrami differentials is proven. (author). 26 refs

  7. Superconformal algebra on meromorphic vector fields with three poles on super-Riemann sphere

    International Nuclear Information System (INIS)

    Wang Shikun; Xu Kaiwen.

    1989-07-01

    Based upon the Riemann-Roch theorem, we construct superconformal algebra of meromorphic vector fields with three poles and the relevant abelian differential of the third kind on super Riemann sphere. The algebra includes two Ramond sectors as subalgebra, and implies a picture of interaction of three superstrings. (author). 14 refs

  8. Two-Loop Scattering Amplitudes from the Riemann Sphere

    CERN Document Server

    Geyer, Yvonne; Monteiro, Ricardo; Tourkine, Piotr

    2016-01-01

    The scattering equations give striking formulae for massless scattering amplitudes at tree level and, as shown recently, at one loop. The progress at loop level was based on ambitwistor string theory, which naturally yields the scattering equations. We proposed that, for ambitwistor strings, the standard loop expansion in terms of the genus of the worldsheet is equivalent to an expansion in terms of nodes of a Riemann sphere, with the nodes carrying the loop momenta. In this paper, we show how to obtain two-loop scattering equations with the correct factorization properties. We adapt genus-two integrands from the ambitwistor string to the nodal Riemann sphere and show that these yield correct answers, by matching standard results for the four-point two-loop amplitudes of maximal supergravity and super-Yang-Mills theory. In the Yang-Mills case, this requires the loop analogue of the Parke-Taylor factor carrying the colour dependence, which includes non-planar contributions.

  9. Poisson sigma model with branes and hyperelliptic Riemann surfaces

    International Nuclear Information System (INIS)

    Ferrario, Andrea

    2008-01-01

    We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder [''A path integral approach to the Kontsevich quantization formula,'' Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ['Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model', Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., 'Deformation quantization of Poisson manifolds I', e-print arXiv:hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P n with particular ''alternating'' boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions

  10. Fractal supersymmetric QM, Geometric Probability and the Riemann Hypothesis

    CERN Document Server

    Castro, C

    2004-01-01

    The Riemann's hypothesis (RH) states that the nontrivial zeros of the Riemann zeta-function are of the form $ s_n =1/2+i\\lambda_n $. Earlier work on the RH based on supersymmetric QM, whose potential was related to the Gauss-Jacobi theta series, allows to provide the proper framework to construct the well defined algorithm to compute the probability to find a zero (an infinity of zeros) in the critical line. Geometric probability theory furnishes the answer to the very difficult question whether the probability that the RH is true is indeed equal to unity or not. To test the validity of this geometric probabilistic framework to compute the probability if the RH is true, we apply it directly to the the hyperbolic sine function $ \\sinh (s) $ case which obeys a trivial analog of the RH (the HSRH). Its zeros are equally spaced in the imaginary axis $ s_n = 0 + i n \\pi $. The geometric probability to find a zero (and an infinity of zeros) in the imaginary axis is exactly unity. We proceed with a fractal supersymme...

  11. Large chiral diffeomorphisms on Riemann surfaces and W-algebras

    International Nuclear Information System (INIS)

    Bandelloni, G.; Lazzarini, S.

    2006-01-01

    The diffeomorphism action lifted on truncated (chiral) Taylor expansion of a complex scalar field over a Riemann surface is presented in the paper under the name of large diffeomorphisms. After an heuristic approach, we show how a linear truncation in the Taylor expansion can generate an algebra of symmetry characterized by some structure functions. Such a linear truncation is explicitly realized by introducing the notion of Forsyth frame over the Riemann surface with the help of a conformally covariant algebraic differential equation. The large chiral diffeomorphism action is then implemented through a Becchi-Rouet-Stora (BRS) formulation (for a given order of truncation) leading to a more algebraic setup. In this context the ghost fields behave as holomorphically covariant jets. Subsequently, the link with the so-called W-algebras is made explicit once the ghost parameters are turned from jets into tensorial ghost ones. We give a general solution with the help of the structure functions pertaining to all the possible truncations lower or equal to the given order. This provides another contribution to the relationship between Korteweg-de Vries (KdV) flows and W-diffeomorphims

  12. Inverse Scattering, the Coupling Constant Spectrum, and the Riemann Hypothesis

    International Nuclear Information System (INIS)

    Khuri, N. N.

    2002-01-01

    It is well known that the s-wave Jost function for a potential, λV, is an entire function of λ with an infinite number of zeros extending to infinity. For a repulsive V, and at zero energy, these zeros of the 'coupling constant', λ, will all be real and negative, λ n (0) n n =1/2+iγ n . Thus, finding a repulsive V whose coupling constant spectrum coincides with the Riemann zeros will establish the Riemann hypothesis, but this will be a very difficult and unguided search.In this paper we make a significant enlargement of the class of potentials needed for a generalization of the above idea. We also make this new class amenable to construction via inverse scattering methods. We show that all one needs is a one parameter class of potentials, U(s;x), which are analytic in the strip, 0≤Res≤1, Ims>T 0 , and in addition have an asymptotic expansion in powers of [s(s-1)] -1 , i.e. U(s;x)=V 0 (x)+gV 1 (x)+g 2 V 2 (x)+...+O(g N ), with g=[s(s-1)] -1 . The potentials V n (x) are real and summable. Under suitable conditions on the V n 's and the O(g N ) term we show that the condition, ∫ 0 ∞ vertical bar f 0 (x) vertical bar 2 V 1 (x) dx≠0, where f 0 is the zero energy and g=0 Jost function for U, is sufficient to guarantee that the zeros g n are real and, hence, s n =1/2+iγ n , for γ n ≥T 0 .Starting with a judiciously chosen Jost function, M(s,k), which is constructed such that M(s,0) is Riemann's ξ(s) function, we have used inverse scattering methods to actually construct a U(s;x) with the above properties. By necessity, we had to generalize inverse methods to deal with complex potentials and a nonunitary S-matrix. This we have done at least for the special cases under consideration.For our specific example, ∫ 0 ∞ vertical bar f 0 (x) vertical bar 2 V 1 (x) dx=0 and, hence, we get no restriction on Img n or Res n . The reasons for the vanishing of the above integral are given, and they give us hints on what one needs to proceed further. The problem

  13. Polynomials, Riemann surfaces, and reconstructing missing-energy events

    CERN Document Server

    Gripaios, Ben; Webber, Bryan

    2011-01-01

    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.

  14. Supersymmetric Dirac particles in Riemann-Cartan space-time

    International Nuclear Information System (INIS)

    Rumpf, H.

    1981-01-01

    A natural extension of the supersymmetric model of Di Vecchia and Ravndal yields a nontrivial coupling of classical spinning particles to torsion in a Riemann-Cartan geometry. The equations of motion implied by this model coincide with a consistent classical limit of the Heisenberg equations derived from the minimally coupled Dirac equation. Conversely, the latter equation is shown to arise from canonical quantization of the classical system. The Heisenberg equations are obtained exact in all powers of h/2π and thus complete the partial results of previous WKB calculations. The author also considers such matters of principle as the mathematical realization of anticommuting variables, the physical interpretation of supersymmetry transformations, and the effective variability of rest mass. (Auth.)

  15. A New Riemann Type Hydrodynamical Hierarchy and its Integrability Analysis

    International Nuclear Information System (INIS)

    Golenia, Jolanta Jolanta; Bogolubov, Nikolai N. Jr.; Popowicz, Ziemowit; Pavlov, Maxim V.; Prykarpatsky, Anatoliy K.

    2009-12-01

    Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability of the corresponding dynamical system is stated and an infinite hierarchy of commuting to each other conservation laws of dispersive type are found. The well defined regularization of the model is constructed and its Lax type integrability is discussed. A generalized hydrodynamical Riemann type system is considered, infinite hierarchies of conservation laws, related compatible co-symplectic structures and Lax type representations for the special cases N = 2, 3 and N = 4 are constructed. (author)

  16. The Picard group of the moduli space of r-Spin Riemann surfaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2012-01-01

    An r-Spin Riemann surface is a Riemann surface equipped with a choice of rth root of the (co)tangent bundle. We give a careful construction of the moduli space (orbifold) of r-Spin Riemann surfaces, and explain how to establish a Madsen–Weiss theorem for it. This allows us to prove the “Mumford...... conjecture” for these moduli spaces, but more interestingly allows us to compute their algebraic Picard groups (for g≥10, or g≥9 in the 2-Spin case). We give a complete description of these Picard groups, in terms of explicitly constructed line bundles....

  17. Structural stability of Riemann solutions for strictly hyperbolic systems with three piecewise constant states

    Directory of Open Access Journals (Sweden)

    Xuefeng Wei

    2016-12-01

    Full Text Available This article concerns the wave interaction problem for a strictly hyperbolic system of conservation laws whose Riemann solutions involve delta shock waves. To cover all situations, the global solutions are constructed when the initial data are taken as three piecewise constant states. It is shown that the Riemann solutions are stable with respect to a specific small perturbation of the Riemann initial data. In addition, some interesting nonlinear phenomena are captured during the process of constructing the solutions, such as the generation and decomposition of delta shock waves.

  18. Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature

    OpenAIRE

    Loveridge, Lee C.

    2004-01-01

    Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.

  19. Existence and Nonexistence of Positive Solutions for Coupled Riemann-Liouville Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Johnny Henderson

    2016-01-01

    Full Text Available We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with two parameters, subject to coupled integral boundary conditions.

  20. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics

    National Research Council Canada - National Science Library

    Derbyshire, John

    2003-01-01

    .... Is the hypothesis true or false?Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic defining a precise formula to track and identify the occurrence...

  1. Nontrivial Solution of Fractional Differential System Involving Riemann-Stieltjes Integral Condition

    Directory of Open Access Journals (Sweden)

    Ge-Feng Yang

    2012-01-01

    differential system involving the Riemann-Stieltjes integral condition, by using the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle, some sufficient conditions of the existence and uniqueness of a nontrivial solution of a system are obtained.

  2. A variational approach to closed bosonic strings on bordered Riemann surfaces

    International Nuclear Information System (INIS)

    Ohrndorf, T.

    1987-01-01

    Polyakov's path integral for bosonic closed strings defined on a bordered Riemann surface is investigated by variational methods. It is demonstrated that boundary variations are generated by the Virasoro operators. The investigation is performed for both, simply connected Riemann surfaces as well as ringlike domains. It is shown that the form of the variational operator is the same on both kinds of surfaces. The Virasoro algebra arises as a consistency condition for the variation. (orig.)

  3. Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions

    OpenAIRE

    Biane, P.; Pitman, J.; Yor, M.

    1999-01-01

    This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann's zeta function which are related to these laws.

  4. Essay on Fractional Riemann-Liouville Integral Operator versus Mikusinski’s

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available This paper presents the representation of the fractional Riemann-Liouville integral by using the Mikusinski operators. The Mikusinski operators discussed in the paper may yet provide a new view to describe and study the fractional Riemann-Liouville integral operator. The present result may be useful for applying the Mikusinski operational calculus to the study of fractional calculus in mathematics and to the theory of filters of fractional order in engineering.

  5. The Euler–Riemann gases, and partition identities

    International Nuclear Information System (INIS)

    Chair, Noureddine

    2013-01-01

    The Euler theorem in partition theory and its generalization are derived from a non-interacting quantum field theory in which each bosonic mode with a given frequency is equivalent to a sum of bosonic mode whose frequency is twice (s-times) as much, and a fermionic (parafermionic) mode with the same frequency. Explicit formulas for the graded parafermionic partition functions are obtained, and the inverse of the graded partition function (IGPPF), turns out to be bosonic (fermionic) partition function depending on the parity of the order s of the parafermions. It is also shown that these partition functions are generating functions of partitions of integers with restrictions, the Euler generating function is identified with the inverse of the graded parafermionic partition function of order 2. As a result we obtain new sequences of partitions of integers with given restrictions. If the parity of the order s is even, then mixing a system of parafermions with a system whose partition function is (IGPPF), results in a system of fermions and bosons. On the other hand, if the parity of s is odd, then, the system we obtain is still a mixture of fermions and bosons but the corresponding Fock space of states is truncated. It turns out that these partition functions are given in terms of the Jacobi theta function θ 4 , and generate sequences in partition theory. Our partition functions coincide with the overpartitions of Corteel and Lovejoy, and jagged partitions in conformal field theory. Also, the partition functions obtained are related to the Ramond characters of the superconformal minimal models, and in the counting of the Moore–Read edge spectra that appear in the fractional quantum Hall effect. The different partition functions for the Riemann gas that are the counter parts of the Euler gas are obtained by a simple change of variables. In particular the counter part of the Jacobi theta function is (ζ(2t))/(ζ(t) 2 ) . Finally, we propose two formulas which brings

  6. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

    Science.gov (United States)

    Bui-Thanh, T.; Girolami, M.

    2014-11-01

    We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint

  7. Metrics of quantum states

    International Nuclear Information System (INIS)

    Ma Zhihao; Chen Jingling

    2011-01-01

    In this work we study metrics of quantum states, which are natural generalizations of the usual trace metric and Bures metric. Some useful properties of the metrics are proved, such as the joint convexity and contractivity under quantum operations. Our result has a potential application in studying the geometry of quantum states as well as the entanglement detection.

  8. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    International Nuclear Information System (INIS)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.

    2010-01-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  9. Minimal models on Riemann surfaces: The partition functions

    International Nuclear Information System (INIS)

    Foda, O.

    1990-01-01

    The Coulomb gas representation of the A n series of c=1-6/[m(m+1)], m≥3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius) 2 of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.)

  10. Minimal models on Riemann surfaces: The partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)

    1990-06-04

    The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).

  11. Conformal fields. From Riemann surfaces to integrable hierarchies

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1991-01-01

    I discuss the idea of translating ingredients of conformal field theory into the language of hierarchies of integrable differential equations. Primary conformal fields are mapped into (differential or matrix) operators living on the phase space of the hierarchy, whereas operator insertions of, e.g., a current or the energy-momentum tensor, become certain vector fields on the phase space and thus acquire a meaning independent of a given Riemann surface. A number of similarities are observed between the structures arising on the hierarchy and those of the theory on the world-sheet. In particular, there is an analogue of the operator product algebra with the Cauchy kernel replaced by its 'off-shell' hierarchy version. Also, hierarchy analogues of certain operator insertions admit two (equivalent, but distinct) forms, resembling the 'bosonized' and 'fermionized' versions respectively. As an application, I obtain a useful reformulation of the Virasoro constraints of the type that arise in matrix models, as a system of equations on dressing (or Lax) operators (rather than correlation functions, i.e., residues or traces). This also suggests an interpretation in terms of a 2D topological field theory, which might be extended to a correspondence between Virasoro-constrained hierarchies and topological theories. (orig.)

  12. Numerical implication of Riemann problem theory for fluid dynamics

    International Nuclear Information System (INIS)

    Menikoff, R.

    1988-01-01

    The Riemann problem plays an important role in understanding the wave structure of fluid flow. It is also crucial step in some numerical algorithms for accurately and efficiently computing fluid flow; Godunov method, random choice method, and from tracking method. The standard wave structure consists of shock and rarefaction waves. Due to physical effects such as phase transitions, which often are indistinguishable from numerical errors in an equation of state, anomalkous waves may occur, ''rarefaction shocks'', split waves, and composites. The anomalous waves may appear in numerical calculations as waves smeared out by either too much artificial viscosity or insufficient resolution. In addition, the equation of state may lead to instabilities of fluid flow. Since these anomalous effects due to the equation of state occur for the continuum equations, they can be expected to occur for all computational algorithms. The equation of state may be characterized by three dimensionless variables: the adiabatic exponent γ, the Grueneisen coefficient Γ, and the fundamental derivative G. The fluid flow anomalies occur when inequalities relating these variables are violated. 18 refs

  13. Orbifold Riemann surfaces: Teichmueller spaces and algebras of geodesic functions

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Marta [Loughborough University, Loughborough (United Kingdom); Chekhov, Leonid O [Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow (Russian Federation)

    2009-12-31

    A fat graph description is given for Teichmueller spaces of Riemann surfaces with holes and with Z{sub 2}- and Z{sub 3}-orbifold points (conical singularities) in the Poincare uniformization. The corresponding mapping class group transformations are presented, geodesic functions are constructed, and the Poisson structure is introduced. The resulting Poisson algebras are then quantized. In the particular cases of surfaces with n Z{sub 2}-orbifold points and with one and two holes, the respective algebras A{sub n} and D{sub n} of geodesic functions (classical and quantum) are obtained. The infinite-dimensional Poisson algebra D{sub n}, which is the semiclassical limit of the twisted q-Yangian algebra Y'{sub q}(o{sub n}) for the orthogonal Lie algebra o{sub n}, is associated with the algebra of geodesic functions on an annulus with n Z{sub 2}-orbifold points, and the braid group action on this algebra is found. From this result the braid group actions are constructed on the finite-dimensional reductions of this algebra: the p-level reduction and the algebra D{sub n}. The central elements for these reductions are found. Also, the algebra D{sub n} is interpreted as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semisimple point. Bibliography: 36 titles.

  14. $\\eta$-metric structures

    OpenAIRE

    Gaba, Yaé Ulrich

    2017-01-01

    In this paper, we discuss recent results about generalized metric spaces and fixed point theory. We introduce the notion of $\\eta$-cone metric spaces, give some topological properties and prove some fixed point theorems for contractive type maps on these spaces. In particular we show that theses $\\eta$-cone metric spaces are natural generalizations of both cone metric spaces and metric type spaces.

  15. Quantized Dirac field in curved Riemann--Cartan background. I. Symmetry properties, Green's function

    International Nuclear Information System (INIS)

    Nieh, H.T.; Yan, M.L.

    1982-01-01

    In the present series of papers, we study the properties of quantized Dirac field in curved Riemann--Cartan space, with particular attention on the role played by torsion. In this paper, we give, in the spirit of the original work of Weyl, a systematic presentation of Dirac's theory in curved Riemann--Cartan space. We discuss symmetry properties of the system, and derive conservation laws as direct consequences of these symmetries. Also discussed is conformal gauge symmetry, with torsion effectively playing the role of a conformal gauge field. To obtain short-distance behavior, we calculate the spinor Green's function, in curved Riemann--Cartan background, using the Schwinger--DeWitt method of proper-time expansion. The calculation corresponds to a generalization of DeWitt's calculation for a Riemannian background

  16. Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface

    International Nuclear Information System (INIS)

    Zolotarev, Vladimir A

    2009-01-01

    Functional models are constructed for commutative systems {A 1 ,A 2 } of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that ξ 1 A 1 +ξ 2 A 2 is not a dissipative operator for any ξ 1 , ξ 2 element of R). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators {A 1 ,A 2 } for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and E-tilde(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.

  17. Explicit solution of Riemann-Hilbert problems for the Ernst equation

    Science.gov (United States)

    Klein, C.; Richter, O.

    1998-01-01

    Riemann-Hilbert problems are an important solution technique for completely integrable differential equations. They are used to introduce a free function in the solutions which can be used at least in principle to solve initial or boundary value problems. But even if the initial or boundary data can be translated into a Riemann-Hilbert problem, it is in general impossible to obtain explicit solutions. In the case of the Ernst equation, however, this is possible for a large class because the matrix problem can be shown to be gauge equivalent to a scalar one on a hyperelliptic Riemann surface that can be solved in terms of theta functions. As an example we discuss the rigidly rotating dust disk.

  18. Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations

    Science.gov (United States)

    Chiodaroli, Elisabetta; Kreml, Ondřej

    2018-04-01

    We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.

  19. SO(N) WZNW models on higher-genus Riemann surfaces

    International Nuclear Information System (INIS)

    Alimohammadi, M.; Arfaei, H.; Bonn Univ.

    1993-08-01

    With the help of the string functions and fusion rules of SO(2N) 1 , we show that the results on SU(N) 1 correlators on higher-genus Riemann surfaces (HGRS) can be extended to the SO(2N) 1 and other level-one simply-laced WZNW models. Using modular invariance and factorization properties of Green functions we find multipoint correlators of primary and descendant fields of SO(2N+1) 1 WZNW models on higher genus Riemann surfaces. (orig.)

  20. Modular transformations of conformal blocks in WZW models on Riemann surfaces of higher genus

    International Nuclear Information System (INIS)

    Miao Li; Ming Yu.

    1989-05-01

    We derive the modular transformations for conformal blocks in Wess-Zumino-Witten models on Riemann surfaces of higher genus. The basic ingredient consists of using the Chern-Simons theory developed by Witten. We find that the modular transformations generated by Dehn twists are linear combinations of Wilson line operators, which can be expressed in terms of braiding matrices. It can also be shown that modular transformation matrices for g > 0 Riemann surfaces depend only on those for g ≤ 3. (author). 13 refs, 15 figs

  1. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    Science.gov (United States)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  2. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  3. Reassessing Riemann's paper on the number of primes less than a given magnitude

    CERN Document Server

    Dittrich, Walter

    2018-01-01

    In this book, the author pays tribute to Bernhard Riemann (1826–1866), mathematician with revolutionary ideas, whose work on the theory of integration, the Fourier transform, the hypergeometric differential equation, etc. contributed immensely to mathematical physics. This book concentrates in particular on Riemann’s only work on prime numbers, including such then new ideas as analytical continuation in the complex plane and the product formula for entire functions. A detailed analysis of the zeros of the Riemann zeta function is presented. The impact of Riemann’s ideas on regularizing infinite values in field theory is also emphasized.

  4. Riemann problems and their application to ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Plohr, B.J.; Sharp, D.H.

    1986-07-01

    Heavy ion collisions at sufficiently high energies to form quark-gluon plasma are considered. The phase transformation from a quark-gluon phase to hadrons as the nuclear matter cools is modeled as a hydrodynamical flow. Nonlinear waves are the predominant feature of this type of flow and the Riemann problem of a relativistic gas undergoing a phase transformation is explored as a method to numerically model this phase transition process in nuclear matter. The solution of the Riemann problem is outlined and results of preliminary numerical computations of the flow are presented. 10 refs., 2 figs

  5. Local Extrema of the $\\Xi(t)$ Function and The Riemann Hypothesis

    OpenAIRE

    Kobayashi, Hisashi

    2016-01-01

    In the present paper we obtain a necessary and sufficient condition to prove the Riemann hypothesis in terms of certain properties of local extrema of the function $\\Xi(t)=\\xi(\\tfrac{1}{2}+it)$. First, we prove that positivity of all local maxima and negativity of all local minima of $\\Xi(t)$ form a necessary condition for the Riemann hypothesis to be true. After showing that any extremum point of $\\Xi(t)$ is a saddle point of the function $\\Re\\{\\xi(s)\\}$, we prove that the above properties o...

  6. Reduction of 4-dim self dual super Yang-Mills onto super Riemann surfaces

    International Nuclear Information System (INIS)

    Mendoza, A.; Restuccia, A.; Martin, I.

    1990-05-01

    Recently self dual super Yang-Mills over a super Riemann surface was obtained as the zero set of a moment map on the space of superconnections to the dual of the super Lie algebra of gauge transformations. We present a new formulation of 4-dim Euclidean self dual super Yang-Mills in terms of constraints on the supercurvature. By dimensional reduction we obtain the same set of superconformal field equations which define self dual connections on a super Riemann surface. (author). 10 refs

  7. METRIC context unit architecture

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R.O.

    1988-01-01

    METRIC is an architecture for a simple but powerful Reduced Instruction Set Computer (RISC). Its speed comes from the simultaneous processing of several instruction streams, with instructions from the various streams being dispatched into METRIC's execution pipeline as they become available for execution. The pipeline is thus kept full, with a mix of instructions for several contexts in execution at the same time. True parallel programming is supported within a single execution unit, the METRIC Context Unit. METRIC's architecture provides for expansion through the addition of multiple Context Units and of specialized Functional Units. The architecture thus spans a range of size and performance from a single-chip microcomputer up through large and powerful multiprocessors. This research concentrates on the specification of the METRIC Context Unit at the architectural level. Performance tradeoffs made during METRIC's design are discussed, and projections of METRIC's performance are made based on simulation studies.

  8. Metric diffusion along foliations

    CERN Document Server

    Walczak, Szymon M

    2017-01-01

    Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

  9. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  10. Super-quasi-conformal transformation and Schiffer variation on super-Riemann surface

    International Nuclear Information System (INIS)

    Takahasi, Wataru

    1990-01-01

    A set of equations which characterizes the super-Teichmueller deformations is proposed. It is a supersymmetric extension of the Beltrami equation. Relations between the set of equations and the Schiffer variations with the KN bases are discussed. This application of the KN bases shows the powerfulness of the KN theory in the study of super-Riemann surfaces. (author)

  11. The Great Gorilla Jump: An Introduction to Riemann Sums and Definite Integrals

    Science.gov (United States)

    Sealey, Vicki; Engelke, Nicole

    2012-01-01

    The great gorilla jump is an activity designed to allow calculus students to construct an understanding of the structure of the Riemann sum and definite integral. The activity uses the ideas of position, velocity, and time to allow students to explore familiar ideas in a new way. Our research has shown that introducing the definite integral as…

  12. Riemann type algebraic structures and their differential-algebraic integrability analysis

    Directory of Open Access Journals (Sweden)

    Prykarpatsky A.K.

    2010-06-01

    Full Text Available The differential-algebraic approach to studying the Lax type integrability of generalized Riemann type equations is devised. The differentiations and the associated invariant differential ideals are analyzed in detail. The approach is also applied to studying the Lax type integrability of the well known Korteweg-de Vries dynamical system.

  13. Infinite conformal symmetries and Riemann-Hilbert transformation in super principal chiral model

    International Nuclear Information System (INIS)

    Hao Sanru; Li Wei

    1989-01-01

    This paper shows a new symmetric transformation - C transformation in super principal chiral model and discover an infinite dimensional Lie algebra related to the Virasoro algebra without central extension. By using the Riemann-Hilbert transformation, the physical origination of C transformation is discussed

  14. Superconformal algebra and central extension of meromorphic vector fields with multipoles on super-Riemann sphere

    International Nuclear Information System (INIS)

    Wang Shikun; Xu Kaiwen.

    1989-12-01

    The superconformal algebras of meromorphic vector fields with multipoles, the central extension and the relevant abelian differential of the third kind on super Riemann sphere were constructed. The background of our theory is concerned with the interaction of closed superstrings. (author). 9 refs

  15. Seeley-De Witt coefficients in a Riemann-Cartan manifold

    International Nuclear Information System (INIS)

    Cognola, G.; Zerbini, S.; Istituto Nazionale di Fisica Nucleare, Povo

    1988-01-01

    A new derivation of the first two coefficients of the heat kernel expansion for a second-order elliptic differential operator on a Riemann-Cartan manifold with arbitrary torsion is given. The expressions are presented in a very compact and tractable form useful for physical applications. Comparisons with other similar results that appeared in the literature are briefly discussed. (orig.)

  16. Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian

    Science.gov (United States)

    Bender, Carl M.; Brody, Dorje C.

    2018-04-01

    The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.

  17. Regular Riemann-Hilbert transforms, Baecklund transformations and hidden symmetry algebra for some linearization systems

    International Nuclear Information System (INIS)

    Chau Ling-Lie; Ge Mo-Lin; Teh, Rosy.

    1984-09-01

    The Baecklund Transformations and the hidden symmetry algebra for Self-Dual Yang-Mills Equations, Landau-Lifshitz equations and the Extended Super Yang-Mills fields (N>2) are discussed on the base of the Regular Riemann-Hilbert Transform and the linearization equations. (author)

  18. Representation theory of current algebra and conformal field theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Yamada, Yasuhiko

    1989-01-01

    We study conformal field theories with current algebra (WZW-model) on general Riemann surfaces based on the integrable representation theory of current algebra. The space of chiral conformal blocks defined as solutions of current and conformal Ward identities is shown to be finite dimensional and satisfies the factorization properties. (author)

  19. Quadratic algebras and noncommutative integration of Klein-Gordon equations in non-steckel Riemann spaces

    International Nuclear Information System (INIS)

    Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.; Shirokov, I.V.

    1995-01-01

    The method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented

  20. Jacob's ladders, Riemann's oscillators, quotient of two oscillating multiforms and set of metamorphoses of this system

    OpenAIRE

    Moser, Jan

    2015-01-01

    In this paper we introduce complicated oscillating system, namely quotient of two multiforms based on Riemann-Siegel formula. We prove that there is an infinite set of metamorphoses of this system (=chrysalis) on critical line $\\sigma=\\frac 12$ into a butterfly (=infinite series of M\\" obius functions in the region of absolute convergence $\\sigma>1$).

  1. Classical and quantum Liouville theory on the Riemann sphere with n>3 punctures (III)

    International Nuclear Information System (INIS)

    Shen Jianmin; Sheng Zhengmao; Wang Zhonghua

    1992-02-01

    We study the Classical and Quantum Liouville theory on the Riemann sphere with n>3 punctures. We get the quantum exchange algebra relations between the chiral components in the Liouville theory from our assumption on the principle of quantization. (author). 5 refs

  2. Prognostic Performance Metrics

    Data.gov (United States)

    National Aeronautics and Space Administration — This chapter presents several performance metrics for offline evaluation of prognostics algorithms. A brief overview of different methods employed for performance...

  3. Overview of journal metrics

    Directory of Open Access Journals (Sweden)

    Kihong Kim

    2018-02-01

    Full Text Available Various kinds of metrics used for the quantitative evaluation of scholarly journals are reviewed. The impact factor and related metrics including the immediacy index and the aggregate impact factor, which are provided by the Journal Citation Reports, are explained in detail. The Eigenfactor score and the article influence score are also reviewed. In addition, journal metrics such as CiteScore, Source Normalized Impact per Paper, SCImago Journal Rank, h-index, and g-index are discussed. Limitations and problems that these metrics have are pointed out. We should be cautious to rely on those quantitative measures too much when we evaluate journals or researchers.

  4. Riemann-Cartan geometry of nonlinear disclination mechanics

    KAUST Repository

    Yavari, A.

    2012-03-23

    In the continuous theory of defects in nonlinear elastic solids, it is known that a distribution of disclinations leads, in general, to a non-trivial residual stress field. To study this problem, we consider the particular case of determining the residual stress field of a cylindrically symmetric distribution of parallel wedge disclinations. We first use the tools of differential geometry to construct a Riemannian material manifold in which the body is stress-free. This manifold is metric compatible, has zero torsion, but has non-vanishing curvature. The problem then reduces to embedding this manifold in Euclidean 3-space following the procedure of a classical nonlinear elastic problem. We show that this embedding can be elegantly accomplished by using Cartan\\'s method of moving frames and compute explicitly the residual stress field for various distributions in the case of a neo-Hookean material. © 2012 The Author(s).

  5. Brand metrics that matter

    NARCIS (Netherlands)

    Muntinga, D.; Bernritter, S.

    2017-01-01

    Het merk staat steeds meer centraal in de organisatie. Het is daarom essentieel om de gezondheid, prestaties en ontwikkelingen van het merk te meten. Het is echter een uitdaging om de juiste brand metrics te selecteren. Een enorme hoeveelheid metrics vraagt de aandacht van merkbeheerders. Maar welke

  6. Privacy Metrics and Boundaries

    NARCIS (Netherlands)

    L-F. Pau (Louis-François)

    2005-01-01

    textabstractThis paper aims at defining a set of privacy metrics (quantitative and qualitative) in the case of the relation between a privacy protector ,and an information gatherer .The aims with such metrics are: -to allow to assess and compare different user scenarios and their differences; for

  7. Structural stability of solutions to the Riemann problem for a non-strictly hyperbolic system with flux approximation

    Directory of Open Access Journals (Sweden)

    Meina Sun

    2016-05-01

    Full Text Available We study the Riemann problem for a non-strictly hyperbolic system of conservation laws under the linear approximations of flux functions with three parameters. The approximated system also belongs to the type of triangular systems of conservation laws and this approximation does not change the structure of Riemann solutions to the original system. Furthermore, it is proven that the Riemann solutions to the approximated system converge to the corresponding ones to the original system as the perturbation parameter tends to zero.

  8. Modification of the Riemann problem and the application for the boundary conditions in computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Kyncl Martin

    2017-01-01

    Full Text Available We work with the system of partial differential equations describing the non-stationary compressible turbulent fluid flow. It is a characteristic feature of the hyperbolic equations, that there is a possible raise of discontinuities in solutions, even in the case when the initial conditions are smooth. The fundamental problem in this area is the solution of the so-called Riemann problem for the split Euler equations. It is the elementary problem of the one-dimensional conservation laws with the given initial conditions (LIC - left-hand side, and RIC - right-hand side. The solution of this problem is required in many numerical methods dealing with the 2D/3D fluid flow. The exact (entropy weak solution of this hyperbolical problem cannot be expressed in a closed form, and has to be computed by an iterative process (to given accuracy, therefore various approximations of this solution are being used. The complicated Riemann problem has to be further modified at the close vicinity of boundary, where the LIC is given, while the RIC is not known. Usually, this boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but these have a huge impact on the solution in the whole studied area, especially for the non-stationary flow. Using the thorough analysis of the Riemann problem we show, that the RIC for the local problem can be partially replaced by the suitable complementary conditions. We suggest such complementary conditions accordingly to the desired preference. This way it is possible to construct the boundary conditions by the preference of total values, by preference of pressure, velocity, mass flow, temperature. Further, using the suitable complementary conditions, it is possible to simulate the flow in the vicinity of the diffusible barrier. On the contrary to the initial-value Riemann problem, the solution of such modified problems can be written in the closed form for some

  9. WIMT in Gullstraend-Painleve and Reissner-Nordstroem metrics: induced stable gravito-magnetic monopoles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Jesus Martin [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)

    2015-05-15

    The aim of this work is to apply Weitzeboeck Induced Matter Theory (WIMT) to Gullstraend-Painleve and Reissner-Nordstroem metrics in the framework of WIMT. This is a newly developed method that extends Induced Matter Theory from a curved 5D manifold using the Weitzeboeck's geometry, using the fact that the Riemann-Weitzenboeck curvature tensor is always null. We obtain the presence of currents whose interpretation can lead to the presence of stable gravito-magnetic monopoles. (orig.)

  10. WIMT in Gullstraend-Painleve and Reissner-Nordstroem metrics: induced stable gravito-magnetic monopoles

    International Nuclear Information System (INIS)

    Romero, Jesus Martin; Bellini, Mauricio

    2015-01-01

    The aim of this work is to apply Weitzeboeck Induced Matter Theory (WIMT) to Gullstraend-Painleve and Reissner-Nordstroem metrics in the framework of WIMT. This is a newly developed method that extends Induced Matter Theory from a curved 5D manifold using the Weitzeboeck's geometry, using the fact that the Riemann-Weitzenboeck curvature tensor is always null. We obtain the presence of currents whose interpretation can lead to the presence of stable gravito-magnetic monopoles. (orig.)

  11. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  12. Selberg trace formula for bordered Riemann surfaces: Hyperbolic, elliptic and parabolic conjugacy classes, and determinants of Maass-Laplacians

    International Nuclear Information System (INIS)

    Bolte, J.

    1992-08-01

    The Selberg trace formula for automorphic forms of weight m ε- Z, on bordered Riemann surfaces is developed. The trace formula is formulated for arbitrary Fuchsian groups of the first kind which include hyperbolic, elliptic and parabolic conjugacy classes. In the case of compact bordered Riemann surfaces we can explicitly evaluate determinants of Maass-Laplacians for both Dirichlet and Neumann boundary-conditions, respectively. Some implications for the open bosonic string theory are mentioned. (orig.)

  13. An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-05

    This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equation of state and for the JWL equation of state.

  14. Riemann-Hilbert treatment of Liouville theory on the torus: the general case

    International Nuclear Information System (INIS)

    Menotti, Pietro

    2011-01-01

    We extend the previous treatment of Liouville theory on the torus to the general case in which the distribution of charges is not necessarily symmetric. This requires the concept of Fuchsian differential equation on Riemann surfaces. We show through a group theoretic argument that the Heun parameter and a weight constant are sufficient to satisfy all monodromy conditions. We then apply the technique of differential equations on a Riemann surface to the two-point function on the torus in which one source is arbitrary and the other small. As a byproduct, we give in terms of quadratures the exact Green function on the square and on the rhombus with opening angle 2π/6 in the background of the field generated by an arbitrary charge.

  15. Ship-induced solitary Riemann waves of depression in Venice Lagoon

    International Nuclear Information System (INIS)

    Parnell, Kevin E.; Soomere, Tarmo; Zaggia, Luca; Rodin, Artem; Lorenzetti, Giuliano; Rapaglia, John; Scarpa, Gian Marco

    2015-01-01

    We demonstrate that ships of moderate size, sailing at low depth Froude numbers (0.37–0.5) in a navigation channel surrounded by shallow banks, produce depressions with depths up to 2.5 m. These depressions (Bernoulli wakes) propagate as long-living strongly nonlinear solitary Riemann waves of depression substantial distances into Venice Lagoon. They gradually become strongly asymmetric with the rear of the depression becoming extremely steep, similar to a bore. As they are dynamically similar, air pressure fluctuations moving over variable-depth coastal areas could generate meteorological tsunamis with a leading depression wave followed by a devastating bore-like feature. - Highlights: • Unprecedently deep long-living ship-induced waves of depression detected. • Such waves are generated in channels with side banks under low Froude numbers. • The propagation of these waves is replicated using Riemann waves. • Long-living waves of depression form bore-like features at rear slope

  16. Instanton calculus without equations of motion: semiclassics from monodromies of a Riemann surface

    Science.gov (United States)

    Gulden, Tobias; Janas, Michael; Kamenev, Alex

    2015-02-01

    Instanton calculations in semiclassical quantum mechanics rely on integration along trajectories which solve classical equations of motion. However in systems with higher dimensionality or complexified phase space these are rarely attainable. A prime example are spin-coherent states which are used e.g. to describe single molecule magnets (SMM). We use this example to develop instanton calculus which does not rely on explicit solutions of the classical equations of motion. Energy conservation restricts the complex phase space to a Riemann surface of complex dimension one, allowing to deform integration paths according to Cauchy’s integral theorem. As a result, the semiclassical actions can be evaluated without knowing actual classical paths. Furthermore we show that in many cases such actions may be solely derived from monodromy properties of the corresponding Riemann surface and residue values at its singular points. As an example, we consider quenching of tunneling processes in SMM by an applied magnetic field.

  17. Ship-induced solitary Riemann waves of depression in Venice Lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, Kevin E. [College of Marine and Environmental Sciences and Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland 4811 (Australia); Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Soomere, Tarmo, E-mail: soomere@cs.ioc.ee [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn (Estonia); Zaggia, Luca [Institute of Marine Sciences, National Research Council, Castello 2737/F, 30122 Venice (Italy); Rodin, Artem [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Lorenzetti, Giuliano [Institute of Marine Sciences, National Research Council, Castello 2737/F, 30122 Venice (Italy); Rapaglia, John [Sacred Heart University Department of Biology, 5151 Park Avenue, Fairfield, CT 06825 (United States); Scarpa, Gian Marco [Università Ca' Foscari, Dorsoduro 3246, 30123 Venice (Italy)

    2015-03-06

    We demonstrate that ships of moderate size, sailing at low depth Froude numbers (0.37–0.5) in a navigation channel surrounded by shallow banks, produce depressions with depths up to 2.5 m. These depressions (Bernoulli wakes) propagate as long-living strongly nonlinear solitary Riemann waves of depression substantial distances into Venice Lagoon. They gradually become strongly asymmetric with the rear of the depression becoming extremely steep, similar to a bore. As they are dynamically similar, air pressure fluctuations moving over variable-depth coastal areas could generate meteorological tsunamis with a leading depression wave followed by a devastating bore-like feature. - Highlights: • Unprecedently deep long-living ship-induced waves of depression detected. • Such waves are generated in channels with side banks under low Froude numbers. • The propagation of these waves is replicated using Riemann waves. • Long-living waves of depression form bore-like features at rear slope.

  18. Bernhard Riemann 1826-1866 Turning Points in the Conception of Mathematics

    CERN Document Server

    Laugwitz, Detlef

    2008-01-01

    The name of Bernard Riemann is well known to mathematicians and physicists around the world. College students encounter the Riemann integral early in their studies. Real and complex function theories are founded on Riemann’s work. Einstein’s theory of gravitation would be unthinkable without Riemannian geometry. In number theory, Riemann’s famous conjecture stands as one of the classic challenges to the best mathematical minds and continues to stimulate deep mathematical research. The name is indelibly stamped on the literature of mathematics and physics. This book, originally written in German and presented here in an English-language translation, examines Riemann’s scientific work from a single unifying perspective. Laugwitz describes Riemann’s development of a conceptual approach to mathematics at a time when conventional algorithmic thinking dictated that formulas and figures, rigid constructs, and transformations of terms were the only legitimate means of studying mathematical objects. David Hi...

  19. Averages of ratios of the Riemann zeta-function and correlations of divisor sums

    Science.gov (United States)

    Conrey, Brian; Keating, Jonathan P.

    2017-10-01

    Nonlinearity has published articles containing a significant number-theoretic component since the journal was first established. We examine one thread, concerning the statistics of the zeros of the Riemann zeta function. We extend this by establishing a connection between the ratios conjecture for the Riemann zeta-function and a conjecture concerning correlations of convolutions of Möbius and divisor functions. Specifically, we prove that the ratios conjecture and an arithmetic correlations conjecture imply the same result. This provides new support for the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe. Our main theorem generalises a recent calculation pertaining to the special case of two-over-two ratios.

  20. Flux quantization and quantum mechanics on Riemann surfaces in an external magnetic field

    International Nuclear Information System (INIS)

    Bolte, J.; Steiner, F.

    1990-10-01

    We investigate the possibility to apply an external constant magnetic field to a quantum mechanical system consisting of a particle moving on a compact or non-compact two-dimensional manifold of constant negative Gaussian curvature and of finite volume. For the motion on compact Riemann surfaces we find that a consistent formulation is only possible if the magnetic flux is quantized, as it is proportional to the (integrated) first Chern class of a certain complex line bundle over the manifold. In the case of non-compact surfaces of finite volume we obtain the striking result that the magnetic flux has to vanish identically due to the theorem that any holomorphic line bundle over a non-compact Riemann surface is holomorphically trivial. (orig.)

  1. Integral relations for invariants constructed from three Riemann tensors and their applications in quantum gravity

    International Nuclear Information System (INIS)

    van Nieuwenhuizen, P.; Wu, C.C.

    1977-01-01

    The lowest order quantum corrections to pure gravitation are finite because there exists an integral relation between products of two Riemann tensors (the Gauss--Bonnet theorem). In this article several algebraic and integral relations are determined between products of three Riemann tensors in four- and six-dimensional spacetime. In both cases, one is left with only one invariant when R/sub μ//sub ν/=0, viz., ∫ (-g) 1 / 2 (R/sub b//sub β//sub μ//sub ν/R/sup μ//sup ν//sup rho//sup sigma/R/sub rho//sub sigma/ /sup α//sup β/).It is explicitly shown that this invariant does not vanish, even when R/sub μ//sub ν/=0. Consequently, the two-loop quantum corrections to pure gravitation will only be finite if, due to miraculous cancellation, the coefficient of this invariant vanishes

  2. From Euclidean to Minkowski space with the Cauchy-Riemann equations

    International Nuclear Information System (INIS)

    Gimeno-Segovia, Mercedes; Llanes-Estrada, Felipe J.

    2008-01-01

    We present an elementary method to obtain Green's functions in non-perturbative quantum field theory in Minkowski space from Green's functions calculated in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes often is unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore, we suggest to use the Cauchy-Riemann equations, which perform the analytical continuation without assuming global information on the function in the entire complex plane, but only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge quantum chromodynamics, which is known from lattice and Dyson-Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy-Riemann equations against high-frequency noise,which makes it difficult to achieve good accuracy. We also point out a few curious details related to the Wick rotation. (orig.)

  3. Probabilistic metric spaces

    CERN Document Server

    Schweizer, B

    2005-01-01

    Topics include special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. 1983 edition, updated with 3 new appendixes. Includes 17 illustrations.

  4. Tracker Performance Metric

    National Research Council Canada - National Science Library

    Olson, Teresa; Lee, Harry; Sanders, Johnnie

    2002-01-01

    .... We have developed the Tracker Performance Metric (TPM) specifically for this purpose. It was designed to measure the output performance, on a frame-by-frame basis, using its output position and quality...

  5. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    Science.gov (United States)

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  6. Jet Riemann-Lagrange Geometry Applied to Evolution DEs Systems from Economy

    OpenAIRE

    Neagu, Mircea

    2007-01-01

    The aim of this paper is to construct a natural Riemann-Lagrange differential geometry on 1-jet spaces, in the sense of nonlinear connections, generalized Cartan connections, d-torsions, d-curvatures, jet electromagnetic fields and jet Yang-Mills energies, starting from some given non-linear evolution DEs systems modelling economic phenomena, like the Kaldor model of the bussines cycle or the Tobin-Benhabib-Miyao model regarding the role of money on economic growth.

  7. Stability of the isentropic Riemann solutions of the full multidimensional Euler system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej; Vasseur, A.

    2015-01-01

    Roč. 47, č. 3 (2015), s. 2416-2425 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * isentropic solutions * Riemann problem * rarefaction wave Subject RIV: BA - General Mathematics Impact factor: 1.486, year: 2015 http://epubs.siam.org/doi/abs/10.1137/140999827

  8. Codomains for the Cauchy-Riemann and Laplace operators in ℝ2

    Directory of Open Access Journals (Sweden)

    Lloyd Edgar S. Moyo

    2008-01-01

    Full Text Available A codomain for a nonzero constant-coefficient linear partial differential operator P(∂ with fundamental solution E is a space of distributions T for which it is possible to define the convolution E*T and thus solving the equation P(∂S=T. We identify codomains for the Cauchy-Riemann operator in ℝ2 and Laplace operator in ℝ2 . The convolution is understood in the sense of the S′-convolution.

  9. The mass-damped Riemann problem and the aerodynamic surface force calculation for an accelerating body

    International Nuclear Information System (INIS)

    Tan, Zhiqiang; Wilson, D.; Varghese, P.L.

    1997-01-01

    We consider an extension of the ordinary Riemann problem and present an efficient approximate solution that can be used to improve the calculations of aerodynamic forces on an accelerating body. The method is demonstrated with one-dimensional examples where the Euler equations and the body motion are solved in the non-inertial co-ordinate frame fixed to the accelerating body. 8 refs., 6 figs

  10. Fermions on a Riemann surface and the Kadomtsev-Petviashvili equation

    International Nuclear Information System (INIS)

    Zabrodin, A.V.

    1989-01-01

    It is shown that the S matrix of free massless fermions on a Riemann surface of finite genus generates quasiperiodic solutions of the Kadomtsev-Petviashvili equation. An operator that changes the genus of a solution is constructed, and the law of composition of such operators is discussed. The construction is a generalization of the well-known operator approach in the case of soliton solutions to the general case of quasiperiodic τ functions

  11. A novel supersymmetry in 2-dimensional Yang-Mills theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Soda, Jiro

    1991-02-01

    We find a novel supersymmetry in 2-dimensional Maxwell and Yang-Mills theories. Using this supersymmetry, it is shown that the 2-dimensional Euclidean pure gauge theory on a closed Riemann surface Σ can be reduced to a topological field theory which is the 3-dimensional Chern-Simons gauge theory in the special space-time topology Σ x R. Related problems are also discussed. (author)

  12. Cálculo de áreas mediante la suma de Riemann con la TI-83

    OpenAIRE

    Lupiáñez, José Luis

    2002-01-01

    En este artículo presentamos una actividad para introducir el cálculo del área que encierra una curva, basada en la Suma de Riemann, y que puede realizarse con la calculadora TI-83. El planteamiento de la actividad permite estudiar varias funciones sin perder tiempo en tediosos cálculos, con idea de observar lo acertado de este método de aproximación.

  13. Riemann zeros and phase transitions via the spectral operator on fractal strings

    International Nuclear Information System (INIS)

    Herichi, Hafedh; Lapidus, Michel L

    2012-01-01

    The spectral operator was introduced by Lapidus and van Frankenhuijsen (2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings) in their reinterpretation of the earlier work of Lapidus and Maier (1995 J. Lond. Math. Soc. 52 15–34) on inverse spectral problems and the Riemann hypothesis. In essence, it is a map that sends the geometry of a fractal string onto its spectrum. In this review, we present the rigorous functional analytic framework given by Herichi and Lapidus (2012) and within which to study the spectral operator. Furthermore, we give a necessary and sufficient condition for the invertibility of the spectral operator (in the critical strip) and therefore obtain a new spectral and operator-theoretic reformulation of the Riemann hypothesis. More specifically, we show that the spectral operator is quasi-invertible (or equivalently, that its truncations are invertible) if and only if the Riemann zeta function ζ(s) does not have any zeros on the vertical line Re(s) = c. Hence, it is not invertible in the mid-fractal case when c= 1/2 , and it is quasi-invertible everywhere else (i.e. for all c ∈ (0, 1) with c≠ 1/2 ) if and only if the Riemann hypothesis is true. We also show the existence of four types of (mathematical) phase transitions occurring for the spectral operator at the critical fractal dimension c= 1/2 and c = 1 concerning the shape of the spectrum, its boundedness, its invertibility as well as its quasi-invertibility. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  14. Vertex operators, non-abelian orbifolds and the Riemann-Hilbert problem

    International Nuclear Information System (INIS)

    Gato, B.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    We show how to construct the oscillator part of vertex operators for the bosonic string moving on non-abelian orbifolds, using the conserved charges method. When the three-string vertices are twisted by non-commuting group elements, the construction of the conserved charges becomes the Riemann-Hilbert problem with monodromy matrices given by the twists. This is solvable for any given configuration and any non-abelian orbifold. (orig.)

  15. Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations

    Czech Academy of Sciences Publication Activity Database

    Chiodaroli, E.; Kreml, Ondřej

    2018-01-01

    Roč. 31, č. 4 (2018), s. 1441-1460 ISSN 0951-7715 R&D Projects: GA ČR(CZ) GJ17-01694Y Institutional support: RVO:67985840 Keywords : Riemann problem * non-uniqueness * weak solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/ article /10.1088/1361-6544/aaa10d/meta

  16. Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations

    Czech Academy of Sciences Publication Activity Database

    Chiodaroli, E.; Kreml, Ondřej

    2018-01-01

    Roč. 31, č. 4 (2018), s. 1441-1460 ISSN 0951-7715 R&D Projects: GA ČR(CZ) GJ17-01694Y Institutional support: RVO:67985840 Keywords : Riemann problem * non-uniqueness * weak solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aaa10d/meta

  17. IT Project Management Metrics

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Many software and IT projects fail in completing theirs objectives because different causes of which the management of the projects has a high weight. In order to have successfully projects, lessons learned have to be used, historical data to be collected and metrics and indicators have to be computed and used to compare them with past projects and avoid failure to happen. This paper presents some metrics that can be used for the IT project management.

  18. Mass Customization Measurements Metrics

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev; Jørgensen, Kaj Asbjørn

    2014-01-01

    A recent survey has indicated that 17 % of companies have ceased mass customizing less than 1 year after initiating the effort. This paper presents measurement for a company’s mass customization performance, utilizing metrics within the three fundamental capabilities: robust process design, choice...... navigation, and solution space development. A mass customizer when assessing performance with these metrics can identify within which areas improvement would increase competitiveness the most and enable more efficient transition to mass customization....

  19. A Modified Groundwater Flow Model Using the Space Time Riemann-Liouville Fractional Derivatives Approximation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method.

  20. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  1. Deep Transfer Metric Learning.

    Science.gov (United States)

    Junlin Hu; Jiwen Lu; Yap-Peng Tan; Jie Zhou

    2016-12-01

    Conventional metric learning methods usually assume that the training and test samples are captured in similar scenarios so that their distributions are assumed to be the same. This assumption does not hold in many real visual recognition applications, especially when samples are captured across different data sets. In this paper, we propose a new deep transfer metric learning (DTML) method to learn a set of hierarchical nonlinear transformations for cross-domain visual recognition by transferring discriminative knowledge from the labeled source domain to the unlabeled target domain. Specifically, our DTML learns a deep metric network by maximizing the inter-class variations and minimizing the intra-class variations, and minimizing the distribution divergence between the source domain and the target domain at the top layer of the network. To better exploit the discriminative information from the source domain, we further develop a deeply supervised transfer metric learning (DSTML) method by including an additional objective on DTML, where the output of both the hidden layers and the top layer are optimized jointly. To preserve the local manifold of input data points in the metric space, we present two new methods, DTML with autoencoder regularization and DSTML with autoencoder regularization. Experimental results on face verification, person re-identification, and handwritten digit recognition validate the effectiveness of the proposed methods.

  2. Cyber threat metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  3. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  4. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  5. Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-04-01

    Multidimensional Riemann solvers that have internal sub-structure in the strongly-interacting state have been formulated recently (D.S. Balsara (2012, 2014) [5,16]). Any multidimensional Riemann solver operates at the grid vertices and takes as its input all the states from its surrounding elements. It yields as its output an approximation of the strongly interacting state, as well as the numerical fluxes. The multidimensional Riemann problem produces a self-similar strongly-interacting state which is the result of several one-dimensional Riemann problems interacting with each other. To compute this strongly interacting state and its higher order moments we propose the use of a Galerkin-type formulation to compute the strongly interacting state and its higher order moments in terms of similarity variables. The use of substructure in the Riemann problem reduces numerical dissipation and, therefore, allows a better preservation of flow structures, like contact and shear waves. In this second part of a series of papers we describe how this technique is extended to unstructured triangular meshes. All necessary details for a practical computer code implementation are discussed. In particular, we explicitly present all the issues related to computational geometry. Because these Riemann solvers are Multidimensional and have Self-similar strongly-Interacting states that are obtained by Consistency with the conservation law, we call them MuSIC Riemann solvers. (A video introduction to multidimensional Riemann solvers is available on http://www.elsevier.com/xml/linking-roles/text/html". The MuSIC framework is sufficiently general to handle general nonlinear systems of hyperbolic conservation laws in multiple space dimensions. It can also accommodate all self-similar one-dimensional Riemann solvers and subsequently produces a multidimensional version of the same. In this paper we focus on unstructured triangular meshes. As examples of different systems of conservation laws we

  6. Metrical Phonology and SLA.

    Science.gov (United States)

    Tice, Bradley S.

    Metrical phonology, a linguistic process of phonological stress assessment and diagrammatic simplification of sentence and word stress, is discussed as it is found in the English language with the intention that it may be used in second language instruction. Stress is defined by its physical and acoustical correlates, and the principles of…

  7. Engineering performance metrics

    Science.gov (United States)

    Delozier, R.; Snyder, N.

    1993-03-01

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  8. Metrics for Probabilistic Geometries

    DEFF Research Database (Denmark)

    Tosi, Alessandra; Hauberg, Søren; Vellido, Alfredo

    2014-01-01

    the distribution over mappings is given by a Gaussian process. We treat the corresponding latent variable model as a Riemannian manifold and we use the expectation of the metric under the Gaussian process prior to define interpolating paths and measure distance between latent points. We show how distances...

  9. Study of the Riemann problem and construction of multidimensional Godunov-type schemes for two-phase flow models

    International Nuclear Information System (INIS)

    Toumi, I.

    1990-04-01

    This thesis is devoted to the study of the Riemann problem and the construction of Godunov type numerical schemes for one or two dimensional two-phase flow models. In the first part, we study the Riemann problem for the well-known Drift-Flux, model which has been widely used for the analysis of thermal hydraulics transients. Then we use this study to construct approximate Riemann solvers and we describe the corresponding Godunov type schemes for simplified equation of state. For computation of complex two-phase flows, a weak formulation of Roe's approximate Riemann solver, which gives a method to construct a Roe-averaged jacobian matrix with a general equation of state, is proposed. For two-dimensional flows, the developed methods are based upon an approximate solver for a two-dimensional Riemann problem, according to Harten-Lax-Van Leer principles. The numerical results for standard test problems show the good behaviour of these numerical schemes for a wide range of flow conditions [fr

  10. Metrics for energy resilience

    International Nuclear Information System (INIS)

    Roege, Paul E.; Collier, Zachary A.; Mancillas, James; McDonagh, John A.; Linkov, Igor

    2014-01-01

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today's energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system's energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth. - Highlights: • Resilience is the ability of a system to recover from adversity. • There is a need for methods to quantify and measure system resilience. • We developed a matrix-based approach to generate energy resilience metrics. • These metrics can be used in energy planning, system design, and operations

  11. Software Quality Assurance Metrics

    Science.gov (United States)

    McRae, Kalindra A.

    2004-01-01

    Software Quality Assurance (SQA) is a planned and systematic set of activities that ensures conformance of software life cycle processes and products conform to requirements, standards and procedures. In software development, software quality means meeting requirements and a degree of excellence and refinement of a project or product. Software Quality is a set of attributes of a software product by which its quality is described and evaluated. The set of attributes includes functionality, reliability, usability, efficiency, maintainability, and portability. Software Metrics help us understand the technical process that is used to develop a product. The process is measured to improve it and the product is measured to increase quality throughout the life cycle of software. Software Metrics are measurements of the quality of software. Software is measured to indicate the quality of the product, to assess the productivity of the people who produce the product, to assess the benefits derived from new software engineering methods and tools, to form a baseline for estimation, and to help justify requests for new tools or additional training. Any part of the software development can be measured. If Software Metrics are implemented in software development, it can save time, money, and allow the organization to identify the caused of defects which have the greatest effect on software development. The summer of 2004, I worked with Cynthia Calhoun and Frank Robinson in the Software Assurance/Risk Management department. My task was to research and collect, compile, and analyze SQA Metrics that have been used in other projects that are not currently being used by the SA team and report them to the Software Assurance team to see if any metrics can be implemented in their software assurance life cycle process.

  12. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities

    International Nuclear Information System (INIS)

    Beccantini, A.

    2001-01-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  13. Fractional parts and their relations to the values of the Riemann zeta function

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2017-09-06

    A well-known result, due to Dirichlet and later generalized by de la Vallée–Poussin, expresses a relationship between the sum of fractional parts and the Euler–Mascheroni constant. In this paper, we prove an asymptotic relationship between the summation of the products of fractional parts with powers of integers on the one hand, and the values of the Riemann zeta function, on the other hand. Dirichlet’s classical result falls as a particular case of this more general theorem.

  14. Fractional parts and their relations to the values of the Riemann zeta function

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2017-01-01

    A well-known result, due to Dirichlet and later generalized by de la Vallée–Poussin, expresses a relationship between the sum of fractional parts and the Euler–Mascheroni constant. In this paper, we prove an asymptotic relationship between the summation of the products of fractional parts with powers of integers on the one hand, and the values of the Riemann zeta function, on the other hand. Dirichlet’s classical result falls as a particular case of this more general theorem.

  15. Riemann surfaces of complex classical trajectories and tunnelling splitting in one-dimensional systems

    Science.gov (United States)

    Harada, Hiromitsu; Mouchet, Amaury; Shudo, Akira

    2017-10-01

    The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.

  16. Loss of hyperbolicity changes the number of wave groups in Riemann problems

    OpenAIRE

    Vítor Matos; Julio D. Silva; Dan Marchesin

    2016-01-01

    Themain goal of ourwork is to showthat there exists a class of 2×2 Riemann problems for which the solution comprises a singlewave group for an open set of initial conditions. This wave group comprises a 1-rarefaction joined to a 2-rarefaction, not by an intermediate state, but by a doubly characteristic shock, 1-left and 2-right characteristic. In order to ensure that perturbations of initial conditions do not destroy the adjacency of the waves, local transversality between a composite curve ...

  17. The motion of a classical spinning point particle in a Riemann-Cartan space-time

    International Nuclear Information System (INIS)

    Amorim, R.

    1983-01-01

    A consistent set of equations of motion for classical charged point particles with spin and magnetic dipole moment in a Riemann-Cartan space-time is generated from a generalized Lagrangean formalism. The equations avoid the spurius free helicoidal solutions and at the same time conserve the canonical condition of normalization of the 4-velocity. The 4-velocity and the mechanical moment are paralell in this theory, where the condition of orthogonality between the spin and the 4-velocity is treated as a non-holonomic one. (Author) [pt

  18. Applications of Wirtinger Inequalities on the Distribution of Zeros of the Riemann Zeta-Function

    Directory of Open Access Journals (Sweden)

    Saker SamirH

    2010-01-01

    Full Text Available On the hypothesis that the th moments of the Hardy -function are correctly predicted by random matrix theory and the moments of the derivative of are correctly predicted by the derivative of the characteristic polynomials of unitary matrices, we establish new large spaces between the zeros of the Riemann zeta-function by employing some Wirtinger-type inequalities. In particular, it is obtained that which means that consecutive nontrivial zeros often differ by at least 6.1392 times the average spacing.

  19. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    Science.gov (United States)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  20. The transition from regular to irregular motions, explained as travel on Riemann surfaces

    International Nuclear Information System (INIS)

    Calogero, F; Santini, P M; Gomez-Ullate, D; Sommacal, M

    2005-01-01

    We introduce and discuss a simple Hamiltonian dynamical system, interpretable as a three-body problem in the (complex) plane and providing the prototype of a mechanism explaining the transition from regular to irregular motions as travel on Riemann surfaces. The interest of this phenomenology-illustrating the onset in a deterministic context of irregular motions-is underlined by its generality, suggesting its eventual relevance to understand natural phenomena and experimental investigations. Here only some of our main findings are reported, without detailing their proofs: a more complete presentation will be published elsewhere

  1. Riemann-Hilbert approach to the time-dependent generalized sine kernel

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2010-12-15

    We derive the leading asymptotic behavior and build a new series representation for the Fredholm determinant of integrable integral operators appearing in the representation of the time and distance dependent correlation functions of integrable models described by a six-vertex R-matrix. This series representation opens a systematic way for the computation of the long-time, long-distance asymptotic expansion for the correlation functions of the aforementioned integrable models away from their free fermion point. Our method builds on a Riemann-Hilbert based analysis. (orig.)

  2. The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems

    Science.gov (United States)

    Prykarpatsky, Yarema A.; Artemovych, Orest D.; Pavlov, Maxim V.; Prykarpatski, Anatolij K.

    2013-06-01

    A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.

  3. Enterprise Sustainment Metrics

    Science.gov (United States)

    2015-06-19

    are negatively impacting KPIs” (Parmenter, 2010: 31). In the current state, the Air Force’s AA and PBL metrics are once again split . AA does...must have the authority to “take immediate action to rectify situations that are negatively impacting KPIs” (Parmenter, 2010: 31). 3. Measuring...highest profitability and shareholder value for each company” (2014: 273). By systematically diagraming a process, either through a swim lane flowchart

  4. On defects of the volume and curvature of the Robertson-Walker metric and construction of cosmological models

    International Nuclear Information System (INIS)

    Gackstatter, F.

    1987-01-01

    For the Robertson-Walker metric (RWM) normal coordinates are constructed and the Riemann curvature tensor is determined. Then results on the defects of the volume and curvature, derived formerly, are applied to the RWM and to cosmological models. Finally cosmological models are constructed, they describe different states of the development of the cosmos: p ∼ 0, 1/3u, 2/3u, in a unified form. A Laurent expansion of the density of energy u and pressure p is used to solve the Friedmann equations. (author)

  5. Towards a theory of chaos explained as travel on Riemann surfaces

    International Nuclear Information System (INIS)

    Calogero, F; Santini, P M; Gomez-Ullate, D; Sommacal, M

    2009-01-01

    We investigate the dynamics defined by a set of three coupled first-order ODEs. It is shown that the system can be reduced to quadratures which can be expressed in terms of elementary functions. Despite the integrable character of the model, the general solution is a multiple-valued function of time (considered as a complex variable), and we investigate the position and nature of its branch points. In the semi-symmetric case (g 1 = g 2 ≠ g 3 ), for rational values of the coupling constants the system is isochronous and explicit formulae for the period of the solutions can be given. For irrational values, the motions are confined but feature aperiodic motion with sensitive dependence on initial conditions. The system shows a rich dynamical behaviour that can be understood in quantitative detail since a global description of the Riemann surface associated with the solutions can be achieved. The details of the description of the Riemann surface are postponed to a forthcoming publication. This toy model is meant to provide a paradigmatic first step towards understanding a certain novel kind of chaotic behaviour

  6. Non-supersymmetric matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Billo, M.; D'Adda, A.; Provero, P.

    2000-01-01

    We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U(1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S N and U(1) N . By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon

  7. Riemann Integration

    Indian Academy of Sciences (India)

    and that this should be true, no matter how the in- terval [a, b] is subdivided. ..... Moreover, J: 1 is the unique number with this property. We do not know which ..... as some of our previous demonstrations illustrate, the details of the argument ...

  8. Symmetries of the dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric

  9. Kerr metric in cosmological background

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, P C [Gujarat Univ., Ahmedabad (India). Dept. of Mathematics

    1977-06-01

    A metric satisfying Einstein's equation is given which in the vicinity of the source reduces to the well-known Kerr metric and which at large distances reduces to the Robertson-Walker metric of a nomogeneous cosmological model. The radius of the event horizon of the Kerr black hole in the cosmological background is found out.

  10. Learning Low-Dimensional Metrics

    OpenAIRE

    Jain, Lalit; Mason, Blake; Nowak, Robert

    2017-01-01

    This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric;4) we also bound the accuracy ...

  11. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow; Solveurs de Riemann approches et schemas de decentrement de flux pour les ecoulements diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I.; Kumbaro, A.; Paillere, H

    1999-07-01

    These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)

  12. Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg-de Vries hydrodynamical equations

    Energy Technology Data Exchange (ETDEWEB)

    Prykarpatsky, Anatoliy K [Department of Mining Geodesy, AGH University of Science and Technology, Cracow 30059 (Poland); Artemovych, Orest D [Department of Algebra and Topology, Faculty of Mathematics and Informatics of the Vasyl Stefanyk Pre-Carpathian National University, Ivano-Frankivsk (Ukraine); Popowicz, Ziemowit [Institute of Theoretical Physics, University of Wroclaw (Poland); Pavlov, Maxim V, E-mail: pryk.anat@ua.f, E-mail: artemo@usk.pk.edu.p, E-mail: ziemek@ift.uni.wroc.p, E-mail: M.V.Pavlov@lboro.ac.u [Department of Mathematical Physics, P.N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991 (Russian Federation)

    2010-07-23

    A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic equations at N = 3, 4 is devised. The approach is also applied to studying the Lax-type integrability of the well-known Korteweg-de Vries dynamical system.

  13. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    Science.gov (United States)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  14. Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg-de Vries hydrodynamical equations

    International Nuclear Information System (INIS)

    Prykarpatsky, Anatoliy K; Artemovych, Orest D; Popowicz, Ziemowit; Pavlov, Maxim V

    2010-01-01

    A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic equations at N = 3, 4 is devised. The approach is also applied to studying the Lax-type integrability of the well-known Korteweg-de Vries dynamical system.

  15. Existence and Solution-representation of IVP for LFDE with Generalized Riemann-Liouville fractional derivatives and $n$ terms

    OpenAIRE

    Kim, Myong-Ha; Ri, Guk-Chol; O, Hyong-Chol

    2013-01-01

    This paper provides the existence and representation of solution to an initial value problem for the general multi-term linear fractional differential equation with generalized Riemann-Liouville fractional derivatives and constant coefficients by using operational calculus of Mikusinski's type. We prove that the initial value problem has the solution of if and only if some initial values should be zero.

  16. Metrics with vanishing quantum corrections

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Gibbons, G W; Pope, C N

    2008-01-01

    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor T μν (g αβ , ∂ τ g αβ , ∂ τ ∂ σ g αβ , ...,) constructed from sums of terms, the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called universal if, when evaluated on that Einstein metric, T μν is a multiple of the metric. A Ricci flat classical solution is called strongly universal if, when evaluated on that Ricci flat metric, T μν vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalization; Einstein metrics with holonomy Sim(n - 2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalized Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all four-dimensional Sim(2) Einstein metrics. We also discuss generalizations to higher dimensions

  17. Differential Galois theory through Riemann-Hilbert correspondence an elementary introduction

    CERN Document Server

    Sauloy, Jacques

    2017-01-01

    Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equat...

  18. A boundary-fitted staggered difference method for incompressible flow using Riemann geometry

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi; Kondo, Shunsuke; Oka, Yoshiaki.

    1990-01-01

    A boundary-fitted staggered difference method (BFSDM) is investigated for incompressible flow in nuclear plants. BFSDM employs control cells for scalars, staggered location of velocity components, and integrated formulation of div=0. Governing equations are written as coordinate-free forms using Riemann geometry. Flow velocity is represented with contravariant physical components in the present method. Connection terms emerge as source terms in the coordinate-free governing equations. These terms are studied from the viewpoints of physical meaning, numerical stability, and conservative property. Some flows on a round or slant boundary are solved using boundary-fitted curvilinear (BFC) grids and rectangular grids to compare the present method and the rectangular-type (R-type) staggered difference method (SDM). Supercomputing of the present method, including vector processing, is also discussed compared with the R-type method. (author)

  19. Riemann-Liouville integrals of fractional order and extended KP hierarchy

    International Nuclear Information System (INIS)

    Kamata, Masaru; Nakamula, Atsushi

    2002-01-01

    An attempt to formulate the extensions of the KP hierarchy by introducing fractional-order pseudo-differential operators is given. In the case of the extension with the half-order pseudo-differential operators, a system analogous to the supersymmetric extensions of the KP hierarchy is obtained. Unlike the supersymmetric extensions, no Grassmannian variable appears in the hierarchy considered here. More general hierarchies constructed by the 1/Nth-order pseudo-differential operators, their integrability and the reduction procedure are also investigated. In addition to finding the new extensions of the KP hierarchy, a brief introduction to the Riemann-Liouville integral is provided to yield a candidate for the fractional-order pseudo-differential operators

  20. A Riemann-Hilbert formulation for the finite temperature Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)

    2015-06-03

    Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.

  1. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    Science.gov (United States)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  2. Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel

    2016-01-01

    This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap......This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell...... with an aperture. Exact analytical solution of the problem is derived; it is based on the n-series approach which is casted into the equivalent Riemann-Hilbert problem. The examined configuration leads to large enhancements of the radiated field and to steerable Huygens-like directivity patterns. Particularly...

  3. Riemann surfaces and algebraic curves a first course in Hurwitz theory

    CERN Document Server

    Cavalieri, Renzo

    2016-01-01

    Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

  4. Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering

    Science.gov (United States)

    Pelinovsky, Dmitry E.; Sulem, Catherine

    A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.

  5. Towards quantized number theory: spectral operators and an asymmetric criterion for the Riemann hypothesis.

    Science.gov (United States)

    Lapidus, Michel L

    2015-08-06

    This research expository article not only contains a survey of earlier work but also contains a main new result, which we first describe. Given c≥0, the spectral operator [Formula: see text] can be thought of intuitively as the operator which sends the geometry onto the spectrum of a fractal string of dimension not exceeding c. Rigorously, it turns out to coincide with a suitable quantization of the Riemann zeta function ζ=ζ(s): a=ζ(∂), where ∂=∂(c) is the infinitesimal shift of the real line acting on the weighted Hilbert space [Formula: see text]. In this paper, we establish a new asymmetric criterion for the Riemann hypothesis (RH), expressed in terms of the invertibility of the spectral operator for all values of the dimension parameter [Formula: see text] (i.e. for all c in the left half of the critical interval (0,1)). This corresponds (conditionally) to a mathematical (and perhaps also, physical) 'phase transition' occurring in the midfractal case when [Formula: see text]. Both the universality and the non-universality of ζ=ζ(s) in the right (resp., left) critical strip [Formula: see text] (resp., [Formula: see text]) play a key role in this context. These new results are presented here. We also briefly discuss earlier joint work on the complex dimensions of fractal strings, and we survey earlier related work of the author with Maier and with Herichi, respectively, in which were established symmetric criteria for the RH, expressed, respectively, in terms of a family of natural inverse spectral problems for fractal strings of Minkowski dimension D∈(0,1), with [Formula: see text], and of the quasi-invertibility of the family of spectral operators [Formula: see text] (with [Formula: see text]). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Completion of a Dislocated Metric Space

    Directory of Open Access Journals (Sweden)

    P. Sumati Kumari

    2015-01-01

    Full Text Available We provide a construction for the completion of a dislocated metric space (abbreviated d-metric space; we also prove that the completion of the metric associated with a d-metric coincides with the metric associated with the completion of the d-metric.

  7. Metric adjusted skew information

    DEFF Research Database (Denmark)

    Hansen, Frank

    2008-01-01

    ) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We...... establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible......We extend the concept of Wigner-Yanase-Dyson skew information to something we call "metric adjusted skew information" (of a state with respect to a conserved observable). This "skew information" is intended to be a non-negative quantity bounded by the variance (of an observable in a state...

  8. The metric system: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, S.M.

    1995-05-01

    On July 13, 1992, Deputy Director Duane Sewell restated the Laboratory`s policy on conversion to the metric system which was established in 1974. Sewell`s memo announced the Laboratory`s intention to continue metric conversion on a reasonable and cost effective basis. Copies of the 1974 and 1992 Administrative Memos are contained in the Appendix. There are three primary reasons behind the Laboratory`s conversion to the metric system. First, Public Law 100-418, passed in 1988, states that by the end of fiscal year 1992 the Federal Government must begin using metric units in grants, procurements, and other business transactions. Second, on July 25, 1991, President George Bush signed Executive Order 12770 which urged Federal agencies to expedite conversion to metric units. Third, the contract between the University of California and the Department of Energy calls for the Laboratory to convert to the metric system. Thus, conversion to the metric system is a legal requirement and a contractual mandate with the University of California. Public Law 100-418 and Executive Order 12770 are discussed in more detail later in this section, but first they examine the reasons behind the nation`s conversion to the metric system. The second part of this report is on applying the metric system.

  9. Attack-Resistant Trust Metrics

    Science.gov (United States)

    Levien, Raph

    The Internet is an amazingly powerful tool for connecting people together, unmatched in human history. Yet, with that power comes great potential for spam and abuse. Trust metrics are an attempt to compute the set of which people are trustworthy and which are likely attackers. This chapter presents two specific trust metrics developed and deployed on the Advogato Website, which is a community blog for free software developers. This real-world experience demonstrates that the trust metrics fulfilled their goals, but that for good results, it is important to match the assumptions of the abstract trust metric computation to the real-world implementation.

  10. The metric system: An introduction

    Science.gov (United States)

    Lumley, Susan M.

    On 13 Jul. 1992, Deputy Director Duane Sewell restated the Laboratory's policy on conversion to the metric system which was established in 1974. Sewell's memo announced the Laboratory's intention to continue metric conversion on a reasonable and cost effective basis. Copies of the 1974 and 1992 Administrative Memos are contained in the Appendix. There are three primary reasons behind the Laboratory's conversion to the metric system. First, Public Law 100-418, passed in 1988, states that by the end of fiscal year 1992 the Federal Government must begin using metric units in grants, procurements, and other business transactions. Second, on 25 Jul. 1991, President George Bush signed Executive Order 12770 which urged Federal agencies to expedite conversion to metric units. Third, the contract between the University of California and the Department of Energy calls for the Laboratory to convert to the metric system. Thus, conversion to the metric system is a legal requirement and a contractual mandate with the University of California. Public Law 100-418 and Executive Order 12770 are discussed in more detail later in this section, but first they examine the reasons behind the nation's conversion to the metric system. The second part of this report is on applying the metric system.

  11. Metric-adjusted skew information

    DEFF Research Database (Denmark)

    Liang, Cai; Hansen, Frank

    2010-01-01

    on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to the general metric-adjusted skew information. We finally show that a recently introduced extension to parameter values 1 ...We give a truly elementary proof of the convexity of metric-adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric-adjusted skew information. Recently, Luo and Zhang introduced the notion of semi-quantum states...... of (unbounded) metric-adjusted skew information....

  12. Two classes of metric spaces

    Directory of Open Access Journals (Sweden)

    Isabel Garrido

    2016-04-01

    Full Text Available The class of metric spaces (X,d known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple metric spaces introduced by Hejcman are defined in terms of some kind of bornologies of bounded subsets of X. In this note we present a common framework where both classes of metric spaces can be studied which allows us to see not only the relationships between them but also to obtain new internal characterizations of these metric properties.

  13. Software metrics: Software quality metrics for distributed systems. [reliability engineering

    Science.gov (United States)

    Post, J. V.

    1981-01-01

    Software quality metrics was extended to cover distributed computer systems. Emphasis is placed on studying embedded computer systems and on viewing them within a system life cycle. The hierarchy of quality factors, criteria, and metrics was maintained. New software quality factors were added, including survivability, expandability, and evolvability.

  14. Multimetric indices: How many metrics?

    Science.gov (United States)

    Multimetric indices (MMI’s) often include 5 to 15 metrics, each representing a different attribute of assemblage condition, such as species diversity, tolerant taxa, and nonnative taxa. Is there an optimal number of metrics for MMIs? To explore this question, I created 1000 9-met...

  15. Metrical Phonology: German Sound System.

    Science.gov (United States)

    Tice, Bradley S.

    Metrical phonology, a linguistic process of phonological stress assessment and diagrammatic simplification of sentence and word stress, is discussed as it is found in the English and German languages. The objective is to promote use of metrical phonology as a tool for enhancing instruction in stress patterns in words and sentences, particularly in…

  16. Extending cosmology: the metric approach

    OpenAIRE

    Mendoza, S.

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  17. Numerical Calabi-Yau metrics

    International Nuclear Information System (INIS)

    Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene

    2008-01-01

    We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results

  18. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  19. Weyl metrics and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Gary W. [DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA U.K. (United Kingdom); Volkov, Mikhail S., E-mail: gwg1@cam.ac.uk, E-mail: volkov@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, LMPT CNRS—UMR 7350, Université de Tours, Parc de Grandmont, Tours, 37200 France (France)

    2017-05-01

    We study solutions obtained via applying dualities and complexifications to the vacuum Weyl metrics generated by massive rods and by point masses. Rescaling them and extending to complex parameter values yields axially symmetric vacuum solutions containing singularities along circles that can be viewed as singular matter sources. These solutions have wormhole topology with several asymptotic regions interconnected by throats and their sources can be viewed as thin rings of negative tension encircling the throats. For a particular value of the ring tension the geometry becomes exactly flat although the topology remains non-trivial, so that the rings literally produce holes in flat space. To create a single ring wormhole of one metre radius one needs a negative energy equivalent to the mass of Jupiter. Further duality transformations dress the rings with the scalar field, either conventional or phantom. This gives rise to large classes of static, axially symmetric solutions, presumably including all previously known solutions for a gravity-coupled massless scalar field, as for example the spherically symmetric Bronnikov-Ellis wormholes with phantom scalar. The multi-wormholes contain infinite struts everywhere at the symmetry axes, apart from solutions with locally flat geometry.

  20. Metrics for image segmentation

    Science.gov (United States)

    Rees, Gareth; Greenway, Phil; Morray, Denise

    1998-07-01

    An important challenge in mapping image-processing techniques onto applications is the lack of quantitative performance measures. From a systems engineering perspective these are essential if system level requirements are to be decomposed into sub-system requirements which can be understood in terms of algorithm selection and performance optimization. Nowhere in computer vision is this more evident than in the area of image segmentation. This is a vigorous and innovative research activity, but even after nearly two decades of progress, it remains almost impossible to answer the question 'what would the performance of this segmentation algorithm be under these new conditions?' To begin to address this shortcoming, we have devised a well-principled metric for assessing the relative performance of two segmentation algorithms. This allows meaningful objective comparisons to be made between their outputs. It also estimates the absolute performance of an algorithm given ground truth. Our approach is an information theoretic one. In this paper, we describe the theory and motivation of our method, and present practical results obtained from a range of state of the art segmentation methods. We demonstrate that it is possible to measure the objective performance of these algorithms, and to use the information so gained to provide clues about how their performance might be improved.

  1. Asymptotic behaviour of the scattering phase for non-trapping metrics

    International Nuclear Information System (INIS)

    Popov, G.S.

    1982-01-01

    The asymptotic behaviour of the scattering phase is considered at infinity for an elliptic, self-adjoint, second order differential operator H, defined either in Rsup(n) or in an unbounded domain Ω contains Rsup(n) with Dirichlet or Neumann boundary conditions. The operator H has the form H=- δsub(g)+hD+V where δsub(g) is the Laplace-Beltrami operator related to a Riemann metric g in anti Ω. Provided a non-trapping hypothesis is fulfilled and H coincides with the Laplace operator δ in a neighbourhood of infinity, an asymptotic development of the scattering phase s(lambda) is obtained for lambda → infinity. The first coefficients in this development are found

  2. Metric regularity and subdifferential calculus

    International Nuclear Information System (INIS)

    Ioffe, A D

    2000-01-01

    The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces

  3. Implicit approximate Riemann solver for two fluid two phase flow models

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.; Kumbaro, A.

    1993-01-01

    This paper is devoted to the description of new numerical methods developed for the numerical treatment of two phase flow models with two velocity fields which are now widely used in nuclear engineering for design or safety calculations. These methods are finite volumes numerical methods and are based on the use of Approximate Riemann Solver's concepts in order to define convective flux versus mean cell quantities. The first part of the communication will describe the numerical method for a three dimensional drift flux model and the extensions which were performed to make the numerical scheme implicit and to have fast running calculations of steady states. Such a scheme is now implemented in the FLICA-4 computer code devoted to 3-D steady state and transient core computations. We will present results obtained for a steady state flow with rod bow effect evaluation and for a Steam Line Break calculation were the 3-D core thermal computation was coupled with a 3-D kinetic calculation and a thermal-hydraulic transient calculation for the four loops of a Pressurized Water Reactor. The second part of the paper will detail the development of an equivalent numerical method based on an approximate Riemann Solver for a two fluid model with two momentum balance equations for the liquid and the gas phases. The main difficulty for these models is due to the existence of differential modelling terms such as added mass effects or interfacial pressure terms which make hyperbolic the model. These terms does not permit to write the balance equations system in a conservative form, and the classical theory for discontinuity propagation for non-linear systems cannot be applied. Meanwhile, the use of non-conservative products theory allows the study of discontinuity propagation for a non conservative model and this will permit the construction of a numerical scheme for two fluid two phase flow model. These different points will be detailed in that section which will be illustrated by

  4. METRICS DEVELOPMENT FOR PATENTS.

    Science.gov (United States)

    Veiga, Daniela Francescato; Ferreira, Lydia Masako

    2015-01-01

    To develop a proposal for metrics for patents to be applied in assessing the postgraduate programs of Medicine III - Capes. From the reading and analysis of the 2013 area documents of all the 48 areas of Capes, a proposal for metrics for patents was developed to be applied in Medicine III programs. Except for the areas Biotechnology, Food Science, Biological Sciences III, Physical Education, Engineering I, III and IV and Interdisciplinary, most areas do not adopt a scoring system for patents. The proposal developed was based on the criteria of Biotechnology, with adaptations. In general, it will be valued, in ascending order, the deposit, the granting and licensing/production. It will also be assigned higher scores to patents registered abroad and whenever there is a participation of students. This proposal can be applied to the item Intellectual Production of the evaluation form, in subsection Technical Production/Patents. The percentage of 10% for academic programs and 40% for Masters Professionals should be maintained. The program will be scored as Very Good when it reaches 400 points or over; Good, between 200 and 399 points; Regular, between 71 and 199 points; Weak up to 70 points; Insufficient, no punctuation. Desenvolver uma proposta de métricas para patentes a serem aplicadas na avaliação dos Programas de Pós-Graduação da Área Medicina III - Capes. A partir da leitura e análise dos documentos de área de 2013 de todas as 48 Áreas da Capes, desenvolveu-se uma proposta de métricas para patentes, a ser aplicada na avaliação dos programas da área. Constatou-se que, com exceção das áreas Biotecnologia, Ciência de Alimentos, Ciências Biológicas III, Educação Física, Engenharias I, III e IV e Interdisciplinar, a maioria não adota sistema de pontuação para patentes. A proposta desenvolvida baseou-se nos critérios da Biotecnologia, com adaptações. De uma forma geral, foi valorizado, em ordem crescente, o depósito, a concessão e o

  5. A Metric for Heterotic Moduli

    Science.gov (United States)

    Candelas, Philip; de la Ossa, Xenia; McOrist, Jock

    2017-12-01

    Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in {α^{\\backprime}}, in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Kähler, as is required by supersymmetry. Checking the metric is Kähler is intricate and the anomaly cancellation equation for the H field plays an essential role. The Kähler potential nevertheless takes a remarkably simple form: it is the Kähler potential of special geometry with the Kähler form replaced by the {α^{\\backprime}}-corrected hermitian form.

  6. Formulation of dynamical theory of X-ray diffraction for perfect crystals in the Laue case using the Riemann surface.

    Science.gov (United States)

    Saka, Takashi

    2016-05-01

    The dynamical theory for perfect crystals in the Laue case was reformulated using the Riemann surface, as used in complex analysis. In the two-beam approximation, each branch of the dispersion surface is specified by one sheet of the Riemann surface. The characteristic features of the dispersion surface are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg condition and the reflection strength. By representing these parameters on complex planes, these characteristics can be graphically depicted on the Riemann surface. In the conventional case, the absorption is small and the real part of the reflection strength is large, so the formulation is the same as the traditional analysis. However, when the real part of the reflection strength is small or zero, the two branches of the dispersion surface cross, and the dispersion relationship becomes similar to that of the Bragg case. This is because the geometrical relationships among the parameters are similar in both cases. The present analytical method is generally applicable, irrespective of the magnitudes of the parameters. Furthermore, the present method analytically revealed many characteristic features of the dispersion surface and will be quite instructive for further numerical calculations of rocking curves.

  7. Implications of Metric Choice for Common Applications of Readmission Metrics

    OpenAIRE

    Davies, Sheryl; Saynina, Olga; Schultz, Ellen; McDonald, Kathryn M; Baker, Laurence C

    2013-01-01

    Objective. To quantify the differential impact on hospital performance of three readmission metrics: all-cause readmission (ACR), 3M Potential Preventable Readmission (PPR), and Centers for Medicare and Medicaid 30-day readmission (CMS).

  8. Issues in Benchmark Metric Selection

    Science.gov (United States)

    Crolotte, Alain

    It is true that a metric can influence a benchmark but will esoteric metrics create more problems than they will solve? We answer this question affirmatively by examining the case of the TPC-D metric which used the much debated geometric mean for the single-stream test. We will show how a simple choice influenced the benchmark and its conduct and, to some extent, DBMS development. After examining other alternatives our conclusion is that the “real” measure for a decision-support benchmark is the arithmetic mean.

  9. Background metric in supergravity theories

    International Nuclear Information System (INIS)

    Yoneya, T.

    1978-01-01

    In supergravity theories, we investigate the conformal anomaly of the path-integral determinant and the problem of fermion zero modes in the presence of a nontrivial background metric. Except in SO(3) -invariant supergravity, there are nonvanishing conformal anomalies. As a consequence, amplitudes around the nontrivial background metric contain unpredictable arbitrariness. The fermion zero modes which are explicitly constructed for the Euclidean Schwarzschild metric are interpreted as an indication of the supersymmetric multiplet structure of a black hole. The degree of degeneracy of a black hole is 2/sup 4n/ in SO(n) supergravity

  10. Generalized Painleve-Gullstrand metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chunyu [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: l2891112@mail.ncku.edu.tw; Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: cpsoo@mail.ncku.edu.tw

    2009-02-02

    An obstruction to the implementation of spatially flat Painleve-Gullstrand (PG) slicings is demonstrated, and explicitly discussed for Reissner-Nordstroem and Schwarzschild-anti-deSitter spacetimes. Generalizations of PG slicings which are not spatially flat but which remain regular at the horizons are introduced. These metrics can be obtained from standard spherically symmetric metrics by physical Lorentz boosts. With these generalized PG metrics, problematic contributions to the imaginary part of the action in the Parikh-Wilczek derivation of Hawking radiation due to the obstruction can be avoided.

  11. Daylight metrics and energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  12. Next-Generation Metrics: Responsible Metrics & Evaluation for Open Science

    Energy Technology Data Exchange (ETDEWEB)

    Wilsdon, J.; Bar-Ilan, J.; Peters, I.; Wouters, P.

    2016-07-01

    Metrics evoke a mixed reaction from the research community. A commitment to using data to inform decisions makes some enthusiastic about the prospect of granular, real-time analysis o of research and its wider impacts. Yet we only have to look at the blunt use of metrics such as journal impact factors, h-indices and grant income targets, to be reminded of the pitfalls. Some of the most precious qualities of academic culture resist simple quantification, and individual indicators often struggle to do justice to the richness and plurality of research. Too often, poorly designed evaluation criteria are “dominating minds, distorting behaviour and determining careers (Lawrence, 2007).” Metrics hold real power: they are constitutive of values, identities and livelihoods. How to exercise that power to more positive ends has been the focus of several recent and complementary initiatives, including the San Francisco Declaration on Research Assessment (DORA1), the Leiden Manifesto2 and The Metric Tide3 (a UK government review of the role of metrics in research management and assessment). Building on these initiatives, the European Commission, under its new Open Science Policy Platform4, is now looking to develop a framework for responsible metrics for research management and evaluation, which can be incorporated into the successor framework to Horizon 2020. (Author)

  13. Cylinder renormalization for Siegel disks and a constructive Measurable Riemann Mapping Theorem

    CERN Document Server

    Gaydashev, D G

    2006-01-01

    The boundary of the Siegel disk of a quadratic polynomial with an irrationally indifferent fixed point with the golden mean rotation number has been observed to be self-similar. The geometry of this self-similarity is universal for a large class of holomorphic maps. A renormalization explanation of this universality has been proposed in the literature. However, one of the ingredients of this explanation, the hyperbolicity of renormalization, has not been proved yet. The present work considers a cylinder renormalization - a novel type of renormalization for holomorphic maps with a Siegel disk which is better suited for a hyperbolicity proof. A key element of a cylinder renormalization of a holomorphic map is a conformal isomorphism of a dynamical quotient of a subset of $\\field{C}$ to a bi-infinite cylinder $\\field{C} / \\field{Z}$. A construction of this conformal isomorphism is an implicit procedure which can be performed using the Measurable Riemann Mapping Theorem. We present a constructive proof of the Mea...

  14. Riemann-Christoffel Tensor in Differential Geometry of Fractional Order Application to Fractal Space-Time

    Science.gov (United States)

    Jumarie, Guy

    2013-04-01

    By using fractional differences, one recently proposed an alternative to the formulation of fractional differential calculus, of which the main characteristics is a new fractional Taylor series and its companion Rolle's formula which apply to non-differentiable functions. The key is that now we have at hand a differential increment of fractional order which can be manipulated exactly like in the standard Leibniz differential calculus. Briefly the fractional derivative is the quotient of fractional increments. It has been proposed that this calculus can be used to construct a differential geometry on manifold of fractional order. The present paper, on the one hand, refines the framework, and on the other hand, contributes some new results related to arc length of fractional curves, area on fractional differentiable manifold, covariant fractal derivative, Riemann-Christoffel tensor of fractional order, fractional differential equations of fractional geodesic, strip modeling of fractal space time and its relation with Lorentz transformation. The relation with Nottale's fractal space-time theory then appears in quite a natural way.

  15. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow

    International Nuclear Information System (INIS)

    Toumi, I.; Kumbaro, A.; Paillere, H.

    1999-01-01

    These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)

  16. A geometric construction of the Riemann scalar curvature in Regge calculus

    Science.gov (United States)

    McDonald, Jonathan R.; Miller, Warner A.

    2008-10-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.

  17. 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity

    International Nuclear Information System (INIS)

    Loubere, Raphael; Maire, Pierre-Henri; Vachal, Pavel

    2013-01-01

    The aim of the present work is the 3D extension of a general formalism to derive a staggered discretization for Lagrangian hydrodynamics on unstructured grids. The classical compatible discretization is used; namely, momentum equation is discretized using the fundamental concept of subcell forces. Specific internal energy equation is obtained using total energy conservation. The subcell force is derived by invoking the Galilean invariance and thermodynamic consistency. A general form of the subcell force is provided so that a cell entropy inequality is satisfied. The subcell force consists of a classical pressure term plus a tensorial viscous contribution proportional to the difference between the node velocity and the cell-centered velocity. This cell-centered velocity is an extra degree of freedom solved with a cell-centered approximate Riemann solver. The second law of thermodynamics is satisfied by construction of the local positive definite subcell tensor involved in the viscous term. A particular expression of this tensor is proposed. A more accurate extension of this discretization both in time and space is also provided using a piecewise linear reconstruction of the velocity field and a predictor-corrector time discretization. Numerical tests are presented in order to assess the efficiency of this approach in 3D. Sanity checks show that the 3D extension of the 2D approach reproduces 1D and 2D results. Finally, 3D problems such as Sedov, Noh, and Saltzman are simulated. (authors)

  18. A geometric construction of the Riemann scalar curvature in Regge calculus

    International Nuclear Information System (INIS)

    McDonald, Jonathan R; Miller, Warner A

    2008-01-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas

  19. On membrane interactions and a three-dimensional analog of Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Stefano [Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); ICTP South American Institute for Fundamental Research, IFT-UNESP,São Paulo, SP 01440-070 (Brazil); Sato, Yuki [National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwartersrand,Wits 2050 (South Africa); Shimada, Hidehiko [Okayama Institute for Quantum Physics,Okayama (Japan)

    2016-02-08

    Membranes in M-theory are expected to interact via splitting and joining processes. We study these effects in the pp-wave matrix model, in which they are associated with transitions between states in sectors built on vacua with different numbers of membranes. Transition amplitudes between such states receive contributions from BPS instanton configurations interpolating between the different vacua. Various properties of the moduli space of BPS instantons are known, but there are very few known examples of explicit solutions. We present a new approach to the construction of instanton solutions interpolating between states containing arbitrary numbers of membranes, based on a continuum approximation valid for matrices of large size. The proposed scheme uses functions on a two-dimensional space to approximate matrices and it relies on the same ideas behind the matrix regularisation of membrane degrees of freedom in M-theory. We show that the BPS instanton equations have a continuum counterpart which can be mapped to the three-dimensional Laplace equation through a sequence of changes of variables. A description of configurations corresponding to membrane splitting/joining processes can be given in terms of solutions to the Laplace equation in a three-dimensional analog of a Riemann surface, consisting of multiple copies of ℝ{sup 3} connected via a generalisation of branch cuts. We discuss various general features of our proposal and we also present explicit analytic solutions.

  20. On membrane interactions and a three-dimensional analog of Riemann surfaces

    International Nuclear Information System (INIS)

    Kovacs, Stefano; Sato, Yuki; Shimada, Hidehiko

    2016-01-01

    Membranes in M-theory are expected to interact via splitting and joining processes. We study these effects in the pp-wave matrix model, in which they are associated with transitions between states in sectors built on vacua with different numbers of membranes. Transition amplitudes between such states receive contributions from BPS instanton configurations interpolating between the different vacua. Various properties of the moduli space of BPS instantons are known, but there are very few known examples of explicit solutions. We present a new approach to the construction of instanton solutions interpolating between states containing arbitrary numbers of membranes, based on a continuum approximation valid for matrices of large size. The proposed scheme uses functions on a two-dimensional space to approximate matrices and it relies on the same ideas behind the matrix regularisation of membrane degrees of freedom in M-theory. We show that the BPS instanton equations have a continuum counterpart which can be mapped to the three-dimensional Laplace equation through a sequence of changes of variables. A description of configurations corresponding to membrane splitting/joining processes can be given in terms of solutions to the Laplace equation in a three-dimensional analog of a Riemann surface, consisting of multiple copies of ℝ"3 connected via a generalisation of branch cuts. We discuss various general features of our proposal and we also present explicit analytic solutions.

  1. Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

    Energy Technology Data Exchange (ETDEWEB)

    Duca, Vittorio Del [Institute for Theoretical Physics, ETH Zürich,Hönggerberg, 8093 Zürich (Switzerland); Druc, Stefan; Drummond, James [School of Physics & Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom); Duhr, Claude [Theoretical Physics Department, CERN,Route de Meyrin, CH-1211 Geneva 23 (Switzerland); Center for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, 1348 Louvain-La-Neuve (Belgium); Dulat, Falko [SLAC National Accelerator Laboratory, Stanford University,Stanford, CA 94309 (United States); Marzucca, Robin [Center for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, 1348 Louvain-La-Neuve (Belgium); Papathanasiou, Georgios [SLAC National Accelerator Laboratory, Stanford University,Stanford, CA 94309 (United States); Verbeek, Bram [Center for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, 1348 Louvain-La-Neuve (Belgium)

    2016-08-25

    We show that scattering amplitudes in planar N=4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L+4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.

  2. Let's Make Metric Ice Cream

    Science.gov (United States)

    Zimmerman, Marianna

    1975-01-01

    Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)

  3. Experiential space is hardly metric

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal; Lukavský, Jiří

    2008-01-01

    Roč. 2008, č. 37 (2008), s. 58-58 ISSN 0301-0066. [European Conference on Visual Perception. 24.08-28.08.2008, Utrecht] R&D Projects: GA ČR GA406/07/1676 Institutional research plan: CEZ:AV0Z70250504 Keywords : visual space perception * metric and non-metric perceptual judgments * ecological validity Subject RIV: AN - Psychology

  4. Coverage Metrics for Model Checking

    Science.gov (United States)

    Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)

    2001-01-01

    When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.

  5. Phantom metrics with Killing spinors

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2015-11-01

    Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.

  6. Scalar-metric and scalar-metric-torsion gravitational theories

    International Nuclear Information System (INIS)

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  7. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    International Nuclear Information System (INIS)

    Kraczek, B.; Miller, S.T.; Haber, R.B.; Johnson, D.D.

    2010-01-01

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in

  8. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities; Solveurs de riemann pour des melanges de gaz parfaits avec capacites calorifiques dependant de la temperature

    Energy Technology Data Exchange (ETDEWEB)

    Beccantini, A

    2001-07-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  9. Regge calculus from discontinuous metrics

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2003-01-01

    Regge calculus is considered as a particular case of the more general system where the linklengths of any two neighbouring 4-tetrahedra do not necessarily coincide on their common face. This system is treated as that one described by metric discontinuous on the faces. In the superspace of all discontinuous metrics the Regge calculus metrics form some hypersurface defined by continuity conditions. Quantum theory of the discontinuous metric system is assumed to be fixed somehow in the form of quantum measure on (the space of functionals on) the superspace. The problem of reducing this measure to the Regge hypersurface is addressed. The quantum Regge calculus measure is defined from a discontinuous metric measure by inserting the δ-function-like phase factor. The requirement that continuity conditions be imposed in a 'face-independent' way fixes this factor uniquely. The term 'face-independent' means that this factor depends only on the (hyper)plane spanned by the face, not on it's form and size. This requirement seems to be natural from the viewpoint of existence of the well-defined continuum limit maximally free of lattice artefacts

  10. Symmetries of Taub-NUT dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.; Codoban, S.

    1998-01-01

    Recently geometric duality was analyzed for a metric which admits Killing tensors. An interesting example arises when the manifold has Killing-Yano tensors. The symmetries of the dual metrics in the case of Taub-NUT metric are investigated. Generic and non-generic symmetries of dual Taub-NUT metric are analyzed

  11. A Kerr-NUT metric

    International Nuclear Information System (INIS)

    Vaidya, P.C.; Patel, L.K.; Bhatt, P.V.

    1976-01-01

    Using Galilean time and retarded distance as coordinates the usual Kerr metric is expressed in form similar to the Newman-Unti-Tamburino (NUT) metric. The combined Kerr-NUT metric is then investigated. In addition to the Kerr and NUT solutions of Einstein's equations, three other types of solutions are derived. These are (i) the radiating Kerr solution, (ii) the radiating NUT solution satisfying Rsub(ik) = sigmaxisub(i)xisub(k), xisub(i)xisup(i) = 0, and (iii) the associated Kerr solution satisfying Rsub(ik) = 0. Solution (i) is distinct from and simpler than the one reported earlier by Vaidya and Patel (Phys. Rev.; D7:3590 (1973)). Solutions (ii) and (iii) gave line elements which have the axis of symmetry as a singular line. (author)

  12. Complexity Metrics for Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; van der Aalst, Wil M.P.

    2009-01-01

    analysts have difficulties grasping the dynamics implied by a process model. Recent empirical studies show that people make numerous errors when modeling complex business processes, e.g., about 20 percent of the EPCs in the SAP reference model have design flaws resulting in potential deadlocks, livelocks......, etc. It seems obvious that the complexity of the model contributes to design errors and a lack of understanding. It is not easy to measure complexity, however. This paper presents three complexity metrics that have been implemented in the process analysis tool ProM. The metrics are defined...... for a subclass of Petri nets named Workflow nets, but the results can easily be applied to other languages. To demonstrate the applicability of these metrics, we have applied our approach and tool to 262 relatively complex Protos models made in the context of various student projects. This allows us to validate...

  13. The uniqueness of the Fisher metric as information metric

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van

    2017-01-01

    Roč. 69, č. 4 (2017), s. 879-896 ISSN 0020-3157 Institutional support: RVO:67985840 Keywords : Chentsov’s theorem * mixed topology * monotonicity of the Fisher metric Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.049, year: 2016 https://link.springer.com/article/10.1007%2Fs10463-016-0562-0

  14. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  15. Invariant metrics for Hamiltonian systems

    International Nuclear Information System (INIS)

    Rangarajan, G.; Dragt, A.J.; Neri, F.

    1991-05-01

    In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs

  16. Generalization of Vaidya's radiation metric

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, R J; Kozameh, C N [Universidad Nacional de Cordoba (Argentina). Instituto de Matematica, Astronomia y Fisica

    1981-11-01

    In this paper it is shown that if Vaidya's radiation metric is considered from the point of view of kinetic theory in general relativity, the corresponding phase space distribution function can be generalized in a particular way. The new family of spherically symmetric radiation metrics obtained contains Vaidya's as a limiting situation. The Einstein field equations are solved in a ''comoving'' coordinate system. Two arbitrary functions of a single variable are introduced in the process of solving these equations. Particular examples considered are a stationary solution, a nonvacuum solution depending on a single parameter, and several limiting situations.

  17. Technical Privacy Metrics: a Systematic Survey

    OpenAIRE

    Wagner, Isabel; Eckhoff, David

    2018-01-01

    The file attached to this record is the author's final peer reviewed version The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving user privacy in the digital world. The diversity and complexity of privacy metrics in the literature makes an informed choice of metrics challenging. As a result, instead of using existing metrics, n...

  18. Remarks on G-Metric Spaces

    Directory of Open Access Journals (Sweden)

    Bessem Samet

    2013-01-01

    Full Text Available In 2005, Mustafa and Sims (2006 introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.

  19. DLA Energy Biofuel Feedstock Metrics Study

    Science.gov (United States)

    2012-12-11

    moderately/highly in- vasive  Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category  Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then

  20. On a Nonlocal Ostrovsky-Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability

    Directory of Open Access Journals (Sweden)

    Jolanta Golenia

    2010-01-01

    Full Text Available Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability of the corresponding dynamical system is stated and an infinite hierarchy of commuting to each other conservation laws of dispersive type are found. The well defined regularization of the model is constructed and its Lax type integrability is discussed. A generalized hydrodynamical Riemann type system is considered, infinite hierarchies of conservation laws, related compatible Poisson structures and a Lax type representation for the special case N=3 are constructed.

  1. Zeros da função zeta de Riemann e o teorema dos números primos

    OpenAIRE

    Oliveira, Willian Diego [UNESP

    2013-01-01

    We studied various properties of the Riemann’s zeta function. Three proofs of the Prime Number Theorem were provides. Classical results on zero-free region of the zeta function, as well as their relation to the error term in the Prime Number Theorem, were studied in details Estudamos várias propriedades da função zeta de Riemann. Três provas do Teorema dos Números Primos foram fornecidas. Resultados clássicos sobre regiões livres de zeros da função zeta, bem como sua relação com o termo do...

  2. Contribution of non integer integro-differential operators (NIDO) to the geometrical understanding of Riemann's conjecture-(II)

    International Nuclear Information System (INIS)

    Le Mehaute, Alain; El Kaabouchi, Abdelaziz; Nivanen, Laurent

    2008-01-01

    Advances in fractional analysis suggest a new way for the physics understanding of Riemann's conjecture. It asserts that, if s is a complex number, the non trivial zeros of zeta function 1/(ζ(s)) =Σ n=1 ∞ (μ(n))/(n s ) in the gap [0, 1], is characterized by s=1/2 (1+2iθ). This conjecture can be understood as a consequence of 1/2-order fractional differential characteristics of automorph dynamics upon opened punctuated torus with an angle at infinity equal to π/4. This physical interpretation suggests new opportunities for revisiting the cryptographic methodologies

  3. Separable metrics and radiating stars

    Indian Academy of Sciences (India)

    We study the junction condition relating the pressure to heat flux at the boundary of an accelerating and expanding spherically symmetric radiating star. We transform the junction condition to an ordinary differential equation by making a separability assumption on the metric functions in the space–time variables.

  4. Socio-technical security metrics

    NARCIS (Netherlands)

    Gollmann, D.; Herley, C.; Koenig, V.; Pieters, W.; Sasse, M.A.

    2015-01-01

    Report from Dagstuhl seminar 14491. This report documents the program and the outcomes of Dagstuhl Seminar 14491 “Socio-Technical Security Metrics”. In the domain of safety, metrics inform many decisions, from the height of new dikes to the design of nuclear plants. We can state, for example, that

  5. Leading Gainful Employment Metric Reporting

    Science.gov (United States)

    Powers, Kristina; MacPherson, Derek

    2016-01-01

    This chapter will address the importance of intercampus involvement in reporting of gainful employment student-level data that will be used in the calculation of gainful employment metrics by the U.S. Department of Education. The authors will discuss why building relationships within the institution is critical for effective gainful employment…

  6. A Theta lift representation for the Kawazumi-Zhang and Faltings invariants of genus-two Riemann surfaces

    CERN Document Server

    Pioline, Boris

    2016-01-01

    The Kawazumi-Zhang invariant $\\varphi$ for compact genus-two Riemann surfaces was recently shown to be a eigenmode of the Laplacian on the Siegel upper half-plane, away from the separating degeneration divisor. Using this fact and the known behavior of $\\varphi$ in the non-separating degeneration limit, it is shown that $\\varphi$ is equal to the Theta lift of the unique (up to normalization) weak Jacobi form of weight $-2$. This identification provides the complete Fourier-Jacobi expansion of $\\varphi$ near the non-separating node, gives full control on the asymptotics of $\\varphi$ in the various degeneration limits, and provides a efficient numerical procedure to evaluate $\\varphi$ to arbitrary accuracy. It also reveals a mock-type holomorphic Siegel modular form of weight $-2$ underlying $\\varphi$. From the general relation between the Faltings invariant, the Kawazumi-Zhang invariant and the discriminant for hyperelliptic Riemann surfaces, a Theta lift representation for the Faltings invariant in genus two ...

  7. La notion husserlienne de multiplicité : au-delà de Cantor et Riemann

    Directory of Open Access Journals (Sweden)

    Carlo Ierna

    2012-04-01

    Full Text Available En raison du rôle changeant qu’il joue dans les différents ouvrages de Husserl, le concept de Mannigfaltigkeit afait l’objet de nombreuses interprétations. La présence de ce terme a notamment induit en erreur plusieurs commentateurs, qui ont cru en déterminer l’origine dans les années de Halle, à l’époque où Husserl, ami et collègue de Cantor, rédigeait la Philosophie de l’arithmétique. Mais force est de constater qu’à cette époque Husserl s’était déjà ouvertement éloigné de la définition cantorienne de Mannigfaltigkeit en s’approchant plutôt de Riemann, comme le montrent les nombreuses études et leçons qui lui sont consacrées. La Mannigfaltigkeitslehre de Husserl semble donc plus proche de la topologie que de la théorie des ensembles de Cantor. Ainsi, dans les Prolégomènes, Husserl introduit l’idée d’une Mannigfaltigkeitslehre pure en tant qu’entreprise méta-théorique dont le but est d’étudier les relations entre théories, à savoir la manière par laquelle une théorie est dérivée ou fondée à partir d’une autre. Dès lors, lorsque Husserl affirme que le meilleur exemple d’une telle théorie pure des multiplicités se trouve dans les mathématiques, cela risque donc de prêter à confusion. En effet, la théorie pure des théories ne saurait être simplement identifiée aux mathématiques qui relèvent de la topologie, mais considérée en tant que mathesis universalis. Bien qu’une telle position ne fût sans doute pas entièrement claire en 1900-01, Husserl ne tardera pas à relier explicitement théorie des multiplicités et mathesis universalis.En ce sens, la mathesis universalis, théorie des théories en général, est une discipline formelle, apriori et analytique qui a pour but l’analyse des catégories sémantiques suprêmes et des catégories d’objets qui leur sont corrélées. Dans cet article j’essayerai de comprendre le développement de la notion de

  8. Group covariance and metrical theory

    International Nuclear Information System (INIS)

    Halpern, L.

    1983-01-01

    The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references

  9. General relativity: An erfc metric

    Science.gov (United States)

    Plamondon, Réjean

    2018-06-01

    This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space-time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.

  10. hdm: High-dimensional metrics

    OpenAIRE

    Chernozhukov, Victor; Hansen, Christian; Spindler, Martin

    2016-01-01

    In this article the package High-dimensional Metrics (\\texttt{hdm}) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e...

  11. Multi-Metric Sustainability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, Shannon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Munoz, David [Colorado School of Mines, Golden, CO (United States)

    2014-12-01

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  12. Sensory Metrics of Neuromechanical Trust.

    Science.gov (United States)

    Softky, William; Benford, Criscillia

    2017-09-01

    Today digital sources supply a historically unprecedented component of human sensorimotor data, the consumption of which is correlated with poorly understood maladies such as Internet addiction disorder and Internet gaming disorder. Because both natural and digital sensorimotor data share common mathematical descriptions, one can quantify our informational sensorimotor needs using the signal processing metrics of entropy, noise, dimensionality, continuity, latency, and bandwidth. Such metrics describe in neutral terms the informational diet human brains require to self-calibrate, allowing individuals to maintain trusting relationships. With these metrics, we define the trust humans experience using the mathematical language of computational models, that is, as a primitive statistical algorithm processing finely grained sensorimotor data from neuromechanical interaction. This definition of neuromechanical trust implies that artificial sensorimotor inputs and interactions that attract low-level attention through frequent discontinuities and enhanced coherence will decalibrate a brain's representation of its world over the long term by violating the implicit statistical contract for which self-calibration evolved. Our hypersimplified mathematical understanding of human sensorimotor processing as multiscale, continuous-time vibratory interaction allows equally broad-brush descriptions of failure modes and solutions. For example, we model addiction in general as the result of homeostatic regulation gone awry in novel environments (sign reversal) and digital dependency as a sub-case in which the decalibration caused by digital sensorimotor data spurs yet more consumption of them. We predict that institutions can use these sensorimotor metrics to quantify media richness to improve employee well-being; that dyads and family-size groups will bond and heal best through low-latency, high-resolution multisensory interaction such as shared meals and reciprocated touch; and

  13. Metric reconstruction from Weyl scalars

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Bernard F; Price, Larry R [Department of Physics, PO Box 118440, University of Florida, Gainesville, FL 32611 (United States)

    2005-08-07

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations.

  14. Metric reconstruction from Weyl scalars

    International Nuclear Information System (INIS)

    Whiting, Bernard F; Price, Larry R

    2005-01-01

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations

  15. Sustainability Metrics: The San Luis Basin Project

    Science.gov (United States)

    Sustainability is about promoting humanly desirable dynamic regimes of the environment. Metrics: ecological footprint, net regional product, exergy, emergy, and Fisher Information. Adaptive management: (1) metrics assess problem, (2) specific problem identified, and (3) managemen...

  16. Crowdsourcing metrics of digital collections

    Directory of Open Access Journals (Sweden)

    Tuula Pääkkönen

    2015-12-01

    Full Text Available In the National Library of Finland (NLF there are millions of digitized newspaper and journal pages, which are openly available via the public website  http://digi.kansalliskirjasto.fi. To serve users better, last year the front end was completely overhauled with its main aim in crowdsourcing features, e.g., by giving end-users the opportunity to create digital clippings and a personal scrapbook from the digital collections. But how can you know whether crowdsourcing has had an impact? How much crowdsourcing functionalities have been used so far? Did crowdsourcing work? In this paper the statistics and metrics of a recent crowdsourcing effort are analysed across the different digitized material types (newspapers, journals, ephemera. The subjects, categories and keywords given by the users are analysed to see which topics are the most appealing. Some notable public uses of the crowdsourced article clippings are highlighted. These metrics give us indications on how the end-users, based on their own interests, are investigating and using the digital collections. Therefore, the suggested metrics illustrate the versatility of the information needs of the users, varying from citizen science to research purposes. By analysing the user patterns, we can respond to the new needs of the users by making minor changes to accommodate the most active participants, while still making the service more approachable for those who are trying out the functionalities for the first time. Participation in the clippings and annotations can enrich the materials in unexpected ways and can possibly pave the way for opportunities of using crowdsourcing more also in research contexts. This creates more opportunities for the goals of open science since source data becomes ­available, making it possible for researchers to reach out to the general public for help. In the long term, utilizing, for example, text mining methods can allow these different end-user segments to

  17. A family of metric gravities

    Science.gov (United States)

    Shuler, Robert

    2018-04-01

    The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one

  18. Hybrid metric-Palatini stars

    Science.gov (United States)

    Danilǎ, Bogdan; Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2017-02-01

    We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini f (R ) formalisms. It turns out that the theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor definition of the potential can be represented as an Clairaut differential equation, and provides an explicit form for f (R ) given by f (R )˜R +Λeff, where Λeff is an effective cosmological constant. Furthermore, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity, thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes the form of the bag model equation of state describing

  19. Metrics for Evaluation of Student Models

    Science.gov (United States)

    Pelanek, Radek

    2015-01-01

    Researchers use many different metrics for evaluation of performance of student models. The aim of this paper is to provide an overview of commonly used metrics, to discuss properties, advantages, and disadvantages of different metrics, to summarize current practice in educational data mining, and to provide guidance for evaluation of student…

  20. Context-dependent ATC complexity metric

    NARCIS (Netherlands)

    Mercado Velasco, G.A.; Borst, C.

    2015-01-01

    Several studies have investigated Air Traffic Control (ATC) complexity metrics in a search for a metric that could best capture workload. These studies have shown how daunting the search for a universal workload metric (one that could be applied in different contexts: sectors, traffic patterns,

  1. Properties of C-metric spaces

    Science.gov (United States)

    Croitoru, Anca; Apreutesei, Gabriela; Mastorakis, Nikos E.

    2017-09-01

    The subject of this paper belongs to the theory of approximate metrics [23]. An approximate metric on X is a real application defined on X × X that satisfies only a part of the metric axioms. In a recent paper [23], we introduced a new type of approximate metric, named C-metric, that is an application which satisfies only two metric axioms: symmetry and triangular inequality. The remarkable fact in a C-metric space is that a topological structure induced by the C-metric can be defined. The innovative idea of this paper is that we obtain some convergence properties of a C-metric space in the absence of a metric. In this paper we investigate C-metric spaces. The paper is divided into four sections. Section 1 is for Introduction. In Section 2 we recall some concepts and preliminary results. In Section 3 we present some properties of C-metric spaces, such as convergence properties, a canonical decomposition and a C-fixed point theorem. Finally, in Section 4 some conclusions are highlighted.

  2. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on

  3. On characterizations of quasi-metric completeness

    Energy Technology Data Exchange (ETDEWEB)

    Dag, H.; Romaguera, S.; Tirado, P.

    2017-07-01

    Hu proved in [4] that a metric space (X, d) is complete if and only if for any closed subspace C of (X, d), every Banach contraction on C has fixed point. Since then several authors have investigated the problem of characterizing the metric completeness by means of fixed point theorems. Recently this problem has been studied in the more general context of quasi-metric spaces for different notions of completeness. Here we present a characterization of a kind of completeness for quasi-metric spaces by means of a quasi-metric versions of Hu’s theorem. (Author)

  4. The Metric of Colour Space

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2015-01-01

    and found the MacAdam ellipses which are often interpreted as defining the metric tensor at their centres. An important question is whether it is possible to define colour coordinates such that the Euclidean distance in these coordinates correspond to human perception. Using cubic splines to represent......The space of colours is a fascinating space. It is a real vector space, but no matter what inner product you put on the space the resulting Euclidean distance does not correspond to human perception of difference between colours. In 1942 MacAdam performed the first experiments on colour matching...

  5. Product Operations Status Summary Metrics

    Science.gov (United States)

    Takagi, Atsuya; Toole, Nicholas

    2010-01-01

    The Product Operations Status Summary Metrics (POSSUM) computer program provides a readable view into the state of the Phoenix Operations Product Generation Subsystem (OPGS) data pipeline. POSSUM provides a user interface that can search the data store, collect product metadata, and display the results in an easily-readable layout. It was designed with flexibility in mind for support in future missions. Flexibility over various data store hierarchies is provided through the disk-searching facilities of Marsviewer. This is a proven program that has been in operational use since the first day of the Phoenix mission.

  6. Web metrics for library and information professionals

    CERN Document Server

    Stuart, David

    2014-01-01

    This is a practical guide to using web metrics to measure impact and demonstrate value. The web provides an opportunity to collect a host of different metrics, from those associated with social media accounts and websites to more traditional research outputs. This book is a clear guide for library and information professionals as to what web metrics are available and how to assess and use them to make informed decisions and demonstrate value. As individuals and organizations increasingly use the web in addition to traditional publishing avenues and formats, this book provides the tools to unlock web metrics and evaluate the impact of this content. The key topics covered include: bibliometrics, webometrics and web metrics; data collection tools; evaluating impact on the web; evaluating social media impact; investigating relationships between actors; exploring traditional publications in a new environment; web metrics and the web of data; the future of web metrics and the library and information professional.Th...

  7. Efficient analytical implementation of the DOT Riemann solver for the de Saint Venant-Exner morphodynamic model

    Science.gov (United States)

    Carraro, F.; Valiani, A.; Caleffi, V.

    2018-03-01

    Within the framework of the de Saint Venant equations coupled with the Exner equation for morphodynamic evolution, this work presents a new efficient implementation of the Dumbser-Osher-Toro (DOT) scheme for non-conservative problems. The DOT path-conservative scheme is a robust upwind method based on a complete Riemann solver, but it has the drawback of requiring expensive numerical computations. Indeed, to compute the non-linear time evolution in each time step, the DOT scheme requires numerical computation of the flux matrix eigenstructure (the totality of eigenvalues and eigenvectors) several times at each cell edge. In this work, an analytical and compact formulation of the eigenstructure for the de Saint Venant-Exner (dSVE) model is introduced and tested in terms of numerical efficiency and stability. Using the original DOT and PRICE-C (a very efficient FORCE-type method) as reference methods, we present a convergence analysis (error against CPU time) to study the performance of the DOT method with our new analytical implementation of eigenstructure calculations (A-DOT). In particular, the numerical performance of the three methods is tested in three test cases: a movable bed Riemann problem with analytical solution; a problem with smooth analytical solution; a test in which the water flow is characterised by subcritical and supercritical regions. For a given target error, the A-DOT method is always the most efficient choice. Finally, two experimental data sets and different transport formulae are considered to test the A-DOT model in more practical case studies.

  8. Metrics for building performance assurance

    Energy Technology Data Exchange (ETDEWEB)

    Koles, G.; Hitchcock, R.; Sherman, M.

    1996-07-01

    This report documents part of the work performed in phase I of a Laboratory Directors Research and Development (LDRD) funded project entitled Building Performance Assurances (BPA). The focus of the BPA effort is to transform the way buildings are built and operated in order to improve building performance by facilitating or providing tools, infrastructure, and information. The efforts described herein focus on the development of metrics with which to evaluate building performance and for which information and optimization tools need to be developed. The classes of building performance metrics reviewed are (1) Building Services (2) First Costs, (3) Operating Costs, (4) Maintenance Costs, and (5) Energy and Environmental Factors. The first category defines the direct benefits associated with buildings; the next three are different kinds of costs associated with providing those benefits; the last category includes concerns that are broader than direct costs and benefits to the building owner and building occupants. The level of detail of the various issues reflect the current state of knowledge in those scientific areas and the ability of the to determine that state of knowledge, rather than directly reflecting the importance of these issues; it intentionally does not specifically focus on energy issues. The report describes work in progress and is intended as a resource and can be used to indicate the areas needing more investigation. Other reports on BPA activities are also available.

  9. Metric approach to quantum constraints

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P; Gustavsson, Anna C T

    2009-01-01

    A framework for deriving equations of motion for constrained quantum systems is introduced and a procedure for its implementation is outlined. In special cases, the proposed new method, which takes advantage of the fact that the space of pure states in quantum mechanics has both a symplectic structure and a metric structure, reduces to a quantum analogue of the Dirac theory of constraints in classical mechanics. Explicit examples involving spin-1/2 particles are worked out in detail: in the first example, our approach coincides with a quantum version of the Dirac formalism, while the second example illustrates how a situation that cannot be treated by Dirac's approach can nevertheless be dealt with in the present scheme.

  10. Metrics for Business Process Models

    Science.gov (United States)

    Mendling, Jan

    Up until now, there has been little research on why people introduce errors in real-world business process models. In a more general context, Simon [404] points to the limitations of cognitive capabilities and concludes that humans act rationally only to a certain extent. Concerning modeling errors, this argument would imply that human modelers lose track of the interrelations of large and complex models due to their limited cognitive capabilities and introduce errors that they would not insert in a small model. A recent study by Mendling et al. [275] explores in how far certain complexity metrics of business process models have the potential to serve as error determinants. The authors conclude that complexity indeed appears to have an impact on error probability. Before we can test such a hypothesis in a more general setting, we have to establish an understanding of how we can define determinants that drive error probability and how we can measure them.

  11. Active Metric Learning for Supervised Classification

    OpenAIRE

    Kumaran, Krishnan; Papageorgiou, Dimitri; Chang, Yutong; Li, Minhan; Takáč, Martin

    2018-01-01

    Clustering and classification critically rely on distance metrics that provide meaningful comparisons between data points. We present mixed-integer optimization approaches to find optimal distance metrics that generalize the Mahalanobis metric extensively studied in the literature. Additionally, we generalize and improve upon leading methods by removing reliance on pre-designated "target neighbors," "triplets," and "similarity pairs." Another salient feature of our method is its ability to en...

  12. On Nakhleh's metric for reduced phylogenetic networks

    OpenAIRE

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente Feruglio, Gabriel Alejandro

    2009-01-01

    We prove that Nakhleh’s metric for reduced phylogenetic networks is also a metric on the classes of tree-child phylogenetic networks, semibinary tree-sibling time consistent phylogenetic networks, and multilabeled phylogenetic trees. We also prove that it separates distinguishable phylogenetic networks. In this way, it becomes the strongest dissimilarity measure for phylogenetic networks available so far. Furthermore, we propose a generalization of that metric that separates arbitrary phyl...

  13. Generalized tolerance sensitivity and DEA metric sensitivity

    OpenAIRE

    Neralić, Luka; E. Wendell, Richard

    2015-01-01

    This paper considers the relationship between Tolerance sensitivity analysis in optimization and metric sensitivity analysis in Data Envelopment Analysis (DEA). Herein, we extend the results on the generalized Tolerance framework proposed by Wendell and Chen and show how this framework includes DEA metric sensitivity as a special case. Further, we note how recent results in Tolerance sensitivity suggest some possible extensions of the results in DEA metric sensitivity.

  14. The definitive guide to IT service metrics

    CERN Document Server

    McWhirter, Kurt

    2012-01-01

    Used just as they are, the metrics in this book will bring many benefits to both the IT department and the business as a whole. Details of the attributes of each metric are given, enabling you to make the right choices for your business. You may prefer and are encouraged to design and create your own metrics to bring even more value to your business - this book will show you how to do this, too.

  15. Generalized tolerance sensitivity and DEA metric sensitivity

    Directory of Open Access Journals (Sweden)

    Luka Neralić

    2015-03-01

    Full Text Available This paper considers the relationship between Tolerance sensitivity analysis in optimization and metric sensitivity analysis in Data Envelopment Analysis (DEA. Herein, we extend the results on the generalized Tolerance framework proposed by Wendell and Chen and show how this framework includes DEA metric sensitivity as a special case. Further, we note how recent results in Tolerance sensitivity suggest some possible extensions of the results in DEA metric sensitivity.

  16. Common Metrics for Human-Robot Interaction

    Science.gov (United States)

    Steinfeld, Aaron; Lewis, Michael; Fong, Terrence; Scholtz, Jean; Schultz, Alan; Kaber, David; Goodrich, Michael

    2006-01-01

    This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and a case study. Preparation of a larger, more detailed toolkit is in progress.

  17. Chaotic inflation with metric and matter perturbations

    International Nuclear Information System (INIS)

    Feldman, H.A.; Brandenberger, R.H.

    1989-01-01

    A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)

  18. Gravitational lensing in metric theories of gravity

    International Nuclear Information System (INIS)

    Sereno, Mauro

    2003-01-01

    Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat's principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other

  19. About the possibility of a generalized metric

    International Nuclear Information System (INIS)

    Lukacs, B.; Ladik, J.

    1991-10-01

    The metric (the structure of the space-time) may be dependent on the properties of the object measuring it. The case of size dependence of the metric was examined. For this dependence the simplest possible form of the metric tensor has been constructed which fulfils the following requirements: there be two extremal characteristic scales; the metric be unique and the usual between them; the change be sudden in the neighbourhood of these scales; the size of the human body appear as a parameter (postulated on the basis of some philosophical arguments). Estimates have been made for the two extremal length scales according to existing observations. (author) 19 refs

  20. On the equivalence of inertial and gravitational mass of extended bodies in metric theories of gravity

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Chugreev, Yu.V.

    1985-01-01

    It is shown that in any metric theory of gravitation passessing conservation laws for energy-momentum of the substance and gravitational field taken together, the motion of centre of extended body mass occurs not according to the geodesic Riemann space-time. The centre of mass of the extended body during its motion about the orbit makes a vibrational movement in relation to supporting geodesic. Application of obtained general formulas to the Sun-Earth system and the use of experimental results on the Moon location with the regard of other experiments has shown with high accuracy of 10 -10 that the relation of gravitational passive Earth mass to its inert mass does not equal to 1 differing from it about 10 -8 . The Earth at its orbital motion makes a vibrational movement in relation to supporting geodesic with a period of 1 hour and amplitude not less than 10 -2 sm. the deviation of the Earth mass center motion from geodesic movement can be found in a corresponding experiment having a postnewton accuracy degree

  1. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    International Nuclear Information System (INIS)

    Manakov, S V; Santini, P M

    2008-01-01

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking

  2. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    Energy Technology Data Exchange (ETDEWEB)

    Manakov, S V [Landau Institute for Theoretical Physics, Moscow (Russian Federation); Santini, P M [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazz.le Aldo Moro 2, I-00185 Rome (Italy)

    2008-02-08

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking.

  3. The Riemann zeros as energy levels of a Dirac fermion in a potential built from the prime numbers in Rindler spacetime

    International Nuclear Information System (INIS)

    Sierra, Germán

    2014-01-01

    We construct a Hamiltonian H R whose discrete spectrum contains, in a certain limit, the Riemann zeros. H R is derived from the action of a massless Dirac fermion living in a domain of Rindler spacetime, in 1 + 1 dimensions, which has a boundary given by the world line of a uniformly accelerated observer. The action contains a sum of delta function potentials that can be viewed as partially reflecting moving mirrors. An appropriate choice of the accelerations of the mirrors, provide primitive periodic orbits that are associated with the prime numbers p, whose periods, as measured by the observer's clock, are logp. Acting on the chiral components of the fermion χ ∓ , H R becomes the Berry–Keating Hamiltonian ±(x p-hat + p-hat x)/2, where x is identified with the Rindler spatial coordinate and p-hat with the conjugate momentum. The delta function potentials give the matching conditions of the fermion wave functions on both sides of the mirrors. There is also a phase shift e iϑ for the reflection of the fermions at the boundary where the observer sits. The eigenvalue problem is solved by transfer matrix methods in the limit where the reflection amplitudes become infinitesimally small. We find that, for generic values of ϑ, the spectrum is a continuum where the Riemann zeros are missing, as in the adelic Connes model. However, for some values of ϑ, related to the phase of the zeta function, the Riemann zeros appear as discrete eigenvalues that are immersed in the continuum. We generalize this result to the zeros of Dirichlet L-functions, which are associated to primitive characters, that are encoded in the reflection coefficients of the mirrors. Finally, we show that the Hamiltonian associated to the Riemann zeros belongs to class AIII, or chiral GUE, of the Random Matrix Theory. (paper)

  4. Extending the Riemann-Solver-Free High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) to Solve Compressible Magnetohydrodynamics Equations

    Science.gov (United States)

    2016-06-08

    Ideal Magnetohydrodynamics,” J. Com- put. Phys., Vol. 153, No. 2, 1999, pp. 334–352. [14] Tang, H.-Z. and Xu, K., “A high-order gas -kinetic method for...notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does...Riemann-solver-free spacetime discontinuous Galerkin method for general conservation laws to solve compressible magnetohydrodynamics (MHD) equations. The

  5. Enhancing Authentication Models Characteristic Metrics via ...

    African Journals Online (AJOL)

    In this work, we derive the universal characteristic metrics set for authentication models based on security, usability and design issues. We then compute the probability of the occurrence of each characteristic metrics in some single factor and multifactor authentication models in order to determine the effectiveness of these ...

  6. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  7. Invariant metric for nonlinear symplectic maps

    Indian Academy of Sciences (India)

    In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we ...

  8. Finite Metric Spaces of Strictly negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distance...

  9. Fixed point theory in metric type spaces

    CERN Document Server

    Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco

    2015-01-01

    Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...

  10. Metric solution of a spinning mass

    International Nuclear Information System (INIS)

    Sato, H.

    1982-01-01

    Studies on a particular class of asymptotically flat and stationary metric solutions called the Kerr-Tomimatsu-Sato class are reviewed about its derivation and properties. For a further study, an almost complete list of the papers worked on the Tomimatsu-Sato metrics is given. (Auth.)

  11. On Information Metrics for Spatial Coding.

    Science.gov (United States)

    Souza, Bryan C; Pavão, Rodrigo; Belchior, Hindiael; Tort, Adriano B L

    2018-04-01

    The hippocampal formation is involved in navigation, and its neuronal activity exhibits a variety of spatial correlates (e.g., place cells, grid cells). The quantification of the information encoded by spikes has been standard procedure to identify which cells have spatial correlates. For place cells, most of the established metrics derive from Shannon's mutual information (Shannon, 1948), and convey information rate in bits/s or bits/spike (Skaggs et al., 1993, 1996). Despite their widespread use, the performance of these metrics in relation to the original mutual information metric has never been investigated. In this work, using simulated and real data, we find that the current information metrics correlate less with the accuracy of spatial decoding than the original mutual information metric. We also find that the top informative cells may differ among metrics, and show a surrogate-based normalization that yields comparable spatial information estimates. Since different information metrics may identify different neuronal populations, we discuss current and alternative definitions of spatially informative cells, which affect the metric choice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Validation of Metrics for Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2008-01-01

    Full Text Available This paper describe the new concepts of collaborative systems metrics validation. The paper define the quality characteristics of collaborative systems. There are proposed a metric to estimate the quality level of collaborative systems. There are performed measurements of collaborative systems quality using a specially designed software.

  13. Validation of Metrics for Collaborative Systems

    OpenAIRE

    Ion IVAN; Cristian CIUREA

    2008-01-01

    This paper describe the new concepts of collaborative systems metrics validation. The paper define the quality characteristics of collaborative systems. There are proposed a metric to estimate the quality level of collaborative systems. There are performed measurements of collaborative systems quality using a specially designed software.

  14. Software Power Metric Model: An Implementation | Akwukwuma ...

    African Journals Online (AJOL)

    ... and the execution time (TIME) in each case was recorded. We then obtain the application functions point count. Our result shows that the proposed metric is computable, consistent in its use of unit, and is programming language independent. Keywords: Software attributes, Software power, measurement, Software metric, ...

  15. Metrics for border management systems.

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, Ruth Ann

    2009-07-01

    There are as many unique and disparate manifestations of border systems as there are borders to protect. Border Security is a highly complex system analysis problem with global, regional, national, sector, and border element dimensions for land, water, and air domains. The complexity increases with the multiple, and sometimes conflicting, missions for regulating the flow of people and goods across borders, while securing them for national security. These systems include frontier border surveillance, immigration management and customs functions that must operate in a variety of weather, terrain, operational conditions, cultural constraints, and geopolitical contexts. As part of a Laboratory Directed Research and Development Project 08-684 (Year 1), the team developed a reference framework to decompose this complex system into international/regional, national, and border elements levels covering customs, immigration, and border policing functions. This generalized architecture is relevant to both domestic and international borders. As part of year two of this project (09-1204), the team determined relevant relative measures to better understand border management performance. This paper describes those relative metrics and how they can be used to improve border management systems.

  16. The metrics of science and technology

    CERN Document Server

    Geisler, Eliezer

    2000-01-01

    Dr. Geisler's far-reaching, unique book provides an encyclopedic compilation of the key metrics to measure and evaluate the impact of science and technology on academia, industry, and government. Focusing on such items as economic measures, patents, peer review, and other criteria, and supported by an extensive review of the literature, Dr. Geisler gives a thorough analysis of the strengths and weaknesses inherent in metric design, and in the use of the specific metrics he cites. His book has already received prepublication attention, and will prove especially valuable for academics in technology management, engineering, and science policy; industrial R&D executives and policymakers; government science and technology policymakers; and scientists and managers in government research and technology institutions. Geisler maintains that the application of metrics to evaluate science and technology at all levels illustrates the variety of tools we currently possess. Each metric has its own unique strengths and...

  17. Smart Grid Status and Metrics Report Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonopoulos, Chrissi A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clements, Samuel L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ruiz, Kathleen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Chris [APQC, Houston, TX (United States); Varney, Jeff [APQC, Houston, TX (United States)

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  18. Metrics for Polyphonic Sound Event Detection

    Directory of Open Access Journals (Sweden)

    Annamaria Mesaros

    2016-05-01

    Full Text Available This paper presents and discusses various metrics proposed for evaluation of polyphonic sound event detection systems used in realistic situations where there are typically multiple sound sources active simultaneously. The system output in this case contains overlapping events, marked as multiple sounds detected as being active at the same time. The polyphonic system output requires a suitable procedure for evaluation against a reference. Metrics from neighboring fields such as speech recognition and speaker diarization can be used, but they need to be partially redefined to deal with the overlapping events. We present a review of the most common metrics in the field and the way they are adapted and interpreted in the polyphonic case. We discuss segment-based and event-based definitions of each metric and explain the consequences of instance-based and class-based averaging using a case study. In parallel, we provide a toolbox containing implementations of presented metrics.

  19. Robustness Metrics: Consolidating the multiple approaches to quantify Robustness

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.

    2016-01-01

    robustness metrics; 3) Functional expectancy and dispersion robustness metrics; and 4) Probability of conformance robustness metrics. The goal was to give a comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand the different types of robustness metrics...

  20. Partial rectangular metric spaces and fixed point theorems.

    Science.gov (United States)

    Shukla, Satish

    2014-01-01

    The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.

  1. Measuring Information Security: Guidelines to Build Metrics

    Science.gov (United States)

    von Faber, Eberhard

    Measuring information security is a genuine interest of security managers. With metrics they can develop their security organization's visibility and standing within the enterprise or public authority as a whole. Organizations using information technology need to use security metrics. Despite the clear demands and advantages, security metrics are often poorly developed or ineffective parameters are collected and analysed. This paper describes best practices for the development of security metrics. First attention is drawn to motivation showing both requirements and benefits. The main body of this paper lists things which need to be observed (characteristic of metrics), things which can be measured (how measurements can be conducted) and steps for the development and implementation of metrics (procedures and planning). Analysis and communication is also key when using security metrics. Examples are also given in order to develop a better understanding. The author wants to resume, continue and develop the discussion about a topic which is or increasingly will be a critical factor of success for any security managers in larger organizations.

  2. Characterising risk - aggregated metrics: radiation and noise

    International Nuclear Information System (INIS)

    Passchier, W.

    1998-01-01

    The characterisation of risk is an important phase in the risk assessment - risk management process. From the multitude of risk attributes a few have to be selected to obtain a risk characteristic or profile that is useful for risk management decisions and implementation of protective measures. One way to reduce the number of attributes is aggregation. In the field of radiation protection such an aggregated metric is firmly established: effective dose. For protection against environmental noise the Health Council of the Netherlands recently proposed a set of aggregated metrics for noise annoyance and sleep disturbance. The presentation will discuss similarities and differences between these two metrics and practical limitations. The effective dose has proven its usefulness in designing radiation protection measures, which are related to the level of risk associated with the radiation practice in question, given that implicit judgements on radiation induced health effects are accepted. However, as the metric does not take into account the nature of radiation practice, it is less useful in policy discussions on the benefits and harm of radiation practices. With respect to the noise exposure metric, only one effect is targeted (annoyance), and the differences between sources are explicitly taken into account. This should make the metric useful in policy discussions with respect to physical planning and siting problems. The metric proposed has only significance on a population level, and can not be used as a predictor for individual risk. (author)

  3. Energy functionals for Calabi-Yau metrics

    International Nuclear Information System (INIS)

    Headrick, M; Nassar, A

    2013-01-01

    We identify a set of ''energy'' functionals on the space of metrics in a given Kähler class on a Calabi-Yau manifold, which are bounded below and minimized uniquely on the Ricci-flat metric in that class. Using these functionals, we recast the problem of numerically solving the Einstein equation as an optimization problem. We apply this strategy, using the ''algebraic'' metrics (metrics for which the Kähler potential is given in terms of a polynomial in the projective coordinates), to the Fermat quartic and to a one-parameter family of quintics that includes the Fermat and conifold quintics. We show that this method yields approximations to the Ricci-flat metric that are exponentially accurate in the degree of the polynomial (except at the conifold point, where the convergence is polynomial), and therefore orders of magnitude more accurate than the balanced metrics, previously studied as approximations to the Ricci-flat metric. The method is relatively fast and easy to implement. On the theoretical side, we also show that the functionals can be used to give a heuristic proof of Yau's theorem

  4. Metrics Are Needed for Collaborative Software Development

    Directory of Open Access Journals (Sweden)

    Mojgan Mohtashami

    2011-10-01

    Full Text Available There is a need for metrics for inter-organizational collaborative software development projects, encompassing management and technical concerns. In particular, metrics are needed that are aimed at the collaborative aspect itself, such as readiness for collaboration, the quality and/or the costs and benefits of collaboration in a specific ongoing project. We suggest questions and directions for such metrics, spanning the full lifespan of a collaborative project, from considering the suitability of collaboration through evaluating ongoing projects to final evaluation of the collaboration.

  5. Indefinite metric fields and the renormalization group

    International Nuclear Information System (INIS)

    Sherry, T.N.

    1976-11-01

    The renormalization group equations are derived for the Green functions of an indefinite metric field theory. In these equations one retains the mass dependence of the coefficient functions, since in the indefinite metric theories the masses cannot be neglected. The behavior of the effective coupling constant in the asymptotic and infrared limits is analyzed. The analysis is illustrated by means of a simple model incorporating indefinite metric fields. The model scales at first order, and at this order also the effective coupling constant has both ultra-violet and infra-red fixed points, the former being the bare coupling constant

  6. Metric learning for DNA microarray data analysis

    International Nuclear Information System (INIS)

    Takeuchi, Ichiro; Nakagawa, Masao; Seto, Masao

    2009-01-01

    In many microarray studies, gene set selection is an important preliminary step for subsequent main task such as tumor classification, cancer subtype identification, etc. In this paper, we investigate the possibility of using metric learning as an alternative to gene set selection. We develop a simple metric learning algorithm aiming to use it for microarray data analysis. Exploiting a property of the algorithm, we introduce a novel approach for extending the metric learning to be adaptive. We apply the algorithm to previously studied microarray data on malignant lymphoma subtype identification.

  7. Software metrics a rigorous and practical approach

    CERN Document Server

    Fenton, Norman

    2014-01-01

    A Framework for Managing, Measuring, and Predicting Attributes of Software Development Products and ProcessesReflecting the immense progress in the development and use of software metrics in the past decades, Software Metrics: A Rigorous and Practical Approach, Third Edition provides an up-to-date, accessible, and comprehensive introduction to software metrics. Like its popular predecessors, this third edition discusses important issues, explains essential concepts, and offers new approaches for tackling long-standing problems.New to the Third EditionThis edition contains new material relevant

  8. Metrics, Media and Advertisers: Discussing Relationship

    Directory of Open Access Journals (Sweden)

    Marco Aurelio de Souza Rodrigues

    2014-11-01

    Full Text Available This study investigates how Brazilian advertisers are adapting to new media and its attention metrics. In-depth interviews were conducted with advertisers in 2009 and 2011. In 2009, new media and its metrics were celebrated as innovations that would increase advertising campaigns overall efficiency. In 2011, this perception has changed: New media’s profusion of metrics, once seen as an advantage, started to compromise its ease of use and adoption. Among its findings, this study argues that there is an opportunity for media groups willing to shift from a product-focused strategy towards a customer-centric one, through the creation of new, simple and integrative metrics

  9. Networks and centroid metrics for understanding football

    African Journals Online (AJOL)

    Gonçalo Dias

    games. However, it seems that the centroid metric, supported only by the position of players in the field ...... the strategy adopted by the coach (Gama et al., 2014). ... centroid distance as measures of team's tactical performance in youth football.

  10. Clean Cities Annual Metrics Report 2009 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  11. Metric Guidelines Inservice and/or Preservice

    Science.gov (United States)

    Granito, Dolores

    1978-01-01

    Guidelines are given for designing teacher training for going metric. The guidelines were developed from existing guidelines, journal articles, a survey of colleges, and the detailed reactions of a panel. (MN)

  12. Science and Technology Metrics and Other Thoughts

    National Research Council Canada - National Science Library

    Harman, Wayne; Staton, Robin

    2006-01-01

    This report explores the subject of science and technology metrics and other topics to begin to provide Navy managers, as well as scientists and engineers, additional tools and concepts with which to...

  13. Using Activity Metrics for DEVS Simulation Profiling

    Directory of Open Access Journals (Sweden)

    Muzy A.

    2014-01-01

    Full Text Available Activity metrics can be used to profile DEVS models before and during the simulation. It is critical to get good activity metrics of models before and during their simulation. Having a means to compute a-priori activity of components (analytic activity may be worth when simulating a model (or parts of it for the first time. After, during the simulation, analytic activity can be corrected using dynamic one. In this paper, we introduce McCabe cyclomatic complexity metric (MCA to compute analytic activity. Both static and simulation activity metrics have been implemented through a plug-in of the DEVSimPy (DEVS Simulator in Python language environment and applied to DEVS models.

  14. Evaluating and Estimating the WCET Criticality Metric

    DEFF Research Database (Denmark)

    Jordan, Alexander

    2014-01-01

    a programmer (or compiler) from targeting optimizations the right way. A possible resort is to use a metric that targets WCET and which can be efficiently computed for all code parts of a program. Similar to dynamic profiling techniques, which execute code with input that is typically expected...... for the application, based on WCET analysis we can indicate how critical a code fragment is, in relation to the worst-case bound. Computing such a metric on top of static analysis, incurs a certain overhead though, which increases with the complexity of the underlying WCET analysis. We present our approach...... to estimate the Criticality metric, by relaxing the precision of WCET analysis. Through this, we can reduce analysis time by orders of magnitude, while only introducing minor error. To evaluate our estimation approach and share our garnered experience using the metric, we evaluate real-time programs, which...

  15. 16 CFR 1511.8 - Metric references.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Metric references. 1511.8 Section 1511.8 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... parentheses for convenience and information only. ...

  16. Flight Crew State Monitoring Metrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — eSky will develop specific crew state metrics based on the timeliness, tempo and accuracy of pilot inputs required by the H-mode Flight Control System (HFCS)....

  17. Supplier selection using different metric functions

    Directory of Open Access Journals (Sweden)

    Omosigho S.E.

    2015-01-01

    Full Text Available Supplier selection is an important component of supply chain management in today’s global competitive environment. Hence, the evaluation and selection of suppliers have received considerable attention in the literature. Many attributes of suppliers, other than cost, are considered in the evaluation and selection process. Therefore, the process of evaluation and selection of suppliers is a multi-criteria decision making process. The methodology adopted to solve the supplier selection problem is intuitionistic fuzzy TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution. Generally, TOPSIS is based on the concept of minimum distance from the positive ideal solution and maximum distance from the negative ideal solution. We examine the deficiencies of using only one metric function in TOPSIS and propose the use of spherical metric function in addition to the commonly used metric functions. For empirical supplier selection problems, more than one metric function should be used.

  18. Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations

    International Nuclear Information System (INIS)

    Li Jiequan; Li Qibing; Xu Kun

    2011-01-01

    The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an

  19. Classroom reconstruction of the Schwarzschild metric

    OpenAIRE

    Kassner, Klaus

    2015-01-01

    A promising way to introduce general relativity in the classroom is to study the physical implications of certain given metrics, such as the Schwarzschild one. This involves lower mathematical expenditure than an approach focusing on differential geometry in its full glory and permits to emphasize physical aspects before attacking the field equations. Even so, in terms of motivation, lacking justification of the metric employed may pose an obstacle. The paper discusses how to establish the we...

  20. Marketing communication metrics for social media

    OpenAIRE

    Töllinen, Aarne; Karjaluoto, Heikki

    2011-01-01

    The objective of this paper is to develop a conceptual framework for measuring the effectiveness of social media marketing communications. Specifically, we study whether the existing marketing communications performance metrics are still valid in the changing digitalised communications landscape, or whether it is time to rethink them, or even to devise entirely new metrics. Recent advances in information technology and marketing bring a need to re-examine measurement models. We combine two im...

  1. Some observations on a fuzzy metric space

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, V.

    2017-07-01

    Let $(X,d)$ be a metric space. In this paper we provide some observations about the fuzzy metric space in the sense of Kramosil and Michalek $(Y,N,/wedge)$, where $Y$ is the set of non-negative real numbers $[0,/infty[$ and $N(x,y,t)=1$ if $d(x,y)/leq t$ and $N(x,y,t)=0$ if $d(x,y)/geq t$. (Author)

  2. Area Regge calculus and discontinuous metrics

    International Nuclear Information System (INIS)

    Wainwright, Chris; Williams, Ruth M

    2004-01-01

    Taking the triangle areas as independent variables in the theory of Regge calculus can lead to ambiguities in the edge lengths, which can be interpreted as discontinuities in the metric. We construct solutions to area Regge calculus using a triangulated lattice and find that on a spacelike or timelike hypersurface no such discontinuity can arise. On a null hypersurface however, we can have such a situation and the resulting metric can be interpreted as a so-called refractive wave

  3. Relaxed metrics and indistinguishability operators: the relationship

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.

    2017-07-01

    In 1982, the notion of indistinguishability operator was introduced by E. Trillas in order to fuzzify the crisp notion of equivalence relation (/cite{Trillas}). In the study of such a class of operators, an outstanding property must be pointed out. Concretely, there exists a duality relationship between indistinguishability operators and metrics. The aforesaid relationship was deeply studied by several authors that introduced a few techniques to generate metrics from indistinguishability operators and vice-versa (see, for instance, /cite{BaetsMesiar,BaetsMesiar2}). In the last years a new generalization of the metric notion has been introduced in the literature with the purpose of developing mathematical tools for quantitative models in Computer Science and Artificial Intelligence (/cite{BKMatthews,Ma}). The aforementioned generalized metrics are known as relaxed metrics. The main target of this talk is to present a study of the duality relationship between indistinguishability operators and relaxed metrics in such a way that the aforementioned classical techniques to generate both concepts, one from the other, can be extended to the new framework. (Author)

  4. Baby universe metric equivalent to an interior black-hole metric

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, P.F.

    1991-01-01

    It is shown that the maximally extended metric corresponding to a large wormhole is the unique possible wormhole metric whose baby universe sector is conformally equivalent ot the maximal inextendible Kruskal metric corresponding to the interior region of a Schwarzschild black hole whose gravitational radius is half the wormhole neck radius. The physical implications of this result in the black hole evaporation process are discussed. (orig.)

  5. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  6. The Equation Δ u + ∇φ· ∇u = 8πc(1-heu) on a Riemann Surface

    International Nuclear Information System (INIS)

    Wang Meng

    2009-12-01

    Let M be a compact Riemann surface, h(x) a positive smooth function on M, and φ(x) a smooth function on M which satisfies that ∫ M e φ dV g = 1. In this paper, we consider the functional J(u) = 2 1 ∫ M |∇u| 2 e φ dV g +8πc ∫ M ue φ dV g -8πclog ∫ M he u+φ dV g . We give a sufficient condition under which J achieves its minimum for c ≤ inf xelement ofM Φ(x). (author)

  7. Evaluation metrics for biostatistical and epidemiological collaborations.

    Science.gov (United States)

    Rubio, Doris McGartland; Del Junco, Deborah J; Bhore, Rafia; Lindsell, Christopher J; Oster, Robert A; Wittkowski, Knut M; Welty, Leah J; Li, Yi-Ju; Demets, Dave

    2011-10-15

    Increasing demands for evidence-based medicine and for the translation of biomedical research into individual and public health benefit have been accompanied by the proliferation of special units that offer expertise in biostatistics, epidemiology, and research design (BERD) within academic health centers. Objective metrics that can be used to evaluate, track, and improve the performance of these BERD units are critical to their successful establishment and sustainable future. To develop a set of reliable but versatile metrics that can be adapted easily to different environments and evolving needs, we consulted with members of BERD units from the consortium of academic health centers funded by the Clinical and Translational Science Award Program of the National Institutes of Health. Through a systematic process of consensus building and document drafting, we formulated metrics that covered the three identified domains of BERD practices: the development and maintenance of collaborations with clinical and translational science investigators, the application of BERD-related methods to clinical and translational research, and the discovery of novel BERD-related methodologies. In this article, we describe the set of metrics and advocate their use for evaluating BERD practices. The routine application, comparison of findings across diverse BERD units, and ongoing refinement of the metrics will identify trends, facilitate meaningful changes, and ultimately enhance the contribution of BERD activities to biomedical research. Copyright © 2011 John Wiley & Sons, Ltd.

  8. A Metric on Phylogenetic Tree Shapes.

    Science.gov (United States)

    Colijn, C; Plazzotta, G

    2018-01-01

    The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees' branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  9. Future of the PCI Readmission Metric.

    Science.gov (United States)

    Wasfy, Jason H; Yeh, Robert W

    2016-03-01

    Between 2013 and 2014, the Centers for Medicare and Medicaid Services and the National Cardiovascular Data Registry publically reported risk-adjusted 30-day readmission rates after percutaneous coronary intervention (PCI) as a pilot project. A key strength of this public reporting effort included risk adjustment with clinical rather than administrative data. Furthermore, because readmission after PCI is common, expensive, and preventable, this metric has substantial potential to improve quality and value in American cardiology care. Despite this, concerns about the metric exist. For example, few PCI readmissions are caused by procedural complications, limiting the extent to which improved procedural technique can reduce readmissions. Also, similar to other readmission measures, PCI readmission is associated with socioeconomic status and race. Accordingly, the metric may unfairly penalize hospitals that care for underserved patients. Perhaps in the context of these limitations, Centers for Medicare and Medicaid Services has not yet included PCI readmission among metrics that determine Medicare financial penalties. Nevertheless, provider organizations may still wish to focus on this metric to improve value for cardiology patients. PCI readmission is associated with low-risk chest discomfort and patient anxiety. Therefore, patient education, improved triage mechanisms, and improved care coordination offer opportunities to minimize PCI readmissions. Because PCI readmission is common and costly, reducing PCI readmission offers provider organizations a compelling target to improve the quality of care, and also performance in contracts involve shared financial risk. © 2016 American Heart Association, Inc.

  10. g-Weak Contraction in Ordered Cone Rectangular Metric Spaces

    Directory of Open Access Journals (Sweden)

    S. K. Malhotra

    2013-01-01

    Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.

  11. Defining a Progress Metric for CERT RMM Improvement

    Science.gov (United States)

    2017-09-14

    REV-03.18.2016.0 Defining a Progress Metric for CERT-RMM Improvement Gregory Crabb Nader Mehravari David Tobar September 2017 TECHNICAL ...fendable resource allocation decisions. Technical metrics measure aspects of controls implemented through technology (systems, soft- ware, hardware...implementation metric would be the percentage of users who have received anti-phishing training . • Effectiveness/efficiency metrics measure whether

  12. NASA education briefs for the classroom. Metrics in space

    Science.gov (United States)

    The use of metric measurement in space is summarized for classroom use. Advantages of the metric system over the English measurement system are described. Some common metric units are defined, as are special units for astronomical study. International system unit prefixes and a conversion table of metric/English units are presented. Questions and activities for the classroom are recommended.

  13. SOCIAL METRICS APPLIED TO SMART TOURISM

    Directory of Open Access Journals (Sweden)

    O. Cervantes

    2016-09-01

    Full Text Available We present a strategy to make productive use of semantically-related social data, from a user-centered semantic network, in order to help users (tourists and citizens in general to discover cultural heritage, points of interest and available services in a smart city. This data can be used to personalize recommendations in a smart tourism application. Our approach is based on flow centrality metrics typically used in social network analysis: flow betweenness, flow closeness and eccentricity. These metrics are useful to discover relevant nodes within the network yielding nodes that can be interpreted as suggestions (venues or services to users. We describe the semantic network built on graph model, as well as social metrics algorithms used to produce recommendations. We also present challenges and results from a prototypical implementation applied to the case study of the City of Puebla, Mexico.

  14. Landscape pattern metrics and regional assessment

    Science.gov (United States)

    O'Neill, R. V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B.

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop and interpret quantitative measures of spatial pattern-the landscape indices. This article reviews what is known about the statistical properties of these pattern metrics and suggests some additional metrics based on island biogeography, percolation theory, hierarchy theory, and economic geography. Assessment applications of this approach have required interpreting the pattern metrics in terms of specific environmental endpoints, such as wildlife and water quality, and research into how to represent synergystic effects of many overlapping sources of stress.

  15. A bi-metric theory of gravitation

    International Nuclear Information System (INIS)

    Rosen, N.

    1975-01-01

    The bi-metric theory of gravitation proposed previously is simplified in that the auxiliary conditions are discarded, the two metric tensors being tied together only by means of the boundary conditions. Some of the properties of the field of a particle are investigated; there is no black hole, and it appears that no gravitational collapse can take place. Although the proposed theory and general relativity are at present observationally indistinguishable, some differences are pointed out which may some day be susceptible of observation. An alternative bi-metric theory is considered which gives for the precession of the perihelion 5/6 of the value given by general relativity; it seems less satisfactory than the present theory from the aesthetic point of view. (author)

  16. Steiner trees for fixed orientation metrics

    DEFF Research Database (Denmark)

    Brazil, Marcus; Zachariasen, Martin

    2009-01-01

    We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to s = 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide...... a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation...... metric generalises to the fixed orientation metric. Finally, we give an O(s n) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves....

  17. Metrical and dynamical aspects in complex analysis

    CERN Document Server

    2017-01-01

    The central theme of this reference book is the metric geometry of complex analysis in several variables. Bridging a gap in the current literature, the text focuses on the fine behavior of the Kobayashi metric of complex manifolds and its relationships to dynamical systems, hyperbolicity in the sense of Gromov and operator theory, all very active areas of research. The modern points of view expressed in these notes, collected here for the first time, will be of interest to academics working in the fields of several complex variables and metric geometry. The different topics are treated coherently and include expository presentations of the relevant tools, techniques and objects, which will be particularly useful for graduate and PhD students specializing in the area.

  18. Social Metrics Applied to Smart Tourism

    Science.gov (United States)

    Cervantes, O.; Gutiérrez, E.; Gutiérrez, F.; Sánchez, J. A.

    2016-09-01

    We present a strategy to make productive use of semantically-related social data, from a user-centered semantic network, in order to help users (tourists and citizens in general) to discover cultural heritage, points of interest and available services in a smart city. This data can be used to personalize recommendations in a smart tourism application. Our approach is based on flow centrality metrics typically used in social network analysis: flow betweenness, flow closeness and eccentricity. These metrics are useful to discover relevant nodes within the network yielding nodes that can be interpreted as suggestions (venues or services) to users. We describe the semantic network built on graph model, as well as social metrics algorithms used to produce recommendations. We also present challenges and results from a prototypical implementation applied to the case study of the City of Puebla, Mexico.

  19. Validation of Metrics as Error Predictors

    Science.gov (United States)

    Mendling, Jan

    In this chapter, we test the validity of metrics that were defined in the previous chapter for predicting errors in EPC business process models. In Section 5.1, we provide an overview of how the analysis data is generated. Section 5.2 describes the sample of EPCs from practice that we use for the analysis. Here we discuss a disaggregation by the EPC model group and by error as well as a correlation analysis between metrics and error. Based on this sample, we calculate a logistic regression model for predicting error probability with the metrics as input variables in Section 5.3. In Section 5.4, we then test the regression function for an independent sample of EPC models from textbooks as a cross-validation. Section 5.5 summarizes the findings.

  20. Metric Learning for Hyperspectral Image Segmentation

    Science.gov (United States)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  1. Kerr metric in the deSitter background

    International Nuclear Information System (INIS)

    Vaidya, P.C.

    1984-01-01

    In addition to the Kerr metric with cosmological constant Λ several other metrics are presented giving a Kerr-like solution of Einstein's equations in the background of deSitter universe. A new metric of what may be termed as rotating deSitter space-time devoid of matter but containing null fluid with twisting null rays, has been presented. This metric reduces to the standard deSitter metric when the twist in the rays vanishes. Kerr metric in this background is the immediate generalization of Schwarzschild's exterior metric with cosmological constant. (author)

  2. Active Metric Learning from Relative Comparisons

    OpenAIRE

    Xiong, Sicheng; Rosales, Rómer; Pei, Yuanli; Fern, Xiaoli Z.

    2014-01-01

    This work focuses on active learning of distance metrics from relative comparison information. A relative comparison specifies, for a data point triplet $(x_i,x_j,x_k)$, that instance $x_i$ is more similar to $x_j$ than to $x_k$. Such constraints, when available, have been shown to be useful toward defining appropriate distance metrics. In real-world applications, acquiring constraints often require considerable human effort. This motivates us to study how to select and query the most useful ...

  3. Heuristic extension of the Schwarzschild metric

    International Nuclear Information System (INIS)

    Espinosa, J.M.

    1982-01-01

    The Schwarzschild solution of Einstein's equations of gravitation has several singularities. It is known that the singularity at r = 2Gm/c 2 is only apparent, a result of the coordinates in which the solution was found. Paradoxical results occuring near the singularity show the system of coordinates is incomplete. We introduce a simple, two-dimensional metric with an apparent singularity that makes it incomplete. By a straightforward, heuristic procedure we extend and complete this simple metric. We then use the same procedure to give a heuristic derivation of the Kruskal system of coordinates, which is known to extend the Schwarzschild manifold past its apparent singularity and produce a complete manifold

  4. Metric inhomogeneous Diophantine approximation in positive characteristic

    DEFF Research Database (Denmark)

    Kristensen, Simon

    2011-01-01

    We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here `almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine-Groshev Theorem and zero...

  5. Metric inhomogeneous Diophantine approximation in positive characteristic

    DEFF Research Database (Denmark)

    Kristensen, S.

    We obtain asymptotic formulae for the number of solutions to systems of inhomogeneous linear Diophantine inequalities over the field of formal Laurent series with coefficients from a finite fields, which are valid for almost every such system. Here 'almost every' is with respect to Haar measure...... of the coefficients of the homogeneous part when the number of variables is at least two (singly metric case), and with respect to the Haar measure of all coefficients for any number of variables (doubly metric case). As consequences, we derive zero-one laws in the spirit of the Khintchine--Groshev Theorem and zero...

  6. Jacobi-Maupertuis metric and Kepler equation

    Science.gov (United States)

    Chanda, Sumanto; Gibbons, Gary William; Guha, Partha

    This paper studies the application of the Jacobi-Eisenhart lift, Jacobi metric and Maupertuis transformation to the Kepler system. We start by reviewing fundamentals and the Jacobi metric. Then we study various ways to apply the lift to Kepler-related systems: first as conformal description and Bohlin transformation of Hooke’s oscillator, second in contact geometry and third in Houri’s transformation [T. Houri, Liouville integrability of Hamiltonian systems and spacetime symmetry (2016), www.geocities.jp/football_physician/publication.html], coupled with Milnor’s construction [J. Milnor, On the geometry of the Kepler problem, Am. Math. Mon. 90 (1983) 353-365] with eccentric anomaly.

  7. Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution

    Science.gov (United States)

    Rosatti, Giorgio; Zugliani, Daniel

    2015-03-01

    In a two-phase free-surface flow, the transition from a mobile-bed condition to a fixed-bed one (and vice versa) occurs at a sharp interface across which the relevant system of partial differential equations changes abruptly. This leads to the possibility of conceiving a new type of Riemann Problem (RP), which we have called Composite Riemann Problem (CRP), where not only the initial constant values of the variables but also the system of equations change from left to right of a discontinuity. In this paper, we present a strategy for solving a CRP by reducing it to a standard RP of a single, composite system of equations. This can be obtained by combining the two original systems by means of a suitable weighting function, namely the erodibility variable, and the introduction of an appropriate differential equation for this quantity. In this way, the CRP problem can be analyzed theoretically with standard methods, and the features of the solutions can be clearly identified. In particular, a stationary contact wave is able to correctly describe the sharp transition between mobile- and fixed-bed conditions. A finite volume scheme based on the Multiple Averages Generalized Roe approach (Rosatti and Begnudelli (2013) [22]) was used to numerically solve the fixed-mobile CRP. Several test cases demonstrate the effectiveness, exact well balanceness and high accuracy of the scheme when applied to problems that fall within the physical range of applicability of the relevant mathematical model.

  8. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    Science.gov (United States)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  9. Partner symmetries of the complex Monge-Ampere equation yield hyper-Kaehler metrics without continuous symmetries

    International Nuclear Information System (INIS)

    Malykh, A A; Nutku, Y; Sheftel, M B

    2003-01-01

    We extend the Mason-Newman Lax pair for the elliptic complex Monge-Ampere equation so that this equation itself emerges as an algebraic consequence. We regard the function in the extended Lax equations as a complex potential. Their differential compatibility condition coincides with the determining equation for the symmetries of the complex Monge-Ampere equation. We shall identify the real and imaginary parts of the potential, which we call partner symmetries, with the translational and dilatational symmetry characteristics, respectively. Then we choose the dilatational symmetry characteristic as the new unknown replacing the Kaehler potential. This directly leads to a Legendre transformation. Studying the integrability conditions of the Legendre-transformed system we arrive at a set of linear equations satisfied by a single real potential. This enables us to construct non-invariant solutions of the Legendre transform of the complex Monge-Ampere equation. Using these solutions we obtained explicit Legendre-transformed hyper-Kaehler metrics with a anti-self-dual Riemann curvature 2-form that admit no Killing vectors. They satisfy the Einstein field equations with Euclidean signature. We give the detailed derivation of the solution announced earlier and present a new solution with an added parameter. We compare our method of partner symmetries for finding non-invariant solutions to that of Dunajski and Mason who use 'hidden' symmetries for the same purpose

  10. Quantitative properties of the Schwarzschild metric

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, Filip

    2018-01-01

    Roč. 2018, č. 1 (2018), s. 1-10 Institutional support: RVO:67985840 Keywords : exterior and interior Schwarzschild metric * proper radius * coordinate radius Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://astro.shu-bg.net/pasb/index_files/Papers/2018/SCHWARZ8.pdf

  11. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  12. lakemorpho: Calculating lake morphometry metrics in R.

    Science.gov (United States)

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  13. Contraction theorems in fuzzy metric space

    International Nuclear Information System (INIS)

    Farnoosh, R.; Aghajani, A.; Azhdari, P.

    2009-01-01

    In this paper, the results on fuzzy contractive mapping proposed by Dorel Mihet will be proved for B-contraction and C-contraction in the case of George and Veeramani fuzzy metric space. The existence of fixed point with weaker conditions will be proved; that is, instead of the convergence of subsequence, p-convergence of subsequence is used.

  14. Inferring feature relevances from metric learning

    DEFF Research Database (Denmark)

    Schulz, Alexander; Mokbel, Bassam; Biehl, Michael

    2015-01-01

    Powerful metric learning algorithms have been proposed in the last years which do not only greatly enhance the accuracy of distance-based classifiers and nearest neighbor database retrieval, but which also enable the interpretability of these operations by assigning explicit relevance weights...

  15. DIGITAL MARKETING: SUCCESS METRICS, FUTURE TRENDS

    OpenAIRE

    Preeti Kaushik

    2017-01-01

    Abstract – Business Marketing is one of the prospective which has been tremendously affected by digital world in last few years. Digital marketing refers to doing advertising through digital channels. This paper provides detailed study of metrics to measure success of digital marketing platform and glimpse of future of technologies by 2020.

  16. Assessing Software Quality Through Visualised Cohesion Metrics

    Directory of Open Access Journals (Sweden)

    Timothy Shih

    2001-05-01

    Full Text Available Cohesion is one of the most important factors for software quality as well as maintainability, reliability and reusability. Module cohesion is defined as a quality attribute that seeks for measuring the singleness of the purpose of a module. The module of poor quality can be a serious obstacle to the system quality. In order to design a good software quality, software managers and engineers need to introduce cohesion metrics to measure and produce desirable software. A highly cohesion software is thought to be a desirable constructing. In this paper, we propose a function-oriented cohesion metrics based on the analysis of live variables, live span and the visualization of processing element dependency graph. We give six typical cohesion examples to be measured as our experiments and justification. Therefore, a well-defined, well-normalized, well-visualized and well-experimented cohesion metrics is proposed to indicate and thus enhance software cohesion strength. Furthermore, this cohesion metrics can be easily incorporated with software CASE tool to help software engineers to improve software quality.

  17. Metric propositional neighborhood logics on natural numbers

    DEFF Research Database (Denmark)

    Bresolin, Davide; Della Monica, Dario; Goranko, Valentin

    2013-01-01

    Metric Propositional Neighborhood Logic (MPNL) over natural numbers. MPNL features two modalities referring, respectively, to an interval that is “met by” the current one and to an interval that “meets” the current one, plus an infinite set of length constraints, regarded as atomic propositions...

  18. Calabi–Yau metrics and string compactification

    Directory of Open Access Journals (Sweden)

    Michael R. Douglas

    2015-09-01

    Full Text Available Yau proved an existence theorem for Ricci-flat Kähler metrics in the 1970s, but we still have no closed form expressions for them. Nevertheless there are several ways to get approximate expressions, both numerical and analytical. We survey some of this work and explain how it can be used to obtain physical predictions from superstring theory.

  19. Goedel-type metrics in various dimensions

    International Nuclear Information System (INIS)

    Guerses, Metin; Karasu, Atalay; Sarioglu, Oezguer

    2005-01-01

    Goedel-type metrics are introduced and used in producing charged dust solutions in various dimensions. The key ingredient is a (D - 1)-dimensional Riemannian geometry which is then employed in constructing solutions to the Einstein-Maxwell field equations with a dust distribution in D dimensions. The only essential field equation in the procedure turns out to be the source-free Maxwell's equation in the relevant background. Similarly the geodesics of this type of metric are described by the Lorentz force equation for a charged particle in the lower dimensional geometry. It is explicitly shown with several examples that Goedel-type metrics can be used in obtaining exact solutions to various supergravity theories and in constructing spacetimes that contain both closed timelike and closed null curves and that contain neither of these. Among the solutions that can be established using non-flat backgrounds, such as the Tangherlini metrics in (D - 1)-dimensions, there exists a class which can be interpreted as describing black-hole-type objects in a Goedel-like universe

  20. Strong Statistical Convergence in Probabilistic Metric Spaces

    OpenAIRE

    Şençimen, Celaleddin; Pehlivan, Serpil

    2008-01-01

    In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts.

  1. Language Games: University Responses to Ranking Metrics

    Science.gov (United States)

    Heffernan, Troy A.; Heffernan, Amanda

    2018-01-01

    League tables of universities that measure performance in various ways are now commonplace, with numerous bodies providing their own rankings of how institutions throughout the world are seen to be performing on a range of metrics. This paper uses Lyotard's notion of language games to theorise that universities are regaining some power over being…

  2. A new universal colour image fidelity metric

    NARCIS (Netherlands)

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated colour space. The resulting colour image fidelity metric quantifies the distortion of a processed colour image relative to its original version. We evaluated the new colour image

  3. Standardised metrics for global surgical surveillance.

    Science.gov (United States)

    Weiser, Thomas G; Makary, Martin A; Haynes, Alex B; Dziekan, Gerald; Berry, William R; Gawande, Atul A

    2009-09-26

    Public health surveillance relies on standardised metrics to evaluate disease burden and health system performance. Such metrics have not been developed for surgical services despite increasing volume, substantial cost, and high rates of death and disability associated with surgery. The Safe Surgery Saves Lives initiative of WHO's Patient Safety Programme has developed standardised public health metrics for surgical care that are applicable worldwide. We assembled an international panel of experts to develop and define metrics for measuring the magnitude and effect of surgical care in a population, while taking into account economic feasibility and practicability. This panel recommended six measures for assessing surgical services at a national level: number of operating rooms, number of operations, number of accredited surgeons, number of accredited anaesthesia professionals, day-of-surgery death ratio, and postoperative in-hospital death ratio. We assessed the feasibility of gathering such statistics at eight diverse hospitals in eight countries and incorporated them into the WHO Guidelines for Safe Surgery, in which methods for data collection, analysis, and reporting are outlined.

  4. A Lagrangian-dependent metric space

    International Nuclear Information System (INIS)

    El-Tahir, A.

    1989-08-01

    A generalized Lagrangian-dependent metric of the static isotropic spacetime is derived. Its behaviour should be governed by imposing physical constraints allowing to avert the pathological features of gravity at the strong field domain. This would restrict the choice of the Lagrangian form. (author). 10 refs

  5. Clean Cities 2011 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2012-12-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  6. Clean Cities 2010 Annual Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.

    2012-10-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  7. Genetic basis of a cognitive complexity metric

    NARCIS (Netherlands)

    Hansell, Narelle K; Halford, Graeme S; Andrews, Glenda; Shum, David H K; Harris, Sarah E; Davies, Gail; Franic, Sanja; Christoforou, Andrea; Zietsch, Brendan; Painter, Jodie; Medland, Sarah E; Ehli, Erik A; Davies, Gareth E; Steen, Vidar M; Lundervold, Astri J; Reinvang, Ivar; Montgomery, Grant W; Espeseth, Thomas; Hulshoff Pol, Hilleke E; Starr, John M; Martin, Nicholas G; Le Hellard, Stephanie; Boomsma, Dorret I; Deary, Ian J; Wright, Margaret J

    2015-01-01

    Relational complexity (RC) is a metric reflecting capacity limitation in relational processing. It plays a crucial role in higher cognitive processes and is an endophenotype for several disorders. However, the genetic underpinnings of complex relational processing have not been investigated. Using

  8. Genetic Basis of a Cognitive Complexity Metric

    NARCIS (Netherlands)

    Hansell, N.K.; Halford, G.S.; Andrews, G.; Shum, D.H.K.; Harris, S.E.; Davies, G.; Franic, S.; Christoforou, A.; Zietsch, B.; Painter, J.; Medland, S.E.; Ehli, E.A.; Davies, G.E.; Steen, V.M.; Lundervold, A.J.; Reinvang, I.; Montgomery, G.W.; Espeseth, T.; Hulshoff Pol, H.E.; Starr, J.M.; Martin, N.G.; Le Hellard, S.; Boomsma, D.I.; Deary, I.J.; Wright, M.J.

    2015-01-01

    Relational complexity (RC) is a metric reflecting capacity limitation in relational processing. It plays a crucial role in higher cognitive processes and is an endophenotype for several disorders. However, the genetic underpinnings of complex relational processing have not been investigated. Using

  9. Business model metrics : An open repository

    NARCIS (Netherlands)

    Heikkila, M.; Bouwman, W.A.G.A.; Heikkila, J.; Solaimani, S.; Janssen, W.

    2015-01-01

    Development of successful business models has become a necessity in turbulent business environments, but compared to research on business modeling tools, attention to the role of metrics in designing business models in literature is limited. Building on existing approaches to business models and

  10. Software quality metrics aggregation in industry

    NARCIS (Netherlands)

    Mordal, K.; Anquetil, N.; Laval, J.; Serebrenik, A.; Vasilescu, B.N.; Ducasse, S.

    2013-01-01

    With the growing need for quality assessment of entire software systems in the industry, new issues are emerging. First, because most software quality metrics are defined at the level of individual software components, there is a need for aggregation methods to summarize the results at the system

  11. Invariance group of the Finster metric function

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1985-01-01

    An invariance group of the Finsler metric function is introduced and studied that directly generalized the respective concept (a group of Euclidean rolations) of the Rieman geometry. A sequential description of the isotopic invariance of physical fields on the base of the Finsler geometry is possible in terms of this group

  12. Sigma Routing Metric for RPL Protocol

    Directory of Open Access Journals (Sweden)

    Paul Sanmartin

    2018-04-01

    Full Text Available This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX. However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption.

  13. Observable traces of non-metricity: New constraints on metric-affine gravity

    Science.gov (United States)

    Delhom-Latorre, Adrià; Olmo, Gonzalo J.; Ronco, Michele

    2018-05-01

    Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-metricity may allow to explore new physics associated with defects in a hypothetical space-time microstructure. Here we show that non-metricity produces observable effects in quantum fields in the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained represents an improvement of several orders of magnitude to previous experimental constraints.

  14. Conformal and related changes of metric on the product of two almost contact metric manifolds.

    OpenAIRE

    Blair, D. E.

    1990-01-01

    This paper studies conformal and related changes of the product metric on the product of two almost contact metric manifolds. It is shown that if one factor is Sasakian, the other is not, but that locally the second factor is of the type studied by Kenmotsu. The results are more general and given in terms of trans-Sasakian, α-Sasakian and β-Kenmotsu structures.

  15. A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods

    Science.gov (United States)

    Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun

    2018-03-01

    Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a

  16. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  17. A perceptual metric for photo retouching.

    Science.gov (United States)

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  18. Metric-Aware Secure Service Orchestration

    Directory of Open Access Journals (Sweden)

    Gabriele Costa

    2012-12-01

    Full Text Available Secure orchestration is an important concern in the internet of service. Next to providing the required functionality the composite services must also provide a reasonable level of security in order to protect sensitive data. Thus, the orchestrator has a need to check whether the complex service is able to satisfy certain properties. Some properties are expressed with metrics for precise definition of requirements. Thus, the problem is to analyse the values of metrics for a complex business process. In this paper we extend our previous work on analysis of secure orchestration with quantifiable properties. We show how to define, verify and enforce quantitative security requirements in one framework with other security properties. The proposed approach should help to select the most suitable service architecture and guarantee fulfilment of the declared security requirements.

  19. Machine Learning for ATLAS DDM Network Metrics

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vamosi, Ralf

    2016-01-01

    The increasing volume of physics data is posing a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from our ongoing automation efforts. First, we describe our framework for distributed data management and network metrics, automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for network-aware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.

  20. Beyond Lovelock gravity: Higher derivative metric theories

    Science.gov (United States)

    Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.

    2018-02-01

    We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.

  1. High-Dimensional Metrics in R

    OpenAIRE

    Chernozhukov, Victor; Hansen, Chris; Spindler, Martin

    2016-01-01

    The package High-dimensional Metrics (\\Rpackage{hdm}) is an evolving collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e.g., treatment or poli...

  2. Interiors of Vaidya's radiating metric: Gravitational collapse

    International Nuclear Information System (INIS)

    Fayos, F.; Jaen, X.; Llanta, E.; Senovilla, J.M.M.

    1992-01-01

    Using the Darmois junction conditions, we give the necessary and sufficient conditions for the matching of a general spherically symmetric metric to a Vaidya radiating solution. We present also these conditions in terms of the physical quantities of the corresponding energy-momentum tensors. The physical interpretation of the results and their possible applications are studied, and we also perform a detailed analysis of previous work on the subject by other authors

  3. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  4. A Metrics Approach for Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Cristian CIUREA

    2009-01-01

    Full Text Available This article presents different types of collaborative systems, their structure and classification. This paper defines the concept of virtual campus as a collaborative system. It builds architecture for virtual campus oriented on collaborative training processes. It analyses the quality characteristics of collaborative systems and propose techniques for metrics construction and validation in order to evaluate them. The article analyzes different ways to increase the efficiency and the performance level in collaborative banking systems.

  5. Preserved Network Metrics across Translated Texts

    Science.gov (United States)

    Cabatbat, Josephine Jill T.; Monsanto, Jica P.; Tapang, Giovanni A.

    2014-09-01

    Co-occurrence language networks based on Bible translations and the Universal Declaration of Human Rights (UDHR) translations in different languages were constructed and compared with random text networks. Among the considered network metrics, the network size, N, the normalized betweenness centrality (BC), and the average k-nearest neighbors, knn, were found to be the most preserved across translations. Moreover, similar frequency distributions of co-occurring network motifs were observed for translated texts networks.

  6. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre

    2013-01-01

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  7. Smart Grid Status and Metrics Report

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kirkham, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-01

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  8. Metrics in Keplerian orbits quotient spaces

    Science.gov (United States)

    Milanov, Danila V.

    2018-03-01

    Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.

  9. The Planck Vacuum and the Schwarzschild Metrics

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-07-01

    Full Text Available The Planck vacuum (PV is assumed to be the source of the visible universe. So under conditions of sufficient stress, there must exist a pathway through which energy from the PV can travel into this universe. Conversely, the passage of energy from the visible universe to the PV must also exist under the same stressful conditions. The following examines two versions of the Schwarzschild metric equation for compatability with this open-pathway idea.

  10. Metrics and Its Function in Poetry

    Institute of Scientific and Technical Information of China (English)

    XIAO Zhong-qiong; CHEN Min-jie

    2013-01-01

    Poetry is a special combination of musical and linguistic qualities-of sounds both regarded as pure sound and as mean-ingful speech. Part of the pleasure of poetry lies in its relationship with music. Metrics, including rhythm and meter, is an impor-tant method for poetry to express poetic sentiment. Through the introduction of poetic language and typical examples, the writer of this paper tries to discuss the relationship between sound and meaning.

  11. Image characterization metrics for muon tomography

    Science.gov (United States)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  12. A Fundamental Metric for Metal Recycling Applied to Coated Magnesium

    NARCIS (Netherlands)

    Meskers, C.E.M.; Reuter, M.A.; Boin, U.; Kvithyld, A.

    2008-01-01

    A fundamental metric for the assessment of the recyclability and, hence, the sustainability of coated magnesium scrap is presented; this metric combines kinetics and thermodynamics. The recycling process, consisting of thermal decoating and remelting, was studied by thermogravimetry and differential

  13. Ideal Based Cyber Security Technical Metrics for Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    W. F. Boyer; M. A. McQueen

    2007-10-01

    Much of the world's critical infrastructure is at risk from attack through electronic networks connected to control systems. Security metrics are important because they provide the basis for management decisions that affect the protection of the infrastructure. A cyber security technical metric is the security relevant output from an explicit mathematical model that makes use of objective measurements of a technical object. A specific set of technical security metrics are proposed for use by the operators of control systems. Our proposed metrics are based on seven security ideals associated with seven corresponding abstract dimensions of security. We have defined at least one metric for each of the seven ideals. Each metric is a measure of how nearly the associated ideal has been achieved. These seven ideals provide a useful structure for further metrics development. A case study shows how the proposed metrics can be applied to an operational control system.

  14. 43 CFR 12.915 - Metric system of measurement.

    Science.gov (United States)

    2010-10-01

    ... procurements, grants, and other business-related activities. Metric implementation may take longer where the... recipient, such as when foreign competitors are producing competing products in non-metric units. (End of...

  15. The Jacobi metric for timelike geodesics in static spacetimes

    Science.gov (United States)

    Gibbons, G. W.

    2016-01-01

    It is shown that the free motion of massive particles moving in static spacetimes is given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobi's metric in classical dynamics. In the massless limit Jacobi's metric coincides with the energy independent Fermat or optical metric. For stationary metrics, it is known that the motion of massless particles is given by the geodesics of an energy independent Finslerian metric of Randers type. The motion of massive particles is governed by neither a Riemannian nor a Finslerian metric. The properies of the Jacobi metric for massive particles moving outside the horizon of a Schwarschild black hole are described. By constrast with the massless case, the Gaussian curvature of the equatorial sections is not always negative.

  16. Factor structure of the Tomimatsu-Sato metrics

    International Nuclear Information System (INIS)

    Perjes, Z.

    1989-02-01

    Based on an earlier result stating that δ = 3 Tomimatsu-Sato (TS) metrics can be factored over the field of integers, an analogous representation for higher TS metrics was sought. It is shown that the factoring property of TS metrics follows from the structure of special Hankel determinants. A set of linear algebraic equations determining the factors was defined, and the factors of the first five TS metrics were tabulated, together with their primitive factors. (R.P.) 4 refs.; 2 tabs

  17. What can article-level metrics do for you?

    Science.gov (United States)

    Fenner, Martin

    2013-10-01

    Article-level metrics (ALMs) provide a wide range of metrics about the uptake of an individual journal article by the scientific community after publication. They include citations, usage statistics, discussions in online comments and social media, social bookmarking, and recommendations. In this essay, we describe why article-level metrics are an important extension of traditional citation-based journal metrics and provide a number of example from ALM data collected for PLOS Biology.

  18. A convergence theory for probabilistic metric spaces | Jäger ...

    African Journals Online (AJOL)

    We develop a theory of probabilistic convergence spaces based on Tardiff's neighbourhood systems for probabilistic metric spaces. We show that the resulting category is a topological universe and we characterize a subcategory that is isomorphic to the category of probabilistic metric spaces. Keywords: Probabilistic metric ...

  19. Understanding Acceptance of Software Metrics--A Developer Perspective

    Science.gov (United States)

    Umarji, Medha

    2009-01-01

    Software metrics are measures of software products and processes. Metrics are widely used by software organizations to help manage projects, improve product quality and increase efficiency of the software development process. However, metrics programs tend to have a high failure rate in organizations, and developer pushback is one of the sources…

  20. Modified intuitionistic fuzzy metric spaces and some fixed point theorems

    International Nuclear Information System (INIS)

    Saadati, R.; Sedghi, S.; Shobe, N.

    2008-01-01

    Since the intuitionistic fuzzy metric space has extra conditions (see [Gregori V, Romaguera S, Veereamani P. A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2006;28:902-5]). In this paper, we consider modified intuitionistic fuzzy metric spaces and prove some fixed point theorems in these spaces. All the results presented in this paper are new

  1. Tide or Tsunami? The Impact of Metrics on Scholarly Research

    Science.gov (United States)

    Bonnell, Andrew G.

    2016-01-01

    Australian universities are increasingly resorting to the use of journal metrics such as impact factors and ranking lists in appraisal and promotion processes, and are starting to set quantitative "performance expectations" which make use of such journal-based metrics. The widespread use and misuse of research metrics is leading to…

  2. Robustness of climate metrics under climate policy ambiguity

    International Nuclear Information System (INIS)

    Ekholm, Tommi; Lindroos, Tomi J.; Savolainen, Ilkka

    2013-01-01

    Highlights: • We assess the economic impacts of using different climate metrics. • The setting is cost-efficient scenarios for three interpretations of the 2C target. • With each target setting, the optimal metric is different. • Therefore policy ambiguity prevents the selection of an optimal metric. • Robust metric values that perform well with multiple policy targets however exist. -- Abstract: A wide array of alternatives has been proposed as the common metrics with which to compare the climate impacts of different emission types. Different physical and economic metrics and their parameterizations give diverse weights between e.g. CH 4 and CO 2 , and fixing the metric from one perspective makes it sub-optimal from another. As the aims of global climate policy involve some degree of ambiguity, it is not possible to determine a metric that would be optimal and consistent with all policy aims. This paper evaluates the cost implications of using predetermined metrics in cost-efficient mitigation scenarios. Three formulations of the 2 °C target, including both deterministic and stochastic approaches, shared a wide range of metric values for CH 4 with which the mitigation costs are only slightly above the cost-optimal levels. Therefore, although ambiguity in current policy might prevent us from selecting an optimal metric, it can be possible to select robust metric values that perform well with multiple policy targets

  3. Graev metrics on free products and HNN extensions

    DEFF Research Database (Denmark)

    Slutsky, Konstantin

    2014-01-01

    We give a construction of two-sided invariant metrics on free products (possibly with amalgamation) of groups with two-sided invariant metrics and, under certain conditions, on HNN extensions of such groups. Our approach is similar to the Graev's construction of metrics on free groups over pointed...

  4. The universal connection and metrics on moduli spaces

    International Nuclear Information System (INIS)

    Massamba, Fortune; Thompson, George

    2003-11-01

    We introduce a class of metrics on gauge theoretic moduli spaces. These metrics are made out of the universal matrix that appears in the universal connection construction of M. S. Narasimhan and S. Ramanan. As an example we construct metrics on the c 2 = 1 SU(2) moduli space of instantons on R 4 for various universal matrices. (author)

  5. ST-intuitionistic fuzzy metric space with properties

    Science.gov (United States)

    Arora, Sahil; Kumar, Tanuj

    2017-07-01

    In this paper, we define ST-intuitionistic fuzzy metric space and the notion of convergence and completeness properties of cauchy sequences is studied. Further, we prove some properties of ST-intuitionistic fuzzy metric space. Finally, we introduce the concept of symmetric ST Intuitionistic Fuzzy metric space.

  6. Term Based Comparison Metrics for Controlled and Uncontrolled Indexing Languages

    Science.gov (United States)

    Good, B. M.; Tennis, J. T.

    2009-01-01

    Introduction: We define a collection of metrics for describing and comparing sets of terms in controlled and uncontrolled indexing languages and then show how these metrics can be used to characterize a set of languages spanning folksonomies, ontologies and thesauri. Method: Metrics for term set characterization and comparison were identified and…

  7. Software architecture analysis tool : software architecture metrics collection

    NARCIS (Netherlands)

    Muskens, J.; Chaudron, M.R.V.; Westgeest, R.

    2002-01-01

    The Software Engineering discipline lacks the ability to evaluate software architectures. Here we describe a tool for software architecture analysis that is based on metrics. Metrics can be used to detect possible problems and bottlenecks in software architectures. Even though metrics do not give a

  8. Otherwise Engaged : Social Media from Vanity Metrics to Critical Analytics

    NARCIS (Netherlands)

    Rogers, R.

    2018-01-01

    Vanity metrics is a term that captures the measurement and display of how well one is doing in the “success theater” of social media. The notion of vanity metrics implies a critique of metrics concerning both the object of measurement as well as their capacity to measure unobtrusively or only to

  9. Meter Detection in Symbolic Music Using Inner Metric Analysis

    NARCIS (Netherlands)

    de Haas, W.B.; Volk, A.

    2016-01-01

    In this paper we present PRIMA: a new model tailored to symbolic music that detects the meter and the first downbeat position of a piece. Given onset data, the metrical structure of a piece is interpreted using the Inner Metric Analysis (IMA) model. IMA identifies the strong and weak metrical

  10. Regional Sustainability: The San Luis Basin Metrics Project

    Science.gov (United States)

    There are a number of established, scientifically supported metrics of sustainability. Many of the metrics are data intensive and require extensive effort to collect data and compute. Moreover, individual metrics may not capture all aspects of a system that are relevant to sust...

  11. Extremal limits of the C metric: Nariai, Bertotti-Robinson, and anti-Nariai C metrics

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    In two previous papers we have analyzed the C metric in a background with a cosmological constant Λ, namely, the de-Sitter (dS) C metric (Λ>0), and the anti-de Sitter (AdS) C metric (Λ 0, Λ=0, and Λ 2 xS-tilde 2 ) to each point in the deformed two-sphere S-tilde 2 corresponds a dS 2 spacetime, except for one point which corresponds to a dS 2 spacetime with an infinite straight strut or string. There are other important new features that appear. One expects that the solutions found in this paper are unstable and decay into a slightly nonextreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation that accompanies the decay of the dS and AdS spaces

  12. Massless and massive quanta resulting from a mediumlike metric tensor

    International Nuclear Information System (INIS)

    Soln, J.

    1985-01-01

    A simple model of the ''primordial'' scalar field theory is presented in which the metric tensor is a generalization of the metric tensor from electrodynamics in a medium. The radiation signal corresponding to the scalar field propagates with a velocity that is generally less than c. This signal can be associated simultaneously with imaginary and real effective (momentum-dependent) masses. The requirement that the imaginary effective mass vanishes, which we take to be the prerequisite for the vacuumlike signal propagation, leads to the ''spontaneous'' splitting of the metric tensor into two distinct metric tensors: one metric tensor gives rise to masslesslike radiation and the other to a massive particle. (author)

  13. Principle of space existence and De Sitter metric

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1990-01-01

    The selection principle for the solutions of the Einstein equations suggested in a series of papers implies the existence of space (g ik ≠ 0) only in the presence of matter (T ik ≠0). This selection principle (principle of space existence, in the Markov terminology) implies, in the general case, the absence of the cosmological solution with the De Sitter metric. On the other hand, the De Sitter metric is necessary for describing both inflation and deflation periods of the Universe. It is shown that the De Sitter metric is also allowed by the selection principle under discussion if the metric experiences the evolution into the Friedmann metric

  14. Pragmatic security metrics applying metametrics to information security

    CERN Document Server

    Brotby, W Krag

    2013-01-01

    Other books on information security metrics discuss number theory and statistics in academic terms. Light on mathematics and heavy on utility, PRAGMATIC Security Metrics: Applying Metametrics to Information Security breaks the mold. This is the ultimate how-to-do-it guide for security metrics.Packed with time-saving tips, the book offers easy-to-follow guidance for those struggling with security metrics. Step by step, it clearly explains how to specify, develop, use, and maintain an information security measurement system (a comprehensive suite of metrics) to

  15. Classification in medical images using adaptive metric k-NN

    Science.gov (United States)

    Chen, C.; Chernoff, K.; Karemore, G.; Lo, P.; Nielsen, M.; Lauze, F.

    2010-03-01

    The performance of the k-nearest neighborhoods (k-NN) classifier is highly dependent on the distance metric used to identify the k nearest neighbors of the query points. The standard Euclidean distance is commonly used in practice. This paper investigates the performance of k-NN classifier with respect to different adaptive metrics in the context of medical imaging. We propose using adaptive metrics such that the structure of the data is better described, introducing some unsupervised learning knowledge in k-NN. We investigated four different metrics are estimated: a theoretical metric based on the assumption that images are drawn from Brownian Image Model (BIM), the normalized metric based on variance of the data, the empirical metric is based on the empirical covariance matrix of the unlabeled data, and an optimized metric obtained by minimizing the classification error. The spectral structure of the empirical covariance also leads to Principal Component Analysis (PCA) performed on it which results the subspace metrics. The metrics are evaluated on two data sets: lateral X-rays of the lumbar aortic/spine region, where we use k-NN for performing abdominal aorta calcification detection; and mammograms, where we use k-NN for breast cancer risk assessment. The results show that appropriate choice of metric can improve classification.

  16. THE ROLE OF ARTICLE LEVEL METRICS IN SCIENTIFIC PUBLISHING

    Directory of Open Access Journals (Sweden)

    Vladimir TRAJKOVSKI

    2016-04-01

    Full Text Available Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Article-level metrics (ALMs provide a wide range of metrics about the uptake of an individual journal article by the scientific community after publication. They include citations, statistics of usage, discussions in online comments and social media, social bookmarking, and recommendations. In this editorial, the role of article level metrics in publishing scientific papers has been described. Article-Level Metrics (ALMs are rapidly emerging as important tools to quantify how individual articles are being discussed, shared, and used. Data sources depend on the tool, but they include classic metrics indicators depending on citations, academic social networks (Mendeley, CiteULike, Delicious and social media (Facebook, Twitter, blogs, and Youtube. The most popular tools used to apply this new metrics are: Public Library of Science - Article-Level Metrics, Altmetric, Impactstory and Plum Analytics. Journal Impact Factor (JIF does not consider impact or influence beyond citations count as this count reflected only through Thomson Reuters’ Web of Science® database. JIF provides indicator related to the journal, but not related to a published paper. Thus, altmetrics now becomes an alternative metrics for performance assessment of individual scientists and their contributed scholarly publications. Macedonian scholarly publishers have to work on implementing of article level metrics in their e-journals. It is the way to increase their visibility and impact in the world of science.

  17. Outsourced Similarity Search on Metric Data Assets

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Assent, Ira; Jensen, Christian S.

    2012-01-01

    . Outsourcing offers the data owner scalability and a low initial investment. The need for privacy may be due to the data being sensitive (e.g., in medicine), valuable (e.g., in astronomy), or otherwise confidential. Given this setting, the paper presents techniques that transform the data prior to supplying......This paper considers a cloud computing setting in which similarity querying of metric data is outsourced to a service provider. The data is to be revealed only to trusted users, not to the service provider or anyone else. Users query the server for the most similar data objects to a query example...

  18. New Metrics from a Fractional Gravitational Field

    International Nuclear Information System (INIS)

    El-Nabulsi, Rami Ahmad

    2017-01-01

    Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)

  19. Energy Metrics for State Government Buildings

    Science.gov (United States)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  20. Multi-Robot Assembly Strategies and Metrics

    Science.gov (United States)

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  1. Metric preheating and limitations of linearized gravity

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Tamburini, Fabrizio; Kaiser, David I.; Maartens, Roy

    1999-01-01

    During the preheating era after inflation, resonant amplification of quantum field fluctuations takes place. Recently it has become clear that this must be accompanied by resonant amplification of scalar metric fluctuations, since the two are united by Einstein's equations. Furthermore, this 'metric preheating' enhances particle production, and leads to gravitational rescattering effects even at linear order. In multi-field models with strong preheating (q>>1), metric perturbations are driven non-linear, with the strongest amplification typically on super-Hubble scales (k→0). This amplification is causal, being due to the super-Hubble coherence of the inflaton condensate, and is accompanied by resonant growth of entropy perturbations. The amplification invalidates the use of the linearized Einstein field equations, irrespective of the amount of fine-tuning of the initial conditions. This has serious implications on all scales - from large-angle cosmic microwave background (CMB) anisotropies to primordial black holes. We investigate the (q,k) parameter space in a two-field model, and introduce the time to non-linearity, t nl , as the timescale for the breakdown of the linearized Einstein equations. t nl is a robust indicator of resonance behavior, showing the fine structure in q and k that one expects from a quasi-Floquet system, and we argue that t nl is a suitable generalization of the static Floquet index in an expanding universe. Backreaction effects are expected to shut down the linear resonances, but cannot remove the existing amplification, which threatens the viability of strong preheating when confronted with the CMB. Mode-mode coupling and turbulence tend to re-establish scale invariance, but this process is limited by causality and for small k the primordial scale invariance of the spectrum may be destroyed. We discuss ways to escape the above conclusions, including secondary phases of inflation and preheating solely to fermions. The exclusion principle

  2. Alternative kinetic energy metrics for Lagrangian systems

    Science.gov (United States)

    Sarlet, W.; Prince, G.

    2010-11-01

    We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.

  3. Differential geometry bundles, connections, metrics and curvature

    CERN Document Server

    Taubes, Clifford Henry

    2011-01-01

    Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the

  4. Multi-Robot Assembly Strategies and Metrics.

    Science.gov (United States)

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  5. Indefinite metric and regularization of electrodynamics

    International Nuclear Information System (INIS)

    Gaudin, M.

    1984-06-01

    The invariant regularization of Pauli and Villars in quantum electrodynamics can be considered as deriving from a local and causal lagrangian theory for spin 1/2 bosons, by introducing an indefinite metric and a condition on the allowed states similar to the Lorentz condition. The consequences are the asymptotic freedom of the photon's propagator. We present a calcultion of the effective charge to the fourth order in the coupling as a function of the auxiliary masses, the theory avoiding all mass divergencies to this order [fr

  6. Metrics for comparing plasma mass filters

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  7. Metrics for comparing plasma mass filters

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  8. Decision Analysis for Metric Selection on a Clinical Quality Scorecard.

    Science.gov (United States)

    Guth, Rebecca M; Storey, Patricia E; Vitale, Michael; Markan-Aurora, Sumita; Gordon, Randolph; Prevost, Traci Q; Dunagan, Wm Claiborne; Woeltje, Keith F

    2016-09-01

    Clinical quality scorecards are used by health care institutions to monitor clinical performance and drive quality improvement. Because of the rapid proliferation of quality metrics in health care, BJC HealthCare found it increasingly difficult to select the most impactful scorecard metrics while still monitoring metrics for regulatory purposes. A 7-step measure selection process was implemented incorporating Kepner-Tregoe Decision Analysis, which is a systematic process that considers key criteria that must be satisfied in order to make the best decision. The decision analysis process evaluates what metrics will most appropriately fulfill these criteria, as well as identifies potential risks associated with a particular metric in order to identify threats to its implementation. Using this process, a list of 750 potential metrics was narrowed to 25 that were selected for scorecard inclusion. This decision analysis process created a more transparent, reproducible approach for selecting quality metrics for clinical quality scorecards. © The Author(s) 2015.

  9. Balanced metrics for vector bundles and polarised manifolds

    DEFF Research Database (Denmark)

    Garcia Fernandez, Mario; Ross, Julius

    2012-01-01

    leads to a Hermitian-Einstein metric on E and a constant scalar curvature Kähler metric in c_1(L). For special values of α, limits of balanced metrics are solutions of a system of coupled equations relating a Hermitian-Einstein metric on E and a Kähler metric in c1(L). For this, we compute the top two......We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter α, where X is smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of α, we prove that the limit of a convergent sequence of balanced metrics...

  10. Construction of Einstein-Sasaki metrics in D≥7

    International Nuclear Information System (INIS)

    Lue, H.; Pope, C. N.; Vazquez-Poritz, J. F.

    2007-01-01

    We construct explicit Einstein-Kaehler metrics in all even dimensions D=2n+4≥6, in terms of a 2n-dimensional Einstein-Kaehler base metric. These are cohomogeneity 2 metrics which have the new feature of including a NUT-type parameter, or gravomagnetic charge, in addition to..' in addition to mass and rotation parameters. Using a canonical construction, these metrics all yield Einstein-Sasaki metrics in dimensions D=2n+5≥7. As is commonly the case in this type of construction, for suitable choices of the free parameters the Einstein-Sasaki metrics can extend smoothly onto complete and nonsingular manifolds, even though the underlying Einstein-Kaehler metric has conical singularities. We discuss some explicit examples in the case of seven-dimensional Einstein-Sasaki spaces. These new spaces can provide supersymmetric backgrounds in M theory, which play a role in the AdS 4 /CFT 3 correspondence

  11. National Metrical Types in Nineteenth Century Art Song

    Directory of Open Access Journals (Sweden)

    Leigh VanHandel

    2010-01-01

    Full Text Available William Rothstein’s article “National metrical types in music of the eighteenth and early nineteenth centuries” (2008 proposes a distinction between the metrical habits of 18th and early 19th century German music and those of Italian and French music of that period. Based on theoretical treatises and compositional practice, he outlines these national metrical types and discusses the characteristics of each type. This paper presents the results of a study designed to determine whether, and to what degree, Rothstein’s characterizations of national metrical types are present in 19th century French and German art song. Studying metrical habits in this genre may provide a lens into changing metrical conceptions of 19th century theorists and composers, as well as to the metrical habits and compositional style of individual 19th century French and German art song composers.

  12. Metrication: An economic wake-up call for US industry

    Science.gov (United States)

    Carver, G. P.

    1993-03-01

    As the international standard of measurement, the metric system is one key to success in the global marketplace. International standards have become an important factor in international economic competition. Non-metric products are becoming increasingly unacceptable in world markets that favor metric products. Procurement is the primary federal tool for encouraging and helping U.S. industry to convert voluntarily to the metric system. Besides the perceived unwillingness of the customer, certain regulatory language, and certain legal definitions in some states, there are no major impediments to conversion of the remaining non-metric industries to metric usage. Instead, there are good reasons for changing, including an opportunity to rethink many industry standards and to take advantage of size standardization. Also, when the remaining industries adopt the metric system, they will come into conformance with federal agencies engaged in similar activities.

  13. Fanpage metrics analysis. "Study on content engagement"

    Science.gov (United States)

    Rahman, Zoha; Suberamanian, Kumaran; Zanuddin, Hasmah Binti; Moghavvemi, Sedigheh; Nasir, Mohd Hairul Nizam Bin Md

    2016-08-01

    Social Media is now determined as an excellent communicative tool to connect directly with consumers. One of the most significant ways to connect with the consumers through these Social Networking Sites (SNS) is to create a facebook fanpage with brand contents and to place different posts periodically on these fanpages. In measuring social networking sites' effectiveness, corporate houses are now analyzing metrics in terms of calculating engagement rate, number of comments/share and likings in fanpages. So now, it is very important for the marketers to know the effectiveness of different contents or posts of fanpages in order to increase the fan responsiveness and engagement rate in the fan pages. In the study the authors have analyzed total 1834 brand posts from 17 international brands of Electronics companies. Data of 9 months (From December 2014 to August 2015) have been collected for analyses, which were available online in the Brand' fan pages. An econometrics analysis is conducted using Eviews 9, to determine the impact of different contents on fanpage engagement. The study picked the four most frequently posted content to determine their impact on PTA (people Talking About) metrics and Fanpage engagement activities.

  14. Network Community Detection on Metric Space

    Directory of Open Access Journals (Sweden)

    Suman Saha

    2015-08-01

    Full Text Available Community detection in a complex network is an important problem of much interest in recent years. In general, a community detection algorithm chooses an objective function and captures the communities of the network by optimizing the objective function, and then, one uses various heuristics to solve the optimization problem to extract the interesting communities for the user. In this article, we demonstrate the procedure to transform a graph into points of a metric space and develop the methods of community detection with the help of a metric defined for a pair of points. We have also studied and analyzed the community structure of the network therein. The results obtained with our approach are very competitive with most of the well-known algorithms in the literature, and this is justified over the large collection of datasets. On the other hand, it can be observed that time taken by our algorithm is quite less compared to other methods and justifies the theoretical findings.

  15. Value of the Company and Marketing Metrics

    Directory of Open Access Journals (Sweden)

    André Luiz Ramos

    2013-12-01

    Full Text Available Thinking marketing strategies from a resource-based perspective (Barney, 1991, proposing assets as either tangible, organizational and human, and from Constantin and Luch’s vision (1994, where strategic resources can be tanbigle or intangible, internal or external to the firm, raises a research approach on Marketing and Finance. According to Srivastava, Shervani and Fahey (1998 there are 3 market assets types, which generate firm value. Firm value can be measured by discounted cashflow, compromising marketing activities with value generation forcasts (Anderson, 1982; Day, Fahey, 1988; Doyle, 2000; Rust et al., 2004a. The economic value of marketing strategies and marketing metrics are calling strategy researchers’ and marketing managers’ attention, making clear the need for building a bridge able to articulate marketing and finance form a strategic perspective. This article proposes an analytical framework based on different scientific approaches envolving risk and return promoted by marketing strategies and points out advances concerning both methodological approaches and marketing strategies and its impact on firm metrics and value, usgin Srinivasan and Hanssens (2009 as a start point.

  16. Defining a standard metric for electricity savings

    International Nuclear Information System (INIS)

    Koomey, Jonathan; Akbari, Hashem; Blumstein, Carl; Brown, Marilyn; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B; Greenberg, Steve

    2010-01-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70% capacity factor with 7% T and D losses. Displacing such a plant for one year would save 3 billion kWh/year at the meter and reduce emissions by 3 million metric tons of CO 2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question-Dr Arthur H Rosenfeld.

  17. Defining a standard metric for electricity savings

    Energy Technology Data Exchange (ETDEWEB)

    Koomey, Jonathan [Lawrence Berkeley National Laboratory and Stanford University, PO Box 20313, Oakland, CA 94620-0313 (United States); Akbari, Hashem; Blumstein, Carl; Brown, Marilyn; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B; Greenberg, Steve, E-mail: JGKoomey@stanford.ed

    2010-01-15

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70% capacity factor with 7% T and D losses. Displacing such a plant for one year would save 3 billion kWh/year at the meter and reduce emissions by 3 million metric tons of CO{sub 2} per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question-Dr Arthur H Rosenfeld.

  18. Covariant electrodynamics in linear media: Optical metric

    Science.gov (United States)

    Thompson, Robert T.

    2018-03-01

    While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.

  19. Axisymmetric plasma equilibria in a Kerr metric

    Science.gov (United States)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  20. Defining a Standard Metric for Electricity Savings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.