WorldWideScience

Sample records for ridge fracture zones

  1. Greenland Fracture Zone-East Greenland Ridge(s) revisited: Indications of a C22-change in plate motion?

    DEFF Research Database (Denmark)

    Døssing, Arne; Funck, T.

    2012-01-01

    a reinterpretation of the Greenland Fracture Zone -East Greenland Ridge based on new and existing geophysical data. Evidence is shown for two overstepping ridge segments (Segments A and B) of which Segment A corresponds to the already known East Greenland Ridge while Segment B was not detected previously......Changes in the lithospheric stress field, causing axial rift migration and reorientation of the transform, are generally proposed as an explanation for anomalously old crust and/or major aseismic valleys in oceanic ridge-transform-ridge settings. Similarly, transform migration of the Greenland...... Fracture Zone and separation of the 200-km-long, fracture-zone-parallel continental East Greenland Ridge from the Eurasia plate is thought to be related to a major change in relative plate motions between Greenland and Eurasia during the earliest Oligocene (Chron 13 time). This study presents...

  2. Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone System

    Science.gov (United States)

    Watts, A. B.; Weissel, J. K.; Duncan, R. A.; Larson, R. L.

    1988-04-01

    We have combined shipboard and Seasat altimeter derived data in an intergrated geological and geophysical study of the Louisville Ridge; a 3500-km-long seamount chain extending from the Tonga trench to the Eltanin Fracture Zone. A break in the smooth trend of the ridge at latitude 37.5°S has been recognized in both bathymetric and altimetric data. The 40Ar-39Ar dating of rocks dredged either side of the break suggest that it is analogous to the bend in the Hawaiian-Emperor seamount chain. Although the general trend of the ridge can be fit by small circles about Pacific absolute motion poles determined from other seamount chains, the new bathymetric and age data allow us to refine Pacific absolute motion poles. The continuity in smooth trend of the ridge and the Eltanin Fracture Zone suggests some relationship between them. However, a major offset developed on this transform between 60 and 80 Ma, prior to the oldest dated rocks from the ridge. Although magmatism was more or less continuous on the ridge during 28-60 Ma, it probably occurred on crust with little or no offset. Thus magmatism appears to have been little influenced by the developing fracture zone. By 28 Ma, the distance between the magmatic source and the fracture zone had decreased sufficiently for a portion of the ridge to have been emplaced on crust with an offset. After about 12 Ma, however, volcanic activity on the Louisville Ridge apparently waned, despite a possible influence on the magmatism of the fracture zone.

  3. Tectonics of ridge-transform intersections at the Kane fracture zone

    Science.gov (United States)

    Karson, J. A.; Dick, H. J. B.

    1983-03-01

    The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with the older-looking, slightly faulted volcanic terrain that floors the non-transform fracture zone valleys. These observations document the asymmetric nature of seafloor spreading near ridge-transform intersections. An important implication is that the crust and lithosphere across different portions of the fracture zone will have different geological characteristics. Across the active transform zone two lithosphere plate edges formed at ridge-transform corners are faulted against one another. In the non

  4. The Northern Central Indian Ridge: Geology and tectonics of fracture zones-dominated spreading ridge segments

    Digital Repository Service at National Institute of Oceanography (India)

    Drolia, R.K.; Iyer, S.D.; Chakraborty, B.; Kodagali, V.N.; Ray, Dwijesh; Misra, S.; Andrade, R.; Sarma, K.V.L.N.S.; Rajasekhar, R.P.; Mukhopadhyay, R.

    Multi-beam and single-beam bathymetric, gravity and magnetic data, across seven ridge segments (length varying between 37 and 84 km), offset by six transform discontinuities (ranging in dislocation length between 48 and 344 km) of the Northern...

  5. Stratified flows and internal waves in the Vema Fracture Zone of the Mid Atlantic Ridge

    Science.gov (United States)

    Makarenko, Nikolay; Morozov, Eugene; Tarakanov, Roman; Demidova, Tatiana; Frey, Dmitri; Grigorenko, Klim

    2017-04-01

    In this paper, we study stratified flows and internal waves in the Vema fracture zone of the Mid Atlantic Ridge. This fracture provides intense transportation of cold abyssal waters from the West Atlantic to the equatorial region of the East Atlantic [1]. The results of measurements [2,3] carried out in the cruises of RV Akademik Sergey Vavilov in 2014-2016 are presented. The structure of the near-bottom flow is studied experimentally on the basis of CTD- and LADCP profiling. Theoretical analysis involves mathematical formulation of stratified fluid flow which uses CTD-data obtained from field observation. Spectral properties and kinematic characteristics of internal waves are calculated and discussed. This work was supported by RFBR (grants No 15-01-03942, 16-35-50158). References [1] Morozov E., Demidov A., Tarakanov R. and Zenk W. Abyssal Channels in the Atlantic Ocean: Water Structure and Flows, Springer, Dordrecht, 2010. [2] Morozov E.G., Tarakanov R.Yu., and Makarenko N.I. Flows of Antarctic Bottom Water through fractures in the southern part of the North Mid Atlantic Ridge, Oceanology, 2015, 55, 796-800. [3] Grigorenko K.S., Makarenko N.I., Morozov E.G., Tarakanov R.Yu., and Frey D.I. Stratified flows and internal waves in the Central West Atlantic, J. Physics: Conf. Series, 2016, 722, 012011.

  6. On the nature of the calcareous substrate of a ferromanganese crust from the Vityaz Fracture Zone, Central Indian Ridge: Inferences on palaeoceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Banerjee, R.; Mergulhao, L.

    A 15-cm-thick carbonate substrate encrusted with ferromanganese oxides from the Vityaz Fracture Zone, Central Indian Ridge was analysed to reconstruct the palaeoceanography of the region. Based on the calcareous nannoplankton assemblage, an early...

  7. A ~400 ka supra-Milankovitch cycle in the Na, Mg, Pb, Ni, and Co records of a ferromanganese crust from the Vityaz fracture zone, central Indian ridge.

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Gupta, S.M.; Miura, H.; Borole, D.V.

    A approx. 400 ka (kilo years) supra-Milankovitch cycle, recorded in the sodium, magnesium, lead, nickel and cobalt contents of a 32mm thick ferromanganese crust from Vityaz fracture zone, central Indian ridge is reported here. To arrive...

  8. St Paul fracture zone intratransform ridge basalts (Equatorial Atlantic): Insight within the mantle source diversity

    Science.gov (United States)

    Hemond, C.; Brunelli, D.; Maia, M.; Prigent, S.; Sichel, S. E.

    2017-12-01

    The St Paul Transform System offsets by 630 km the Equatorial Mid Atlantic Ridge at 1° N. It consists of four Major faults separating three intra transform ridge axes. Volcanic glassy samples were collected inside two intratransform ridge (ITR) segments during the COLMEIA cruise (Maia et al ; 2016) and samples from the third ITR available from a previous cruise ST PAUL (Hékinian et al. 2000). Major, trace elements and Hf, Pb, Sr and Nd isotopes were determined on selected hand picked glass chips. Few glassy samples recovered and analysed from abyssal hill samples open a time window of about 4.5 million years in the chemistry of the northern ITR. Results show that all samples are basaltic in composition but trace elements display contrasting images for the three ITR. The northern ITR samples are all light REE and highly incompatible enriched and are E-MORB; the central ITR samples display rather flat REE pattern with a level on enrichment of the HREE higher than the other two ITR and are T-MORB. Southern ITR samples are more heterogeneous N-MORB to T-MORB with a lower level of HREE. Isotopes reveal that the ITRs sample distinct mantle sources. In various isotope plans, the northern ITR samples plot together with published results from the MAR directly north of the St Paul F.Z. Therefore they exhibit some flavor of the Sierra Leone hotspot interacting with the MAR at 1.7°N. Central and southern ITR samples have very distinct composition from the northern ITR but resemble each other. However, for identical 206Pb/204Pb ratios, central ITR has slightly but significantly higher 207Pb/204Pb and 208Pb/204Pb, also higher 143Nd/144Nd for a given 87Sr/86Sr. Southern ITR is in chemical continuity of the MAR southward. So that central ITR samples display a rather specific composition. Off axis samples corresponding to the activity of the northern ITR up to 4.6 m.y. show that the hotspot contribution was even bigger on the spreading axis than today and might be fading with

  9. Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone

    Science.gov (United States)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Poort, J.; Monnin, C.; Battani, A.; Fontaine, F.; Goutorbe, B.; Rolandone, F.; Poitou, C.; Blanc-Valleron, M.-M.; Piedade, A.; Hipólito, A.

    2018-01-01

    Hydrothermal circulation affects heat and mass transfers in the oceanic lithosphere, not only at the ridge axis but also on their flanks, where the magnitude of this process has been related to sediment blanket and seamounts density. This was documented in several areas of the Pacific Ocean by heat flow measurements and pore water analysis. However, as the morphology of Atlantic and Indian ridge flanks is generally rougher than in the Pacific, these regions of slow and ultra-slow accretion may be affected by hydrothermal processes of different regimes. We carried out a survey of two regions on the eastern and western flanks of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones. Two hundred and eight new heat flow measurements were obtained along six seismic profiles, on 5 to 14 Ma old seafloor. Thirty sediment cores (from which porewaters have been extracted) have been collected with a Kullenberg corer equipped with thermistors thus allowing simultaneous heat flow measurement. Most heat flow values are lower than those predicted by purely conductive cooling models, with some local variations and exceptions: heat flow values on the eastern flank of the study area are more variable than on the western flank, where they tend to increase westward as the sedimentary cover in the basins becomes thicker and more continuous. Heat flow is also higher, on average, on the northern sides of both the western and eastern field regions and includes values close to conductive predictions near the Oceanographer Fracture Zone. All the sediment porewaters have a chemical composition similar to that of bottom seawater (no anomaly linked to fluid circulation has been detected). Heat flow values and pore fluid compositions are consistent with fluid circulation in volcanic rocks below the sediment. The short distances between seamounts and short fluid pathways explain that fluids flowing in the basaltic aquifer below the sediment have remained cool and unaltered

  10. Segmentation along the Queen Charlotte Fault: The long-lived influence of plate-motion rotation and Explorer Ridge fracture zones

    Science.gov (United States)

    Miller, N. C.; Walton, M. A. L.; Brothers, D. S.; Haeussler, P. J.; Ten Brink, U. S.; Conrad, J. E.; Kluesner, J.; Andrews, B. D.

    2017-12-01

    The Queen Charlotte Fault (QCF) generally tracks the flow line for Pacific/North America (Pa/NA) relative motion since 20 Ma, indicating that the plate boundary localized along an optimally oriented small circle geometry. Rotation in Pa/NA motion at 10—12 Ma caused the QCF south of 53 N to be oblique to plate motion by 10—20. This oblique convergence appears to be accommodated in part by underthrusting of the Pacific Plate beneath Haida Gwaii and in part by slip on faults west of the QCF. On the west side of the QCF, a series of ridges and small basins oriented subparallel to either the QCF or relative plate motion form a 40-km-wide terrace. New high-resolution seismic reflection data image the seaward edge of the ridges as a vertical contact between horizontal or sometimes downwarped deep-sea sediments and west-vergent anticlinal structures within the ridges, supporting earlier interpretations that these ridges have accommodated some component of oblique motion. We argue that the ridges originated as step overs from fracture zones on Explorer Ridge, analogous to the current fault geometry at the southernmost end of the QCF. There, the Revere-Dellwood Fracture Zone (RDFZ) overlaps the QCF for 120 km and connects to the QCF via a more-optimally oriented extensional right step. 3.9—6.4 Mw strike-slip earthquakes along the RDFZ and a lack of contractional seafloor morphologies along the QCF south of the RDFZ-QCF right step suggest that the step over and reactivation along the RDFZ accommodates a majority of plate motion in this region. Kinematic reconstruction of ridges from 54—56 N indicates that they also originated in a similar location, potentially as right steps from either the RDFZ or Sovanco Fracture Zone. Similarly, the RDFZ flow path is coincident with a truncation of seafloor magnetic anomalies and the outer edge of the ridge-bounded terrace, which both parallel the QCF since at least the onset of Explorer Ridge spreading at 8 Ma. The RDFZ-QCF right

  11. Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic Ridge near 15[degree]N, 45[degree]W

    Energy Technology Data Exchange (ETDEWEB)

    Rona, P.A.; Nelson, T.A. (National Oceanic and Atmospheric Administration, Miami, FL (United States)); Bougault, H.; Charlou, J.L.; Needham, H.D. (Inst. Francais de Recherche pour I' Exploitation de la Mer, Centre de Brest (France)); Appriou, P. (Univ. of Western Brittany, Brest (France)); Trefry, J.H. (Florida Inst. of Technology, Melbourne (United States)); Eberhart, G.L.; Barone, A. (Lamont-Doherty Geological Observatory, Palisades, NY (United States))

    1992-09-01

    A hydrothermal system characterized by high ratios of methane to both manganese and suspended particulate matter was detected in seawater sampled at the eastern intersection of the rift valley of the Mid-Atlantic Ridge with the Fifteen-Twenty Fracture Zone. This finding contrasts with low ratios in black smoker-type hydrothermal systems that occur within spreading segments. Near-bottom water sampling coordinated with SeaBeam bathymetry and camera-temperature tows detected the highest concentrations of methane at fault zones in rocks with the appearance of altered ultramafic units in a large dome that forms part of the inside corner high at the intersection. The distinct chemical signatures of the two types of hydrothermal systems are inferred to be controlled by different circulation pathways related to reaction of seawater primarily with ultramafic rocks at intersections of spreading segments with fracture zones but with mafic rocks within spreading segments.

  12. Hydrothermal fluid flow within a tectonically active rift-ridge transform junction: Tjörnes Fracture Zone, Iceland

    Science.gov (United States)

    Lupi, M.; Geiger, S.; Graham, C. M.

    2010-05-01

    We investigate the regional fluid flow dynamics in a highly faulted transform area, the Tjörnes Fracture Zone in northern Iceland which is characterized by steep geothermal gradients, hydrothermal activity, and strong seismicity. We simulate fluid flow within the Tjörnes Fracture Zone using a high-resolution model that was based on the available geological and geophysical data and has the aim to represent the complex geological structures and the thermodynamical processes that drive the regional fluid flow in a physically realistic way. Our results show that convective heat flow and mixing of cold and saline seawater with deep hydrothermal fluids controls the large-scale fluid flow. The distribution of faults has a strong influence on the local hydrodynamics by focusing flow around clusters of faults. This explains the nature of isolated upflow zones of hot hydrothermal fluids which are observed in the Tjörnes Fracture Zone. An important emergent characteristic of the regional fluid flow in the Tjörnes Fracture Zone are two separate flow systems: one in the sedimentary basins, comprising more vigorous convection, and one in the crystalline basement, which is dominated by conduction. These two flow systems yield fundamental insight into the connection between regional hydrothermal fluid flow and seismicity because they form the basis of a toggle switch mechanism that is thought to have caused the hydrogeochemical anomalies recorded at Húsavik before and after the 5.8 M earthquake in September 2002.

  13. The Kane fracture zone in the Central Atlantic Ocean

    NARCIS (Netherlands)

    Purdy, G.M.; Rabinowitz, P.D.; Velterop, J.J.A.

    1979-01-01

    The Kane fracture zone has been traced as a distinct topographic trough from the Mid-Atlantic Ridge near 24°N to the 80-m.y. B.P. isochron (magnetic anomaly 34) on either side of the ridge axis for a total of approximately 2800 km. Major changes in trend of the fracture zone occur at approximately

  14. Intense CH{sub 4} plumes generated by serpentinization of ultramafic rocks at the intersection of the 15{degree}20[minutes]N fracture zone and the Mid-Atlantic Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Charlou, J.L.; Fouquet, Y.; Bougault, H.; Donval, J.P.; Etoubleau, J. [IFREMER Centre de Brest, Plouzane (France). Dept. Geosciences Marines; Jean-Baptiste, P.; Dapoigny, A. [CEA Saclay, Gif-sur-Yvette (France); Appriou, P. [Univ. de Bretagne Occidentale, Brest (France); Rona, P.A. [Rutgers-the State Univ. of New Jersey, New Brunswick, NJ (United States)

    1998-07-01

    As part of the FARA French-US Program designed to study the Mid-Atlantic Ridge (MAR) between 15{degree}N and the Azores, twenty-three dives with the submersible Nautile were conducted during the French-US Faranaut 15N cruise on the eastern and western parts of the Fracture Zone/Ridge axis intersection. South of the eastern ridge-transform fault intersection, nine Nautile dives were made within the rift valley and along the western rift valley wall. CH{sub 4} concentrations in the bottom waters reach 53.2 nmol/kg along faulted zones on top and on the east flank of the ultramafic inner corner high where serpentinized rocks outcrop. No {sup 3}He anomaly is associated with methane, ruling out any primary mantle component. High CH{sub 4} anomalies (up to 22 nmol/kg) are also present in the bottom waters of the rift valley northern segment on both the western and eastern valley walls and on the inner high adjacent to the eastern wall where ultramafic rocks outcrop. Seven vertical hydrocasts carried out in the axial valley (4500 M deep) show an intense CH{sub 4} anomaly, with a maximum (35.8 nmol/kg) at 3200 m depth. CH{sub 4} concentrations of 9.9--14.9 nmol/kg are also present on the western wall along the 3200 m isobath. CH{sub 4} output from ultramafic outcrops on the western and eastern intersections of the Fracture Zone with the MAR is believed to reflect ongoing serpentinization.

  15. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  16. The ecosystem of the Mid-Atlantic Ridge at the sub-polar front and Charlie-Gibbs Fracture Zone; ECO-MAR project strategy and description of the sampling programme 2007-2010

    Science.gov (United States)

    Priede, Imants G.; Billett, David S. M.; Brierley, Andrew S.; Hoelzel, A. Rus; Inall, Mark; Miller, Peter I.; Cousins, Nicola J.; Shields, Mark A.; Fujii, Toyonobu

    2013-12-01

    The ECOMAR project investigated photosynthetically-supported life on the North Mid-Atlantic Ridge (MAR) between the Azores and Iceland focussing on the Charlie-Gibbs Fracture Zone area in the vicinity of the sub-polar front where the North Atlantic Current crosses the MAR. Repeat visits were made to four stations at 2500 m depth on the flanks of the MAR in the years 2007-2010; a pair of northern stations at 54°N in cold water north of the sub-polar front and southern stations at 49°N in warmer water influenced by eddies from the North Atlantic Current. At each station an instrumented mooring was deployed with current meters and sediment traps (100 and 1000 m above the sea floor) to sample downward flux of particulate matter. The patterns of water flow, fronts, primary production and export flux in the region were studied by a combination of remote sensing and in situ measurements. Sonar, tow nets and profilers sampled pelagic fauna over the MAR. Swath bathymetry surveys across the ridge revealed sediment-covered flat terraces parallel to the axis of the MAR with intervening steep rocky slopes. Otter trawls, megacores, baited traps and a suite of tools carried by the R.O.V. Isis including push cores, grabs and a suction device collected benthic fauna. Video and photo surveys were also conducted using the SHRIMP towed vehicle and the R.O.V. Isis. Additional surveying and sampling by landers and R.O.V. focussed on the summit of a seamount (48°44‧N, 28°10‧W) on the western crest of the MAR between the two southern stations.

  17. Tissue and size-related changes in the fatty acid and stable isotope signatures of the deep sea grenadier fish Coryphaenoides armatus from the Charlie-Gibbs Fracture Zone region of the Mid-Atlantic Ridge

    Science.gov (United States)

    Mayor, Daniel J.; Sharples, Caroline J.; Webster, Lynda; Walsham, Pamela; Lacaze, Jean-Pierre; Cousins, Nicola J.

    2013-12-01

    Coryphaenoides armatus is a cosmopolitan deep-sea fish that plays a major role in the ecology of abyssal ecosystems. We investigated the trophic ecology and physiology of this species by determining the δ13C, δ15N and fatty acid signatures of muscle, liver and ovary tissues of individuals collected from ∼2700 m to the north and south of the Charlie-Gibbs Fracture Zone (CGFZ) of the Mid-Atlantic Ridge, NE Atlantic. Fatty acid and δ13C data both suggested that C. armatus shows an ontogenetic dietary shift, with the relative contributions of benthic and pelagic prey decreasing and increasing respectively as the animals grow. They also indicated that dietary overlap between animals living to the north and south of the CGFZ increases as they grow, suggesting that larger animals forage over greater distances and are not hindered by the presence of the CGFZ. Comparison of tissue-specific fatty acid signatures with previously published data suggests compositional homeostasis of the fatty acids 20:5(n-3) and 22:6(n-3) in the muscle, and 18:1(n-9) in the liver tissues. We ascribe this primarily to strict physiological requirements for these compounds, rather than simply to their abundance in the diet. We pose several speculative mechanisms to explain the observed trends in tissue-specific δ13C and δ15N values, illustrating some of the numerous processes that can influence the isotopic signatures of bulk tissues.

  18. Basalt microlapilli in deep sea sediments of Indian Ocean in the vicinity of Vityaz fracture zone

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Iyer, S.D.

    Two cores recovered from the flanks of Mid-India oceanic ridge in the vicinity of Vityaz fracture zone consist of discrete pyroclastic layers at various depths. These layers are composed of coarse-grained, angular basaltic microlapilli in which...

  19. Mapping the mantle transition zone beneath the central Mid-Atlantic Ridge using Ps receiver functions.

    Science.gov (United States)

    Agius, M. R.; Rychert, C.; Harmon, N.; Kendall, J. M.

    2017-12-01

    Determining the mechanisms taking place beneath ridges is important in order to understand how tectonic plates form and interact. Of particular interest is establishing the depth at which these processes originate. Anomalies such as higher temperature within the mantle transition zone may be inferred seismically if present. However, most ridges are found in remote locations beneath the oceans restricting seismologists to use far away land-based seismometers, which in turn limits the imaging resolution. In 2016, 39 broadband ocean-bottom seismometers were deployed across the Mid-Atlantic Ridge, along the Romanche and Chain fracture zones as part of the PI-LAB research project (Passive Imaging of the Lithosphere and Asthenosphere Boundary). The one-year long seismic data is now retrieved and analysed to image the mantle transition zone beneath the ridge. We determine P-to-s (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities using the extended multitaper deconvolution. The data from ocean-bottom seismometers have tilt and compliance noise corrections and is filtered between 0.05-0.2 Hz to enhance the signal. 51 teleseismic earthquakes generated hundreds of good quality waveforms, which are then migrated to depth in 3-D. The topography at the d410 deepens towards the west of the Romanche and Chain fracture zone by 15 km, whereas the topography of d660 shallows beneath the ridge between the two zones. Transition zone thickness thins from 5 to 20 km. Thermal anomalies determined from temperature relationships with transition zone thickness and depth variations of the d410 and d660 suggests hotter temperatures of about 200 K. Overall, the result suggests mid-ocean ridges may have associated thermal signatures as deep as the transition zone.

  20. Modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have modeled an infiltration experiment at Fran Ridge, using the TOUGH2 code, to aid in the selection of computational models for waste repository performance assessment. This study investigates the capabilities of TOUGH2 to simulate transient flows through highly fractured tuff, and provides a possible means of calibrating hydrologic parameters such as effective fracture aperture and fracture-matrix connectivity. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The field experiments involved the infiltration of dyed ponded water in highly fractured tuff. The infiltration observed in the experiment was subsequently modeled using Fran Ridge fracture frequencies, obtained during post-experiment site excavation. Comparison of the TOUGH2 results obtained using the two conceptual models gives insight into their relative strengths and weaknesses

  1. Mineralogy and Geochemistry from Trollveggen Vent Field Chimneys and Metalliferous Sediments (Mohns Ridge, West Jan Mayen Fracture Zone at 71°N)

    Science.gov (United States)

    Dias, S.; Cruz, I.; Fonseca, R.; Barriga, F. J.; Pedersen, R.

    2010-12-01

    The Jan Mayen vent fields were discovered in the Mohns Ridge during an expedition with the Norwegian research vessel "G.O. Sars" in July 2005. They comprise two main active areas: (1) Soria Moria and (2) Gallionella Garden & Trollveggen. The Trollveggen vent field is located at depths of 700-750 m. Venting takes place mainly through white smoker chimneys with fluid temperatures reaching up to 260-270°C. Here we present mineralogical and geochemical data from vent chimneys and metalliferous sediments collected at the Trollveggen vent field with an ROV. Cross-sections of chimneys present evident mineralogical zonation, showing acicular barite crystals in the outer parts and sulfide enrichments in the interior (Sph + Cpy +/- Py - Po). Sediments are mainly formed by vent fragments but also by minerals precipitated by diffuse fluid circulation, showing a mineral assemblage similar to that of chimneys. Microprobe analyses were obtained both in sulfates and sulphides revealing a particular sphalerite composition, characterized by low Fe (< 2%) and high total trace metal contents (up to 4%, including Cu, Ag and Au). Geochemical profiles of gravity cores collected in the area surrounding Jan Mayen were also performed in order to investigate the presence of additional hydrothermal activity in the area. Total geochemical analyses showed a slight enrichment in trace metals, such as Cu, Zn and Fe, with exception of one core that reached 85 ppm for Cu, 150 ppm for Zn and 20% for Fe. The metal enrichment in this core suggests hydrothermal activity in the neighboring area.

  2. Deep gold mine fracture zone behaviour

    CSIR Research Space (South Africa)

    Napier, JAL

    1998-12-01

    Full Text Available The investigation of the behaviour of the fracture zone surrounding deep level gold mine stopes is detailed in three main sections of this report. Section 2 outlines the ongoing study of fundamental fracture process and their numerical...

  3. The fracture zone project - final report

    International Nuclear Information System (INIS)

    Andersson, Peter

    1993-09-01

    This report summarizes the work and the experiences gained during the fracture zone project at the Finnsjoen study site. The project is probably the biggest effort, so far, to characterize a major fracture zone in crystalline bedrock. The project was running between 1984-1990 involving a large number of geological, geohydrological, geochemical, and geomechanical investigation. The methods used for identification and characterization are reviewed and discussed in terms of applicability and possible improvements for future investigations. The discussion is exemplified with results from the investigation within the project. Flow and transport properties of the zone determined from hydraulic tests and tracer tests are discussed. A large number of numerical modelling efforts performed within the fracture zone project, the INTRAVAL project, and the SKB91-study are summarized and reviewed. Finally, occurrence of similar zones and the relevance of major low angle fracture zones in connection to the siting of an underground repository is addressed

  4. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  5. Core fracture analysis applied to ground water flow systems: Chickamauga Group, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bittner, E.; Dreier, R.B.

    1989-01-01

    The objective of this study is to correlate hydrologic properties with detailed geologic fabrics and to investigate the influence of a complex geologic setting on ground water systems. The Chickamauga Group (CH) located in Bethel Valley on the DOE Oak Ridge Reservation is comprised of limestones and interbedded shales. Five core holes (CH 1-5), oriented across strike, provide a cross section of the CH and were mapped for fracture density, orientation and cross-cutting relationships as well as lithologic variations. Correlation of structural and lithologic features with downhole geophysical logs and hydraulic conductivity values shows a relationship between lithology, fracture density and increased permeability in an otherwise low-permeability environment. Structures identified as influential in enhancing hydraulic conductivity include contractional bedding plane and tectonic stylolites and extensional fractures. Three sets of extensional fractures are indicated by cross-cutting relationships and various degrees of veining. Hydraulic conductivity values (K) for the five wells indicate two ground water flow systems in the valley. A shallow system (up to 150 feet deep) shows a range in K from 10E-4 centimeters per second to 10E-6 centimeters per second. Shallow horizons show more open fractures than are observed at depth, and these fractures appear to control the enhanced K in the shallow system. A subhorizontal interface that is not defined by pre-existing structures or a stratigraphic horizon separates the two flow systems. The deeper system ranges in K values from 10E-9 centimeters per second to 10E-5 centimeters per second. The higher K values at depth correspond to increased fracture density at lithologic contacts, zones of tectonic stylolitization and partially veined extension fractures. 11 refs., 11 figs., 2 tabs

  6. Microseismic Velocity Imaging of the Fracturing Zone

    Science.gov (United States)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By

  7. The link between great earthquakes and the subduction of oceanic fracture zones

    Directory of Open Access Journals (Sweden)

    R. D. Müller

    2012-12-01

    Full Text Available Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8 subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6 and half of the 50 largest (magnitude Mw ≥ 8.4 earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8. The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.

  8. Time dependent fracture and cohesive zones

    Science.gov (United States)

    Knauss, W. G.

    1993-01-01

    This presentation is concerned with the fracture response of materials which develop cohesive or bridging zones at crack tips. Of special interest are concerns regarding crack stability as a function of the law which governs the interrelation between the displacement(s) or strain across these zones and the corresponding holding tractions. It is found that for some materials unstable crack growth can occur, even before the crack tip has experienced a critical COD or strain across the crack, while for others a critical COD will guarantee the onset of fracture. Also shown are results for a rate dependent nonlinear material model for the region inside of a craze for exploring time dependent crack propagation of rate sensitive materials.

  9. Marine Geophysical Characterization of the Chain Fracture Zone in the Equatorial Atlantic

    Science.gov (United States)

    Harmon, N.; Rychert, C.; Agius, M. R.; Tharimena, S.; Kendall, J. M.

    2017-12-01

    The Chain Fracture zone is part of a larger system of fracture zones along the Mid Atlantic Ridge that is thought to be one of the original zones of weakness during the break up of Pangea. It is over 300 km long and produces earthquakes as large as Mw 6.9 on segments of the active fault zone. Here we present the results of two marine geophysical mapping campaigns over the active part of the Chain Fracture zone as part of the PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment. We collected swath bathymetry, backscatter imagery, gravity and total field magnetic anomaly. We mapped the fault scarps within the transform fault system using the 50 m resolution swath and backscatter imagery. In addition, a 30-40 mGal residual Mantle Bouguer Anomaly determined from gravity analysis suggests the crust is by up to 1.4-2.0 km beneath the Chain relative to the adjacent ridge segments. However, in the eastern 75 km of the active transform we find evidence for thicker crust. The active fault system cuts through the region of thicker crust and there is a cluster of MW > 6 earthquakes in this region. There is a cluster of similar sized earthquakes on the western end where thinner crust is inferred. This suggests that variations in melt production and crustal thickness at the mid ocean ridge systems may have only a minor effect on the seismicity and longevity of the transform fault system.

  10. Bottom-water observations in the Vema fracture zone

    Science.gov (United States)

    Eittreim, Stephen L.; Biscaye, Pierre E.; Jacobs, Stanley S.

    1983-03-01

    The Vema fracture zone trough, at 11°N between 41° and 45°E, is open to the west at the 5000-m level but is silled at the 4650-m level on the east where it intersects the axis of the Mid-Atlantic Ridge. The trough is filled with Antarctic Bottom Water (AABW) with a potential temperature of 1.32°C and salinity of 34.82 ppt. The bottom water is thermally well mixed in a nearly homogeneous layer about 700 m thick. The great thickness of this bottom layer, as compared with the bottom-water structure of the western Atlantic basin, may result from enhanced mixing induced by topographic constriction at the west end of the fracture zone trough. A benthic thermocline, with potential temperature gradients of about 1.2 mdeg m-1, is associated with an abrupt increase in turbidity with depth at about 1200 m above bottom. A transitional layer of more moderate temperature gradients, about 0.4 mdeg m-1, lies between the benthic thermocline above and the AABW below. The AABW layer whose depth-averaged suspended paniculate concentrations range from 8 to 19 μg L-1, is consistently higher in turbidity than the overlying waters. At the eastern end of the trough, 140 m below sill depth, very low northeastward current velocities, with maximums of 3 cm s-1, were recorded for an 11-day period.

  11. The effect of proximal contour on marginal ridge fracture of Class II composite resin restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Roeters, F.J.M.; Opdam, N.J.M.; Kuijs, R.H.

    2008-01-01

    OBJECTIVES: To compare the marginal ridge fracture strength of Class II composite resin restorations placed with a straight or contoured matrix band using composite resins with different modulus of elasticity. METHODS: In 60 artificial first molars standardized MO-preparations were ground. Two

  12. Fracture toughness testing of core from the Cambro-Ordovician Section on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lemiszki, P.J.; Landes, J.D.

    1996-01-01

    The modified ring test was used to determine the mode I fracture toughness of bedrock cores from the DOE Oak Ridge Reservation in east Tennessee. Low porosity sandstones, limestones, and dolostones from the lower part of the Paleozoic section in Copper Creek and Whiteoak Mountain thrust sheets were sampled. In general, the average mode I fracture toughness decreases from sandstone, dolostone, and limestone. The fracture toughness of the limestones varies between rock units, which is related to different sedimentologic characteristics. Quality of results was evaluated by testing cores of Berea Sandstone and Indiana Limestone, which produced results similar to published results

  13. Iceland Scotland Overflow Water flow through the Bight Fracture Zone in June-July 2015

    Science.gov (United States)

    Mercier, Herle; Petit, Tillys; Thierry, Virginie

    2017-04-01

    ISOW (Iceland Scotland Overflow Water) is the densest water in the northern Iceland Basin and a main constituent of the lower limb of the meridional overturning circulation (MOC). ISOW is the product of mixing of dense water originating from the Nordic Seas with Atlantic Water and Labrador Sea Water during its crossing of the Iceland-Faroe-Scotland Ridge and downstream acceleration. In the northern Iceland Basin, ISOW is characterized by potential density σ0 > 27.8 and salinity > 34.94. Downstream of the Iceland-Scotland Ridge, ISOW flows southwestward in a Deep Western Boundary Current along the eastern flank of the Reykjanes Ridge. Models and float trajectories previously suggested that part of the ISOW flow could cross the Reykjanes Ridge through the Bight Fracture Zone. However, no direct observations of the ISOW flow through the Bight Fracture Zone are available that would allow us to quantify its transport and water mass transformation. This lack of direct observations also prevents understanding the dynamics of the throughflow. In this study, we analyzed a set of CTDO2 and LADCP stations acquired in June-July 2015 during the Reykjanes Ridge Experiment cruise and provide new insights on the ISOW flow through the Bight Fracture Zone. The evolution of the properties as well as the velocity measurements confirm an ISOW flow from the Iceland Basin to the Irminger Sea. A main constrain to the throughflow is the presence of two sills of about 2150 m depth and two narrows. With potential densities between 27.8-27.87 kg m-3 and near bottom potential temperature of 3.02°C and salinity of 34.98, only the lightest variety of ISOW is found at the entrance of the BFZ east of the sills. In the central part of the Bight Fracture Zone, the evolution of ISOW is characterized by a decrease of 0.015 kg m-3 in the near bottom density, ascribed to the blocking of the densest ISOW variety by the sills and/or diapycnal mixing. To the West, at the exit of the BFZ, ISOW overlays

  14. Tunnel restorations using glass ionomer or glass cermet: in vitro marginal ridge fracture and microleakage.

    Science.gov (United States)

    Shetty, R; Munshi, A K

    1996-01-01

    The purpose of this in vitro study was to compare the marginal ridge fracture resistance and microleakage following restorations of partial tunnel preparations using glass ionomer and glass cermet cements. Sixty eight sound premolars were selected for this study and were divided randomly into six groups. A standardized partial tunnel preparation was done on all the teeth except specimens belonging to Group I. The partial tunnel preparations of Groups III & V were restored with glass ionomer and that of Groups IV & VI were restored with glass cermet. The teeth belonging to Groups I, II, III & IV were subjected to marginal ridge fracture resistance testing. The teeth of Groups V & VI were tested for microleakage after immersing them in 5% methylene blue solution for 4 hours. The results indicated that the teeth restored with glass cermet were marginally better than that with glass ionomer in terms of marginal ridge fracture resistance. Both the materials failed to reinforce the marginal ridge to the level of an intact tooth. The microleakage which occurred around both the materials were statistically insignificant, but on comparison glass ionomer showed better results. Hence, glass ionomer is preferred as a restorative material for partial tunnel preparations because of additional inherent advantages like superior esthetics and fluoride leachability.

  15. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  16. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  17. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  18. Capture zone simulation for boreholes located in fractured dykes ...

    African Journals Online (AJOL)

    drinie

    2002-04-02

    Apr 2, 2002 ... models do not account for the capture zone of a draining fracture. In South Africa ... uniform, the pathline distribution under certain hydrogeological settings is ... defined as a mathematical sink line with a finite length. If a pumping ... the impermeable dyke is located at x = - d and the centre of the fracture with ...

  19. Identification of fracture zones and its application in automatic bone fracture reduction.

    Science.gov (United States)

    Paulano-Godino, Félix; Jiménez-Delgado, Juan J

    2017-04-01

    The preoperative planning of bone fractures using information from CT scans increases the probability of obtaining satisfactory results, since specialists are provided with additional information before surgery. The reduction of complex bone fractures requires solving a 3D puzzle in order to place each fragment into its correct position. Computer-assisted solutions may aid in this process by identifying the number of fragments and their location, by calculating the fracture zones or even by computing the correct position of each fragment. The main goal of this paper is the development of an automatic method to calculate contact zones between fragments and thus to ease the computation of bone fracture reduction. In this paper, an automatic method to calculate the contact zone between two bone fragments is presented. In a previous step, bone fragments are segmented and labelled from CT images and a point cloud is generated for each bone fragment. The calculated contact zones enable the automatic reduction of complex fractures. To that end, an automatic method to match bone fragments in complex fractures is also presented. The proposed method has been successfully applied in the calculation of the contact zone of 4 different bones from the ankle area. The calculated fracture zones enabled the reduction of all the tested cases using the presented matching algorithm. The performed tests show that the reduction of these fractures using the proposed methods leaded to a small overlapping between fragments. The presented method makes the application of puzzle-solving strategies easier, since it does not obtain the entire fracture zone but the contact area between each pair of fragments. Therefore, it is not necessary to find correspondences between fracture zones and fragments may be aligned two by two. The developed algorithms have been successfully applied in different fracture cases in the ankle area. The small overlapping error obtained in the performed tests

  20. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.; Nicholl, M.J.; Arnold, B.W.

    1996-01-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 μm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  1. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    International Nuclear Information System (INIS)

    Eaton, R.R.; Ho, C.K.; Glass, RJ.; Nicholl, M.J.; Arnold, B.W.

    1996-09-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 microm. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies

  2. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    Science.gov (United States)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  3. Relationship between side necking and plastic zone size at fracture

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Kang, Ki Ju; Kim, Dong Hak

    2004-01-01

    Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixes 0 .deg., 30 deg., 60 deg., 90 .deg. and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed

  4. Compressive fracture resistance of the marginal ridge in large Class II tunnels restored with cermet and composite resin.

    Science.gov (United States)

    Ehrnford, L E; Fransson, H

    1994-01-01

    Compressive fracture resistance of the marginal ridge was studied in large tunnel preparations, before and after restoration with cermet (Ketac Silver, ESPE), a universal hybrid composite (Superlux, DMG) and an experimental composite. Each group was represented by six tunnels in extracted upper premolars. The tunnels were prepared by the use of round burs up to size #6. Remaining ridge width was 1.5 mm and ridge height 1.7 mm in the contact area. The ridge was loaded to fracture by a rod placed perpendicular to the ridge. Generally this resulted in a shear fracture of the restoration. There was no significant reinforcement of the ridge by the cermet whereas the composites both reinforced by the same magnitude, averaging 62%. It was concluded that the ridge could be considered a "megafiller" where contact need to be preserved and contour protected against proximal and occlusal wear of the restoration. Clinically there would therefore be good reasons to save even ridge areas with very low inherent strength. Based on the present study composite resin might therefore be the filling material of choice for such tunnel preparations.

  5. Modeling biogechemical reactive transport in a fracture zone

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  6. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  7. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    Science.gov (United States)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the

  8. Fracture Patterns within the Shale Hills Critical Zone Observatory

    Science.gov (United States)

    Singha, K.; White, T.; Perron, J.; Chattopadhyay, P. B.; Duffy, C.

    2012-12-01

    Rock fractures are known to exist within the deep Critical Zone and are expected to influence groundwater flow, but there are limited data on their orientation and spatial arrangement and no general framework for systematically predicting their effects. Here, we explore fracture patterns within the Susquehanna-Shale Hills Critical Zone Observatory, and consider how they may be influenced by weathering, rock structure, and stress via field observations of variable fracture orientation within the site, with implications for the spatial variability of structural control on hydrologic processes. Based on field observations from 16-m deep boreholes and surface outcrop, we suggest that the appropriate structural model for the watershed is steeply dipping strata with meter- to decimeter-scale folds superimposed, including a superimposed fold at the mouth of the watershed that creates a short fold limb with gently dipping strata. These settings would produce an anisotropy in the hydraulic conductivity and perhaps also flow, especially within the context of the imposed stress field. Recently conducted 2-D numerical stress modeling indicates that the proxy for shear fracture declines more rapidly with depth beneath valleys than beneath ridgelines, which may produce or enhance the spatial variability in permeability. Even if topographic stresses do not cause new fractures, they could activate and cause displacement on old fractures, making the rocks easier to erode and increasing the permeability, and potentially driving a positive feedback that enhances the growth of valley relief. Calculated stress fields are consistent with field observations, which show a rapid decline in fracture abundance with increasing depth below the valley floor, and predict a more gradual trend beneath ridgetops, leading to a more consistent (and lower) hydraulic conductivity with depth on the ridgetops when compared to the valley, where values are higher but more variable with depth. Hydraulic

  9. Ultramafic rocks of the western Idaho suture zone: Asbestos Peak and Misery Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Godchaux, M.M. (Mount Holyoke Coll., South Hadley, MA (United States). Dept. of Geology); Bonnichsen, B. (Univ. of Idaho, Moscow, ID (United States))

    1993-04-01

    The Western Idaho Ultramafic Belt extends northward from the town of Weiser to the northern end of Dworshak Reservoir; in its northern portion most of the ultramafic bodies are localized along the suture zone where the Mesozoic oceanic accreted terranes meet the continental craton. Of the twenty bodies investigated, all are small, all are in fault contact with their metavolcanic and metasedimentary host rocks, all have been metamorphosed, and all display deformational fabrics in at least some portion of the outcrop area, suggesting that deformation continued after peak metamorphism. The degree of metamorphism ranges from incipient serpentinization to attainment of equilibrium in the upper amphibolite facies. Some bodies have been intruded by granitic dikes or pegmatite veins after emplacement, and have locally undergone contact metasomatism. Two particularly complex bodies, Asbestos Peak and Misery Ridge, were chosen for detailed petrographic and chemical study. Asbestos Peak is composed mostly of decussate anthophyllite-talc rock containing isolated patches of harzburgite protolith, and has blackwall border zones. Misery Ridge is composed mostly of coarse-grained sheared tremolite-talc schist without remnant protolith, and lacks true blackwall zones. Both bodies exhibit an unusual and enigmatic hornblende-poikiloblastic garnet-green spinel-skeletal ilmenite assemblage, present in some places as well-defined border zones and in other places as cross-cutting bodies.

  10. Marginal ridge fracture resistance, microleakage and pulpal response to glass ionomer/glass cermet partial tunnel restorations.

    Science.gov (United States)

    Prabhu, N T; Munshi, A K; Shetty, T R

    1997-01-01

    Sixty sound premolars which were to be extracted for orthodontic treatment purposes were restored either with glass ionomer cement or glass cermet cements after partial tunnel preparation, and prior to the extraction after a time interval of 30 and 60 days respectively. The teeth were then subjected to marginal ridge fracture resistance, microleakage study using dye penetration and histological evaluation of the pulpal response to these materials. Both the materials exhibited increase in marginal ridge fracture resistance at 60 days, with minimal degree of microleakage and were biologically compatible with the dental pulp.

  11. Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm

    Science.gov (United States)

    Anokhin, Vladimir; Kholmianskii, Mikhail

    2014-05-01

    Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm Vladimir M. Anokhin, Mikhail A. Kholmianskii Configuration of the seismofocal zones (SFZ), visible in a real position of the focuses of earthquakes, has a significant step component (jagged) expressed by the presence of several sub-horizontal "seismoplanes", which concentrates focuses of earthquakes (depths 10, 35 km and other). Orientation of seismolines inside of SFZ tends to 4 main directions: 0-5 dgr, 120-145 dgr, 40-55 dgr, 85-90 dgr. These facts suggest significantly block, a terraced structure of the body of Benioff zone. The borders of blocks have orientation according directions regmatic net of the Earth. In accordance with this, SFZ can be presented as the most active segments of the border of the crossing: «continent-ocean», having the following properties: - block (terraced) structure; - in some sites - dive under the continental crust (in present time); - prevailing compression (in present time), perhaps, as the period of the oscillatory cycle; Infinite "subduction" in SFZ is unlikely. One of the areas where there is proof of concept of far "spreading" is the southernmost tip of the mid-oceanic Gakkel ridge in the Laptev sea (Arctic ocean). Here active "spreading" ridge normal approaches to the boundary of the continental crust - the shelf of the Laptev sea. On the shelf there are a number of subparallel NW grabens. NE fault zone Charlie, controlling the continental slope is established stepped fault without shift component. This means that the amount of extending of the offshore grabens does not significantly differ from the scale of spreading in the Gakkel ridge. However, the total spreads grabens (50-100 km) 6-10 times less than the width of the oceanic crust (600 km) in the surrounding area. Conclusion: the oceanic crust in the Laptev sea was formed mainly not due to "spreading". It is very likely that here was sinking and the processing of continental crust in the ocean

  12. Appropriate electromagnetic techniques for imaging geothermal fracture zones

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Electromagnetic surface detection of fracture zones has often been approached by using the magnetotelluric method. This technique suffers greatly from the quantity and scale of the conductive inhomogeneities lying above the fracture zones. Additionally, it suffers from the inherent inability to focus the source on the target. There are no such source focusing capabilities in magnetotellurics. Accordingly, the quantity of magnetotelluric data required to resolve targets in such complex conditions can make the technique inefficient and insufficient from a cost perspective. When attempting to reveal a subsurface structure and image it, the basic physical responses at hand must be kept in mind, and the appropriate source must be utilized, which most effectively illuminates the target. A further advantage to controlled sources is that imaging techniques may be used to accentuate the response due to knowledge and control of the source.

  13. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Weiyao Zhu

    2018-02-01

    Full Text Available In this paper, a series of specific studies were carried out to investigate the complex form of fracture networks and figure out the multi-scale flowing laws of nano/micro pores–complex fracture networks–wellbore during the development of shale reservoirs by means of horizontal well fracturing. First, hydraulic fractures were induced by means of Brazilian splitting tests. Second, the forms of the hydraulic fractures inside the rock samples were observed by means of X-ray CT scanning to measure the opening of hydraulic fractures. Third, based on the multi-scale unified flowing model, morphological description of fractures and gas flowing mechanism in the matrix–complex fracture network–wellbore, the productivity equation of single-stage horizontal well fracturing which includes diffusion, slipping and desorption was established. And fourthly, a productivity prediction model of horizontal well multi-stage fracturing in the shale reservoir was established considering the interference between the multi-stage fracturing zones and the pressure drop in the horizontal wellbore. The following results were obtained. First, hydraulic fractures are in the form of a complex network. Second, the measured opening of hydraulic fractures is in the range of 4.25–453 μm, averaging 112 μm. Third, shale gas flowing in different shapes of fracture networks follows different nonlinear flowing laws. Forth, as the fracture density in the strongly stimulated zones rises and the distribution range of the hydraulic fractures in strongly/weakly stimulated zones enlarges, gas production increases gradually. As the interference occurs in the flowing zones of fracture networks between fractured sections, the increasing amplitude of gas production rates decreases. Fifth, when the length of a simulated horizontal well is 1500 m and the half length of a fracture network in the strongly stimulated zone is 100 m, the productivity effect of stage 10 fracturing is the

  14. Dislocation-free zone model of fracture comparison with experiments

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.

    1982-01-01

    The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip

  15. Independent Verification Survey Report For Zone 1 Of The East Tennessee Technology Park In Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    King, David A.

    2012-01-01

    Oak Ridge Associated Universities (ORAU) conducted in-process inspections and independent verification (IV) surveys in support of DOE's remedial efforts in Zone 1 of East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Inspections concluded that the remediation contractor's soil removal and survey objectives were satisfied and the dynamic verification strategy (DVS) was implemented as designed. Independent verification (IV) activities included gamma walkover surveys and soil sample collection/analysis over multiple exposure units (EUs)

  16. Large fault fabric of the Ninetyeast Ridge implies near-spreading ridge formation

    Digital Repository Service at National Institute of Oceanography (India)

    Sager, W.W.; Paul, C.F.; Krishna, K.S.; Pringle, M.S.; Eisin, A.E.; Frey, F.A.; Rao, D.G.; Levchenko, O.V.

    of the high ridge. At 26°S, prominent NE-SW 97 oriented lineations extend southwest from the ridge. Some appear to connect with N-S fracture 98 zone troughs east of NER, implying that the NE-SW features are fracture zone scars formed after 99 the change... to the 105 ridge (Fig. 3). This is especially true for NER south of ~4°S. Where KNOX06RR crossed a 106 gravity lineation, negative gradient features correspond to troughs whereas positive gradient 107 features result from igneous basement highs (Fig. 3...

  17. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    Science.gov (United States)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  18. Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity

    Science.gov (United States)

    Schlaphorst, David; Kendall, J.-Michael; Collier, Jenny S.; Verdon, James P.; Blundy, Jon; Baptie, Brian; Latchman, Joan L.; Massin, Frederic; Bouin, Marie-Paule

    2016-03-01

    related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones.

  19. 2D Geoelectric Imaging of the Uneme-Nekhua Fracture Zone

    Directory of Open Access Journals (Sweden)

    Muslim B. Aminu

    2014-01-01

    Full Text Available We have employed 2D geoelectric imaging to reveal the geometry and nature of a fracture zone in Uneme-Nekhua, southwestern Nigeria. The fracture zone is discernable from an outcropping rock scarp and appears to define the course of a seasonal stream. Data were acquired using the dipole-dipole survey array configuration with electrode separation of 6 m and a maximum dipole length of 60 m. Three traverses with lengths varying between 72 m and 120 m were laid orthogonal to the course of the seasonal stream. 2D geoelectric images of the subsurface along the profiles imaged a north-south trending fracture zone. This fracture zone appears to consist of two vertical fractures with more intense definition downstream. The eastern fracture is buried by recent sediment, while the western fracture appears to have experienced more recent tectonic activity as it appears to penetrate through the near surface. Perhaps at some point, deformation ceased on the eastern fracture and further strain was transferred to the western fracture. The fracture zone generally defines the course of the north-south seasonal stream with the exception of the downstream end where the fracture appears to have died out entirely. Two associated basement trenches lying parallel to and east of the fracture zone are also imaged.

  20. The hydraulic properties of fracture zones and tracer tests with non-reactive elements in Studsvik

    International Nuclear Information System (INIS)

    Klockars, C.-E.; Persson, O.; Landstroem, O.

    1982-04-01

    Tracer technique was applied in a rock formation within the Studsvik Energiteknik area in order to study hydrodynamic properties of discrete fracture zones between boreholes. The two hole method was applied in these studies; a nonreactive tracer is injected in one hole into a fracture zone which is in hydraulic contact with a central pump hole (observation hole). Hydraulic tests and TV inspection were carried out in the fracture zones. Chemical composition of the groundwater was determined. In summary, the following hydraulic properties were found for the fracture zones between the boreholes B1N-B6N and B5N-B6N respectively, under the prevailing conditions: 1) The fracture zones studied consists of a number of transport pathways with different mean transit times, varying from 100 to 1200 hours. 2) The fracture zone between boreholes B1N and B6N has a mean hydraulic conductivity of 6-7 x 10 -5 m/s and the fracture zone between boreholes B5N and B6N, 2 x 10 -4 m/s. 3) The kinematic porosity of the fracture zones studied, calculated as the ratio between the hydraulic conductivity of the rock mass and that of the fracture zone, is 2 x 10 -3 and 5 x 10 -3 , respectively. 4) The roughness factor β, which expresses the ratio between measured and theoretically calculated (plane-parallel) fracture conductivity for the fracture zones studied, is approximately 0.04 and 0.06, respectively. 5) Dispersivity for the flow channels within the fracture zones is of the order of 0.3-0.8 m. 6) The groundwater encountered is a nearly neutral, probably reducing, Na-Ca-HCO 3 water. The results of the tracer tests reveal the following: I-131 is a suitable nonreactive tracer for the test area. A test with simultaneous injection of I-131 and T (tritium) gave comparable breakthrough curves. (Author)

  1. Geology of the host formation for the new hydraulic fracturing facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.; Zucker, C.L.; University of Tennessee, Knoxville)

    1985-01-01

    Liquid low-level radioactive wastes are disposed of at Oak Ridge National Laboratory (ORNL) by the hydrofracture process. Wastes are mixed with cement and other additives to form a slurry that is injected into a low permeability shale at 300-m depth. Important properties for a host shale formation at a hydrofracture facility include: (1) predictable fracture behavior; (2) hydrologic isolation; and (3) favorable mineralogy and geochemistry to retard radionuclide migration and enhance grout stability. The stratigraphy, petrology, diagenesis, structural geology, and hydrology of the Pumpkin Valley Shale host formation at the ORNL site are summarized and discussed in light of these three properties. Empirical data from hydrofracture operations at ORNL over the past 25 years suggest that many aspects of the Pumpkin Valley Shale make it favorable for use as a host. This observation agrees with analysis of several aspects of the Pumpkin Valley Shale geology at the ORNL site. Although presently available data suggest that the permeability of the Pumpkin Valley Shale is low and that it should provide sufficient hydrologic isolation, more data are needed to properly evaluate this aspect of host formation performance

  2. 75 FR 19880 - Safety Zone; BW PIONEER at Walker Ridge 249, Outer Continental Shelf FPSO, Gulf of Mexico

    Science.gov (United States)

    2010-04-16

    ... BW PIONEER, a Floating Production, Storage and Offloading (FPSO) system, at Walker Ridge 249 in the Outer Continental Shelf. The purpose of the safety zone is to protect the FPSO from vessels operating... reduces the threat of allisions, oil spills, and releases of natural gas, and thereby protects the safety...

  3. Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes

    Science.gov (United States)

    Szalai, Sandor; Kovacs, Attila; Kuslits, Lukács; Facsko, Gabor; Gribovszki, Katalin; Kalmar, Janos; Szarka, Laszlo

    2018-04-01

    Position, width and fragmentation level of fracture zones and position, significance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.

  4. Fracture-zone tectonics at Zabargad Island, Red Sea (Egypt)

    Science.gov (United States)

    Marshak, Stephen; Bonatti, Enrico; Brueckner, Hannes; Paulsen, Timothy

    1992-12-01

    Zabargad Island, which lies along the western margin of the Red Sea rift, is a remarkable place because it provides fresh exposures of undepleted mantle peridotite. How this peridotite came to be exposed on Zabargad remains unclear. Our field mapping indicates that most of the contacts between peridotite and the adjacent bodies of Pan-African gneiss and Cretaceous(?) Zabargad Formation on the island are now high-angle brittle faults. Zabargad Formation strata have been complexly folded, partly in response to this faulting. Overall, the array of high-angle faults and associated folds on the island resembles those found in cross-rift transfer zones. We suggest, therefore, that the Zabargad fracture zone, a band of submarine escarpments on the floor of the Red Sea north of the island, crosses Zabargad Island and has actively resolved differential movement between the central Red Sea rift and the northern Red Sea rift. The final stage of uplift that brought the unusual peridotite to the earth's surface is related to shallow crustal transpression, which may have inverted an earlier transtensional regime.

  5. Modelling Subduction Zone Magmatism Due to Hydraulic Fracture

    Science.gov (United States)

    Lawton, R.; Davies, J. H.

    2014-12-01

    The aim of this project is to test the hypothesis that subduction zone magmatism involves hydraulic fractures propagating from the oceanic crust to the mantle wedge source region (Davies, 1999). We aim to test this hypothesis by developing a numerical model of the process, and then comparing model outputs with observations. The hypothesis proposes that the water interconnects in the slab following an earthquake. If sufficient pressure develops a hydrofracture occurs. The hydrofracture will expand in the direction of the least compressive stress and propagate in the direction of the most compressive stress, which is out into the wedge. Therefore we can calculate the hydrofracture path and end-point, given the start location on the slab and the propagation distance. We can therefore predict where water is added to the mantle wedge. To take this further we have developed a thermal model of a subduction zone. The model uses a finite difference, marker-in-cell method to solve the heat equation (Gerya, 2010). The velocity field was prescribed using the analytical expression of cornerflow (Batchelor, 1967). The markers contained within the fixed grid are used to track the different compositions and their properties. The subduction zone thermal model was benchmarked (Van Keken, 2008). We used the hydrous melting parameterization of Katz et.al., (2003) to calculate the degree of melting caused by the addition of water to the wedge. We investigate models where the hydrofractures, with properties constrained by estimated water fluxes, have random end points. The model predicts degree of melting, magma productivity, temperature of the melt and water content in the melt for different initial water fluxes. Future models will also include the buoyancy effect of the melt and residue. Batchelor, Cambridge UP, 1967. Davies, Nature, 398: 142-145, 1999. Gerya, Cambridge UP, 2010. Katz, Geochem. Geophys. Geosy, 4(9), 2003 Van Keken et.al. Phys. Earth. Planet. In., 171:187-197, 2008.

  6. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  7. Radially converging tracer test in a low-angle fracture zone at the Finnsjoen site, central Sweden. The fracture zone project - phase 3

    International Nuclear Information System (INIS)

    Gustafsson, E.; Nordqvist, R.

    1993-10-01

    The performance and results of a radially converging tracer test in a low-angle major fracture zone in crystalline rock are described. The extensive, about 100 m thick, zone 2 was encountered by means of borehole investigations at depths ranging from 100 to 250 metres at the Finnsjon site, central eastern Sweden. The zone studied (zone 2) consists of highly conductive, metre thick interconnected minor shear and fracture zones (sub-zones) with low conductive rock in between. The objective of the tracer test was primarily to determine flow and transport characteristics in a major fracture zone. Secondly new equipment, experimental design and methods of interpretation were developed, tested and improved. The converging flow field was created by pumping in a central borehole from a packed-off interval enclosing the whole thickness of zone 2. Tracer breakthrough was registered from all nine injection points, with first arrivals ranging from 24 to 3200 hours. Evaluated flow and transport parameters included; flow porosity, dispersivity, flow wetted surface, fracture aperture and hydraulic conductivity in fracture flow paths. Directional variations were found in the flow and transport parameters determined, which is concluded to be due to heterogeneity and/or anisotropy. This conditions is more pronounced at depth in zone 2. The results from the tracer test also clearly show that the upper boundary of zone 2 is highly conductive and consistent over hundreds of metres. Within zone 2, and between upper and lower margins, interconnected discrete minor shear and fracture zones (sub-zones) constitute flow paths of considerable variable residence times. The dispersion within the sub-zones of zone 2, expressed as Peclet numbers ranged from 16 to 40. Flow porosity was determined to be 0.001-0.05 in the upper sub-zone and 0.01-0.1 in the intermediate and lower ones and flow wetted surface area per volume of rock was calculated to be within 1-92 m 2 /m 3 . 68 refs, 61 figs, 40 tabs

  8. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.

    2012-11-19

    The Tjörnes Fracture Zone (TFZ), North Iceland, is a 120 km transform offset of the Mid-Atlantic-Ridge that accommodates 18 mm yr−1 plate motion on two parallel transform structures and connects the offshore Kolbeinsey Ridge in the north to the on-shore Northern Volcanic Zone (NVZ) in the south. This transform zone is offshore except for a part of the right-lateral strike-slip Húsavík-Flatey fault (HFF) system that lies close to the coastal town of Húsavík, inducing a significant seismic risk to its inhabitants. In our previous work we constrained the locking depth and slip-rate of the HFF using 4 yr of continuous GPS measurements and found that the accumulated slip-deficit on the fault is equivalent to a Mw6.8 ± 0.1 earthquake, assuming a complete stress release in the last major earthquakes in 1872 and a steady accumulation since then. In this paper we improve our previous analysis by adding 44 campaign GPS (EGPS) data points, which have been regularly observed since 1997. We extract the steady-state interseismic velocities within the TFZ by correcting the GPS data for volcanic inflation of Theistareykir—the westernmost volcano of the NVZ—using a model with a magma volume increase of 25 × 106 m3, constrained by InSAR time-series analysis results. The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  9. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory

  10. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory

  11. Fracture Modes and Identification of Fault Zones in Wenchuan Earthquake Fault Scientific Drilling Boreholes

    Science.gov (United States)

    Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.

    2017-12-01

    After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.

  12. Monitoring of surface deformation and microseismicity applied to radioactive waste disposal through hydraulic fracturing at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.; Switek, J.; Holzhausen, G.R.; Majer, E.

    1985-01-01

    Low-level liquid nuclear wastes are disposed of at Oak Ridge National Laboratory by the hydrofracture process. Wastes are mixed with cement and other additives to form a slurry that is injected into shale of low permeability at 300 m depth. The slurry spreads radially along bedding plane fractures before setting as a grout. Different methods for monitoring the location and behavior of the fractures have been investigated. Radioactive grout sheets can be located by gamma-ray logging of cased observation wells. Two other methods are based on the fact that the ground surface is deformed by the injection. The first entails surface leveling of a series of benchmarks; uplift up to 2.5 cm occurs. The second method involves use of tiltmeters that are sensitive and measure ground deformation in real time during an injection. Both methods show subsidence during the weeks following an injection. Interpretive models for the tiltmeter data are based on the elastic response of isotropic and anisotropic media to the inflation of a fluid-filled fracture. A fourth monitoring method is based on microseismicity. Geophone arrays were used to characterize the fracture process and to provide initial assessment of the feasibility of using seismic measurements to map the fractures as they form. An evaluation of each method is presented. 8 refs., 6 figs

  13. Monitoring of surface deformation and microseismicity applied to radioactive waste disposal through hydraulic fracturing at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.; Switek, J.; Holzhausen, G.R.; Majer, E.; Applied Geomechanics, Inc., Santa Cruz, CA; Lawrence Berkeley Lab., CA)

    1985-01-01

    Low-level liquid nuclear wastes are disposed of at Oak Ridge National Laboratory by the hydrofracture process. Wastes are mixed with cement and other additives to form a slurry that is injected into shale of low permeability at 300 m depth. The slurry spreads radially along bedding plane fractures before setting as a grout. Different methods for monitoring the location and behavior of the fractures have been investigated. Radioactive grout sheets can be located by gamma-ray logging of cased observation wells. Two other methods are based on the fact that the ground surface is deformed by the injection. The first entails surface leveling of a series of benchmarks; uplift up to 2.5 cm occurs. The second method involves use of tiltmeters that are sensitive and measure ground deformation in real time during an injection. Both methods show subsidence during the weeks following an injection. Interpretive models for the tiltmeter data are based on the elastic response of isotropic and anisotropic media to the inflation of a fluid-filled fracture. A fourth monitoring method is based on microseismicity. Geophone arrays were used to characterize the fracture process and to provide initial assessment of the feasibility of using seismic measurements to map the fractures as they form. An evaluation of each method is presented

  14. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction

    Science.gov (United States)

    Dong, Dongdong; Zhang, Zhengyi; Bai, Yongliang; Fan, Jianke; Zhang, Guangxu

    2018-01-01

    The Yap subduction zone in the western Pacific presents some unique features compared to normal intra-oceanic subduction zones such as the subduction of an oceanic plateau. However, due to the relative paucity of geophysical data, the detailed structure remains unknown in this area. In this study, we present the latest high-quality swath bathymetry and multi-channel seismic data acquired synchronously in 2015 across the Yap subduction zone. The topographic and sedimentary features are intensively investigated and a modified evolutionary model of the Yap subduction zone is proposed. The two-stage evolution of the Parece Vela Basin (PVB) produced fabrics that are N-S trending and NW-SE trending. Our seismic data clearly reveal landslide deposits at the upper slope break of the forearc, to the north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. The swath bathymetry and seismic profile reveal detailed horst and graben structures, including a crescent-shaped fault zone near the contact between the Yap Trench and the Caroline Ridge. A simple geometric model is proposed to explain the structure formation, indicating that the higher topography of the Caroline Ridge resulted in enhanced bending-related extension. A seismic angular unconformity (named R1) is identified in the Sorol Trough, marking the onset of rifting in the trough. Based on the sequence thickness and deposition rate by Deep Sea Drilling Project (DSDP), it is deduced that the Sorol Trough formed at 10 Ma or even earlier. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: the proto-Yap Arc rupture in the Oligocene, the collision of the Caroline Ridge and the Yap Trench in the late Oligocene or middle Miocene, and the onset of the Sorol Trough rifting in the late Miocene.

  15. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    Energy Technology Data Exchange (ETDEWEB)

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen [WISFIR Lab., Physics of Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Riyanto, Erwin [PT Freeport Indonesia, Tembagapura, Indonesia herlansetiadi@yahoo.com (Indonesia)

    2015-04-16

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  16. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    Science.gov (United States)

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  17. Radiographic observation and semi-analytical reconstruction of fracture process zone silicate composite specimen

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jandejsek, Ivan; Fíla, Tomáš; Veselý, V.

    2013-01-01

    Roč. 58, č. 3 (2013), s. 315-326 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GAP105/11/1551 Institutional support: RVO:68378297 Keywords : cementitious composite * quasi-brittle fracture * fracture process zone * digital radiography Subject RIV: JL - Materials Fatigue, Friction Mechanics http://journal.it.cas.cz/index.php?stranka=contents

  18. A novel approach proposed for fractured zone detection using petrophysical logs

    International Nuclear Information System (INIS)

    Tokhmechi, B; Memarian, H; Noubari, H A; Moshiri, B

    2009-01-01

    Fracture detection is a key step in wellbore stability and fractured reservoir fluid flow simulation. While different methods have been proposed for fractured zones detection, each of them is associated with certain shortcomings that prevent their full use in different related engineering applications. In this paper, a novel combined method is proposed for fractured zone detection, using processing of petrophysical logs with wavelet, classification and data fusion techniques. Image and petrophysical logs from Asmari reservoir in eight wells of an oilfield in southwestern Iran were used to investigate the accuracy and applicability of the proposed method. Initially, an energy matching strategy was utilized to select the optimum mother wavelets for de-noising and decomposition of petrophysical logs. Parzen and Bayesian classifiers were applied to raw, de-noised and various frequency bands of logs after decomposition in order to detect fractured zones. Results show that the low-frequency bands (approximation 2, a 2 ) of de-noised logs are the best data for fractured zones detection. These classifiers considered one well as test well and the other seven wells as train wells. Majority voting, optimistic OWA (ordered weighted averaging) and pessimistic OWA methods were used to fuse the results obtained from seven train wells. Results confirmed that Parzen and optimistic OWA are the best combined methods to detect fractured zones. The generalization of method is confirmed with an average accuracy of about 72%

  19. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    Science.gov (United States)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters

  20. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  1. Gas Migration Processes through the Gas Hydrate Stability Zone at Four-Way Closure Ridge Offshore SW Taiwan

    Science.gov (United States)

    Kunath, P.; Chi, W. C.; Berndt, C.; Liu, C. S.

    2016-12-01

    We have used 3D P-Cable seismic data from Four-Way-Closure Ridge, a NW-SE trending anticlinal ridge within the lower slope domain of accretionary wedge, to investigate the geological constraints influencing the fluid migration pattern in the shallow marine sediments. In the seismic data, fluid migration feature manifests itself as high reflection layers of dipping strata, which originate underneath a bottom simulating reflector (BSR) and extend towards the seafloor. Shoaling of the BSR near fluid migration pathways indicates a focused fluid flux, perturbing the temperature field. Furthermore, seafloor video footage confirmed the presence of recent methane seepage above seismically imaged fluid migration pathways. We plan to test two hypotheses for the occurrence of these fluid migration pathways: 1) the extensional regime under the anticlinal ridge crest caused the initiation of localized fault zones, acting as fluid conduits in the gas hydrate stability zone (GHSZ). 2) sediment deformation induced by focused fluid flow and massive growth and dissolution of gas hydrate, similar to processes controlling the evolution of pockmarks on the Nigerian continental margin. We suggest that these processes may be responsible for the formation of a massive hydrate core in the crest of the anticline, as inferred from other geophysical datasets. Triggering process for fluid migration cannot be clearly defined. However, the existence of blind thrust faults may help to advect deep-seated fluids. This may be augmented by biogenic production of shallow gas underneath the ridge, where the excess of gas enables the coexistence of gas, water, and gas hydrate within the GHSZ. Fluid migration structures may exists because of the buoyancy of gas-bearing fluids. This study shows a potential model on how gas-bearing fluids migrate upward towards structural highs, which might occur in other anticlinal structures around the world. Keywords: P-Cable, gas-hydrate, fluid flow, fault-related fold

  2. Inter-Tropical Convergence Zone Shifts During the Last Glacial Cycle Near the Line Islands Ridge.

    Science.gov (United States)

    Reimi Sipala, M. A.; Marcantonio, F.

    2015-12-01

    This research focuses on the shift in the inter-tropical convergence zone (ITCZ) during the last glacial cycle. Deep sea sediments from the Central Equatorial Pacific (CEP) are used to quantify and isolate the sources and sinks of atmospheric dust. Dust records and influences climate affecting a wide range of process from Earth's Albedo to carbon export. Our aim is to determine the provenance of windblown dust deposited in the CEP near the Line Islands Ridge using radiogenic Nd and Pb isotopes, and to infer the location of the ITCZ and the changes of atmospheric transport through ice-age climate transitions. We focus on three cores from the CEP, along a meridional transect at approximately 160° W --- 0° 28' N (ML1208-17PC), 4° 41' N (ML1208-31BB), and 7 ° 2'N (ML1208-31BB). Radiogenic isotopes (Sr, Nd, Pb) have been successfully used to distinguish between different potential dust sources in the aluminosilicates fractions of Pacific Sediments. Our preliminary data suggest that the equatorial core (17PC) predominantly receives its dust from South America and South American volcanics South America (206Pb/204Pb = 18.62, 207Pb/204Pb = 15.63, 208Pb/204Pb = 38.62; ; ɛNd = ~ -5). The middle core, which more closely reflects the modern position of the ITCZ, has varied dust provenance through time, at times consistent with Asian Loess (average ratios are 206Pb/204Pb = 18.88, 207Pb/204Pb = 15.69, 208Pb/204Pb = 39.06; ɛNd = ~ -7) and Asian Volcanics (ɛNd = ~-1) suggesting a shift in the ITCZ south of 4N before the LGM. Our results for the most northern core are forthcoming. Prior to Holocene time, the changes in Pb isotope ratios in both cores appear to be in anti-phase; the northern core becomes less radiogenic up to the LGM, while the southern core becomes more radiogenic. This is potentially due to a weakening of the ITCZ during glacial times. A secondary aim of this work is to determine if the ITCZ migrated further south than core 17PC during Heinrich stage II.

  3. Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys

    Science.gov (United States)

    Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.

    2018-04-01

    Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.

  4. Preliminary modeling for solute transport in a fractured zone at the Korea underground research tunnel (KURT)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung Kyun; Lee, Jaek Wang; Baik, Min Hoon; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-02-15

    Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.

  5. The Charlie-Gibbs Fracture Zone: A Crossroads of the Atlantic Meridional Overturning Circulation

    Science.gov (United States)

    Bower, A. S.; Furey, H. H.; Xu, X.

    2016-02-01

    The Charlie-Gibbs Fracture Zone (CGFZ), a deep gap in the Mid-Atlantic Ridge at 52N, is the primary conduit for westward-flowing Iceland-Scotland Overflow Water (ISOW), which merges with Denmark Strait Overflow Water to form the Deep Western Boundary Current. The CGFZ has also been shown to "funnel" the path of the northern branch of the eastward-flowing North Atlantic Current (NAC), thereby bringing these two branches of the AMOC into close proximity. A recent two-year time series of hydrographic properties and currents from eight tall moorings across the CGFZ offers the first opportunity to investigate the NAC as a source of variability for ISOW transport. The two-year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ (stronger eastward NAC related to weaker westward ISOW transport). Vertical structure of the low-frequency current variability and water mass structure in the CGFZ will also be discussed. The results have implications regarding the interaction of the upper and lower limbs of the AMOC, and downstream propagation of ISOW transport variability in the Deep Western Boundary Current.

  6. New sidescan sonar and gravity evidence that the Nova-Canton Trough is a fracture zone

    Science.gov (United States)

    Joseph, Devorah; Taylor, Brian; Shor, Alexander N.

    1992-05-01

    A 1990 sidescan sonar survey in the eastern region of the Nova-Canton Trough mapped 138°-striking abyssal-hill fabric trending into 70°-striking trough structures. The location and angle of intersection of the abyssal hills with the eastern Nova-Canton Trough effectively disprove a spreading-center origin of this feature. Free-air gravity anomalies derived from satellite altimetry data show continuity, across the Line Islands, of the Nova-Canton Trough with the Clipperton Fracture Zone. The Canton-Clipperton trend is copolar, about a pole at 30°S, 152°W, with other coeval Pacific-Farallon fracture-zone segments, from the Pau to Marquesas fracture zones. This copolarity leads us to postulate a Pacific-Farallon spreading pattern for the magnetic quiet zone region north and east of the Manihiki Plateau, with the Nova-Canton Trough originating as a transform fault in this system.

  7. GOLD-BEARING MINERALIZED ZONES OF THE YUZHNOE ORE OCCURRENCE AND ITS COMPARISON WITH LODE GOLD DEPOSITS OF YENISEI RIDGE

    OpenAIRE

    MANSUROV R.KH.

    2016-01-01

    The relevance of the discussed issue is caused by the need to detect a new gold ore deposits within the Yenisei ridge to replenish the mineral resources of gold ore in Russia. The main aim of the study is to explore the features of geological structure and gold ore mineralized zones of ore occurrence Yuzhnoe in order to forecast gold ore bodies, and to substantiate the continuation of geological exploration. The prospecting is realized by the express method of prospecting of gold ore deposits...

  8. Trophic Structure Over the Northern Mid-Atlantic Ridge: The Bathypelagic Zone Really Matters

    Science.gov (United States)

    We present preliminary results and ongoing efforts to characterize the trophic structure and energy flow of the pelagic ecosystems of the northern Mid-Atlantic Ridge (MAR), from Iceland to the Azores. This study is one component of the international CoML field project MAR-ECO (ww...

  9. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    Science.gov (United States)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  10. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile

    Science.gov (United States)

    Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.

    2017-11-01

    The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the

  11. Magmatic evolution of the fresh basalts from the Ridge axis near Egaria Fracture Zone, Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.

    was run through a computer programme of the least square and mass balance calculations for understanding the evolutionary path by differentiating minerals present in these basalts. The results indicate that the basalts under study represent a set...

  12. A rock mechanics study of fracture zone 2 at the Finnsjoen site

    International Nuclear Information System (INIS)

    Leijon, B.; Ljunggren, C.

    1992-01-01

    Comprehensive field investigations at the Finnsjoen study site have revealed a subhorizontal zone, termed Zone 2, that exhibits anomalous characteristics in terms of high hydraulic conductivity, governing the groundwater transport pattern on a regional scale. The present study provides an assessment of the characteristics of Zone 2. Thus, estimates of the deformational characteristics of the zone, based on available borehole information, show that the zone forms a diffuse and rather moderate mechanical contrast to the surrounding bedrock. As also verified by stress measurement results, major stress anomalies attributable to the zone are therefore not to be expected. Bound estimates of stress conditions during periods of glaciation and deglaciation are also derived, and possible impacts of these loadings on the fracture zone are discussed. It is concluded that glaciation represents stable conditions, whilst the complex loading mechanisms encountered during deglaciation may trigger reactivation of structures at shallow depth. Taking the above results as an example, implications of a feature like Zone 2 on the integrity of a hypothetical repository are discussed in more general terms. Considering the likely spatial extension of the mechanical disturbances related to the repository excavations and the fracture zone respectively, it is suggested that a mutual distance of the order of one hundred metres is sufficient to avoid mechanical interaction. (au)

  13. Vertical Root Fracture: Preservation of the Alveolar Ridge Using Immediate Implants

    Directory of Open Access Journals (Sweden)

    Edmar de Oliveira Oya

    2014-01-01

    Full Text Available Teeth with vertical root fracture (VRF have complete or incomplete fractures that begin in the root and extend toward the occlusal surface. The most frequent causes of VRF originate from physical trauma, occlusal prematurity, inadequate endodontic treatment, and iatrogenic causes. Diagnose is difficult and delay can cause stomatognathic system problem. The purpose of this case report was to evaluate immediate implant placement after extraction of teeth with vertical root fracture. For the 1st case, the VRF in 1st left lower molar was confirmed during surgical flap and at the same time, the tooth was removed and immediate implant was placed. For the 2nd case, the VRF 1st left lower molar was confirmed during endodontic access and at the same appointment, the tooth was removed and the immediate implant is placed. Several studies have shown that immediate implants have similar success rates when compared with late implants. Consider that this approach is a safe procedure with favorable prognosis. In cases of VRF, the main factor to be considered is the presence of adequate bone support and immediate implants can preserve the vertical bone height, adding the fact that good patient compliance reduces the number of surgical interventions and promotes the functionality of stomatognathic system.

  14. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction

    Science.gov (United States)

    Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.

    2018-01-01

    Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).

  15. Experimental evaluation of contour J integral and energy dissipated in the fracture process zone

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jandejsek, Ivan

    2014-01-01

    Roč. 129, October (2014), s. 14-25 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060; GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : experimental stress analysis * thin wall material * cohesive zone * J integral * fracture process zone Subject RIV: JN - Civil Engineering Impact factor: 1.767, year: 2014 http://www.sciencedirect.com/science/article/pii/S0013794414000988

  16. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Juhlin, C.

    1998-01-01

    The reflection seismic method is a potentially powerful tool for identifying and localising fracture zones in crystalline rock if used properly. Borehole sonic logs across fracture zones show that they have reduced P-wave velocities compared to the surrounding intact rock. Diagnostically important S-wave velocity log information across the fracture zones is generally lacking. Generation of synthetic reflection seismic data and subsequent processing of these data show that structures dipping up towards 70 degrees from horizontal can be reliably imaged using surface seismic methods. Two real case studies where seismic reflection methods have been used to image fracture zones in crystalline rock are presented. Two examples using reflection seismic are presented. The first is from the 5354 m deep SG-4 borehole in the Middle Urals, Russia where strong seismic reflectors dipping from 25 to 50 degrees are observed on surface seismic reflection data crossing over the borehole. On vertical seismic profile data acquired in the borehole, the observed P-wave reflectivity is weak from these zones, however, strong converted P to S waves are observed. This can be explained by the source of the reflectors being fracture zones with a high P wave to S wave velocity ratio compared to the surrounding rock resulting in a high dependence on the angle of incidence for the reflection coefficient. A high P wave to S wave velocity ratio (high Poisson's ratio) is to be expected in fluid filled fractured rock. The second case is from Aevroe, SE Sweden, where two 1 km long crossing high resolution seismic reflection lines were acquired in October 1996. An E-W line was shot with 5 m geophone and shotpoint spacing and a N-S one with 10 m geophone and shotpoint spacing. An explosive source with a charge size of 100 grams was used along both lines. The data clearly image three major dipping reflectors in the upper 200 ms (600 m). The dipping ones intersect or project to the surface at/or close to

  17. Testing the method of isolating fracture zones from tiltmeter data

    Energy Technology Data Exchange (ETDEWEB)

    Karmazina, T.S.; Bogdanov, A.P.; Ruban, V.A.

    1981-01-01

    In examples of West Ciscaucasian wells, the possibility is shown of determining the presence of fissures with a steep incline, measurement of the vertical length and azimuth of the fissure zones by determining the ellipticity of the well sections and measuring the azimuths of ellipticity.

  18. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    Science.gov (United States)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  19. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  20. Magnetic lineations, fracture zones and seamounts in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.

    Magnetic and bathymetric data collected in the Central Indian Basin, between 8 degrees S and 16 degrees S lat., and 71 degrees E and 82 degrees E long. have been studied. The inferred fracture zones at 73 degrees E, 76 degrees 30'E and 79 degrees E...

  1. Deep and bottom water characteristics in the Owen Fracture Zone, Western Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Kureishy, T.W.

    Hydro chemical studies at a station (10 degrees 34.l'N,56 degrees 31,7'E) in the Owen Fracture zone reveal an active movement of bottom water as approx 75 m thick, cold, low-salinity layer. Silicate profile exhibits a broad maximum coinciding with a...

  2. Multibeam bathymetric, gravity and magnetic studies over 79 degrees E fracture zone, central Indian basin

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Ramprasad, T.; Kodagali, V.N.; Nair, R.R.

    A regional scale bathymetric map has been constructed for the 79 degrees E fracture zone (FZ) in the Central Indian Basin between 10 degrees 15'S and 14 degrees 45'S lat. and 78 degrees 55'E and 79 degrees 20'E long. using the high...

  3. Proceedings of the Joint IAEA/CSNI Specialists` Meeting on Fracture Mechanics Verification by Large-Scale Testing held at Pollard Auditorium, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C.E.; Bass, B.R.; Keeney, J.A. [comps.] [Oak Ridge National Lab., TN (United States)

    1993-10-01

    This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasis was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.

  4. Computer model for determining fracture porosity and permeability in the Conasauga Group, Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Sledz, J.J.; Huff, D.D.

    1981-04-01

    Joint orientations for the shale and siltstone beds of the Conasauga Group were measured from outcrop exposures on the Oak Ridge National Laboratory Reservation. The data collected from two strike belts (structural trends) were analyzed with the use of the computer and subdivided into individual joint sets. The joint set patterns in the Northern outcrop belt were too complex for orientation prediction; joint formation is believed to be influenced by polyphase deformation. The Southern Conasauga Belt contains an orthogonal joint set consisting of strike and a-c joints in all outcrops measured. These are believed to be tension joints formed during thrust sheet emplacement. Joint length and spacing, measured in the field, were found to be extremely variable within each exposure and highly dependent upon surficial weathering. The measurements from all locations were combined for detailed analysis and trend prediction. Results showed that the joint length and spacing increased with increasing bed thickness in the siltstone, while the bed thickness variations in the shale had little effect on the joints. A computer model was developed by combining the joint orientation, joint spacing, and joint length data collected in the field with subsurface drill core information for the purpose of calculating the fracture porosity and permeability of the rocks. The joint gap width was measured from both outcrop and subsurface samples with ranges from 0.1 mm to 0.7 mm in the siltstones and less than 0.2 mm in the shales. The value for the joint gap width was found to be the major factor in the fracture porosity and permeability calculation

  5. Early Pliocene paleoceanography of the Vityaz Fracture Zone (VFZ), Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Banerjee, R.; Mergulhao, L.P.; Banerjee, P.; Parthiban, G.; Tewari, M.

    . Scientific results of drilling the North Pacific transect. In Proceedings of the Ocean Drilling Program, Scientific results: College Station, Texas, Ocean Drilling Program, 145:577-596. Rea, D.K., 1992. Delivery of Himalayan sediment to the northern...

  6. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  7. Chip fractures from the distal lateral trochlear ridge of the talus of a quarter horse gelding: a veterinary medicine clinical report.

    Science.gov (United States)

    Groves, L

    2005-09-05

    An eighteen-month old quarter horse gelding was diagnosed with chip fractures from the distal lateral trochlear ridge of the talus. The horse presented with the symptom of persistent synovitis. The diagnosis was based on radiographic evidence. The horse was treated initially with arthroscopic surgery. He was given a non-steroidal anti-inflammatory agent, and a chondroprotective agent to prevent further damage to, and aid in the healing of, the damaged joint.

  8. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    Science.gov (United States)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  9. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge

  10. Morphotectonics of the Carlsberg Ridge between 62 degrees 20 minutes and 66 degrees 20 minutes E, northwest Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Chaubey, A.K.; Amarnath, D.; Mudholkar, A.

    with dominance of tectonic extension. © 2008 Elsevier B.V. All rights reserved. 1. Introduction The Carlsberg Ridge, the northwestern limb of the Indian Ocean Ridge system, defines the plate boundary between the Indian and Somalian plates. The Owen fracture zone... of the spreading centre The Carlsberg ridge is characterised by rugged topography, steep valley walls and wide rift valley floor, all characteristics of a slow spreadingridge.Thereisonlyonefirstordersegmentcausedbyawell- defined transform fault and fracture zone along...

  11. Rectangular Schlumberger resistivity arrays for delineating vadose zone clay-lined fractures in shallow tuff

    International Nuclear Information System (INIS)

    Miele, M.; Laymon, D.; Gilkeson, R.; Michelotti, R.

    1996-01-01

    Rectangular Schlumberger arrays can be used for 2-dimensional lateral profiling of apparent resistivity at a unique current electrode separation, hence single depth of penetration. Numerous apparent resistivity measurements are collected moving the potential electrodes (fixed MN spacing) within a rectangle of defined dimensions. The method provides a fast, cost-effective means for the collection of dense resistivity data to provide high-resolution information on subsurface hydrogeologic conditions. Several rectangular Schlumberger resistivity arrays were employed at Los Alamos National Laboratory (LANL) from 1989 through 1995 in an area adjacent to and downhill from an outfall pipe, septic tank, septic drainfield, and sump. Six rectangular arrays with 2 AB spacings were used to delineate lateral low resistivity anomalies that may be related to fractures that contain clay and/or vadose zone water. Duplicate arrays collected over a three year time period exhibited very good data repeatability. The properties of tritium make it an excellent groundwater tracer. Because tritium was present in discharged water from all of the anthropogenic sources in the vicinity it was used for this purpose. One major low resistivity anomaly correlates with relatively high tritium concentrations in the tuff. This was determined from borehole samples collected within and outside of the anomalous zone. The anomaly is interpreted to be due to fractures that contain clay from the soil profile. The clay was deposited in the fractures by aeolian processes and by surface water infiltration. The fractures likely served as a shallow vadose zone groundwater pathway

  12. Tectonics of the Ninetyeast Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Abraham, H.; Sager, W.W.; Pringle, M.S.; Frey, F.; Rao, D.G.; Levchenko, O.V.

    and the Wharton spreading ridge. Satellite gravity data and magnetic anomalies 34 through 19 define crustal isochrons and show fracture zones striking approx. N5 degrees E. One of these, at 89 degrees E, crosses the approx. N10 degrees E trending NER, impacting...

  13. Some aspects of fracture assessment diagrams, plastic zone size corrections and contour integrals in post-yield fracture mechanics

    International Nuclear Information System (INIS)

    Ainsworth, R.A.

    1981-03-01

    The CEGB failure assessment route is briefly described and is shown to be consistent with a plastic zone size correction method. Modifications to the assessment route which have recently been suggested for describing the effects of thermal and residual stresses are examined. It is shown that the plastic zone size correction method may be used to include local thermal and residual stresses in the assessment route in a simple manner. The assessment route is compared with finite-element solutions for a thermal stress problem and with strip-yield model solutions for a residual stress problem. In using finite-element solutions there are different contour integral methods available for calculating a post-yield fracture parameter. The J-integral of Rice and the J*-integral of Blackburn are examined and compared and the appropriate parameter is identified. (author)

  14. Monitoring the vadose zone in fractured tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Weeks, E.P.; Thamir, F.; Yard, S.N.; Hofrichter, P.B.

    1985-01-01

    Unsaturated tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential repository for high-level radioactive waste. As part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy, the US Geological Survey has been conducting hydrologic, geologic, and geophysical investigations at Yucca Mountain and the surrounding region to provide data evaluation of the potential suitability of the site. Hydrologic investigations of the unsaturated zone at this site were started in 1982. A 17.5-inch- (44.5-centimeter-) diameter borehole (USW UZ-1) was drilled by the reverse-air vacuum-drilling technique to a depth of 1269 feet (387 meters). This borehole was instrumented at 33 depth levels. At 15 of the levels, 3 well screens were embedded in coarse-sand columns. The sand columns were isolated from each other by thin layers of bentonite, columns of silica flour, and isolation plugs consisting of expansive cement. Thermocouple psychrometers and pressure transducers were installed within the screens and connected to the data-acquisition system at the land surface through thermocouple and logging cables. Two of the screens at each level were equipped with access tubes to allow collection of pore-gas samples. In addition to these instruments, 18 heat-dissipation probes were installed within the columns of silica flour, some of which also had thermocouple psychrometers. 20 refs., 13 figs., 2 tabs

  15. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  16. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    Science.gov (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  17. Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels

    CSIR Research Space (South Africa)

    Sellers, EJ

    2000-10-01

    Full Text Available - ments in sandstone and granite indicate that the breakout shape may be altered by the applied stress path, the strain rate, the boundary conditions and the excavation shape. (Ewy and Cook 1990a, 1990b; Gay 1973; Barla 1972... of sandstone containing cylindrical holes tested under increasing hy- drostatic pressures, up to 275 MPa, indicate that the extent of the fracture zone size increases with increasing pressure, until the entire sample fails (Gay...

  18. Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Williamson

    2009-08-01

    It is well known that oxide fuels crack during the first rise to power, with continued fracture occurring during steady operation and especially during power ramps or accidental transients. Fractures have a very strong influence on the stress state in the fuel which, in turn, drives critical phenomena such as fission gas release, fuel creep, and eventual fuel/clad mechanical interaction. Recently, interest has been expressed in discrete fracture methods, such as the cohesive zone approach. Such models are attractive from a mechanistic and physical standpoint, since they reflect the localized nature of cracking. The precise locations where fractures initiate, as well as the crack evolution characteristics, are determined as part of the solution. This paper explores the use of finite element cohesive zone concepts to predict dynamic crack behavior in oxide fuel pellets during power-up, steady operation, and power ramping. The aim of this work is first to provide an assessment of cohesive zone models for application to fuel cracking and explore important numerical issues associated with this fracture approach. A further objective is to provide basic insight into where and when cracks form, how they interact, and how cracking effects the stress field in a fuel pellet. The ABAQUS commercial finite element code, which includes powerful cohesive zone capabilities, was used for this study. Fully-coupled thermo-mechanical behavior is employed, including the effects of thermal expansion, swelling due to solid and gaseous fission products, and thermal creep. Crack initiation is determined by a temperature-dependent maximum stress criterion, based on measured fracture strengths for UO2. Damage evolution is governed by a traction-separation relation, calibrated to data from temperature and burn-up dependent fracture toughness measurements. Numerical models are first developed in 2D based on both axisymmetric (to explore axial cracking) and plane strain (to explore radial

  19. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    Science.gov (United States)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  20. Contrast in manganese nodule distribution on either side of 79~'E fracture zone in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.

    Seabed topography is one of the prime factors in controlling the distribution of manganese nodules. Study of the nodule abundance on either side of the 79~'E fracture zone in the Central Indian Basin (idenfitied from multibeam bathymetric data...

  1. Crack growth and development of fracture zones in plain concrete and similar materials

    International Nuclear Information System (INIS)

    Petersson, P.-E.

    1981-12-01

    A calculation model (the Fictitious Crack Model), based on fracture mechanics and the finite element method, is presented. In the model the fracture zone in front of a crack is represented by a fictitious crack that is able to transfer stress. The stress transferring capability of the fictitious crack normally decreases when the crack width increases. The applicability of linear elastic fracture mechanics to concrete and similar materials is analysed by use of the Fictitious Crack Model. The complete tensile stress-strain curve is introduced as a fracture mechanical parameter. The curve can be approximately determined if the tensile strength, the Young's modulus and the fracture energy are known. Suitable test methods for determining these properties are presented and test results are reported for a number of concrete qualities. A new type of very stiff tensile testing machine is presented by which it is possible to carry out stable tensile tests on concrete. The complete tensile stress-strain curves have been determined for a number of concrete qualities. A complete system for analysing crack propagation in concrete is covered, as a realistic material model, a functional calculation model and methods for determining the material properties necessary for the calculations are included. (Auth.)

  2. Geophysical data from boreholes DM1, DM2, DM3, and DM3a, New Hydraulic Fracturing Facility, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Haase, C.S.

    1987-03-01

    A comprehensive suite of geophysical logs was obtained from four deep monitoring boreholes at the New Hydrofracture Facility. The logging was an attempt to obtain stratigraphic, structural, and hydrologic information on the subsurface environment surrounding the hydrofracture facility. Logs obtained include caliper, gamma, neutron, density, single-point resistance, long- and short-normal resistivity, spontaneous potential, temperature, acoustic velocity, variable density, and borehole televiewer. Analysis and interpretation of the geophysical logs allowed the stratigraphic section at the facility to be determined and, by comparison with calibrated geophysical logs from borehole ORNL-Joy No. 2, allowed detailed inferences to be drawn about rock types and properties at the hydrofracture facility. Porosity values measured from the logs for Conasauga Group strata, as well as permeability values inferred from the logs, are low. Several intervals of apparently greater permeability, associated primarily with limestone-rich portions of the Maryville Limestone and sandstone-rich portions of the Rome Formation, were noted. Numerous fractures were identified by using several logs in combination. No one geophysical log was reliable for fracture identification although the acoustic-televiewer log appeared to have the greatest success. In addition to their characterization of subsurface conditions in the vicinity of the hydrofracture facility, the geophysical logs provided data on the extent of hydraulic fractures. Anomalies on single-point resistance logs that corresponded to prominent fractures identified on televiewer logs indicate intervals affected by hydraulic fractures associated with waste injection at the New Hydrofracture Facility. 14 refs

  3. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J.; Bluemling, P.; Vomvoris, S.

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs

  4. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    Science.gov (United States)

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi

    2014-04-01

    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  5. Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    RSI

    2008-03-01

    The purpose of this Phased Construction Completion Report (PCCR) is to present the fiscal year (FY) 2007 results of characterization activities and recommended remedial actions (RAs) for 11 exposure units (EUs) in Zone 2 (Z2-01, Z2-03, Z2-08, Z2-23, Z2-24, Z2-28, Z2-34, Z2-37, Z2-41, Z2-43, and Z2-44) at the East Tennessee Technology Park (ETTP), which is located in the northwest corner of the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee (Fig. 1). ETTP encompasses a total land area of approximately 5000 acres that has been subdivided into three zones--Zone 1 ({approx}1400 acres), Zone 2 ({approx}800 acres), and the Boundary Area ({approx}2800 acres). Zone 2, which encompasses the highly industrialized portion of ETTP shown in Fig. 1, consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Zone 2 Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the Dynamic Verification Strategy (DVS) and data quality objectives (DQOs) presented in the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for the accessible EUs in FY 2007; (2) Describe and document the risk evaluation for each EU, and determine if the EU met the Zone 2 ROD requirements

  6. Geochemical implications of gabbro from the slow-spreading Northern Central Indian Ocean Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, Dwijesh; Misra, S.; Banerjee, R.; Weis, D.

    ., 1989) and the dynamics of crystallization of plutonic rocks (Bloomer et al., 1989; Meyer et al., 1989). The recovery of gabbroic rocks is mostly restricted to major transform faults or fracture zones transecting mid-ocean ridges, e.g., Mid... gabbro of Indian Ocean Ridge System (Fig 1) is ODP leg 118 from SWIR (Dick et al., 2002; Coogan et al, 2001). Gabbro from Leg 179 (ODP Hole 735B from Atlantis II fracture zone, Dick et al., 2000) and Leg 179 (Hole 1105A) near Leg 118 have also been...

  7. Creep in the sparsely fractured rock between a disposal vault and a zone of highly fractured rock

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1993-08-01

    AECL Research is responsible for investigating the feasibility and safety of the disposal of Canada's nuclear fuel waste deep in the plutonic rock of the Canadian Shield. The excavation of the disposal vault, the installation of sealing systems and the heat generated by the fuel waste will all perturb the in situ stress state of the rock mass. This computer codes HOTROK, MCROC and MCDIRC are used to analyze the influence of these stress perturbations on the mechanical behaviour of the rock mass. Time-dependent microcracking of the rock mass will lead to creep around openings in the vault. The analysis specifically estimates the resulting creep strain in the sparsely fractured rock between the edge of the disposal vault and a postulated zone of highly fractured rock. The estimates are extremely conservative. The conclusion reached is that the rock mass more than 3 m beyond the edge of the vault will experience < 0.001 creep strain 100 000 years after the fuel waste is emplaced. (author). 10 refs., 4 tabs., 4 figs

  8. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ni, D.R., E-mail: drni@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xiao, B.L.; Ma, Z.Y. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, W.; Zhang, R.X. [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Zeng, Y.S., E-mail: yszeng@hotmail.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China)

    2017-05-02

    Friction stir welded (FSW) joints of conventional precipitation-hardened aluminum alloys usually fracture in the lowest hardness zone (LHZ) during tension testing. However, all of the FSW joints of a 2198-T8 Al-Li alloy fractured in the stirred zone (SZ) instead of the LHZ with the welding parameters of 800 rpm-200 mm/min and 1600 rpm-200 mm/min under the condition that no welding defects existed in the SZ. The experiment results revealed that lazy S was not the dominant factor resulting in the unusual fracture. The SZ consisted of three subzones, i.e., the shoulder-affected zone, the pin-affected zone, and the transition zone between them. While the former two zones were characterized by fine and equiaxed recrystallized grains, incompletely dynamically recrystallized microstructure containing coarse elongated non-recrystallized grains was observed in the transition zone. The transition zone exhibited the lowest average Taylor factor in the SZ, resulting in a region that was crystallographically weak. Furthermore, obvious lithium segregation at grain boundaries was observed in the transition zone via time-of-flight secondary ion mass spectroscopy analysis, but not in the shoulder-affected zone or the pin-affected zone. The combined actions of both the two factors resulted in the appearance of preferential intergranular fracture in the transition zone and eventually caused the failure in the SZ. The lithium segregation at grain boundaries in the transition zone was closely associated with both the segregation in the base material and the partially dynamically recrystallized microstructure resulting from the inhomogeneous plastic deformation in the SZ.

  9. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints

    International Nuclear Information System (INIS)

    Tao, Y.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y.; Wu, W.; Zhang, R.X.; Zeng, Y.S.

    2017-01-01

    Friction stir welded (FSW) joints of conventional precipitation-hardened aluminum alloys usually fracture in the lowest hardness zone (LHZ) during tension testing. However, all of the FSW joints of a 2198-T8 Al-Li alloy fractured in the stirred zone (SZ) instead of the LHZ with the welding parameters of 800 rpm-200 mm/min and 1600 rpm-200 mm/min under the condition that no welding defects existed in the SZ. The experiment results revealed that lazy S was not the dominant factor resulting in the unusual fracture. The SZ consisted of three subzones, i.e., the shoulder-affected zone, the pin-affected zone, and the transition zone between them. While the former two zones were characterized by fine and equiaxed recrystallized grains, incompletely dynamically recrystallized microstructure containing coarse elongated non-recrystallized grains was observed in the transition zone. The transition zone exhibited the lowest average Taylor factor in the SZ, resulting in a region that was crystallographically weak. Furthermore, obvious lithium segregation at grain boundaries was observed in the transition zone via time-of-flight secondary ion mass spectroscopy analysis, but not in the shoulder-affected zone or the pin-affected zone. The combined actions of both the two factors resulted in the appearance of preferential intergranular fracture in the transition zone and eventually caused the failure in the SZ. The lithium segregation at grain boundaries in the transition zone was closely associated with both the segregation in the base material and the partially dynamically recrystallized microstructure resulting from the inhomogeneous plastic deformation in the SZ.

  10. Characterizing and modelling the radionuclide transport properties of fracture zones in plutonic rocks of the Canadian Shield

    International Nuclear Information System (INIS)

    Davison, C.C.; Kozak, E.T.; Frost, L.H.; Everitt, R.A.; Brown, A.; Gascoyne, M.; Scheier, N.W.

    1999-01-01

    Plutonic rocks of the Canadian Shield were investigated as a potential host medium for nuclear fuel waste disposal of used CANDU nuclear fuel. Field investigations at several geologic research areas on the Shield have shown that major fracture zones are the dominant pathways for the large scale movement of groundwater and solutes through plutonic rock bodies. Because of this, a significant amount of the geoscience work has focused on methods to identify, characterize and model the radionuclide transport properties of major fracture zones in the fractured plutonic rocks of the Shield. In order to quantify the transport properties of such fracture zones a series of, groundwater tracer tests were performed over a period of several years in several major, low dipping fracture zones. Sixteen tracer tests were performed using dipole recirculation methods to evaluate transport over distance scales ranging from 17 m to 700 m. It was concluded that only tracer tests can provide useful estimates of the effective porosity and dispersivity characteristics of these large fracture zones in plutonic rocks of the Canadian Shield. (author)

  11. Cohesive zone modelling of wafer bonding and fracture: effect of patterning and toughness variations

    Science.gov (United States)

    Kubair, D. V.; Spearing, S. M.

    2006-03-01

    Direct wafer bonding has increasingly become popular in the manufacture of microelectromechanical systems and semiconductor microelectronics components. The success of the bonding process is controlled by variables such as wafer flatness and surface preparation. In order to understand the effects of these variables, spontaneous planar crack propagation simulations were performed using the spectral scheme in conjunction with a cohesive zone model. The fracture-toughness on the bond interface is varied to simulate the effect of surface roughness (nanotopography) and patterning. Our analysis indicated that the energetics of crack propagation is sensitive to the local surface property variations. The patterned wafers are tougher (well bonded) than the unpatterned ones of the same average fracture-toughness.

  12. Ridge interaction features of the Line Islands

    Science.gov (United States)

    Konter, J. G.; Koppers, A. A. P.; Storm, L. P.

    2016-12-01

    ridge south of Clarion fracture zone) may result from their formation near microplate triple junctions, above the edges of the LLSVPs, during increased spreading rates of the Cretaceous. Unusually strong passive upwelling may have sampled dense fertile material (Korenaga, 2005) from the LLSVP generating a LIP without a hotspot chain.

  13. Autopsy on a dead spreading center: The Phoenix Ridge, Drake Passage, Antarctica

    Science.gov (United States)

    Livermore, Roy; Balanyá, Juan Carlos; Maldonado, Andrés; Martínez, José Miguel; Rodríguez-Fernández, José; Sanz de Galdeano, Carlos; Galindo Zaldívar, Jesús; Jabaloy, Antonio; Barnolas, Antonio; Somoza, Luis; Hernández-Molina, Javier; Suriñach, Emma; Viseras, César

    2000-07-01

    New bathymetric and magnetic anomaly data from the Phoenix Ridge, Antarctica, show that extinction of all three remaining segments occurred at the time of magnetic chron C2A (3.3 ± 0.2 Ma), synchronous with a ridge-trench collision south of the Hero Fracture Zone. This implies that the ultimate cause of extinction was a change in plate boundary forces occasioned by this collision. Spreading rates slowed abruptly at the time of chron C4 (7.8 ± 0.3 Ma), probably as a result of extinction of the West Scotia Ridge, which would have led to an increase in slip rate and transpressional stress across the Shackleton Fracture Zone. Spectacular, high-relief ridges flanking the extinct spreading center, mapped for the first time using multibeam swath bathymetry, are interpreted as a consequence of a reduction in spreading rate, involving a temporary magma oversupply immediately prior to extinction.

  14. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    Science.gov (United States)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  15. East Greenland Ridge in the North Atlantic Ocean

    DEFF Research Database (Denmark)

    Andreasen, Arne Døssing; Dahl-Jensen, T.; Thybo, Hans

    2008-01-01

    The combined Greenland-Senja Fracture Zones (GSFZ) represent a first-order plate tectonic feature in the North Atlantic Ocean. The GSFZ defines an abrupt change in the character of magnetic anomalies with well-defined seafloor spreading anomalies in the Greenland and Norwegian basins to the south...... but ambiguous and weak magnetic anomalies in the Boreas Basin to the north. Substantial uncertainty exists concerning the plate tectonic evolution of the latter area, including the role of the East Greenland Ridge, which is situated along the Greenland Fracture Zone. In 2002, a combined ocean-bottom seismometer...

  16. Fracture Analysis of Vessels. Oak Ridge FAVOR, v06.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, T. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yin, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2007-12-01

    The current regulations to insure that nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to transients such as pressurized thermal shock (PTS) events were derived from computational models developed in the early-to-mid 1980s. Since that time, advancements and refinements in relevant technologies that impact RPV integrity assessment have led to an effort by the NRC to re-evaluate its PTS regulations. Updated computational methodologies have been developed through interactions between experts in the relevant disciplines of thermal hydraulics, probabilistic risk assessment, materials embrittlement, fracture mechanics, and inspection (flaw characterization). Contributors to the development of these methodologies include the NRC staff, their contractors, and representatives from the nuclear industry. These updated methodologies have been integrated into the Fracture Analysis of Vessels -- Oak Ridge (FAVOR, v06.1) computer code developed for the NRC by the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratory (ORNL). The FAVOR, v04.1, code represents the baseline NRC-selected applications tool for re-assessing the current PTS regulations. This report is intended to document the technical bases for the assumptions, algorithms, methods, and correlations employed in the development of the FAVOR, v06.1, code.

  17. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)

    2007-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  18. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    Science.gov (United States)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is

  19. Designing a large scale combined pumping and tracer test in a fracture zone at Palmottu, Finland

    International Nuclear Information System (INIS)

    Gustafsson, E.; Nordqvist, R.; Korkealaakso, J.; Galarza, G.

    1997-01-01

    The Palmottu Natural Analogue Project in Finland continued as an EC-supported international analogue project in 1996, in order to study radionuclide migration in a natural uranium-rich environment. The site is located in an area of crystalline bedrock, characterized by granites and metamorphic rocks. The uranium deposit extends from the surface to a depth of more than 300 m, and have a thickness of up to 15 m. An overall aim of the project is to increase knowledge of factors affecting mobilization and retardation of uranium in crystalline bedrock. One of the important tasks within the project is to characterize the major flow paths for the groundwater, i.e. important hydraulic features, around the orebody. A planned experiment in one such feature, a sub-horizontal fracture zone which cross-cuts the uranium mineralization. The objectives of the planned combined pumping and tracer test is to verify and further up-date the present hydro-structural model around the central part of the mineralization, increase the current understanding about the hydraulic and solute transport properties of the sub-horizontal fracture zone, as well as to verify and further characterize its hydraulic boundaries. (author)

  20. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Olsson, O.; Falk, L.; Forslund, O.; Lundmark, L.; Sandberg, E.

    1992-01-01

    This paper discusses the borehole radar system, RAMAC, developed within the framework of the International Stripa Project, which can be used in three different measuring modes; single-hole reflection, cross-hole reflection and cross-hole tomography. The reflection modes basically provide geometrical data on features located at some distance from the borehole. In addition the strength of the reflections indicate the contrast in electrical properties. Single-hole reflection data are cylindrically symmetrical with respect to the borehole, which means that a unique fracture orientation cannot be obtained. A method has been devised where absolute orientation of fracture zones is obtained by combining single-hole reflection data from adjacent holes. Similar methods for the analysis of cross-hole reflection data have also been developed and found to be efficient. The radar operates in the frequency range 20-60 MHz which gives a resolution of 1-3 m in crystalline rock. The investigation range obtained in the Stripa granite is approximately 100 m in the single-hole mode and 200-300 m in the cross-hole model. Variations in the arrival time and amplitude of the direct wave between transmitter and receiver have been used for cross-hole tomographic imaging to yield maps of radar velocity and attenuation. The cross-hole measurement configuration coupled with tomographic inversion has less resolution than the reflection methods but provides better quantitative estimates of the values of measured properties. The analysis of the radar data has provided a consistent description of the fracture zones at the Stripa Cross-hole site in agreement with both geological and geophysical observations

  1. Analysis of crustal thickness and off-axis low-velocity zones at the Endeavour segment of the Juan de Fuca Ridge

    Science.gov (United States)

    Wells, A. E.; Hooft, E. E.; Toomey, D. R.; Wilcock, W. S.; Weekly, R. T.

    2010-12-01

    is interpreted to have developed when the northwestward migrating Juan de Fuca Ridge overrode the mantle melt anomaly associated with the Heckle seamount chain. We investigate the segment-scale history of melt supply and the presence of off-axis crustal low-velocity zones using data from a multi-scale Endeavour seismic tomography experiment (ETOMO) that took place in September 2009. Seismic data were collected using four-component ocean bottom seismometers at 64 sites and the 6600 in3 airgun array of the R/V Marcus G. Langseth. The study includes 5567 shots covering 90 km along-axis and 50 km across. We examine seismic travel times of Pg and PmP phases as well as amplitude and waveform changes. Preliminary analysis of amplitude and waveform changes indicates that there are several crustal-level low-velocity, high-attenuation regions associated with off-axis ridges and volcanic features. We will determine whether there is enhanced melt supply due to the interaction between the Heckle seamount melting anomaly and the center of the Endeavour segment. We will also test whether volcano-tectonic cycles generate regions of thicker and thinner crust.

  2. Minerals in fractures of the saturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.

    1987-04-01

    The minerals in fractures in drill core USW G-4, from the static water level (SWL) at 1770 ft to the base of the hole at 3000 ft, were studied to determine their identity and depositional sequence and to compare them with those found above the SWL in the same drill hole. There is no change in mineralogy or mineral morphology across the SWL. The significant change in mineralogy and relationship to the host rock occurs at 1381 ft, well above the present water table. Below 1381 ft clinoptilolite appears in the fractures and rock matrix instead of heulandite, and the fracture mineralogy correlates with the host rock mineralogy. Throughout most of the saturated zone (below the SWL) in USW G-4, zeolites occur in fractures only in zeolitic tuff; however, zeolites persist in fracture below the base of the deepest zeolitic tuff interval. Nonzeolitic intervals of tuff have fewer fractures, and many of these have no coatings; a few have quartz and feldspar coatings. One interval in zeolitic tuff (2125-2140 ft) contains abundant crisobalite coatings in the fractures. Calcite occurs in fractures from 2575 to 2660 ft, usually with the manganese mineral hollandite, and from 2750 to 2765 ft, usually alone. Manganese minerals occur in several intervals. The spatial correlation of zeolites in fractures with zeolitic host rock suggests that both may have been zeolitized at the same time, possibly by water moving laterally through more permeable zones in the tuff. The continuation of zeolites in fractures below the lowest zeolitic interval in this hole suggests that vertical fracture flow may have been important in the deposition of these coatings. Core from deeper intervals in another hole will be examined to determine if that relationship continues. 17 refs., 19 figs

  3. Operative Treatment of Fifth Metatarsal Jones Fractures (Zones II and III) in the NBA.

    Science.gov (United States)

    O'Malley, Martin; DeSandis, Bridget; Allen, Answorth; Levitsky, Matthew; O'Malley, Quinn; Williams, Riley

    2016-05-01

    Proximal fractures of the fifth metatarsal (zone II and III) are common in the elite athlete and can be difficult to treat because of a tendency toward delayed union, nonunion, or refracture. The purpose of this case series was to report our experience in treating 10 NBA players, determine the healing rate, return to play, refracture rate, and role of foot type in these athletes. The records of 10 professional basketball players were retrospectively reviewed. Seven athletes underwent standard percutaneous internal fixation with bone marrow aspirate concentrate (BMAC) whereas the other 3 had open bone grafting primarily in addition to fixation and BMAC. Radiographic features evaluated included fourth-fifth intermetatarsal, fifth metatarsal lateral deviation, calcaneal pitch, and metatarsus adductus angles. Radiographic healing was observed at an overall average of 7.5 weeks and return to play was 9.8 weeks. Three athletes experienced refractures. There were no significant differences in clinical features or radiographic measurements except that the refracture group had the highest metatatarsus adductus angles. Most athletes were pes planus and 9 of 10 had a bony prominence under the fifth metatarsal styloid. This is the largest published series of operatively treated professional basketball players who exemplify a specific patient population at high risk for fifth metatarsal fracture. These players were large and possessed a unique foot type that seemed to be associated with increased risk of fifth metatarsal fracture and refracture. This foot type had forefoot metatarsus adductus and a fifth metatarsal that was curved with a prominent base. We continue to use standard internal fixation with bone marrow aspirate but advocate additional prophylactic open bone grafting in patients with high fourth-to-fifth intermetatarsal, fifth metatarsal lateral deviation, and metatarsus adductus angles as well as prominent fifth metatarsal styloids in order to improve fracture

  4. Solute transport processes in a highly permeable fault zone of Lindau fractured rock test site (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Himmelsbach, T. [Ruhr-Univ., Bochum (Germany). Dept. of Applied Geology; Hoetzl, H. [Univ. of Karlsruhe (Germany). Dept. of Applied Geology; Maloszewski, P. [GSF-Inst. for Hydrology, Munich-Neuherberg (Germany)

    1998-09-01

    The results of field tracer experiments performed in the Lindau fractured rock test site (southern Black Forest, Germany) and subsequent modeling are presented. A vertical, hydrothermally mineralized fault zone, with a permeability much greater than the surrounding granite mass, lies beneath a planned dam site. A dense network of boreholes and tunnels were used to investigate scaling effects of solute transport processes in fractured rock. A series of tracer experiments using deuterium and dye tracers were performed over varying distances and under different testing procedures, resulting in different flow field conditions. Large-scale tracer experiments were performed under natural flow field conditions, while small-scale tracer experiments were performed under artificially induced radial-convergent and injection-withdrawal flow fields. The tracer concentration curves observed in all experiments were strongly influenced by the matrix diffusion. The curves were evaluated with the one-dimensional single fissure dispersion model (SFDM) adjusted for the different flow field conditions. The fitting model parameters found determined the fracture aperture, and matrix and fissure porosities. The determined fracture aperture varied between the sections having different hydraulic conductivity. The determined values of matrix porosity seemed to be independent of the scale of the experiment. The modeled matrix porosities agreed well with values determined in independent laboratory investigations of drill cores using mercury porosimetry. In situ fissure porosity, determined only in small-scale experiments, was independent of the applied geometry of the artificially induced flow fields. The dispersivities were found to be independent of the scale of experiment but dependent on the flow conditions. The values found in forced gradient tests lie between 0.2 and 0.3 m, while values in experiments performed under natural flow conditions were one order of magnitude higher.

  5. Application of zipper-fracturing of horizontal cluster wells in the Changning shale gas pilot zone, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2015-03-01

    Full Text Available After several years of exploration practices in the Changning-Weiyuan national shale gas pilot zone, the industrial production has been achieved in a number of vertical and horizontal wells completed by SRV fracturing, and a series of independent shale gas reservoir stimulation technologies have come into being. Next, it is necessary to consider how to enhance the efficiency of fracturing by a factory-mode operation. This paper presents the deployment of Changning Well Pad A, the first cluster horizontal shale gas well group, and proposes the optimal design for the factory operation mode of this Pad according to the requirements of wellpad fracturing stimulation technologies and the mountainous landform in the Sichuan Basin. Accordingly, a zipper-fracturing mode was firstly adopted in the factory fracturing on wellpad. With the application of standardized field process, zipper operation, assembly line work, staggered placement of downhole fractures, and microseismic monitoring in real time, the speed of fracturing reached 3.16 stages a day on average, and the stimulated reservoir volume was maximized, which has fully revealed how the factory operation mode contributes to the large-scale SRV fracturing of horizontal shale gas cluster wells on wellpads in the aspect of speed and efficiency. Moreover, the fracturing process, operation mode, surface facilities and post-fracturing preliminary evaluation of the zipper-fracturing in the well group were examined comprehensively. It is concluded from the practice that the zipper-fracturing in the two wells enhanced the efficiency by 78% and stimulated reservoir volume by 50% compared with the single-well fracturing at the preliminary stage in this area.

  6. Exogenous retinoic acid induces digit reduction in opossums (Monodelphis domestica) by disrupting cell death and proliferation, and apical ectodermal ridge and zone of polarizing activity function.

    Science.gov (United States)

    Molineaux, Anna C; Maier, Jennifer A; Schecker, Teresa; Sears, Karen E

    2015-03-01

    Retinoic acid (RA) is a vitamin A derivative. Exposure to exogenous RA generates congenital limb malformations (CLMs) in species from frogs to humans. These CLMs include but are not limited to oligodactyly and long-bone hypoplasia. The processes by which exogenous RA induces CLMs in mammals have been best studied in mouse, but as of yet remain unresolved. We investigated the impact of exogenous RA on the cellular and molecular development of the limbs of a nonrodent model mammal, the opossum Monodelphis domestica. Opossums exposed to exogenous retinoic acid display CLMs including oligodactly, and results are consistent with opossum development being more susceptible to RA-induced disruptions than mouse development. Exposure of developing opossums to exogenous RA leads to an increase in cell death in the limb mesenchyme that is most pronounced in the zone of polarizing activity, and a reduction in cell proliferation throughout the limb mesenchyme. Exogenous RA also disrupts the expression of Shh in the zone of polarizing activity, and Fgf8 in the apical ectodermal ridge, and other genes with roles in the regulation of limb development and cell death. Results are consistent with RA inducing CLMs in opossum limbs by disrupting the functions of the apical ectodermal ridge and zone of polarizing activity, and driving an increase in cell death and reduction of cell proliferation in the mesenchyme of the developing limb. © 2015 Wiley Periodicals, Inc.

  7. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  8. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    International Nuclear Information System (INIS)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens; Starsec, Peter

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is established

  9. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens [WSP Sweden, Stockholm (Sweden) ; Starsec, Peter [SGI, Linkoeping (Sweden)

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is

  10. Vema-TRANSIT - An interdisciplinary study on the bathymetry of the Vema-Fracture Zone and Puerto Rico Trench as well as abyssal Atlantic biodiversity

    Science.gov (United States)

    Riehl, Torben; Kaiser, Stefanie; Brandt, Angelika

    2018-02-01

    The seafloor below 3500 m remains largely unexplored. The paucity of knowledge of abyssal and hadal environments encompasses a wide spectrum of geological and biological patterns and processes as well as their interactions. Historically most marine research has been conducted in the North Atlantic. However, the high proportion of undescribed taxa frequently discovered at greater depth there underline the need to fill in these knowledge gaps. The Vema-TRANSIT campaign in northern winter 2014-2015 surveyed and sampled along almost the entire extent of one of the major offsets of the Mid-Atlantic Ridge (MAR), the Vema Fracture Zone (VFZ), as well as the deepest trench in the Atlantic, the Puerto Rico Trench (PRT). The discoveries that were made include new data on deep-sea habitats showing geologically complex features across all crust ages from 110 Ma until present. Moreover, some new species and genera of the abyssal and hadal benthos were described herein. Not only the taxa themselves, but also their distributions and genetic structure were elucidated. In this context, significant differences in abundances, community composition, and species distribution were detected that were affected by the MAR as well as by the depth transition between hadal PRT and the adjacent abyss. Despite significant differences between eastern and western communities, the MAR does not represent an absolute barrier. Instead, the VFZ, and especially the VTF may serve as a connecting feature between east and west and this may be exemplary for fracture zones across the whole Atlantic. Nevertheless, the MAR as well as the 3000-m-depth gradient between abyss and hadal appear to restrict gene flow for poor dispersers and thus contribute to speciation processes in the deep sea.

  11. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model

    International Nuclear Information System (INIS)

    Mahler, Michael

    2016-01-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  12. Crystallization Temperatures of Lower Crustal Gabbros from the Oman Ophiolite and the Persistence of the 'Mush Zone' at Intermediate/Fast Spreading Ridges

    Science.gov (United States)

    VanTongeren, J. A.

    2017-12-01

    Oceanic crust is formed when mantle-derived magmas are emplaced at the ridge axis, a zone of intense rifting and extension. Magmas begin to cool and crystallize on-axis, forming what is termed the "Mush Zone", a region of partially molten rocks. Several attempts have been made to understand the nature of the Mush Zone at fast spreading mid-ocean ridges, specifically how much partial melt exists and how far off-axis the Mush Zone extends. Geophysical estimates of P-wave velocity perturbations at the East Pacific Rise show a region of low velocity approximately 1.5-2.5 km off-axis, which can be interpreted to be the result of higher temperature [e.g. Dunn et al., 2000, JGR] or the existence of partial melt. New petrological and geochemical data and methods allow for the calculation of the lateral extent of the Mush Zone in the lower oceanic crust on exposed sections collected from the Oman ophiolite, a paleo-fast/intermediate spreading center. I will present new data quantifying the crystallization temperatures of gabbros from the Wadi Khafifah section of lower oceanic gabbros from the Oman ophiolite. Crystallization temperatures are calculated with the newly developed plagioclase-pyroxene REE thermometer of Sun and Liang [2017, Contrib. Min. Pet.]. There does not appear to be any systematic change in the crystallization temperature of lower crustal gabbros with depth in the crust. In order to quantify the duration of crystallization and the lateral extent of the Mush Zone of the lower crust, crystallization temperatures are paired with estimates of the solidus temperature and cooling rate determined from the same sample, previously constrained by the Ca diffusion in olivine geothermometer/ geospeedometer [e.g. VanTongeren et al., 2008 EPSL]. There is no systematic variation in the closure temperature of Ca in olivine, or the cooling rate to the 800°C isotherm. These results show that gabbros throughout the lower crust of the Oman ophiolite remain in a partially

  13. Explanation of Significant Differences for the Record of Decision for Interim Actions in Zone 1, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2011-02-01

    Zone 1 is a 1400-acre area outside the fence of the main plant at The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The Record of Decision for Interim Actions in Zone, ETTP (Zone 1 Interim ROD) (DOE 2002) identifies the remedial actions for contaminated soil, buried waste, and subsurface infrastructure necessary to protect human health and to limit further contamination of groundwater. Since the Zone 1 Interim Record of Decision (ROD) was signed, new information has been obtained that requires the remedy to be modified as follows: (1) Change the end use in Contractor's Spoil Area (CSA) from unrestricted industrial to recreational; (2) Remove Exposure Units (EU5) ZI-50, 51, and 52 from the scope of the Zone I Interim ROD; (3) Change the end use of the duct bank corridor from unrestricted industrial to restricted industrial; and (4) Remove restriction for the disturbance of soils below 10 feet in Exposure Unit (EU) Z1-04. In accordance with 40 Code of Federal Regulations (CFR) 300.435, these scope modifications are a 'significant' change to the Zone 1 Interim ROD. In accordance with CERCLA Sect. 117 (c) and 40 CFR 300.435 (c)(2)(i), such a significant change is documented with an Explanation of Significant Differences (ESD). The purpose of this ESD is to make the changes listed above. This ESD is part of the Administrative Record file, and it, and other information supporting the selected remedy, can be found at the DOE Information Center, 475 Oak Ridge Turnpike, Oak Ridge, Tennessee 37830, from 8:00 a.m. to 5:00 p.m., Monday through Friday. The ORR is located in Roane and Anderson counties, within and adjacent to the corporate city limits of Oak Ridge, Tennessee. ETTP is located in Roane County near the northwest corner of the ORR. ETTP began operation during World War II as part of the Manhattan Project. The original mission of ETTP was to produce enriched uranium for use in atomic weapons. The plant produced enriched uranium from

  14. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    International Nuclear Information System (INIS)

    Švanda, Michal

    2013-01-01

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-ω filtering procedures—ridge filtering and phase-speed filtering—commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top ∼5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules

  15. Investigation of flow distribution in a fracture zone at the Stripa mine, using the radar method, results and interpretation

    International Nuclear Information System (INIS)

    Andersson, P.; Andersson, P.; Gustafsson, E.; Olsson, O.

    1989-12-01

    The objective of the current project was to map the steady state flow distribution in a fracture zone in the Stripa mine when water was injected into the zone from a borehole. The basic idea was to map the flow paths by taking the difference between radar results obtained prior to and after injection of a saline tracer (KBr) into the fracture zone. The radar experiments were combined with a more conventional migration experiment to provide validation and calibration of the radar results. Difference tomography using borehole radar was a valuable and successful tool in mapping groundwater flow paths in fractured rock. The data presented were of good quality and sufficiently consistent throughout the investigated rock volume. The interpreted results verified previous findings in the surveyed granite volume as well as contributed to new and unique information about the transport properties of the rock at the site. The inflow data and the tracer breakthrough data has served as a useful aid in the interpretation of the flow distribution within the investigated zone and also within the surrounding rock mass. From the differential attenuation tomograms the migration of the injected tracer was mapped and presented both in the fracture zone of interest and in the entire investigated granite volume. From the radar tomographic model, the major tracer migration was found to be concentrated to a few major flow paths. Two additional fracture zones originally detected within this project, were found to transport portions of the injected tracer. The radar results combined with the tracer breakthrough data were used to estimate the area with tracer transport as well as flow porosity and the wetted surface. (orig.)

  16. Steady-state flow in a rock mass intersected by permeable fracture zones

    International Nuclear Information System (INIS)

    Lindbom, B.

    1986-12-01

    Level 1 of HYDROCOIN consists of seven well-defined test problems. This paper is concerned with Case 2, which is formulated as a generic groundwater flow situation often found in crystalline rock with highly permeable fracture zones in a less permeable rock mass. The case is two-dimensional and modelled with 8-noded, isoparametric, rectangular elements. According to the case definition, calculations of hydraulic head and particle tracking are performed. The computations are carried out with varying degree of discretisation in order to analyse possible impact on the result with respect to nodal density. Further calculations have been performed mainly devoted to mass balance deviations and how these are affected by permeability contrasts, varying degree of spatial discretisation and distortion of finite elements. The distribution of hydraulic head in the domain is less sensitive to differences in nodal density than the trajectories. The hydraulic heads show similar behaviour for three meshes with varying degrees of discretisation. The particle tracking seems to be more sensitive to the level of discretisation. The results obtained with a coarse and medium mesh indicate completely different solutions for one of the pathlines. The coarse mesh is too sparsely discretised for the specified problem. The local mass balance is evaluated for seven runs. The mass balance deviation seems to be considerably more sensitive to the level of discretisation than to both permeability contrasts and deformation of elements. The permeability contrasts between the rock mass and fracture zones vary from a factor of 1000 to 1 (homogeneous properties) with increments of a factor of 10. These calculations in fact give better mass balance with increasing permeability contrasts, contrary to what could be expected. (orig./HP)

  17. Independent verification survey report for exposure units Z2-24, Z2-31, Z2-32, AND Z2-36 in zone 2 of the East Tennessee technology park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    King, David A. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-10-01

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management selected Oak Ridge Associated Universities (ORAU), through the Oak Ridge Institute for Science and Education (ORISE) contract, to perform independent verification (IV) at Zone 2 of the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. ORAU has concluded IV surveys, per the project-specific plan (PSP) (ORAU 2013a) covering exposure units (EUs) Z2-24, -31, -32, and -36. The objective of this effort was to verify the target EUs comply with requirements in the Zone 2 Record of Decision (ROD) (DOE 2005), as implemented by using the dynamic verification strategy presented in the dynamic work plan (DWP) (BJC 2007); and confirm commitments in the DWP were adequately implemented, as verified via IV surveys and soil sampling.

  18. Linking fault permeability, fluid flow, and earthquake triggering in a hydrothermally active tectonic setting: Numerical Simulations of the hydrodynamics in the Tjörnes Fracture Zone, Iceland.

    Science.gov (United States)

    Lupi, M.; Geiger, S.; Graham, C.; Claesson, L.; Richter, B.

    2007-12-01

    A good insight into the transient fluid flow evolution within a hydrothermal system is of primary importance for the understanding of several geologic processes, for example the hydrodynamic triggering of earthquakes or the formation of mineral deposits. The strong permeability contrast between different crustal layers as well as the high geothermal gradient of these areas are elements that strongly affect the flow behaviour. In addition, the sudden and transient occurrence of joints, faults and magmatic intrusions are likely to change the hydrothermal flow paths in very short time. The Tjörnes Fracture Zone (TFZ) north of Iceland, is such a hydrothermal area where a high geothermal gradient, magmatic bodies, faults, and the strong contrast between sediments and fractured lava layers govern the large-scale fluid flow. The TFZ offsets the Kolbeinsey Ridge and the Northern Rift Zone. It is characterized by km-scale faults that link sub-seafloor sediments and lava layers with deeper crystalline rocks. These structures focus fluid flow and allow for the mixing between cold seawater and deep hydrothermal fluids. A strong seismic activity is present in the TFZ: earthquakes up to magnitude 7 have been recorded over the past years. Hydrogeochemical changes before, during and after a magnitude 5.8 earthquake suggest that the evolving stress state before the earthquake leads to (remote) permeability variations, which alter the fluid flow paths. This is in agreement with recent numerical fluid flow simulations which demonstrate that fluid flow in magmatic- hydrothermal systems is often convective and very sensitive to small variations in permeability. In order to understand the transient fluid flow behaviour in this complex geological environment, we have conducted numerical simulations of heat and mass transport in two geologically realistic cross-sectional models of the TFZ. The geologic models are discretised using finite element and finite volume methods. They hence have

  19. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: An example from the Clarion–Clipperton Fracture Zone

    NARCIS (Netherlands)

    Mewes, K.; Mogollón, J.M.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.; Kasten, S.

    2016-01-01

    The Clarion–Clipperton Fracture Zone (CCFZ) in the Pacific Ocean is characterized by organic carbon-starved sediments and meter-scale oxygen penetration into the sediment. Furthermore, numerous seamounts occur throughout its deep-sea plain, which may serve as conduits for low-temperature

  20. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.

    Science.gov (United States)

    Willett, Thomas; Josey, David; Lu, Rick Xing Ze; Minhas, Gagan; Montesano, John

    2017-10-01

    Apply high-resolution benchtop micro-computed tomography (micro-CT) to gain greater understanding and knowledge of the formation of the micro-damage process zone formed during traverse fracture of cortical bone. Bovine cortical bone was cut into single edge notch (bending) fracture testing specimens with the crack on the transverse plane and oriented to grow in the circumferential direction. We used a multi-specimen technique and deformed the specimens to various individual secant modulus loss levels (P-values) up to and including maximum load (Pmax). Next, the specimens were infiltrated with a BaSO 4 precipitation stain and scanned at 3.57-μm isotropic voxel size using a benchtop high resolution-micro-CT. Measurements of the micro-damage process zone volume, width and height were made. These were compared with the simple Irwin's process zone model and with finite element models. Electron and confocal microscopy confirmed the formation of BaSO 4 precipitate in micro-cracks and other porosity, and an interesting novel mechanism similar to tunneling. Measurable micro-damage was detected at low P values and the volume of the process zone increased according to a second order polynomial trend. Both width and height grew linearly up to Pmax, at which point the process zone cross-section (perpendicular to the plane of the crack) was almost circular on average with a radius of approximately 550µm (approximately one quarter of the unbroken ligament thickness) and corresponding to the shape expected for a biological composite under plane stress conditions. This study reports details of the micro-damage fracture process zone previously unreported for cortical bone. High-resolution micro-CT enables 3D visualization and measurement of the process zone and confirmation that the crack front edge and process zone are affected by microstructure. It is clear that the process zone for the specimens studied grows to be meaningfully large, confirming the need for the J

  1. Propagation of uncertainties for an evaluation of the Azores-Gibraltar Fracture Zone tsunamigenic potential

    Science.gov (United States)

    Antoshchenkova, Ekaterina; Imbert, David; Richet, Yann; Bardet, Lise; Duluc, Claire-Marie; Rebour, Vincent; Gailler, Audrey; Hébert, Hélène

    2016-04-01

    The aim of this study is to assess evaluation the tsunamigenic potential of the Azores-Gibraltar Fracture Zone (AGFZ). This work is part of the French project TANDEM (Tsunamis in the Atlantic and English ChaNnel: Definition of the Effects through numerical Modeling; www-tandem.cea.fr), special attention is paid to French Atlantic coasts. Structurally, the AGFZ region is complex and not well understood. However, a lot of its faults produce earthquakes with significant vertical slip, of a type that can result in tsunami. We use the major tsunami event of the AGFZ on purpose to have a regional estimation of the tsunamigenic potential of this zone. The major reported event for this zone is the 1755 Lisbon event. There are large uncertainties concerning source location and focal mechanism of this earthquake. Hence, simple deterministic approach is not sufficient to cover on the one side the whole AGFZ with its geological complexity and on the other side the lack of information concerning the 1755 Lisbon tsunami. A parametric modeling environment Promethée (promethee.irsn.org/doku.php) was coupled to tsunami simulation software based on shallow water equations with the aim of propagation of uncertainties. Such a statistic point of view allows us to work with multiple hypotheses simultaneously. In our work we introduce the seismic source parameters in a form of distributions, thus giving a data base of thousands of tsunami scenarios and tsunami wave height distributions. Exploring our tsunami scenarios data base we present preliminary results for France. Tsunami wave heights (within one standard deviation of the mean) can be about 0.5 m - 1 m for the Atlantic coast and approaching 0.3 m for the English Channel.

  2. Fiscal Year 2008 Phased Construction Completion Report for EU Z2-33 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2008-09-11

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2161&D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2224&D3) (Zone 2 RDR/RAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone 1 exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowing identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program and remedial actions (RAs) were completed for EU Z2-33. Remedial action was also performed at two additional areas in adjacent EU Z2-42 because of their close proximity and similar nature to a small surface soil RA in EU Z2-33. Remedial actions for building slabs performed in EU Z2-33 during fiscal year (FY) 2007 were reported in the Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2723&D1). Recommended RAs for EU Z2-42 were described in the Fiscal Year 2006 Phased Construction

  3. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    Science.gov (United States)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions

  4. Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges

    Science.gov (United States)

    Fontaine, Fabrice Jh.; Rabinowicz, Michel; Boulègue, Jacques

    2001-01-01

    The hydrothermal processes at ridge crests have been extensively studied during the last two decades. Nevertheless, the reasons why hydrothermal fields are only occasionally found along some ridge segments remain a matter of debate. In the present study we relate this observation to the mineral precipitation induced by hydrothermal circulation. Our study is based on numerical models of convection inside a porous slot 1.5 km high, 2.25 km long and 120 m wide, where seawater is free to enter and exit at its top while the bottom is held at a constant temperature of 420°C. Since the fluid circulation is slow and the fissures in which seawater circulates are narrow, the reactions between seawater and the crust achieve local equilibrium. The rate of mineral precipitation or dissolution is proportional to the total derivative of the temperature with respect to time. Precipitation of minerals reduces the width of the fissures and thus percolation. Using conventional permeability versus porosity laws, we evaluate the evolution of the permeability field during the hydrothermal circulation. Our computations begin with a uniform permeability and a conductive thermal profile. After imposing a small random perturbation on the initial thermal field, the circulation adopts a finger-like structure, typical of convection in vertical porous slots thermally influenced by surrounding walls. Due to the strong temperature dependence of the fluid viscosity and thermal expansion, the hot rising fingers are strongly buoyant and collide with the top cold stagnant water layer. At the interface of the cold and hot layers, a horizontal boundary layer develops causing massive precipitation. This precipitation front produces a barrier to the hydrothermal flow. Consequently, the flow becomes layered on both sides of the front. The fluid temperature at the top of the layer remains quite low: it never exceeds a temperature of 80°C, well below the exit temperature of hot vent sites observed at

  5. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  6. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  7. Evolution of the fracture process zone in high-strength concrete under different loading rates

    Directory of Open Access Journals (Sweden)

    Cámara M.

    2010-06-01

    Full Text Available For cementitious materials, the inelastic zone around a crack tip is termed as fracture process zone (FPZ and dominated by complicated mechanism, such as microcracking, crack deflection, bridging, crack face friction, crack tip blunting by voids, crack branching, and so on. Due to the length of the FPZ is related with the characteristic length of the cementitious materials, the size, extent and location of the FPZ has been the object of countless research efforts for several decades. For instance, Cedolin et al. [1] have used an optical method based on the moiré interferometry to determine FPZ in concrete. Castro-Montero et al. [2] have applied the method of holographic interferometry to mortar to study the extension of the FPZ. The advantage of the interferometry method is that the complete FPZ can be directly observed on the surface of the sample. Swartz et al. [3] has adopted the dye penetration technique to illustrate the changing patterns observed as the crack progress from the tensile side to the compression side of the beam. Moreover, acoustic emission (AE is also an experimental technique well suited for monitoring fracture process. Haidar et al. [4] and Maji et al. [5] have studied the relation between acoustic emission characteristics and the properties of the FPZ. Compared with the extensive research on properties of the FPZ under quasi-static loading conditions, much less information is available on its dynamic characterization, especially for high-strength concrete (HSC. This paper presents the very recent results of an experimental program aimed at disclosing the loading rate effect on the size and velocity of the (FPZ in HSC. Eighteen three-point bending specimens were conducted under a wide range of loading rates from from 10-4 mm/s to 103 mm/s using either a servo-hydraulic machine or a self-designed drop-weight impact device. The beam dimensions were 100 mm 100 mm in cross section, and 420 mm in length. The initial notch

  8. Anisotropy, reversibility and scale dependence of transport properties in single fracture and fractured zone - Non-sorbing tracer experiment at the Kamaishi mine

    International Nuclear Information System (INIS)

    Sawada, Atushi; Uchida, Masahiro; Shimo, Michito; Yamamoto, Hajime; Takahara, Hiroyuki; Doe, T.W.

    2001-01-01

    A comprehensive set of the non-sorbing tracer experiments were run in the granodiorite of the Kamaishi mine located in the northern part of the main island of Japan-Honshu. A detailed geo-hydraulic investigation was carried out prior to performing the tracer migration experiments. The authors conducted a detailed but simple investigation in order to understand the spatial distribution of conductive fractures and the pressure field. Seven boreholes were drilled in the test area of which dimension is approximately 80 meters by 60 meters, revealing hydraulic compartmentalization and a heterogeneous distribution of conductive features. Central three boreholes which are approx. 2 to 4 meters apart form a triangle array. After identifying two hydraulically isolated fractures and one fractured zone, a comprehensive non-sorbing tracer experiments were conducted. Four different dipole fields were used to study the heterogeneity within a fracture. Firstly, anisotropy was studied using the central borehole array of three boreholes and changing injection/withdrawal wells. Secondly, dipole ratio was varied to study how prume spread could affect the result. Thirdly, reversibility was studied by switching injection/withdrawal wells. Lastly, scale dependency was studied by using outer boreholes. The tracer breakthrough curves were analyzed by using a streamline, analytical solution and numerical analysis of mass transport. Best-fit calculations of the experimental breakthrough curves were obtained by assigning apertures within the range of 1-10 times the square root of transmissivity and a dispersion length equal to 1/10 of the migration length. Different apertures and dispersion lengths were also interpreted in anisotropy case, reversibility case and scale dependency case. Fractured zone indicated an increased aperture and increased dispersivity

  9. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  10. Equatorial segment of the mid-atlantic ridge

    International Nuclear Information System (INIS)

    1996-01-01

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics

  11. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  12. Tomographic evidence for enhanced fracturing and permeability within the relatively aseismic Nemaha Fault Zone, Oklahoma

    Science.gov (United States)

    Stevens, N. T.; Keranen, K. M.; Lambert, C.

    2017-12-01

    Recent earthquakes in north central Oklahoma are dominantly hosted on unmapped basement faults away from and outside of the largest regional structure, the Nemaha Fault Zone (NFZ) [Lambert, 2016]. The NFZ itself remains largely aseismic, despite the presence of disposal wells and numerous faults. Here we present results from double-difference tomography using TomoDD [Zhang and Thurber, 2003] for the NFZ and the surrounding region, utilizing a seismic catalog of over 10,000 local events acquired by 144 seismic stations deployed between 2013 and 2017. Inversion results for shallow crustal depth, beneath the 2-3 km sedimentary cover, show compressional wavespeeds (Vp) of >6 km/sec and shear wavespeeds (Vs) >4 km/sec outside the NFZ, consistent with crystalline rock. Along the western margin of the NFZ, both Vp and Vs are reduced, and Vp/Vs gradients parallel the trend of major faults, suggesting enhanced fault density and potentially enhanced fluid pressure within the study region. Enhanced fracture density within the NFZ, and associated permeability enhancement, could reduce the effect of regional fluid pressurization from injection wells, contributing to the relative aseismicity of the NFZ.

  13. Bacterial diversity in the sediment from polymetallic nodule fields of the Clarion-Clipperton Fracture Zone.

    Science.gov (United States)

    Wang, Chun-Sheng; Liao, Li; Xu, Hong-Xiang; Xu, Xue-Wei; Wu, Min; Zhu, Li-Zhong

    2010-10-01

    The Clarion-Clipperton Fracture Zone (CCFZ) is located in the northeastern equatorial Pacific and contains abundant polymetallic nodules. To investigate its bacterial diversity, four libraries of 16S rRNA genes were constructed from sediments of four stations in different areas of the CCFZ. In total, 313 clones sequenced from the 4 libraries were assigned into 14 phylogenetic groups and 1 group of 28 unclassified bacteria. High bacterial diversity was predicted by the rarefaction analysis. The most dominant group overall was Proteobacteria, but there was variation in each library: Gammaproteobacteria was the most dominant group in two libraries, E2005-01 and ES0502, while Alphaproteobacteria and Deltaproteobacteria were the most dominant groups in libraries EP2005-03 and WS0505, respectively. Seven groups, including Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Betaproteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes, were common to all four libraries. The remaining minor groups were distributed in libraries with different patterns. Most clones sequenced in this study were clustered with uncultured bacteria obtained from the environment, such as the ocean crust and marine sediment, but only distantly related to isolates. Bacteria involved in the cycling of metals, sulfur and nitrogen were detected, and their relationship with their habitat was discussed. This study sheds light on the bacterial communities associated with polymetallic nodules in the CCFZ and provides primary data on the bacterial diversity of this area.

  14. Phases of fracture process zone and tension softening properties of concrete

    International Nuclear Information System (INIS)

    Mihashi, H.; Nomura, N.

    1991-01-01

    The safety and serviceability of concrete structures are influenced very much by the cracking behavior of concrete. Since comprehensive numerical analysis techniques have been extensively developed to predict the mechanical behavior of concrete structures in the limit state, it is essential to study the constitutive laws to describe the cracking behavior of concrete in detail. The tension softening behavior of concrete is highly dominated by the existence of a fracture process zone (FPZ) ahead of a crack tip. Since the direct observation of the FPZ of concrete is hardly possible, the indirect techniques are applied, but it is still ambiguous what happens in the FPZ and how it affects the tension softening property. The purpose of this study is to present the property of the FPZ focusing on the influence of material structures by means of three-dimensional acoustic emission. These results are correlated to tension softening behavior evaluated by a numerical analysis to discuss how the tension softening property is related to the characteristics of the FPZ. The test procedure and the results are reported. (K.I.)

  15. Multi-parameter crack tip stress state description for estimation of fracture process zone extent in silicate composite WST specimens

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Sobek, J.; Šestáková, L.; Frantík, P.; Seitl, Stanislav

    2013-01-01

    Roč. 7, č. 25 (2013), s. 69-78 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GAP104/11/0833; GA ČR(CZ) GAP105/11/1551 Institutional support: RVO:68081723 Keywords : Near-crack tip fields * Williams series * higher-order terms * stress field approximation * wedge splitting test * fracture process zone Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Pilot evaluation of a fracture process zone in a modified compact tension specimen by X-ray tomography

    Czech Academy of Sciences Publication Activity Database

    Klon, J.; Seitl, S.; Šimonová, H.; Keršner, Z.; Kumpová, Ivana; Vavřík, Daniel

    2017-01-01

    Roč. 42, October (2017), s. 161-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA15-07210S Keywords : fracture process zone * X-ray * concrete * composites * stress intensity factor * compact tension specimen Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Mechanical engineering http://www.fracturae.com/index.php/fis/article/view/IGF-ESIS.42.17

  17. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    International Nuclear Information System (INIS)

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs

  18. Ring shear characteristics of clays in fractured-zone-landslide. Hasaitai chisuberichi no nenseido no ring sendan tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yatabe, R; Yagi, N; Enoki, M [Ehime Univ., Ehime (Japan). Faculty of Engineering

    1991-09-20

    The importance of study on the residual strength, in addition to the peak strength, has been pointed out for the study of landslides. The residual strength characteristics, effects of shearing rate, and grain size of clays, as well as the residual strength characteristics of clay minerals of a fractured zone landslide were examined by ring shear tests. The residual friction angles {phi}{sub r} of the tested clays of the fractured zone landslide were from 10 to 31{degree}, and were smaller than those of shearing resistance angles {phi}{prime} obtained by triaxial tests by 5 to 15{degree}. Contrary to the pointing out made hitherto, no correlation between clay content CF and plastic index was recognized for {phi}{sub r} of clays of a fractured zone landslide. As regards CF, the relation with CF was far below the lowest limit indicated by now. Ring shear characteristics of principal structural clay minerals, vermiculite, mica, illite, chlorite, and kaolinite were investigated. {phi}{sub r} of these clay minerals were in the range from 10 to 25{degree}. 20 refs., 14 figs., 2 tabs.

  19. Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas-Pereira, M.B.L.; Nath, B.N.; Borole, D.V.; Gupta, S.M.

    Volcanic glasses associated with pumice, micro nodules and palagonite like lithic fragments were recovered from a volcanic terrain in a fracture zone defined as Rodriguez Triple Junction trace in the Central Indian Basin. Morphologically, the tephra...

  20. 230Th-238U radioactive disequilibria in tholeiites from the FAMOUS zone (Mid-Atlantic Ridge, 36050'N): Th and Sr isotopic geochemistry

    International Nuclear Information System (INIS)

    Condomines, M.; Morand, P.; Allegre, C.J.

    1981-01-01

    We analyzed, U, Th and 230 Th/ 232 Th activity ratios for a few tholeiites from the Mid-Atlantic Ridge FAMOUS zone at 36 0 50'N. The results show a fairly wider scatter for both Th/U and ( 230 Th/ 232 Th) ratios. Seawater contamination appears to be responsible for this scatter and, for the uranium, produces an increase in content yielding a ( 234 U/ 238 U) ratio greater than 1 and, for the Th, an increase of the ( 230 Th/ 232 Th) ratio which is a very sensitive indicator for contamination. Also, the latter often is selective: U, Th and Sr are not affected in the same manner. When discarding all data for contaminated samples, the FAMOUS zone appears to be very homogeneous with a Th/U ratio value of 3.05 and a ( 230 Th/ 232 Th) ratio value of 1.24. Comparison with other active volcanic areas reveals a negative correlation between ( 230 Th/ 232 Th) and 87 Sr/ 86 Sr ratios for present lavas which is indicative of a consistency in Th-U and Rb-Sr fractionation in the source regions of these magmas. The Th isotopic geochemistry can thus provide useful information for the study of present volcanism, information as valuable as that from Sr, Pb or Nd isotopes. (orig.)

  1. Seismically active fracture zones in the continental wedge above the Andean subduction zone in the Arica Elbow region

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Jiří; Hanuš, Václav; Slancová, Alice; Špičák, Aleš

    2007-01-01

    Roč. 9, č. 1-4 (2007), s. 39-57 ISSN 0163-3171 R&D Projects: GA ČR GA205/95/0264; GA AV ČR IAA3012805 Grant - others:UNESCO(FR) IGCP project No. 345 Institutional research plan: CEZ:AV0Z30120515 Source of funding: V - iné verejné zdroje Keywords : continental lithosphere * Wadati-Benioff zone * seismically active zones Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  2. Description and results of tracer tests conducted for a deep fracture zone within granitic rock at the Leuggern borehole

    International Nuclear Information System (INIS)

    Spane, F.A. jr.

    1990-09-01

    A tracer test program was planned at the Leuggern borehole, to provide hydrogeologic information concerning the fracture zone(s) intersected within the depth interval 1,634.9 - 1,688.9 m. The original design of the tracer-dilution test was to: establish a uniform tracer concentration within the test system, and then monitor (at ground surface) the decline of tracer concentration within the circulated test system fluid. Analysis of the tracer concentration decline pattern was expected to provide an estimate of the natural lateral flux and lateral hydraulic gradient for the isolated test interval. A later pump-back test was also designed to recover tracer that had been 'flushed' into the test section, during the previous closed-circulation period. Analysis of the tracer recovery pattern was expected to provide an estimate of the dispersivity within the intersected fracture system. Results obtained from 'arrival-time' information during the Eosin and Naphtionat injection/recovery phases indicate a downward vertical flow of approximately 195-225 ml/min in the isolated interval, from an analysis of the dilution levels of Uranin and Eosin during the injection/recovery periods, and review of field data, the top of the upper inflow zone was determined to be approximately 13 m below the top flow line and the bottom of the outflow zone to be approximately 3 to 5 meters above the bottom flow line. (author) 30 figs., tabs., 42 refs

  3. How Well Does Fracture Set Characterization Reduce Uncertainty in Capture Zone Size for Wells Situated in Sedimentary Bedrock Aquifers?

    Science.gov (United States)

    West, A. C.; Novakowski, K. S.

    2005-12-01

    Regional groundwater flow models are rife with uncertainty. The three-dimensional flux vector fields must generally be inferred using inverse modelling from sparse measurements of hydraulic head, from measurements of hydraulic parameters at a scale that is miniscule in comparison to that of the domain, and from none to a very few measurements of recharge or discharge rate. Despite the inherent uncertainty in these models they are routinely used to delineate steady-state or time-of-travel capture zones for the purpose of wellhead protection. The latter are defined as the volume of the aquifer within which released particles will arrive at the well within the specified time and their delineation requires the additional step of dividing the magnitudes of the flux vectors by the assumed porosity to arrive at the ``average linear groundwater velocity'' vector field. Since the porosity is usually assumed constant over the domain one could be forgiven for thinking that the uncertainty introduced at this step is minor in comparison to the flow model calibration step. We consider this question when the porosity in question is fracture porosity in flat-lying sedimentary bedrock. We also consider whether or not the diffusive uptake of solute into the rock matrix which lies between the source and the production well reduces or enhances the uncertainty. To evaluate the uncertainty an aquifer cross section is conceptualized as an array of horizontal, randomly-spaced, parallel-plate fractures of random aperture, with adjacent horizontal fractures connected by vertical fractures again of random spacing and aperture. The source is assumed to be a continuous concentration (i.e. a dirichlet boundary condition) representing a leaking tank or a DNAPL pool, and the receptor is a fully pentrating well located in the down-gradient direction. In this context the time-of-travel capture zone is defined as the separation distance required such that the source does not contaminate the well

  4. Statistical model of fractures and deformations zones for Forsmark. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R. [Golder Associate Inc., Redmond, WA (United States); Olofsson, Isabelle; Hermanson, Jan [Golder Associates AB, Uppsala (Sweden)

    2005-04-01

    different high and low fracture intensity intervals in order to capture the variation of this parameter in the model volume. The fracture intensity P32 has been derived by means of simulations for each rock domain and each fracture type, and is expressed as a mean value, and if possible standard deviation and span. The uncertainty in the model has been quantified: for the different geometrical parameters by providing ranges of variations and studying relevant distribution models, by conducting sensitivity analysis on some input data: the effect of truncation of lineaments at the border of the regional model volume and the impact of truncation in outcrop mapping. An alternative conceptual model is under study which is based on the identified deterministic deformation zones, and not on lineaments. An important issue using this model is the bias of information and the limited amount of structures. The current DFN model still contains significant uncertainties which need to be resolved in order to be able to produce a final site DFN model. Three main issues are listed below: The definition of the subhorizontal fracture set in terms of geological processes and tectonics. The size distribution is a critical issue for the hydrogeology of the site. The variation of the fracture intensity by rock domain has been identified but the variation pattern and the spatial distribution within an individual domain are still sufficiently unpredictable that the fracture network permeability structure within a rock domain is uncertain from a conceptual perspective, not just a data uncertainty perspective. Moreover, many rock domains have not yet been sampled by boreholes or outcrops, and thus their fracture properties remain highly uncertain. Validation of the DFN models will require resolution of these two issues, and may also require the drilling of highly inclined or horizontal boreholes. Near-vertical boreholes and the mapping protocol to only map fracture traces in outcrop greater than 0

  5. Statistical model of fractures and deformations zones for Forsmark. Preliminary site description Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    La Pointe, Paul R.; Olofsson, Isabelle; Hermanson, Jan

    2005-04-01

    different high and low fracture intensity intervals in order to capture the variation of this parameter in the model volume. The fracture intensity P32 has been derived by means of simulations for each rock domain and each fracture type, and is expressed as a mean value, and if possible standard deviation and span. The uncertainty in the model has been quantified: for the different geometrical parameters by providing ranges of variations and studying relevant distribution models, by conducting sensitivity analysis on some input data: the effect of truncation of lineaments at the border of the regional model volume and the impact of truncation in outcrop mapping. An alternative conceptual model is under study which is based on the identified deterministic deformation zones, and not on lineaments. An important issue using this model is the bias of information and the limited amount of structures. The current DFN model still contains significant uncertainties which need to be resolved in order to be able to produce a final site DFN model. Three main issues are listed below: The definition of the subhorizontal fracture set in terms of geological processes and tectonics. The size distribution is a critical issue for the hydrogeology of the site. The variation of the fracture intensity by rock domain has been identified but the variation pattern and the spatial distribution within an individual domain are still sufficiently unpredictable that the fracture network permeability structure within a rock domain is uncertain from a conceptual perspective, not just a data uncertainty perspective. Moreover, many rock domains have not yet been sampled by boreholes or outcrops, and thus their fracture properties remain highly uncertain. Validation of the DFN models will require resolution of these two issues, and may also require the drilling of highly inclined or horizontal boreholes. Near-vertical boreholes and the mapping protocol to only map fracture traces in outcrop greater than 0

  6. Dynamics of intraoceanic subduction initiation : 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

    NARCIS (Netherlands)

    Maffione, Marco; Thieulot, Cedric; van Hinsbergen, Douwe J.J.; Morris, Antony; Plümper, Oliver; Spakman, Wim

    Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In

  7. Hydrogeochemical and microbiological effects on fractures in the Excavation Damaged Zone (EDZ)

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Gimeno, Maria; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia; Pedersen, Karsten

    2009-01-01

    Due to the disturbances associated with the excavation, construction and closure of the repository for storage of spent nuclear fuel, the saturation state of the groundwaters at repository depth with respect to several mineral phases may change and mineral precipitation/dissolution reactions may take place. In addition, changing groundwater conditions may facilitate microbial growth on fracture walls. These processes are of importance since they may influence the stability and safety of the Excavation Damaged Zone (EDZ) because precipitation and microbial growth may seal the hydraulically conductive fractures caused by the repository construction. Different processes expected to occur in the EDZ during the open repository conditions and after repository closure have been evaluated based on data from Forsmark, Laxemar and Aespoe. Geochemical modelling by using PHREEQC was applied to simulate the following cases: - increase of temperature to 50 deg C and 100 deg C to simulate the thermal effects from spent nuclear fuel; - open repository conditions simulating atmospheric conditions (equilibrium with atmospheric partial pressures of CO 2 (g) and O 2 (g)); - mixing with deep saline water simulating up-coning; - mixing with shallow infiltration waters simulating down-coning; - mixing with different proportions of cement dissolution porewater. The effect of variable temperatures (up to 100 deg C) on most of the above modelled processes has also been assessed. A preliminary estimation of the effect of mineral precipitation on the hydraulic conductivity of the EDZ has been carried out. For most of the modelling cases, the estimated decrease of the hydraulic conductivity in ten years is smaller than 2%. Microbial evaluation was used to identify the potential for microbial calcite and iron hydroxide formation during various repository conditions. The most important groundwater parameters for microorganisms, are pH and carbonate, ferrous iron, methane and the dissolved

  8. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    El Ouahed, Abdelkader Kouider; Mazouzi, Amine [Sonatrach, Rue Djenane Malik, Hydra, Algiers (Algeria); Tiab, Djebbar [Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd Street, SEC T310, Norman, OK, 73019 (United States)

    2005-12-15

    In highly heterogeneous reservoirs classical characterization methods often fail to detect the location and orientation of the fractures. Recent applications of Artificial Intelligence to the area of reservoir characterization have made this challenge a possible practice. Such a practice consists of seeking the complex relationship between the fracture index and some geological and geomechanical drivers (facies, porosity, permeability, bed thickness, proximity to faults, slopes and curvatures of the structure) in order to obtain a fracture intensity map using Fuzzy Logic and Neural Network. This paper shows the successful application of Artificial Intelligence tools such as Artificial Neural Network and Fuzzy Logic to characterize naturally fractured reservoirs. A 2D fracture intensity map and fracture network map in a large block of Hassi Messaoud field have been developed using Artificial Neural Network and Fuzzy Logic. This was achieved by first building the geological model of the permeability, porosity and shale volume using stochastic conditional simulation. Then by applying some geomechanical concepts first and second structure directional derivatives, distance to the nearest fault, and bed thickness were calculated throughout the entire area of interest. Two methods were then used to select the appropriate fracture intensity index. In the first method well performance was used as a fracture index. In the second method a Fuzzy Inference System (FIS) was built. Using this FIS, static and dynamic data were coupled to reduce the uncertainty, which resulted in a more reliable Fracture Index. The different geological and geomechanical drivers were ranked with the corresponding fracture index for both methods using a Fuzzy Ranking algorithm. Only important and measurable data were selected to be mapped with the appropriate fracture index using a feed forward Back Propagation Neural Network (BPNN). The neural network was then used to obtain a fracture intensity

  9. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    Science.gov (United States)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    In-situ downhole measurements and coring within and around an active fault zone are needed to better understand the structure and material properties of fault rocks as well as the physical state of active faults and intra-plate crust. Particularly, the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone is important to estimate earthquake occurrence mechanisms which correspond to the prediction of an earthquake. It is necessary to compare some active faults in different conditions of the chrysalis stage and their relation to subsequent earthquake occurrence. To better understand such conditions, "Active Fault Zone Drilling Project" has been conducted in the central part of Japan by the National Research Institute for Earth Science and Disaster Prevention. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault created by the 1981 Nobi earthquake, the greatest inland earthquake M=8.0 in Japan, have been drilled through the fault fracture zones. During these past four years, a similar experiment and research at the Atera fault, of which some parts seem to have been dislocated by the 1586 Tensyo earthquake, has been undertaken. The features of the Atera fault are as follows: (1) total length is about 70 km, (2) general trend is NW45_Kwith a left-lateral strike slip, (3) slip rate is estimated as 3-5 m/1000 yrs. and the average recurrence time as 1700 yrs., (4) seismicity is very low at present, and (5) lithologies around the fault are basically granitic rocks and rhyolite. We have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes are located on a line crossing the fracture zone of the Atera fault. Resistivity and gravity structures inferred from surface geophysical surveys were compared with the physical properties

  10. Paleocurrents in the Charlie-Gibbs Fracture Zone during the Late Quaternary

    Science.gov (United States)

    Bashirova, L. D.; Dorokhova, E.; Sivkov, V.; Andersen, N.; Kuleshova, L. A.; Matul, A.

    2017-12-01

    The sedimentary processes prevailing in the Charlie-Gibbs Fracture Zone (CGFZ) are gravity flows. They rework pelagic sediments and contourites, and hereby mask the paleoceanographic information partly. The aim of this work is to study sediments of the AMK-4515 core taken in eastern part of the CGFZ. The sediment core AMK-4515 (52°03.14" N, 29°00.12" W; 370 cm length, water depth 3590 m) is located in the southern valley of the CGFZ. This natural deep corridor is influenced by both the westward Iceland-Scotland Overflow Water and underlying counterflow from the Newfoundland Basin. An alternation of the calcareous silty clays and hemipelagic clayey muds in the studied section indicates similarity between our core and long cores taking from CGFZ. A sharp facies shift was found at 80 cm depth in the investigated core. Only the upper section (0-80 cm) is valid for paleoreconstruction. Planktonic foraminiferal distribution and sea-surface temperature (SST) derived from these allow for tracing the PF and NAC latitudinal migrations during investigated period. So-called sortable silt mean size (SS) was used as proxy for reconstruction of bottom current intensity. The age model is based on δ18O and AMS 14C dating, as well as ice-rafted debris (IRD) counts and CaCO3 content. Stratigraphic subdivision of this section allows to allocate 2 marine isotope stages (MIS) covering the last 27 ka. We refer sediments below this level (80-370 cm) to upper part of turbidite, which was formed as a result of massive slide in the southern channel of the CGFZ. Sandy particles were deposited first, underlying silts and clays. This short-term event occurred so quickly that pelagic sedimentation played no role and was not reflected in the grain size distributions. There is evidence for the significant role of gravity flows in sedimentation in the southern channel of the CGFZ. According to our data, the massive sediment slide occurred in the CGFZ about 27 ka. The authors are grateful to RSF

  11. Literature survey: Relations between stress change, deformation and transmissivity for fractures and deformation zones based on in situ investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Aasa (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    This literature survey is focused upon relations between stress change, deformation and transmissivity for fractures and deformation zones and aims at compiling and commenting on relevant information and references with focus on data from in situ investigations. Main issues to investigate are: - Impact of normal stress change and deformation on transmissivity, for fractures and deformation zones. - Impact of shear stress and displacement on transmissivity, for fractures and deformation zones for different normal load conditions. Considering the line of research within the area, the following steps in the development can be identified. During the 1970's and 1980's, the fundamentals of rock joint deformation were investigated and identification and description of mechanisms were made in the laboratory. In the 1990's, coupling of stress-flow properties of rock joints were made using hydraulic testing to identify and describe the mechanisms in the field. Both individual fractures and deformation zones were of interest. In situ investigations have also been the topic of interest the last ten years. Further identification and description of mechanisms in the field have been made including investigation and description of system of fractures, different types of fractures (interlocked/mated or mismatched/unmated) and how this is coupled to the hydromechanical behavior. In this report, data from in situ investigations are compiled and the parameters considered to be important to link fracture deformation and transmissivity are normal stiffness, k{sub n} and hydraulic aperture, b{sub h}. All data except for those from one site originate from investigations performed in granitic rock. Normal stiffness, k{sub n}, and hydraulic aperture, b{sub h}, are correlated, even though data are scattered. In general, the largest variation is seen for small hydraulic apertures and high normal stiffness. The increasing number of contact points (areas) and fracture filling are

  12. Three dimensional numerical modeling for investigation of fracture zone filled with water by borehole radar; Borehole radar ni yoru gansui hasaitai kenshutsu no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Watanabe, T; Ashida, Y [Kyoto University, Kyoto (Japan); Hasegawa, K; Yabuuchi, S [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1997-05-27

    Water bearing fracture zones existing in rock mass largely influence the underground water flow and dynamic property of rock mass. The detailed survey of the location and size of water bearing fracture zones is an important task in the fields such as civil engineering, environment and disaster prevention. Electromagnetic waves of high frequency zones can be grasped as a wave phenomenon, and the record obtained in the actual measurement is wave forms of time series. In the exploration using borehole radar, this water bearing fracture zone becomes the reflection surface, and also becomes a factor of damping in the transmitted wave. By examining changes which these give to the observed wave forms, therefore, water bearing fracture zones can be detected. This study made three dimensional numerical modeling using the time domain finite difference method, and obtained the same output as the observed wave form obtained using borehole radar. By using this program and changing each of the parameters such as frequency and resistivity in the homogeneous medium, changes of the wave forms were observed. Further, examples were shown of modeling of detection of water bearing fracture zones. 5 refs., 16 figs., 1 tab.

  13. New direct estimates of Iceland-Scotland Overflow Water transport through the Charlie-Gibbs Fracture Zone and its relationship to the North Atlantic Current

    Science.gov (United States)

    Bower, Amy; Furey, Heather; Xu, Xiaobiao

    2015-04-01

    Detailed observations of the pathways, transports and water properties of dense overflows associated with the Atlantic Meridional Overturning Circulation (AMOC) provide critical benchmarks for climate models and mixing parameterizations. A recent two-year time series from eight moorings offers the first long-term simultaneous observations of the hydrographic properties and transport of Iceland-Scotland Overflow Water (ISOW) flowing westward through the Charlie-Gibbs Fracture Zone (CGFZ), a major deep gap in the Mid-Atlantic Ridge (MAR) connecting the eastern and western basins of the North Atlantic. In addition, current meters up to 500-m depth and satellite altimetry allow us to investigate the overlying North Atlantic Current (NAC) as a source of ISOW transport variability. Using the isohaline 34.94 to define the ISOW layer, the two year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989 using the same isohaline. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ. This result raises new questions regarding the interaction of the upper and lower limbs of the AMOC, downstream propagation of ISOW transport variability in the Deep Western Boundary Current and alternative pathways of ISOW across the MAR.

  14. A comparative evaluation of fracture resistance of endodontically treated teeth, with variable marginal ridge thicknesses, restored with composite resin and composite resin reinforced with Ribbond: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vaishali Kalburge

    2013-01-01

    Full Text Available Background: The anatomic shape of maxillary premolars show a tendency towards separation of their cusps during mastication after endodontic treatment. Preservation of the marginal ridge of endodontically treated and restored premolars can act as a strengthening factor and improve the fracture resistance. Objectives: To evaluate the effect of varying thickness of marginal ridge on the fracture resistance of endodontically treated maxillary premolars restored with composite and Ribbond reinforced composites. Materials and Methods: One hundred and twenty, freshly extracted, non carious human mature maxillary premolars were selected for this experimental in vitro study. The teeth were randomly assigned in to twelve groups ( n = 10. Group 1 received no preparation. All the premolars in other groups were root canal treated. In subgroups of 3 and 4, DO cavities were prepared while MOD cavities were prepared for all subgroups of group 2, the dimensions of the proximal boxes were kept uniform. In group 3 and 4 the dimensions of the mesial marginal ridge were measured using a digital Vernier caliper as 2 mm, 1.5 mm, 1 mm and 0.5 mm in the respective subgroups. All samples in groups 2.2 and all the subgroups of 3 were restored with a dentin bonding agent and resin composite. The teeth in group 2.3 and all subgroups of 4 were restored with composite reinforced with Ribbond fibers. The premolars were submitted to axial compression up to failure at 45 degree angle to a palatal cusp in universal testing machine. The mean load necessary to fracture was recorded in Newtons and the data was analysed. Results: There was a highly significant difference between mean values of force required to fracture teeth in group 1 and all subgroups of group 2, 3 and 4 (i.e., P < 0.01 Conclusion: On the basis of static loading, preserving the mesial marginal ridge with thicknesses of mm, 1.5 mm, 1 mm and 0.5 mm, composite restored and Ribbond reinforced composite restored

  15. Hydrogeochemical and microbiological effects on fractures in the Excavation Damaged Zone (EDZ)

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Gimeno, Maria; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Earth Science Dept., Zaragoza (Spain)); Pedersen, Karsten (Microbial Analytics, Moelnlycke (Sweden))

    2009-01-15

    Due to the disturbances associated with the excavation, construction and closure of the repository for storage of spent nuclear fuel, the saturation state of the groundwaters at repository depth with respect to several mineral phases may change and mineral precipitation/dissolution reactions may take place. In addition, changing groundwater conditions may facilitate microbial growth on fracture walls. These processes are of importance since they may influence the stability and safety of the Excavation Damaged Zone (EDZ) because precipitation and microbial growth may seal the hydraulically conductive fractures caused by the repository construction. Different processes expected to occur in the EDZ during the open repository conditions and after repository closure have been evaluated based on data from Forsmark, Laxemar and Aespoe. Geochemical modelling by using PHREEQC was applied to simulate the following cases: - increase of temperature to 50 deg C and 100 deg C to simulate the thermal effects from spent nuclear fuel; - open repository conditions simulating atmospheric conditions (equilibrium with atmospheric partial pressures of CO{sub 2}(g) and O{sub 2}(g)); - mixing with deep saline water simulating up-coning; - mixing with shallow infiltration waters simulating down-coning; - mixing with different proportions of cement dissolution porewater. The effect of variable temperatures (up to 100 deg C) on most of the above modelled processes has also been assessed. A preliminary estimation of the effect of mineral precipitation on the hydraulic conductivity of the EDZ has been carried out. For most of the modelling cases, the estimated decrease of the hydraulic conductivity in ten years is smaller than 2%. Microbial evaluation was used to identify the potential for microbial calcite and iron hydroxide formation during various repository conditions. The most important groundwater parameters for microorganisms, are pH and carbonate, ferrous iron, methane and the

  16. New Hexactinellid Sponge Chaunoplectella megapora sp. nov. (Lyssacinosida: Leucopsacidae) from Clarion-Clipperton Fracture Zone, Eastern Pacific Ocean.

    Science.gov (United States)

    Wang, Chunsheng; Zhang, Yuan; Lu, Bo; Wang, Dexiang

    2018-01-23

    The new Hexactinellid sponge Chaunoplectella megapora sp. nov. reported in this study was collected from the COMRA contract area, the western part of Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean at a depth of 5258 m. This sponge's extraordinary multiporous body with the presence of unique codonhexasters, sigmatocomes, toothed discohexasters and hemidiscohexasters, as well as stellate disocohexasters, characterizes it as a new species in the genus Chaunoplectella. This report presents the first record of family Leucopsacidae at this site in the eastern Pacific Ocean.

  17. The present situation of D-1 fracture zone investigation in Tsuruga Power Station

    International Nuclear Information System (INIS)

    Ishii, Kimiya; Iriya, Takeshi; Dozaki, Koji; Hoshino, Tomokiko

    2013-01-01

    Shatter zone called 'D-1' lies under the reactor building of Tsuruga Power Station (Tsuruga PS) Unit. 2. The Japan Atomic Power Company (JAPC) has been investigating the D-1 shatter zone in several waves (Overlying Strata Analysis Method, Tephra Analysis Method etc.) and evaluating that the D-1 shatter zone would not be an active fault which should be taken into account in the seismic design, so far. Additionally, JAPC have numerically analyzed how the shatter zones would be affected in case of the Urasoko fault moves using elasticity theory of dislocation method and Two Dimensional Finite Element Method. (author)

  18. Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins

    Science.gov (United States)

    Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan

    2015-02-01

    Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the

  19. Paleohydrogeological implications from fracture calcites and sulfides in a major hydrogeological zone HZ19 at Olkiluoto

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.; Rinne, K.

    2009-08-01

    30 samples of fracture mineral fillings in or near water conducting fractures at Olkiluoto were collected from 10 drill cores for fracture mineral studies. The aim of the study was to obtain information about past hydrogeochemical conditions at Olkiluoto using the calcite morphology, the chemical characteristics and the isotopic composition of carbon and oxygen in calcite. The chemical composition of fracture calcites at Olkiluoto is nearly stoichiometric CaCO 3 . Most variation in the composition of calcite is due to differences in the Mn content, which could indicate variations in groundwater redox conditions. Meaningful REE patterns were obtained for the calcites. REE patterns showed generally negative Eu anomalies, but one fracture calcite specimen had a distinct positive Eu anomaly. This positive anomaly could be related to ancient hydrothermal conditions, although derivation of the anomaly from the host rock cannot be excluded. Preliminary results for calcite U-Th dating of fracture calcites are reported. The isotopic composition of U and Th were analysed by a new multiple collector LA-ICPMS instrument. U and Th concentrations in fracture calcites are generally 18 O values of calcite range from -17 to -7 per mille. Most of the calcites may have been precipitated in the presence of waters with oxygen isotope ratios similar to those in the present-day groundwaters at Olkiluoto. Two samples with an oxygen isotopic composition highly depleted in 18 O were interpreted to have been precipitated at elevated temperatures. The δ 13 C values of calcite showed a wide range of values from -26 to +35 per mille. Multiple sources for carbon are implied. The highest δ 13 C values indicate methanic conditions in the fracture at the time of calcite precipitation. It appears that the methanic environment has earlier extended to shallower depths compared to the location of the methanic environment in the present-day fracture system (> 300 m). Ten pyrite samples were analysed

  20. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs

  1. Variations in the Holocene North Atlantic Bottom Current Strength in the Charlie Gibbs Fracture Zone

    Science.gov (United States)

    Kissel, C.; Van Toer, A.; Cortijo, E.; Turon, J.

    2011-12-01

    The changes in the strength of the North Atlantic bottom current during the Holocene period is presented via the study of cores located at the western termination of the northern deep channel of the Charlie-Gibbs fracture zone. This natural roughly E-W corridor is bathed by the Iceland-Scotland overflow water (ISOW) when it passes westward out of the Iceland Basin into the western North Atlantic basin. At present, it is also described as the place where southern sourced silicate-rich Lower Deep Water (LDW) derived from the Antarctic Bottom Waters (AABW) are passing westward, mixing with the ISOW. We conducted a deep-water multiproxy analysis on two nearby cores, coupling magnetic properties, anisotropy, sortable silt and benthic foraminifera isotopes. The first core had been taken by the R. V. Charcot in 1977 and the second one is a CASQ core taken during the IMAGES-AMOCINT MD168- cruise in the framework of the 06-EuroMARC-FP-008 Project on board the R.V. Marion Dufresne (French Polar Institute, IPEV) in 2008. The radiocarbon ages indicate an average sedimentation rate of about 50 cm/kyr through middle and late Holocene allowing a data resolution ranging from 40 to 100 years depending on the proxy. In each core, we observe long-term and short-term changes in the strength of the bottom currents. On the long term, a decrease in the amount of magnetic particles (normalized by the carbonate content) is first from 10 kyr to 8.6 kyr and then between 6 and 2 kyrs before reaching a steady state. Following Kissel et al. (2009), this indicates a decrease in the ISOW strength. The mean sortable silt shows exactly the same pattern indicating that not only the intensity of the ISOW but the whole deep water mass bathing the sites has decreased. On the short term, a first very prominent event centered at about 8.4 kyr (cal. ages) is marked by a pronounced minima in magnetic content and the smaller mean sortable silt sizes. This is typical for an abrupt reduction in deep flow

  2. Biodiversity of nematode assemblages from the region of the Clarion-Clipperton Fracture Zone, an area of commercial mining interest

    Directory of Open Access Journals (Sweden)

    Hawkins Lawrence E

    2003-01-01

    Full Text Available Abstract Background The possibility for commercial mining of deep-sea manganese nodules is currently under exploration in the abyssal Clarion-Clipperton Fracture Zone. Nematodes have potential for biomonitoring of the impact of commercial activity but the natural biodiversity is unknown. We investigate the feasibility of nematodes as biomonitoring organisms and give information about their natural biodiversity. Results The taxonomic composition (at family to genus level of the nematode fauna in the abyssal Pacific is similar, but not identical to, the North Atlantic. Given the immature state of marine nematode taxonomy, it is not possible to comment on the commonality or otherwise of species between oceans. The between basin differences do not appear to be directly linked to current ecological factors. The abyssal Pacific region (including the Fracture Zone could be divided into two biodiversity subregions that conform to variations in the linked factors of flux to the benthos and of sedimentary characteristics. Richer biodiversity is associated with areas of known phytodetritus input and higher organic-carbon flux. Despite high reported sample diversity, estimated regional diversity is less than 400 species. Conclusion The estimated regional diversity of the CCFZ is a tractable figure for biomonitoring of commercial activities in this region using marine nematodes, despite the immature taxonomy (i.e. most marine species have not been described of the group. However, nematode ecology is in dire need of further study.

  3. Biodiversity of nematode assemblages from the region of the Clarion-Clipperton Fracture Zone, an area of commercial mining interest.

    Science.gov (United States)

    Lambshead, P John D; Brown, Caroline J; Ferrero, Timothy J; Hawkins, Lawrence E; Smith, Craig R; Mitchell, Nicola J

    2003-01-09

    The possibility for commercial mining of deep-sea manganese nodules is currently under exploration in the abyssal Clarion-Clipperton Fracture Zone. Nematodes have potential for biomonitoring of the impact of commercial activity but the natural biodiversity is unknown. We investigate the feasibility of nematodes as biomonitoring organisms and give information about their natural biodiversity. The taxonomic composition (at family to genus level) of the nematode fauna in the abyssal Pacific is similar, but not identical to, the North Atlantic. Given the immature state of marine nematode taxonomy, it is not possible to comment on the commonality or otherwise of species between oceans. The between basin differences do not appear to be directly linked to current ecological factors. The abyssal Pacific region (including the Fracture Zone) could be divided into two biodiversity subregions that conform to variations in the linked factors of flux to the benthos and of sedimentary characteristics. Richer biodiversity is associated with areas of known phytodetritus input and higher organic-carbon flux. Despite high reported sample diversity, estimated regional diversity is less than 400 species. The estimated regional diversity of the CCFZ is a tractable figure for biomonitoring of commercial activities in this region using marine nematodes, despite the immature taxonomy (i.e. most marine species have not been described) of the group. However, nematode ecology is in dire need of further study.

  4. The concept of the average stress in the fracture process zone for the search of the crack path

    Directory of Open Access Journals (Sweden)

    Yu.G. Matvienko

    2015-10-01

    Full Text Available The concept of the average stress has been employed to propose the maximum average tangential stress (MATS criterion for predicting the direction of fracture angle. This criterion states that a crack grows when the maximum average tangential stress in the fracture process zone ahead of the crack tip reaches its critical value and the crack growth direction coincides with the direction of the maximum average tangential stress along a constant radius around the crack tip. The tangential stress is described by the singular and nonsingular (T-stress terms in the Williams series solution. To demonstrate the validity of the proposed MATS criterion, this criterion is directly applied to experiments reported in the literature for the mixed mode I/II crack growth behavior of Guiting limestone. The predicted directions of fracture angle are consistent with the experimental data. The concept of the average stress has been also employed to predict the surface crack path under rolling-sliding contact loading. The proposed model considers the size and orientation of the initial crack, normal and tangential loading due to rolling–sliding contact as well as the influence of fluid trapped inside the crack by a hydraulic pressure mechanism. The MATS criterion is directly applied to equivalent contact model for surface crack growth on a gear tooth flank.

  5. Conceptual and analytical modeling of fracture zone aquifers in hard rock. Implications of pumping tests in the Pohjukansalo well field, east-central Finland

    International Nuclear Information System (INIS)

    Leveinen, J.

    2001-01-01

    Fracture zones with an interconnected network of open fractures can conduct significant groundwater flow and as in the case of the Pohjukansalo well field in Leppaevirta, can yield sufficiently for small-scale municipal water supply. Glaciofluvial deposits comprising major aquifers commonly overlay fracture zones that can contribute to the water balance directly or indirectly by providing hydraulic interconnections between different formations. Fracture zones and fractures can also transport contaminants in a poorly predictable way. Consequently, hydrogeological research of fracture zones is important for the management and protection of soil aquifers in Finland. Hydraulic properties of aquifers are estimated in situ by well test analyses based on analytical models. Most analytical models rely on the concepts of radial flow and horizontal slab aquifer. In Paper 1, pump test responses of fracture zones in the Pohjukansalo well field were characterised based on alternative analytical models developed for channelled flow cases. In Paper 2, the tests were analysed based on the generalised radial flow (GRF) model and a concept of a fracture network possessing fractional flow dimension due to limited connectivity compared to ideal 2- or 3- dimensional systems. The analysis provides estimates of hydraulic properties in terms of parameters that do not have concrete meaning when the flow dimension of the aquifer has fractional values. Concrete estimates of hydraulic parameters were produced by making simplified assumptions and by using the composite model developed in Paper 3. In addition to estimates of hydraulic parameters, analysis of hydraulic tests provides qualitative information that is useful when the hydraulic connections in the fracture system are not well known. However, attention should be paid to the frequency of drawdown measurements-particularly for the application of derivative curves. In groundwater studies, analytical models have been also used to estimate

  6. CAPTURING UNCERTAINTY IN UNSATURATED-ZONE FLOW USING DIFFERENT CONCEPTUAL MODELS OF FRACTURE-MATRIX INTERACTION

    International Nuclear Information System (INIS)

    SUSAN J. ALTMAN, MICHAEL L. WILSON, GUMUNDUR S. BODVARSSON

    1998-01-01

    Preliminary calculations show that the two different conceptual models of fracture-matrix interaction presented here yield different results pertinent to the performance of the potential repository at Yucca Mountain. Namely, each model produces different ranges of flow in the fractures, where radionuclide transport is thought to be most important. This method of using different flow models to capture both conceptual model and parameter uncertainty ensures that flow fields used in TSPA calculations will be reasonably calibrated to the available data while still capturing this uncertainty. This method also allows for the use of three-dimensional flow fields for the TSPA-VA calculations

  7. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    Science.gov (United States)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  8. Percutaneous internal fixation of proximal fifth metatarsal jones fractures (Zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes.

    Science.gov (United States)

    Murawski, Christopher D; Kennedy, John G

    2011-06-01

    Internal fixation is a popular first-line treatment method for proximal fifth metatarsal Jones fractures in athletes; however, nonunions and screw breakage can occur, in part because of nonspecific fixation hardware and poor blood supply. To report the results from 26 patients who underwent percutaneous internal fixation with a specialized screw system of a proximal fifth metatarsal Jones fracture (zones II and III) and bone marrow aspirate concentrate. Case series; Level of evidence, 4. Percutaneous internal fixation for a proximal fifth metatarsal Jones fracture (zones II and III) was performed on 26 athletic patients (mean age, 27.47 years; range, 18-47). All patients were competing at some level of sport and were assessed preoperatively and postoperatively using the Foot and Ankle Outcome Score and SF-12 outcome scores. The mean follow-up time was 20.62 months (range, 12-28). Of the 26 fractures, 17 were traditional zone II Jones fractures, and the remaining 9 were zone III proximal diaphyseal fractures. The mean Foot and Ankle Outcome Score significantly increased, from 51.15 points preoperatively (range, 14-69) to 90.91 at final follow-up (range, 71-100; P fracture healing on standard radiographs was 5 weeks after surgery (range, 4-24). Two patients did not return to their previous levels of sporting activity. One patient experienced a delayed union, and 1 healed but later refractured. Percutaneous internal fixation of proximal fifth metatarsal Jones fractures, with a Charlotte Carolina screw and bone marrow aspirate concentrate, provides more predictable results while permitting athletes a return to sport at their previous levels of competition, with few complications.

  9. Magnetic and bathymetric studies in the vicinity of the 73 degree E fracture zone, Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.

    Ridges. The re- construction studies of Patriat and Segoufin The Central Indian Basin, located between (1988) provided a synthesis of the magnetic the Central Indian Ridge and the Ninety East data from these three ridges. In addition, de- Ridge... by Royer and 16" 30' S; a profile recently collected along 71 * E Schlich (1988) have enhanced our under- was also studied. Figure 1 shows the study area standing of the evolution of the Indian Ocean and the major tectonic features in the Central...

  10. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 2400 - 4390 m tunnel chainage

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H.; Rantanen, T.; Kuula, H. [WSP Finland Oy, Helsinki (Finland)

    2012-05-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO area at the Olkiluoto site, western Finland. This report is an extension of the previously published report: Geometrical and Mechanical properties if the fractures and brittle deformation zones based on ONKALO tunnel mapping, 0-2400 m tunnel chainage (Kuula 2010). In this updated report, mapping data are from 2400-4390 m tunnel chainage. Defined rock mechanics parameters of the fractures are associated with the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. There are no new data from laboratory joint shear and normal tests. The fracture wall compressive strength (JCS) data are available from the chainage range 1280-2400 m. Estimation of the mechanics properties of the 24 brittle deformation zones (BDZ) is based on the mapped Q' value, which is transformed to the GSI value in order to estimate strength and deformability properties. A component of the mapped Q' values is from the ONKALO and another component is from the drill cores. In this study, 24 BDZs have been parameterized. The location and size of the brittle deformation are based on the latest interpretation. New data for intact rock strength of the brittle deformation zones are not available. (orig.)

  11. Chaotic-Dynamical Conceptual Model to Describe Fluid Flow and Contaminant Transport in a Fractured Vadose Zone

    International Nuclear Information System (INIS)

    Faybishenko, Boris; Doughty, Christine; Geller, Jil T.

    1999-01-01

    DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has led to the contamination of (or threatens to contaminate) underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is the determination of the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently, through narrow pathways, driven by variations in environmental conditions. These preferential flow pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following activities: Development of multi scale conceptual models and mathematical and numerical algorithms for flow and transport, which incorporate both (a) the spatial variability of heterogeneous porous and fractured media and (b) the temporal dynamics of flow and transport; Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow; Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils and remediation efforts. This approach is based on the consideration of multi scale spatial heterogeneity and flow phenomena that are affected by

  12. The metallogenic role of east-west fracture zones in South America with regard to the motion of lithospheric plates (with an example from Brazil)

    Science.gov (United States)

    Kutina, J.; Carter, William D.; Lopez, F.X.

    1978-01-01

    The role of east-west fracture zones in South America is discussed with regard to global fracturing and the motion of lithospheric plates. A set of major NW-trending lineaments has been derived which show a tendency to be spaced equidistantly and may correspond to a set of east-west fractures in the "pre-drift" position of the South American plate. Statistical analysis of linears in the ERTS-mosaics shows that NW-fractures are also among the most important ones in the Andes region, suggesting that the above major lineaments extend into the basement of the Andes. Some of the old major fractures, trending east-west in the present orientation of South America, are discussed and their NE orientation in the pre-drift position of the plate is considered. An example of structural control of ore deposition in the Brazilian Shield is presented, using the maps of the RADAM Project. It is concluded that the small tin-bearing granitic bodies concentrated in the region of Sao Felix do Xingu in the state of Para represent upper parts of an unexposed granitoid massif which is controlled by the intersection of a major east-west fracture zone probably represents westward extension of the Patos Lineament of the easternmost part of Brazil, connected with the east-west fracture zone of the Para state through the basement of the Maranhao Basin (Sineclise do Maranhao-Piaui). It is expected that the proposed "Patos-Para Lineament" extends further westward and may similarly control, at intersections with fractures of other trends, some mineralization centers in the western part of the state of Para and in the state of Amazonas.

  13. Study of local-zone microstructure, strength and fracture toughness of hybrid laser-metal-inert-gas-welded A7N01 aluminum alloy joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaomin, E-mail: xmwang991011@163.com [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Li, Bo [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Li, Mingxing; Huang, Cui [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Chen, Hui [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China)

    2017-03-14

    Mechanical properties of hybrid laser-metal-inert-gas-welded A7N01-T5 aluminum alloy joints were studied by using local samples that were extracted from the base metal (BM), heat-affected zone (HAZ), and fusion zone (FZ) of the joint to investigate the triangular relationship of microstructure, strength and fracture toughness of the local zones. The BM had the highest yield strength, ultimate tensile strength (UTS) and lowest elongation, which contrasts with the FZ. The yield strength of the HAZ is lower than that of the BM, whereas its UTS is very close to that of the BM, and its elongation is higher than that of the BM. The fracture toughness of the three local zones decreased as HAZ>BM>FZ. To analyze differences in local mechanical behavior, the detailed microstructure of the three local zones was studied by optical microscopy and electron backscattered diffraction, whereas the fracture surface and precipitation were studied by scanning and transmission electron microscopy. The variation of grain size, especially the morphology and distribution of strengthening phase in HAZ in welding process is the key factor that leads to its different mechanical properties from that of BM, which can be elucidated by different dislocation mechanism, sheared mechanism or Orowan mechanism. The as-cast microstructure and second-phase particles that segregate between dendritic branches provide the FZ with the lowest yield strength and UTS. The factors including area fraction of the precipitates, the difference of strength between the matrix and the grain boundaries, the precipitate-free zone along grain boundaries, as well as the grain boundaries angle are taken into account to explain the difference of fracture toughness among BM, HAZ and FZ, and their fracture modes.

  14. Characterization of fractures and flow zones in a contaminated crystalline-rock aquifer in the Tylerville section of Haddam, Connecticut

    Science.gov (United States)

    Johnson, Carole D.; Kiel, Kristal F.; Joesten, Peter K.; Pappas, Katherine L.

    2016-10-04

    The U.S. Geological Survey, in cooperation with the Connecticut Department of Energy and Environmental Protection, investigated the characteristics of the bedrock aquifer in the Tylerville section of Haddam, Connecticut, from June to August 2014. As part of this investigation, geophysical logs were collected from six water-supply wells and were analyzed to (1) identify well construction, (2) determine the rock type and orientation of the foliation and layering of the rock, (3) characterize the depth and orientation of fractures, (4) evaluate fluid properties of the water in the well, and (5) determine the relative transmissivity and head of discrete fractures or fracture zones. The logs included the following: caliper, electromagnetic induction, gamma, acoustic and (or) optical televiewer, heat-pulse flowmeter under ambient and pumped conditions, hydraulic head data, fluid electrical conductivity and temperature under postpumping conditions, and borehole-radar reflection collected in single-hole mode. In a seventh borehole, a former water-supply well, only caliper, fluid electrical conductivty, and temperature logs were collected, because of a constriction in the borehole.This report includes a description of the methods used to collect and process the borehole geophysical data, the description of the data collected in each of the wells, and a comparison of the results collected in all of the wells. The data are presented in plots of the borehole geophysical logs, tables, and figures. Collectively these data provide valuable characterizations that can be used to improve or inform site conceptual models of groundwater flow in the study area.

  15. Techniques for Source Zone and Plume Characterization of Tetrachloroethene in Fractured Limestone Aquifers

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Mosthaf, Klaus; Janniche, Gry S.

    Characterization of chlorinated solvents in fractured limestone aquifers is essential for proper development of site specific conceptual models and subsequent risk assessment and remediation. High resolution characterization is challenged by the difficulties involved in collection of intact core...... an improved conceptual understanding of contaminant transport. At both sites limestone cores were collected with significant core losses. The discrete quantification of chlorinated solvents in the retrieved limestone cores was compared to different FLUTe technologies at the DNAPL site and passive and active...... distribution compared to the data obtained by quantification of chlorinated solvents in the limestone cores....

  16. Deep-reaching fracture zones in the crystalline basement surrounding the West Congo System and their control of mineralization in Angola and Gabon

    NARCIS (Netherlands)

    Boorder, H. de

    1982-01-01

    A framework of major, deep-reaching fracture zones in western Central Africa is inferred from airborne magnetometric and surface geological observations in Central Angola and Gabon. A correlation is proposed between these observations and the continental negative Bouguer anomaly. The minimum

  17. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios

  18. Statistical model of fractures and deformation zones. Preliminary site description, Laxemar subarea, version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, Jan; Forssberg, Ola [Golder Associates AB, Stockholm (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc., Redmond, WA (United States)

    2005-10-15

    The goal of this summary report is to document the data sources, software tools, experimental methods, assumptions, and model parameters in the discrete-fracture network (DFN) model for the local model volume in Laxemar, version 1.2. The model parameters presented herein are intended for use by other project modeling teams. Individual modeling teams may elect to simplify or use only a portion of the DFN model, depending on their needs. This model is not intended to be a flow model or a mechanical model; as such, only the geometrical characterization is presented. The derivations of the hydraulic or mechanical properties of the fractures or their subsurface connectivities are not within the scope of this report. This model represents analyses carried out on particular data sets. If additional data are obtained, or values for existing data are changed or excluded, the conclusions reached in this report, and the parameter values calculated, may change as well. The model volume is divided into two subareas; one located on the Simpevarp peninsula adjacent to the power plant (Simpevarp), and one further to the west (Laxemar). The DFN parameters described in this report were determined by analysis of data collected within the local model volume. As such, the final DFN model is only valid within this local model volume and the modeling subareas (Laxemar and Simpevarp) within.

  19. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  20. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    International Nuclear Information System (INIS)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A.; Maillet, P.; Monzier, M.

    1997-01-01

    The Hunter 'fracture zone' is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle

  1. A numerical study of the effects of a discrete fracture and an excavation damage zone on 129I transport through the geosphere

    International Nuclear Information System (INIS)

    Chan, T.; Scheier, N.W.; O'Connor, P.A.

    1997-10-01

    A numerical study has been conducted to investigate the effects of a discrete fracture and an excavation damage zone (EDZ) on groundwater mediated transport of I2 9 from a hypothetical nuclear fuel waste disposal vault through saturated, sparsely fractured plutonic rock to the biosphere. The reference disposal system simulated in the present work is based on the median value case of the postclosure assessment case study presented by AECL to support the Environmental Impact Statement (EIS) submitted to the Canadian Environmental Assessment Agency (CEAA). In particular, the reference geosphere is based mainly on hydrogeological characteristics at the site of AECL's Underground Research Laboratory in the Whiteshell Research Area, southeastern Manitoba. Several features not explicitly simulated in the EIS postclosure assessment case study are investigated in this study. These include the hypothetical possibility of a discrete fracture or a narrow fracture zone existing in the rock in the immediate vicinity of the disposal vault. This hypothetical fracture is modeled as a discrete fracture that connects or almost connects the vault to nearby fracture zone LD1. Simulations are performed using a combination of three-dimensional flow model and corresponding two-dimensional transport models, and the MOTIF finite-element code. It should be emphasized that the primary purpose of the present study it to investigate the relative importance of the various possible features in the rock in the immediate vicinity of the vault. Detailed numerical modelling of the effectiveness of various engineered barriers that could be used to mitigate any negative effects of such features is beyond the scope of this study

  2. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 4390-4990 m tunnel chainage and the technical rooms

    Energy Technology Data Exchange (ETDEWEB)

    Simelius, C. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO underground research facility at the Olkiluoto site, western Finland. This report is an extension of two previously published reports describing the geometrical and mechanical properties of the fractures and brittle deformation zones based on ONKALO tunnel mapping from tunnel chainages 0-2400 m (Kuula 2010) and 2400-4390 m (Moenkkoenen et al. 2012). This updated report makes use of mapping data from tunnel chainage 4390-4990 m, including the technical rooms located at the -420 m below the sea level. Analysis of the technical rooms is carried out by dividing the premises according to depth into three sections: the demonstration tunnel level, the technical rooms level and the -457 level. The division is executed in order to define the fracture properties in separate areas and to compare the properties with other technical rooms levels. Drillhole data from holes OL-KR1...OL-KR57 is also examined. This report ends the series of three parameterization reports. The defined rock mechanics parameters of the fractures are based on the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. No new data from laboratory joint shear and normal tests was available at the time of the report. The fracture wall compressive strength (JCS) data is available from the chainage range 1280-2400 m. New data for fracture wall compressive strength is not available although new Schmidt hammer measurements were performed in order to obtain the ratio of the intact rock mass vs. an intact brittle deformation zone. Estimation of the mechanical properties of the 23 brittle deformation zones (BDZ) is based on the mapped Q' value, which is converted into the GSI value in order to estimate the strength and deformability

  3. Fault fracture zone evaluation using borehole geophysical logs; case study at Nojima fault, Awaji island; Kosei butsuri kenso ni yoru danso hasaitai no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, R; Omura, K [National Research Institute for Disaster Prevention, Tsukuba (Japan); Yamamoto, T [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-10-22

    Ikeda, et al., in their examination of log data obtained from a borehole (2000m deep) drilled at Ashio, Tochigi Prefecture, where micro-earthquakes swarm at very shallow levels, pay special attention to porosity. Using correlationship between the porosity and elastic wave velocity/resistivity, the authors endeavor to find the presence of secondary pores, dimensions of faults, composition of water in strata in faults, and difference in matrix between rocks, all these for the classification and evaluation of fault fracture zones. In the present report, log data from a borehole (1800m deep) drilled to penetrate the Nojima fault (Nojima-Hirabayashi, Awaji island) that emerged during the Great Hanshin-Himeji Earthquake are analyzed in the same way as the above-named Ashio data, and the results are compared with the Ashio results. Immediately below the Nojima-Hirabayashi fault fractured zone, stress is found remarkably reduced and the difference stress quite small in size. This is interpreted as indicating a state in which clay has already developed well in the fault fractured zone ready to allow the occurrence of shear fracture or a state in which such has already occurred for the release of stress. 4 refs., 5 figs.

  4. Application of chaos analyses methods on East Anatolian Fault Zone fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kamışlıoğlu, Miraç, E-mail: m.kamislioglu@gmail.com; Külahcı, Fatih, E-mail: fatihkulahci@firat.edu.tr [Nuclear Physics Division, Department of Physics, Faculty of Science, Fırat University, Elazig, TR-23119 (Turkey)

    2016-06-08

    Nonlinear time series analysis techniques have large application areas on the geoscience and geophysics fields. Modern nonlinear methods are provided considerable evidence for explain seismicity phenomena. In this study nonlinear time series analysis, fractal analysis and spectral analysis have been carried out for researching the chaotic behaviors of release radon gas ({sup 222}Rn) concentration occurring during seismic events. Nonlinear time series analysis methods (Lyapunov exponent, Hurst phenomenon, correlation dimension and false nearest neighbor) were applied for East Anatolian Fault Zone (EAFZ) Turkey and its surroundings where there are about 35,136 the radon measurements for each region. In this paper were investigated of {sup 222}Rn behavior which it’s used in earthquake prediction studies.

  5. Gakkel Ridge: A window to ancient asthenosphere

    Science.gov (United States)

    Snow, J.; Hellebrand, E.; Dick, H.; Liu, C.; Stracke, A.

    2008-12-01

    We are accustomed to thinking of the ambient mantle as being a well-stirred reservoir, which contains at most regions of stored subducted slabs and "plums" containing lithophile trace element enrichments. What is forgotten in all of this is that the main process of formation of heterogeneities is a negative one - generating 10x more depleted mantle at any given moment than it does oceanic crust. Because the volume of lithosphere subducted over Earth history is so large, it has always been assumed that the process of subduction and convective mixing re-homogenizes the depleted and enriched reservoirs about as fast as it produces them. What if it doesn't? Our primary means of studying mantle heterogeneity however is basalts. Direct study of the mantle entails observations on xenoliths, ophiolites and orogenic lherzolites, and abyssal peridotites. The latter have the inherent problems of being melting residues, associated with fracture zones, are highly serpentinized and rare. The arctic ridge system gives us a unique perspective on the mantle, and samples we have recovered there are relatively free from these problems. Due to the slow spreading rate, which apparently severely limits the melt productivity, the thickest crust in the Arctic ridge system is approximately "normal". The most common crust is about half thickness and there are large expanses with no crust at all, in the sense of Hess, 1962, exposing mantle peridotite in the floor of extensive rift zones. We have shown Os isotopic evidence for the survival of ancient depletion signatures in Gakkel abyssal peridotites that apparently were not destroyed by subduction, convective stirring or resetting during magma genesis (Liu, et al., 2008). Additionally, preliminary Nd isotopic evidence suggests at least a 400Ma intact prehistory for these samples. Apparently, the low melt productivity on Gakkel Ridge has allowed the Gakkel mantle rocks to escape significant resetting due to melt interaction. This implies a

  6. Transitions in axial morphology along the Southeast Indian Ridge

    Science.gov (United States)

    Ma, Ying; Cochran, James R.

    1996-07-01

    a distance of 800 km. In addition, the ridge continues to become shallower away from Amsterdam Island toward the transition to an axial high at 82°E, 350 km to the east of the ASP. The Kerguelen hotspot appears to exert a major influence on the morphology of the SEIR by feeding asthenospheric material to the ridge axis. A long, narrow finger-like gravity high extends ENE away from the Kerguelen Plateau for a distance of 500 km. Shipboard data show that the gravity high results from a large volcanic ridge. The ridge appears analogous to the Rodriguez Ridge extending from the Reunion hotspot toward the Central Indian Ridge. A series of lower and broader lineated gravity highs extend from the volcanic ridge toward the SEIR in the ridge segment between the 81°E and 85°E transforms, which is the westernmost segment with an axial high. The only region of significant off-ridge seismicity on the Antarctic flank of the SEIR is a diffuse band of epicenters extending from Kerguelen to the SEIR within the segment between the 81°E and 85°E fracture zones. The along-axis gradient in depth from 86°E to the AAD and the transitions in axial morphology at 104°E and 114°E most likely reflect along-axis variations in mantle temperature and melt production rate due to distance from the Kerguelen hotspot and the influence of the AAD.

  7. Mechanical characterization of natural building stones: observation of the fracture process zone by ESPI

    Science.gov (United States)

    Calvetti, Francesco; Cardani, Giuliana; Meda, Alberto

    1999-09-01

    The cultural heritage of many nations consist of a great variety of structures of high intrinsic value, which are often composed of natural building stones (NBS), as granite, limestone, marble and sandstone. The use of accurate inspection devices, such as laser interferometry, allows us to acquire information regarding the mechanical properties and damage (tensile cracks) of NBS, which represents the first step in the restoration process. In this paper, the potential application of an electronic speckle pattern interferometry (ESPI) is shown, with particular attention to the observed displacement field and the crack penetration during laboratory testing. In ESPI, by superimposing a reflected light to a reference digitized image, an interference phenomenon is produced. By comparing two recorded interference patterns (before and after loading), the corresponding deformation can be evaluated. The application of ESPI in several laboratory tests on NBS is presented in this paper. In particular, during bending tests performed on geometrically similar NBS specimens, it was observed that the size and shape of the localized damage zone do not depend on the specimen size. These results allow for an interpretation of the 'size- effect,' which consists of a reduction of nominal strength as the specimen size increases.

  8. Big Data, data integrity, and the fracturing of the control zone

    Directory of Open Access Journals (Sweden)

    Carl Lagoze

    2014-11-01

    Full Text Available Despite all the attention to Big Data and the claims that it represents a “paradigm shift” in science, we lack understanding about what are the qualities of Big Data that may contribute to this revolutionary impact. In this paper, we look beyond the quantitative aspects of Big Data (i.e. lots of data and examine it from a sociotechnical perspective. We argue that a key factor that distinguishes “Big Data” from “lots of data” lies in changes to the traditional, well-established “control zones” that facilitated clear provenance of scientific data, thereby ensuring data integrity and providing the foundation for credible science. The breakdown of these control zones is a consequence of the manner in which our network technology and culture enable and encourage open, anonymous sharing of information, participation regardless of expertise, and collaboration across geographic, disciplinary, and institutional barriers. We are left with the conundrum—how to reap the benefits of Big Data while re-creating a trust fabric and an accountable chain of responsibility that make credible science possible.

  9. First Workshop on Design and Construction of Deep Repositories - Theme: Excavation through water-conducting major fracture zones

    International Nuclear Information System (INIS)

    Baeckblom, G.; Svemar, C.

    1994-01-01

    Final disposal of high-level nuclear waste has not yet been carried out in any country today. The concepts under development are all based on geological repositories, i.e., disposal at a sufficient depth below the surface to provide stable mechanical, hydrological and chemical conditions during the period the waste needs to be isolated from man. In the cases where crystalline bedrock is considered the proposed repository depths vary between 300-1000 m. The construction, operation and sealing of a deep geological repository must meet various criteria that in many respects are more detailed and more demanding than usual in underground construction projects today. The work shall be done so that occupational safety is ensured. The work also shall conform to whatever restrictions are necessary for ensuring pre-closure operational safety and post-closure long-term safety. March 1993 SKB arranged a two-day international workshop to discuss design and construction of repositories. Close to 40 participants from eight countries shared experiences regarding passage of major water-conducting fracture zones and other matters. This report summarizes the contributions to the workshop

  10. New species of Hebefustis Siebenaller & Hessler 1977 (Isopoda, Asellota, Nannoniscidae) from the Clarion Clipperton Fracture Zone (equatorial NE Pacific).

    Science.gov (United States)

    Kaiser, Stefanie

    2014-03-27

    Macrofaunal collections obtained during the French-German BIONOD expedition to the Clarion Clipperton Fracture Zone (CCFZ), equatorial NE Pacific, in spring 2012 yielded two new nannoniscid species, Hebefustis juansenii sp. n. and H. vecino sp. n., which are described in the current paper. The number and position of posterolateral spines of the pleotelson distinguishes the two new species from all other species in the genus. Both species are similar to each other differ, though, in the length of maxilliped epipodite, the presence of a robust spine on pereonite 2 (in H. juansenii sp. n.) as well as the shape of pereonite 4 anterior margin. They also resemble H. primitivus Menzies, 1962 but can be differentiated from the latter by the shape of lateral margins of pereonites 1-4 and the setation and shape of male pleopod 1. A distribution map and a taxonomic key to all known species in the genus are provided, as well as a checklist of known nannoniscid species from the Pacific is presented.

  11. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific

    Science.gov (United States)

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.

    2008-01-01

    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base

  12. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  13. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Science.gov (United States)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin

    2017-12-01

    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  14. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39'E): a supplementary study based on passive seismic receiver functions

    Science.gov (United States)

    Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing

    2017-06-01

    As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

  15. Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media

    Science.gov (United States)

    2013-09-01

    sandstone blocks in various configurations across 1000 μm, smooth-walled fractures. We hypothesize that a second mechanism for fracture cross flow is...content (as the sand is made of nearly pure quartz sandstone , it has been assumed that the organic carbon content is zero).The second column (C3) consisted...large diameter cylindrical sample of unsaturated fractured sandstone in the laboratory. The three-dimensional reconstructions of the high diffusivity

  16. Multi-scale geophysical study to model the distribution and development of fractures in relation to the knickpoint in the Luquillo Critical Zone Observatory (Puerto Rico)

    Science.gov (United States)

    Comas, X.; Wright, W. J.; Hynek, S. A.; Ntarlagiannis, D.; Terry, N.; Job, M. J.; Fletcher, R. C.; Brantley, S.

    2017-12-01

    Previous studies in the Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) have shown that regolith materials are rapidly developed from the alteration of quartz diorite bedrock, and create a blanket on top of the bedrock with a thickness that decreases with proximity to the knickpoint. The watershed is also characterized by a system of heterogeneous fractures that likely drive bedrock weathering and the formation of corestones and associated spheroidal fracturing and rindlets. Previous efforts to characterize the spatial distribution of fractures were based on aerial images that did not account for the architecture of the critical zone below the subsurface. In this study we use an array of near-surface geophysical methods at multiple scales to better understand how the spatial distribution and density of fractures varies with topography and proximity to the knickpoint. Large km-scale surveys using ground penetrating radar (GPR), terrain conductivity, and capacitively coupled resistivity, were combined with smaller scale surveys (10-100 m) using electrical resistivity imaging (ERI), and shallow seismics, and were directly constrained with boreholes from previous studies. Geophysical results were compared to theoretical models of compressive stress as due to gravity and regional compression, and showed consistency at describing increased dilation of fractures with proximity to the knickpoint. This study shows the potential of multidisciplinary approaches to model critical zone processes at multiple scales of measurement and high spatial resolution. The approach can be particularly efficient at large km-scales when applying geophysical methods that allow for rapid data acquisition (i.e. walking pace) at high spatial resolution (i.e. cm scales).

  17. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars

    Science.gov (United States)

    Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.

    2016-01-01

    Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.

  18. Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity

    Science.gov (United States)

    Evans, David J. A.; Storrar, Robert D.; Rea, Brice R.

    2016-04-01

    A 200-km-long and 10-km-wide linear assemblage of till-filled geometrical ridges on the bed of the Maskwa palaeo-ice stream of the late Wisconsinan southwest Laurentide Ice Sheet are interpreted as crevasse-squeeze ridges (CSR) developed during internal flow unit reorganization, immediately prior to ice stream shutdown. Ridge orientations are predominantly orientated WNW-ESE, with a subordinate WSW-ENE alignment, both indicative of ice fracture development transverse to former ice stream flow, as indicated by NNE-SSW aligned MSGL. Subglacial till injection into basal and/or full depth, mode I and II crevasses occurred at the approximate centreline of the ice stream, in response to extension and fracturing. Landform preservation indicates that this took place during the final stages of ice streaming, immediately prior to ice stream shutdown. This linear zone of ice fracturing therefore likely represents the narrowing of the fast-flowing trunk, similar to the plug flow identified in some surging valley glaciers. Lateral drag between the final active flow unit and the slower moving ice on either side is likely recorded by the up-ice bending of the CSR limbs. The resulting CSR corridor, here related to an individual ice stream flow unit, constitutes a previously unreported style of crevasse infilling and contrasts with two existing CSR patterns: (1) wide arcuate zones of CSRs related to widespread fracturing within glacier surge lobes; and (2) narrow concentric arcs of CSRs and recessional push moraines related to submarginal till deformation at active temperate glacier lobes.

  19. Slip on Ridge Transform Faults: Insights From Earthquakes and Laboratory Experiments

    Science.gov (United States)

    2005-06-01

    the volume of continental crust [Turcotte, release reported by the CMT catalog for each RTF. The1986; Aviles et al., 1987; King et al., 1988; Hirata...faults, Teconophyslcs, 118, 313-327. 30(12), 1618, doi:10.1029/2002GL016454. King , G. C. P., R. S. Stein, and J. B. Rundle (1988), The growth of Fnrncis...with temperatures of T < 600’C. Mylonites collected from the Shaka fracture zone on the South West Indian Ridge provide additional evidence for

  20. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  1. Free-Surface flow dynamics and its effect on travel time distribution in unsaturated fractured zones - findings from analogue percolation experiments

    Science.gov (United States)

    Noffz, Torsten; Kordilla, Jannes; Dentz, Marco; Sauter, Martin

    2017-04-01

    Flow in unsaturated fracture networks constitutes a high potential for rapid mass transport and can therefore possibly contributes to the vulnerability of aquifer systems. Numerical models are generally used to predict flow and transport and have to reproduce various complex effects of gravity-driven flow dynamics. However, many classical volume-effective modelling approaches often do not grasp the non-linear free surface flow dynamics and partitioning behaviour at fracture intersections in unsaturated fracture networks. Better process understanding can be obtained by laboratory experiments, that isolate single aspects of the mass partitioning process, which influence travel time distributions and allow possible cross-scale applications. We present a series of percolation experiments investigating partitioning dynamics of unsaturated multiphase flow at an individual horizontal fracture intersection. A high precision multichannel dispenser is used to establish gravity-driven free surface flow on a smooth and vertical PMMA (poly(methyl methacrylate)) surface at rates ranging from 1.5 to 4.5 mL/min to obtain various flow modes (droplets; rivulets). Cubes with dimensions 20 x 20 x 20 cm are used to create a set of simple geometries. A digital balance provides continuous real-time cumulative mass bypassing the network. The influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes is shown in single-inlet experiments. Droplet and rivulet flow are delineated and a transition zone exhibiting mixed flow modes can be determined. Furthermore, multi-inlet setups with constant total inflow rates are used to reduce variance and the effect of erratic free-surface flow dynamics. Investigated parameters include: variable aperture widths df, horizontal offsets dv of the vertical fracture surface and alternating injection methods for both droplet and rivulet flow. Repetitive structures with several horizontal fractures extend arrival times

  2. Preliminary results of hydrologic testing of the Umtanum Basalt Fracture Zone at borehole RRL-2 (3,781 to 3,827 ft)

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1983-02-01

    This report presents preliminary results and description of hydrologic test activities for the Umtanum Basalt Fracture Zone at Borehole RRL-2, within the test interval 3,781 to 3,827 feet. Hydrologic tests conducted include two short-term, constant discharge pumping tests and two slug tests. Preliminary results indicate an observed hydraulic head for the test interval of 406.7 feet above mean sea level. Transmissivity values determined from hydrologic tests performed range between 205 and 881 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 6 feet, is 147 ft/day. 8 refs., 6 figs., 3 tabs

  3. A new method for pressure test analysis of a vertically fractured well producing commingled zones in bounded square reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Mohammed E.; Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1997-07-15

    Although hydraulically or naturally fractured wells located in stratified bounded reservoirs are common, reliable techniques available to analyze the pressure test data for such reservoirs are lacking. This paper presents a mathematical model that describes the pressure behavior of a vertically fractured well located in a stratified, bounded, square reservoir. The fracture can be either a uniform flux or an infinite conductivity fracture. It was found that the dimensionless pressure function and its derivative and the fractional production rate from the different layers are mainly controlled by the fracture penetration into the formation, and that transmissibility and storativity affect the fractional production rate and the pressure derivative but have little effect on the dimensionless pressure function. Type curves of dimensionless pressure and dimensionless pressure derivative can be used to evaluate the reservoir characteristics. The selection of the appropriate type curve is guided by the behavior of the layer fractional production rate obtained from flow rate survey carried out during well testing. Type curves for uniform flux and infinite conductivity fractures exhibit similar features. Two examples are presented to demonstrate the application of the new method of analysis presented in this paper

  4. Analysis of the Slab Temperature, Thermal Stresses and Fractures Computed with the Implementation of Local and Average Boundary Conditions in the Secondary Cooling Zones

    Directory of Open Access Journals (Sweden)

    Hadała B.

    2016-12-01

    Full Text Available The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners.

  5. Predictive modelling of fault related fracturing in carbonate damage-zones: analytical and numerical models of field data (Central Apennines, Italy)

    Science.gov (United States)

    Mannino, Irene; Cianfarra, Paola; Salvini, Francesco

    2010-05-01

    Permeability in carbonates is strongly influenced by the presence of brittle deformation patterns, i.e pressure-solution surfaces, extensional fractures, and faults. Carbonate rocks achieve fracturing both during diagenesis and tectonic processes. Attitude, spatial distribution and connectivity of brittle deformation features rule the secondary permeability of carbonatic rocks and therefore the accumulation and the pathway of deep fluids (ground-water, hydrocarbon). This is particularly true in fault zones, where the damage zone and the fault core show different hydraulic properties from the pristine rock as well as between them. To improve the knowledge of fault architecture and faults hydraulic properties we study the brittle deformation patterns related to fault kinematics in carbonate successions. In particular we focussed on the damage-zone fracturing evolution. Fieldwork was performed in Meso-Cenozoic carbonate units of the Latium-Abruzzi Platform, Central Apennines, Italy. These units represent field analogues of rock reservoir in the Southern Apennines. We combine the study of rock physical characteristics of 22 faults and quantitative analyses of brittle deformation for the same faults, including bedding attitudes, fracturing type, attitudes, and spatial intensity distribution by using the dimension/spacing ratio, namely H/S ratio where H is the dimension of the fracture and S is the spacing between two analogous fractures of the same set. Statistical analyses of structural data (stereonets, contouring and H/S transect) were performed to infer a focussed, general algorithm that describes the expected intensity of fracturing process. The analytical model was fit to field measurements by a Montecarlo-convergent approach. This method proved a useful tool to quantify complex relations with a high number of variables. It creates a large sequence of possible solution parameters and results are compared with field data. For each item an error mean value is

  6. Hydrogeology and simulation of groundwater flow in fractured-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, Bedford County, Virginia

    Science.gov (United States)

    McCoy, Kurt J.; White, Bradley A.; Yager, Richard M.; Harlow, George E.

    2015-09-11

    An annual groundwater budget was computed as part of a hydrogeologic characterization and monitoring effort of fractured-rock aquifers in Bedford County, Virginia, a growing 764-square-mile (mi2) rural area between the cities of Roanoke and Lynchburg, Virginia. Data collection in Bedford County began in the 1930s when continuous stream gages were installed on Goose Creek and Big Otter River, the two major tributaries of the Roanoke River within the county. Between 2006 and 2014, an additional 2 stream gages, 3 groundwater monitoring wells, and 12 partial-record stream gages were operated. Hydrograph separation methods were used to compute base-flow recharge rates from the continuous data collected from the continuous stream gages. Mean annual base-flow recharge ranged from 8.3 inches per year (in/yr) for the period 1931–2012 at Goose Creek near Huddleston (drainage area 188 mi2) to 9.3 in/yr for the period 1938–2012 at Big Otter River near Evington (drainage area 315 mi2). Mean annual base-flow recharge was estimated to be 6.5 in/yr for the period 2007–2012 at Goose Creek at Route 747 near Bunker Hill (drainage area 125 mi2) and 8.9 in/yr for the period 2007–2012 at Big Otter River at Route 221 near Bedford (drainage area 114 mi2). Base-flow recharge computed from the partial-record data ranged from 5.0 in/yr in the headwaters of Goose Creek to 10.5 in/yr in the headwaters of Big Otter River.

  7. Definition of a safe zone for antegrade lag screw fixation of fracture of posterior column of the acetabulum by 3D technology.

    Science.gov (United States)

    Feng, Xiaoreng; Zhang, Sheng; Luo, Qiang; Fang, Jintao; Lin, Chaowen; Leung, Frankie; Chen, Bin

    2016-03-01

    The objective of this study was to define a safe zone for antegrade lag screw fixation of fracture of posterior column of the acetabulum using a novel 3D technology. Pelvic CT data of 59 human subjects were obtained to reconstruct three-dimensional (3D) models. The transparency of 3D models was then downgraded along the axial perspective (the view perpendicular to the cross section of the posterior column axis) to find the largest translucent area. The outline of the largest translucent area was drawn on the iliac fossa. The line segments of OA, AB, OC, CD, the angles of OAB and OCD that delineate the safe zone (ABDC) were precisely measured. The resultant line segments OA, AB, OC, CD, and angles OAB and OCD were 28.46mm(13.15-44.97mm), 45.89mm (34.21-62.85mm), 36.34mm (18.68-55.56mm), 53.08mm (38.72-75.79mm), 37.44° (24.32-54.96°) and 55.78° (43.97-79.35°) respectively. This study demonstrates that computer-assisted 3D modelling techniques can aid in the precise definition of the safe zone for antegrade insertion of posterior column lag screws. A full-length lag screw can be inserted into the zone (ABDC), permitting a larger operational error. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Selected visualizations and summaries of the contents of the fracture database, deformation zone intersection data, and deviation survey measurements regarding boreholes OL-KR1 - OL-KR33B

    International Nuclear Information System (INIS)

    Kuusisto, S.; Lehtokangas, M.

    2007-02-01

    Posiva Oy has acquired an extensive amount of data on the geology of the Olkiluoto Island. An important part of that data is the heterogeneous collection of fracture information, known as the fracture database. In this work, the fracture database was studied and analyzed using data mining techniques aiming to characterize the properties of the database itself, not the underlying geological and physical laws and phenomenona that are reflected through the data. The goal was to discover previously unknown correlations, patterns, and properties contained within the data. In addition to the fracture database, two supporting datasets were utilized in the analysis: deformation zone intersection data and deviation survey measurements. The following analyses were carried out: logical discrepancies and potential errors in data; statistics of alphanumeric strings, numeric values, and empty fields; visualizations of borehole locations and shapes; histograms, ranges, quantizations, 1- and 2- dimensional clustering of numeric quantities; core orientations; comparison between reported fracture orientations with those recalculated using the core orientations and fracture orientations with respect to core; fracture densities; fracture orientations at intersections of each deformation zone separately; statistics of zone intersection data; discovery of groups of valid fields in the database; discovery of quantities that predict the lithology or hydraulic conductivity of fractures; discovery of fracture fillings that have a tendency to appear together. The interpretation of the analysis results was beyond the scope of this work. The assessment of the novelty and the usefulness of the discovered patterns and relationships requires domain expertise and familiarity with the everyday practises on how the data is utilized, what assumptions are satisfied and which aspects are significant. Instead, this report gives numerous different viewpoints on the data and through them, brings up issues

  9. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

    Science.gov (United States)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.

    2018-06-01

    On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.

  10. ­­­­Submarine Mass Wasting on Hovgaard Ridge, Fram Strait, European Arctic

    Science.gov (United States)

    Forwick, M.; Laberg, J. S.; Husum, K.; Gales, J. A.

    2015-12-01

    Hovgaard Ridge is an 1800 m high bathymetric high in the Fram Strait, the only deep-water gateway between the Arctic Ocean and the other World's oceans. The slopes of the ridge provide evidence of various types of sediment reworking, including 1) up to 12 km wide single and merged slide scars with maximum ~30 m high headwalls and some secondary escarpments; 2) maximum 3 km wide and 130 m deep slide scars with irregular internal morphology, partly narrowing towards the foot of the slope; 3) up to 130 m deep, 1.5 km wide and maximum 8 km long channels/gullies originating from areas of increasing slope angle at the margins of a plateau on top of the ridge. Most slide scars result presumably from retrogressive failure related to weak layers in contourites or ash. The most likely trigger mechanism is seismicity related to tectonic activity within the nearby mid-ocean fracture zone. Gully/channel formation is suggested to result from cascading water masses and/or from sediment gravity flows originating from failure at the slope break after winnowing on the plateau of the ridge.

  11. Geophysical survey of the Eggvin Bank and Logi Ridge - Greenland Sea

    Science.gov (United States)

    Breivik, A. J.; Mjelde, R.; Rai, A. K.; Frassetto, A.

    2012-12-01

    The northern Greenland Sea has a number of features associated with excess volcanism. These include the Jan Mayen island, the Jan Mayen Plateau north of, and the Eggvin Bank west of Jan Mayen, and the Vesteris Seamount far to the north. In the summer of 2011, we colleced an Ocean Bottom Seismometer (OBS) profile across the Eggvin Bank, returning four good data sets. We also collected single-channel reflection seismic (SCS) data along the OBS line. The profile crosses the transform part of the West Jan Mayen Fracture Zone (WJMFZ), which connects seafloor spreading between the Kolbeinsey and Mohn ridges. Between the WJMFZ and the Vesteris Seamount there is a narrow ridge 170-180 km long, ending in a few seamounts in the east. It disturbs the magnetic seafloor anomalies, and has no conjugate on the Norwegian margin. It thus appears to be younger than the Eocene seafloor it lies on. Trend and position points to Traill Ø in East Greenland, which had magmatism at ~36 Ma. We name it the Logi Ridge after Norse mythology, where Logi is the master of fire, brother of Aegir, master of the sea. We have collected five SCS profiles across this ridge in order to study the surrounding sedimentation pattern. We also collected gravity and magnetic data along all profiles. Initial results show two flat-topped seamounts on the Eggvin Bank, and a flat-topped Logi Ridge, indicating that these have been at sealevel. The sedimentary strata show recent vertical movement north of the WJMFZ near the Jan Mayen Plateau, and compression around the Logi Ridge. Sailing line of R/V Håkon Mosby of Bergen. Survey lines are in bold, and OBS positions are marked by circles.

  12. Linkages of fracture network geometry and hydro-mechanical properties to spatio-temporal variations of seismicity in Koyna-Warna Seismic Zone

    Science.gov (United States)

    Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.

    2017-12-01

    Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).

  13. Seafloor Tectonic Fault Fabric and the Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot Twins in the South Atlantic

    Science.gov (United States)

    Sager, W. W.; Engfer, D.; Thoram, S.; Koppers, A. A. P.; Class, C.

    2015-12-01

    Walvis Ridge (WR) and Rio Grande Rise (RGR) are Cretaceous-Cenozoic large igneous provinces (LIPs) formed by the Tristan-Gough hot spot interacting with the Mid-Atlantic Ridge (MAR). Although hot spot-ridge interaction has long been considered a primary factor controlling WR-RGR morphology, details are fuzzy owing to sparse geophysical data. We examined tectonic fabric revealed in satellite altimetry-derived gravity data to infer details about RGR-WR evolution. Plate tectonic reconstructions indicate that the main RGR plateau and large N-S plateau in the eastern WR erupted at the same point at ~90 Ma. Over the next ~8 Myr, these conjunct LIPs formed a "V" shape with a basin in between. Curved fracture zones within the basin imply the two LIPs formed around a microplate. The prominent rift in the middle of RGR formed nearly perpendicular to the RGR-WR intersection, suggesting an extensional microplate boundary. Hot spot eruptions continued at the MAR, emplacing the eastern WR and two main RGR plateaus until ~60 Ma. During this period, the N-S trending Eastern Rio Grande Rise (ERGR) was erupted along the MAR. Both the ERGR and WR formed bathymetric lineaments parallel to seafloor fault fabric and were likely connected. This resulted in WR seamounts with a "tadpole" shape, the head being small to medium seamounts on the WR track and the tails being low, spreading-fabric-parallel ridges extending up to ~150 km northward. Similar, small seamounts are found in the contemporaneous ERGR. Another critical observation is that the WR-RGR formed at a large crustal discontinuity (~700 km at anomaly C33, ~84 Ma) at one or more fracture zone offsets. By late Cenozoic time (anomaly C5, ~10 Ma), the offset was reduced by half while several new fracture zones formed at the junction between RGR and WR. This implies a connection between ridge reorganization and RGR-WR volcanism that may have resulted from the fracture zones becoming oblique to the spreading direction as Euler poles

  14. An Angus/Argo study of the neovolcanic zone along the East Pacific rise from the Clipperton fracture zone to 12°N

    Science.gov (United States)

    Uchupi, E.; Schwab, W. C.; Ballard, R. D.; Cheminee, J. L.; Francheteau, J.; Hekinian, R.; Blackman, D. K.; Sigurdsson, H.

    1988-09-01

    Still photographs and video images collected along the Neovolcanic Zone of the East Pacific Rise from 10°15'N to 11°53'N show that recent volcanic sheet flows, possibly less than 100 years old, are superimposed on an older sediment-laden pillow terrane. This recent activity is restricted to a narrow zone that crosses two topographic highs at 10°55'N and 11°26'N and diminishes along-axis away from these highs. The association of recent sheet flows with older flows and collapse structures on the overlapping spreading centers at 11°45'N supports the evolutionary model for the occurrence and evolution of overlapping spreading centers by MacDonald and others (1986, 1988).

  15. An Angus/Argo study of the neovolcanic zone along the East Pacific rise from the Clipperton fracture zone to 12°N

    Science.gov (United States)

    Uchupi, E.; Schwab, W.C.; Ballard, Richard D.; Cheminee, J.L.; Francheteau, Jean; Hekinian, R.; Blackman, D.K.; Sigurdsson, Haraldur

    1988-01-01

    Still photographs and video images collected along the Neovolcanic Zone of the East Pacific Rise from 10°15′N to 11°53′N show that recent volcanic sheet flows, possibly less than 100 years old, are superimposed on an older sediment-laden pillow terrane. This recent activity is restricted to a narrow zone that crosses two topographic highs at 10°55′N and 11°26′N and diminishes along-axis away from these highs. The association of recent sheet flows with older flows and collapse structures on the overlapping spreading centers at 11°45′N supports the evolutionary model for the occurrence and evolution of overlapping spreading centers by MacDonald and others (1986, 1988).

  16. Microbial and Mineral Descriptions of the Interior Habitable Zones of Active Hydrothermal Chimneys from the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Holden, J. F.; Lin, T.; Ver Eecke, H. C.; Breves, E.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Butterfield, D. A.; Bishop, J. L.; Lane, M. D.

    2013-12-01

    Actively venting hydrothermal chimneys and their associated hydrothermal fluids were collected from the Endeavour Segment, Juan de Fuca Ridge to determine the mineralogy, chemistry and microbial community composition of their interiors. To characterize the mineralogy, Mössbauer, FTIR, VNIR and thermal emission spectroscopies were used for the first time on this type of sample in addition to thin-section petrography, x-ray diffraction and elemental analyses. A chimney from the Bastille edifice was Fe-sulfide rich and composed primarily of chalcopyrite, marcasite-sphalerite, and pyrrhotite while chimneys from the Dante and Hot Harold edifices were Fe-sulfide poor and composed primarily of anhydrite. The bulk emissivity and reflectance spectroscopies corroborated well with the petrography and XRD analyses. The microbial community in the interior of Bastille was most closely related to mesophilic-to-thermophilic anaerobes of the deltaproteobacteria and hyperthermophilic archaea while those in the interiors of Dante and Hot Harold were most closely related to mesophilic-to-thermophilic aerobes of the beta-, gamma- and epsilonproteobacteria. The fluid temperatures (282-321°C) and chemistries of the three chimneys were very similar suggesting that differences in mineralogy and microbial community compositions were more dependent on fluid flow characteristics and paragenesis within the chimney. Thin-section petrography of the interior of another hydrothermal chimney collected from the Dante edifice (emitting 336°C fluid) shows a thin coat of Fe3+ oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The Fe-sulfide minerals were likely oxidized to ferrihydrite with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-based most-probable-number estimates of

  17. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fracture Zone, Cascadia megathrust, and northern San Andreas fault

    Science.gov (United States)

    Rollins, John C.; Stein, Ross S.

    2010-01-01

    The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.

  18. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)

    Science.gov (United States)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2018-02-01

    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  19. Impact of The N - S Fracture Zone Along The Indo-Australia Plate Analyzed from Local Seismic Data In The Western Offshore of Sumatra, Indonesia

    Science.gov (United States)

    Haridhi, H. A.; Klingelhoefer, F.; Huang, B. S.; Lee, C. S.

    2015-12-01

    Large subduction earthquake have repeatedly occurred along the Sumatra and Andaman subduction zones where the Indo-Australia plate is subducting beneath the Eurasian plate. We have analyzed earthquake data from local seismic network along the Sumatra region that provided by the Meteorology Climatology Geophysical Agencies of Indonesia (MCGAI), giving a reliable P-wave velocity model by using joint inversion of picked P-wave travel time using VELEST and a re-scanned single channel seismic reflection of Sumatra cruise I and II. As much as 1,503 events are being analyzed, that is from two years and three months of data recording (2009/04 - 2011/07). The VELEST and DD technique are used to relocate all events by forcing the obtained velocity model. It is found that the surface deformation and earthquake cluster are strongly influenced by the impact of an N - S subparalel fracture zone along the Indo-Australia plate. This also explains the seismic gaps along the Sumatra and Andaman subduction zones. So far, the intriguing seismogenic behaviour and forearc structure are not well explained by the existing models. Therefore, the planned IODP Expedition 362 is trying to ground truth the scientific questions. The aftershock earthquake data are huge, but they will provide a gateway to help the understanding of this shallow megathrust slip and reduce its devastated harzards.

  20. Chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1998 annual progress report

    International Nuclear Information System (INIS)

    Doughty, C.; Dragila, M.I.; Faybishenko, B.; Podgorney, R.K.; Stoops, T.M.; Wheatcraft, S.W.; Wood, T.R.

    1998-01-01

    'DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has lead to the contamination of or threatens to contaminate underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is to determine the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently through narrow pathways driven by variations in environmental conditions. These preferential pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following Activities (1) Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; (2) Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; (3) Development of a conceptual model and mathematical and numerical algorithms for flow and transport, which incorporate both: (a) the spatial variability of heterogeneous porous and fractured media, and (b) the description of the temporal dynamics of flow and transport, which may be chaotic; and (4) Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial

  1. X-ray dynamic observation of the evolution of the fracture process zone in a quasi-brittle specimen

    Czech Academy of Sciences Publication Activity Database

    Kumpová, Ivana; Fíla, Tomáš; Vavřík, Daniel; Keršner, Z.

    2015-01-01

    Roč. 10, č. 8 (2015), C08004 ISSN 1748-0221 R&D Projects: GA MK(CZ) DF11P01OVV001 Keywords : inspection with x-rays * detection of defects * fracture Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.310, year: 2015 http://iopscience.iop.org/1748-0221/10/08/C08004/pdf/1748-0221_10_08_C08004.pdf

  2. Characterisation and monitoring of the Excavation Disturbed Zone (EDZ) in fractured gneisses of the Roselend underground laboratory: permeability measurements, transport property changes and related radon bursts

    Science.gov (United States)

    Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric

    2010-05-01

    pressure measurements between an obturated borehole and the tunnel is conducted to monitor the possible modifications of the transport properties of the EDZ due to hydraulical and/or mechanical sollicitations of the nearby Roselend reservoir lake. As radon level is controlled by emanation and transport path through the medium. The observed bursts of radon should be due to changes of the radon transport properties (Trique et al. 1999) of the EDZ. A correlation between the differential pressure variations and radon bursts is clearly observed. Radon bursts seem to be related to overpressure events that take place in the instrumented borehole. Which external sollicitations, hydraulical or mechanical, or both, induce such a behaviour? References Bossart, P., Meier, P. M., Moeri, A., Trick, T., and J.-C. Mayor (2002). Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory, Engineering Geology, 66, 19-38. Dezayes, C., and T. Villemin (2002). Etat de la fracturation dans la galerie CEA de Roselend et analyse de la déformation cassante dans le massif du Méraillet, technical report, Lab. de Geodyn. de Chaisnes Alp., Univ. de Savoie, Savoie, France. Jakubick, A. T., and T. Franz (1993). Vacuum testing of the permeability of the excavation damaged zone, Rock Mech. Rock Engng., 26(2), 165-182. Patriarche, D., Pili, E., Adler, P. M., and J.-F. Thovert (2007). Stereological analysis of fractures in the Roselend tunnel and permeability determination, Water Resour. Res., 43, W09421. Richon, P., Perrier, F., Sabroux, J.-C., Trique, M., Ferry, C., Voisin, V., and E. Pili (2004). Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel, J. Environ. Radioact., 78, 179-198. Richon, P., Perrier, F., Pili, E., and J.-C. Sabroux (2009). Detectability and significance of the 12hr barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide

  3. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report describes the borehole geophysical logging performed at selected monitoring wells at waste area grouping (WAG) 6 of Oak Ridge National Laboratory in support of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI). It identifies the locations and describes the methods, equipment used in the effort, and the results of the activity. The actual logs for each well logged are presented in Attachment 1 through 4 of the TM. Attachment 5 provide logging contractor service literature and Attachment 6 is the Oak Ridge National Laboratory (ORNL) Procedure for Control of a Nuclear Source Utilized in Geophysical logging. The primary objectives of the borehole geophysical logging program were to (1) identify water-bearing fractured bedrock zones to determine the placement of the screen and sealed intervals for subsequent installation, and (2) further characterize local bedrock geology and hydrogeology and gain insight about the deeper component of the shallow bedrock aquifer flow system. A secondary objective was to provide stratigraphic and structural correlations with existing logs for Hydraulic Head Monitoring Station (HHMS) wells, which display evidence of faulting

  4. 3D hydro-mechanical homogenization and equivalent continuum properties of a fractured porous clay-stone around a gallery: application to the damaged and fractured zone at the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Ababou, Rachid; Canamon, Israel; Poutrel, Adrien

    2012-01-01

    Document available in extended abstract form only. The present work focuses on 3D homogenization, or 'up-scaling', of coupled Hydro-Mechanical (HM) equations and coefficients in a water-filled fractured and fissured porous clay rock. The parameters used in the up-scaling calculations correspond to the Meuse / Haute-Marne (MHM) Underground Research Laboratory (URL) located at Bure and operated by ANDRA (France). We focus on the fractured zone around a cylindrical excavation (gallery 'GMR') located in the Callovo-Oxfordian formation, a thick 130 m clay-stone layer between depths 400 m and 600 m. For up-scaling, we take into account two different sets of hydraulic and mechanical parameters: (i) the permeability and the stiffness coefficients of the intact porous matrix, and (ii) the crack properties, including their apertures, their hydraulic transmissivity (Darcy/Poiseuille), and their specific normal/shear stiffnesses. The geometry of cracks is summarized below. We consider two different types of 'cracks': (I) relatively small decimeter-scale 'dense fractures'; and (II) large distinct shear fractures organized in a 'chevron' pattern. A synthetic set comprising both the 'dense fractures' and the 'large fractures' is generated in 3D. Each subset is generated as follows: I. A statistical isotropic system of small fractures ('fissures'), consisting of isotropically oriented planar discs, with random diameters, apertures, and positions. All statistics are radially inhomogeneous, e.g., density decreases away from the wall. II. A periodic set of large curved fractures, organized along the axis of the gallery in a 'chevron' pattern. Each curved fracture is individually modelled as a parametric conoidal surface. Each surface is then discretized as a set of triangular patches. The local HM coefficients of the water-filled porous rock, with dense near-wall fractures and large distinct 'chevron' fractures, are homogenized using a quasi-linear superposition approach. This leads

  5. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model; Entwicklung einer Auswertemethode fuer bruchmechanische Versuche an kleinen Proben auf der Basis eines Kohaesivzonenmodells

    Energy Technology Data Exchange (ETDEWEB)

    Mahler, Michael

    2016-07-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  6. Dynamical instability produces transform faults at mid-ocean ridges.

    Science.gov (United States)

    Gerya, Taras

    2010-08-27

    Transform faults at mid-ocean ridges--one of the most striking, yet enigmatic features of terrestrial plate tectonics--are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.

  7. A deep structural ridge beneath central India

    Science.gov (United States)

    Agrawal, P. K.; Thakur, N. K.; Negi, J. G.

    A joint-inversion of magnetic satellite (MAGSAT) and free air gravity data has been conducted to quantitatively investigate the cause for Bouguer gravity anomaly over Central Indian plateaus and possible fold consequences beside Himalayan zone in the Indian sub-continent due to collision between Indian and Eurasian plates. The appropriate inversion with 40 km crustal depth model has delineated after discriminating high density and magnetisation models, for the first time, about 1500 km long hidden ridge structure trending NW-SE. The structure is parallel to Himalayan fold axis and the Indian Ocean ridge in the Arabian Sea. A quantitative relief model across a representative anomaly profile confirms the ridge structure with its highest point nearly 6 km higher than the surrounding crustal level in peninsular India. The ridge structure finds visible support from the astro-geoidal contours.

  8. Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models

    NARCIS (Netherlands)

    Herrmann, KP; Loboda, VV

    An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x(2), the expression for the

  9. Circulation in the region of the Reykjanes Ridge in June-July 2015

    Science.gov (United States)

    Tillys, Petit; Herle, Mercier; Virginie, Thierry

    2017-04-01

    The Reykjanes Ridge is a major topographic feature of the North-Atlantic Ocean lying south of Iceland that strongly influences the pathways of the upper and lower limbs of the meridional overturning cell. The circulation in the vicinity of the Reykjanes Ridge is anticyclonic and characterized by a southwestward flow (the East Reykjanes Ridge Current, ERRC) along the eastern flank and a northeastward flow (the Irminger Current, IC) along the western flank. Even if it is admitted that the ERRC feeds the IC through a cross-ridge flow, details and magnitude of this circulation remain unclear. In this study, the circulation in the region of the Reykjanes Ridge was investigated based on ADCP and CTDO2 measurements carried out from the R/V Thalassa during the RREX cruise, which provided a snapshot of the water mass distribution and circulation during summer 2015. One hydrographic section followed the top of the Reykjanes Ridge between Iceland and 50˚ N and three other sections were carried out perpendicularly to the ridge at 62˚ N, 58.5˚ N and 56˚ N. Geostrophic transports were estimated by combining ADCP and hydrographic data. Those observations were used to provide an estimate of the circulation around the Ridge and to discuss the meridional evolutions of the ERRC and IC transports along the Ridge and their connection to the cross-Ridge flows. The section along the top of the Reykjanes Ridge allowed us to describe the cross ridge exchanges. A westward flow crossed the Ridge between Iceland and 53˚ N. Its top to bottom integrated transport was estimated at 17.7 Sv. Two main passages were identified for the westward crossing. A first passage is located near 57˚ N (Bight Fracture Zone, BFZ) in agreement with previous studies. More surprisingly, a second passage is located near 59˚ N. The top-to-bottom transports of those two main flows were estimated at 6.5 and 8 Sv respectively. The IC and ERRC top-to-bottom integrated transports were maximum at 58.5˚ N and

  10. Clinical management of highly resorbed mandibular ridge without fibrous tissue

    Directory of Open Access Journals (Sweden)

    Veeramalai N Devaki

    2012-01-01

    Full Text Available Alveolar ridge atrophy poses a clinical challenge toward the fabrication of successful prosthesis. Resorption of mandibular denture bearing areas results in unstable non-retentive dentures associated with pain and discomfort. This article describes rehabilitation procedure of a patient with resorbed ridge with maximal areas of coverage to improve support and neutral zone arrangement of teeth to improve stability of denture.

  11. Generation of Mid-Ocean Ridge Geometries by Strain Induced Damage

    Science.gov (United States)

    Hieronymus, C. F.

    2001-12-01

    Motivated by the success of wax models in which spreading segments, transform faults, and overlapping spreading centers form in a thin plate of solid wax under tension overlying a reservoir of molten wax, the dynamics of an elastic plate with damage is investigated. The effects of the underlying medium are neglected. A thin elastic plate with localized weaknesses in the elastic moduli is exposed to a deviatoric stress field. Stresses and strains are concentrated near the boundaries and inside the weak zones. Weakening of the material is assumed to occur where stress and strain are high, i.e. in regions of high elastic energy. The weak zones typically develop into linear bands of reduced elastic strength resembling fractures and shear zones. Different dependencies of the elastic moduli on damage result in different geometries of weak zones. An initially circular weakness has two locations of normal stress concentration; reduction of bulk and shear modulus there results in formation of an opening mode fracture with low resistance to any type of deformation. Two such fractures offset from each other and propagating toward each other interact by overlapping and curving toward each other. This overlapping geometry, which is observed along the East Pacific Rise, is stable; the fractures do not cut each other off. Introduction of a second type of damage causes the overlapping region between the two fractures to fail, and the more commonly observed transform offset develops. With another type of damage-strain dependency, oblique spreading occurs along lines 45o from the applied stress. Such patterns form frequently in certain types of wax, but are not observed along mid-ocean ridges. The model results suggest that it is the rheology of the solid plate, not the dynamics of the underlying mantle that control the morphology of the spreading ridge. Standard damage theory uses only a single damage parameter. The fact that the failure modes described above are limited to systems

  12. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf...

  13. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří; Běhounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system ($\\varphi$, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  14. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3-4, 1997

    International Nuclear Information System (INIS)

    Faybishenko, B.; Doughty, C.; Geller, J.

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report

  15. Stratabound pathways of preferred groundwater flow: An example from the Copper Ridge Dolomite in East Tennessee

    International Nuclear Information System (INIS)

    Lee, R.; Ketelle, D.

    1987-01-01

    The Copper Ridge Dolomite of the Upper Cambrian Knox Group underlies a site at Oak Ridge, Tennessee under consideration by the Department of Energy (DOE) for a below ground waste disposal facility. The Copper Ridge was studied for DOE to understand the influence of lithology on deep groundwater flow. Three facies types are distinguished which comprise laterally continuous, 1 to 4 m thick rock units interpreted to represent upward-shallowing depositional cycles having an apparently significant effect on groundwater flow at depth. Rock core observations indicate one of the recurring facies types is characterized by thin to medium-bedded, fine-grained dolostone with planar cryptalgal laminae and thin shaley partings. Distinctive fracturing in this facies type, that may have resulted from regional structural deformation, it considered to be responsible for weathering at depth and the development of stratabound pathways of preferred groundwater flow. In addition, geophysical data suggest that one occurrence of this weathered facies type coincides with an apparent geochemical interface at depth. Geophysical data also indicate the presence of several fluid invasion horizons, traceable outside the study area, which coincide with the unweathered occurrence of this fine-grained facies type. The subcropping of recurrent zones of preferred groundwater flow at the weathered/unweathered interface may define linear traces of enhanced aquifer recharge paralleling geologic strike. Vertical projection of these zones from the weathered/unweathered rock interface to the ground surface may describe areas of enhanced infiltration. Tests to determine the role of stratigraphic controls on groundwater flow are key components of future investigations on West Chestnut Ridge. 14 refs., 13 figs

  16. Sulfide geochronlogy along the Southwest Indian Ridge

    Science.gov (United States)

    Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.

    2017-12-01

    Dragon Flag and Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones in the ultraslow-spreading Southwest Indian Ridge (SWIR). Ten subsamples from active and inactive vents of Dragon Flag hydrothermal field and twenty-eight subsamples from Duanqiao hydrothermal field were dated using the 230Th/238U method. Four main episodes of hydrothermal activity of Duanqiao were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. And sulfide samples from the nearby Dragon Flag filed at the same time and the results show that the ages of most sulfides from Dragon Flag field range from 1.496(±0.176) to 5.416 (±0.116) kyrs with the oldest age estimated at 15.997 (±0.155) kyrs Münch et al. (2001) reconstructed the evolution history of Mt. Jourdanne hydrothermal field. The age dating results indicate activity in two episodes, at 70-40 and 27-13 kyrs. The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. All these results suggest that hydrothermal activity of Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. Mt. Jourdanne is situated on an axial volcanic ridge which has both volcanic and tectonic activity. This is necessary to develop the heat source and pathways for the fluid convection, which enables the hydrothermal circulation. Hydrothermal activity in Dragon Flag Field is located next to the detachment fault termination. The detachment fault system provides a pathway for hydrothermal convection. Such style of heat source can contribute to continuous hydrothermal activity for over 1000 years. Duanqiao field is located near the central volcano and there is a hot

  17. Lead-strontium isotopic variations along the East Pacific Rise and the Mid-Atlantic Ridge: A comparative study

    International Nuclear Information System (INIS)

    Hamelin, B.; Dupre, B.; Allegre, C.J.

    1984-01-01

    We have determined the Pb and Sr isotopic compositions in a number of fresh young oceanic basalts from the East Pacific Rise (between 20 0 N and 21 0 S latitudes), and from the Mid-Atlantic Ridge (between 65 0 N and 10 0 N). A comparison between the Atlantic and Pacific results reveals that there is a wider range of values for the Atlantic than for the Pacific. After filtering the short wavelengths, a good correlation is obtained between long-wavelength bathymetric and isotopic variations for the Atlantic. The preferred model proposed to explain these differences involves the constant presence of hot spots under ridges. On slow-spreading ridges like the Atlantic, the host spots signature is clearly visible in both bathymetry and isotopic ratios. On fast-spreading centres, the hot spot signature in both the bathymetry and isotopic signature may be diluted by the rapid supply of material coming from the asthenosphere. However, an alternative explanation for which no hot spot influence is found on the East Pacific Rise cannot be definitely ruled out. In two occurrences, south of the Hayes fracture zone (Atlantic), large isotopic heterogeneities are observed within a single dredge. This does not contradict the concept of regional isotopic regularities, but suggests that blob injection and source mixing may be observed at very different scales under the ridges. (orig./WB)

  18. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden); Modelos conceptuales y numericos de flujo y transporte de solutos en zonas de fractura: aplicacion a la isla de Aspo (Suecia)

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, J.; Samper, J.

    2003-07-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  19. Brittle deformation in Southern Granulite Terrane (SGT): A study of pseudotachylyte bearing fractures along Gangavalli Shear Zone (GSZ), Tamil Nadu, India.

    Science.gov (United States)

    mohan Behera, Bhuban; Thirukumaran, Venugopal; Biswal, Tapas kumar

    2016-04-01

    High grade metamorphism and intense deformation have given a well recognition to the Southern Granulite Terrane (SGT) in India. TTG-Charnockite and basic granulites constitute the dominant lithoassociation of the area. Dunite-peridotite-anorthosite-shonkinite and syenites are the intrusives. TTG-charnockite-basic granulite have undergone F1 (isoclinal recumbent), F2 (NE-SW) and F3 (NW-SE) folds producing several interference pattern. E-W trending Neoarchean and Palaeoproterozoic Salem-Attur Shear Zone exhibits a low angle ductile thrust as well as some foot print of late stage brittle deformation near Gangavalli area of Tamil Nadu. The thrust causes exhumation of basic granulites to upper crust. Thrusting along the decollement has retrograded the granulite into amphibolite rock. Subsequently, deformation pattern of Gangavalli area has distinctly marked by numerous vertical to sub-vertical fractures mostly dominating along 0-15 and 270-300 degree within charnockite hills that creates a maximum stress (σ1) along NNW and minimum stress (σ3) along ENE. However, emplacement of pseudotachylyte vein along N-S dominating fracture indicates a post deformational seismic event. Extensive fractures produce anastomose vein with varying thickness from few millimeters to 10 centimeters on the outcrop. ICP-AES study results an isochemical composition of pseudotachylyte vein that derived from the host charnockitic rock where it occurs. But still some noticeable variation in FeO-MgO and Na2O-CaO are obtained from different parts within the single vein showing heterogeneity melt. Electron probe micro analysis of thin sections reveals the existence of melt immiscibility during its solidification. Under dry melting condition, albitic rich melts are considered to be the most favorable composition for microlites (e.g. sheaf and acicular micro crystal) re-crystallization. Especially, acicular microlites preserved tachylite texture that suggest its formation before the final coagulation

  20. Rock types and ductile structures on a rock domain basis, and fracture orientation and mineralogy on a deformation zone basis. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael [Geological Survey of Sweden, Uppsala (Sweden); Forssberg, Ola [Golder Associates AB, Uppsala (Sweden)

    2006-09-15

    This report presents the results of the analysis of base geological data in order to establish the dominant rock type, the subordinate rock types and the orientation of ductile mineral fabrics within each rock domain included in the regional geological model, version 1.2. An assessment of the degree of homogeneity of each domain is also provided. The analytical work has utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values or best-fit great circles and corresponding pole values have been calculated for the ductile structural data. These values have been used in the geometric modelling of rock domains in the regional model, version 1.2. Furthermore, all analytical results have been used in the assignment of properties to rock domains in this model. A second analytical component reported here addresses the orientation and mineralogy of fractures in the deterministic deformation zones that are included in the regional geological model, version 1.2. The analytical work has once again utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values are presented for the orientation of fracture sets in the deterministic deformation zones that have been identified with the help of new borehole data. The frequencies of occurrence of different minerals along the fractures in these deformation zones as well as the orientation of fractures in the zones, along which different minerals occur, are also presented. The results of the analyses have been used in the establishment of a conceptual structural model for the Forsmark site and in the assignment of properties to deterministic deformation zones in model version 1.2.

  1. Additional borehole geophysical logging at Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-07-01

    This technical memorandum describes the borehole geophysical logging performed at selected coreholes at Waste Area Grouping 1 between March and November 1991 in support of the remedial investigation. The primary objectives of the borehole geophysical logging program were to (1) identify fractured bedrock zones and identify those fractured bedrock zones participating in active groundwater flow, (2) correlate the fractured intervals with the regional stratigraphy described, and (3) further characterize local bedrock geology and hydrogeology and gain insight about the bedrock aquifer flow system. A secondary objective was to provide stratigraphic correlations with existing logs for coreholes CH001 through CH005. Fractured bedrock zones and active or open fractures were identified in all coreholes logged. The fracture identification and analysis process was intended to distinguish between open or active fractures participating in active groundwater flow and closed or inactive fractures that are partially or completely filled (such as with calcite mineralization) and do not support groundwater circulation. Most of the fractures identified are bedding plane. Fracture occurrence varies with the different units of the Chickamauga Group; the greatest density of fractures and active fractures occurs in the upper 150 ft of stratum cored. Fractures actively contributing to groundwater flow were also identified, and direction of fluid movement within fractures was identified for those coreholes with flowmeter data

  2. Anisotropy of the upper mantle beneath the equatorial part of the Mid-Atlantic Ridge

    Science.gov (United States)

    Kendall, J. M.; Rychert, C.; Harmon, N.; Tharimena, S.; Agius, M. R.

    2017-12-01

    It has been long-known that the mantle beneath ocean spreading centres is anisotropic, holding the signature of the formation of new oceanic lithosphere and its coupling with the underlying convecting asthenosphere. Numerical studies have suggested that there should be significant differences between the anisotropy at slow versus fast spreading centres, but there is little observational evidence to calibrate these simulations, especially at slow spreading centres. Near the ridge axis, the anisotropic effects of melt versus the lattice preferred orientation of minerals is not well understood. Finally, the mantle flow near ridge-transform interactions is also poorly understood. Here we present observations of SKS splitting in a region of the Mid-Atlantic Ridge near the equator and offset by the Romanche and Chain Fracture Zones. An array of 37 ocean-bottom seismometers were deployed for a year in depths of up to nearly 6000m, with the aim of studying the nature of the lithosphere-asthenosphere boundary as it forms (the PiLAB - Passive Imaging of the lithosphere-asthenosphere boundary - experiment). Stations were deployed on crust that varies from newly formed to 80 My old. We analyse 40 teleseismic events of magnitude greater than 5.8 and with epicentral distances between 88 and 130 degrees. The ocean-bottom is a noisy environment and a range of filters are used to isolate the SKS, SKKS, and related signals. Furthermore, stacking splitting error envelopes is used to improve confidence in the splitting parameters. Many of the splitting measurements show an orientation parallel to the direction of plate spreading, as expected, but variability in the orientation of the anisotropy increases towards the ridge axis. The magnitude of the anisotropy is also quite variable and suggests larger delay times near the ridge axis. Off-axis anisotropy is interpreted in terms of deformation of peridotite due to mantle flow. Near the ridge axis, the effect of ridge-parallel melt

  3. Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America.

    Science.gov (United States)

    Gottscho, Andrew D

    2016-02-01

    The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. © 2014 Cambridge Philosophical Society.

  4. SIGN HIP CONSTRUCT: ACHIEVING HIP FRACTURE FIXATION ...

    African Journals Online (AJOL)

    Outcome measures: Radiographic union, callus formation, infection, fracture angulation, weight bearing status. Results:A ... Africa, and Latin America due to the aging population and the ... ridge to expose the lateral aspect of the femur. The.

  5. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  6. Characterization and monitoring of the excavation damaged zone in fractured gneisses of the Roselend tunnel, French Alps

    Science.gov (United States)

    Wassermann, J.; Sabroux, J. C.; Pontreau, S.; Bondiguel, S.; Guillon, S.; Richon, P.; Pili, E.

    2011-04-01

    The Roselend dead-end tunnel was excavated in the last fifties by blasting in the Méraillet crystalline rock mass located on the shore of an artificial reservoir lake in the French Alps. Successive emptying and filling of the reservoir lake induce mechanical deformation of the rock mass. Thus, this tunnel is an exceptional place to study the evolution of the damaged zone (due to the excavation, and named EDZ) under a periodic mechanical or hydraulic loading. From the perspective of radioactive waste isolation in deep geological strata, the EDZ transport properties, and their evolution with time, are of major importance. The purpose of this study is, on the one hand, to quantify the transport properties of the EDZ of the Roselend tunnel through permeability measurements and drill core observations; on the other hand, to monitor the response of the EDZ to external solicitations via borehole pressure measurements. The air permeability has been deduced from pneumatic tests performed along several boreholes. The permeability profiles and the observation of drill cores lead to an estimation of the extent of the EDZ, of about 1 m around the tunnel. The response of the EDZ to barometric pumping has been observed through borehole pressure monitoring. Time-lag and attenuation of the barometric signal that propagates into the EDZ have been measured at a metric scale. The identification of potential time-lag and attenuation variations needs further investigations, the long time series of borehole pressure monitoring shows pressure increase probably due to percolating water during successive snow cover and thawing periods as observed in the Roselend area during winter.

  7. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  8. Ridge Regression Signal Processing

    Science.gov (United States)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  9. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    Science.gov (United States)

    Buss, Heather L.; Brantley, Susan L.; Scatena, Fred; Bazilevskaya, Katya; Blum, Alex E.; Schulz, Marjorie S.; Jiménez, Rafael; White, Arthur F.; Rother, G.; Cole, D.

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream

  10. Flapless postextraction socket implant placement in the esthetic zone: part 1. The effect of bone grafting and/or provisional restoration on facial-palatal ridge dimensional change-a retrospective cohort study.

    Science.gov (United States)

    Tarnow, Dennis P; Chu, Stephen J; Salama, Maurice A; Stappert, Christian F J; Salama, Henry; Garber, David A; Sarnachiaro, Guido O; Sarnachiaro, Evangelina; Gotta, Sergio Luis; Saito, Hanae

    2014-01-01

    The dental literature has reported vertical soft tissue changes that can occur with immediate implant placement, bone grafting, and provisional restoration ranging from a gain or loss of 1.0 mm. However, little is known of the effects of facial-palatal collapse of the ridge due to these clinical procedures. Based upon treatment modalities rendered, an ensuing contour change can occur with significant negative esthetic consequences. The results of a retrospective clinical cohort study evaluating the change in horizontal ridge dimension associated with implant placement in anterior postextraction sockets are presented for four treatment groups: (1) group no BGPR = no bone graft and no provisional restoration; (2) group PR = no bone graft, provisional restoration; (3) group BG = bone graft, no provisional restoration; and (4) group BGPR = bone graft, provisional restoration. Bone grafting at the time of implant placement into the gap in combination with a contoured healing abutment or a provisional restoration resulted in the smallest amount of ridge contour change. Therefore, it is recommended to place a bone graft and contoured healing abutment or provisional restoration at the time of flapless postextraction socket implant placement.

  11. Seafloor spreading on the Southeast Indian Ridge over the last one million years: a test of the Capricorn plate hypothesis

    Science.gov (United States)

    Conder, James A.; Forsyth, Donald W.

    2001-05-01

    Plate motions in the Indian Ocean are inconsistent with a rigid Indo-Australian plate. An equatorial, diffuse boundary dividing the plate into separate Indian and Australian plates significantly improves the fit of kinematic plate models to the spreading rates, transform azimuths, and earthquake slip vectors on the spreading center boundaries. An additional boundary, further dividing the Australian plate into Australian and Capricorn plates has been proposed to account for much of the remaining inconsistency and the pattern of intraplate earthquakes [J.-Y. Royer, R.G. Gordon, Science 277 (1997) 1268-1274]. The proposed boundary is ˜2000 km wide where it intersects the Southeast Indian Ridge. Several recent geophysical cruises to the Southeast Indian Ridge, including a cruise within the proposed boundary, provide many new data for investigating the validity of the Capricorn plate model. These new observations strongly support the hypothesis that the Capricorn plate exists. Statistical tests of the data from the Southeast Indian Ridge alone are not sufficient to confirm it, but motion about the Rodriguez Triple Junction (RTJ) suggests some non-rigidity in the Antarctica-Australia-Somalia circuit. Inferred deformation with enforced closure about the RTJ leads to an estimate of plate motion consistent with the Capricorn plate model. However, the diffuse Capricorn-Australia boundary does not extend south of the St. Paul Fracture Zone, 800 km narrower than the previously proposed boundary.

  12. Ridge and Furrow Fields

    DEFF Research Database (Denmark)

    Møller, Per Grau

    2016-01-01

    Ridge and furrow is a specific way of ploughing which makes fields of systematic ridges and furrows like a rubbing washboard. They are part of an overall openfield system, but the focus in this paper is on the functionality of the fields. There are many indications that agro-technological reasons...... systems and the establishment of basic structures like villages (with churches) and townships and states (in northern Europe). The fields can be considered as a resilient structure lasting for 800 years, along with the same basic physical structures in society....

  13. Estimates of the width of the wetting zone along a fracture subjected to an episodic infiltration event in variably saturated, densely welded tuff

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1988-01-01

    A central issue to be addressed within the Nevada Nuclear Waste Storage Investigations (NNWSI) is the role which fractures will play as the variably saturated, fractured rock mass surrounding the waste package responds to heating, cooling, and episodic infiltration events. Understanding the role of fractures during such events will, in part, depend on our ability to make geophysical measurements of perturbations in the moisture distribution in the vicinity of fractures. In this study we first examine the details of the perturbation in the moisture distribution in and around a fracture subjected to an episodic infiltration event, and then integrate that behavior over the scale at which moisture measurements are likely to be made during the Engineered Barrier Design Test of the NNWSI project. To model this system we use the TOUGH hydrothermal code and fracture and matrix properties considered relevant to the welded ash flow tuff found in the Topopah Spring member at Yucca Mountain as well as in the Grouse Canyon member within G-Tunnel at the Nevada Test Site. Our calculations provide insight into the anticipated spatial and temporal resolution obtainable through the use of the geophysical techniques being considered. These calculations should prove useful both in planning the implementation of these methods as well as in the interpretation of their results. 41 refs., 28 figs

  14. Europan double ridge morphometry as a test of formation models

    Science.gov (United States)

    Dameron, Ashley C.; Burr, Devon M.

    2018-05-01

    Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both

  15. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    Science.gov (United States)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0

  16. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    Science.gov (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness 1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  17. On the Antarctic Slope Front and Current crossing of the South Scotia Ridge

    Science.gov (United States)

    Orsi, A. H.; Palmer, M.; Gomis, D.; Flexas, M. M.; Kim, Y.-S.; Jordà, G.; Wiederwohl, C.; Álvarez, M.

    2012-04-01

    To unveil the contorted path followed by the Antarctic Slope Current connecting the Weddell and Scotia Seas, hydrographic stations with unprecedented spatial resolution were occupied on a series of sections across the slope and multiple channels in the double-pronged western portion of the South Scotia Ridge. Fieldwork consisted of two cruises from the ESASSI (January 2008) and ACROSS (February 2009) programs, the Spanish and USA/Argentina components of the International Polar Year core project SASSI (Synoptic Antarctic Shelf-Slope Interaction study). In this region the Antarctic Slope Current can be located by the pronounced in-shore deepening of isopycnals over the continental slope, rendering the strong subsurface temperature and salinity gradients characteristic of the Antarctic Slope Front. Before reaching the gaps in the southern Ridge near 51°W and 50°W, the ASC carries about 3 Sv of upper layer waters, but it splits into shallow and deep branches upon turning north through these two gaps. The shallower branch enters the Hesperides Trough at 51°W, then shows a tight cyclonic loop back to that longitude roughly following the slope's 700-m isobath, and turns again westward through a similar gap in the northern Ridge. In the Scotia Sea the westward-flowing Antarctic Slope Current is found as far west as the Elephant Island along slightly deeper levels of slope (1100 m) before it is blocked by the Antarctic Circumpolar Current south of the Shackleton Fracture Zone (56°W). The deeper branch of the ASC in the Powell Basin crosses the southern Ridge near 50°W and roughly follows the 1600-m isobath before entering the Scotia Sea through the Hesperides Gap farther to the east (49°W). Thereafter the deeper waters carried westward by this branch become undistinguishable from those circulating farther offshore. Repeat cross-slope sections at both southern and northern flanks of the South Scotia Ridge showed significant temporal variability in the characteristics

  18. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs

  19. Focused volcanism and growth of a slow spreading segment (Mid-Atlantic Ridge, 35°N)

    Science.gov (United States)

    Rabain, Aline; Cannat, Mathilde; Escartín, Javier; Pouliquen, Gaud; Deplus, Christine; Rommevaux-Jestin, Céline

    2001-02-01

    Using off axis bathymetry, gravity and magnetic data, we studied the formation of a prominent seamount chain across segment OH1 (Mid-Atlantic Ridge, 35°N), and its relation to the past segmentation of the area. We also studied the size and shape of the seamounts to understand the processes leading to their formation. The chain is elongated in the spreading direction, and extends from the present day segment center to ˜6 Ma on both flanks. It coincides with a pronounced low in the residual mantle Bouguer gravity anomaly, suggesting thicker crust and thus more abundant magmatism than in surrounding areas. Magnetic anomalies are well defined over the seamount chain, consistent with formation on or near the axis. The seamounts within the chain are larger on average than those from other areas of the Mid-Atlantic Ridge, reflecting higher magma volumes and fluxes during eruptions. The distribution of seamounts suggests a focused magmatic source, located beneath the eastern side of the ridge axis, at a constant distance (˜45 km) from the Oceanographer transform fault. A V-shaped trend defines the southern end of OH1 and indicates that the segment propagated rapidly southwards, increasing in length from 50 to 90 km. The onset of propagation at ˜6 Ma coincided with the initiation of the volcanic chain, suggesting that magma supply at that time was focused at the end of the segment rather than at its center, as is typical for Mid-Atlantic Ridge segments. We propose that this unusual configuration is a consequence of the cold edge effect of the Oceanographer fracture zone. We also propose that enhanced and focused magmatism beneath the seamount chain may have caused the rapid southward propagation of OH1 over the past ˜6 Ma.

  20. Dynamic fracture toughness of ASME SA508 Class 2a ASME SA533 grade A Class 2 base and heat affected zone material and applicable weld metals

    International Nuclear Information System (INIS)

    Logsdon, W.A.; Begley, J.A.; Gottshall, C.L.

    1978-03-01

    The ASME Boiler and Pressure Vessel Code, Section III, Article G-2000, requires that dynamic fracture toughness data be developed for materials with specified minimum yield strengths greater than 50 ksi to provide verification and utilization of the ASME specified minimum reference toughness K/sub IR/ curve. In order to qualify ASME SA508 Class 2a and ASME SA533 Grade A Class 2 pressure vessel steels (minimum yield strengths equal 65 kip/in. 2 and 70 kip/in. 2 , respectively) per this requirement, dynamic fracture toughness tests were performed on these materials. All dynamic fracture toughness values of SA508 Class 2a base and HAZ material, SA533 Grade A Class 2 base and HAZ material, and applicable weld metals exceeded the ASME specified minimum reference toughness K/sub IR/ curve

  1. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, J.T.; Holman, H.Y.; Conrad, M.; Pruess, K.; Hunter-Cevera, J.C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Su, G. [Univ. of California, Berkeley, CA (United States). Dept. of Civil Engineering

    1997-02-01

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996.

  2. Mode-I Fracture Toughness Testing and Coupled Cohesive Zone Modeling at In Situ P, T, and Chemical (H2O-CO2-NaCl) Conditions

    Science.gov (United States)

    Dewers, T. A.; Choens, R. C., II; Regueiro, R. A.; Eichhubl, P.; Bryan, C. R.; Rinehart, A. J.; Su, J. C.; Heath, J. E.

    2017-12-01

    Propagation of mode I cracks is fundamental to subsurface engineering endeavors, but the majority of fracture toughness measurements are performed at ambient conditions. A novel testing apparatus was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and fracture toughness in analogs for reservoir rock and caprock lithologies at temperature and pressure conditions relevant to geologic carbon storage. Samples of Boise Sandstone and Marcellus Shale were subject to fracture propagation via a novel short rod fracture toughness tester composed of titanium and Hastelloy® and designed to fit inside a pressure vessel. The tester is controlled by a hydraulically-driven ram and instrumented with a LVDT to monitor displacement. We measure fracture toughness under conditions of dry supercritical CO2 (scCO2), scCO2-saturated brine, and scCO2 with varying water content ( 25%, 90%, and 100% humidity) at 13.8 MPa and 70oC. Water film development as a function of humidity is determined in situ during the experiments with a quartz crystal microbalance. Two orientations of the Marcellus are included in the testing matrix. Dry CO2 has a negligible to slightly strengthening effect compared to a control, however hydrous scCO2 can decrease the fracture toughness, and the effect increases with increasing humidity, which likely is due to capillary condensation of reactive water films at nascent crack tips and associated subcritical weakening. A 2D poromechanical finite element model with cohesive surface elements (CSEs) and a chemo-plasticity phenomenology is being used to describe the chemical weakening/softening effects observed in the testing. The reductions in fracture toughness seen in this study could be important in considerations of borehole stability, in situ stress measurements, changes in fracture gradient, and reservoir caprock integrity during CO2 injection and storage. Sandia National Laboratories is a multimission laboratory managed

  3. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    International Nuclear Information System (INIS)

    Geller, J.T.; Holman, H.Y.; Conrad, M.; Pruess, K.; Hunter-Cevera, J.C.; Su, G.

    1997-02-01

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996

  4. Does the Zone of Injury in Combat-Related Type III Open Tibia Fractures Preclude the Use of Local Soft Tissue Coverage?

    Science.gov (United States)

    2010-11-01

    Wilkins; 2002:415 462. 2. Bagg MR, Levin LS. Moderators’summary: wound management (session II). J Am Acad Orthop Surg. 2006;14:S73 S74. 3. Adams WP Jr...Joint Surg Am. 1993;75: 778 789. 34. Cole JD, Ansel LJ, Schwartzberg R. A sequential protocol for manage- ment of severe open tibial fractures. Clin

  5. Assessing the reactivation potential of pre-existing fractures in the southern Karoo, South Africa: Evaluating the potential for sustainable exploration across its Critical Zone

    Science.gov (United States)

    Dhansay, Taufeeq; Navabpour, Payman; de Wit, Maarten; Ustaszewski, Kamil

    2017-10-01

    Understanding the kinematics of pre-existing fractures under the present-day stress field is an indispensable prerequisite for hydraulically increasing fracture-induced rock permeability, i.e. through hydraulic stimulation, which forms the basis of economically viable exploitation of resources such as natural gas and geothermal energy. Predicting the likelihood of reactivating pre-existing fractures in a target reservoir at particular fluid injection pressures requires detailed knowledge of the orientations and magnitudes of the prevailing stresses as well as pore fluid pressures. In the absence of actual in-situ stress measurements, e.g. derived from boreholes, as is mostly the case in previously underexplored ;frontier areas;, such predictions are often difficult. In this study, the potential of reactivating pre-existing fractures in a likely exploration region of the southern Karoo of South Africa is investigated. The orientations of the present-day in-situ stresses were assessed from surrounding earthquake focal mechanisms, implying c. NW-SE oriented maximum horizontal stress and a stress regime changing between strike-slip and normal faulting. A comparison with paleo-stress axes derived from inverted fault-slip data suggests that the stress field very likely did not experience any significant reorientation since Cretaceous times. Maximum possible in-situ stress magnitudes are estimated by assuming that these are limited by frictional strength on pre-existing planes and subsequently, slip and dilation tendency calculations were performed, assuming hydrostatic pore fluid pressures of c. 32 MPa at targeted reservoir depth. The results suggest that prevalent E-W and NW-SE oriented sub-vertical fractures are likely to be reactivated at wellhead pressures exceeding hydrostatic pore fluid pressures by as little as 2-5 MPa, while less prevalent sub-horizontal and moderately inclined fractures require higher wellhead pressures that are still technically feasible

  6. Porosity development in the Copper Ridge Dolomite and Maynardville Limestone, Bear Creek Valley and Chestnut Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goldstrand, P.M.; Menefee, L.S.; Dreier, R.B.

    1995-12-01

    Matrix porosity data from deep core obtained in Bear Creek Valley indicate that porosities in the Maynardville Limestone are lithology and depth dependent. Matrix porosities are greater in the Cooper Ridge Dolomite than in the Maynardville Limestone, yet there is no apparent correlation with depth. Two interrelated diagenetic processes are the major controlling factors on porosity development in the Copper Ridge Dolomite and Maynardville Limestone; dissolution of evaporate minerals and dedolomitization. Both of these diagenetic processes produce matrix porosities between 2.1 and 1.3% in the Copper Ridge Dolomite and upper part of the Maynardville Limestone (Zone 6) to depths of approximately 600 ft bgs. Mean matrix porosities in Zones 5 through 2 of the Maynardville Limestone range from 0.8 to 0.5%. A large number of cavities have been intersected during drilling activities in nearly all zones of the Maynardville Limestone in Bear Creek Valley. Therefore, any maynardville Limestone zone within approximately 200 ft of the ground surface is likely to contain cavities that allow significant and rapid flow of groundwater. Zone 6 could be an important stratigraphic unit in the Maynardville Limestone for groundwater flow and contaminant transport because of the abundance of vuggy and moldic porosities. There are large variations in the thickness and lithology in the lower part of the Maynardville (Zones 2, 3, and 4 in the Burial Grounds region). The direction and velocity of strike-parallel groundwater flow may be altered in this area within the lower Maynardville Limestone

  7. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    Science.gov (United States)

    LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.

  8. Concepts of Groundwater Occurrence and Flow Near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Previous studies of the area near Oak Ridge National Laboratory (ORNL) assumed that nearly all groundwater from precipitation and infiltration moves vertically down to the water table and then follows a combination of intergranular and fracture flow paths to the streams. These studies also generally assumed nearly linear flow paths, amounts of groundwater flow that are determined by differences in water-level elevation, large permeability differences between regolith and bedrock, and important hydrologic differences between named geologic units. It has been commonly stated for 37 years, for example, that the Conasauga Group has fewer cavities and is less permeable than the Chickamauga Group. All of these assumptions and conclusions are faulty. The new concepts in this report may be controversial, but they explain the available data. Only the stormflow zone from land surface to a depth of 1-2 m has a permeability large enough to transport most groundwater to the streams. Calculations show that 90-95% of all groundwater flow is in the stormflow zone, 4-9% is in a few water-producing intervals below the water table, and about 1% occurs in other intervals. The available data also show that nearly all groundwater flows through enlarged openings such as macropores, fractures, and cavities, and that there are no significant differences between regolith and bedrock or between the Conasauga Group and the Chickamauga group. Flow paths apparently are much more complex than was previously assumed. Multiple paths connect any two points below the water table, and each flow path is more likely to be tortuous than linear. Hydraulic gradients are affected by this complexity and by changes in hydraulic potential on steep hillsides. Below the water table, a large difference in the head of two points generally does not indicate a large flow rate between these points. Groundwater storage in amounts above field capacity is apparently intergranular in only the stormflow and vadose zones

  9. Interpretation of well hydrographs in the karstic Maynardville Limestone at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.; McMaster, B.W.

    1996-06-01

    The Maynardville Limestone in Oak Ridge, Tennessee underlies the southern portion of Bear Creek Valley (BCV), and is considered to be the primary pathway for groundwater leaving the Y-12 Plant boundaries. Sixty-seven percent of all wells drilled into the Maynardville Limestone have intersected at least one cavity, suggesting karst features may be encountered throughout the shallow (< 200 ft) portions of the Limestone. Because waste facilities at the Y-12 Plant are located adjacent to the Maynardville Limestone, contaminants could enter the karst aquifer and be transported in the conduit system. As part of an overall hydrologic characterization effort of this karst aquifer, 41 wells in the Maynardville Limestone were instrumented with pressure transducers to monitor water level changes (hydrographs) associated with rain events. Wells at depths between approximately 20 and 750 ft were monitored over the course of at least two storms in order that variations with depth could be identified. The wells selected were not exclusively completed in cavities but were selected to include the broad range of hydrologic conditions present in the Maynardville Limestone. Cavities, fractures and diffuse flow zones were measured at a variety of depths. The water level data from the storms are used to identify areas of quickflow versus slower flowing water zones. The data are also used to estimate specific yields and continuum transmissitives in different portions of the aquifer

  10. Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan

    Science.gov (United States)

    Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen

    2017-12-01

    Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.

  11. Mechanical Properties of the Regenerate from Femoral Fracture Zone with the Use of Implants with Different Modulus of Elasticity

    Directory of Open Access Journals (Sweden)

    О.A. Yukhymchuk

    2015-08-01

    It is established that the biomechanical indicators of bone extension are inferior to the similar performance in compression, bones in the presence of fixation devices have the higher strength in the area of healed fracture than the bones of the control group animals. When studying the function of bone regenerate for extension and compression, the best strength results were determined in bone samples with the presence of fixation device from β-Zr-Ti alloy. This study proves the feasibility of the development and introduction into clinical practice of orthopedic trauma surgeons of implants on the basis of low-modulus β-Zr-Ti alloy that will improve the results of treatment for long bone fractures and reduce the postoperative complications rate.

  12. Development of permeable fracture zones for exploitation of geothermal energy from hot dry rock systems; Erschliessung permeabler Risszonen fuer die Gewinnung geothermischer Energie aus heissen Tiefengesteinen

    Energy Technology Data Exchange (ETDEWEB)

    Jung, R [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Baumgaertner, J [SOCOMINE, Soultz-sous-Forets (France); Rummel, F [Bochum Univ. (Germany); Tenzer, H [Stadtwerke Bad Urach (Germany)

    1997-12-01

    The article describes the main results of the European Hot-Dry-Rock Project Soultz of the last 2 years. After a series of successful stimulation experiments and single-well hydraulic tests in the first deep well GPK1 (3590 m) in the previous project period the second deep well GPK2 (3876 m) was drilled during the winter 1994/95 in order to complete the doublet-system. Through the second well successfully penetrated the southern wing of the fracture system created in GPK1 the hydraulic connection was poor and a massive stimulation test had to be performed in GPK2 too. During this test a fracture system of about 1 km{sup 2} in size was stimulated in the depth range below 3200 m. This fracture system overlaps and penetrates the fracture system of borehole GPK1. (orig./AKF) [Deutsch] Der Artikel beschreibt die wesentlichen Ergebnisse des Hot-Dry-Rock Projekts Soultz der letzten beiden Jahre. Nach den erfolgreichen Einbohrloch-Tests in der Bohrung GPK1 in der vorangehenden Projektphase, bei denen ein ca. 1,5 km{sup 2} grosses kuenstliches Risssystem geschaffen wurde, aus dem infolge eines hydraulischen Anschlusses an grossraeumige permeable Stoerungszonen beachtliche Produktionsraten erzielt werden konnten, wurde im Winter 1994/95 die zweite Tiefbohrung GPK2 abgeteuft, um das Dublettensystem zu komplettieren. Trotz des erfolgreichen Abteufens der zweiten Bohrung in den Suedfluegel des bestehenden Risssystems, erwies sich der hydraulische Anschluss zunaechst als unzureichend, so dass ein massiver Stimulationstest in der neuen Bohrung angesetzt werden musste. Bei diesem Test wurden im Teufenbereich unterhalb 3200 m ein ca. 1 km{sup 2} grosses Risssystem erzeugt, das das Risssystem der Bohrung GPK1 ueberlappt und teilweise durchdringt. (orig./AKF)

  13. A Fracture Decoupling Experiment

    Science.gov (United States)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  14. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  15. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  16. Underground nuclear explosion effects in granite rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Centre d' Etude de Bruyeres-le-Chatel (France)

    1970-05-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  17. Measuring mandibular ridge reduction

    International Nuclear Information System (INIS)

    Steen, W.H.A.

    1984-01-01

    This thesis investigates the mandibular reduction in height of complete denture wearers and overdenture wearers. To follow this reduction in the anterior region as well as in the lateral sections of the mandible, an accurate and reproducible measuring method is a prerequisite. A radiologic technique offers the best chance. A survey is given of the literature concerning the resorption process after the extraction of teeth. An oblique cephalometric radiographic technique is introduced as a promising method to measure mandibular ridge reduction. The reproducibility and the accuracy of the technique are determined. The reproducibility in the positioning of the mandible is improved by the introduction of a mandibular support which permits a precise repositioning of the edentulous jaw, even after long periods of investigation. (Auth.)

  18. Diffuse Volcanism at the Young End of the Walvis Ridge - Tristan - Gough Seamount Province: Geochemical Sampling and Constraints on Plume Dynamics

    Science.gov (United States)

    Class, C.; Koppers, A. A. P.; Sager, W. W.; Schnur, S.

    2014-12-01

    The Walvis Ridge-Tristan/Gough seamount province in the South Atlantic represents 130 Myr of continuous intra-plate volcanism that can be connected to the once conjunct Parana-Etendeka flood basalt province. With this it represents one of the few primary hotspots consistent with the thermal plume model. However, around 60 Ma, the morphological expression of the Walvis Ridge changed drastically from a robust 200 km wide aseismic ridge into a 400 km wide region of diffuse and diminished volcanism. As a result, this part of the plume trail has been described by two subtracks, one ending at Tristan da Cunha and another at Gough Island more than 400 km to the SSE. Where the Walvis Ridge forks into these two tracks there is a center prong. There is also the 39.5°S lineament of seamounts between, but oblique to, the two subtracks, which is parallel to the local fracture zone directions. All these features are at odds with the classical definition of a narrow hotspot track although Rohde et al. (2013) showed that the Tristan and Gough subtracks retain a distinct geochemical signature over 70 Myr and are consistent with a zoned, deep-seated plume. The first Sr-Nd-Hf-Pb isotopic and trace element analyses from the detailed dredge sampling cruise MV1203 show that samples from two prominent seamounts at the western end of the 39.5°S lineament have a Gough-type signature, which makes an upper mantle source for this lineament unlikely but rather indicates that the Gough-type source stretches some 200 km NNW from Gough. Tristan track seamount samples are comparable with published data, however, one new sample has a Gough-type composition suggesting leakage of this component into the Tristan-type plume zone. Seamounts on the middle prong of the Walvis Ridge fork have compositions intermediate to Gough and Tristan domains, suggesting mixing between sources or melts of the two domains. Thus, the Gough-component in the last 60 Myr of plume activity is volumetrically much more

  19. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  20. Airborne detection of magnetic anomalies associated with soils on the Oak Ridge Reservation, Tennessee

    International Nuclear Information System (INIS)

    Doll, W.E.; Beard, L.P.; Helm, J.M.

    1995-01-01

    Reconnaissance airborne geophysical data acquired over the 35,000-acre Oak Ridge Reservation (ORR), TN, show several magnetic anomalies over undisturbed areas mapped as Copper Ridge Dolomite (CRD). The anomalies of interest are most apparent in magnetic gradient maps where they exceed 0.06 nT/m and in some cases exceed 0.5 nT/m. Anomalies as large as 25nT are seen on maps. Some of the anomalies correlate with known or suspected karst, or with apparent conductivity anomalies calculated from electromagnetic data acquired contemporaneously with the magnetic data. Some of the anomalies have a strong correlation with topographic lows or closed depressions. Surface magnetic data have been acquired over some of these sites and have confirmed the existence of the anomalies. Ground inspections in the vicinity of several of the anomalies has not led to any discoveries of manmade surface materials of sufficient size to generate the observed anomalies. One would expect an anomaly of approximately 1 nT for a pickup truck from 200 ft altitude. Typical residual magnetic anomalies have magnitudes of 5--10 nT, and some are as large as 25nT. The absence of roads or other indications of culture (past or present) near the anomalies and the modeling of anomalies in data acquired with surface instruments indicate that man-made metallic objects are unlikely to be responsible for the anomaly. The authors show that observed anomalies in the CRD can reasonably be associated with thickening of the soil layer. The occurrence of the anomalies in areas where evidences of karstification are seen would follow because sediment deposition would occur in topographic lows. Linear groups of anomalies on the maps may be associated with fracture zones which were eroded more than adjacent rocks and were subsequently covered with a thicker blanket of sediment. This study indicates that airborne magnetic data may be of use in other sites where fracture zones or buried collapse structures are of interest

  1. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    1999-01-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques

  2. An irreducible ankle fracture dislocation: the Bosworth injury

    NARCIS (Netherlands)

    Schepers, Tim; Hagenaars, Tjebbe; den Hartog, Dennis

    2012-01-01

    Irreducible fracture dislocations of the ankle are rare and represent true orthopedic emergencies. We present a case of a fracture dislocation that was irreducible owing to a fixed dislocation of the proximal fibular fragment posterior to the lateral ridge of the tibia. This particular type of

  3. Geology along the Blue Ridge Parkway in Virginia

    Science.gov (United States)

    Carter, Mark W.; Southworth, C. Scott; Tollo, Richard P.; Merschat, Arthur J.; Wagner, Sara; Lazor, Ava; Aleinikoff, John N.

    2017-01-01

    Detailed geologic mapping and new SHRIMP (sensitive high-resolution ion microprobe) U-Pb zircon, Ar/Ar, Lu-Hf, 14C, luminescence (optically stimulated), thermochronology (fission-track), and palynology reveal the complex Mesoproterozoic to Quaternary geology along the ~350 km length of the Blue Ridge Parkway in Virginia. Traversing the boundary of the central and southern Appalachians, rocks along the parkway showcase the transition from the para-autochthonous Blue Ridge anticlinorium of northern and central Virginia to the allochthonous eastern Blue Ridge in southern Virginia. From mile post (MP) 0 near Waynesboro, Virginia, to ~MP 124 at Roanoke, the parkway crosses the unconformable to faulted boundary between Mesoproterozoic basement in the core of the Blue Ridge anticlinorium and Neoproterozoic to Cambrian metasedimentary and metavolcanic cover rocks on the western limb of the structure. Mesoproterozoic basement rocks comprise two groups based on SHRIMP U-Pb zircon geochronology: Group I rocks (1.2-1.14 Ga) are strongly foliated orthogneisses, and Group II rocks (1.08-1.00 Ga) are granitoids that mostly lack obvious Mesoproterozoic deformational features.Neoproterozoic to Cambrian cover rocks on the west limb of the anticlinorium include the Swift Run and Catoctin Formations, and constituent formations of the Chilhowee Group. These rocks unconformably overlie basement, or abut basement along steep reverse faults. Rocks of the Chilhowee Group are juxtaposed against Cambrian rocks of the Valley and Ridge province along southeast- and northwest-dipping, high-angle reverse faults. South of the James River (MP 64), Chilhowee Group and basement rocks occupy the hanging wall of the nearly flat-lying Blue Ridge thrust fault and associated splays.South of the Red Valley high-strain zone (MP 144.5), the parkway crosses into the wholly allochthonous eastern Blue Ridge, comprising metasedimentary and meta-igneous rocks assigned to the Wills Ridge, Ashe, and Alligator

  4. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2003-01-01

    The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated ??34Ssulfide (3.7 to 12.7???). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400??C alone cannot account for both the high sulfur contents and high ??34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (???400??C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ???300??C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5???) at temperatures above 250??C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 ?? 1012 g seawater S yr-1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates. ?? 2003 Elsevier Science Ltd.

  5. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  6. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  7. Evaluation of waste disposal by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1976-02-01

    The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation

  8. Integrating GIS-based geologic mapping, LiDAR-based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window-Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina

    Science.gov (United States)

    Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.

    2009-01-01

    Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.

  9. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    Science.gov (United States)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  10. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  11. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  12. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  13. Discrete fracture modelling for the Stripa tracer validation experiment predictions

    International Nuclear Information System (INIS)

    Dershowitz, W.; Wallmann, P.

    1992-02-01

    Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)

  14. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use

  15. Response of the everglades ridge and slough landscape to climate variability and 20th-century water management

    Science.gov (United States)

    Bernhardt, C.E.; Willard, D.A.

    2009-01-01

    The ridge and slough landscape of the Florida Everglades consists of a mosaic of linear sawgrass ridges separated by deeper-water sloughs with tree islands interspersed throughout the landscape. We used pollen assemblages from transects of sediment cores spanning sawgrass ridges, sloughs, and ridge-slough transition zones to determine the timing of ridge and slough formation and to evaluate the response of components of the ridge and slough landscape to climate variability and 20th-century water management. These pollen data indicate that sawgrass ridges and sloughs have been vegetationally distinct from one another since initiation of the Everglades wetland in mid-Holocene time. Although the position and community composition of sloughs have remained relatively stable throughout their history, modern sawgrass ridges formed on sites that originally were occupied by marshes. Ridge formation and maturation were initiated during intervals of drier climate (the Medieval Warm Period and the Little Ice Age) when the mean position of the Intertropical Convergence Zone shifted southward. During these drier intervals, marsh taxa were more common in sloughs, but they quickly receded when precipitation increased. Comparison with regional climate records suggests that slough vegetation is strongly influenced by North Atlantic Oscillation variability, even under 20th-century water management practices. ?? 2009 by the Ecological Society of America.

  16. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    Science.gov (United States)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective

  17. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  18. High resolution bathymetric and sonar images of a ridge southeast of Terceira Island (Azores plateau)

    Science.gov (United States)

    Lourenço, N.; Miranda, J. M.; Luis, J.; Silva, I.; Goslin, J.; Ligi, M.

    2003-04-01

    acoustic facies interpreted as pelagic and volcanic sediment. The numerous untectonized volcanic cones present to NE, in the northern flank of the North Hirondelle basin, align-up with the three volcanic systems of the Terceira Island (progressively less eroded towards west) and the Serreta ridge, thus suggesting propagation of a melt/thermal anomaly westwards through time. This volcanic area contrasts strongly with the highly fractured pattern observed in the ridge.

  19. Modes and implications of mantle and lower-crust denudation at slow-spreading mid-ocean ridges

    Science.gov (United States)

    Schroeder, Timothy John

    Slow-spreading mid-ocean ridges (Cann, 1993, Cannat, 1993). Extension at mid-ocean ridges is most commonly manifested by slip on high angle (˜60°) normal faults that dip into, and define the rift valley walls (Smith and Cann, 1993). Less commonly, extension occurs by long periods of slip along low-angle normal faults that penetrate to structurally deep levels of oceanic lithosphere and denude gabbro and/or pendotite to the seafloor in domal massifs termed "oceanic core complexes" (Dick et al., 1981; Dick et al., 1991; Tucholke et al., 1998; Mutter and Karson, 1992; Cann et al., 1997; MacLeod et al., 2002). This dissertation addresses processes and implications of tectonic extension at two oceanic core complexes. Atlantis Massif (30°N, Mid-Atlantic Ridge) is formed dominantly of serpentinized peridotite with lesser gabbro, and Atlantis Bank (57°E, Southwest Indian Ridge) is dominated by gabbro. Localization of brittle strain at Atlantis Massif occurred by reaction-softening processes associated with metasomatic alteration of peridotite and serpentmite to amphibole-, chlorite- and talc-bearing assemblages. Ductile strain at Atlantis Massif and Atlantis Bank is localized into intervals of highly-fractionated, oxide-rich gabbro. Two-oxide geothermometry of gabbro indicates that it was not penetratively deformed below ˜500°C. Denuded peridotite at Atlantis Massif is host to hydrothermal circulation driven in part by exothermic serpentinization reactions. Serpentinization decreases the seismic velocity of peridotite and leads to acquisition of a magnetic signature. Venting of highly-alkaline, methane- and hydrogen-rich serpentinization-derived fluids leads to lithification of seafloor carbonate ooze by precipitation of carbonate cement in a zone of mixing with "normal" seawater. This process may be the primary depositional mechanism of ophicalcite deposits and likely occurs wherever peridotite is exposed near the Earth's surface and is fractured to permit water

  20. Application of geophysical methods for fracture characterization

    International Nuclear Information System (INIS)

    Lee, K.H.; Majer, E.L.; McEvilly, T.V.; California Univ., Berkeley, CA; Morrison, H.F.; California Univ., Berkeley, CA

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs

  1. Source parameters of the Bay of Bengal earthquake of 21 May 2014 and related seismotectonics of 85°E and 90°E ridges

    Science.gov (United States)

    Prakash, Rajesh; Prajapati, Sanjay Kumar; Srivastava, Hari Narain

    2018-01-01

    Source parameters of the Bay of Bengal earthquake of 21 May 2014 have been studied using full waveform inversion. Its source mechanism thus determined the orientation of the strike slip faulting as NW-SE/NE-SW. The occurrence of past earthquakes along the NE-SW nodal plane suggested its preference as the main fault which could result from the transmission of stresses from the Indian plate boundary. High stress drop of this earthquake (216 bar) is attributed to its location in the intraplate region, strike slip faulting and focus in the colder upper mantle. Comparison of the stress drop of deeper focus Hindukush earthquakes with that of the Bay of Bengal earthquake showed a smaller felt radius due to fractured lithosphere in the Himalayas vis-a-vis more efficient propagation of seismic waves in the peninsular region from the source region of this recent earthquake. The seismological evidence presented for the 85°E and 90°E ridges shows the predominance of strike slip faulting with thrusting on both the ridges. Integrating their source mechanism with that of the May 2014 earthquake, it could be inferred that the Bay of Bengal region (excluding Andaman Sumatra subduction zone) is characterised predominantly by strike slip faulting in the region north of latitude 20°N and strike slip with thrusting in the remaining portion.

  2. Quasi-3-D Seismic Reflection Imaging and Wide-Angle Velocity Structure of Nearly Amagmatic Oceanic Lithosphere at the Ultraslow-Spreading Southwest Indian Ridge

    Science.gov (United States)

    Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.

    2017-12-01

    We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.

  3. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    , Groundwater Section, in cooperation with the U.S. Geological Survey, initiated a multiyear study of ground water in the Blue Ridge and Piedmont Provinces. The study began in 1999.Most of the study area is underlain by a complex, two-part, regolith-fractured crystalline rock aquifer system. Thickness of the regolith throughout the study area is highly variable and ranges from 0 to more than 150 feet. The regolith consists of an unconsolidated or semiconsolidated mixture of clay and fragmental material ranging in grain size from silt to boulders. Because porosities range from 35 to 55 percent, the regolith provides the bulk of the water storage within the Blue Ridge and Piedmont ground-water system. At the base of the regolith is the transition zone where saprolite grades into unweathered bedrock. The transition zone has been identified as a potential conduit for rapid ground-water flow. If this is the case, the transition zone also may serve as a conduit for rapid movement of contaminants to nearby wells or to streams with channels that cut into 1 U.S. Geological Survey, Raleigh, North Carolina. 2 North Carolina Department of Environment and Natural Resources, Division of Water Quality, Groundwater Section. or through the transition zone. How rapidly a contaminant moves through the system largely may be a function of the characteristics of the transition zone. The transition zone is one of several topics identified during the literature review and data synthesis, for which there is a deficiency in data and understanding of the processes involved in the movement of ground water to surface water.Because the Blue Ridge and Piedmont study area is so large, and the hydrogeology diverse, it is not feasible to study all of the area in detail. A more feasible approach is to select areas that are most representative of the land use, geology, and hydrology to obtain an understanding of the hydrologic processes in the selected areas, and transfer the knowledge from these local "type

  4. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  5. Oak Ridge Geochemical Reconnaissance Program

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1977-03-01

    The Oak Ridge reconnaissance program is responsible for the geochemical survey in a 12-state area covering Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Iowa, Indiana, and Illinois as part of the National Uranium Resource Evaluation Program. The program concept is outlined and the planning and organization of the program is discussed

  6. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  7. Metabasalts from the Mid-Atlantic Ridge: new insights into hydrothermal systems in slow-spreading crust

    Science.gov (United States)

    Gillis, Kathryn M.; Thompson, Geoffrey

    1993-12-01

    An extensive suite of hydrothermally altered rocks were recovered by Alvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23 24°N)] where detachment faulting has provided a window into the crustal component of hydrothermal systems. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02 10)+mixed-layer smectite/chlorite or chlorite±actinolite±quartz±sphene, 20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300°C and type II-250 to 450°C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a hydrothermal cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and hydrothermal events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one hydrothermal event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive hydrothermal events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of the reaction zone where

  8. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.

    1997-02-01

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR

  9. InRidge program: Preliminary results from the first cruise

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.

    The first cruise under India's own Ridge research initiative, InRidge collected new data on bathymetry, free-air gravity and magnetic anomalies across the ridge axis between the Vema and Zhivago transform faults in the Central Indian Ridge...

  10. Fractures of the proximal fifth metatarsal: percutaneous bicortical fixation.

    Science.gov (United States)

    Mahajan, Vivek; Chung, Hyun Wook; Suh, Jin Soo

    2011-06-01

    Displaced intraarticular zone I and displaced zone II fractures of the proximal fifth metatarsal bone are frequently complicated by delayed nonunion due to a vascular watershed. Many complications have been reported with the commonly used intramedullary screw fixation for these fractures. The optimal surgical procedure for these fractures has not been determined. All these observations led us to evaluate the effectiveness of percutaneous bicortical screw fixation for treating these fractures. Twenty-three fractures were operatively treated by bicortical screw fixation. All the fractures were evaluated both clinically and radiologically for the healing. All the patients were followed at 2 or 3 week intervals till fracture union. The patients were followed for an average of 22.5 months. Twenty-three fractures healed uneventfully following bicortical fixation, with a mean healing time of 6.3 weeks (range, 4 to 10 weeks). The average American Orthopaedic Foot & Ankle Society (AOFAS) score was 94 (range, 90 to 99). All the patients reported no pain at rest or during athletic activity. We removed the implant in all cases at a mean of 23.2 weeks (range, 18 to 32 weeks). There was no refracture in any of our cases. The current study shows the effectiveness of bicortical screw fixation for displaced intraarticular zone I fractures and displaced zone II fractures. We recommend it as one of the useful techniques for fixation of displaced zone I and II fractures.

  11. The beach ridges of India: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    , and is presented in a consolidated form. Beach ridges of the east and west coast of India are grouped in thirteen-beach ridge complexes based on their association. Review indicates that the beach ridges of India are not older than the Holocene age...

  12. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  13. Monitoring percolation of a conductive tracer, as a proxy for nitrate transport, through glacial till and fractured sandstone in the vadose zone underlying a potato field, using 3D cross-hole electrical resistivity imaging

    Science.gov (United States)

    Wang, S.; Butler, K. E.; Serban, D.; Petersen, B.; Grimmett, M.

    2016-12-01

    Nitrate is a necessary nutrient for crops, but high surface water and groundwater concentrations can negatively affect aquatic ecosystem and human health. At AAFC-AAC Harrington Research Farm (PEI, Canada), 3D cross-hole electrical resistivity imaging (ERI) is being used to investigate the percolation of a conductive tracer (KCl) through a 17 m thick vadose zone as a proxy for the transport of nitrate under natural recharge conditions. The objectives are to investigate the effect of heterogeneity on transport pathways and infer how long it would take for changes in farming practices at the surface to affect nitrate loading to the underlying aquifer. The resistivity array consists of 96 permanently installed electrodes - 24 at 0.68 m spacing in each of three 16 m deep boreholes arranged in a triangle with 9 m sides, and 24 at 1 m spacing buried in shallow trenches connecting the boreholes. A background survey revealed five sub-horizontal layers of alternating resistivity in general agreement with the geology of 6 m soil and glacial till overburden overlying interbedded sandstone and shaley sandstone layers. On March 27th, 2015, 1.1 m of snow was removed from a 15.2 m2 area positioned symmetrically inside the triangular array and 100 kg of granular KCl was distributed on the ground surface. The removed snow was immediately replaced to await the spring thaw. Post-tracer surveys indicate tracer had percolated to depths of 1 m, 1.2 m, 3.0 m and 3.5 m by the 4th, 26th, 30th, and 46th days after tracer application. Its movement slowed significantly by early May, 2015, with the end of snow melt. Tracer spread laterally very slowly through the summer and early fall, 2015, but has remained within the triangular array. The shallow conductivity anomaly produced by the tracer diminished significantly over the winter and spring of 2016 but showed little evidence of bulk matrix flow below 3.5 m depth. It is speculated that fractures in the glacial till, too thin to be resolved by

  14. Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12-14°S)

    Science.gov (United States)

    Li, Bing; Shi, Xuefa; Wang, Jixin; Yan, Quanshu; Liu, Chenguang; DY125-21 (Leg 3) Science Party; DY125-22 (Legs 2-5) Science Party; DY125-26 (Leg 3) Science Party

    2018-05-01

    Systematic hydrothermal exploration and multi-beam bathymetry mapping have been conducted along a 220-km-long section of the Southern Mid-Atlantic Ridge (SMAR) from 12°S (Bode Verde Fracture Zone) to 14°S (Cardno Fracture Zone), and previously reported deposits (Tao et al., 2011) are now being thoroughly investigated. Here, we present the characterization of three possible hydrothermal fields, a complete bathymetry data set of the ridge segment, gravity data, and the petrologic characteristics of collected rock samples. The magmatism characteristics, evolution of the ridge segment, and the local geological controls of the possible hydrothermal fields are then discussed. The studied segment can be divided into two segments by a Non-Transform Discontinuity (NTD). Our morphotectonic analysis shows significant along-axis heterogeneity in the surveyed segments: three distinctive cross-axis grabens were identified in the northern segment, and two were identified in the southern segment. Moreover, based on the gravity data (a relatively low spherical Bouguer anomaly) and petrologic data (low Mg# values and relatively low FeO and relatively high Al2O3 and CaO contents compared to nearby seafloor samples), a volcanic feature, the ZouYu seamount, on this segment is considered to be associated with strong magmatic activity, and the magmatic activity of the inside corner at the southern end of the segment has increased and decreased. The three possible hydrothermal fields occur in different local geological settings: a shallow magmatic seamount (ZouYu), an NTD (TaiJi), and an inside-corner high (CaiFan). These potential hydrothermal fields are significantly different from other fields in similar tectonic settings in terms of local geologic controls and products. The ZouYu field is primarily related to a newly formed cone, resulting in the production of sulfides, and differs from other fields on shallow magmatic seamounts. The TaiJi field is largely controlled by the tectonic

  15. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  16. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  17. Carbon isotopes and concentrations in mid-oceanic ridge basalts

    International Nuclear Information System (INIS)

    Pineau, F.; Javoy, M.

    1983-01-01

    In order to estimate carbon fluxes at mid-ocean ridges and carbon isotopic compositions in the convective mantle, we have studied carbon concentrations and isotopic compositions in tholeiitic glasses from the FAMOUS zone (Mid-Atlantic Ridge at 36 0 N) and East Pacific Rise from 21 0 N (RITA zone) to 20 0 S. These samples correspond essentially to the whole spectrum of spreading rates (2-16 cm/yr). The contain: -CO 2 vesicles in various quantities (3-220 ppm C) with delta 13 C between -4 and -9per mille relative to PDB, in the range of carbonatites and diamonds. - Carbonate carbon (3-100 ppm C) with delta 13 C between -2.6 and -20.0per mille relative to PDB. - Dissolved carbon at a concentration of 170+-10 ppm under 250 bar pressure with delta 13 C from -9 to -21per mille relative to PDB. This dissolved carbon, not contained in large CO 2 vesicles, corresponds to a variety of chemical forms among which part of the above carbonates, microscopic CO 2 bubbles and graphite. The lightest portions of this dissolved carbon are extracted at low temperatures (400-600 0 C) whereas the CO 2 from the vesicles is extracted near fusion temperature. These features can be explained by outgassing processes in two steps from the source region of the magma: (1) equilibrium outgassing before the second percolation threshold, where micron size bubbles are continuously reequilibrated with the magma; (2) distillation after the second percolation threshold when larger bubbles travel faster than magma concentrations to the surface. The second step may begin at different depths apparently related to the spreading rate, shallower for fast-spreading ridges than for slow-spreading ridges. (orig./WL)

  18. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program

    Science.gov (United States)

    Behrmann, J.H.; Lewis, S.D.; Cande, S.C.

    1994-01-01

    An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction

  19. The Effects of Ridge Axis Width on Mantle Melting at Mid-Ocean Ridges

    Science.gov (United States)

    Montesi, L.; Magni, V.; Gaina, C.

    2017-12-01

    Mantle upwelling in response to plate divergence produces melt at mid-ocean ridges. Melt starts when the solidus is crossed and stops when conductive cooling overcomes heat advection associated with the upwelling. Most mid-ocean ridge models assume that divergence takes place only in a narrow zone that defines the ridge axis, resulting in a single upwelling. However, more complex patterns of divergence are occasionally observed. The rift axis can be 20 km wide at ultraslow spreading center. Overlapping spreading center contain two parallel axes. Rifting in backarc basins is sometimes organized as a series of parallel spreading centers. Distributing plate divergence over several rifts reduces the intensity of upwelling and limits melting. Can this have a significant effect on the expected crustal thickness and on the mode of melt delivery at the seafloor? We address this question by modeling mantle flow and melting underneath two spreading centers separated by a rigid block. We adopt a non-linear rheology that includes dislocation creep, diffusion creep and yielding and include hydrothermal cooling by enhancing thermal conductivity where yielding takes place. The crustal thickness decreases if the rifts are separated by 30 km or more but only if the half spreading rate is between 1 and 2 cm/yr. At melting depth, a single upwelling remains the norm until the separation of the rifts exceeds a critical value ranging from 15 km in the fastest ridges to more than 50 km at ultraslow spreading centers. The stability of the central upwelling is due to hydrothermal cooling, which prevents hot mantle from reaching the surface at each spreading center. When hydrothermal cooling is suppressed, or the spreading centers are sufficiently separated, the rigid block becomes extremely cold and separates two distinct, highly asymmetric upwellings that may focus melt beyond the spreading center. In that case, melt delivery might drive further and further the divergence centers, whereas

  20. Disposal of waste by hydraulic fracturing

    International Nuclear Information System (INIS)

    Tamura, T.; Weeren, H.

    1984-01-01

    Liquid radioactive waste solutions at the Oak Ridge National Laboratory (ORNL) have been disposed of for nearly 20 years by preparing a slurry, injecting it into bedding plane fractures formed in low-permeability shale, and allowing the slurry to set into a solid. Three major considerations are required for this method: a rock formation that forms horizontal or bedding plane fractures and is highly impermeable, a plant facility that can develop sufficient hydraulic pressure to fracture the rock and to inject the slurry, and a slurry that can be pumped into the fracture and that will set, preferably, into a low-leaching solid. The requirements and desirable conditions of the formation, the process and facility as used for radioactive waste disposal, and the mix formulation and slurry properties that were required for injection and solidification are described. The intent of this paper is to stimulate interest in this technique for possible application to nonnuclear wastes

  1. Bose enhancement and the ridge

    Energy Technology Data Exchange (ETDEWEB)

    Altinoluk, Tolga [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Armesto, Néstor, E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Beuf, Guillaume [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel); Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269-3046 (United States); Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2015-12-17

    We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.

  2. Bose enhancement and the ridge

    Directory of Open Access Journals (Sweden)

    Tolga Altinoluk

    2015-12-01

    Full Text Available We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.

  3. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  4. Esthetic management of compromised ridge in the anterior maxilla, a modified prosthetic approach

    Directory of Open Access Journals (Sweden)

    R Lambodharan

    2017-01-01

    Full Text Available Replacing a missing tooth with an implant, especially in the esthetic zone has been increasing demand for the patient. Placing dental implants in the esthetic zone, especially in the compromised ridge with thin gingival thin biotype is considered to be the ultimate challenge for many dentists. This case report illustrates the implant placement in the traumatic anterior maxilla with thin gingival biotype (Class IV and a modified approach in prosthetic placement.

  5. Flow and transport in hierarchically fractured systems

    International Nuclear Information System (INIS)

    Karasaki, K.

    1993-01-01

    Preliminary results indicate that flow in the saturated zone at Yucca Mountain is controlled by fractures. A current conceptual model assumes that the flow in the fracture system can be approximately by a three-dimensionally interconnected network of linear conduits. The overall flow system of rocks at Yucca Mountain is considered to consist of hierarchically structured heterogeneous fracture systems of multiple scales. A case study suggests that it is more appropriate to use the flow parameters of the large fracture system for predicting the first arrival time, rather than using the bulk average parameters of the total system

  6. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge

    NARCIS (Netherlands)

    Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Drury, M.R.

    2008-01-01

    The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris

  7. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  8. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  9. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  10. Variational Ridging in Sea Ice Models

    Science.gov (United States)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  11. Toughness-Dominated Regime of Hydraulic Fracturing in Cohesionless Materials

    Science.gov (United States)

    Germanovich, L. N.; Hurt, R. S.; Ayoub, J.; Norman, W. D.

    2011-12-01

    This work examines the mechanisms of hydraulic fracturing in cohesionless particulate materials with geotechnical, geological, and petroleum applications. For this purpose, experimental techniques have been developed, and used to quantify the initiation and propagation of hydraulic fractures in saturated particulate materials. The fracturing liquid is injected into particulate materials, which are practically cohesionless. The liquid flow is localized in thin self-propagating crack-like conduits. By analogy we call them 'cracks' or 'hydraulic fractures.' When a fracture propagates in a solid, new surfaces are created by breaking material bonds. Consequently, the material is in tension at the fracture tip. Because the particulate material is already 'fractured,' no new surface is created and no fracturing process per se is involved. Therefore, the conventional fracture mechanics principles cannot be directly applied. Based on the laboratory observations, performed on three particulate materials (Georgia Red Clay, silica flour, and fine sand, and their mixtures), this work offers physical concepts to explain the observed phenomena. The goal is to determine the controlling parameters of fracture behavior and to quantify their effects. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Scaling indicates that in our

  12. Effects of Cocos Ridge Collision on the Western Caribbean: Is there a Panama Block?

    Science.gov (United States)

    Kobayashi, D.; La Femina, P. C.; Geirsson, H.; Chichaco, E.; Abrego M, A. A.; Fisher, D. M.; Camacho, E. I.

    2011-12-01

    It has been recognized that the subduction and collision of the Cocos Ridge, a 2 km high aseismic ridge standing on >20 km thick oceanic crust of the Cocos plate, drives upper plate deformation in southern Central America. Recent studies of Global Positioning System (GPS) derived horizontal velocities relative to the Caribbean Plate showed a radial pattern centered on the Cocos Ridge axis where Cocos-Caribbean convergence is orthogonal, and margin-parallel velocities to the northwest. Models of the full three-dimensional GPS velocity field and earthquake slip vectors demonstrate low mechanical coupling along the Middle America subduction zone in Nicaragua and El Salvador, and a broad zone of high coupling beneath the Osa Peninsula, where the Cocos Ridge intersects the margin. These results suggest that Cocos Ridge collision may be the main driver for trench-parallel motion of the fore arc to the northwest and for uplift and shortening of the outer fore arc in southern Central America, whereby thickened and hence buoyant Cocos Ridge crust acts as an indenter causing the tectonic escape of the fore arc. These studies, however, were not able to constrain well the pattern of surface deformation east-southeast of the ridge axis due to a lack of GPS stations, and Cocos Ridge collision may be responsible for the kinematics and deformation of the proposed Panama block. Recent reinforcement of the GPS network in southeastern Costa Rica and Panama has increased the spatial and temporal resolution of the network and made it possible to further investigate surface deformation of southern Central America and the Panama block. We present a new regional surface velocity field for Central America from geodetic GPS data collected at 11 recently-installed and 178 existing episodic, semi-continuous, and continuous GPS sites in Nicaragua, Costa Rica, and Panama. We investigate the effects of Cocos Ridge collision on the Panama block through kinematic block modeling. Published

  13. Pisiform fractures

    International Nuclear Information System (INIS)

    Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.

    1991-01-01

    Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)

  14. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  15. Dating fractures and fracture movement in the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Gascoyne, M.; Brown, A.; Ejeckam, R.B.; Everitt, R.A.

    1997-04-01

    This report examines and summarizes all work that has been done from 1980 to the present in determining the age of rock crystallization, fracture initiation, fracture reactivation and rates of fracture movement in the Lac du Bonnet Batholith to provide information for Atomic Energy of Canada Limited's (AECL) Canadian Nuclear Fuel Waste Management Program. Geological and petrographical indicators of relative age (e.g. cross-cutting relationships, sequences of fracture infilling minerals, P-T characteristics of primary and secondary minerals) are calibrated with radiometric age determinations on minerals and whole rock samples, using 87 Rb- 87 Sr, 40 K- 39 Ar, 40 Ar- 39 Ar and fission track methods. Most fractures and fracture zones inclined at low angles are found to be ancient features, first formed in the Early Proterozoic under conditions of deuteric alteration. Following some movement on fractures in the Late Proterozoic and Early Paleozoic, reactivation of fractures during the Pleistocene is established from uranium-series dating methods and use of stable isotopic contents of fracture infilling minerals (mainly calcite). Some indication of movement on fracture zones during the Pleistocene is given by electron spin resonance dating techniques on fault gouge. The slow rate of propagation of fractures is indicated by mineral infillings, their P-T characteristics and U-series calcite ages in a fracture in sparsely fractured rock, accessible from AECL's Underground Research Laboratory. These results collectively indicate that deep fractures observed in the batholith are ancient features and the fracturing and jointing in the upper 200 m is relatively recent (< 1 Ma) and largely a result of stress release. (author)

  16. Changes in Bottom Water Physical Properties Above the Mid-Atlantic Ridge Flank in the Brazil Basin

    Science.gov (United States)

    Zhao, Jian; Thurnherr, Andreas M.

    2018-01-01

    Warming of abyssal waters in recent decades has been widely documented around the global ocean. Here repeat hydrographic data collected in 1997 and 2014 near a deep fracture zone canyon in the eastern Brazil Basin are used to quantify the long-term change. Significant changes are found in the Antarctic Bottom Water (AABW) within the canyon. The AABW in 2014 was warmer (0.08 ± 0.06°C), saltier (0.01 ± 0.005), and less dense (0.005 ± 0.004 kg m-3) than in 1997. In contrast, the change in the North Atlantic Deep Water has complicated spatial structure and is almost indistinguishable from zero at 95% confidence. The resulting divergence in vertical displacement of the isopycnals modifies the local density stratification. At its peak, the local squared buoyancy frequency (N2) near the canyon is reduced by about 20% from 1997 to 2014. Similar reduction is found in the basinwide averaged profiles over the Mid-Atlantic Ridge flank along 25°W in years 1989, 2005, and 2014. The observed changes in density stratification have important implications for internal tide generation and dissipation.

  17. Initial chronology of a recently discovered hydrothermal field at 14°45‧N, Mid-Atlantic Ridge

    Science.gov (United States)

    Lalou, Claude; Reyss, Jean Louis; Brichet, Evelyne; Krasnov, Sergey; Stepanova, Tamara; Cherkashev, Georgiy; Markov, Vladimir

    1996-11-01

    Two expeditions of the 'Sevmorgeologija' association (1991-1994) led to the discovery of two new hydrothermal sites on the Mid Atlantic Ridge (MAR), south of the 15°20‧ North Fracture Zone, one around 14°45‧N and the other around 14°42‧N. The northern one, between 14°45‧ and 14°45.3‧N has been studied in detail. About 12 mounds have been mapped and 3 of them have been sampled using a large hydraulic grab sampler. The largest one is about 200 m long and 200 m wide. When progressively moving up on the slope of an uplifted block of the rift valley floor, the sulphide samples have revealed ages ranging from about 10 ka to 60 ka. The ages were obtained using the 230Th/234U dating method used for chronological studies of diverse hydrothermal fields. The general picture of this lateral location of the samples of different ages provides evidence of a shift in the focus of hydrothermal activity with time. Moreover, there were rejuvenation stages of hydrothermal activity, including black and white smokers.

  18. Conservative orthodontic treatment of mandibular bilateral condyle fracture.

    Science.gov (United States)

    Gašpar, Goran; Brakus, Ivan; Kovačić, Ivan

    2014-09-01

    Maxillofacial trauma is rare in children younger than the age of 5 years (range 0.6%-1.2%), and they can require different clinical treatment strategies compared with fractures in the adult population because of concerns regarding mandibular growth and development of dentition. A 5-year-old girl with a history of falling from a bicycle 7 hours earlier was referred to the department of oral and maxillofacial surgery. Multislice computed tomographic examination demonstrated a bilateral fracture of the mandibular condyle neck associated with minimal fracture of the alveolar ridge of the maxilla. The multislice computed tomographic scan also demonstrated dislocation on the right condyle neck and, on the left side, a medial inclination of approximately 45 degrees associated with greenstick fracture of the right parasymphysis region. In this particular case, orthodontic rubber elastics in combination with fixed orthodontic brackets provided good results in the treatment of bilateral condyle neck fractures associated with greenstick fracture of parasymphysis.

  19. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  20. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  1. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  2. Plate tectonics and the origin of the Juan Fernández Ridge: analysis of bathymetry and magnetic patterns

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available Juan Fernández Ridge (JFR is a cα. 800 km long alignment of seamounts and islands which is thought to be fed by a deep mantle plume. JFR includes the Friday and Domingo seamounts in the western active edge close to the active hotspot, and the O'Higgins Seamount and Guyot at the eastern limit just in front of the Chile-Perú trench. Recent bathymetric (Global Topography and magnetic (EMAG-2 datasets were interpreted both qualitatively and quantitatively by means of 3D inverse modeling and 2D direct modeling for geometry and susceptibility, together with an interpretation of the synthetic anomalies related to the classical hypothesis of deep seafloor spreading. Topographic and magnetic patterns are used to understand the tectonic evolution and origin of the JFR, especially in the western segment. Results show a continuous corridor with a base at ~3900 m depth formed by four groups of seamounts/islands with a number of summits. The deep ocean floor is ~22 to ~37 Myr old and is younger to the south of the Challenger Fracture Zone that runs in a SW-NE direction. The magnetic pattern of the western JFR segment, which is different than the eastern one, has no correlation with bathymetry and does not present a common polarity nor fit with magnetic models for isolated bodies. This superposition of magnetic patterns indicates a role of the faults/fractures of the Nazca Plate. Geological evidence supports the hypothesis of a fixed mantle plume for the origin of JFR but our data suggest that tectonic processes play a role, thus fueling the global controversy about these competing processes.

  3. Frozen Martian lahars? Evaluation of morphology, degradation and geologic development in the Utopia-Elysium transition zone

    Science.gov (United States)

    Pedersen, G. B. M.

    2013-09-01

    Regional coverage of high-resolution data from the CTX camera has permitted new, detailed morphologic analysis of the enigmatic Utopia-Elysium flows which dominate the transition zone between Elysium volcanic province and Utopia Planitia. Based on topographic and morphologic analysis of the Galaxias region, this study supports the lahar hypothesis put forth by previous works and suggests that the center and the margins of the outflow deposits have very diverse morphologies that can be explained by varying degrees of water drainage and freezing. Regular channel and flood plain deposits are found in the central part of the outflow deposits, whereas the marginal deposits are interpreted to contain significant amount of ice because of their distinct morphological properties (smooth, lobate flow-fronts with upward convex snouts, unusual crater morphologies, raised rim fractures and localized flow fronts indicating rheomorphism). Thus, this study suggest that, unlike terrestrial lahars, lahar emplacement under Martian conditions only drain in the central parts, whereas the water in the margins of the outflow deposit (∼75% of the total outflow deposit in the Galaxias region) freezes up resulting in a double-layered deposit consisting of ice-rich core with an ice-poor surface layer. It is here furthermore suggested that continued intrusive volcanic activity was highly affected by the presence of the ice-rich lahar deposits, generating ground-ice-volcano interactions resulting in a secondary suite of morphologies. These morphologies include seventeen ridges that are interpreted to be möberg ridges (due to their NW-SE orientation, distinct ridge-crests and association with fractures and linear ridges) and depressions with nested faults interpreted to be similar to terrestrial ice-cauldrons, which form by enhanced subglacial geothermal activity including subglacial volcanic eruptions. These sub-lahar intrusions caused significant volatile loss in the ice-rich core of the

  4. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rosensteel.

    1997-01-01

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2

  5. Characterization of fracture networks for fluid flow analysis

    International Nuclear Information System (INIS)

    Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

    1989-06-01

    The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs

  6. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL's Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs

  7. Site characterization and validation - validation drift fracture data, stage 4

    International Nuclear Information System (INIS)

    Bursey, G.; Gale, J.; MacLeod, R.; Straahle, A.; Tiren, S.

    1991-08-01

    This report describes the mapping procedures and the data collected during fracture mapping in the validation drift. Fracture characteristics examined include orientation, trace length, termination mode, and fracture minerals. These data have been compared and analysed together with fracture data from the D-boreholes to determine the adequacy of the borehole mapping procedures and to assess the nature and degree of orientation bias in the borehole data. The analysis of the validation drift data also includes a series of corrections to account for orientation, truncation, and censoring biases. This analysis has identified at least 4 geologically significant fracture sets in the rock mass defined by the validation drift. An analysis of the fracture orientations in both the good rock and the H-zone has defined groups of 7 clusters and 4 clusters, respectively. Subsequent analysis of the fracture patterns in five consecutive sections along the validation drift further identified heterogeneity through the rock mass, with respect to fracture orientations. These results are in stark contrast to the results form the D-borehole analysis, where a strong orientation bias resulted in a consistent pattern of measured fracture orientations through the rock. In the validation drift, fractures in the good rock also display a greater mean variance in length than those in the H-zone. These results provide strong support for a distinction being made between fractures in the good rock and the H-zone, and possibly between different areas of the good rock itself, for discrete modelling purposes. (au) (20 refs.)

  8. Emergency preparedness at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Skipper, M.N.

    1990-03-01

    Emergency preparedness for industry was commonly believed to be an essential responsibility on the part of management. Therefore, this study was conducted to research and accumulate information and data on emergency preparedness at Oak Ridge National Laboratory (ORNL). The objective of this study was to conduct a thorough evaluation of emergency preparedness knowledge among employees to determine if they were properly informed or if they needed more training. Also, this study was conducted to provide insight to management as to what their responsibility was concerning this training. To assess employee emergency preparedness knowledge, a questionnaire was developed and administered to 100 employees at ORNL. The data was analyzed using frequencies and percentages of response and was displayed through the use of graphs within the report. 22 refs., 22 figs

  9. Emergency preparedness at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Skipper, M.N.

    1990-03-01

    Emergency preparedness for industry was commonly believed to be an essential responsibility on the part of management. Therefore, this study was conducted to research and accumulate information and data on emergency preparedness at Oak Ridge National Laboratory (ORNL). The objective of this study was to conduct a thorough evaluation of emergency preparedness knowledge among employees to determine if they were properly informed or if they needed more training. Also, this study was conducted to provide insight to management as to what their responsibility was concerning this training. To assess employee emergency preparedness knowledge, a questionnaire was developed and administered to 100 employees at ORNL. The data was analyzed using frequencies and percentages of response and was displayed through the use of graphs within the report. 22 refs., 22 figs.

  10. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  11. Fracture Blisters

    Directory of Open Access Journals (Sweden)

    Uebbing, Claire M

    2011-02-01

    Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.

  12. Coral-rubble ridges as dynamic coastal features - short-term reworking and weathering processes

    Science.gov (United States)

    Spiske, Michaela

    2016-02-01

    A coral-rubble ridge built by storm waves at Anegada (British Virgin Islands) underwent remarkable changes in shape and weathering in a 23-month period. The ridge is located along the island's north shore, in the lee of a fringing reef and a reef flat. This coarse-clast ridge showed two major changes between March 2013, when first examined, and February 2015, when revisited. First, a trench dug in 2013, and intentionally left open for further examination, was found almost completely infilled in 2015, and the ridge morphology was modified by slumping of clasts down the slope and by reworking attributable to minor storm waves. In size, composition and overall condition, most of the clasts that filled the trench resemble reworked clasts from the ridge itself; only a small portion had been newly brought ashore. Second, a dark gray patina formed on the whitish exteriors of the carbonate clasts that had been excavated in 2013. These biologically weathered, darkened clasts had become indistinguishable from clasts that had been at the ridge surface for a much longer time. The findings have two broader implications. First, coastal coarse-clast ridges respond not solely to major storms, but also to tropical storms or minor hurricanes. The modification and reworking of the ridge on Anegada most probably resulted from hurricane Gonzalo which was at category 1-2 as it passed about 60 km north of the island in October 2014. Second, staining of calcareous clasts by cyanobacteria in the supralittoral zone occurs within a few months. In this setting, the degree of darkening quickly saturates as a measure of exposure age.

  13. Morphology and segmentation of the western Galápagos Spreading Center, 90.5°-98°W: Plume-ridge interaction at an intermediate spreading ridge

    Science.gov (United States)

    Sinton, John; Detrick, Robert; Canales, J. Pablo; Ito, Garrett; Behn, Mark

    2003-12-01

    Complete multibeam bathymetric coverage of the western Galápagos Spreading Center (GSC) between 90.5°W and 98°W reveals the fine-scale morphology, segmentation and influence of the Galápagos hot spot on this intermediate spreading ridge. The western GSC comprises three morphologically defined provinces: A Western Province, located farthest from the Galápagos hot spot west of 95°30'W, is characterized by an axial deep, rift valley morphology with individual, overlapping, E-W striking segments separated by non-transform offsets; A Middle Province, between the propagating rift tips at 93°15'W and 95°30'W, with transitional axial morphology strikes ˜276°; An Eastern Province, closest to the Galápagos hot spot between the ˜90°50'W Galápagos Transform and 93°15'W, with an axial high morphology generally less than 1800 m deep, strikes ˜280°. At a finer scale, the axial region consists of 32 individual segments defined on the basis of smaller, mainly lower overall magma supply and larger offset distance at the latter. The structure of the Eastern Province is complicated by the intersection of a series of volcanic lineaments that appear to radiate away from a point located on the northern edge of the Galápagos platform, close to the southern limit of the Galápagos Fracture Zone. Where these lineaments intersect the GSC, the ridge axis is displaced to the south through a series of overlapping spreading centers (OSCs); abandoned OSC limbs lie even farther south. We propose that southward displacement of the axis is promoted during intermittent times of increased plume activity, when lithospheric zones of weakness become volcanically active. Following cessation of the increased plume activity, the axis straightens by decapitating southernmost OSC limbs during short-lived propagation events. This process contributes to the number of right stepping offsets in the Eastern Province.

  14. Metallogenesis along the Indian Ocean Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Ray, Dwijesh

    including India. Among these studies majority were concentrated around the Central Indian Ridge and the Southwest Indian Ridge areas, while a few observations were made around the rest of the areas in the IORS. The findings of these studies are discussed...

  15. Sex Determination from Fingerprint Ridge Density | Gungadin ...

    African Journals Online (AJOL)

    This study was conducted with an aim to establish a relationship between sex and fingerprint ridge density. The fingerprints were taken from 500 subjects (250 males and 250 females) in the age group of 18-60 years. After taking fingerprints, the ridges were counted in the upper portion of the radial border of each print for all ...

  16. Oak Ridge Reservation environmental report for 1991

    International Nuclear Information System (INIS)

    Mucke, P.C.

    1992-10-01

    The Oak Ridge Reservation Environmental Report for 1991 is the 21st in a series that began in 1971. The report documents the annual results of a comprehensive program to estimate the impact of the US Department of Energy (DOE) Oak Ridge operations upon human health and the environment. The report is organized into ten sections that address various aspects of effluent monitoring, environmental surveillance, dose assessment, waste management, and quality assurance. A compliance summary gives a synopsis of the status of each facility relative to applicable state and federal regulations. Data are included for the following: Oak Ridge Y-12 Plant; Oak Ridge National Laboratory (ORNL); and Oak Ridge K-25 Site. Effluent monitoring and environmental surveillance programs are intended to serve as effective indicators of contaminant releases and ambient contaminant concentrations that have the potential to result in adverse impacts to human health and the environment

  17. Elbow Fractures

    Science.gov (United States)

    ... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...

  18. Wrist Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...

  19. Shoulder Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...

  20. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    Science.gov (United States)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step

  1. Hypersolidus geothermal energy from the moving freeze-fracture-flow boundary

    Science.gov (United States)

    Carrigan, Charles; Eichelberger, John; Sigmundsson, Freysteinn; Papale, Paolo; Sun, Yunwei

    2014-05-01

    Rhyolitic magmas at low pressure undergo much of their crystallization over a small temperature interval just above the solidus. This hypersolidus material has a high energy density and effective heat capacity because of stored heat of crystallization, yet may sustain fractures and therefore admit heat exchange with fluids because of its interlocking crystal framework. Rhyolitic magmas emplaced near the liquidus should at first cool rapidly, owing to internal convection, modest crystallization with declining temperature, and extreme temperature gradients at their boundaries. However, once the solidus is approached the rapid rise in effective heat capacity should result in low temperature gradients and rates of heat flow within the bodies. They are suspended for a time in the hypersolidus state. Prodigious quantities of heat can be released from these thermal masses by hydrothermal systems, natural or perhaps stimulated, fracturing their way inward from the margins. The fracture front drives the solidus isotherm ahead of it. Heat of crystallization in front of the advancing solidus is transferred across the thin, moving boundary zone to the external fluid, which advects it away. Once the material is below (outboard of) the solidus, it behaves as normal rock and cools rapidly, having a heat capacity only about 20% that of water. Variations on this theme were published by Lister (1974) for mid-ocean ridges, Hardee (1980) for lava lakes, and Bjornsson et al (1982) for Grimsvotn and Heimaey, who cited possible geothermal energy exploitiation. This scenario is consistent with a number of observations: 1. The geophysical rarity of imaging mostly liquid magma in the shallow crust, despite common petrologic evidence that silicic magma has undergone shallow storage. 2. More common imaging of "partial melt" volumes, whose inferred properties suggest some, but not dominant proportion of melt. 3. Evidence that pure-melt rhyolitic eruptions may have drained relatively shallow

  2. Seismic reflection profile of the Blake Ridge near sites 994, 995, and 997: Chapter 4

    Science.gov (United States)

    Dillon, William P.; Hutchinson, Deborah R.; Drury, Rebecca M.

    1996-01-01

    Seismic reflection profiles near Sites 994, 995, and 997 were collected with seismic sources that provide maximum resolution with adequate power to image the zone of gas hydrate stability and the region direction beneath it. The overall structure of the sediment drift deposit that constitutes the Blake Ridge consists of southwestward-dipping strata. These strata are approximately conformal to the seafloor on the southwest side of the ridge and are truncated by erosion on the northeast side. A bottom-simulating reflection (BSR) marks the velocity contrast between gas hydrate-bearing sediment and regions containing free gas beneath the zone of gas hydrate stability. The BSR is strong and continuous near the ridge crest but becomes discontinuous on the flanks, where concentration of gas is reduced and dipping strata pass through the level of the base o fgas hydrate stability or the strata are disrupted by faults. Seismic reflection amplitudes appear to be reduced in the region of gas hydrate formation compared to normal amplitudes. A faulted zone ~0.5-0.6 s thick parallels reflections from strata. We infer that this may represent a formerly gas hydrate-bearing zone that was faulted because of a breakdown of hydrate near its phase limit (at the base of the zone). Strong reflections at the top of the faulted zone are caused by free-gas acccumulation at Site 994. Similar strong reflections probably are caused by free-gas accumulations where the top of the faulted zone rises above the BSR, although this would require local free gas within the hydrate-stable zone.

  3. Contaminant transport model validation: The Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, R.R.; Ketelle, R.H.

    1988-09-01

    In the complex geologic setting on the Oak Ridge Reservation, hydraulic conductivity is anisotropic and flow is strongly influenced by an extensive and largely discontinuous fracture network. Difficulties in describing and modeling the aquifer system prompted a study to obtain aquifer property data to be used in a groundwater flow model validation experiment. Characterization studies included the performance of an extensive suite of aquifer test within a 600-square-meter area to obtain aquifer property values to describe the flow field in detail. Following aquifer test, a groundwater tracer test was performed under ambient conditions to verify the aquifer analysis. Tracer migration data in the near-field were used in model calibration to predict tracer arrival time and concentration in the far-field. Despite the extensive aquifer testing, initial modeling inaccurately predicted tracer migration direction. Initial tracer migration rates were consistent with those predicted by the model; however, changing environmental conditions resulted in an unanticipated decay in tracer movement. Evaluation of the predictive accuracy of groundwater flow and contaminant transport models on the Oak Ridge Reservation depends on defining the resolution required, followed by field testing and model grid definition at compatible scales. The use of tracer tests, both as a characterization method and to verify model results, provides the highest level of resolution of groundwater flow characteristics. 3 refs., 4 figs

  4. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This report aims at developing a systematic theory of the role of fractures in the transport of radionuclides by groundwater, through fractured rocks from a deep-lying nuclear waste repository to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and the physical characteristics which influence radionuclide transport are expressed in mathematical terms. The question of radioactivity retention is then studied for various fracture types, using idealized geometries to model natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein. (author)

  5. On the theory of transport of fluids in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1983-01-01

    A systematic theory is developed of the role of fractures in the transport of radionuclides by groundwater through fractured rocks from the nuclear waste repository to be built in deep geologic formations to the biosphere. Fractures are grouped into four ''irreducible'' types: joints, nodes, shear zones, and fracture zones, and their geometrical and sorption characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention in various fracture types is then carefully studied using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  6. Case report 491: Stress fracture of the right sacrum

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, T.A.; Nguyen, T.H.; Daffner, R.H.; Lupetin, A.R.; Deeb, Z.L.

    1988-07-01

    A case of stress fracture of the right sacrum in a postpartum woman has been presented. Key features in making the diagnosis include a history of pain in the sacrum, considerable weight gain during the pregnancy and pronounced increased physical activity in the immediate postpartum period. CT, particularly, and MRI were critical in making the diagnosis. A low signal area on the T-1 neglected image was considered characteristic for the sacral fracture. In the CT studies a vertical lucency thru a zone of sclerosis is classical for a fracture, whether an insufficiency fracture or a fatigue fracture.

  7. Formation of ridges in a stable lithosphere in mantle convection models with a viscoplastic rheology.

    Science.gov (United States)

    Rozel, A; Golabek, G J; Näf, R; Tackley, P J

    2015-06-28

    Numerical simulations of mantle convection with a viscoplastic rheology usually display mobile, episodic or stagnant lid regimes. In this study, we report a new convective regime in which a ridge can form without destabilizing the surrounding lithosphere or forming subduction zones. Using simulations in 2-D spherical annulus geometry, we show that a depth-dependent yield stress is sufficient to reach this ridge only regime. This regime occurs when the friction coefficient is close to the critical value between mobile lid and stagnant lid regimes. Maps of convective regime as a function of the parameters friction coefficients and depth dependence of viscosity are provided for both basal heating and mixed heating situations. The ridge only regime appears for both pure basal heating and mixed heating mode. For basal heating, this regime can occur for all vertical viscosity contrasts, while for mixed heating, a highly viscous deep mantle is required.

  8. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    Science.gov (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  9. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  10. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  11. Fracture mechanics

    International Nuclear Information System (INIS)

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  12. Different TDM/CH4 hydrothermal plume signatures: TAG site at 26N and serpentinized ultrabasic diapir at 15 degrees 05'N on the Mid-Atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    Charlou, J.L.; Bougault, H. (IFREMER Centre de Brest, Plouzane (France)); Appriou, P. (Univ. de Bretagne Occidentale, Brest (France)); Nelsen, T.; Rona, P. (NOAA-AOML-OCD, Miami, FL (United States))

    1991-11-01

    As a part of the 1988 NOAA VENTS Program, CH{sub 4} and Mn tracers were used to identify and compare hydrothermal plumes found above the TAG Field (26{degrees}N) and in the rift valley at 15{degrees}N close to the eastern intersection of the ridge axis with the 15{degrees}20'N Fracture Zone at the Mid-Atlantic Ridge (MAR). Active hydrothermal venting was confirmed at TAG, based on elevated concentrations of total dissolved Mn (TDM up to 30 nmol/kg), high CH{sub 4} concentrations (up to 200 nL/L), and elevated nephelometry signals. Plumes of a different composition were identified at 15{degree}N with high CH{sub 4} concentrations (up to 400 nL/L), low total dissolved Mn concentrations (TDM < 1 nmol/kg) and no significant nephelometry signal. The different properties of these tracers and the different tracer ratios can be used to deduce vent fluid characteristics and compare one hydrothermal area to another. TDM/CH{sub 4} and Nephel/CH{sub 4} ratios at TEG are of the same order of magnitude as those observed at other spreading axis hydrothermal fields. At 15{degrees}N, the low TDM/CH{sub 4} ratio provides evidence of fluid circulation into ultrabasic rocks and offers a potentially useful and single method of exploring for hydrothermal activity associated with serpentinization. Mantle degassing through hydrothermal activity associated with serpentinization is an important process with respect to chemical and thermal exchanges between the upper mantle and the ocean. Different ratios of hydrothermal tracers (i.e., TDM/CH{sub 4}) provide a useful framework for identifying subseafloor processes along mid-oceanic ridges.

  13. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin.

    Science.gov (United States)

    Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C

    2009-03-01

    The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon ( 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.

  14. Chemical characteristics of waters in Karst Formations at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Shevenell, L.A.

    1994-11-01

    Several waste disposal sites are located adjacent to or on a karst aquifer composed of the Cambrian Maynardville Limestone (Cmn) and the Cambrian Copper Ridge Dolomite (Ccr) at the U.S. Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, TN. Highly variable chemical characteristics (i.e., hardness) can indicate that the portion of the aquifer tapped by a particular well is subject to a significant quick-flow component where recharge to the system is rapid and water levels and water quality change rapidly in response to precipitation events. Water zones in wells at the Y-12 Plant that exhibit quick-flow behavior (i.e., high hydraulic conductivity) are identified based on their geochemical characteristics and variability in geochemical parameters, and observations made during drilling of the wells. The chemical data used in this study consist of between one and 20 chemical analyses for each of 102 wells and multipart monitoring zones. Of these 102 water zones, 10 were consistently undersaturated with respect to calcite suggesting active dissolution. Repeat sampling of water zones shows that both supersaturation and undersaturation with respect to dolomite occurs in 46 water zones. Twelve of the zones had partial pressure of CO 2 near atmospheric values suggesting limited interaction between recharge waters and the gases and solids in the vadose zone and aquifer, and hence, relatively short residence times. The preliminary data suggest that the Cmn is composed of a complicated network of interconnected, perhaps anastomosing, cavities. The degree of interconnection between the identified cavities is yet to be determined, although it is expected that there is a significant vertical and lateral interconnection between the cavities located at shallow depths in the Cnm throughout Bear Creek Valley and the Y-12 Plant area

  15. Mid Ocean Ridge Processes at Very Low Melt Supply : Submersible Exploration of Smooth Ultramafic Seafloor at the Southwest Indian Ridge, 64 degree E

    Science.gov (United States)

    Cannat, M.; Agrinier, P.; Bickert, M.; Brunelli, D.; Hamelin, C.; Lecoeuvre, A.; Lie Onstad, S.; Maia, M.; Prampolini, M.; Rouméjon, S.; Vitale Brovarone, A.; Besançon, S.; Assaoui, E. M.

    2017-12-01

    Mid-ocean ridges are the Earth's most extensive and active volcanic chains. They are also, particularly at slow spreading rates, rift zones, where plate divergence is in part accommodated by faults. Large offset normal faults, also called detachments, are characteristic of slow-spreading ridges, where they account for the widespread emplacement of mantle-derived rocks at the seafloor. In most cases, these detachments occur together with ridge magmatism, with melt injection and faulting interacting to shape the newly formed oceanic lithosphere. Here, we seek to better understand these interactions and their effects on oceanic accretion by studying the end-member case of a ridge where magmatism is locally almost absent. The portion of the Southwest Indian ridge we are studying has an overal low melt supply, focused to discrete axial volcanoes, leaving almost zero melt to intervening sections of the axial valley. One of these nearly amagmatic section of the ridge, located at 64°E, has been the focus of several past cruises (sampling, mapping and seismic experiments). Here we report on the most recent cruise to the area (RV Pourquoi Pas? with ROV Victor; dec-jan 2017), during which we performed high resolution mapping, submersible exploration and sampling of the ultramafic seafloor and of sparse volcanic formations. Our findings are consistent with the flip-flop detachment hypothesis proposed for this area by Sauter et al. (Nature Geosciences, 2013; ultramafic seafloor forming in the footwall of successive detachment faults, each cutting into the footwall of the previous fault, with an opposite polarity). Our observations also document the extent and geometry of deformation in the footwall of a young axial detachment, the role of mass-wasting for the evolution of this detachment, and provide spectacular evidence for serpentinization-related hydrothermal circulation and for spatial links between faults and volcanic eruptions.

  16. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  17. Effect of softening function on the cohesive crack fracture ...

    Indian Academy of Sciences (India)

    The cohesive crack model with linear softening yields the fracture process zones lower by ..... ignored during numerical simulation. In the crack band ..... performed with developed computer program using MATLAB for the following numerical.

  18. The gas-hydrate-related seabed features in the Palm Ridge off southwest Taiwan

    Science.gov (United States)

    Su, Zheng-Wei; Hsu, Shu-Kun; Tsai, Ching-Hui; Chen, Song-Chuen; Lin, Hsiao-Shan

    2016-04-01

    The offshore area of the SW Taiwan is located in the convergence zone between the northern continental margin of the South China Sea and the Manila subduction complex. Our study area, the Palm Ridge, is located in the passive continental margin. According to the geophysical, geochemical and geothermal data, abundant gas hydrate may exist in the offshore area of SW Taiwan. In this study, we will study the relation between the seabed features and the gas hydrate formation of the Palm Ridge. The data used in this study include high-resolution sidescan sonar images, sub-bottom profiles, echo sounder system, multi-beam bathymetric data, multi-channel reflection seismic and submarine photography in the Palm Ridge. Our results show the existing authigenic carbonates, gas seepages and gas plumes are mainly distributed in the bathymetric high of the Palm Ridge. Numerous submarine landslides have occurred in the place where the BSR distribution is not continuous. We suggest that it may be because of rapid slope failure, causing the change of the gas hydrate stability zone. We also found several faults on the R3.1 anticline structure east of the deformation front. These features imply that abundant deep methane gases have migrated to shallow strata, causing submarine landslides or collapse. The detailed relationship of gas migration and submarine landslides need further studies.

  19. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  20. Database for Hydraulically Conductive Fractures. Update 2010

    International Nuclear Information System (INIS)

    Tammisto, E.; Palmen, J.

    2011-02-01

    Posiva flow logging (PFL) with 0.5 m test interval and made in 10 cm steps can be used for exact depth determination of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging PFL provides possibilities to detect single conductive fractures. In this report, the results of PFL are combined to the fracture data in drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OLKR53B and pilot holes ONK-PH11 - ONK-PH13. The results are used mainly in development of hydroDFN- models. The conductive fractures were first recognised from the PFL data and digital drillhole images and then the fractures from the core logging corresponding to the ones picked from the digital drillhole images were identified. The conductive fractures were recognised from the images primarily based on openness of fractures or a visible flow in the image. In most of the cases of measured flow, no tails of flow were seen in the image. In these cases, the conductive fractures were recognised from the image based on openness of fractures and a matching depth. According to the results the hydraulically conductive fractures/zones can be distinguished from the drillhole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures detected in flow logging (T > 10 -10 -10 -9 m 2 /s) in depth range 0-150 m varies from 0.07 to 0.84 fractures/meter of sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. In drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OL-KR53B about 8.5 % of all fractures and 4.4 % of the conductive fractures are within HZ-structures. (orig.)

  1. Magdalena Ridge Observatory Interferometer: Status Update

    National Research Council Canada - National Science Library

    Creech-Eakman, M. J; Bakker, E. J; Buscher, D. F; Coleman, T. A; Haniff, C. A; Jurgenson, C. A; Klinglesmith, III, D. A; Parameswariah, C. B; Romero, V. D; Shtromberg, A. V; Young, J. S

    2006-01-01

    The Magdalena Ridge Observatory Interferometer (MROI) is a ten element optical and near-infrared imaging interferometer being built in the Magdalena mountains west of Socorro, NM at an altitude of 3230 m...

  2. Laboratory testing on infiltration in single synthetic fractures

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Li, Jiawei; Giasi, Concetta I.; Li, Ling

    2017-04-01

    An understanding of infiltration phenomena in unsaturated rock fractures is extremely important in many branches of engineering for numerous reasons. Sectors such as the oil, gas and water industries are regularly interacting with water seepage through rock fractures, yet the understanding of the mechanics and behaviour associated with this sort of flow is still incomplete. An apparatus has been set up to test infiltration in single synthetic fractures in both dry and wet conditions. To simulate the two fracture planes, concrete fractures have been moulded from 3D printed fractures with varying geometrical configurations, in order to analyse the influence of aperture and roughness on infiltration. Water flows through the single fractures by means of a hydraulic system composed by an upstream and a downstream reservoir, the latter being subdivided into five equal sections in order to measure the flow rate in each part to detect zones of preferential flow. The fractures have been set at various angles of inclination to investigate the effect of this parameter on infiltration dynamics. The results obtained identified that altering certain fracture parameters and conditions produces relevant effects on the infiltration process through the fractures. The main variables influencing the formation of preferential flow are: the inclination angle of the fracture, the saturation level of the fracture and the mismatch wavelength of the fracture.

  3. Quantitative x-ray fractographic analysis of fatigue fractures

    International Nuclear Information System (INIS)

    Saprykin, Yu.V.

    1983-01-01

    The study deals with quantitative X-ray fractographic investigation of fatigue fractures of samples with sharp notches tested at various stresses and temperatures with the purpose of establishing a connection between material crack resistance parameters and local plastic instability zones restraining and controlling the crack growth. At fatigue fractures of notched Kh18N9T steel samples tested at +20 and -196 deg C a zone of sharp ring notch effect being analogous to the zone in which crack growth rate is controlled by the microshifting mechanisms is singled out. The size of the notched effect zone in the investigate steel is unambiguosly bound to to the stress amplitude. This provides the possibility to determine the stress value by the results of quantitative fractographic analysis of notched sample fractures. A possibility of determining one of the threshold values of cyclic material fracture toughness by the results of fatigue testing and fractography of notched sample fractures is shown. Correlation between the size of the hsub(s) crack effect zone in the notched sample, delta material yield limit and characteristic of cyclic Ksub(s) fracture toughness has been found. Such correlation widens the possibilities of quantitative diagnostics of fractures by the methods of X-ray fractography

  4. Late Noachian/Early Hesperian Ridge Network in Nili Fossae: Evidence for Water-Saturated Near-Surface Crust

    Science.gov (United States)

    Mustard, J. F.; Pascuzzo, A.

    2017-12-01

    The region north of the contact between Syrtis Major and the Isidis Basin is populated by thousands of ridges 100s of meters in length, up to a few 10s of meters high and 15-50 meters wide. The resistant ridges are being exhumed from weak early Noachian smectite-bearing host rocks. Hypotheses for the formation include igneous intrusion or fill, impact-induced breccia dikes and chemical alteration of pre-existing fracture planes or mineralized fracture planes through groundwater circulation (our preferred mode of formation). Mineralogic interpretations of visible-near infrared reflectance spectra from the CRISM instrument on MRO may be critical in interpreting the formation process. While most of the ridges are at the limit of CRISM's spatial resolution of 18 m/pixel, CRISM has a special observing mode which can increase the resolution in the along track observing (ATO) direction by a factor of 2-3 (e.g. 6 m). Using a combination of full resolution and one ATO observation, we have analyzed well-exposed ridges in the Nili Fossae region. Ridges are commonly exposed from beneath a distinctive mafic capping rock rich in olivine and variably altered to magnesite. Many of the ridges exhibit weaker smectite absorptions near 1.9 and 2.3 µm compared to the host rock but no additional spectral features are observed. One cause for weaker absorptions is grain size (i.e. solid rock shows weaker absorptions than its powdered equivalent). Alternatively the presence of a spectrally neutral cementing compound or mineral like quartz could lead to weaker features. Timing of ridge formation is constrained by two key stratigraphic makers. First the ridges were likely formed after the Isidis basin-forming event, 3.9 Ga, because many are observed between the 1st and 2nd rings of the basin structure and would not have survived the impact event otherwise. Second the ridges are exhumed from beneath a distinctive olivine-rich mafic cap unit with its emplacement dated to between the Isidis

  5. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. X.; Sikka, V. K.

    2006-06-01

    This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The project was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.

  6. Oak Ridge Reservation environmental report for 1989

    International Nuclear Information System (INIS)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a ''stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1

  7. Oak Ridge Reservation environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, V.A.; Wilson, A.R. (eds.)

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  8. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  9. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  10. Coiled-tubing fracturing of coal seams on the Vermejo Park Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, K.

    2003-06-01

    Coiled-tubing (CT) fracturing currently is used to stimulate the Vermejo and Raton coal seams on the Vermejo Park Ranch in northern New Mexico. The CT fracturing process increased the number of stimulation stages from 4 to 18 per well. CT fracturing results in more accurate proppant placement and more effective stimulation of the producing zones.

  11. Oak Ridge Reservation Public Warning Siren System Annual Test Report

    International Nuclear Information System (INIS)

    R. F. Gee

    2000-01-01

    The full operational test of the Oak Ridge Reservation (ORR) Public Warning Siren System (PWSS) was successfully conducted on September 27, 2000. The annual test is a full-scale sounding of the individual siren systems around each of the three Department of Energy (DOE) sites in Oak Ridge, Tennessee. The purpose of the annual test is to demonstrate and validate the siren systems' ability to alert personnel outdoors in the Immediate Notification Zones (INZ) (approximately two miles) around each site. The success of this test is based on two critical functions of the siren system. The first function is system operability. The system is considered operable if 90% of the sirens are operational. System diagnostics and direct field observations were used to validate the operability of the siren systems. Based on the diagnostic results and field observations, greater than 90% of the sirens were considered operational. The second function is system audibility. The system is considered audible if the siren could be heard in the immediate notification zones around each of the three sites. Direct field observations, along with sound level measurements, were used to validate the audibility of the siren system. Based on the direct field observations and sound level measurements, the siren system was considered audible. The combination of field observations, system diagnostic status reports, and sound level measurements provided a high level of confidence that the system met and would meet operational requirements upon demand. As part of the overall system test, the Tennessee Emergency Management Agency (TEMA) activated the Emergency Alerting System (EAS), which utilized area radio stations to make announcements regarding the test and to remind residents of what to do in the event of an actual emergency

  12. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.

    1997-01-01

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed

  13. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  14. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  15. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2008-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...

  16. Fictitious Crack Model of Concrete Fracture

    DEFF Research Database (Denmark)

    Brincker, Rune; Dahl, H.

    1989-01-01

    The substructure method introduced by Petersson is reformulated for the three-point bending specimen in order to obtain complete load-displacement relations without significant truncation. The problem of instability caused by the linearization of the softening in the fracture zone is discussed, a...

  17. Horizontal alveolar ridge expansion followed by immediate placement of implants and rehabilitation with zirconia prosthesis

    Directory of Open Access Journals (Sweden)

    Tatiana Miranda Deliberador

    2017-01-01

    Full Text Available In recent years, there have been a growing number of procedures involving dental implants. Most cases, though, are characterized by bone atrophy, especially horizontal atrophy. This clinical case aims to report a technique for the expansion of the horizontal alveolar ridge. A longitudinal fracture was created in the alveolar ridge to expand the bone, followed by immediate insertion of dental implants along with a particulate allogeneic bone graft. Eight implants were placed in the maxilla, and after 12 months, a surgical reopening was performed, along with rehabilitation with a protocol-type prosthesis, for which a zirconia infrastructure was made. The patient was observed during a 10-month follow-up period in which an effective osseointegration of all implants was achieved as a result of such a technique. The split-crest technique followed by the immediate placement of implants and a particulate allogeneic bone graft proved to be effective, with a predictable osseointegration.

  18. Preliminary results from the first InRidge cruise to the central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.; Ganesan, P.; Rao, A.K.; Suribabu, A.; Ganesh, C.; Naik, G.P.

    stream_size 1 stream_content_type text/plain stream_name Inter_Ridge_News_7_40.pdf.txt stream_source_info Inter_Ridge_News_7_40.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  19. An aerial radiological survey of the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Maurer, R.J.

    1993-04-01

    An aerial radiological survey of the Oak Ridge Reservation (ORR) and surrounding area in Oak Ridge, Tennessee, was conducted during the period March 30 to April 14,1992. The purpose of the survey was to measure and document the terrestrial radiological environment of the Oak Ridge Reservation for use in environmental management programs and emergency response planning. The aerial survey was flown at an altitude of 150 feet (46 meters) along a series of parallel lines 250 feet (76 meters) apart and included X-10 (Oak Ridge National Laboratory), K-25 (former Gaseous Diffusion Plant), Y-12 (Weapons Production Plant), the Freels Bend Area and Oak Ridge Institute for Science and Education, the East Fork Poplar Creek (100-year floodplain extending from K-25 to Y-12), Elza Gate (former uranium ore storage site located in the city of Oak Ridge), Parcel A, the Clinch River (river banks extending from Melton Hill Dam to the city of Kingston), and the CSX Railroad Tracks (extending from Y-12 to the city of Oak Ridge). The survey encompassed approximately 55 square miles (1 41 square kilometers) of the Oak Ridge Reservation and surrounding area

  20. Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir

    International Nuclear Information System (INIS)

    Tester, J.W.; Potter, R.M.; Bivins, R.L.

    1979-01-01

    Field experiments using fluorescent dye and radioactive tracers (Br 82 and I 131 ) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data

  1. Characterization of reservoir fractures using conventional geophysical logging

    Directory of Open Access Journals (Sweden)

    Paitoon Laongsakul

    2011-04-01

    Full Text Available In hydrocarbon exploration fractures play an important role as possible pathways for the hydrocarbon flow and bythis enhancing the overall formation’s permeability. Advanced logging methods for fracture analysis, like the boreholeacoustic televiewer and Formation Microscanner (FMS are available, but these are additional and expensive tools. However,open and with water or hydrocarbon filled fractures are also sensitive to electrical and other conventional logging methods.For this study conventional logging data (electric, seismic, etc were available plus additional fracture information from FMS.Taking into account the borehole environment the results show that the micro-spherically focused log indicates fractures byshowing low resistivity spikes opposite open fractures, and high resistivity spikes opposite sealed ones. Compressional andshear wave velocities are reduced when passing trough the fracture zone, which are assumed to be more or less perpendicularto borehole axis. The photoelectric absorption curve exhibit a very sharp peak in front of a fracture filled with bariteloaded mud cake. The density log shows low density spikes that are not seen by the neutron log, usually where fractures,large vugs, or caverns exist. Borehole breakouts can cause a similar effect on the logging response than fractures, but fracturesare often present when this occurs. The fracture index calculation by using threshold and input weight was calculatedand there was in general a good agreement with the fracture data from FMS especially in fracture zones, which mainlycontribute to the hydraulic system of the reservoir. Finally, the overall results from this study using one well are promising,however further research in the combination of different tools for fracture identification is recommended as well as the useof core for further validation.

  2. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    This report evaluates the significance of transverse dispersion processes for solute transport in a single fracture. Transverse dispersion is a potentially significant process because it increases the fracture surface area available for sorptive and diffusive properties, and has the potential to transport solute between what would otherwise be distinctive, streamline pathways. Transverse dispersion processes are generally ignored in one-dimensional repository performance assessment approaches. This report provides an initial assessment of the magnitude of transverse dispersion effect in a single heterogeneous fracture on repository safety assessment. This study builds on a previous report which considered the network effects on transport dispersion including streamline routing and mixing at fracture intersections. The project uses FracMan software. This platform has been extensively used by SKB in other projects. FracMan software is designed to generate and analyze DFN's as well as to compute fluid flow in DFN's with the MAFIC Finite element method (FEM) code. Solute transport was modeled using the particle tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and the 1-D Laplace Transform approach designed to replicate FARF31 inside GoldSim.The study reported here focuses on a single, 20-meter scale discrete fracture, with simplified boundary conditions intended to represent the position of this fracture within a fracture network. The range of assumptions made regarding fracture heterogeneity were as follows: Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m. Case 1a, Homogeneous fracture, transmissivity = 10 -7 m 2 /s. Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 5 m. Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field. Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced. Case 5, Simple channelized

  3. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI

  4. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  5. Database for hydraulically conductive fractures. Update 2009

    International Nuclear Information System (INIS)

    Palmen, J.; Tammisto, E.; Ahokas, H.

    2010-03-01

    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR41 - OL-KR48, OL-KR41B - OLKR45B and pilot holes ONK-PH8 - ONK-PH10. In addition, HTU-data measured by 2 m section length and 2 m steps in holes OL-KR39 and OL-KR40 at depths 300-700 m were analyzed and combined with fracture data in a similar way. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image, flow logging and the HTU logging with the sample length. In addition to results of PFL-correlation, Hydraulic Testing Unit (HTU) data measured by 2 m section length and 2 m steps was studied at selected depths for holes OL-KR39, OL-KR40, OL-KR42 and OL-KR45. Due to low HTU section depth accuracy the conducting fractures were successfully correlated with Fracture Data Base (FDB) fractures only in drillholes OL-KR39 and OL-KR40. HTU-data depth matching in these two drillholes was performed using geophysical Single Point Resistance (SPR) data both from geophysical and PFL measurements as a depth

  6. In-situ fracture mapping using geotomography and brine tracers

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Ramirez, A.L.; Lytle, R.J.

    1981-01-01

    The Lawrence Livermore National Laboratory is currently assessing the capabilities of high resolution geophysical methods to characterize geologic sites for the disposal of high level nuclear waste. A successful experiment has recently been performed in which salt water tracers and high frequency electromagnetic waves were utilized to map rock mass fracture zones in-situ. Multiple cross-borehole EM transmissions were used to generate a tomographic image of the fractured rock region between two boreholes. The tomographs obtained correlate well with conventional wireline geophysical logs which can be used to infer the location of fractured zones in the rock mass. This indirect data suggests that the geotomography and brine tracer technique may have merit in mapping fractured zones between boreholes

  7. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  8. Structure and tectonic evolution of the northeastern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Krishna, K.S.; Ramprasad, T.; Desa, M.; Subrahmanyam, V.; Sarma, K.V.L.N.S.

    of Pangaea and eastern Gondwanaland, and the subsequent dispersion of the continents. Inference of the mid-ocean ridge system, plateaus, banks, volcanic islands/seamounts, aseismic ridges, trenches, fracture zones, extinct spreading ridges and the hotspot...

  9. Fracture modes in human teeth.

    Science.gov (United States)

    Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R

    2009-03-01

    The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.

  10. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  11. Analysis of nature of brazed joints fracture under operating conditions

    International Nuclear Information System (INIS)

    Orlov, A.V.; Gura, P.M.

    1985-01-01

    Technique establishing causes leading to brazed joint fracture in pressure boundary components, operating under heavy conditions of high temperature and corrosive medium is described. Some cases of tube brazed joint fractures in a superheater of 12Kh1MF and 08Kh18N10T steels are considered. The attention is paid on using metallography for determination of mechanical or corrosion fracture properties. The diagram is developed permitting to take into account the interrelation between the fracture area in the given zone and its strength

  12. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  13. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  14. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  15. Evaluation of permeable fractures in rock aquifers

    Science.gov (United States)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  16. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  17. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.