WorldWideScience

Sample records for rich ti-co isotopes

  1. Absolute isotopic abundances of Ti in meteorites

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.; Wasserburg, G.J.

    1985-01-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46 Ti/ 48 Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. We provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components. The absolute Ti and Ca isotopic compositions still support the correlation of 50 Ti and 48 Ca effects in the FUN inclusions and imply contributions from neutron-rich equilibrium or quasi-equilibrium nucleosynthesis. The present identification of endemic effects at 46 Ti, for the absolute composition, implies a shortfall of an explosive-oxygen component or reflects significant isotope fractionation. Additional nucleosynthetic components are required by 47 Ti and 49 Ti effects. Components are also defined in which 48 Ti is enhanced. Results are given and discussed. (author)

  2. β decay half-live measurement of 22 very neutron-rich isotopes in the Ti-Ni region

    International Nuclear Information System (INIS)

    Czajkowski, S.; Ameil, F.; Armbruster, P.; Donzaud, C.; Geissel, H.; Kozhuharov, C.; Schwab, W.; Bernas, M.; Dessagne, P.; Miehe, C.; Grewe, A.; Hanelt, E.; Heinz, A.; Jong, M. de; Steinhaeuser, S.; Janas, Z.

    1997-01-01

    Very neutron-rich Ti to Ni isotopes were produced in fragmentation of a 500 MeV/u 86 Kr primary beam on a Be target, separated using the Fragment Separator at GSI, and implanted in a set of PIN-diodes where β-decay particles were detected. From time-correlations analysis the unknown β-decay half-life of 22 isotopes were determined. Their values are within 10 -1 s. The β decay spectrum of 70 Co is presented as resulting from an analysis of the first β particle detected after ion implantation in the same detector. Also are presented the example of 3 β decay chains for 65 Mn and 66 Mn. The identification of such chains was instrumental in reducing the influence of background noise in the time correlation analysis while it allows life-time determinations of high confidence

  3. Calcium and titanium isotopes in refractory inclusions from CM, CO, and CR chondrites

    Science.gov (United States)

    Kööp, Levke; Davis, Andrew M.; Krot, Alexander N.; Nagashima, Kazuhide; Simon, Steven B.

    2018-05-01

    Previous studies have shown that CV and CM chondrites incorporated Ca, Al-rich inclusions (CAIs) with different isotopic characteristics, which may represent different snapshots in the isotopic evolution of the early Solar System. To better understand how the isotopic characteristics of CAIs vary between different chondrite groups, we have studied calcium and titanium isotopes in CAIs from CM, CO, and CR chondrites. We show that all three chondrite groups contain CAIs with large anomalies in 48Ca and/or 50Ti (10s of ‰ or 100s of ε-units) as well as CAIs with no anomalies resolved beyond measurement uncertainties. Isotopically, the anomalous CO and CR chondrite CAIs resemble the platy hibonite crystals (PLACs) from CM chondrites, but they are more mineralogically complex. The new data are consistent with the well-established mutual exclusivity relationship between incorporation of 26Al and the presence of large anomalies in 48Ca and 50Ti. The two highly anomalous CO chondrite CAIs have correlated anomalies in 46Ti and 50Ti, while most other highly anomalous CAIs do not. This result could indicate that the reservoir with coupled 46Ti and 50Ti that was sampled by bulk meteorites and CV chondrite CAIs already existed before arrival and/or homogeneous distribution of 26Al in the protoplanetary disk. Among the studied CM chondrite CAIs are ten spinel-hibonite inclusions (SHIBs) with known oxygen isotopic compositions. Our results show that these objects sampled a reservoir that was well-mixed in oxygen, calcium, and titanium isotopes. We further show that SHIBs tend to be slightly enriched in the heavy calcium isotopes, suggesting that their formation history was different from CV chondrite CAIs.

  4. Isotopic and Geochemical Signatures of Melgaco CO{sub 2} Rich Cold Mineralwaters, NW Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, P. M.; Nunes, D. [Instituto Tecnologico e Nuclear, Unidade de Ciencias Quimicas e Radiofarmaceuticas, Sacavem (Portugal); Marques, J. M. [Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisbon (Portugal); Carvalho, M. R. [Universidade de Lisboa, Faculdade de Ciencias, Departamento de Geologia, Lisbon (Portugal); Antunes da Silva, M. [UNICER Bebidas, S.A, S. Mamede de Infesta (Portugal)

    2013-07-15

    The isotopic and chemical compositions of CO{sub 2} rich mineral waters found in the NW of Portugal were investigated. These mineral waters are mainly related to granitic and granodioritic rocks. Based on their chemical composition, two water types are distinguished (Ca-HCO{sub 3} and Ca-Na-HCO{sub 3}), indicating different underground flow paths. Through comparison with local shallow groundwaters, water chemistry indicates that the Melgaco mineral waters evolved through water-rock interaction with the hosted rocks. Stable isotope data indicates the meteoric origin of these CO{sub 2} rich mineral waters, being recharged from about 480 up to 730 m a.s.l. Considering the {delta}{sup 18}O, {delta}{sup 2}H and the hydrochemical data, no indication of mixing seems to occur between the shallow and deep groundwater systems. The {delta}{sup 13}C determinations carried out on TDIC of the CO{sub 2} rich mineral waters point to the hypothesis of methanogenesis (upper mantle CH{sub 4} source) within the system, leading to {sup 13}C enrichment. The negligible {sup 14}C content ({approx} 2 pMC) also indicates a mantle derived carbon source for the groundwater system. (author)

  5. New neutron-rich isotopes in the scandium-to-nickel region, produced by fragmentation of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.; Geissel, H.; Keller, H.; Magel, A.; Muenzenberg, G.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Roeckl, E.; Rykaczewski, K.; Schall, I.; Suemmerer, K.; Donzaud, C.; Guillemaud-Mueller, D.; Mueller, A.C.; Stephan, C.; Tassan-Got, L.; Dufour, J.P.; Pravikoff, M.; Grewe, A.; Voss, B.; Vieira, D.J.

    1991-10-01

    We have measured production cross-sections of the new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, 71 Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u 86 Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss mesurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parameterization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide 78 Ni, are discussed. (orig.)

  6. Multiple Nebular Gas Reservoirs Recorded by Oxygen Isotope Variation in a Spinel-Rich CAI in CO3 MIL 090019

    Science.gov (United States)

    Simon, J. I.; Simon, S. B.; Nguyen, A. N.; Ross, D. K.; Messenger, S.

    2017-07-01

    We conducted NanoSIMS ion imaging studies of a primitive spinel-rich CAI from the MIL 090019 CO3 chondrite. It records radial O-isotopic heterogeneity among multiple occurrences of the same mineral, reflecting distinct nebular O-isotopic reservoirs.

  7. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  8. Isotopic diversity in nebular dust: The distribution of Ti isotopic anomalies in carbonaceous chondrites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1988-01-01

    Average Ti isotopic patterns are derived for each class of carbonaceous chondrite from a chemically characterized suite of whole-rock samples. There is a well-resolved excess of 50 Ti in a subset of CI meteorites. Mean values of the 50 Ti excess for the four classes span a range of only 2 ε-units, with an apparent positive correlation with Al content. Previous evidence for anomalies in chondrules is augmented here by demonstrating that: (1) the more pristine Ca-Al-rich inclusions (CAIs) in Efremovka show the same isotopic pattern as the typical Allende CAI; and, (2) CM and CV matrix carry 50 Ti excesses of about 2 ε-units. The distribution of Ti isotopic anomalies among matrix, chondrules, and CAIs suggests a model in which all three constituents formed from precursor-assemblages in which some chemical memories were still intact; the isotopic differences reflect fractionations among the carrier phases of the different isotopic components. Chondrules formed by a mostly closed-system melting of their precursors, and thus provide a recording of the extent of nebular heterogeneity on the mg-size scale. The larger anomalies in CAIs, compared to matrix and most (but not all) chondrules, are attributed primarily to an open- rather than closed-system processing of the CAI precursors. Precursors of both FUN and normal CAIs experienced an episode of intense processing, perhaps partial melting, that created the FUN characteristics, but for normal CAIs the FUN effects were erased by subsequent isotopic equilibration and exchange

  9. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Akram, W.; Schönbächler, M. [School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sprung, P. [Institut für Planetologie, Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Vogel, N. [Institute for Geochemistry and Petrology, ETH, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  10. Effect of composition on the structure and properties of Ti-Co-Cr alloys

    Directory of Open Access Journals (Sweden)

    T. Matković

    2010-01-01

    Full Text Available The present work is a study of six as-cast Ti-Co-Cr alloys in the Ti-rich region with the purpose of examining the possibility of obtaining a new β-type Ti-alloys. Two experimental alloys Ti80Co10Cr10 and Ti70Co10Cr20 are nearly single-phases and are identified as bcc β-Ti phase. They also display the lowest hardness values and the best corrosion properties. The present study indicates that the region of biomedically-acceptable ternary Ti-rich alloys is situated within lower concentrations of alloying elements, i.e. about 10 at.% Co and 20 at. % Cr.

  11. Multiple Nebular Gas Reservoirs Recorded by Oxygen Isotope Variation in a Spinel-rich CAI in CO3 MIL 090019

    Science.gov (United States)

    Simon, J. I.; Simon, S. B.; Nguyen, A. N.; Ross, D. K.; Messenger, S.

    2017-01-01

    We conducted NanoSIMS O-isotopic imaging of a primitive spinel-rich CAI spherule (27-2) from the MIL 090019 CO3 chondrite. Inclusions such as 27-2 are proposed to record inner nebula processes during an epoch of rapid solar nebula evolution. Mineralogical and textural analyses suggest that this CAI formed by high temperature reactions, partial melting, and condensation. This CAI exhibits radial O-isotopic heterogeneity among multiple occurrences of the same mineral, reflecting interactions with distinct nebular O-isotopic reservoirs.

  12. Hydrogen isotope storage behavior of Zr1-xTixCo alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Tritium storage properties similar to uranium make ZrCo as a suitable candidate material for storage, supply and recovery of hydrogen isotopes in various tritium facilities. Beside non-radioactive, nonpyrophoric at room temperature and higher storage capacity (H/f.u. up to 3, f.u. = ZrCo), it has been reported that upon repeated hydriding-dehydriding cycles, ZrCo undergoes dis-proportionation as per the reaction; ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The present study is aimed to investigate the effect of Ti content on the hydrogen storage behavior of Zr 1-x Ti x Co alloys and the hydrogen isotope effect

  13. The martensitic transformation in Ti-rich TiNi shape memory alloys

    International Nuclear Information System (INIS)

    Lin, H.C.; Wu, S.K.; Lin, J.C.

    1994-01-01

    The martensitic (Ms) transformation temperatures and their ΔH values of Ti 51 Ni 49 and Ti 50.5 Ni 49.5 alloys are higher than those of equiatomic or Ni-rich TiNi alloys. The Ti-rich TiNi alloys exhibit good shape recovery in spite of a great deal of second phase Ti 2 Ni or Ti 4 Ni 2 O existing around B2 grain boundaries. The nearly identical transformation temperatures indicate that the absorbed oxygen in Ti-rich TiNi alloys may react with Ti 2 Ni particles, instead of the TiNi matrix, to form Ti 4 Ni 2 O. Martensite stabilization can be induced by cold rolling at room temperature. Thermal cycling can depress the transformation temperatures significantly, especially in the initial 20 cycles. The R-phase transformation can be promoted by both cold rolling and thermal cycling in Ti-rich TiNi alloys due to introduced dislocations depressing the Ms temperature. The strengthening effects of cold rolling and thermal cycling on the Ms temperature of Ti-rich TiNi alloys are found to follow the expression Ms = To - KΔσ y . The K values are affected by different strengthening processes and related to the as-annealed transformation temperatures. The higher the as-annealed Ms (or As), the larger the K value. (orig.)

  14. Liquid Phase Sintering of (Ti,Zr)C with WC-Co.

    Science.gov (United States)

    Ma, Taoran; Borrajo-Pelaez, Rafael; Hedström, Peter; Blomqvist, Andreas; Borgh, Ida; Norgren, Susanne; Odqvist, Joakim

    2017-01-11

    (Ti,Zr)C powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,Zr)C, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,Zr)C phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ₁) or Zr (γ₂). The γ₂ phase grains have a core-shell structure with a (Ti,Zr)C core following the full sintering cycle. The major differences observed in (Ti,Zr)C with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ₁, and γ₂) is about 10% smaller in WC-(Ti,Zr)C-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  15. Liquid Phase Sintering of (Ti,ZrC with WC-Co

    Directory of Open Access Journals (Sweden)

    Taoran Ma

    2017-01-01

    Full Text Available (Ti,ZrC powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,ZrC, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,ZrC phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ1 or Zr (γ2. The γ2 phase grains have a core-shell structure with a (Ti,ZrC core following the full sintering cycle. The major differences observed in (Ti,ZrC with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ1, and γ2 is about 10% smaller in WC-(Ti,ZrC-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  16. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  17. Hydrogeochemical and stable isotopic investigations on CO2-rich mineral waters from Harghita Mts. (Eastern Carpathians, Romania)

    Science.gov (United States)

    Kis, Boglárka-Mercedesz; Baciu, Călin; Kármán, Krisztina; Kékedy-Nagy, Ladislau; Francesco, Italiano

    2013-04-01

    There is a worldwide interest on geothermal, mineral and groundwater as a resource for energy, drinking water supply and therapeutic needs. The increasing trend in replacing tap water with commercial bottled mineral water for drinking purposes has become an economic, hydrogeologic and medical concern in the last decades. Several investigations have been carried out worldwide on different topics related to geothermal and mineral waters, dealing with mineral water quality assessment, origin of geothermal and mineral waters, geochemical processes that influence water chemistry and water-rock interaction In Romania, the Călimani-Gurghiu-Harghita Neogene to Quaternary volcanic chain (Eastern Carpathians) is one of the most important areas from the point of view of CO2-rich mineral waters. These mineral water springs occur within other post-volcanic phenomena like dry CO2 emissions, moffettes, bubbling pools, H2S gas emissions etc. Mineral waters from this area are used for bottling, local spas and drinking purposes for local people. The number of springs, around 2000 according to literature data, shows that there is still a significant unexploited potential for good quality drinking water in this area. Within the youngest segment of the volcanic chain, the Harghita Mts., its volcaniclastic aprons and its boundary with the Transylvanian Basin, we have carried out an investigation on 23 CO2-rich mineral water springs from a hydrogeochemical and stable isotopic point of view. The mineral waters are Ca-Mg-HCO3 to Na-Cl type. Sometimes mixing between the two types can be observed. We have detected a great influence of water-rock interaction on the stable isotopic composition of the mineral waters, shown by isotopic shifts to the heavier oxygen isotope, mixing processes between shallow and deeper aquifers and local thermal anomalies. Acknowledgements: The present work was financially supported by the Romanian National Research Council, Project PN-II-ID-PCE-2011-3-0537 and by

  18. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    Directory of Open Access Journals (Sweden)

    W. Y. Zhang

    2016-05-01

    Full Text Available Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5−0.5xB14 (x = 0, 4 and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  19. Experimental investigation of the phase equilibria in the Co-Fe-Ti ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chaohui; Chen, Chong; Peng, Yingbiao; Du, Yong; Li, Kun [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Lu, Xingxu [Central South Univ., State Key of Powder Metallurgy, Changsha (China); Central South Univ., School of Materials Science and Engineering, Changsha (China)

    2015-08-15

    Phase equilibria in the Co-Fe-Ti ternary system were investigated by means of the equilibrated alloy method with X-ray powder diffraction and electron probe microanalysis. No ternary compounds were found. The experimental results indicated the existence of seven two-phase and one three-phase regions at 600 C, five two-phase and two three-phase regions at 800 C, and six two-phase and two three-phase regions at 950 C. The solubility of Co in TiFe{sub 2} was determined to be larger than 54 at.% at all investigated temperatures, and the solubilities of Fe in TiCo{sub 3} and Ti{sub 2}Co showed an appreciable increase with increasing temperature. The three-phase equilibrium in the Ti-rich corner at 800 C was revealed to be ((β-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) rather than ((α-Ti) + Ti(Fe, Co) + Ti{sub 2}Co) reported in previous investigations. Based on the experimental data obtained in the present work, three isothermal sections at 600, 800 and 950 C were established.

  20. Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in LOMU-Like Potassium-Rich Volcanic Rocks

    Science.gov (United States)

    Sun, Yang; Teng, Fang-Zhen; Ying, Ji-Feng; Su, Ben-Xun; Hu, Yan; Fan, Qi-Cheng; Zhou, Xin-Hua

    2017-10-01

    To evaluate the role of subducted oceanic crust in the genesis of potassium-rich magmas, we report high-precision Mg isotopic data for a set of Cenozoic volcanic rocks from Northeast China. These rocks overall are lighter in Mg isotopic composition than the normal mantle and display considerable Mg isotopic variations, with δ26Mg ranging from -0.61 to -0.23. The covariation of δ26Mg with TiO2 in these rocks suggests that their light Mg isotopic compositions were derived from recycled oceanic crust in the form of carbonated eclogite in the source region. The strong correlations between δ26Mg and (Gd/Yb)N ratio as well as Sr-Pb isotopes further indicate a multicomponent and multistage origin of these rocks. Magnesium isotopes may thus be used as a novel tracer of recycled oceanic crust in the source region of mantle-derived magmas.

  1. β decay and isomeric properties of neutron-rich Ca and Sc isotopes

    International Nuclear Information System (INIS)

    Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Stoker, J. B.; Janssens, R. V. F.; Carpenter, M. P.; Kay, B. P.; Lauritsen, T.; Zhu, S.; Broda, R.; Cieplicka, N.; Fornal, B.; Grinyer, G. F.; Minamisono, K.; Hoteling, N.; Stefanescu, I.; Walters, W. B.

    2010-01-01

    The isomeric and β-decay properties of neutron-rich 53-57 Sc and 53,54 Ca nuclei near neutron number N=32 are reported, and the low-energy level schemes of 53,54,56 Sc and 53-57 Ti are presented. The low-energy level structures of the 21 Sc isotopes are discussed in terms of the coupling of the valence 1f 7/2 proton to states in the corresponding 20 Ca cores. Implications with respect to the robustness of the N=32 subshell closure are discussed, as well as the repercussions for a possible N=34 subshell closure.

  2. Rapid thermal annealing of Ti-rich TiNi thin films: A new approach to fabricate patterned shape memory thin films

    International Nuclear Information System (INIS)

    Motemani, Y.; Tan, M.J.; White, T.J.; Huang, W.M.

    2011-01-01

    This paper reports the rapid thermal annealing (RTA) of Ti-rich TiNi thin films, synthesized by the co-sputtering of TiNi and Ti targets. Long-range order of aperiodic alloy could be achieved in a few seconds with the optimum temperature of 773 K. Longer annealing (773 K/240 s), transformed the film to a poorly ordered vitreous phase, suggesting a novel method for solid state amorphization. Reitveld refinement analyses showed significant differences in structural parameters of the films crystallized by rapid and conventional thermal annealing. Dependence of the elastic modulus on the valence electron density (VED) of the crystallized films was studied. It is suggested that RTA provides a new approach to fabricate patterned shape memory thin films.

  3. High-Temperature Nucleosynthesis Processes on the Proton-Rich Side of Stability: the Alpha-Rich Freezeout and the rp^2-Process

    Science.gov (United States)

    Meyer, Bradley S.

    2001-10-01

    Nucleosynthesis on the proton-rich side of stability has at least two intriguing aspects. First, the most abundant of the stable iron-group isotopes, such as ^48Ti, ^52Cr, and ^56,57Fe, are synthesized as proton-rich, radioactive parents in alpha-rich freezeouts from equilibrium. The production of these radioactive progenitors depends in large measure on reactions on the proton-rich side of stability. The second intriguing aspect is that explosive nucleosynthesis in a hydrogen-rich environment (namely, the rp-process) may be associated with exotic astrophysical settings, such as x-ray bursts, and may be responsible for production of some of the light p-process nuclei (for example, ^92,94Mo and ^96,98Ru). We have developed web-based tools to help nuclear physicists determine which nuclear reactions on the proton-rich side of stability govern the nucleosynthesis in these processes. For the alpha-rich freezeout, one may determine the effect of any one of 2,140 reactions on the yield of any isotope in the nuclear reaction network with the web calculator. As a relevant example, I will discuss the governing role of ^57Ni (n,p)^57Co in the synthesis of the important astronomical observable ^57Co. As for explosive, proton-rich burning, I will discuss the synthesis of p-process nuclei in the repetitive rp-process (the rp^2-process). movies/rp.html>Movies of the rp^2-process illustrate its important features and give some indications of the important nuclear reactions.

  4. Ion-microprobe measurements of Mg, Ca, Ti and Fe isotopic ratios and trace element abundance in hibonite-bearing inclusions in primitive meteorites

    International Nuclear Information System (INIS)

    Fahey, A.J.

    1988-01-01

    This thesis reports the isotopic abundances of Mg, Ca, and Ti and rare earth element (REE) abundances in 19 hibonite-bearing inclusions from primative meteorites. The isotopic ratios of Fe were measured in one of the samples, Lance HH-1. These measurements were made by means of secondary ion mass spectrometry (CAMECA IMS-3f). The novel hardware and software developments that made this work possible are described in detail. The samples were studied in thin section in order to investigate the relationship between the inclusions and their mineralogical environments. Inclusions from a number of different meteorites, specifically, Mighei, Murray, Murchison, Lance, Efremovka, Vigarano, Qingzhen, Dhajala, and Semarkona, were studied. The isotopes of Ca and Ti show large and correlated abundance anomalies in their most neutron-rich isotopes, 48 Ca and 50 Ti. The largest anomalies among the samples studied here are in the Murray inclusion MY-F6, with a 4.6% deficit in 48 Ca and a 5.2% deficit in 50 Ti, and Lance HH-1, with 3.3% and 6.0% deficits in 48 Ca and 50 Ti respectively. Correlated excesses of 48 Ca and 50 Ti, up to 2.4% and 1.4% respectively, are found in some other samples studied here. The fact that there is a correlation of isotopic anomalies in two different elements is clear evidence for a nucleosynthetic origin of these effects. Various possibilities for the origin of these isotopic anomalies are discussed and it is shown that a Cosmic Chemical Memory-like model of the incomplete mixing of dust grains from one or several supernovae is sufficient to explain the data. Magnesium isotopes show excesses of 26 Mg, attributable to the in-situ decay of 26 Al, in 7 of these inclusions

  5. Synthesis and morphology research of framework Ti-rich TS-1 containing no extraframework Ti species in the presence of CO2

    KAUST Repository

    Zhu, Guowei; Ni, Lei; Qi, Wei; Ding, Shuang; Li, Xiaoxin; Wang, Runwei; Qiu, Shilun

    2014-01-01

    A new method to synthesis TS-1 has been developed using the carbon dioxide (CO2) as an alkalinity regulator that resulted in the increased framework Ti contents. The prepared catalyst had a Si/Ti ratio as low as 40 in contrast to the ratio of 56

  6. Synthesis and morphology research of framework Ti-rich TS-1 containing no extraframework Ti species in the presence of CO2

    KAUST Repository

    Zhu, Guowei

    2014-02-01

    A new method to synthesis TS-1 has been developed using the carbon dioxide (CO2) as an alkalinity regulator that resulted in the increased framework Ti contents. The prepared catalyst had a Si/Ti ratio as low as 40 in contrast to the ratio of 56 prepared through conventional synthesis. The twin crystals with the length of 2 μm were formed via introduction of CO 2. The catalytic activity of TS-1 is remarkably enhanced compared with the conventional synthesis. © 2013 Elsevier B.V.

  7. High spin study and lifetime measurements of neutron rich Co isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, P H; Arrison, J W; Huttmeier, U J; Balamuth, D P [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1992-08-01

    The neutron rich nuclei {sup 61,63}Co have been studied using the reactions {sup 16}O({sup 48}Ca,p2n){sup 61}Co at 110 MeV and {sup 18}O({sup 48}Ca,p2n){sup 63}Co at 110 MeV respectively. Discrete lines from the channels of interest were investigated using pre-scaled {gamma} singles, charged-particle-{gamma}, neutron-charged-particle-{gamma} and charged particle-{gamma}-{gamma} data. Decay schemes, with level spins deduced from angular distribution data are presented together with preliminary information on the lifetimes of some higher excitation states. These data represent the first study on the medium to high spin states in these nuclei. (author). 9 refs., 1 tab., 4 figs.

  8. K isomerism and collectivity in neutron-rich rare-earth isotopes.

    OpenAIRE

    Patel, Zena

    2016-01-01

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated an...

  9. Precision mass measurements of neutron-rich Co isotopes beyond N =40

    Science.gov (United States)

    Izzo, C.; Bollen, G.; Brodeur, M.; Eibach, M.; Gulyuz, K.; Holt, J. D.; Kelly, J. M.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Stroberg, S. R.; Sumithrarachchi, C. S.; Valverde, A. A.; Villari, A. C. C.

    2018-01-01

    The region near Z =28 and N =40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in 68Ni suggesting a subshell closure at N =40 . Trends in nuclear masses and their derivatives provide a complementary approach to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region; however, a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N >40 along the iron (Z =26 ) and cobalt (Z =27 ) chains because these species are not available from traditional isotope separator online rare isotope facilities. The Low-Energy Beam and Ion Trap Facility at the National Superconducting Cyclotron Laboratory is the first and only Penning trap mass spectrometer coupled to a fragmentation facility and therefore presents the unique opportunity to perform precise mass measurements of these elusive isotopes. Here we present the first Penning trap measurements of Co,6968, carried out at this facility. Some ambiguity remains as to whether the measured values are ground-state or isomeric-state masses. A detailed discussion is presented to evaluate this question and to motivate future work. In addition, we perform ab initio calculations of ground-state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces that predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near 68Ni.

  10. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  11. Ab initio study of domain structures in half-metallic CoTi{sub 1−x}Mn{sub x}Sb and thermoelectric CoTi{sub 1−x}Sc{sub x}Sb half-Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Mena, Joaquin, E-mail: joaquin.miranda@uni-bayreuth.de; Schoberth, Heiko G.; Gruhn, Thomas; Emmerich, Heike

    2015-11-25

    We present first-principles calculations of the electronic density of state, the structures in CoTi{sub 1−x}Sc{sub x}Sb and CoTi{sub 1−x}Mn{sub x}Sb. In addition for the latter we calculate magnetic moments. Systems with different stoichiometries are compared and low energy configurations are determined using a cluster expansion procedure. For all studied manganese concentrations, x > 0, CoTi{sub 1−x}Mn{sub x}Sb is half-metallic and magnetic, which make it interesting for spintronic applications. In contrast, with increasing scandium concentration, the band gap of CoTi{sub x}Sc{sub 1-x}Sb closes continuously, while the material changes from a semiconductor to a non-magnetic metal. For low Sc doping this material is well suited for thermoelectric applications. The electronic states close to the Fermi energy are strongly influenced by the distribution of Ti and Mn (or Ti and Sc). This has important consequences for the usage of materials in application fields like spintronics and thermoelectrics. In general, a phase separation of the alloys into a Ti rich and a Ti poor phase is energetically favored. Using mean field theory we create a phase diagram that shows the coexistence and the spinodal region. A spontaneous demixing can be used for the creation of nanodomains within the material. In the case of CoTi{sub 1−x}Sc{sub x}Sb, the resulting reduced lattice thermal conductivity is beneficial for thermoelectric applications, while in CoTi{sub 1−x}Mn{sub x}Sb the nanodomains are detrimental for polarization.

  12. Selective CO Methanation on Ru/TiO2 Catalysts: Role and Influence of Metal-Support Interactions

    DEFF Research Database (Denmark)

    Abdel-Mageed, Ali M.; Widmann, D.; Olesen, Sine Ellemann

    2015-01-01

    Aiming at a detailed understanding of the role of metal-support interactions in the selective methanation of CO in CO2-rich reformate gases, we have investigated the catalytic performance of a set of Ru/TiO2 catalysts with comparable Ru loading, Ru particle size, and TiO2 phase composition but very...... different surface areas (ranging from 20 to 235 m2 g-1) in this reaction. The activity for CO methanation, under steady-state conditions, was found to strongly depend on the TiO2 support surface area, increasing first with increasing surface area up to a maximum activity for the Ru/TiO2 catalyst...... with a surface area of 121 m2 g-1 and then decreasing for an even higher surface area; however, the selectivity is mainly determined by the Ru particle size, which slightly decreases with increasing support surface area. This goes along with an increase in selectivity for CO methanation, in agreement...

  13. Level densities and γ strength functions in light Sc and Ti isotopes

    International Nuclear Information System (INIS)

    Burger, A.; Larsen, A.C.; Syed, N.U.H.; Guttormsen, M.; Nyhus, H.; Siem, S.; Harissopulos, S.; Konstantinopoulos, T.; Lagoyannis, A.; Perdidakis, G.; Spyrou, A.; Kmiecik, M.; Mazurek, K.; Krticka, M.; Loennroth, T.; Norby, M.; Voinov, A.

    2010-01-01

    We present preliminary results from a measurement of nuclear level densities and the γ-ray strength of light Sc (Sc 43 , Sc 45 ) and Ti (Ti 44 , Ti 45 and Ti 46 ) isotopes using the Oslo Method. The article begins with a presentation of the experimental setup. (authors)

  14. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    Science.gov (United States)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three

  15. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  16. Level structures of neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    The level structures of neutron-rich Xe isotopes were determined by observing prompt gamma-ray coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 248}Cm, in the form of {sup 248}Cm-KCl pellet, was placed inside Eurogam array which consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. Transitions in Xe isotopes were identified by the appearance of new peaks in the {gamma}-ray spectra obtained by gating on the gamma peaks of the complementary Mo fragments.

  17. A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O

    Directory of Open Access Journals (Sweden)

    Huilei Zhao

    2017-03-01

    Full Text Available Photocatalytic reduction of CO2 with water by photocatalysts such as TiO2 to produce solar fuels is an attractive approach to alleviate the environmental influences of greenhouse gases and in the meantime produce valuable carbon-neutral fuels. Among the materials properties that affect catalytic activity of CO2 photoreduction, the point defect on TiO2 is one of the most important but not frequently addressed and well understood in the literature. In this review, we have examined the major influences of TiO2 point defects on CO2 photoreduction with H2O, by changing the catalysts' gas adsorption capabilities, optical properties, and electronic structures. In addition, the performances of various defective TiO2 toward CO2 photoreduction are summarized and compared in terms of productivity, selectivity, and stability. We hope this review can contribute to understanding the mechanism of CO2 photoreduction on defective TiO2 and provide insights to the design of highly efficient defect-rich TiO2 to boost the CO2 utilization.

  18. Titanium isotopic anomalies in meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.; Lugmair, G.W.

    1984-01-01

    High-precision analyses of Ti are reported for samples from a variety of meteorite classes. The expanded data base for Allende inclusions still shows Ti isotope anomalies in every inclusion. All the coarse-grained inclusions give quite similar patterns, but fine-grained inclusions show more variable, and sometimes larger, anomalies. One inclusion, 3675A, was analyzed because others identified it as a possible 'FUN' inclusion due to its mass-fractionated Mg. This designation is supported by the significantly more complex Ti isotopic pattern for 3675A compared to all our other Allende inclusions. Available data fail to suggest that any particular Allende mineral phase, including a chromite-carbon fraction from an acid residue, is especially rich in anomalous Ti. We also find anomalous Ti in a bulk sample of a C1 chondrite and in matrix separates from C2 chondrites. The excesses of 50 Ti are smaller than for Allende inclusions, and subtle differences in Ti isotopic patterns tentatively suggest that parent materials for C1-C2 matrix and Allende inclusions are not directly related. Analyses of chondrules from unequilibrated ordinary chondrites did not yield clear evidence for anomalous Ti, but some 'larger than usual' deficits at 50/46 give encouragement for future work in this direction. (author)

  19. High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006

    Science.gov (United States)

    Nittler, Larry R.; Alexander, Conel M. O'D.; Davidson, Jemma; Riebe, My E. I.; Stroud, Rhonda M.; Wang, Jianhua

    2018-04-01

    NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains, and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.

  20. Identification of ultra-fine Ti-rich precipitates in V-Cr-Ti alloys irradiated below 300 deg. C by using positron CDB technique

    International Nuclear Information System (INIS)

    Fukumoto, Ken-ichi; Matsui, Hideki; Ohkubo, Hideaki; Tang, Zheng; Nagai, Yasuyoshi; Hasegawa, Masayuki

    2008-01-01

    Irradiation-induced Ti-rich precipitates in V-Ti and V-4Cr-4Ti alloys are studied by TEM and positron annihilation methods (positron lifetime, and coincidence Doppler broadening (CDB)). The characteristics of small defect clusters formed in V alloys containing Ti at irradiation temperatures below 300 deg. C have not been identified by TEM techniques. Strong interaction between vacancy and Ti solute atoms for irradiated V alloys containing Ti at irradiation temperatures from 220 to 350 deg. C are observed by positron lifetime measurement. The vacancy-multi Ti solute complexes in V-alloys containing Ti are definitely identified by using CDB measurement. It is suggested that ultra-fine Ti-rich precipitates or Ti segregation at periphery of dislocation loops are formed in V alloys containing Ti at irradiation temperatures below 300 deg. C

  1. Neutron-rich isotopes of the lightest elements

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Penionzhkevich, Yu.Eh.; Kalpakchieva, R.

    1989-01-01

    A review is presented of the experimental investigations on the stability of very neutron-rich light nuclei carried out at the JINR Laboratory of Nuclear Reactions. Results on mass excess measurements are reported for 4 H, 5 H, 6 H, 7 H and for the superheavy helium isotope 9 He. Some results from the joint JINR-Ganil experiment on the search for and study of new neutron-rich light nuclei are also given. Analyzed are new possibilities for the investigation of multineutron decay of light nuclei. 14 refs.; 10 figs

  2. Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Myeong-Hwan; Lee, Young-Ouk [Korea Atomic Energy Research Institue, Daejeon (Korea, Republic of); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-12-15

    The possibilities of production of yet unknown neutron-rich isotopes of Md are explored in several multi-nucleon transfer reactions with actinide targets and stable and radioactive beams. The projectile-target combinations and bombarding energies are suggested to produce new neutron-rich isotopes of Md in future experiments. (orig.)

  3. Isotope labelling study of CO oxidation-assisted epoxidation of propene. Implications for oxygen activation on Au catalysts.

    Science.gov (United States)

    Jiang, Jian; Oxford, Sean M; Fu, Baosong; Kung, Mayfair C; Kung, Harold H; Ma, Jiantai

    2010-06-07

    (18)O isotope labelling studies of the CO oxidation-assisted epoxidation of propene, catalyzed by a mixture of Au/TiO(2) and TS-1, using a methanol-H(2)O solvent showed the O in the epoxide was exclusively from O(2) and not H(2)O or methanol.

  4. Asymmetric intermixing in Co/Ti bilayer

    International Nuclear Information System (INIS)

    Suele, P.; Kotis, L.; Toth, L.; Menyhard, M.; Egelhoff, W.F.

    2008-01-01

    Recently we have studied the ion mixing of mass-anisotropic bilayer and found strong asymmetry depending on the succession of the layers [P. Suele, M. Menyhard, L. Kotis, J. Labar, W.F. Egelhoff Jr., J. Appl. Phys. 101 (2007) 043502]. The finding was explained by the mass difference of the constituents. To check the validity of explanation we studied the interface broadening of Co/Ti and Ti/Co bilayers due to low-energy ion bombardment. We have applied Auger electron spectroscopy depth profiling and molecular dynamics simulation to determine the intermixing. Since the Co/Ti system is nearly mass isotropic the ballistic intermixing mechanism can be ruled out and no asymmetry is expected. In contrary to the expectation both methods showed asymmetry of intermixing at bombardment of 2 keV ion energy. The asymmetry vanishes progressively with decreasing ion energy. We suggest that atomic size-anisotropy could play some role in the enhancement of interdiffusion of Co in Ti

  5. β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station

    Science.gov (United States)

    Lică, R.; Benzoni, G.; Morales, A. I.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Madurga, M.; Sotty, C.; Vedia, V.; De Witte, H.; Benito, J.; Berry, T.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernández-Martínez, G.; Fynbo, H.; Greenlees, P.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Leoni, S.; Lund, M.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Regis, J. M.; Rotaru, F.; Saed-Sami, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.

    2017-05-01

    Neutron-rich Ba isotopes are expected to exhibit octupolar correlations, reaching their maximum in isotopes around mass A = 146. The odd-A neutron-rich members of this isotopic chain show typical patterns related to non-axially symmetric shapes, which are however less marked compared to even-A ones, pointing to a major contribution from vibrations. In the present paper we present results from a recent study focused on 148-150Cs β-decay performed at the ISOLDE Decay Station equipped with fast-timing detectors. A detailed analysis of the measured decay half-lives and decay scheme of 149Ba is presented, giving a first insight in the structure of this neutron-rich nucleus.

  6. Hyperfine structure and isotope shift of the neutron-rich barium isotopes 139-146Ba and 148Ba

    International Nuclear Information System (INIS)

    Wendt, K.; Ahmad, S.A.; Klempt, W.; Neugart, R.; Otten, E.W.

    1988-01-01

    The hyperfine structure and isotope shift in the 6s 2 S 1/2 -6p 2 P 3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes 139-146 Ba and 148 Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope 148 Ba (T 1/2 = 0.64 s) could be studied for the first time, yielding δ 2 > 138,148 = 1.245(3) fm 2 . (orig.)

  7. The synergetic effect of V and Fe-co-doping in TiO{sub 2} studied from the DFT + U first-principle calculation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoshun, E-mail: liubaoshun@126.com; Zhao, Xiujian

    2017-03-31

    Highlights: • The effect of Fe and V doping on TiO{sub 2} structure was studied with DFT + U calculation. • V and Fe co-doping affects the formation energies and electronic structure. • V and Fe co-doping causes the synergetic effect on the optical properties. - Abstract: Based on the density functional theory (DFT + U), a detailed study on the energetic, electronic, and optical properties of Fe-, V-, and Fe & V-co-doping anatase and rutile TiO{sub 2} was performed The synergetic effect of Fe & V bimetal co-doping on the optical absorption was discussed on electronic level. Two kinds of co-dopants were considered, which included edge-shared and corner-shared co-doping. It was shown that Fe and V atoms prefer to replace Ti atom in the O-rich contions than in the Ti-rich conditions. Co-doping in anatase reduces the formation energies in both cases, while the formation energies for rutile cannot be decreased. The Bader charge analysis indicates the +3 of Fe atom and +4 of V atom, and the obvious electron exchange between Fe and V atom in co-doping cases can be identified, which indicates the presence of synergetic effect induced by co-doping. The cooperation of Fe & V co-dopants was also supported by the result of projected density of states and spin charge density differences, as the hybridization of Fe3d with V3d orbitals was seen within the TiO{sub 2} forbidden band. Different from single-dopant systems, the V3d-Fe3d co-interaction leads to the formation of some spin mid-gap states, which have an obvious effect on the optical absorptions.

  8. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Neutron-rich Dy isotopes; high-spin states; g-factors; cranked HFB theory. ... for 164Dy marking a clear separation in the behaviour as a function of neutron ... cipal x-axis as the cranking axis) in this mass region we have planned to make a sys-.

  9. Isotopic Hg in an Allende carbon-rich residue

    Science.gov (United States)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  10. Shape transition in the neutron rich sodium isotopes

    International Nuclear Information System (INIS)

    Campi, X.; Flocard, H.; Kerman, A.K.; Koonin, S.; Massachusetts Inst. of Tech., Cambridge

    1975-06-01

    Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31 Na in the values of the two neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32 Na after the N=20 shell closure. It is proposed that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitals from the 1fsub(7/2) shell. Hartree-Fock calculations are presented in support of this conjecture [fr

  11. Ubiquitous isotopic anomalies in Ti from normal Allende inclusions

    International Nuclear Information System (INIS)

    Niemeyer, S.; Lugmair, G.W.

    1981-01-01

    A newly developed technique for high-precision isotopic analyses of titanium was applied to terrestrial rocks and course- and fine-grained Allende inclusions. Repeated analyses of three terrestrial rocks gave excellent agreement (usually less than 2 x 10 -4 deviations) with a Ti metal standard. All seven Allende inclusions studied here were previously determined to contain isotopically normal Nd and/or Sm, indicating that none belongs to a small group of peculiar inclusions, dubbed as FUN inclusions. (orig./ME)

  12. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.; Sastry, P.U.; Jayakrishnan, V.B.

    2016-01-01

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  13. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron S n or two-neutron S 2n separation energy of neutron-rich isotopes. Relationships between S n (S 2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. S n, S 2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between S n, S 2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  14. Thermomechanical behavior of Ti-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Paula, A.S.; Mahesh, K.K.; Santos, C.M.L. dos; Braz Fernandes, F.M.; Costa Viana, C.S. da

    2008-01-01

    Phase transformations associated with shape memory effect in nickel-titanium (NiTi) alloys can be one-stage, B19' (martensite) ↔ B2 (austenite), two-stage including an intermediate R-phase stage, or multiple-stage depending on the thermal and/or mechanical history of the alloy. In the present paper, we highlight the effect of (i) deformation by cold-rolling (from 10% to 40% thickness reduction) and (ii) final annealing on the transformation characteristics of a Ti-rich NiTi shape memory alloy. For this purpose, one set of samples initially heat treated at 773 K followed by cold-rolling (10-40% thickness reduction), has been further heat treated at various temperatures between 673 and 1073 K. Another sample was subjected to heat treatment at 1040 K for 300 s followed by hot rolling (50%) after cooling in air to 773 K and water quenching to room temperature (T room ). Phase transformations were studied using differential scanning calorimetry, electrical resistivity measurements and in situ X-ray diffraction. A specific pattern of transformation sequences is found as a result of combination of the competing effects due to mechanical-working and annealing

  15. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    International Nuclear Information System (INIS)

    Baldenebro-Lopez, F.J.; Herrera-Ramírez, J.M.; Arredondo-Rea, S.P.; Gómez-Esparza, C.D.; Martínez-Sánchez, R.

    2015-01-01

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying

  16. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  17. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    Energy Technology Data Exchange (ETDEWEB)

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    Based on the mineralogy and petrography, coarse-grained, igneous, anorthite-rich (Type C) calcium-aluminum-rich inclusions (CAIs) in the CV3 carbonaceous chondrite Allende have been recently divided into three groups: (i) CAIs with melilite and Al,Ti-diopside of massive and lacy textures (coarse grains with numerous rounded inclusions of anorthite) in a fine-grained anorthite groundmass (6-1-72, 100, 160), (ii) CAI CG5 with massive melilite, Al,Ti-diopside and anorthite, and (iii) CAIs associated with chondrule material: either containing chondrule fragments in their peripheries (ABC, TS26) or surrounded by chondrule-like, igneous rims (93) (Krot et al., 2007a,b). Here, we report in situ oxygen isotopic measurements of primary (melilite, spinel, Al,Ti-diopside, anorthite) and secondary (grossular, monticellite, forsterite) minerals in these CAIs. Spinel ({Delta}{sup 17}O = -25{per_thousand} to -20{per_thousand}), massive and lacy Al,Ti-diopside ({Delta}{sup 17}O = -20{per_thousand} to -5{per_thousand}) and fine-grained anorthite ({Delta}{sup 17}O = -15{per_thousand} to -2{per_thousand}) in 100, 160 and 6-1-72 are {sup 16}O-enriched relative spinel and coarse-grained Al,Ti-diopside and anorthite in ABC, 93 and TS26 ({Delta}{sup 17}O ranges from -20{per_thousand} to -15{per_thousand}, from -15{per_thousand} to -5{per_thousand}, and from -5{per_thousand} to 0{per_thousand}, respectively). In 6-1-72, massive and lacy Al,Ti-diopside grains are {sup 16}O-depleted ({Delta}{sup 17}O {approx} -13{per_thousand}) relative to spinel ({Delta}{sup 17}O = -23{per_thousand}). Melilite is the most {sup 16}O-depleted mineral in all Allende Type C CAIs. In CAI 100, melilite and secondary grossular, monticellite and forsterite (minerals replacing melilite) are similarly {sup 16}O-depleted, whereas grossular in CAI 160 is {sup 16}O-enriched ({Delta}{sup 17}O = -10{per_thousand} to -6{per_thousand}) relative to melilite ({Delta}{sup 17}O = -5{per_thousand} to -3{per_thousand}). We infer

  18. Masses of new isotopes in the fp shell

    International Nuclear Information System (INIS)

    Davids, C.N.

    1979-01-01

    A total of four new neutron-rich isotopes were studied including 53 Ti, 57 Cr, 59 Mn, and 60 Mn. The bombardment of 58 Ni by various heavy ion beams resulted in the discovery of proton-rich 67 As and permitted extensive measurements of the superallowed decays of 62 Ge, 66 As, and 70 Br. 13 references

  19. The isotopic composition of CO in vehicle exhaust

    NARCIS (Netherlands)

    Naus, S.; Röckmann, T.; Popa, M.E.

    2018-01-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO 2 isotopes, and the CO:CO 2 , CH 4 :CO 2 and H 2 :CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench.

  20. Isotopic Hg in an Allende carbon-rich residue

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body. 9 refs

  1. Isothermal sections of the Co-Ni-Ti system at 950 and 1 000 C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han; Jin, Zhanpeng [Central South Univ., Changsha (China). School of Materials Science and Engineering; Zhou, Peng [Hunan Univ. of Science and Technology, Xiangtan (China). Hunan Provincial Key Defense Lab. of High Temperature Wear Resisting Materials and Preparation Technology; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy

    2018-02-15

    The isothermal sections of the Co-Ni-Ti system at 950 and 1000 C were investigated experimentally. Diffusion couples were measured by electron probe microanalysis to construct the phase relations at 950 C, whereas eleven key alloys annealed at 1000 C were investigated using X-ray diffraction and electron probe microanalysis. The ternary phase, τ-(Co,Ni){sub 3}Ti (hP24-VCo{sub 3}), was observed at both temperatures. At 950 C, continuous solid solutions are formed between CoTi{sub 2} and NiTi{sub 2} as well as between CoTi and NiTi. Eight 3-phase regions, i. e. Ni{sub 3}Ti + (Co,Ni)Ti + τ, Ni{sub 3}Ti + γ-(Co,Ni) + τ, τ + c-Co{sub 2}Ti + (Co,Ni)Ti, τ + c-Co{sub 2}Ti + Co{sub 3}Ti, τ + Co{sub 3}Ti + γ-(Co,Ni), c-Co{sub 2}Ti + h-Co{sub 2}Ti + Co{sub 3}Ti, L + β-(Ti) + (Co,Ni)Ti{sub 2} and L + (Co,Ni)Ti{sub 2} + (Co,Ni)Ti, were constructed at 1000 C. Considerable ternary solubilities in Ni{sub 3}Ti, Co{sub 3}Ti and c-Co{sub 2}Ti were determined.

  2. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Holec, D.; Bojda, O.; Dlouhy, A.

    2008-01-01

    Non-uniform distributions of Ni 4 Ti 3 precipitate crystallographic variants are investigated in a Ni-rich NiTi shape memory alloy after aging, assisted by external stress. A finite-element method model is presented that considers the elastic anisotropy of the B2 parent phase and also mutual misorientations of grains in a polycrystalline sample. On loading by the external stress, the stress is redistributed in the microstructure and the precipitation of some Ni 4 Ti 3 crystallographic variants becomes distinctly favorable in grain boundary regions since these variant configurations minimize the elastic interaction energy. The volume fraction of the affected grain boundary regions is calculated and the numerical results are compared with the data obtained by differential scanning calorimetry and transmission electron microscopy

  3. Shell-model results in fp and fpg9/2 spaces for 61,63,65Co isotopes

    International Nuclear Information System (INIS)

    Srivastava, P. C.; Kota, V. K. B.

    2011-01-01

    Low-lying spectra and several high-spin states of odd-even 61,63,65 Co isotopes are calculated in two different shell-model spaces. First set of calculations have been carried out in fp-shell valence space (full fp space for 63,65 Co and a truncated one for 61 Co) using two recently derived fp-shell interactions, namely GXPF1A and KB3G, with 40 Ca as core. Similarly, the second set of calculations have been performed in fpg 9/2 valence space using an fpg effective interaction due to Sorlin et al., with 48 Ca as core and imposing a truncation. It is seen that the results of GXPF1A and KB3G are reasonable for 61,63 Co. For 65 Co, shell-model results show that the fpg interaction adopted in the study is inadequate and also points out that it is necessary to include orbitals higher than 1g 9/2 for neutron-rich Co isotopes.

  4. Petrogenesis and metallogenesis of the Wajilitag and Puchang Fe-Ti oxide-rich intrusive complexes, northwestern Tarim Large Igneous Province

    Science.gov (United States)

    Zhang, Dongyang; Zhang, Zhaochong; Huang, He; Cheng, Zhiguo; Charlier, Bernard

    2018-04-01

    The Wajilitag and Puchang intrusive complexes of the Tarim large igneous province (TLIP) are associated with significant resources of Fe-Ti oxide ores. These two mafic-ultramafic intrusions show differences in lithology and mineral chemistry. Clinopyroxenite and melagabbro are the dominant rock types in the Wajilitag complex, whereas the Puchang complex is generally gabbroic and anorthositic in composition with minor plagioclase-bearing clinopyroxenites in the marginal zone. Disseminated Fe-Ti oxide ores are found in the Wajilitag complex and closely associated with clinopyroxenites, whereas the Puchang complex hosts massive to disseminated Fe-Ti oxide ores mainly within its gabbroic rocks. The Wajilitag intrusive rocks are characterized by a restricted range of initial 87Sr/86Sr ratios (0.7038-0.7048) and positive εNd(t) (+0.04 - +3.01), indicating insignificant involvement of continental crustal contamination. The slightly higher initial 87Sr/86Sr ratios (0.7039-0.7059) and lower εNd(t) values (-1.05 - +2.35) of the Puchang intrusive rocks also suggest that the isotopic characteristics was controlled primarily by their mantle source, rather than by crustal contamination. Both complexes have Sr-Nd isotopic compositions close the neighboring kimberlitic rocks and their hosted mantle xenoliths in the TLIP. This indicates that the ferrobasaltic parental magmas were most probably originated from partial melting of a metasomatized subcontinental lithospheric mantle, modified recently with subduction-related materials by the impingement of the ascending mantle plume. The recycled subduction-related materials preserved in the lithospheric mantle could play a key role in the formation of the parental Fe-rich magmas in the context of an overall LIP system. The distinct variations in mineral assemblage for each complex and modeled results indicated that the Wajilitag and Puchang complexes experienced different crystallization path. Fe-Ti oxides in Wajilitag joined the

  5. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  6. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  7. Photocatalytic degradation of water surface oils by CoPcS-TiO2-beads and TiO2-beads%CoPcS/TiO2/beads及TiO2/beads光催化降解水面浮油

    Institute of Scientific and Technical Information of China (English)

    张晓叶; 闰永胜; 孔峰; 赵瑞平; 陈林; 钱华伟

    2008-01-01

    以钛酸四丁酯为原料,空心玻璃微珠(beads)为载体,采用溶胶一凝胶法制备出TiO2/beads光催化剂,用浸渍法制备出CoPcS/TiO2/beads新型光催化剂.研究了利用TiO2/beads及CoPcS/TiO2/beads光催化剂降解水面漂浮植物油的最优条件.结果表明:(1)溶胶-凝胶法制备TiO2/beads的最佳条件为:空心玻璃微珠浸渍3次,450~550℃下焙烧2 h.用CoPcS对TiO2/beads进行改性时,TiO2/beads的最1圭浸渍时间为30 min.(2)在中性或酸性条件下,375 W中压汞灯光照2~3 h,TiO2/eads与CoPcS/TiO2/beads的最佳用量分别为3 g和1 g(植物油3 g),在此条件下,植物油的去除率都高达90%.(3)微量H2O2对TiO2/beads和CoPcS/TiO2/beads的光催化活性都有很大的提高.对于TiO2/beads催化剂,H2O2的最佳用量为5~11 mmol/L;对于CoPcS/TiO2/beads催化剂,H2O2的最佳用量为5~30 mmol/L.(4)新型光催化剂CoPcS/TiO2/aeads比TiO2/beads具有更好的除油性能.

  8. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    in the chain of neutron-rich uranium isotopes is examined here. The neutron ... mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neu- .... For 250U with a fission barrier of 4.3 MeV [5], we obtain the value of.

  9. Neutron-rich polonium isotopes studied with in-source laser spectroscopy

    CERN Document Server

    Dexters, Wim; Cocolios, T E

    This work studies the unknown region of neutron rich polonium isotopes. The polonium isotopes, with Z=84, lie above the magic lead nuclei (Z=82). The motivation for this research can mainly be found in these lead nuclei. When looking at the changes in the mean square charge radii beyond the N=126 shell gap, a kink is observed. This kink is also found in the radon (Z=86) and radium (Z=88) isotopes. The observed effect cannot be reproduced with our current models. The polonium isotopes yield more information on the kink and they are also able to link the known charge radii in lead isotopes to those in radon and radium. Additionally, the nuclear moments of the odd-neutron isotope $^{211}$Po are investigated. This nucleus has two protons and one neutron more than the doubly magic nucleus $^{208}$Pb. Nuclear moments of isotopes close to this doubly magic nucleus are good tests for the theoretic models. Besides pushing the models to their limits, the nuclear moments of $^{211}$Po also yield new information on the f...

  10. High-accuracy mass measurements of neutron-rich Kr isotopes

    CERN Document Server

    Delahaye, P; Blaum, K; Carrel, F; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H J; Lunney, D; Schweikhard, L; Yazidjian, C

    2006-01-01

    The atomic masses of the neutron-rich krypton isotopes 84,86-95Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes 94Kr and 95Kr were measured for the first time. The masses of the radioactive nuclides 89Kr and 91Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  11. Carbon isotope composition of CO2-rich inclusions in cumulate-forming mantle minerals from Stromboli volcano (Italy)

    Science.gov (United States)

    Gennaro, Mimma Emanuela; Grassa, Fausto; Martelli, Mauro; Renzulli, Alberto; Rizzo, Andrea Luca

    2017-10-01

    We report on measurements of concentration and carbon isotope composition (δ13CCO2) of CO2 trapped in fluid inclusions of olivine and clinopyroxene crystals separated from San Bartolo ultramafic cumulate Xenoliths (SBX) formed at mantle depth (i.e., beneath a shallow Moho supposed to be at 14.8 km). These cumulates, erupted about 2 ka ago at Stromboli volcano (Italy), have been already investigated by Martelli et al. (2014) mainly for Sr-Nd isotopes and for their noble gases geochemistry. The concentration of CO2 varies of one order of magnitude from 3.8·10- 8 mol g- 1 to 4.8·10- 7 mol g- 1, with δ13C values between - 2.8‰ and - 1.5‰ vs V-PDB. These values overlap the range of measurements performed in the crater gases emitted at Stromboli (- 2.5‰ residence within the volcano plumbing system. Such δ13C values are higher than those commonly reported for MORB-like upper mantle (- 8 ÷ - 4‰) and likely reflect the source contamination of the local mantle wedge by CO2 coming from the decarbonation of the sediments carried by the subducting Ionian slab with a contribution of organic carbon up to 7%.

  12. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    Science.gov (United States)

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  13. Tribological performance of near equiatomic and Ti-rich NiTi shape memory alloy thin films

    International Nuclear Information System (INIS)

    Tillmann, Wolfgang; Momeni, Soroush

    2015-01-01

    Near equiatomic and Ti-rich NiTi shape memory alloy thin films were magnetron sputtered with the same processing parameters and thickness of 3 μm. The microstructure, composition, shape memory behavior, mechanical and tribological properties of the deposited thin films were analyzed by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), nanoindentation, ball-on-disc, scratch test, and three dimensional (3D) optical microscopy. The obtained results clearly show how the crystallization evolution and precipitation formation of these two sets of thin films can drastically influence their mechanical and tribological performances

  14. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    Science.gov (United States)

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.

    2012-01-01

    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  15. Radiocarbon application in dating 'complex' hot and cold CO{sub 2}-rich mineral water systems: A review of case studies ascribed to the northern Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, Paula M. [Instituto Tecnologico e Nuclear, Departamento de Quimica, Estrada Nacional No 10, 2686-953 Sacavem (Portugal)], E-mail: carreira@itn.pt; Marques, Jose M.; Graca, Rui C.; Aires-Barros, Luis [Instituto Superior Tecnico, Laboratorio de Mineralogia e Petrologia, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2008-10-15

    The use of radioactive isotopes plays a very important role in dating groundwater, providing an apparent age of the systems in the framework of the aquifers conceptual modelling making available important features about the water fluxes, such as recharge, horizontal flow rates and discharge. In this paper, special emphasis has been put on isotopic constraints in the use of {delta}{sup 13}C and {sup 14}C content as a dating tool in some hot (76 deg. C) and cold (17 deg. C) CO{sub 2}-rich mineral waters discharging in the Vilarelho da Raia-Pedras Salgadas region (N-Portugal). The radiocarbon content determined in these CO{sub 2}-rich mineral waters ({sup 14}C activity from 4.3 up to 9.9 pmc) is incompatible with the systematic presence of {sup 3}H (from 1.7 to 7.9 TU). The {delta}{sup 13}C values of the studied CO{sub 2}-rich mineral waters indicate that the total C in the recharge waters is being masked by larger quantities of CO{sub 2} ({sup 14}C-free) introduced from deep-seated (upper mantle) sources. This paper demonstrates that a good knowledge of mineral water systems is essential to allow hydrologists to make sound conclusions on the use of C isotopic data in each particular situation.

  16. Ca isotopes in refractory inclusions

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.

    1984-01-01

    We report measurements of the absolute isotope abundance of Ca in Ca-Al-rich inclusions from the Allende and Leoville meteorites. Improved high precision measurements are reported also for 46 Ca. We find that nonlinear isotope effects in Ca are extremely rare in these inclusions. The absence of nonlinear effects in Ca, except for the effects in FUN inclusions, is in sharp contrast to the endemic effects in Ti. One fine-grained inclusion shows an excess of 46 Ca of (7 +- 1) per mille, which is consistent with addition of only 46 Ca or of an exotic (*) component with 46 Ca* approx. 48 Ca*. FUN inclusion EK-1-4-1 shows a small 46 Ca excess of (3.3 +- 1.0) per mille; this confirms that the exotic Ca components in EK-1-4-1 were even more deficient in 46 Ca relative to 48 Ca than is the case for normal Ca. The Ca in the Ca-Al-rich inclusions shows mass dependent isotope fractionation effects which have a range from -3.8 to +6.7 per mille per mass unit difference. This range is a factor of 20 wider than the range previously established for bulk meteorites and for terrestrial and lunar samples. Ca and Mg isotope fractionation effects in the Ca-Al-rich inclusions are common and attributed to kinetic isotope effects. (author)

  17. β-decay half-lives of neutron-rich isotopes of Fe, Co, Ni involved in the beginning of the r-process

    International Nuclear Information System (INIS)

    Czajkowski, S.; Bernas, M.; Brissot, R.

    1992-01-01

    The very neutron-rich Fe- to Ni-isotopes are of interest since they are located at the very beginning of the astrophysical r-process path. The β-decay half-lives of several isotopes, identified in thermal fission of 235 U or 239 Pu, have been measured at the ILL high-flux reactor using the Lohengrin spectrometer. Half-lives have been determined from time-correlations analysis between the fragment implantation and the detection of the subsequent β-particles in the same detector. With the fragment separator FRS , at GSI, the projectile fragments of 86 Kr have been separated. The β-decay half-life of 65 Fe has been measured. Received: (from VMMAIL[FRSAC11 for XIN[IAEA1 via NJE)

  18. Investigation of the single Particle Structure of the neutron-rich Sodium Isotopes $^{27-31}\\!$Na

    CERN Document Server

    2002-01-01

    We propose to study the single particle structure of the neutron-rich isotopes $^{27-31}\\!$Na. These isotopes will be investigated via neutron pickup reactions in inverse kinematics on a deuterium and a beryllium target. Scattered beam particles and transfer products are detected in a position sensitive detector located around 0$^\\circ$. De-excitation $\\gamma$-rays emitted after an excited state has been populated will be registered by the MINIBALL Germanium array. The results will shed new light on the structure of the neutron-rich sodium isotopes and especially on the region of strong deformation around the N=20 nucleus $^{31}\\!$Na.

  19. Stellar Origin of 15N-rich Presolar SiC Grains of Type AB: Supernovae with Explosive Hydrogen Burning

    International Nuclear Information System (INIS)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Pignatari, Marco

    2017-01-01

    We report C, N, and Si isotopic data for 59 highly 13 C-enriched presolar submicron- to micron-sized SiC grains from the Murchison meteorite, including eight putative nova grains (PNGs) and 29 15 N-rich ( 14 N/ 15 N ≤ solar) AB grains, and their Mg–Al, S, and Ca–Ti isotope data when available. These 37 grains are enriched in 13 C, 15 N, and 26 Al with the PNGs showing more extreme enhancements. The 15 N-rich AB grains show systematically higher 26 Al and 30 Si excesses than the 14 N-rich AB grains. Thus, we propose to divide the AB grains into groups 1 ( 14 N/ 15 N < solar) and 2 ( 14 N/ 15 N ≥ solar). For the first time, we have obtained both S and Ti isotopic data for five AB1 grains and one PNG and found 32 S and/or 50 Ti enhancements. Interestingly, one AB1 grain had the largest 32 S and 50 Ti excesses, strongly suggesting a neutron-capture nucleosynthetic origin of the 32 S excess and thus the initial presence of radiogenic 32 Si ( t 1/2 = 153 years). More importantly, we found that the 15 N and 26 Al excesses of AB1 grains form a trend that extends to the region in the N–Al isotope plot occupied by C2 grains, strongly indicating a common stellar origin for both AB1 and C2 grains. Comparison of supernova models with the AB1 and C2 grain data indicates that these grains came from supernovae that experienced H ingestion into the He/C zones of their progenitors.

  20. Half-metallic magnetism in Ti3Co5-xFexB2

    Directory of Open Access Journals (Sweden)

    Rohit Pathak

    2017-05-01

    Full Text Available Bulk alloys and thin films of Fe-substituted Ti3Co5B2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti3Co5B2, Ti3Co4FeB2 and Ti3CoFe4B2, whereas Ti3Fe5B2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti3CoFe4B2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti3Co5B2 may be linked to the emerging half-metallicity due to Fe substitution.

  1. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    Science.gov (United States)

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  2. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship

    Science.gov (United States)

    Chaumard, Noël; Defouilloy, Céline; Kita, Noriko T.

    2018-05-01

    High-precision oxygen three-isotope measurements of olivine and pyroxene were performed on 29 chondrules in the Murchison CM2 chondrite by secondary ion mass spectrometry (SIMS). The oxygen isotope ratios of analyzed chondrules all plot very close to the primitive chondrule minerals (PCM) line. In each of 24 chondrules, the olivine and/or pyroxene grains analyzed show indistinguishable oxygen isotope ratios. Exceptions are minor occurrences of isotopically distinguished relict olivine grains, which were found in nine chondrules. The isotope homogeneity of these phenocrysts is consistent with a co-magmatic crystallization of olivine and pyroxene from the final chondrule melts and a significant oxygen isotope exchange between the ambient gas and the melts. Homogeneous type I chondrules with Mg#'s of 98.9-99.5 have host chondrule Δ17O values ranging from -6.0‰ to -4.1‰, with one exception (Δ17O: -1.2‰; Mg#: 99.6). Homogeneous chondrules with Mg#'s poor H2O ice (∼0.3-0.4× the CI dust; Δ17O > 0‰) and at dust enrichments of ∼300-2000×. Regarding the Mg# and oxygen isotope ratios, the chondrule populations sampled by CM and CO chondrites are similar and indistinguishable. The similarity of these 16O-rich components in CO and CM chondrites is also supported by the common Fe/Mn ratio of olivine in type II chondrules. Although they accreted similar high-temperature silicates, CO chondrites are anhydrous compared to CM chondrites, suggesting they derived from different parent bodies formed inside and outside the snow line, respectively. If chondrules in CO and CM chondrites formed at the same disk locations but the CM parent body accreted later than the CO parent body, the snow line might have crossed the common chondrule-forming region towards the Sun between the time of the CO and CM parent bodies accretion.

  3. Investigation of neutron-rich rare-earth nuclei including the new isotopes 177Tm and 184Lu

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Gippert, K.L.; Runte, E.; Schmidt-Ott, W.D.; Tidemand-Petersson, P.; Kurcewicz, W.; Nazarewicz, W.

    1989-01-01

    Decays of neutron-rich isotopes in the rare-earth region were studied by means of on-line mass separation and β-γ spectroscopy using multinucleon-transfer reactions between beams of 136 Xe (9 and 11.7 MeV/u), 186 W (11.7 and 15 MeV/u) and 238 U (11.4 MeV/u) and targets of nat W and Ta. The higher beam energies appear to be advantageous for the production of such isotopes. Two new isotopes were identified: 177 Tm with a half-life T 1/2 = 85±10/15 s, and 184 Lu with T 1/2 ≅ 18 s. A new 47 s-activity found at A = 171 is tentatively assigned to the decay of the new isotope 171 Ho. The properties of the ground and excited states of neutron-rich lanthanide isotopes are interpreted within the shell model using the deformed Woods-Saxon potential. A change of the ground-state configuration for odd-mass neutron-rich lutetium isotopes from π 7/2 + [404] to π 9/2 - [514] is suggested, this change being due to the influence of a large hexadecapole deformation. The role of a possible isometric state in 180 Lu for the nucleosynthesis of 180m Ta is discussed. (orig.)

  4. Structure of the neutron-rich lithium isotopes in heavy-ion reactions

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Galakhmatova, B.S.; Romanovskij, E.A.; Shitikova, K.V.; Burov, V.V.; Rzyanin, M.V.; Miller, H.G.; Yen, G.D.

    1993-01-01

    The structure properties, for factors, angular distributions and interaction cross sections of Li neutron-rich isotopes have been analyzed in the unified way. A good qualitative agreement with the experiment data was obtained. 20 refs.; 11 figs.; 1 tab

  5. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  6. Decay properties of some neutron-rich praseodymium isotopes

    International Nuclear Information System (INIS)

    Skarnemark, G.; Aronsson, P.O.; Stender, E.; Trautmann, N.; Kaffrell, N.; Bjoernstad, T.; Kvale, E.; Skarestad, M.

    1976-01-01

    Neutron-rich Pr isotopes produced in the thermal neutron-induced fission of 235 U have been investigated by means of γ-γ coincidence experiments. The nuclides have been separated from the fission product mixture, using the fast chemical separation system SISAK in connection with a gas jet recoil transport system. The results include assignments of several new γ-ray energies and partial decay schemes for 147 Pr, 148 Pr, 149 Pr and 150 Pr. (orig.) [de

  7. A multielement isotopic study of refractory FUN and F CAIs: Mass-dependent and mass-independent isotope effects

    Science.gov (United States)

    Kööp, Levke; Nakashima, Daisuke; Heck, Philipp R.; Kita, Noriko T.; Tenner, Travis J.; Krot, Alexander N.; Nagashima, Kazuhide; Park, Changkun; Davis, Andrew M.

    2018-01-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated objects that formed inside the Solar System. Among these are rare, enigmatic objects with large mass-dependent fractionation effects (F CAIs), which sometimes also have large nucleosynthetic anomalies and a low initial abundance of the short-lived radionuclide 26Al (FUN CAIs). We have studied seven refractory hibonite-rich CAIs and one grossite-rich CAI from the Murchison (CM2) meteorite for their oxygen, calcium, and titanium isotopic compositions. The 26Al-26Mg system was also studied in seven of these CAIs. We found mass-dependent heavy isotope enrichment in all measured elements, but never simultaneously in the same CAI. The data are hard to reconcile with a single-stage melt evaporation origin and may require reintroduction or reequilibration for magnesium, oxygen and titanium after evaporation for some of the studied CAIs. The initial 26Al/27Al ratios inferred from model isochrons span a range from <1 × 10-6 to canonical (∼5 × 10-5). The CAIs show a mutual exclusivity relationship between inferred incorporation of live 26Al and the presence of resolvable anomalies in 48Ca and 50Ti. Furthermore, a relationship exists between 26Al incorporation and Δ17O in the hibonite-rich CAIs (i.e., 26Al-free CAIs have resolved variations in Δ17O, while CAIs with resolved 26Mg excesses have Δ17O values close to -23‰). Only the grossite-rich CAI has a relatively enhanced Δ17O value (∼-17‰) in spite of a near-canonical 26Al/27Al. We interpret these data as indicating that fractionated hibonite-rich CAIs formed over an extended time period and sampled multiple stages in the isotopic evolution of the solar nebula, including: (1) an 26Al-poor nebula with large positive and negative anomalies in 48Ca and 50Ti and variable Δ17O; (2) a stage of 26Al-admixture, during which anomalies in 48Ca and 50Ti had been largely diluted and a Δ17O value of ∼-23‰ had been achieved in the CAI formation region; and (3

  8. Unexpectedly large charge radii of neutron-rich calcium isotopes

    CERN Document Server

    Garcia Ruiz, R F; Blaum, K; Ekström, A; Frömmgen, N; Hagen, G; Hammen, M; Hebeler, K; Holt, J D; Jansen, G R; Kowalska, M; Kreim, K; Nazarewicz, W; Neugart, R; Neyens, G; Nörtershäuser, W; Papenbrock, T; Papuga, J; Schwenk, A; Simonis, J; Wendt, K A; Yordanov, D T

    2016-01-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-...

  9. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Kato, Hidemi; Inoue, Akihisa

    2005-01-01

    High-strength Ti-Fe-Co alloys were produced in the shape of arc-melted ingots with the dimensions of about 20-25mm in diameter and 7-10mm in height. The structure of the Ti-Fe-Co alloys (at Fe/Co ratio >1) studied by X-ray diffractometry and scanning electron microscopy consisted of an ordered Pm3-bar m Ti(FeCo) compound and a disordered body-centered cubic Im3-bar m β-Ti solid solution. The optimization of the Ti-Fe-Co alloy composition is performed from the viewpoint of both high strength and ductility. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength of about 2000MPa and a plastic deformation of 15%. The high strength and ductility values can be achieved without using the injection mould casting or rapid solidification procedure. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail

  10. MOKE study of Co/Ti/(Gd-Co) multilayers near the magnetic compensation state

    International Nuclear Information System (INIS)

    Svalov, A.V.; Fernandez, A.; Vas'kovskiy, V.O.; Kurlyandskaya, G.V.; Barandiaran, J.M.; Anton, R. Lopez; Tejedor, M.

    2006-01-01

    The magnetic behaviour of [Co/Ti/a-Gd 0.36 Co 0.64 /Ti] 4 /Co layered structures was studied by means of the transversal magneto-optic Kerr effect, with Ti spacers of different thicknesses. Within the Gd 0.36 Co 0.64 amorphous layer, the Gd magnetic sub-lattice dominates at all investigated temperatures. The strong exchange interaction at the interfaces causes 'macroscopic ferrimagnetic behaviour' in the whole system. The existence of a magnetic compensation state in the complete multilayer system was manifested by the change of sign in the magneto-optic hysteresis loops and the increase of coercivity. The evolution of the critical field for a spin-orientation transition leading to a non-collinear magnetic state near the 'compensation temperature' can be described within molecular field theory. The influence of the non-magnetic spacer thickness on the characteristics of the compensation state is also discussed

  11. The isotopic composition of CO in vehicle exhaust

    Science.gov (United States)

    Naus, S.; Röckmann, T.; Popa, M. E.

    2018-03-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO2 isotopes, and the CO:CO2, CH4:CO2 and H2:CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench. The spread in the results, even for a single vehicle, was large: for δ13 C in CO ∼ -60 to 0‰, for δ18 O in CO ∼ +10 to +35‰, and for all gas ratios several orders of magnitude. The results show an increase in the spread of isotopic values for CO compared to previous studies, suggesting that increasing complexity of emission control in vehicles might be reflected in the isotopic composition. When including all samples, we find a weighted mean for the δ13 C and δ18 O in CO of -28.7 ± 0.5‰ and +24.8 ± 0.3‰ respectively. This result is dominated by cold petrol vehicles. Diesel vehicles behaved as a distinct group, with CO enriched in 13C and depleted in 18O, compared to petrol vehicles. For the H2:CO ratio of all vehicles, we found a value of 0.71 ± 0.31 ppb:ppb. The CO:CO2 ratio, with a mean of 19.4 ± 6.8 ppb:ppm, and the CH4:CO2 ratio, with a mean of 0.26 ± 0.05 ppb:ppm, are both higher than recent literature indicates. This is likely because our sampling distribution was biased towards cold vehicles, and therefore towards higher emission situations. The CH4:CO2 ratio was found to behave similarly to the CO:CO2 ratio, suggesting that the processes affecting CO and CH4 are similar. The δ13 C values in CO2 were close to the expected δ13 C in fuel, with no significant difference between petrol and diesel vehicles. The δ18 O values in CO2 for petrol vehicles covered a range of 20-35‰, similar to the δ18 O of CO. The δ18 O values in CO2 for diesel vehicles were close to the δ18 O in atmospheric oxygen. A set of polluted atmospheric samples, taken near a highway and inside parking garages, showed an isotopic signature of CO and a H2:CO ratio that were

  12. Study of shape transition in the neutron-rich Os isotopes

    Directory of Open Access Journals (Sweden)

    John P.R.

    2014-03-01

    Full Text Available The neutron-rich isotopes of tungsten, osmium and platinum have different shapes in their ground states and present also shape transitions phenomena. Spectroscopic information for these nuclei is scarce and often limited to the gamma rays from the decay of isomeric states. For the neutron-rich even-even osmium isotopes 194Os and 198Os, a shape transition between a slightly prolate deformed to an oblate deformed ground state was deduced from the observed level schemes. For the even-even nucleus lying in between, 196Os, no gamma ray transition is known. In order to elucidate the shape transition and to test the nuclear models describing it, this region was investigated through gamma-ray spectroscopy using the AGATA demonstrator and the large acceptance heavy-ion spectrometer PRISMA at LNL, Italy. A two-nucleon transfer from a 198Pt target to a stable 82Se beam was utilized to populate medium-high spin states of 196Os. The analysis method and preliminary results, including the first life-time measurement of isomeric states with AGATA, are presented.

  13. Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode

    Science.gov (United States)

    He, Hanna; Zhang, Qi; Wang, Haiyan; Zhang, Hehe; Li, Jiadong; Peng, Zhiguang; Tang, Yougen; Shao, Minhua

    2017-06-01

    Inferior electronic conductivity and sluggish sodium ion diffusion are still two big challenges for TiO2 anode material for Na ion batteries (SIBs). Herein, we synthesize TiO2/C composites by the pyrolysis of MIL-125(Ti) precursor and successfully introduce defects to TiO2/C composite by a simple magnesium reduction. The as-prepared defect-rich TiO2-δ/C composite shows mooncake-shaped morphology consisting of TiO2-δ nanocrystals with an average particle size of 5 nm well dispersed in the carbon matrix. When used as a SIBs anode, the defect-rich TiO2-δ/C composite exhibits a high reversible capacity of 330.2 mAh g-1 at 50 mA g-1 at the voltage range of 0.001-3.0 V and long-term cycling stability with negligible decay after 5000 cycles. Compared with other four TiO2/C samples, the electrochemical performance of defect-rich TiO2-δ/C is highly improved, which may benefit from the enhanced electronic/ionic conductivities owing to the defect-rich features, high surface area rendering shortened electronic and ionic diffusion path, and the suppress of the TiO2 crystal aggregation during sodiation and desodiation process by the carbon matrix.

  14. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach

    Science.gov (United States)

    Marx, Anne; Conrad, Marcus; Aizinger, Vadym; Prechtel, Alexander; van Geldern, Robert; Barth, Johannes A. C.

    2018-05-01

    A large portion of terrestrially derived carbon outgasses as carbon dioxide (CO2) from streams and rivers to the atmosphere. Particularly, the amount of CO2 outgassing from small headwater streams is highly uncertain. Conservative estimates suggest that they contribute 36 % (i.e. 0.93 petagrams (Pg) C yr-1) of total CO2 outgassing from all fluvial ecosystems on the globe. In this study, stream pCO2, dissolved inorganic carbon (DIC), and δ13CDIC data were used to determine CO2 outgassing from an acidic headwater stream in the Uhlířská catchment (Czech Republic). This stream drains a catchment with silicate bedrock. The applied stable isotope model is based on the principle that the 13C / 12C ratio of its sources and the intensity of CO2 outgassing control the isotope ratio of DIC in stream water. It avoids the use of the gas transfer velocity parameter (k), which is highly variable and mostly difficult to constrain. Model results indicate that CO2 outgassing contributed more than 80 % to the annual stream inorganic carbon loss in the Uhlířská catchment. This translated to a CO2 outgassing rate from the stream of 34.9 kg C m-2 yr-1 when normalised to the stream surface area. Large temporal variations with maximum values shortly before spring snowmelt and in summer emphasise the need for investigations at higher temporal resolution. We improved the model uncertainty by incorporating groundwater data to better constrain the isotope compositions of initial DIC. Due to the large global abundance of acidic, humic-rich headwaters, we underline the importance of this integral approach for global applications.

  15. Stellar Origin of {sup 15}N-rich Presolar SiC Grains of Type AB: Supernovae with Explosive Hydrogen Burning

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Pignatari, Marco [E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull HU6 7RX (United Kingdom)

    2017-06-10

    We report C, N, and Si isotopic data for 59 highly {sup 13}C-enriched presolar submicron- to micron-sized SiC grains from the Murchison meteorite, including eight putative nova grains (PNGs) and 29 {sup 15}N-rich ({sup 14}N/{sup 15}N ≤ solar) AB grains, and their Mg–Al, S, and Ca–Ti isotope data when available. These 37 grains are enriched in {sup 13}C, {sup 15}N, and {sup 26}Al with the PNGs showing more extreme enhancements. The {sup 15}N-rich AB grains show systematically higher {sup 26}Al and {sup 30}Si excesses than the {sup 14}N-rich AB grains. Thus, we propose to divide the AB grains into groups 1 ({sup 14}N/{sup 15}N < solar) and 2 ({sup 14}N/{sup 15}N ≥ solar). For the first time, we have obtained both S and Ti isotopic data for five AB1 grains and one PNG and found {sup 32}S and/or {sup 50}Ti enhancements. Interestingly, one AB1 grain had the largest {sup 32}S and {sup 50}Ti excesses, strongly suggesting a neutron-capture nucleosynthetic origin of the {sup 32}S excess and thus the initial presence of radiogenic {sup 32}Si ( t {sub 1/2} = 153 years). More importantly, we found that the {sup 15}N and {sup 26}Al excesses of AB1 grains form a trend that extends to the region in the N–Al isotope plot occupied by C2 grains, strongly indicating a common stellar origin for both AB1 and C2 grains. Comparison of supernova models with the AB1 and C2 grain data indicates that these grains came from supernovae that experienced H ingestion into the He/C zones of their progenitors.

  16. Evaluation of the (n,p) cross sections of natural Ti and its isotopes from thresholds to 20 MeV

    International Nuclear Information System (INIS)

    Bersillon, O.; Philis, C.; Smith, D.; Smith, A.

    1977-01-01

    The titanium isotopes (n,p) cross sections are based upon renormalized experimental data or deduced from statistical model calculations where measurements were not available. Some of these cross sections, notably the 46 Ti (n,p), 47 Ti (n,p) and 48 Ti (n,p), which find wide use as dosimetry indicators, are compared here with the corresponding ENDF/BIV dosimetry file data. The (n,p) elemental cross section is constructed from the weighted isotopic components. Our evaluation and the corresponding ENDF/BIV data are compared showing the great difference between both results, especially below 10 MeV. Moreover the new data exhibit some structure characteristics of the 47 Ti (n,p) cross section. The present Ti (n,p) data are intended to be included in the ENDF/BV evaluation

  17. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  18. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    Science.gov (United States)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.

  19. Investigation of CoFeV/TiZr multilayer by polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Chen Bo; Li Xinxi; Huang Chaoqiang

    2007-06-01

    The interracial structures of CoFeV/TiZr multilayer play an important role in performance of polarizing supermirrors. Aiming to requirement, CoFeV/ TiZr layered samples with different structures were prepared. Specular reflection of polarized neutrons was employed to study the depth profile of scattering length, density, thickness and roughness of CoFeV/TiZr multilayer and magnetically dead layers. The result shows that the roughness in CoFeV/ TiZr multilayer can be described with roughness increase law and the thickness of magnetically dead layers is about 0.5 nm. The producing technology of the multilayer reaches the requirements. (authors)

  20. Stellar Origin of 15N-rich Presolar SiC Grains of Type AB: Supernovae with Explosive Hydrogen Burning

    Science.gov (United States)

    Liu, Nan; Nittler, Larry R.; Pignatari, Marco; O'D. Alexander, Conel M.; Wang, Jianhua

    2017-06-01

    We report C, N, and Si isotopic data for 59 highly 13C-enriched presolar submicron- to micron-sized SiC grains from the Murchison meteorite, including eight putative nova grains (PNGs) and 29 15N-rich (14N/15N ≤ solar) AB grains, and their Mg-Al, S, and Ca-Ti isotope data when available. These 37 grains are enriched in 13C, 15N, and 26Al with the PNGs showing more extreme enhancements. The 15N-rich AB grains show systematically higher 26Al and 30Si excesses than the 14N-rich AB grains. Thus, we propose to divide the AB grains into groups 1 (14N/15N PNG and found 32S and/or 50Ti enhancements. Interestingly, one AB1 grain had the largest 32S and 50Ti excesses, strongly suggesting a neutron-capture nucleosynthetic origin of the 32S excess and thus the initial presence of radiogenic 32Si (t 1/2 = 153 years). More importantly, we found that the 15N and 26Al excesses of AB1 grains form a trend that extends to the region in the N-Al isotope plot occupied by C2 grains, strongly indicating a common stellar origin for both AB1 and C2 grains. Comparison of supernova models with the AB1 and C2 grain data indicates that these grains came from supernovae that experienced H ingestion into the He/C zones of their progenitors.

  1. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  2. Short range order and phase separation in Ti-rich Ti-Al alloys

    International Nuclear Information System (INIS)

    Liew, H.J.

    1999-01-01

    Many metals and alloys are used in service under conditions in which they are metastable or unstable with respect to phase separation or transformation. Analytical and numerical models exist for relatively simple decomposition processes, such as nucleation and growth mechanisms and spinodal decomposition. In reality, however, more complex phase transformations may occur which are less well understood. For example, reactions involving coupled ordering and phase separation, such as the 'conditional spinodal mechanism', have been predicted. A 'conditional spinodal' is defined as a reaction in which compositional phase separation is thermodynamically possible only after a prior process, such as ordering at the parent composition. There is some debate regarding which real alloy systems exhibit such complex behaviour. Previous atom probe field ion microscopy work on titanium-rich titanium-aluminium based alloys has led to the suggestion that formation of the α 2 phase in this system may occur by a complex phase separation process. As well as being of interest from the point of view of fundamental materials science, this has potential engineering significance as the Ti-Al system forms the basis of the current generation of high-temperature Ti-based alloys for compressor applications in jet engines. This thesis describes an investigation into the phase decomposition process taking place in a titanium-rich Ti-Al alloy lying in the two-phase α+α 2 region. Experimentally, a binary alloy containing 15at% aluminium was heat-treated and examined using electron microscopy, X-ray diffraction, atom probe field ion microscopy and mechanical testing methods. Neutron diffraction experiments were also completed on this system for the first time. In addition, fully three-dimensional atomistic simulations were conducted using a Monte Carlo computer model based on first principles thermodynamic stability calculations of the Ti-Al system. The results provide an insight into many aspects

  3. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  4. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach

    Directory of Open Access Journals (Sweden)

    A. Marx

    2018-05-01

    Full Text Available A large portion of terrestrially derived carbon outgasses as carbon dioxide (CO2 from streams and rivers to the atmosphere. Particularly, the amount of CO2 outgassing from small headwater streams is highly uncertain. Conservative estimates suggest that they contribute 36 % (i.e. 0.93 petagrams (Pg C yr−1 of total CO2 outgassing from all fluvial ecosystems on the globe. In this study, stream pCO2, dissolved inorganic carbon (DIC, and δ13CDIC data were used to determine CO2 outgassing from an acidic headwater stream in the Uhlířská catchment (Czech Republic. This stream drains a catchment with silicate bedrock. The applied stable isotope model is based on the principle that the 13C ∕ 12C ratio of its sources and the intensity of CO2 outgassing control the isotope ratio of DIC in stream water. It avoids the use of the gas transfer velocity parameter (k, which is highly variable and mostly difficult to constrain. Model results indicate that CO2 outgassing contributed more than 80 % to the annual stream inorganic carbon loss in the Uhlířská catchment. This translated to a CO2 outgassing rate from the stream of 34.9 kg C m−2 yr−1 when normalised to the stream surface area. Large temporal variations with maximum values shortly before spring snowmelt and in summer emphasise the need for investigations at higher temporal resolution. We improved the model uncertainty by incorporating groundwater data to better constrain the isotope compositions of initial DIC. Due to the large global abundance of acidic, humic-rich headwaters, we underline the importance of this integral approach for global applications.

  5. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  6. Photocatalytic degradation of vegetable oil floating on water by CoPcS/TiO2/beads and TiO2/beads%CoPcS/TiO2/beads及TiO2/beads光催化降解水面漂浮植物油

    Institute of Scientific and Technical Information of China (English)

    张晓叶; 闫永胜; 孔峰; 王赟

    2007-01-01

    以钛酸四丁酯为原料,以空心玻璃微珠为载体,采用溶胶-凝胶法制备出TiO2/beads光催化剂,用浸渍法制备出CoPcS/TiO2/beads光催化剂.研究了TiO2/beads及CoPcS/TiO2/beads光催化降解水面漂浮植物油的最优条件.结果表明,酸性或中性条件下,375 W中压汞灯照射2~3 h,TiO2/beads与CoPcS/TiO2/beads的投加量分别为3 g与1 g时,植物油的去除率达90%以上,投加微量的H2O2,可大大提高两者的光催化去除率.

  7. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    Science.gov (United States)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  8. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    Science.gov (United States)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  9. Synthesis of BaTiO3 nanoparticles from TiO2-coated BaCO3 particles derived using a wet-chemical method

    Directory of Open Access Journals (Sweden)

    Yuuki Mochizuki

    2014-03-01

    Full Text Available BaCO3 particles coated with amorphous TiO2 precursor are prepared by a wet chemical method to produce BaTiO3 nanoparticles at low temperatures. Subsequently, we investigate the formation behavior of BaTiO3 particles and the particle growth behavior when the precursor is subjected to heat treatment. The state of the amorphous TiO2 coating on the surface of BaCO3 particles depends on the concentration of NH4HCO3, and the optimum concentration is found to be in the range 0.5–1.0 M. Thermogravimetric curves of the BaCO3 particles coated with the TiO2 precursor, prepared from BaCO3 particles of various sizes, show BaTiO3 formation occurring mainly at 550–650 °C in the case of fine BaCO3 particles. However, as evidenced from the curves, the temperature of formation of BaTiO3 shifts to higher values with an increase in the size of the BaCO3 particles. The average particle size of single phase BaTiO3 at heat-treatment temperature of 650–900 °C is observed to be in the range 60–250 nm.

  10. Helium trapping at Ti-rich MC particles in Ti-modified austenitic stainless steel

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1980-01-01

    Helium trapping by Ti-rich MC particles is characterized by first, the formation of a high concentration of tiny cavities at the interfaces and secondly, a cavity denuded zone that extends into the surrounding matrix. Very few cavities form on other phases in the system when MC is present. The trapping is effective in HFIR from at least 370 to 600 0 C. The phases produced in unmodified steel do not exhibit this type of strong helium trapping. This trapping helps minimize the swelling for a given amount of helium. Compositionally, MC is strongly enriched in Ti, Mo, V, and Nb and depleted in Si, Ni, Cr, and Fe, both thermally and after irradiation in HFIR. The compositional behavior of MC is unusual because phases that are stabilized by irradiation are generally enriched in Si and/or Ni. The data are obtained using quantitative x-ray EDS for particles on extraction replicas. The microstructural and compositional information is examined with respect to concepts or trends from several theories to begin to understand the nature of the helium trapping

  11. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    Science.gov (United States)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  12. Nuclear structure far from stability: the neutron-rich 69-79Cu isotopes

    International Nuclear Information System (INIS)

    Franchoo, Serge

    2015-01-01

    Far from stability, the nuclear structure that is predicted by the shell model is evolving. Old magic numbers disappear, while new ones appear. Our understanding of the underlying nuclear force that drives these changes is still incomplete. After a short overview across the nuclear chart, we discuss the strength functions of the shell-model orbitals in the neutron-rich copper isotopes towards the 78 Ni doubly-magic nucleus. These were measured in a 72 Zn(d, 3 He) 71 Cu proton pick-up reaction in inverse kinematics with a radioactive beam at the Ganil laboratory in France. We also present the latest results from a 80 Zn(p,2p) 79 Cu knockout experiment at Riken in Japan, leading to selective population of hole states in 79 Cu. Our findings show that the Z=28 shell gap in the neutron-rich copper isotopes is surprisingly steady against the addition of neutrons beyond N=40. (author)

  13. Beta- and gamma-decay studies of neutron-rich chromium, manganese, cobalt and nickel isotopes including the new isotopes 60Cr and 60gMn

    International Nuclear Information System (INIS)

    Bosch, U.; Schmidt-Ott, W.D.; Runte, E.; Tidemand-Petersson, P.; Koschel, P.; Meissner, F.; Kirchner, R.; Klepper, O.; Roeckl, E.; Rykaczewski, K.; Schardt, D.

    1987-10-01

    A 36 mg/cm 2 thick nat W target was irradiated with 11.5 MeV/u 76 Ge of 15 to 20 particle + nA beam intensity. On-line mass-separated samples of projectile-like neutron-rich products from multi-nucleon transfer-reactions were investigated in the region of mass 58-69 by β- and γ-ray spectroscopy. The new isotope 60 Cr was identified with a half-life of 0.57(6) s and for the 60 Mn ground-state a half-life value of 51(6) s was obtained. Decay schemes were constructed for 58 Cr, 58 Mn (t 1/2 = 3 s), 65,66,67 Co and 69 Ni. One new γ-ray was found in the decay of 59 Cr. The Q β -value of 66 Co was measured yielding 9.7(5) MeV. The comparison of the measured new β-half-life of 60 Cr with the most recent predictions gave again an enhancement of the experimental value. (orig.)

  14. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province

    Science.gov (United States)

    Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan

    2018-01-01

    The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.

  15. Inverse kinetic solvent isotope effect in TiO2 photocatalytic dehalogenation of non-adsorbable aromatic halides: a proton-induced pathway.

    Science.gov (United States)

    Chang, Wei; Sun, Chunyan; Pang, Xibin; Sheng, Hua; Li, Yue; Ji, Hongwei; Song, Wenjing; Chen, Chuncheng; Ma, Wanhong; Zhao, Jincai

    2015-02-09

    An efficient redox reaction between organic substrates in solution and photoinduced h(+) vb /e(-) cb on the surface of photocatalysts requires the substrates or solvent to be adsorbed onto the surface, and is consequentially marked by a normal kinetic solvent isotope effect (KSIE ≥ 1). Reported herein is a universal inverse KSIE (0.6-0.8 at 298 K) for the reductive dehalogenation of aromatic halides which cannot adsorb onto TiO2 in a [D0 ]methanol/[D4 ]methanol solution. Combined with in situ ATR-FTIR spectroscopy investigations, a previously unknown pathway for the transformation of these aromatic halides in TiO2 photocatalysis was identified: a proton adduct intermediate, induced by released H(+) /D(+) from solvent oxidation, accompanies a change in hybridization from sp(2) to sp(3) at a carbon atom of the aromatic halides. The protonation event leads these aromatic halides to adsorb onto the TiO2 surface and an ET reaction to form dehalogenated products follows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  17. The effect of annealing on the mechanical properties and microstructural evolution of Ti-rich NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tadayyon, Ghazal [Department of Metallurgical and Materials Engineering Faculty of Engineering, Ferdowsi University of Mashhad (Iran, Islamic Republic of); Centre for Research in Medical Devices (CURAM), National University of Ireland, Galway (Ireland); Mazinani, Mohammad, E-mail: mazinani@um.ac.ir [Department of Metallurgical and Materials Engineering Faculty of Engineering, Ferdowsi University of Mashhad (Iran, Islamic Republic of); Guo, Yina [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Zebarjad, Seyed Mojtaba [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Tofail, Syed A.M. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Biggs, Manus J. [Centre for Research in Medical Devices (CURAM), National University of Ireland, Galway (Ireland)

    2016-04-26

    An investigation was carried out into the influence of the annealing temperatures on the thermo-mechanical behavior of Ti-rich NiTi alloy with regard to transformation temperatures, mechanical properties at room temperature and microstructure evolution under deformation. It was found that annealing above the recrystallization temperature (600 °C) modulated the mechanical behavior of the alloy significantly. Based on tensile and DSC analysis, it was observed that by increasing the annealing temperature, the shape memory behavior of the alloys improved. Scanning and transmission electron microscopy were used to investigate the fracture surfaces and microstructural evolution of the NiTi samples after failure. Fractography revealed the brittle fracture area produced through the propagation of cleavage cracks; however, ductile fracture via nucleation growth and coalescence of micro-dimples in the martensitic phase at room temperature were also observed. During plastic deformation, the NiTi alloy was also observed to undergo a detwinning process, dislocation slip and the formation of submicrocrystalline grains, nanocrystallization and amorphous bands.

  18. Shape Evolution in Neutron-Rich Krypton Isotopes Beyond N=60: First Spectroscopy of ^{98,100}Kr.

    Science.gov (United States)

    Flavigny, F; Doornenbal, P; Obertelli, A; Delaroche, J-P; Girod, M; Libert, J; Rodriguez, T R; Authelet, G; Baba, H; Calvet, D; Château, F; Chen, S; Corsi, A; Delbart, A; Gheller, J-M; Giganon, A; Gillibert, A; Lapoux, V; Motobayashi, T; Niikura, M; Paul, N; Roussé, J-Y; Sakurai, H; Santamaria, C; Steppenbeck, D; Taniuchi, R; Uesaka, T; Ando, T; Arici, T; Blazhev, A; Browne, F; Bruce, A; Carroll, R; Chung, L X; Cortés, M L; Dewald, M; Ding, B; Franchoo, S; Górska, M; Gottardo, A; Jungclaus, A; Lee, J; Lettmann, M; Linh, B D; Liu, J; Liu, Z; Lizarazo, C; Momiyama, S; Moschner, K; Nagamine, S; Nakatsuka, N; Nita, C; Nobs, C R; Olivier, L; Orlandi, R; Patel, Z; Podolyák, Zs; Rudigier, M; Saito, T; Shand, C; Söderström, P A; Stefan, I; Vaquero, V; Werner, V; Wimmer, K; Xu, Z

    2017-06-16

    We report on the first γ-ray spectroscopy of low-lying states in neutron-rich ^{98,100}Kr isotopes obtained from ^{99,101}Rb(p,2p) reactions at ∼220  MeV/nucleon. A reduction of the 2_{1}^{+} state energies beyond N=60 demonstrates a significant increase of deformation, shifted in neutron number compared to the sharper transition observed in strontium and zirconium isotopes. State-of-the-art beyond-mean-field calculations using the Gogny D1S interaction predict level energies in good agreement with experimental results. The identification of a low-lying (0_{2}^{+}, 2_{2}^{+}) state in ^{98}Kr provides the first experimental evidence of a competing configuration at low energy in neutron-rich krypton isotopes consistent with the oblate-prolate shape coexistence picture suggested by theory.

  19. Delayed Particle Study of Neutron Rich Lithium Isotopes

    CERN Multimedia

    Marechal, F; Perrot, F

    2002-01-01

    We propose to make a systematic complete coincidence study of $\\beta$-delayed particles from the decay of neutron-rich lithium isotopes. The lithium isotopes with A=9,10,11 have proven to contain a vast information on nuclear structure and especially on the formation of halo nuclei. A mapping of the $\\beta$-strength at high energies in the daughter nucleus will make possible a detailed test of our understanding of their structure. An essential step is the comparison of $\\beta$-strength patterns in $^{11}$Li and the core nucleus $^{9}$Li, another is the full characterization of the break-up processes following the $\\beta$-decay. To enable such a measurement of the full decay process we will use a highly segmented detection system where energy and emission angles of both charged and neutral particles are detected in coincidence and with high efficiency and accuracy. We ask for a total of 30 shifts (21 shifts for $^{11}$Li, 9 shifts $^{9}$Li adding 5 shifts for setting up with stable beam) using a Ta-foil target...

  20. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    Science.gov (United States)

    Larson, T. E.

    2012-12-01

    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  1. Low leakage stoichiometric SrTiO{sub 3} dielectric for advanced metal-insulator-metal capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, Mihaela; Kaczer, Ben; Redolfi, Augusto; Elshocht, Sven van; Jurczak, Malgorzata [imec Belgium, Leuven (Belgium); Afanas' ev, Valeri V. [Department of Physics and Astronomy, KU Leuven (Belgium); Sereni, Gabriele [DISMI, Universita degli Studi di Modena e Reggio Emilia, (Italy); Larcher, Luca [DISMI, Universita degli Studi di Modena e Reggio Emilia, (Italy); MDLab, Saint Christophe (Italy)

    2016-05-15

    Metal-insulator-metal capacitors (MIMCAP) with stoichiometric SrTiO{sub 3} dielectric were deposited stacking two strontium titanate (STO) layers, followed by intermixing the grain determining Sr-rich STO seed layer, with the Ti-rich STO top layer. The resulted stoichiometric SrTiO{sub 3} would have a structure with less defects as demonstrated by internal photoemission experiments. Consequently, the leakage current density is lower compared to Sr-rich STO which allow further equivalent oxide thickness downscaling. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    Science.gov (United States)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  3. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  4. Magneto-optical spectroscopy of diluted magnetic oxides TiO{sub 2-{delta}}: Co

    Energy Technology Data Exchange (ETDEWEB)

    Gan' shina, E.A. [Faculty of Physics, Moscow State M.V. Lomonosov University, Moscow 119991 (Russian Federation)], E-mail: Eagan@magn.ru; Granovsky, A.B. [Faculty of Physics, Moscow State M.V. Lomonosov University, Moscow 119991 (Russian Federation); Orlov, A.F. [State Research Institute for the Rare-Metal Industry, Moscow 119017 (Russian Federation); Perov, N.S.; Vashuk, M.V. [Faculty of Physics, Moscow State M.V. Lomonosov University, Moscow 119991 (Russian Federation)

    2009-04-15

    We report an experimental study on transversal Kerr effect (TKE) in magnetic oxide semiconductors TiO{sub 2-{delta}}:Co. The TiO{sub 2-{delta}}: Co thin films were deposited on LaAlO{sub 3} (0 0 1) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2x10{sup -6}-2x10{sup -4} Torr. It was obtained that TKE spectra in ferromagnetic samples are extremely sensitive to the Co-volume fraction, the crystalline structure, and technology parameters. The observed well-pronounced peaks in TKE spectra for anatase Co-doped TiO{sub 2-{delta}} films at low Co (<1%) volume fraction are not representative for bulk Co or Co clusters in TiO{sub 2-{delta}} matrix that indicates on intrinsic ferromagnetism in these samples. With increase of Co-volume fraction up to 5-8% the fine structure of TKE spectra disappears and magneto-optical response in reflection mode becomes larger than that for thick Co films.

  5. Room-temperature ferromagnetism in Co and Nb co-doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Hachisu, M.; Mori, K.; Hyodo, K.; Morimoto, S.; Yamazaki, T.; Ichiyanagi, Y.

    2015-01-01

    Co- and Nb-doped TiO 2 nanoparticles encapsulated with amorphous SiO 2 were synthesized by our novel preparation method. An anatase TiO 2 single-phase structure was confirmed using X-ray diffraction. The particle size could be controlled to be about 5 nm. The composition of these nanoparticles was investigated by X-ray fluorescence analysis. X-ray absorption near-edge structure spectra showed that the Ti 4+ and Co 2+ states were dominant in our prepared samples. A reduction in the coordination number was also confirmed. The dependence of the electrical conductivity on the frequency was measured by an LCR meter, and the carrier concentration was determined. The magnetization curves for the nanoparticles indicated ferromagnetic behavior at room temperature. We concluded that the ferromagnetism originated in oxygen vacancies around the transition metal ions

  6. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    CERN Multimedia

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  7. Pulsed CO laser for isotope separation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  8. Radiochemical search for neutron-rich isotopes of element 107

    International Nuclear Information System (INIS)

    Schaedel, M.

    1987-01-01

    Recent mass calculations have indicated that there is a region of deformed nuclei around neutron number N=162 that is especially stable against spontaneous fission. Barrier heights of about 5 MeV for Z = 107 nuclides can be extrapolated. To search for new, neutron-rich isotopes of element 107 in radiochemical experiments with 254 Es as a target an on-line chemical separation of element 107 (EKA-Rhenium), especially from the actinide elements is needed. An on-line gas-phase chemistry was developed with the homolog Re based on the volatility of the oxide which is transported in an O 2 containing atmosphere along a temperature gradient in a quartz tube and is condensed onto a thin Ta coated Ni-foil. The authors applied this technique in two series of experiments with their rotating wheel on-line gas-phase chemistry apparatus at the 88-inch cyclotron where they irradiated 254 Es as a target with 93 MeV and 96 MeV 16 O ions to search for 266 107. The assignment of the observed alpha events between 8 and 9 MeV to possibly (1) non actinide contaminants like 212 Po, (2) known isotopes of heavy elements like 261 105, or (3) a new isotope will be discussed

  9. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  11. NMR and magnetic studies of mechanically alloyed Co sub 7 sub 5 Ti sub 2 sub 5

    CERN Document Server

    Hiraoka, K; Tomiyoshi, S

    2003-01-01

    We have measured zero field sup 5 sup 9 Co NMR, X-ray diffraction (XRD) and magnetization in ferromagnetic mechanically alloyed Co sub 7 sub 5 Ti sub 2 sub 5 powder as a function of milling time at 4.2 K. The XRD patterns showed that the sample is primarily in an amorphous phase after a short milling time of 10 h, and no clear amorphous-crystalline phase transformation is detected with further milling. The NMR results revealed that successive phase transformations occur with milling, and the amorphous phase consists of small clusters of such ferromagnetic phases as fcc-Co sub 3 Ti, hexagonal-Co sub 2 Ti, bcc-Co sub 3 Ti, fcc-Co and fcc-Co-Ti solid solution depending on the milling time. The bcc-Co sub 3 Ti phase, being metastable, is a disordered one in contrast to the ordered fcc-Co sub 3 Ti phase and has a Co magnetic moment larger than that of fcc-Co sub 3 Ti. We suggest that the precipitation of Co plays an important role in the cyclic phase transformation, which was previously reported. (author)

  12. Probing surface sites of TiO2: reactions with [HRe(CO)5] and [CH3Re(CO)5].

    Science.gov (United States)

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-10-04

    Two carbonyl complexes of rhenium, [HRe(CO)(5)] and [CH(3)Re(CO)(5)], were used to probe surface sites of TiO(2) (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O(2) or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti(+3)-OH and Ti(+4)-OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO)(5)] was adsorbed, or rhenium tetracarbonyls, when [CH(3)Re(CO)(5)] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti(+3) and Ti(+4) ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)(5)] or [CH(3)Re(CO)(5)] determined a ranking of the reactivity of the surface OH sites, with the Ti(+3)-OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.

  13. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings prepared from TiC_0_._7N_0_._3 powder using ball milling followed by oxidation

    International Nuclear Information System (INIS)

    Hao, Liang; Wang, Zhenwei; Zheng, Yaoqing; Li, Qianqian; Guan, Sujun; Zhao, Qian; Cheng, Lijun; Lu, Yun; Liu, Jizi

    2017-01-01

    Highlights: • TiO_2/TiC_0_._7N_0_._3 coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO_2 formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO_2 coatings on the surfaces of Al_2O_3 balls from TiC_0_._7N_0_._3 powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC_0_._7N_0_._3 coatings were formed after ball milling. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings were prepared after the direct oxidization of TiC_0_._7N_0_._3 coatings in the atmosphere. However, TiO_2 was hardly formed in the surface layer of TiC_0_._7N_0_._3 coatings within a depth less than 10 nm during the heat oxidation of TiC_0_._7N_0_._3 coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO_2/TiC_0_._7N_0_._3 composite microstructure.

  14. ${\\beta}$-decay studies of neutron-rich $^{61-70}$Mn isotopes with the new LISOL ${\\beta}$-decay setup

    CERN Multimedia

    Diriken, J V J

    2008-01-01

    The aim of this proposal is to gather new information that will serve as benchmark to test shell model calculations in the region below $^{68}$Ni, where proper residual interactions are still under development. More specifically, the ${\\beta}$-decay experiment of the $^{61-70}$Mn isotopes will highlight the development of collectivity in the Fe isotopes and its daughters. At ISOLDE, neutron-rich Mn isotopes are produced with a UC$_{x}$ target and selective laser ionization. These beams are particularly pure and reasonable yields are obtained for the neutron-rich short lived $^{61-70}$Mn isotopes. We propose to perform ${\\beta}$-decay studies on $^{61-70}$Mn utilizing the newly-developed "LISOL ${\\beta}$-decay setup", consisting of two MINIBALL cluster Ge detectors and a standard tape station. The use of digital electronics in the readout of these detectors enables us to perform a "slow correlation technique" which should indicate the possible existence of isomers in the daughter nuclei.

  15. Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, B. [Centre for Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581 (India); Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com [Centre for Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581 (India); Banerjee, Alok [UGC-DAE Consortium for Scientific Research (CSR), Khandwa Road, Indore 452 001 (India)

    2016-07-15

    Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples. EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.

  16. Magneto-optical spectroscopy of diluted magnetic oxides TiO2-δ: Co

    International Nuclear Information System (INIS)

    Gan'shina, E.A.; Granovsky, A.B.; Orlov, A.F.; Perov, N.S.; Vashuk, M.V.

    2009-01-01

    We report an experimental study on transversal Kerr effect (TKE) in magnetic oxide semiconductors TiO 2-δ :Co. The TiO 2-δ : Co thin films were deposited on LaAlO 3 (0 0 1) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2x10 -6 -2x10 -4 Torr. It was obtained that TKE spectra in ferromagnetic samples are extremely sensitive to the Co-volume fraction, the crystalline structure, and technology parameters. The observed well-pronounced peaks in TKE spectra for anatase Co-doped TiO 2-δ films at low Co ( 2-δ matrix that indicates on intrinsic ferromagnetism in these samples. With increase of Co-volume fraction up to 5-8% the fine structure of TKE spectra disappears and magneto-optical response in reflection mode becomes larger than that for thick Co films

  17. Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics for capacitor applications

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2018-03-01

    Full Text Available Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics, prepared by solid state method, were investigated with non-stoichiometric level and various La2O3 content, using XRD, SEM and LCR measuring system. With an increase of non-stoichiometric level, the unit cell volumes of perovskite lattices for the single phase Ti-rich barium strontium titanate ceramics increased due to the decreasing A site vacancy concentration V″A. The unit cell volume increased and then decreased slightly with the increasing La2O3 content. Relatively high non-stoichiometric level and high La2O3 content in Ti-rich barium strontium titanate ceramics contributed to the decreased average grain size as well as fine grain size distribution, which correspondingly improved the temperature stability of the relative dielectric constant. The relative dielectric constant єrRT, dielectric loss tanδRT and the maximum relative dielectric constant єrmax decreased and then increased with the increasing non-stoichiometric level. With the increase of La2O3 doping content, the relative dielectric constant єrRT increased initially and then decreased. The maximum relative dielectric constant єrmax can be increased by applying low doping content of La2O3 in Ti-rich barium strontium titanate ceramics due to the increased spontaneous polarization.

  18. Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tadayyon, Ghazal, E-mail: Ghazal.tadayyon@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (Iran, Islamic Republic of); Centre for Research in Medical Devices (CURAM), National University of Ireland, Galway (Ireland); Guo, Yina, E-mail: Yina.Guo@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Mazinani, Mohammad, E-mail: mazinani@um.ac.ir [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (Iran, Islamic Republic of); Zebarjad, Seyed Mojtaba, E-mail: mojtabazebarjad@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Tiernan, Peter, E-mail: Peter.Tiernan@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Tofail, Syed A.M., E-mail: Tofail.Syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Biggs, Manus J.P., E-mail: manus.biggs@nuigalway.ie [Centre for Research in Medical Devices (CURAM), National University of Ireland, Galway (Ireland)

    2017-03-15

    The main objective of this work was to investigate the thermomechanical behavior and microstructural changes of a Ti-rich NiTi shape memory alloy (SMA). The microstructural and texture evolution of aged NiTi alloy at different degrees of deformation were elicited by transmission electron microscopy (TEM). An effort was made to correlate results obtained from the tensile test with results from microstructure studies. The undeformed sample reveals a self-accommodated morphology with straight and well defined twin boundaries. At different stages of deformation, diverse mechanisms were involved. These mechanisms include marstraining, detwinning accompanied by dislocation movement, and finally, severe plastic deformation, subdivision and amorphization of the matrix. Under increasing strains, high density lattice defects were generated and the morphology of B19’ became disordered. - Graphical abstract: The summary of microstructure changes of the martensite twins during tensile deformation in polycrystalline NiTi SMAs. - Highlights: • Initial elastic response, dislocation avalanche and deformation bands were studied. • < 011 > Type II twin accompanied by detwinned area after 2% cold work was observed. • Visible parallel fine stacking faults showed plastic flow of the material. • At higher strains, subgrains changed to recrystallized, finely amorphous structure.

  19. Titanium Insertion into CO Bonds in Anionic Ti-CO2 Complexes.

    Science.gov (United States)

    Dodson, Leah G; Thompson, Michael C; Weber, J Mathias

    2018-03-22

    We explore the structures of [Ti(CO 2 ) y ] - cluster anions using infrared photodissociation spectroscopy and quantum chemistry calculations. The existence of spectral signatures of metal carbonyl CO stretching modes shows that insertion of titanium atoms into C-O bonds represents an important reaction during the formation of these clusters. In addition to carbonyl groups, the infrared spectra show that the titanium center is coordinated to oxalato, carbonato, and oxo ligands, which form along with the metal carbonyls. The presence of a metal oxalato ligand promotes C-O bond insertion in these systems. These results highlight the affinity of titanium for C-O bond insertion processes.

  20. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon

    Science.gov (United States)

    Bonnand, Pierre; Parkinson, Ian J.; Anand, Mahesh

    2016-02-01

    We present the first stable chromium isotopic data from mare basalts in order to investigate the similarity between the Moon and the Earth's mantle. A double spike technique coupled with MC-ICP-MS measurements was used to analyse 19 mare basalts, comprising high-Ti, low-Ti and KREEP-rich varieties. Chromium isotope ratios (δ53Cr) for mare basalts are positively correlated with indices of magmatic differentiation such as Mg# and Cr concentration which suggests that Cr isotopes were fractionated during magmatic differentiation. Modelling of the results provides evidence that spinel and pyroxene are the main phases controlling the Cr isotopic composition during fractional crystallisation. The most evolved samples have the lightest isotopic compositions, complemented by cumulates that are isotopically heavy. Two hypotheses are proposed to explain this fractionation: (i) equilibrium fractionation where heavy isotopes are preferentially incorporated into the spinel lattice and (ii) a difference in isotopic composition between Cr2+ and Cr3+ in the melt. However, both processes require magmatic temperatures below 1200 °C for appreciable Cr3+ to be present at the low oxygen fugacities found in the Moon (IW -1 to -2 log units). There is no isotopic difference between the most primitive high-Ti, low-Ti and KREEP basalts, which suggest that the sources of these basalts were homogeneous in terms of stable Cr isotopes. The least differentiated sample in our sample set is the low-Ti basalt 12016, characterised by a Cr isotopic composition of -0.222 ± 0.025‰, which is within error of the current BSE value (-0.124 ± 0.101‰). The similarity between the mantles of the Moon and Earth is consistent with a terrestrial origin for a major fraction of the lunar Cr. This similarity also suggests that Cr isotopes were not fractionated by core formation on the Moon.

  1. Pseudo-elasticity and shape memory effect on the TiNiCoV alloy

    International Nuclear Information System (INIS)

    Hsu, S.E.; Yeh, M.T.; Hsu, I.C.; Chang, S.K.; Dai, Y.C.; Wang, J.Y.

    2000-01-01

    Unlike most of the structural intermetallic compound, TiNi is an exceptional case of inherent ductility. Besides its amusing behavior of high damping capacity due to martensitic transformation, the duel properties of shape memory and pseudo-elasticity co-exhibited in the same V and Co-modified TiNi-SMA at various temperature will attract another attention in modern manufacturing technology. The objective of this paper is to investigate the pseudo-elasticity and strain rate effect on TiNiCoV-SMA. The presence of dual behavior of super-elasticity and shape memory effect is technological significant for application of advanced materials on the structural component. An illustration of application of TiNiCoV shape memory alloy on the face of golf club head will be presented in this paper. (orig.)

  2. Production and separation of neutron-rich rare isotopes around and below the Fermi energy

    CERN Document Server

    Souliotis, G A; Chubarian, G; Yennello, S J

    2003-01-01

    The production of n-rich rare isotopes around and below the Fermi energy is investigated using beams from the K500 Superconducting Cyclotron and the MARS recoil separator at the Cyclotron Institute of Texas A and M University. The experimental results from the reactions of 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni and 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 Sn are presented and compared with simulations. The calculations involve a deep inelastic transfer (DIT) code for the primary interaction stage followed by the code GEMINI for the de-excitation stage. The results are also compared with the EPAX parametrization. The data on the 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni reaction show that both proton-removal and several-neutron pick-up isotopes are produced. An enhancement is observed in the production of n-rich isotopes close to the projectile relative to the predictions of DIT/GEMINI and the expectations of EPAX. The data of 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 ...

  3. Anisotropic Negative Thermal Expansion Behavior of the As-Fabricated Ti-Rich and Equiatomic Ti-Ni Alloys Induced by Preferential Grain Orientation

    Science.gov (United States)

    Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping

    2018-03-01

    The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.

  4. Early evaluation of hydrogen isotopes separation by V4Cr4Ti-based sorbents at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, Timur, E-mail: tima@physics.kz [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan); Shestakov, Vladimir; Chikhray, Yevgen; Kenzhina, Inesh; Askerbekov, Saulet [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Gordienko, Yuriy; Ponkratov, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan)

    2016-12-15

    This paper presents the results of experiments on hydrogen isotopes sorption with V4Cr4Ti vanadium alloys from a mixture of hydrogen isotopes. The studies were carried out at temperatures of 353 K, 393 K, 423 K; and pressures of 10{sup 3}–10{sup 4} Pa in gas mixture of hydrogen isotopes. The α-phase domain of V-H (D) system was studied, where the concentration of hydrogen isotopes atoms should not exceed 0.015H (D) atoms per metal atom. The separation parameters were derived for several saturation conditions accordingly to registered time dependences of hydrogen isotopes partial pressure drop. The conclusion was made about the prospects of using vanadium alloys in hydrogen isotopes separation and purification systems.

  5. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution

    Science.gov (United States)

    Chen, Feng; Luo, Wei; Mo, Yanping; Yu, Huogen; Cheng, Bei

    2018-02-01

    Cocatalyst modification of photocatalysts is an important strategy to enhance the photocatalytic performance by promoting effective separation of photoinduced electron-hole pairs and providing abundant active sites. In this study, a facile in situ photodeposition method was developed to prepare amorphous CoSx-modified TiO2 photocatalysts. It was found that amorphous CoSx nanoparticles were solidly loaded on the TiO2 surface, resulting in a greatly improved photocatalytic H2-evolution performance. When the amount of amorphous CoSx was 10 wt%, the hydrogen evolution rate of the CoSx/TiO2 reached 119.7 μmol h-1, which was almost 16.7 times that of the pure TiO2. According to the above experimental results, a reasonable mechanism of improved photocatalytic performance is proposed for the CoSx/TiO2 photocatalysts, namely, the photogenerated electrons of TiO2 can rapidly transfer to amorphous CoSx nanoparticles due to the solid contact between them, and then amorphous CoSx can provide plenty of sulfur active sites to rapidly adsorb protons from solution to produce hydrogen by the photogenerated electrons. Considering the facile synthesis method, the present cheap and highly efficient amorphous CoSx-modified TiO2 photocatalysts would have great potential for practical use in photocatalytic H2 production.

  6. Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes

    CERN Multimedia

    We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.

  7. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  8. Temperature study of magnetic resonance spectra of co-modified (Co,N-TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Guskos Nikos

    2016-06-01

    Full Text Available The (nCo,N-TiO2 (n = 1, 5 and 10 wt.% of Co nanocomposites were investigated by magnetic resonance spectroscopy in 4 K to 290 K range. Analyses of ferromagnetic/electron paramagnetic resonance (FMR/EPR spectra in terms of four Callen lineshape components revealed the existence of two types of magnetic centers, one derived from metallic cobalt nanoparticles in superparamagnetic (SPM phase and the other from cobalt clusters in the TiO2 lattice. Additionally, at low temperature the EPR spectrum arising from Ti3+ ions was also registered. Both relaxations of the Landau-Lifshitz type and the Bloch-Bloembergen type played an important role at high temperature in determining the linewidths and the latter relaxation was prevailing at low temperature. Analysis of the integrated intensity showed that the SPM signal is due to small size FM cobalt nanoparticles while the paramagnetic signal from Co clusters originates from those nanoparticles in which the concentration of magnetic polarons is below the percolation threshold.

  9. Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb)

    International Nuclear Information System (INIS)

    Xiong, Lun; Yi, Lin; Gao, G.Y.

    2014-01-01

    We investigate the electronic structure and magnetic properties of the twelve quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb) by using the first-principles calculations. It is shown that only CoFeTiSi, CoFeTiAs and CoFeVSb are half-metallic ferromagnets with considerable half-metallic gaps of 0.31, 0.18 and 0.17 eV, respectively. CoFeTiAl and CoFeTiGa are conventional semiconductors, and other alloys exhibit nearly half-metallicity or their half-metallic gaps are almost zero eV. We also find that the half-metallicities of CoFeTiSi, CoFeTiAs and CoFeVSb can be preserved under appropriate uniform and in-plane strains. The considerable half-metallic gaps and the robust half-metallicities under uniform and in-plane strains make CoFeTiSi, CoFeTiAs and CoFeVSb promising candidates for spintronic applications. - Highlights: • CoFeTiSi, CoFeTiAs and CoFeVSb have considerable half-metallic gaps. • Total magnetic moments obey the Slater–Pauling behavior of quaternary Heusler half-metals. • CoFeTiSi, CoFeTiAs and CoFeVSb retain half-metallicity under uniform and in-plane strains

  10. Preparation, characterization and applications of novel carbon and nitrogen codoped TiO2 nanoparticles from annealing TiN under CO atmosphere

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Song, Peng; Li, Jing; Cui, Xiaoli

    2013-01-01

    Graphical abstract: Carbon and nitrogen codoped TiO 2 nanoparticles were firstly fabricated by calcining TiN powder under CO atmosphere at different temperatures between 400 and 600 °C, both the improved photocatalytic activity for degradation of methylene blue and enhanced photovoltaic performance for dye sensitized solar cells were demonstrated. - Highlights: • CN-codoped TiO 2 nanoparticles were prepared by calcining TiN under CO atmosphere. • More visible light response was confirmed by UV–vis DRS and photocatalytic results. • Enhanced conversion efficiency was observed for the DSSCs from CN-TiO 2 photoanode. • CN-codoping played an important role to improve the photocatalytic performance. - Abstract: Carbon and nitrogen codoped titania (CN-TiO 2 ) nanoparticles were fabricated by calcining titanium nitride (TiN) nanoparticles under carbon monoxide (CO) atmosphere at four different temperatures in a range of 400–600 °C. The as-prepared samples were characterized with X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). Enhanced light absorption in both the UV and visible light region was observed for the resulted CN-TiO 2 nanoparticles in ultraviolet-visible diffuse reflectance spectroscopy (UV–vis DRS). Improved photocatalytic activity toward the degradation of methylene blue by the CN-TiO 2 nanoparticles was demonstrated under UV and visible light, respectively. The highest degradation rate was achieved for CN-TiO 2 nanoparticles (13%) compared to N-TiO 2 (10%) and the commercial P25 (5%) under visible light illumination for 40 min. Furthermore, the improved photocatalytic activity of CN-TiO 2 was also confirmed by the degradation of colorless resorcinol under UV–vis light irradiation. Dye-sensitized solar cells (DSSCs) were fabricated using P25, N-TiO 2 and CN-TiO 2 photoanodes, respectively. The highest conversion efficiency of 3.31% was achieved by the DSSCs based on the

  11. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    Science.gov (United States)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  12. Chalcone dendrimer stabilized core-shell nanoparticles—a comparative study on Co@TiO2, Ag@TiO2 and Co@AgCl nanoparticles for antibacterial and antifungal activity

    Science.gov (United States)

    Vanathi Vijayalakshmi, R.; Praveen Kumar, P.; Selvarani, S.; Rajakumar, P.; Ravichandran, K.

    2017-10-01

    A series of core@shell nanoparticles (Co@TiO2, Ag@TiO2 and Co@AgCl) stabilized with zeroth generation triazolylchalcone dendrimer was synthesized using reduction transmetalation method. The coordination of chalcone dendrimer with silver ions was confirmed by UV-vis spectroscopy. The NMR spectrum ensures the number of protons and carbon signals in the chalcone dendrimer. The prepared samples were structurally characterized by XRD, FESEM and HRTEM analysis. The SAED and XRD analyses exhibited the cubic structure with d hkl   =  2.2 Å, 1.9 Å and 1.38 Å. The antibacterial and antifungal activities of the dendrimer stabilized core@shell nanoparticles (DSCSNPs) were tested against the pathogens Bacillus subtilis, Proteus mirabilis, Candida albicans and Aspergillus nigir from which it is identified that the dendrimer stabilized core shell nanoparticles with silver ions at the shell (Co@AgCl) shows effectively high activity against the tested pathogen following the other core@shell nanoparticles viz Ag@TiO2 and Co@TiO2.

  13. Photonic, and photocatalytic behavior of TiO{sub 2} mediated by Fe, CO, Ni, N doping and co-doping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan (China); Zhao, Y.F. [Institute of Coordination Bond Metrology and Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Wang, T., E-mail: twang@zju.edu.cn [College of Electrical Engineering, Zhejiang University (China); Li, H., E-mail: Lihui02@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan (China); Li, C., E-mail: canli1983@gmail.com [Institute of Coordination Bond Metrology and Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-12-01

    Fe, Co, Ni, or N addition could modulate the photonic and catalytic responses of TiO{sub 2} for photocatalysts applications. Their morphologies, structures, compositions and photocatalytic performance in the degradation of methylene blue were characterized by scanning electron microscopy, X-ray diffraction, UV–vis absorption spectroscopy, Raman spectra and X-ray photoelectron spectroscopy. The results showed that dopants affect the electronic transition energies by changing the optical band gap and the impurity absorption peaks of the specimens. Especially, co-doping enhances the visible-light photocatalytic activity of TiO{sub 2} by 4–10 times that of pure TiO{sub 2}, and the Co and N co-doping derives 10-fold photocatalytic activity.

  14. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  15. CORRELATION OF 48Ca, 50Ti, AND 138La HETEROGENEITY IN THE ALLENDE REFRACTORY INCLUSIONS

    International Nuclear Information System (INIS)

    Chen, Hsin-Wei; Lee, Typhoon; Lee, Der-Chuen; Chen, Jiang-Chang

    2015-01-01

    Precise determinations of 48 Ca anomalies in Allende calcium–aluminum-rich inclusions (CAIs) are reported in this work. There are endemic positive 48 Ca/ 44 Ca anomalies in all analyzed CAIs after normalization to 42 Ca/ 44 Ca, and it is clearly shown that there is no simple correlation between 48 Ca/ 44 Ca and 50 Ti/ 48 Ti anomalies, in agreement with Jungck et al. Compared to the 48 Ca/ 44 Ca versus 50 Ti/ 48 Ti correlation line defined by differentiated meteorites, reported by Chen et al., the CAIs plot to elevated 50 Ti/ 48 Ti. Assuming the 48 Ca/ 44 Ca anomalies of both CAIs and differentiated meteorites came from the same source, excess 50 Ti anomalies in CAIs can be calculated by subtracting the part associated with 48 Ca/ 44 Ca. These excesses show a linear correlation with 138 La anomalies, a neutrino-process nuclide. According to current stellar nucleosynthetic models, we therefore suggest that the solar system 48 Ca, 50 Ti, and 138 La isotopic variations are made of mixtures between grains condensed from ejecta of neutron-rich accretion-induced SNe Ia and the O/Ne–O/C zone of core-collapse SNe II

  16. Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

    International Nuclear Information System (INIS)

    Sato, Koichi; Hinohara, Nobuo

    2011-01-01

    We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.

  17. Mixing and Transport of Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among Chondrules

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Simone; Burkhardt, Christoph; Budde, Gerrit; Metzler, Knut; Kleine, Thorsten, E-mail: burkhardt@uni-muenster.de [Institut für Planetologie, University of Münster, Wilhelm Klemm-Straße 10, D-48149 Münster (Germany)

    2017-05-20

    Chondrules formed by the melting of dust aggregates in the solar protoplanetary disk and as such provide unique insights into how solid material was transported and mixed within the disk. Here, we show that chondrules from enstatite and ordinary chondrites show only small {sup 50}Ti variations and scatter closely around the {sup 50}Ti composition of their host chondrites. By contrast, chondrules from carbonaceous chondrites have highly variable {sup 50}Ti compositions, which, relative to the terrestrial standard, range from the small {sup 50}Ti deficits measured for enstatite and ordinary chondrite chondrules to the large {sup 50}Ti excesses known from Ca–Al-rich inclusions (CAIs). These {sup 50}Ti variations can be attributed to the addition of isotopically heterogeneous CAI-like material to enstatite and ordinary chondrite-like chondrule precursors. The new Ti isotopic data demonstrate that isotopic variations among carbonaceous chondrite chondrules do not require formation over a wide range of orbital distances, but can instead be fully accounted for by the incorporation of isotopically anomalous “nuggets” into chondrule precursors. As such, these data obviate the need for disk-wide transport of chondrules prior to chondrite parent body accretion and are consistent with formation of chondrules from a given chondrite group in localized regions of the disk. Finally, the ubiquitous presence of {sup 50}Ti-enriched material in carbonaceous chondrites and the lack of this material in the non-carbonaceous chondrites support the idea that these two meteorite groups derive from areas of the disk that remained isolated from each other, probably through the formation of Jupiter.

  18. Order-disorder transition in the complex lithium spinel Li2CoTi3O8

    International Nuclear Information System (INIS)

    Reeves, Nik; Pasero, Denis; West, Anthony R.

    2007-01-01

    Li 2 CoTi 3 O 8 has an ordered Li 2 BB' 3 O 8 spinel structure, space group P4 3 32, at room temperature with 3:1 ordering of Ti and Li on the octahedral sites, and Li, Co disordered over the tetrahedral site. Rietveld refinement of variable temperature neutron powder diffraction data has shown an order-disorder phase transition in Li 2 CoTi 3 O 8 which commences at ∼500 deg. C with Li and Co mixing on the tetrahedral and 4-fold octahedral sites and is complete at a first order structural discontinuity at ∼915 deg. C. The fraction of Ti on the 12-fold octahedral site exhibits a small decrease with increasing temperature, which may suggest that the disordering involves all three cations. Above 930 deg. C, the structure, space group Fd3-barm, has Li, Co and Ti sharing a single-octahedral site and Li, Co sharing a tetrahedral site, although Co still exhibits a preference for tetrahedral coordination. A labelling scheme for ordered and partially ordered 3:1 spinels is devised which focuses on the occupancy of the Li,B cations. - Graphical abstract: Rietveld refinement of variable temperature neutron powder diffraction data shows an order-disorder phase transition in Li 2 CoTi 3 O 8 commencing at ∼500 deg. C with Li,Co mixing on tetrahedral and octahedral sites. This becomes complete at a first-order structural discontinuity at ∼915 deg. C. Above 930 deg. C, the structure, space group Fd3-barm, has Li, Co and Ti sharing a single-octahedral site and Li, Co sharing a tetrahedral site

  19. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    Science.gov (United States)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  20. Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3: A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Ao, Yanhui; Xu, Liya; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin; Li, Yi

    2015-01-01

    Graphical abstract: A novel multi-heterojunction photocatalyst (graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3) was prepared for the first time. The as-obtained samples showed much higher activity compared to pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3 for dye degradation, which is almost 14 times higher than that of pure Bi_2O_2CO_3 and also much higher than the sum of graphene–Bi_2O_2CO_3 and TiO_2. - Highlights: • Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3 was prepared for the first time. • The sample shows enhanced photocatalytic activity due to the formation of multi-heterojunction. • The sample also exhibits a synergetic effect of graphene and TiO_2. • The composite photocatalyst shows a good stability for dye degradation. - Abstract: In this paper, graphene (GR) and titania co-modified flower-like Bi_2O_2CO_3 multi-heterojunction composite photocatalysts were prepared by a simple and feasible two step hydrothermal process. The prepared samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), photoluminescence (PL), N_2 adsorption–desorption isotherm, and photo-induced current. The photocatalytic activity was investigated by the degradation of MO under UV light irradiation. The as prepared multi-heterojunction GR/Bi_2O_2CO_3/TiO_2 composites exhibited much higher photocatalytic activity than pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3. The higher performance of GR/Bi_2O_2CO_3/TiO_2 can be ascribed to the formation of multi-heterojunctions, which promote the effective separation of photo-induced electron–hole pairs. Moreover, the higher photocatalytic activity can also be ascribed to the high surface area of GR and TiO_2, which offers more active sites for the photodegradation reaction. Furthermore, the photocatalytic activity of GR/Bi_2O_2CO_3/TiO_2 remained without striking decrease after five cycles

  1. Observation of strong ferromagnetism in the half-Heusler compound CoTiSb system

    Energy Technology Data Exchange (ETDEWEB)

    Sedeek, K., E-mail: KamiliaSedeek@yahoo.com; Hantour, H.; Makram, N.; Said, Sh. A.

    2016-06-01

    Strong ferromagnetism has been detected in the semiconducting half-Heusler CoTiSb compound. The synthesis process was carried out by direct fusion of highly pure Co, Ti, and Sb in an evacuated quartz tube. The structural, micro structural and magnetic properties were investigated. The crystal structure was refined from X-ray powder diffraction data by the Rietveld method. Applying the search match program, three nano-crystalline phases of CoTiSb, Ti{sub 3}Sb and CoTi{sub 2} (50%, 33.3% and 16.7% respectively) were identified for the prepared system. The term “phase” is used to address the co-existence of different stable chemical composition for the same half-Heusler alloy. The scanning electron microscope SEM and the high resolution transmission electron microscope HR-TEM were applied to characterize the morphology, size, shape, crystallinity and lattice spacing. A mixture of ordered and disordered arrangement was detected. Well defined nano-crystalline structure with an average interatomic distance equals 0.333 nm and sharp diffraction spots were measured. Contrary to this, the HR-TEM and electron diffraction image shows distorted structured planes and smeared halo surrounded by weak rings. Thermo-magnetic measurements (M–T) have been measured between 640 °K and 920 °K. Clear magnetic phase transition is detected above 900 °K (T{sub c}), in addition to a second possible phase transition (T{sub FF}) around 740 °K. The latter is clarified by plotting ΔM/ΔT vs. T. To determine the type of the detected phase transitions, the field dependence of magnetization was measured at 300 °K and 740 °K. Arrot plots (M{sup 2}−H/M) confirm the ferromagnetic character at both temperatures. It may be reasonable to assume the T{sub FF} transition as an additional ferromagnetic contribution stemming from some sort of exchange interactions. A tentative magnetic phase diagram is given. Overall, the present results suggest that the prepared multiphases CoTiSb system does

  2. Effect of the Addition of 3% Co in NiTi Alloy on Loading/Unloading Force

    Science.gov (United States)

    Phukaoluan, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Khantachawana, A.; Kaewtathip, P.; Kajornchaiyakul, J.; Wichai, W.

    2017-11-01

    The study evaluated the loading-unloading force in the load-deflection curve of the fabricated NiTiCo and NiTi wires. Wire alloys with Nickel, Titanium, and Cobalt (purity-99.95%) with atomic weight ratio 47Ni:50Ti:3Co and 50.6Ni:49.4Ti were prepared, sliced, and cold-rolled at 30% reduction, followed by heat treatment in a furnace at 400oC for 1 hour. The specimens of wire size of 0.016 x 0.022 inch2 were cut and subjected to three-point bending test to investigate the load-deflection curve at deflection point 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm. Descriptive statistic was used to evaluate each variables and independent t-test was used to compare between the groups. The results presented a load-deflection curve that resembled a typical superelastic wire. However, significant differences were seen in the loading-unloading forces between the two with an average loading force of 412.53g and 304.98g and unloading force of 292.40g and 208.08g for NiTiCo and NiTi wire, respectively. The force at each deflection point of NiTiCo in loading-unloading force was higher than NiTi wire. This study concluded that the addition of 3%Co in NiTi alloy can increase the loading-unloading force of NiTi wire but were within the range for orthodontic tooth movement.

  3. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics

    Science.gov (United States)

    Phan, The-Long; Thang, P. D.; Ho, T. A.; Manh, T. V.; Thanh, Tran Dang; Lam, V. D.; Dang, N. T.; Yu, S. C.

    2015-05-01

    We have prepared polycrystalline samples BaTi1-xCoxO3 (x = 0-0.1) by solid-state reaction. X-ray diffraction and Raman-scattering studies reveal the phase separation in crystal structure as changing Co-doping content (x). The samples with x = 0-0.01 are single phase in a tetragonal structure. At higher doping contents (x > 0.01), there is the formation and development of a secondary hexagonal phase. Magnetization measurements at room temperature indicate a coexistence of paramagnetic and weak-ferromagnetic behaviors in BaTi1-xCoxO3 samples with x > 0, while pure BaTiO3 is diamagnetic. Both these properties increase with increasing x. Analyses of X-ray absorption spectra recorded from BaTi1-xCoxO3 for the Co and Ti K-edges indicate the presence of Co2+ and Co3+ ions. They locate in the Ti4+ site of the tetragonal and hexagonal BaTiO3 structures. Particularly, there is a shift of oxidation state from Co2+ to Co3+ when Co-doping content increases. We believe that the paramagnetic nature in BaTi1-xCoxO3 samples is due to isolated Co2+ and Co3+ centers. The addition of Co3+ ions enhances the paramagnetic behavior. Meanwhile, the origin of ferromagnetism is due to lattice defects, which is less influenced by the changes caused by the variation in concentration of Co2+ and Co3+ ions.

  4. Domain walls collision in Fe-rich and Co-rich glass covered microwires

    Directory of Open Access Journals (Sweden)

    Gonzalez J.

    2013-01-01

    Full Text Available We report the results of the investigation of domain walls propagation in Fe-rich and Co-rich microwires performed using Sixtus-Tonks and magneto-optical Kerr effect techniques. It was found that under certain experimental conditions we are able to create the regime of the motion of two domain walls moving to opposite directions which terminates by the collision of the domain walls. Also the domain walls collision was visualized using magneto-optical Kerr effect microscope when the surface giant Barkhausen jump induced by circular magnetic field has been observed.

  5. Weakly bound structures in neutron rich Si isotopes

    International Nuclear Information System (INIS)

    Singh, D.; Saxena, G.; Yadav, H.L.

    2009-01-01

    Production of radioactive beams have facilitated the nuclear structure studies away from the line of β-stability, especially for the neutron rich drip line nuclei. Theoretical investigations of these nuclei have been carried out by using various approaches viz. few body model or clusters, shell model and mean field theories, both nonrelativistic as well as relativistic mean field (RMF). The advantage of the RMF approach, however, is that in this treatment the spin-orbit interaction is included in a natural way. This is especially advantageous for the description of drip-line nuclei for which the spin-orbit interaction plays an important role. In this communication we report briefly the results of our calculations for the Si isotopes carried out within the framework of RMF + BCS approach

  6. Assembly of a check-patterned CuS{sub x}–TiO{sub 2} film with an electron-rich pool and its application for the photoreduction of carbon dioxide to methane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Homin; Kwak, Byeong Sub [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Park, No-Kuk [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Baek, Jeom-In [KEPCO Research Institute, Korea Electric Power Corporation, 105 Munji-ro, Yuseong-gu, Daejeon 34056 (Korea, Republic of); Ryu, Ho-Jung [Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129 (Korea, Republic of); Kang, Misook, E-mail: mskang@ynu.ac.kr [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2017-01-30

    Highlights: • A new check-patterned CuS{sub x}–TiO{sub 2} film was prepared by the squeeze printing method. • Significantly increased amounts of CO{sub 2} were adsorbed on the CuS{sub x}–TiO{sub 2} film. • High amounts of CH{sub 4} (53.2 μmolg{sub cat}{sup −1} L{sup −1}) were produced over the CuS{sub x}–TiO{sub 2} film. • An electron-rich pool was supposedly formed at the boundary between TiO{sub 2} and CuS{sub x}. - Abstract: A new check-patterned CuS{sub x}–TiO{sub 2} film was designed to improve the photoreduction of CO{sub 2} to CH{sub 4}. The check-patterned CuS{sub x}–TiO{sub 2} film with a 3D-network microstructure was fabricated by a facile squeeze method. The as-synthesized TiO{sub 2} and CuS{sub x} powders, as well as the patterned film, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–visible spectroscopy, cyclic voltammetry (CV), and photoluminescence (PL) spectroscopy, as well as photocurrent density and CO{sub 2} temperature-programmed desorption (TPD) measurements. Compared to pure CuS{sub x} and TiO{sub 2}, the check-patterned CuS{sub x}–TiO{sub 2} film exhibited significantly increased adsorption of CO{sub 2} on its networked microstructure, attributed to the enlarged interfaces between the microparticles. The check-patterned CuS{sub x}–TiO{sub 2} film exhibited superior photocatalytic behavior, with 53.2 μmolg{sub cat}{sup −1} L{sup −1} of CH{sub 4} produced after 8 h of reaction, whereas 18.1 and 7.3 μmolg{sub cat}{sup −1} L{sup −1} of CH{sub 4} were produced from pure TiO{sub 2} and CuS{sub x} films under the same reaction conditions, respectively. A model for enhanced photoactivity over the check-patterned CuS{sub x} − TiO{sub 2} film was proposed. Results indicated that the check-patterned CuS–TiO{sub 2} material is quite promising as a photocatalyst for the reduction of CO{sub 2} to CH{sub 4}.

  7. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V

    Science.gov (United States)

    Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan

    2017-07-01

    Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.

  8. Epitaxial Growth and Electronic Structure of Half Heuslers Co1-xNixTiSb (001), Ni1-xCoxTiSn, and PtLuSb

    Science.gov (United States)

    2016-01-09

    lineup of CoTiSb with conventional III/V’s, the valence-band discontinuities in abrupt CoTiSb/InGaAs(001) and CoTiSb/InAlAs(001) heterojunctions were...confirm identification of a topological surface state: first, the state must be confined and show no out-of-plane dispersion; second, the state

  9. Hydrogen isotope effect on storage behavior of U{sub 2}Ti and UZr{sub 2.3}

    Energy Technology Data Exchange (ETDEWEB)

    Jat, Ram Avtar; Sawant, S.G.; Rajan, M.B.; Dhanuskar, J.R. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Parida, S.C., E-mail: sureshp@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-11-15

    U{sub 2}Ti and UZr{sub 2.3} alloys were prepared by arc melting method, vacuum annealed and characterized by XRD, SEM and EDX methods. Hydrogen isotope effect on the storage behavior of these alloys were studied by measuring the hydrogen/deuterium desorption pressure–composition–temperature (PCT) profiles in the temperature range of 573–678 K using a Sievert’s type volumetric apparatus. It was observed that, in the temperature and pressure range of investigation, all the isotherms show a single desorption plateau. The PCT data reveals that both U{sub 2}Ti and UZr{sub 2.3} alloys had normal isotope effects on hydrogen/deuterium desorption at all experimental temperatures. Thermodynamic parameters for dehydrogenation and dedeuteration reactions of the corresponding hydrides and deuterides of the above alloys were deduced from the PCT data.

  10. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    Science.gov (United States)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  11. Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method

    International Nuclear Information System (INIS)

    Bouaine, Abdelhamid; Schmerber, G.; Ihiawakrim, D.; Derory, A.

    2012-01-01

    Highlights: ► Influence of Co doping on the TiO 2 tetragonal structure. ► Decrease of the energy band gap after doping with Co atoms. ► Appearance of ferromagnetism in Co-doped TiO 2 diluted magnetic semiconductors. - Abstract: We have used a solid-state method to synthesize polycrystalline Co-doped TiO 2 diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO 2 crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO 2 matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO 2 and a ferromagnetic behavior for the same samples after annealed under a mixture of H 2 /N 2 atmosphere.

  12. Vacancy identification in Co+ doped rutile TiO2 crystal with positron annihilation spectroscopy

    Science.gov (United States)

    Qin, X. B.; Zhang, P.; Liang, L. H.; Zhao, B. Z.; Yu, R. S.; Wang, B. Y.; Wu, W. M.

    2011-01-01

    Co-doped rutile TiO2 films were synthesized by ion implantation. Variable energy positron annihilation Doppler broadening spectroscopy and coincidence Doppler broadening measurements were performed for identification of the vacancies. A newly formed type of vacancy can be concluded by the S-W plot and the CDB results indicated that the oxygen vacancy (VO) complex Ti-Co-VO and/or Ti-VO are formed with Co ions implantation and the vacancy concentration is increased with increase of dopant dose.

  13. Impedance spectroscopy of Li2CO3 doped (Ba,Sr)TiO3 ceramic

    Science.gov (United States)

    Ham, Yong-Su; Koh, Jung-Hyuk

    2013-02-01

    (BaxSr1-x)TiO3-based ceramic has been considered as one of the most important electronic materials widely employed in microwave passive device applications. Many researches have been performed to lower the high sintering temperature, by adding various dopants such as B2O3, La2O3, etc. In our previous study, by adding Li2CO3 to (Ba0.5,Sr0.5)TiO3 ceramics, the sintering temperature of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics decreased from 1350 to 900 °C. This study observed the crystalline structure and electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics. In scanning the crystalline structure of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, no pyro phase was observed by X-ray diffraction analysis. To investigate the electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, real and imaginary parts of the impedances were analyzed. Complex impedance data were measured from 100 Hz to 1 MHz at various temperature ranges.

  14. Electronic structure, magnetism and disorder in the Heusler compound Co2TiSn

    International Nuclear Information System (INIS)

    Kandpal, Hem Chandra; Ksenofontov, Vadim; Wojcik, Marek; Seshadri, Ram; Felser, Claudia

    2007-01-01

    Polycrystalline samples of the Heusler compound Co 2 TiSn have been prepared and studied using bulk techniques (x-ray diffraction and magnetization) as well as local probes ( 119 Sn Moessbauer spectroscopy and 59 Co nuclear magnetic resonance spectroscopy) in order to determine how disorder affects the half-metallic behaviour and also to establish the joint use of Moessbauer and NMR spectroscopies as a quantitative probe of local atom ordering in these compounds. Additionally, density functional electronic structure calculations on ordered and partially disordered Co 2 TiSn compounds have been carried out at a number of different levels of theory in order to simultaneously understand how the particular choice of DFT scheme as well as disorder affects the computed magnetization. Our studies suggest that a sample which seems well ordered by x-ray diffraction and magnetization measurements can possess up to 10% of antisite (Co/Ti) disordering. Computations similarly suggest that even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character of this material. However, the use of an appropriate level of non-local DFT is crucial

  15. Synergistic effects of F and Fe in co-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufei, E-mail: zhang.yu.fei@stu.xjtu.edu.cn; Shen, Huiyuan; Liu, Yanhua, E-mail: yhliu@mail.xjtu.edu.cn [Xi’an Jiaotong University, Department of Building Environment and Services Engineering, School of Human Settlements and Civil Engineering (China)

    2016-03-15

    TiO{sub 2} photocatalysts co-doped with F and Fe were synthesized by a sol–gel method. Synergistic effects of F and Fe in the co-doped TiO{sub 2} were verified by NH{sub 3} decomposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–Vis) absorption spectroscopy, and was analyzed by the simulation based on the density functional theory (DFT). The results from NH{sub 3} decomposition confirmed that the cooperation of F and Fe broadened the optical response of TiO{sub 2} to visible light region and also enhanced the photocatalytic activity of TiO{sub 2} under ultraviolet light. XRD patterns, SEM and HRTEM images showed that the co-doped samples were nanometric anatase with an average particle size of 25 nm. Co-doping with F and Fe inhibited the grain growth of TiO{sub 2} from anatase to rutile and resulted in a larger lattice defect. XPS analysis exhibited that the doped F and Fe atoms were into the TiO{sub 2} lattice. UV–Vis absorption spectra showed that its optical absorption edge was moved up to approximately 617 nm and its ultraviolet absorption was also enhanced. The DFT results indicated that the cooperation of Fe 3d and O 2p orbits narrowed the band gap of TiO{sub 2} and F 2p orbit widened the upper valence bands. The synergistic electron density around F and Fe in co-doped TiO{sub 2} was capable to enhance the photo-chemical stability of TiO{sub 2}.

  16. Assimilation of carbonate country rock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China: Evidence from stable isotopes

    Directory of Open Access Journals (Sweden)

    Clément Ganino

    2013-09-01

    Full Text Available The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit. During emplacement of the main intrusion, multiple generations of mafic dykes invaded carbonate wall rocks, producing a large contact aureole. We measured the oxygen-isotope composition of the intrusions, their constituent minerals, and samples of the country rock. Magnetite and plagioclase from Panzhihua intrusion have δ18O values that are consistent with magmatic equilibrium, and formed from magmas with δ18O values that were 1–2‰ higher than expected in a mantle-derived magma. The unmetamorphosed country rock has high δ18O values, ranging from 13.2‰ (sandstone to 24.6–28.6‰ (dolomite. The skarns and marbles from the aureole have lower δ18O and δ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole. This would explain the alteration of δ18O of the dykes which have significantly higher values than expected for a mantle-derived magma. Depending on the exact δ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevated δ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%, assuming simple mixing. The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock, mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites. These mechanisms, particularly the latter, were probably involved in the formation of the Fe-Ti-V ores.

  17. Spectroscopy of neutron-rich isotopes of nickel and iron

    International Nuclear Information System (INIS)

    Girod, M.; Dessagne, P.; Bernas, M.; Langevin, M.; Pougheon, F.; Roussel, P.

    1987-01-01

    Spectroscopy of neutron rich isotopes of 67 Ni, 68 Ni and 62 Fe is studied using the quasi-elastic transfer reactions ( 14 C, 16 O) and ( 14 C, 17 O) on mass separated targets of 70 Zn and of 64 Ni. The structure of these new nuclei is investigated through the Hartree-Fock-Bogoliubov (HFB) calculations, using the D1SA interaction. Inertial parameters are calculated in the cranking approximation. Collective excited states are obtained consistently by solving the Bohr Hamiltonian. Based on these results, quantum numbers are tentatively assigned to the observed states and angular distributions, measured and calculated from the DWBA, are used to check this assignment. The spectroscopy of more neutron rich nuclei, yet unknown, is anticipated. A sharper test of wave functions is provided by the monopole operator of the O 2 + → O 1 + transition in 68 Ni, which have been deduced from the halflife measurement performed in delayed coincidence experiments. An impressive agreement is obtained between the measured halflife and its value calculated using complete HFB wave functions

  18. Magnesium and Titanium Isotopic Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende: It Is Fun

    Science.gov (United States)

    Liu, M.-C.; Keller, L. P.; McKeegan, K. D.

    2016-01-01

    Introduction: Hibonite-rich refractory inclusions are among the first solids that formed in the solar nebula, and thus provide constraints on the earliest environment in the Solar System. An unusual hibonite-perovskite inclusion from Allende, SHAL, consists of a large (approximately 500 by 200 microns) single hibonite crystal and coexisting blocky perovskite (approximately 200 microns in size). The hibonite is characterized by chemical and oxygen isotopic compositions similar to those in the FUN (Fractionated and Unknown Nuclear anomalies) inclusion HAL. However, the rare earth element (REE) patterns measured at different spots of SHAL hibonite are highly variable, ranging from Group II-like (light REEs enriched relative to heavy REEs) to Group III-like (relatively flat with slight Eu depletions), but overall contrast largely with that of HAL, especially in the Ce and Yb abundances. This implies that SHAL hibonite formed and underwent distillation processes under more reducing conditions. Interestingly, the accompanying perovskite has uniform, unfractionated oxygen isotopic compositions (averaging delta (sup 17) O equals delta (sup 18) O equals -7 per mille) and REE abundances that are completely different from those of SHAL hibonite. This has been interpreted that perovskite and hibonite may not be co-genetic. Here we performed Al-Mg and Ti isotopic measurements of SHAL hibonite and perovskite to determine if the FUN characteristics are observed in these two isotope systems, and to further constrain the origin and evolution of SHAL. Results: Isotopic measurements of Al-Mg and Ti in SHAL were performed on the UCLA CAMECA ims-1290 ion microprobe by following the analytical protocols described in [1]. The Al-Mg and Ti data obtained in both terrestrial standards and SHAL hibonite and perovskite are shown below. Both SHAL hibonite and perovskite, despite very high (sup 27) Al to (sup 24) Mg ratios, are devoid of (sup 26) Mg excesses that can be attributed to the decay

  19. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  20. Synthesis and enhanced photoelectrocatalytic activity of p–n junction Co3O4/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Dai Gaopeng; Liu Suqin; Liang Ying; Luo Tianxiong

    2013-01-01

    Highlights: ► Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by an impregnating–deposition–decompostion method treatment. ► Co 3 O 4 /TiO 2 NTs exhibit high photoelectrocatalytic (PEC) activity. ► The high PEC activity was attribute to the formation of p–n junction between Co 3 O 4 and TiO 2 . - Abstract: Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by depositing Co 3 O 4 nanoparticles (NPs) on the tube wall of the self-organized TiO 2 NTs using an impregnating–deposition–decompostion method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–vis absorption spectroscopy. The photoelectrocatalytic (PEC) activity is evaluated by degradation of methyl orange (MO) aqueous solution. The prepared Co 3 O 4 /TiO 2 NTs exhibit much higher PEC activity than TiO 2 NTs due to the p–n junction formed between Co 3 O 4 and TiO 2 .

  1. GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO(2) in sparkling drinks.

    Science.gov (United States)

    Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes

    2007-01-01

    A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.

  2. Nuclear structure studies of neutron-rich heavy nuclei by mass measurements of francium and radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbusch, Marco [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, 17487 Greifswald (Germany); Collaboration: ISOLTRAP-Collaboration

    2013-07-01

    The mass is a unique property of an atomic nucleus reflecting its binding energy and thus the sum of all interactions at work. Precise measurements of nuclear masses especially of short-lived exotic nuclides provide important input for nuclear structure, nuclear astrophysics, tests of the Standard Model, and weak interaction studies. The Penning-trap mass spectrometer ISOLTRAP at the on-line isotope separator ISOLDE/CERN has been set up for precision mass measurements and continuously improved for accessing more exotic nuclides. The mass uncertainty is typically δm / m=10{sup -8} and the accessible half-life has been reduced to about 50 ms. In this contribution, the results of a measurement campaign of neutron-rich francium and radium isotopes will be presented, i.e. the masses of the isotopic chain of {sup 224-233}Fr and {sup 233,234}Ra, one of the most neutron-rich ensemble obtainable at ISOL facilities. The mass {sup 234}Ra denotes the heaviest mass ever measured with ISOLTRAP. Experimental data in the neutron-rich, heavy mass region is of great interest for studies of structural evolution far from stability, especially because the knowledge from nuclear mass models is scarce. The impact of the new data on the physics in this mass region as well as recent technical developments of ISOLTRAP are discussed.

  3. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    Science.gov (United States)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  4. Preparation and characterization of self-assembled percolative BaTiO3–CoFe2O4 nanocomposites via magnetron co-sputtering

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2014-04-01

    Full Text Available BaTiO3–CoFe2O4 composite films were prepared on (100 SrTiO3 substrates by using a radio-frequency magnetron co-sputtering method at 750 °C. These films contained highly (001-oriented crystalline phases of perovskite BaTiO3 and spinel CoFe2O4, which can form a self-assembled nanostructure with BaTiO3 well-dispersed into CoFe2O4 under optimized sputtering conditions. A prominent dielectric percolation behavior was observed in the self-assembled nanocomposite. Compared with pure BaTiO3 films sputtered under similar conditions, the nanocomposite film showed higher dielectric constants and lower dielectric losses together with a dramatically suppressed frequency dispersion. This dielectric percolation phenomenon can be explained by the 'micro-capacitor' model, which was supported by measurement results of the electric polarization and leakage current.

  5. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2016-01-01

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns

  6. Vacancy identification in Co+ doped rutile TiO2 crystal with positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Ma Minyang; Qin Xiubo; Wang Baoyi; Wu Weiming

    2013-01-01

    Background: Room temperature Diluted Magnetic Semiconductor (DMS) is a critical path in the study of spin-electronic devices, but there are many disputes in the intrinsic properties and origin of the room temperature ferromagnetism. Positron annihilation spectroscopy (PAS) is a powerful technique for evaluating vacancy-type defects. Purpose: We aim to establish the relationship between the defect structure and ferromagnetism of the materials by analyzing the parameters of positron annihilation. Methods: Co-doped rutile TiO 2 films were synthesized by ion implantation and extensively studied by variable energy positron annihilation Doppler broadening spectroscopy (DBS) and coincidence Doppler broadening (CDB) measurements with variable energy slow positron beam for identification of the vacancies. Results: The results of DBS showed that a newly formed type of vacancy could be concluded by the S-W plot and the CDB results indicated that the oxygen vacancy (Vo) complex Ti-Co-Vo and/or Ti-Vo were formed with Co ions implantation and the vacancy concentration increased with increasing dopant dose. Conclusion: We identify that the generation of Ti-Vo and/or Ti-Co-Vo vacancy complex are induced by the existence of excess Ti 3d electrons around the oxygen vacancy. (authors)

  7. Co-firing behavior of ZnTiO3-TiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters

    International Nuclear Information System (INIS)

    Wang Mao; Zhou Ji; Yue Zhenxing; Li Longtu; Gui Zhilun

    2003-01-01

    The low-temperature co-firing compatibility between ferrite and dielectric materials is the key issue in the production process of multi-layer chip LC filters. This paper presents the co-firing behavior and interfacial diffusion of ZnTiO 3 -TiO 2 dielectric/Co 2 Z hexagonal ferrite multi-layer composites. It has been testified that proper constitutional modification is feasible to diminish co-firing mismatch and enhance co-firing compatibility. Interfacial reactions occur at the interface, which can strengthen combinations between ferrite layers and dielectric layers. Titanium and barium tend to concentrate at the interface; iron and zinc have a wide diffusion range

  8. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand

    2011-02-01

    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  9. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  10. A STUDY ON CARBON ISOTOPE OF CO2 AND CH4 IN WESTERN DIENG PLATEU BY GAS CHROMATOGRAPHY- ISOTOPE RATIO MASS SPECTROMETER (GC-IRMS

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2010-06-01

    Full Text Available The carbon isotope can be used to evaluate volcanism phenomenon of volcano. The study of carbon isotope of CO2 and CH4 was carried out in western Dieng Plateau by mass-spectrometer. Before analysis, sampel was separated by gas chromatography using a Porapak-Q column and a FID (Flame Ionization Detector detector. The gas was oxidized by copper oxide at 850oC before being ionized in mass-spectrometer for isotope analysis. The CO2 content in Candradimuka crater (-4.10 O/OO, indicated that the gas may be as volcanic gas. The other CO2 from Sumber and western Gua Jimat, had isotope value  of -10.05 and -12.07 O/OO, respectively, indicating contamination from crustal and subduction material. The carbon isotope of CH4 gas from Pancasan village was -63.42 O/OO, that may be categorized as biogenic gas.   Keywords: isotope, CO2, CH4, Dieng.

  11. Surface modification and enhanced photocatalytic CO{sub 2} reduction performance of TiO{sub 2}: a review

    Energy Technology Data Exchange (ETDEWEB)

    Low, Jingxiang; Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-15

    Highlights: • Application of modified TiO{sub 2} for photocatalytic CO{sub 2} reduction is summarized. • Different surface modification strategies of TiO{sub 2} are highlighted. • Summary and future perspectives in photocatalytic CO{sub 2} reduction are presented. - Abstract: Recently, the excessive consumption of fossil fuels has caused high emissions of the greenhouse gases, CO{sub 2} into atmosphere and global energy crisis. Mimicking the natural photosynthesis by using semiconductor materials to achieve photocatalytic CO{sub 2} reduction into valuable solar fuels such as CH{sub 4}, HCO{sub 2}H, CH{sub 2}O, and CH{sub 3}OH is known as one of the best solutions for addressing the aforementioned issue. Among various proposed photocatalysts, TiO{sub 2} has been extensively studied over the past several decades for photocatalytic CO{sub 2} reduction because of its cheapness and environmental friendliness. Particularly, surface modification of TiO{sub 2} has attracted numerous interests due to its capability of enhancing the light absorption ability, facilitating the electron-hole separation, tuning the CO{sub 2} reduction selectivity and increasing the CO{sub 2} adsorption and activation ability of TiO{sub 2} for photocatalytic CO{sub 2} reduction. In this review, recent approaches of the surface modification of TiO{sub 2} for photocatalytic CO{sub 2} reduction, including impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading, are presented. The photocatalytic CO{sub 2} reduction mechanism and pathways of TiO{sub 2} are discussed. The future research direction and perspective of photocatalytic CO{sub 2} reduction over surface-modified TiO{sub 2} are also presented.

  12. The CO2 emissions-income nexus: Evidence from rich countries

    International Nuclear Information System (INIS)

    Jaunky, Vishal Chandr

    2011-01-01

    The paper attempts to test the Environment Kuznets Curve (EKC) hypothesis for 36 high-income countries for the period 1980-2005. The test is based on the suggestion of . Various panel data unit root and co-integration tests are applied. Carbon dioxide (CO 2 ) emissions and GDP series are integrated of order one and co-integrated, especially after controlling for cross-sectional dependence. Additionally, the Blundell-Bond system generalised methods of moments (GMM) is employed to conduct a panel causality test in a vector error-correction mechanism (VECM) setting. Unidirectional causality running from real per capita GDP to per capita CO 2 emissions is uncovered in both the short-run and the long-run. The empirical analysis based on individual countries provides evidence of an EKC for Greece, Malta, Oman, Portugal and the United Kingdom. However, it can be observed that for the whole panel, a 1% increase in GDP generates an increase of 0.68% in CO 2 emissions in the short-run and 0.22% in the long-run. The lower long-run income elasticity does not provide evidence of an EKC, but does indicate that, over time, CO 2 emissions are stabilising in the rich countries. - Research highlights: → The Environment Kuznets Curve hypothesis for 36 rich countries is studied over the period 1980-2005. → approach is used and extended by including a causality analysis. → Carbon dioxide (CO 2 ) emissions are found to be stabilizing in the rich countries.

  13. Investigation of reduced transition-strengths in neutron-rich chromium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Braunroth, Thomas; Dewald, Alfred; Fransen, Christoph; Litzinger, Julia [Institut fuer Kernphysik, Universitaet Koeln (Germany); Iwasaki, Hironori [National Superconducting Cyclotron Laboratory, MSU (United States); Lemasson, Antoine [GANIL, Laboratoire Commun DSM/CEA (France); Lenzi, Silvia [Department of Physics and Astronomy, University of Padova (Italy); INFN, Sezione di Padova (Italy)

    2015-07-01

    Neutron-rich nuclei close to N=40 are known for their rapid changes in nuclear structure. While {sup 68}Ni exhibits signatures of a shell closure, experimental data - e.g. excitation energies of the 2{sup +}{sub 1}-state and B(E2;2{sup +}{sub 1} → 0{sup +}{sub 1})-values - along the isotopic chains in even more exotic Fe and Cr-isotopes suggest a sudden rise in collective behaviour for N → 40. Lifetimes of low-lying yrast states in {sup 58,60,62}Cr were measured with the Recoil Distance Doppler-shift (RDDS) technique at NSCL, MSU (USA) to deduce model independent B(E2)-values. After fragmentation of a primary {sup 82}Se beam (E=140 AMeV) on a {sup 9}Be target and subsequent filtering with the A1900 fragment separator, high purity {sup 59,61,63}Mn-beams (E ∝ 95 AMeV) impinged on the {sup 9}Be plunger target, where excited states in the above mentioned Cr-isotopes were then populated in one proton knockout reactions. The S800 spectrograph allowed a clear recoil identification, which then lead to clean γ-spectra as measured by the Segmented Germanium Array (SeGA). Final results of this experiment will be shown and discussed in the context of state-of-the-art shell-model calculations.

  14. Nuclear structure studies of the neutron-rich Rubidium isotopes using Coulomb excitation

    CERN Multimedia

    Reiter, P; Blazhev, A A; Voulot, D; Meot, V H; Simpson, G S; Georgiev, G P; Gaudefroy, L; Roig, O

    We propose to study the properties of odd-mass neutron-rich rubidium isotopes by the Coulomb-excitation technique, using the Miniball array coupled to the REX-ISOLDE facility. The results from similar measurements from the recent years (e.g. for the odd-mass and the odd-odd Cu isotopes, IS435) have shown the strong potential in such measurements for gaining information both for single-particle-like and collective states in exotic nuclei. Since there is practically no experimental information for excited states in the odd-mass Rb isotopes beyond $^{93}$Rb, the present study should be able to provide new data in a region of spherical ($^{93}$Rb and $^{95}$Rb) as well as well-deformed nuclei ($^{97}$Rb and $^{99}$Rb). Of particular interest is the rapid shape change that occurs when going from $^{95}$Rb (${\\varepsilon}_{2}$=0.06) to $^{97}$Rb (${\\varepsilon}_{2}$=0.3). These results should be of significant astrophysical interest as well, due to the close proximity of the r-process path.

  15. Measurement of beta decay periods for Fe-Ni neutrons rich isotopes

    International Nuclear Information System (INIS)

    Czajkowski, S.

    1992-01-01

    Thermal fission of 239 Pu was used to produce 68,69 Co and 68 Fe isotopes, the lightest ones ever observed in thermal fission, at the ILL high-flux reactor, in Grenoble. Separated with the Lohengrin recoil spectrometer, then identified by means of a Δ E-E ionization chamber, fragments were implanted in a set of Si-detectors, where β-particles were detected too. The fission yields were determined, and the beta-decay half-lives were extracted from delayed coincidence analysis between ion implantation and the subsequent beta detection: They were found to be 0.27±0.05s, 0.18±0.10s, and 0.10±0.06s respectively for 69 Co, 68 Co, and 68 Fe. This method was adapted to a new experimental configuration: 65 Fe isotopes were produced from 86 Kr projectile fragmentation at 500 MeV/u on a Be target. Selected ions were separated with the fragment separator FRS at GSI (Darmstadt), tuned in the monoenergetic mode. Fragments were identified by ΔE-ToF, slowed down, and then implanted in two rows of PIN-diodes that provided an additional range selection. The half-life were determined from the analysis of the decay chain Fe-Co-Ni: it was found 0.4±0.2s. Production rates obtained with the two methods are compared at the end of this work

  16. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    Science.gov (United States)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  17. Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Chi Lina; Hou Junwei

    2012-01-01

    Highlights: ► Ag and CdS nanoparticles co-sensitized TiO 2 nanotubes were fabricated by the SILAR method. ► The co-sensitization expands the photoresponse range of TiO 2 NTs to 668.7 nm. ► Visible light photocurrents and photocatalytic activities of CdS–Ag/TiO 2 NTs were studied. ► The electron transfer mechanism of CdS–Ag/TiO 2 NTs was proposed. - Abstract: The Ag and CdS nanoparticles co-sensitization of TiO 2 nanotubes (CdS–Ag/TiO 2 NTs) were prepared by successive ionic layer adsorption and reaction (SILAR) technique. The phase composition, morphology and optical property were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffusion reflection spectroscopy (DRS). The co-modification of Ag and CdS nanoparticles expanded the photoresponse range of TiO 2 NTs from ultraviolet region to 668.7 nm, and the CdS–Ag/TiO 2 NTs prepared by SILAR deposition of 5 cycles exhibited higher visible photocurrent and stability against photocorrosion. The detailed electrons transfer mechanism of CdS–Ag/TiO 2 NTs was proposed, and photocatalytic activity toward degradation of methyl orange (MO) under visible-light irradiation was also investigated.

  18. Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes

    CERN Multimedia

    Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F

    2002-01-01

    We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.

  19. Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Chunqing; Yates, John T. Jr. [Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2013-04-21

    The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

  20. Hydrogenation Properties of TiFe Doped with Zirconium

    Directory of Open Access Journals (Sweden)

    Catherine Gosselin

    2015-11-01

    Full Text Available The goal of this study was to optimize the activation behaviour of hydrogen storage alloy TiFe. We found that the addition of a small amount of Zr in TiFe alloy greatly reduces the hydrogenation activation time. Two different procedural synthesis methods were applied: co-melt, where the TiFe was melted and afterward re-melted with the addition of Zr, and single-melt, where Ti, Fe and Zr were melted together in one single operation. The co-melted sample absorbed hydrogen at its maximum capacity in less than three hours without any pre-treatment. The single-melted alloy absorbed its maximum capacity in less than seven hours, also without pre-treatment. The reason for discrepancies between co-melt and single-melt alloys was found to be the different microstructure. The effect of air exposure was also investigated. We found that the air-exposed samples had the same maximum capacity as the argon protected samples but with a slightly longer incubation time, which is probably due to the presence of a dense surface oxide layer. Scanning electron microscopy revealed the presence of a rich Zr intergranular phase in the TiFe matrix, which is responsible for the enhanced hydrogenation properties of these Zr-doped TiFe alloys.

  1. Sm/Ti co-substituted bismuth ferrite multiferroics: reciprocity between tetragonality and piezoelectricity.

    Science.gov (United States)

    Jha, Pardeep K; Jha, Priyanka A; Singh, Prabhakar; Ranjan, Rajeev; Dwivedi, R K

    2017-10-04

    BiFeO 3 (BFO) systems co-modified with Ti, Sm and Sm-Ti have been investigated for piezoelectricity together with dielectric and multiferroic properties. Structural studies revealed the coexistence of orthorhombic and rhombohedral (R3c) phases for x > 0.12. Impurity phases were shown to have hardly any effect on the remanent magnetization, which rather depends on the Fe-O-Fe bond angle. The dielectric loss was reduced considerably by substitution. A correlation between the piezoelectric coefficient and tetragonality was observed in these samples. BFO co-substituted with Sm-Ti exhibited a high piezoelectric coefficient with better ferroic properties, which revealed a unique combination of green piezoelectricity and multiferroicity.

  2. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  3. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites

    DEFF Research Database (Denmark)

    Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.

    2015-01-01

    origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages...

  4. Electrochemical Properties of Ni 47 Ti 49 Co 4 Shape Memory Alloy in Artificial Urine for Urological Implant

    KAUST Repository

    Ahmed, Rasha A.

    2015-09-02

    © 2015 American Chemical Society. The corrosion performance of Ni47Ti49Co4 shape memory alloys (SMA) in artificial urine solution was evaluated in comparison with Ni51Ti49 alloy as reference, at 37°C and pH 5.6-6.4. SEM results revealed less pitting attack for Ni47Ti49Co4 SMA surface after immersion in artificial urine solution. The XRD analysis demonstrated the formation of passive film on Ni47Ti49Co4 SMA. The XPS analysis indicated that the film mainly consisted of O, Ti, Co, P, and a small amount of Ni, and the concentration of Ni ions release was greatly reduced compared to that of the Ni51Ti49 SMA. Linear polarization results illustrated that corrosion potential (Ecorr), corrosion current density (icorr), and ac polarization resistance (Rp) were affected greatly by alloying Co to Nitinol alloy. Our observations indicated that the corrosion resistance of the ternary alloy, Ni47Ti49Co4 SMA, offers superior corrosion resistance in artificial urine when compared to Ni51Ti49 SMA, which was suitable for medical applications.

  5. Electrochemical Properties of Ni 47 Ti 49 Co 4 Shape Memory Alloy in Artificial Urine for Urological Implant

    KAUST Repository

    Ahmed, Rasha A.

    2015-01-01

    © 2015 American Chemical Society. The corrosion performance of Ni47Ti49Co4 shape memory alloys (SMA) in artificial urine solution was evaluated in comparison with Ni51Ti49 alloy as reference, at 37°C and pH 5.6-6.4. SEM results revealed less pitting attack for Ni47Ti49Co4 SMA surface after immersion in artificial urine solution. The XRD analysis demonstrated the formation of passive film on Ni47Ti49Co4 SMA. The XPS analysis indicated that the film mainly consisted of O, Ti, Co, P, and a small amount of Ni, and the concentration of Ni ions release was greatly reduced compared to that of the Ni51Ti49 SMA. Linear polarization results illustrated that corrosion potential (Ecorr), corrosion current density (icorr), and ac polarization resistance (Rp) were affected greatly by alloying Co to Nitinol alloy. Our observations indicated that the corrosion resistance of the ternary alloy, Ni47Ti49Co4 SMA, offers superior corrosion resistance in artificial urine when compared to Ni51Ti49 SMA, which was suitable for medical applications.

  6. Steady-state isotopic transient kinetic analysis investigation of CO-O2 and CO-NO reactions over a commercial automotive catalyst

    International Nuclear Information System (INIS)

    Oukaci, R.; Blackmond, D.G.; Goodwin, J.G. Jr.; Gallaher, G.R.

    1992-01-01

    In this paper, steady-state isotopic transient kinetic analysis (SSITKA) is used to study two model reactions, CO oxidation and CO-NO reactions, on a typical formulation of a three-way auto-catalyst. Under steady-state conditions, abrupt switches in the isotopic composition of CO ( 12 C 16 O/ 13 C 18 O) were carried out to produce isotopic transients in both labeled reactants and products. Along with the determination of the average surface lifetimes and concentrations of reaction intermediates, an analysis of the transient responses along the carbon reaction pathway indicated that the distribution of active sites for the formation of CO 2 was bimodal for both reactions. Furthermore, relatively few surface sites contributed to the overall reaction rate

  7. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  8. Structural, optical, and magnetic properties of polycrystalline Co-doped TiO{sub 2} synthesized by solid-state method

    Energy Technology Data Exchange (ETDEWEB)

    Bouaine, Abdelhamid, E-mail: abdelhamidfethi@yahoo.fr [Laboratoire d' Etude des Materiaux (LEM), Departement de Physique, Faculte des Sciences Exactes et des Sciences de la Nature et de la vie, Universite de Jijel, cite Oued-Aissa, B.P 98, Jijel 18000 (Algeria); Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS - UdS, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex 2 (France); Schmerber, G.; Ihiawakrim, D.; Derory, A. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS - UdS, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex 2 (France)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer Influence of Co doping on the TiO{sub 2} tetragonal structure. Black-Right-Pointing-Pointer Decrease of the energy band gap after doping with Co atoms. Black-Right-Pointing-Pointer Appearance of ferromagnetism in Co-doped TiO{sub 2} diluted magnetic semiconductors. - Abstract: We have used a solid-state method to synthesize polycrystalline Co-doped TiO{sub 2} diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO{sub 2} crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO{sub 2} matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO{sub 2} and a ferromagnetic behavior for the same samples after annealed under a mixture of H{sub 2}/N{sub 2} atmosphere.

  9. Effects of TiO2 and Co3O4 Nanoparticles on Circulating Angiogenic Cells

    Science.gov (United States)

    Spigoni, Valentina; Cito, Monia; Alinovi, Rossella; Pinelli, Silvana; Passeri, Giovanni; Zavaroni, Ivana; Goldoni, Matteo; Campanini, Marco; Aliatis, Irene; Mutti, Antonio

    2015-01-01

    Background and Aim Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. Methods CACs were isolated from healthy donors’ buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml) to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. Results Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. Conclusions In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans. PMID:25803285

  10. Defining an absolute reference frame for 'clumped' isotope studies of CO 2

    Science.gov (United States)

    Dennis, Kate J.; Affek, Hagit P.; Passey, Benjamin H.; Schrag, Daniel P.; Eiler, John M.

    2011-11-01

    We present a revised approach for standardizing and reporting analyses of multiply substituted isotopologues of CO 2 (i.e., 'clumped' isotopic species, especially the mass-47 isotopologues). Our approach standardizes such data to an absolute reference frame based on theoretical predictions of the abundances of multiply-substituted isotopologues in gaseous CO 2 at thermodynamic equilibrium. This reference frame is preferred over an inter-laboratory calibration of carbonates because it enables all laboratories measuring mass 47 CO 2 to use a common scale that is tied directly to theoretical predictions of clumping in CO 2, regardless of the laboratory's primary research field (carbonate thermometry or CO 2 biogeochemistry); it explicitly accounts for mass spectrometric artifacts rather than convolving (and potentially confusing) them with chemical fractionations associated with sample preparation; and it is based on a thermodynamic equilibrium that can be experimentally established in any suitably equipped laboratory using commonly available materials. By analyzing CO 2 gases that have been subjected to established laboratory procedures known to promote isotopic equilibrium (i.e., heated gases and water-equilibrated CO 2), and by reference to thermodynamic predictions of equilibrium isotopic distributions, it is possible to construct an empirical transfer function that is applicable to data with unknown clumped isotope signatures. This transfer function empirically accounts for the fragmentation and recombination reactions that occur in electron impact ionization sources and other mass spectrometric artifacts. We describe the protocol necessary to construct such a reference frame, the method for converting gases with unknown clumped isotope compositions to this reference frame, and suggest a protocol for ensuring that all reported isotopic compositions (e.g., Δ 47 values; Eiler and Schauble, 2004; Eiler, 2007) can be compared among different laboratories and

  11. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2016-01-01

    MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2

  12. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings prepared from TiC{sub 0.7}N{sub 0.3} powder using ball milling followed by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang, E-mail: haoliang@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Wang, Zhenwei, E-mail: 1004329228@qq.com [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology, Weihai, No. 2, Wenhua West Road, Weihai 264209 (China); Zheng, Yaoqing, E-mail: 13612177268@163.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Li, Qianqian, E-mail: 1482471595@qq.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Guan, Sujun, E-mail: sujunguan1221@gmail.com [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Zhao, Qian, E-mail: zhaoqian@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Cheng, Lijun, E-mail: chenglijun@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Liu, Jizi, E-mail: jzliu@njust.edu.cn [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, No. 200, Xiaolingwei Street, Nanjing 210094 (China)

    2017-01-01

    Highlights: • TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO{sub 2} formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO{sub 2} coatings on the surfaces of Al{sub 2}O{sub 3} balls from TiC{sub 0.7}N{sub 0.3} powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC{sub 0.7}N{sub 0.3} coatings were formed after ball milling. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings were prepared after the direct oxidization of TiC{sub 0.7}N{sub 0.3} coatings in the atmosphere. However, TiO{sub 2} was hardly formed in the surface layer of TiC{sub 0.7}N{sub 0.3} coatings within a depth less than 10 nm during the heat oxidation of TiC{sub 0.7}N{sub 0.3} coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite microstructure.

  13. Optical and electrical properties of Ti(Cr)O_2:N thin films deposited by magnetron co-sputtering

    International Nuclear Information System (INIS)

    Kollbek, K.; Szkudlarek, A.; Marzec, M.M.; Lyson-Sypien, B.; Cecot, M.; Bernasik, A.; Radecka, M.; Zakrzewska, K.

    2016-01-01

    Graphical abstract: - Highlights: • Co-doped well-crystallized stoichiometric Ti(Cr)O_2:N thin films are deposited. • Magnetron sputtering of ceramic TiO_2 target is a new strategy for co-doping. • Bigger contribution from substitutionally incorporated nitrogen is seen in XPS. • Significant red shift of the fundamental absorption edge is obtained. - Abstract: The paper deals with TiO_2-based thin films, doped with Cr and N, obtained by magnetron co-sputtering from titanium dioxide ceramic and chromium targets in Ar + N_2 atmosphere. Co-doped samples of Ti(Cr)O_2:N are investigated from the point of view of morphological, crystallographic, optical, and electrical properties. Characterization techniques such as: X-ray diffraction, XRD, scanning electron microscopy, SEM, atomic force microscopy, AFM, Energy Dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS, optical spectrophotometry as well as impedance spectroscopy are applied. XRD reveals TiO_2 and TiO_2:N thin films are well crystallized as opposed to those of TiO_2:Cr and Ti(Cr)O_2:N. XPS spectra confirm that co-doping has been successfully performed with the biggest contribution from the lower binding energy component of N 1s peak at 396 eV. SEM analysis indicates uniform and dense morphology without columnar growth. Comparison between the band gaps indicates a significant shift of the absorption edge towards visible range from 3.69 eV in the case of non-stoichiometric Ti(Cr)O_2_−_x:N to 2.78 eV in the case of stoichiometric Ti(Cr)O_2:N which should be attributed to the incorporation of both dopants at substitutional positions in TiO_2 lattice. Electrical conductivity of stoichiometric Ti(Cr)O_2:N increases in comparison to co-doped nonstoichiometric TiO_2_−_x thin film and reaches almost the same value as that of TiO_2 stoichiometric film.

  14. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  15. Carbon and Noble Gas Isotopes in the Tengchong Volcanic Geothermal Area, Yunnan, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    XU Sheng; Shun'ich NAKAI; Hiroshi WAKITA; WANG Xianbin

    2004-01-01

    Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He.Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic area than do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4 ‰ to 1.6 ‰ and from -52.8 ‰ to -2.8 ‰,respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and nearsurface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantlederived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material.However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1%-2%) to the MORB reservoir around 1.3 Ga ago,which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.

  16. Investigation of semi-insulating InP co-doped with Ti and various acceptors for use in X-ray detection

    International Nuclear Information System (INIS)

    Zdansky, K.; Gorodynskyy, V.; Kozak, H.; Pekarek, L.

    2005-01-01

    Semi-insulating InP single crystals co-doped with Zn and Ti and co-doped with Ti and Mn were grown by Czochralski technique. Wafers of these crystals were annealed for a long time at a high temperature and cooled slowly. The samples were characterized by temperature dependent resistivity and Hall coefficient measurements. The binding energies of Ti in semi-insulating InP co-doped with Ti and Zn and co-doped with Ti and Mn were found to differ which shows that Ti may occupy different sites in InP. The curves of Hall coefficient vs. reciprocal temperature deviate from straight lines at low temperatures due to electron and hole mixed conductance. The value of resistivity of the annealed semi-insulating InP co-doped with Ti and Mn reaches high resistivity at a reduced temperature easily achievable by thermo-electric devices which could make this material useable in X-ray detection. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Fabrication and CO2 separation performance of carbon membranes doped with TiO2 nanoparticles%纳米TiO2掺杂炭膜的制备及其CO2分离性能

    Institute of Scientific and Technical Information of China (English)

    王婵; 黄彦

    2014-01-01

    A TiO2 sol was prepared from tetrabutyltitanate using polyethylene glycol as a stabilizer, and this was homogeneously mixed with polyfurfuryl alcohol, dip-coated on a porous Al2 O3 substrate and carbonized at 700℃ for 4 h to produce TiO2-doped car-bon membranes. SEM, TEM, XRD and granulometry were used to characterize the membranes, and their permeation performance for CO2 , N2 and CH4 were tested. It was found that polyethylene glycol is effective in controlling the hydroxylation of the tetrabu-tyltitanate. This not only favored the formation of spherical TiO2 nanoparticles with a small size and narrow size distribution but also improved the homogeneity of the dispersion of the TiO2 nanoparticles in polyfurfuryl alcohol. The doping of the membranes with TiO2 nanoparticles greatly improved the CO2 permeance and permselectivity. The TiO2 doping helps to create diffusion paths, but it may also block the pores in the carbon matrix. Therefore, the CO2 permeance reached a maximum of 7. 0×10-8 mol·m-2·s-1·Pa-1 with a mass ratio of TiO2 sol to polyfurfuryl alcohol of 2, where the CO2/N2 and the CO2/CH4 selectivities were 34 and 64, respec-tively.%以钛酸丁酯为原料、聚乙二醇为稳定剂,采用溶胶-凝胶法制备含球形TiO2纳米粒子的溶胶,将其与碳前驱体聚糠醇均匀混合后涂敷于多孔Al2 O3基体表面,最后经炭化处理制得TiO2-C/Al2 O3复合膜。采用SEM、TEM、XRD、粒径分析等手段对样品进行表征,并测定炭膜对CO2、N2和CH4的渗透性能。结果表明,聚乙二醇能有效控制钛酸丁酯的水解,不仅有利于形成粒径小而均匀的球形纳米TiO2粒子,而且可促进TiO2粒子在聚糠醇中的均匀分散。 TiO2粒子的掺杂明显提高了炭膜的CO2渗透率及渗透选择性。其中,CO2渗透率、CO2/N2选择性和CO2/CH4选择性分别可达7.0´10-8 mol·m-2·s-1· Pa-1、34和64。 TiO2的掺杂有利于产生更多渗透通道,但也会阻断炭材料本身的渗透通道,因此Ti

  18. Deposition of Co-Ti alloy on mild steel substrate using laser cladding

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2007-01-01

    Laser cladding of a Co-Ti alloy on a mild steel substrate is studied. Premixed powders with the composition of 85 wt% cobalt and 15 wt% titanium are pre-placed on the substrate and a moving laser beam at different velocities is used to produce clad layers well bounded to the substrate. Characteristics of the clad are investigated using optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microhardness tests. The results reveal that the intermetallic phase TiCo 3 and β (i.e. fcc) cobalt are formed in the clad layer. The clad layer can also have major dilution from the substrate depending on the laser scanning velocity. It is observed that a finer microstructure is achievable with higher laser velocities whereas higher hardness is achieved using lower velocities. The latter is due to the formation of a larger fraction of TiCo 3 phase

  19. Deposition of Co-Ti alloy on mild steel substrate using laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Alemohammad, Hamidreza [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)], E-mail: shalemoh@engmail.uwaterloo.ca; Esmaeili, Shahrzad [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Toyserkani, Ehsan [University of Waterloo, Department of Mechanical and Mechatronics Engineering, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)

    2007-05-15

    Laser cladding of a Co-Ti alloy on a mild steel substrate is studied. Premixed powders with the composition of 85 wt% cobalt and 15 wt% titanium are pre-placed on the substrate and a moving laser beam at different velocities is used to produce clad layers well bounded to the substrate. Characteristics of the clad are investigated using optical microscopy, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microhardness tests. The results reveal that the intermetallic phase TiCo{sub 3} and {beta} (i.e. fcc) cobalt are formed in the clad layer. The clad layer can also have major dilution from the substrate depending on the laser scanning velocity. It is observed that a finer microstructure is achievable with higher laser velocities whereas higher hardness is achieved using lower velocities. The latter is due to the formation of a larger fraction of TiCo{sub 3} phase.

  20. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits

    Science.gov (United States)

    Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.

    2002-01-01

    Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal

  1. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    International Nuclear Information System (INIS)

    Guillon, S.; Pili, E.; Agrinier, P.

    2012-01-01

    CO 2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO 2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO 2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of C-13 in CO 2 . Using a set of reference gases of known CO 2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO 2 concentration, and 0.05 per thousand for δC-13 at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of C-13 on CO 2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO 2 concentration and 1.3 per thousand for δC-13, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO 2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source. (authors)

  2. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    Science.gov (United States)

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  3. Beta-decay of 71Co and 73Co

    International Nuclear Information System (INIS)

    Sawicka, M.; Pfuetzner, M.; Matea, I.; Lewitowicz, M.; France, G. de; Georgiev, G.; Grawe, H.; Becker, F.; Grzywacz, R.; Daugas, J.M.; Belier, G.; Brown, B.A.; Lisetskiy, A.; Bingham, C.; Borcea, R.; Buta, A.; Dragulescu, E.; Bouchez, E.; Giovinazzo, J.; Hammache, F.; Ibrahim, F.; Mayet, P.; Meot, V.; Negoita, F.; De Oliveira-Santos, F; Perru, O.; Roig, O.; Rykaczewski, K.; Saint-Laurent, M.G.; Sauvestre, J.E.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Theisen, C.; Verney, D.; Zylicz, J.

    2004-01-01

    A decay spectroscopy study of the neutron-rich cobalt isotopes has been performed using fragmentation of a 86 Kr 36+ beam and the new LISE2000 spectrometer at GANIL. For 71 Co and 73 Co, the β-delayed γ radiation has been observed for the first time, and the half-lives were found to be 79(5) ms and 41(4) ms, respectively. Features of the decay are discussed qualitatively in terms of nuclear models. (orig.)

  4. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Directory of Open Access Journals (Sweden)

    C. Wraith

    2017-08-01

    Full Text Available Collinear laser spectroscopy was performed on Zn (Z=30 isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni.

  5. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Canto, C.E., E-mail: carloscanto2012@yahoo.com.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Rocha, M.F. [ESIME-Z, IPN, U.P. ALM, Gustavo A. Madero, C.P. 07738 México D.F. (Mexico); Alemón, B. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Huegel, J.C. [Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico)

    2016-03-15

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  6. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    International Nuclear Information System (INIS)

    Canto, C.E.; Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C.; Rocha, M.F.; Alemón, B.; Flores, M.; Huegel, J.C.

    2016-01-01

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  7. K isomerism and collectivity in neutron-rich rare-earth isotopes

    Science.gov (United States)

    Patel, Zena

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated and identified. The excited states of nuclei are studied by delayed isomeric or beta-delayed gamma-ray spectroscopy. New K isomers were found in Sm (Z=62), Eu (Z=63), and Gd (Z=64) isotopes. The key results are discussed here. Excited states in the N=102 isotones 166Gd and 164Sm have been observed following isomeric decay for the first time. The K-isomeric states in 166Gd and 164Sm are due to 2-quasiparticle configurations. Based on the decay patterns and potential energy surface calculations, including beta6 deformation, both isomers are assigned a (6-) spin-parity. The half-lives of the isomeric states have been measured to be 950(60)ns and 600(140)ns for 166Gd and 164Sm respectively. Collective observables are discussed in light of the systematics of the region, giving insight into nuclear shape evolution. The decrease in the ground state band energies of 166Gd and 164Sm (N=102) compared to 164Gd and 162Sm (N=100) respectively, presents evidence for the predicted deformed shell closure at N=100. A 4-quasiparticle isomeric state has been discovered in 160Sm: the lightest deformed nucleus with a 4-quasiparticle isomer to date. The isomeric state is assigned an (11+) spin-parity with a measured half-life of 1.8(4)us. The (11+) isomeric state decays into a rotational band structure, based on a (6-) v5/2-[523] ⊗ v7/2+[633] bandhead, determined from the extracted gK-gR values. Potential energy surface and blocked BCS calculations were performed in the deformed midshell region

  8. The defect-induced changes of the electronic and magnetic properties in the inverse Heusler alloy Ti{sub 2}CoAl

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ychenjz@163.com [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wu, Bo [Department of Physics, Zunyi Normal College, Zunyi 563002 (China); Yuan, Hongkuan; Feng, Yu [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Hong, E-mail: chenh@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2015-01-15

    The first-principles calculations are performed to investigate the effect of swap, antisite and vacancy defects of three classes on the electronic and magnetic properties in the inverse Heusler alloy Ti{sub 2}CoAl of half-metallicity. Our calculations reveal that Ti(A/B)–Co and Co–Al swaps, Ti(A/B) and Al vacancy defects as well as Co{sub Ti(A)/Al} and Al{sub Ti(A)/Ti(B)} antisite defects are likely to form in a concentration as high as 12.5%. Among them, Co{sub Ti(A)} antisite is detected to be the most probable defect. It is shown that the spin polarizations of Ti{sub 2}CoAl are considerably reduced by the Ti(A/B)–Co swap and Ti(B)/Al vacancy defects, while a quite high spin polarization around 95% is observed in Co–Al swap as well as Ti(A) vacancy. Remarkably, all the likely antisite defects almost retain the half-metallic character in a concentration of 12.5% even if they have the possibility to form. However, induced by antisites, the Fermi levels shift to the edge of band gap with small peaks arising just above the Fermi level, which may destroy the half-metallicity by spin-flip excitation. - Graphical abstract: The spin polarization and formation energy of various possible defects in inverse Heusler alloy Ti{sub 2}CoAl. The triangle, star and square represent the swap, antisite and vacancy defects, respectively. - Highlights: • The swap, antisite, and vacancy defects are studied in half-metallic Ti{sub 2}CoAl. • The Co{sub Ti(A)} antisite is the most probable among the studied defects. • The antisite defects almost retain the half-metallicity. • Most of swap and vacancy defects have degraded the half-metallicity. • High spin polarizations are detected in Co–Al swap and Ti(A) vacancy defects.

  9. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-06-20

    TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  10. Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part I: Isotopic (C,O) study of the Khushaym Matruk natural analogue (central Jordan)

    International Nuclear Information System (INIS)

    Fourcade, Serge; Trotignon, Laurent; Boulvais, Philippe; Techer, Isabelle; Elie, Marcel; Vandamme, Didier; Salameh, Elias; Khoury, Hani

    2007-01-01

    The Khushaym Matruk site in central Jordan may represent a natural analogue depicting the interaction of alkaline solutions with a clayey sedimentary formation or with clay-rich confining barriers at the interface with concrete structures in waste disposal sites. In this locality, past spontaneous combustion of organic matter in a clayey biomicritic formation produced a ca. 60 m-thick layer of cement-marble containing some of the high-temperature phases usually found in industrial cements (e.g., spurrite, brucite, and Ca-aluminate). A vertical cross-section of the underlying sediments was used in order to study the interaction between cement-marbles and neighbouring clayey limestones under weathering conditions. A thermodynamic approach of the alteration parageneses (calcite-jennite-afwillite-brucite and CSH phases) in the cement-marbles constrains the interacting solutions to have had pH-values between 10.5 and 12. Over 3 m, the sediments located beneath the metamorphic unit were compacted and underwent carbonation. They display large C and O isotopic variations with respect to 'pristine' sediments from the bottom of the section. Low δ 13 C-values down to -31.4 per mille /PDB show the contribution of CO 2 derived from the oxidization of organic matter and from the atmosphere to the intense carbonation process affecting that particular sedimentary level. The size of the C isotopic anomalies, their geometrical extent and their coincidence with the variations of other markers like the Zn content, the structure of organic matter, the mineralogical composition, all argue that the carbonation process was induced by the percolation of high pH solutions which derived from the alteration of cement-marbles. The temperature of the carbonation process remains conjectural and some post-formation O isotopic reequilibration likely affected the newly-formed carbonate. Carbonation induced a considerable porosity reduction, both in fractures and matrixes. The Khushaym Matruk site

  11. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes

    International Nuclear Information System (INIS)

    Ramadoss, Ananthakumar; Kim, Sang Jae

    2014-01-01

    Graphical abstract: - Highlights: • TiO 2 /Co(OH) 2 hierarchical nanostructure was prepared by a combination of hydrothermal and cathodic electrodeposition method. • Hierarchical nanostructure electrode exhibited a maximum capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . • Combination of Co(OH) 2 nanowall with TiO 2 NR into a single system enhanced the electrochemical behavior of supercapacitor electrode. - Abstract: We report novel hierarchical TiO 2 nanorod (NR)/porous Co(OH) 2 nanowall array electrodes for high-performance supercapacitors fabricated using a two-step process that involves hydrothermal and electrodeposition techniques. Field-emission scanning electron microscope images reveal a bilayer structure consisting of TiO 2 NR arrays with porous Co(OH) 2 nanowalls. Compared with the bare TiO 2 NRs, the hierarchical TiO 2 NRs/Co(OH) 2 electrodes showed improved pseudocapacitive performance in a 2-M KOH electrolyte solution, exhibiting an areal specific capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . The electrodes exhibited good stability, retaining 82.5% of the initial capacitance after 4000 cycles. The good pseudocapacitive performance of the hierarchical nanostructures is mainly due to the porous structure, which provides fast ion and electron transfer, a large surface area, short ion diffusion paths, and a favourable volume change during the cycling process

  12. Current Travertines Precipitation from CO2-rich Groundwaters as an alert of CO2 Leakages from a Natural CO2 Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-01-01

    Carbon capture and storage technologies represent the most suitable solutions related to the high anthropogenic CO 2 emissions to the atmosphere. As a consequence, monitoring of the possible CO 2 leakages from an artificial deep geological CO 2 storage is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO 2 leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO 2 DGS, natural CO 2 storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO 2 storage. In this context, a natural CO 2 reservoir affected by artificial CO 2 escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO 2 -rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO 2 ; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a combination of several factors, such as: i) a fast decrease of the

  13. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  14. Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS

    International Nuclear Information System (INIS)

    Kurcewicz, J.; Farinon, F.; Geissel, H.; Pietri, S.; Nociforo, C.; Prochazka, A.; Weick, H.; Winfield, J.S.; Estradé, A.; Allegro, P.R.P.; Bail, A.; Bélier, G.; Benlliure, J.; Benzoni, G.; Bunce, M.; Bowry, M.; Caballero-Folch, R.

    2012-01-01

    Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60⩽Z⩽78. The new isotopes were unambiguously identified in reactions with a 238 U beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium.

  15. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala

    2016-02-21

    We present the first report in which the thermoelectric properties of two-dimensional MXenes are calculated by considering both the electron and phonon transport. Specifically, we solve the transport equations of the electrons and phonons for three MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2 and highest in Hf2CO2 in the temperature range from 300 K to 700 K. The highest figure of merit is predicted for Ti2CO2 . The heavy mass of the electrons due to flat conduction bands results in a larger thermopower in the case of n-doping in these compounds.

  16. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  17. Optical and electrical properties of Ti(Cr)O{sub 2}:N thin films deposited by magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kollbek, K., E-mail: kamila.kollbek@agh.edu.pl [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Szkudlarek, A.; Marzec, M.M. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Lyson-Sypien, B.; Cecot, M. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Bernasik, A. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Radecka, M. [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, K. [Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Co-doped well-crystallized stoichiometric Ti(Cr)O{sub 2}:N thin films are deposited. • Magnetron sputtering of ceramic TiO{sub 2} target is a new strategy for co-doping. • Bigger contribution from substitutionally incorporated nitrogen is seen in XPS. • Significant red shift of the fundamental absorption edge is obtained. - Abstract: The paper deals with TiO{sub 2}-based thin films, doped with Cr and N, obtained by magnetron co-sputtering from titanium dioxide ceramic and chromium targets in Ar + N{sub 2} atmosphere. Co-doped samples of Ti(Cr)O{sub 2}:N are investigated from the point of view of morphological, crystallographic, optical, and electrical properties. Characterization techniques such as: X-ray diffraction, XRD, scanning electron microscopy, SEM, atomic force microscopy, AFM, Energy Dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS, optical spectrophotometry as well as impedance spectroscopy are applied. XRD reveals TiO{sub 2} and TiO{sub 2}:N thin films are well crystallized as opposed to those of TiO{sub 2}:Cr and Ti(Cr)O{sub 2}:N. XPS spectra confirm that co-doping has been successfully performed with the biggest contribution from the lower binding energy component of N 1s peak at 396 eV. SEM analysis indicates uniform and dense morphology without columnar growth. Comparison between the band gaps indicates a significant shift of the absorption edge towards visible range from 3.69 eV in the case of non-stoichiometric Ti(Cr)O{sub 2−x}:N to 2.78 eV in the case of stoichiometric Ti(Cr)O{sub 2}:N which should be attributed to the incorporation of both dopants at substitutional positions in TiO{sub 2} lattice. Electrical conductivity of stoichiometric Ti(Cr)O{sub 2}:N increases in comparison to co-doped nonstoichiometric TiO{sub 2−x} thin film and reaches almost the same value as that of TiO{sub 2} stoichiometric film.

  18. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  19. Energy product enhancement of CoPt films by the alloy addition of Ti

    Energy Technology Data Exchange (ETDEWEB)

    Liao, W.M. [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China)]. E-mail: p8993883@knight.fcu.edu; Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China); Yuan, F.T. [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China); Hsu, C.W. [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China); Hsiao, S.N. [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China); Chang, W.C. [Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan (China)

    2006-09-15

    Ternary (Co{sub 48}Pt{sub 52}){sub 100-x}Ti{sub x} (x=0, 0.8, 3.7, 5.3) films were deposited on quartz substrates by RF sputtering at the annealing temperatures T{sub a}=500-800deg. C. The addition of Ti was found to suppress the formation of the CoPt-ordered phase. The coercivity squareness parameters (S*) were also increased with the addition of titanium. TEM observations indicated that the Ti addition significantly reduces the grain size of the CoPt film, thus enhances the exchange interaction between the magnetic grains. The advantages result in the increase of (BH){sub max} values from 2.91MGOe for x=0.0 to 6.09 MGOe for x=5.3 after the samples is annealed at an optimum temperature of 700deg. C.

  20. Co-deposition of palladium with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dash, J.; Ambadkar, A.

    2006-01-01

    Palladium was co-deposited with hydrogen isotopes on a Pd cathode. This resulted in enhanced production of excess thermal power. After electrolysis the Pd Lβ/ Lα ratio was found to be increased in characteristic X-ray spectra from localized, microscopic areas on the surface of the Pd cathode. This suggests the possibility that appreciable amounts of silver are present in these areas. (authors)

  1. Structural, dielectric and impedance characteristics of CoTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Truptimayee, E-mail: truptiacharya18@gmail.com; Choudhary, R.N.P.

    2016-07-01

    The present work reports the synthesis and characterization of the ilmenite-type rhombohedral structured CoTiO{sub 3} ceramic. The polycrystalline powder of CoTiO{sub 3} was prepared by the mixed-oxide technique. X-ray structural analysis of the compound confirmed the formation of a single-phase compound. The study of microstructure by scanning electron microscopy shows that the compound has well defined grains which are distributed uniformly throughout the surface. It shows that the grain size lies in the range of 8–10 μm. The Fourier transform infrared spectroscopy (FTIR) studies confirm the presence of Ti−O, Ti−O−Ti, Ti−O−O, Co−O bond in the studied compound. The frequency dependence of dielectric constant was explained on the basis of Maxwell–Wagner mechanism and Koop's phenomenological theory. The frequency-temperature dependence of impedance analysis shows that the bulk effect dominates up to 250 °C, and the appearance of second semicircular arc above 280 °C indicates the presence of grain boundary effect in the sample. The depressed semicircles in Nyquist plot with depression angles clearly indicate the distribution of relaxation times in the ceramic samples. It also shows that the material has negative temperature co-efficient of resistance similar to that of semiconductors. Similar behavior has also been observed in the study of I−V characteristics of the material. Through the study of dc conductivity of CoTiO{sub 3} and using the relation; ln σ{sub dc} α E{sub a}/K{sub B}T, activation energy of the compound was calculated. The frequency dependence of ac conductivity is explained on the basis of Correlated barrier Hopping Model. - Highlights: • The lattice parameters of CoTiO{sub 3} were determined by using Rietveld refinement method. • The frequency dependence of ε{sub r} was explained on the basis of Maxwell–Wagner model. • The depressed semicircles in Nyquist plot indicate the Non Debye-type response. • The

  2. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water

    Science.gov (United States)

    Kuvarega, Alex T.; Krause, Rui W. M.; Mamba, Bhekie B.

    2012-03-01

    Multiwalled carbon nanotube (MWCNT/N), Pd co-doped TiO2 nanocomposites were prepared by calcining the hydrolysis products of the reaction of titanium isopropoxide, Ti(OC3H7)4 containing multiwalled carbon nanotubes with aqueous ammonia. The prepared samples were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, diffuse reflectance UV-Vis spectrophotometry (DRUV-Vis), XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DRUV-Vis analysis confirmed the red shift in the absorption edge at lower MWCNT percentages. SEM and TEM images showed the complete coverage of the MWCNTs with clusters of anatase TiO2 at low MWCNT percentages. Higher MWCNT levels led to their aggregation and consequently poor coverage by N, Pd co-doped TiO2. The photocatalytic activities of the nanocomposites were monitored by photodegradation of Eosin Yellow under simulated solar and visible light irradiation (λ > 450 nm). Irradiation with simulated solar radiation gave higher dye-degradation rates compared to visible radiation. The optimum MWCNT weight percentage in the composites was found to be 0.5. High degradation-rate constants of 3.42 × 10-2 and 5.18 × 10-3 min-1 were realised for the 0.5% MWCNT/N, Pd co-doped TiO2 composite, using simulated solar light and visible light, respectively.

  3. Effective Carbon Dioxide Photoreduction over Metals (Fe-, Co-, Ni-, and Cu- Incorporated TiO2/Basalt Fiber Films

    Directory of Open Access Journals (Sweden)

    Jeong Yeon Do

    2016-01-01

    Full Text Available Mineralogical basalt fibers as a complementary adsorbent were introduced to improve the adsorption of CO2 over the surfaces of photocatalysts. TiO2 photocatalysts (M-TiO2 incorporated with 5.0 mol.% 3d-transition metals (Fe, Co, Ni, and Cu were prepared using a solvothermal method and mixed with basalt fibers for applications to CO2 photoreduction. The resulting 5.0 mol.% M-TiO2 powders were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence, Brunauer, Emmett, and Teller surface area, and CO2-temperature-programmed desorption. A paste composed of two materials was coated and fixed on a Pyrex plate by a thermal treatment. The 5.0 mol.% M-TiO2/basalt fiber films increased the adsorption of CO2 significantly, indicating superior photocatalytic behavior compared to pure TiO2 and basalt fiber films, and produced 158~360 μmol gcat-1 L−1 CH4 gases after an 8 h reaction. In particular, the best performance was observed over the 5.0 mol.% Co-TiO2/basalt fiber film. These results were attributed to the effective CO2 gas adsorption and inhibition of photogenerated electron-hole pair recombination.

  4. Laser processing of in situ TiN/Ti composite coating on titanium.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    Science.gov (United States)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  6. Investigation of Conversion CO2 to Fuel by TiN nanotube-Cu nanoparticle

    Directory of Open Access Journals (Sweden)

    Leila Mahdavian

    2017-01-01

    Full Text Available The CO and CO2 effects are global warming, acid rain, limit visibility, decreases UV radiation; yellow/black color over cities and so on. In this study, convention of CO2 and H2O to CH4 and O2 near TiN- nanotube with Cu-nanoparticle calculated by Density Functional Theory (DFT methods. We have studied the structural, total energy, thermodynamic properties of these systems at room temperature. All the geometry optimization structures were carried out using GAMESS program package under Linux. DFT optimized their intermediates and transient states. The results have shown a sensitivity enhancement in resistance and capacitance when CO2 and H2O are converted to CH4 and O2. TiN-nanotube used photo-catalytic reactivity for the reduction of CO2 with H2O to form CH4 and O2 at 298K. The calculations are done in state them between of three TiN-nanotubes near Cu-nanoparticle.The calculation shown which heat reaction formation (∆H is endothermic for this reaction. This reaction needs to sun, photo active or other energy in the presence of visible light for doing.

  7. The CO{sub 2} emissions-income nexus: Evidence from rich countries

    Energy Technology Data Exchange (ETDEWEB)

    Jaunky, Vishal Chandr, E-mail: vishaljaunky@intnet.m [Faculty of Social Studies and Humanities, Department of Economics and Statistics, University of Mauritius, Reduit (Mauritius)

    2011-03-15

    The paper attempts to test the Environment Kuznets Curve (EKC) hypothesis for 36 high-income countries for the period 1980-2005. The test is based on the suggestion of . Various panel data unit root and co-integration tests are applied. Carbon dioxide (CO{sub 2}) emissions and GDP series are integrated of order one and co-integrated, especially after controlling for cross-sectional dependence. Additionally, the Blundell-Bond system generalised methods of moments (GMM) is employed to conduct a panel causality test in a vector error-correction mechanism (VECM) setting. Unidirectional causality running from real per capita GDP to per capita CO{sub 2} emissions is uncovered in both the short-run and the long-run. The empirical analysis based on individual countries provides evidence of an EKC for Greece, Malta, Oman, Portugal and the United Kingdom. However, it can be observed that for the whole panel, a 1% increase in GDP generates an increase of 0.68% in CO{sub 2} emissions in the short-run and 0.22% in the long-run. The lower long-run income elasticity does not provide evidence of an EKC, but does indicate that, over time, CO{sub 2} emissions are stabilising in the rich countries. - Research highlights: {yields} The Environment Kuznets Curve hypothesis for 36 rich countries is studied over the period 1980-2005. {yields} approach is used and extended by including a causality analysis. {yields} Carbon dioxide (CO{sub 2}) emissions are found to be stabilizing in the rich countries.

  8. Study of neutron-rich $^{51−53}$ Ca isotopes via $\\beta$-decay

    CERN Multimedia

    The high Q$_\\beta$ values in certain neutron-rich regions of the chart of nuclides opens up the possibility to study states in the daughter nuclei which lie at high excitation energy, above the neutron separation threshold. We propose to perform spectroscopy of the $\\beta$-delayed neutron emission of the $^{51-53}$K isotopes to study the population of single-particle or particle-hole states both below and above the neutron separation threshold. The VANDLE neutron detector will be used in combination with the IDS tape station setup and Ge detectors.

  9. New neutron-rich isotope production in 154Sm+160Gd

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-09-01

    Full Text Available Deep inelastic scattering in 154Sm+160Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD model and time dependent Hartree–Fock (TDHF theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with 58≤Z≤76 are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

  10. X-ray diffraction studies of NiTi shape memory alloys

    OpenAIRE

    E. Łągiewka; Z. Lekston

    2007-01-01

    Purpose: The purpose of this paper is to present the results of the investigations of phase transitions of TiNiCo and Ni-rich NiTi shape memory alloys designed for medical applications.Design/methodology/approach: Temperature X-ray diffraction (TXRD), differential scanning calorimetry (DSC), electrical resistivity (ER) and the temperature shape recovery measurements in three-point bending ASTM 2082-01 tests were used.Findings: It has been found in this work that ageing after solution treatme...

  11. Mass measurements of neutron-rich indium isotopes toward the N =82 shell closure

    Science.gov (United States)

    Babcock, C.; Klawitter, R.; Leistenschneider, E.; Lascar, D.; Barquest, B. R.; Finlay, A.; Foster, M.; Gallant, A. T.; Hunt, P.; Kootte, B.; Lan, Y.; Paul, S. F.; Phan, M. L.; Reiter, M. P.; Schultz, B.; Short, D.; Andreoiu, C.; Brodeur, M.; Dillmann, I.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.; Dilling, J.

    2018-02-01

    Precise mass measurements of the neutron-rich In-130125 isotopes have been performed with the TITAN Penning trap mass spectrometer. TITAN's electron beam ion trap was used to charge breed the ions to charge state q =13 + thus providing the necessary resolving power to measure not only the ground states but also isomeric states at each mass number. In this paper, the properties of the ground states are investigated through a series of mass differentials, highlighting trends in the indium isotopic chain as compared to its proton-magic neighbor, tin (Z =50 ). In addition, the energies of the indium isomers are presented. The (8-) level in 128In is found to be 78 keV lower than previously thought and the (21 /2- ) isomer in 127In is shown to be lower than the literature value by more than 150 keV.

  12. The electric dipole response of neutron rich tin isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Aumann, Thomas; Rossi, Dominic; Schindler, Fabia [Institut fuer Kernphysik, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johansen, Jacob [Aarhus University (Denmark); Schrock, Philipp [The University of Tokyo (Japan); Collaboration: R3B-Collaboration

    2016-07-01

    Studies of the dipole response in medium heavy and heavy neutron rich nuclei reveal valuable information about the isospin dependence of the nuclear equation of state. Therefore an experimental campaign investigating both the electric dipole response via Coulomb excitation and neutron removal along the tin isotope chain ({sup 124-134}Sn) has been carried out at the R3B (Reactions with Relativistic Radioactive Beams) setup at GSI (Helmholtzzentrum fuer Schwerionenforschung) for which the analysis is ongoing. The E1 response was induced via relativistic Coulomb scattering by a lead target in inverse kinematics, and calls for a kinematically complete determination of all reaction products in order to reconstruct the excitation energy by means of the invariant mass method. The goal is to obtain the Coulomb excitation cross section up to the adiabatic cut-off energy, covering the giant dipole resonance (GDR) range.

  13. Corrosion protection of AISI 1018 steel using Co-doped TiO_2/polypyrrole nanocomposites in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Ladan, Magaji; Basirun, Wan Jeffrey; Kazi, Salim Newaz; Rahman, Fariza Abdul

    2017-01-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO_2 and Co-doped TiO_2 nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO_2/PPy NTCs was smaller than TiO_2/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO_2/PPy NTCs and TiO_2/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO_2 NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO_2/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO_2 NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO_2 decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO_2/PPy NTCs is considerably higher. • TiO_2/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  14. Extremely 54Cr- and 50Ti-rich Presolar Oxide Grains in a Primitive Meteorite: Formation in Rare Types of Supernovae and Implications for the Astrophysical Context of Solar System Birth

    Science.gov (United States)

    Nittler, Larry R.; O’D. Alexander, Conel M.; Liu, Nan; Wang, Jianhua

    2018-04-01

    We report the identification of 19 presolar oxide grains from the Orgueil CI meteorite with substantial enrichments in 54Cr, with 54Cr/52Cr ratios ranging from 1.2 to 56 times the solar value. The most enriched grains also exhibit enrichments at mass-50, most likely due in part to 50Ti, but close-to-normal or depleted 53Cr/52Cr ratios. There is a strong inverse relationship between 54Cr enrichment and grain size; the most extreme grains are all attractive, as these likely occur much more frequently than high-density SN Ia, and their evolutionary timescales (∼20 Myr) are comparable to those of molecular clouds. Self-pollution of the Sun’s parent cloud from an ECSN may explain the heterogeneous distribution of n-rich isotopic anomalies in planetary materials, including a recently reported dichotomy in Mo isotopes in the solar system. The stellar origins of three grains with solar 54Cr/52Cr, but anomalies in 50Cr or 53Cr, as well as of a grain enriched in 57Fe, are unclear.

  15. Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning

    2017-11-01

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

  16. CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties

    International Nuclear Information System (INIS)

    Prabakar, K; Minkyu, S; Inyoung, S; Heeje, K

    2010-01-01

    Cadmium selenide (CdSe) quantum dots (QDs) with different particle sizes have been used as an inorganic co-sensitizer in addition to organic dye for large band gap mesoporous TiO 2 dye sensitized solar cells. The QDs co-sensitized solar cells exhibited overall highest conversion efficiency of 3.65% at 1 sun irradiation for 3.3 nm particle size corresponding to a visible light absorption wavelength of 528 nm. The photovoltaic characteristics of CdSe QDs co-sensitized cells depend on the particle sizes rather than broad spectral light absorption as compared with CdSe QDs alone sensitized and standard dye-sensitized solar cells. Correlation between CdSe QDs adsorption on mesoporous TiO 2 surfaces and photoelectron injection into TiO 2 has been demonstrated. (fast track communication)

  17. Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux

    Science.gov (United States)

    Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer

    2013-06-01

    The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.

  18. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  19. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2017-06-01

    Full Text Available TiO2 nanotubes (NTs synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  20. Structural and Moessbauer spectral study of the metastable phase Sm(Fe, Co, Ti)10

    International Nuclear Information System (INIS)

    Bessais, L.; Djega-Mariadassou, C.; Koch, E.

    2002-01-01

    We have performed a Moessbauer spectral analysis of nanocrystalline metastable P 6/mmm SmTi(Fe 1-x Co x ) 9 , correlated with structural transformation towards its equilibrium derivative I4/mmm SmTi(Fe 1-x Co x ) 11 . The Rietveld analysis shows that the 3g site is fully occupied, while the 6 l occupation is limited to hexagons surrounding the Fe-Fe dumb-bell pairs 2e. A specific programme for the Wigner-Seitz cell (WSC) calculation of the metastable disordered structure was used. The hyperfine parameter assignment based on the isomer shift correlation with the WSC volumes sequence leads to Co 3g preferential occupation, with Ti location in 6 l sites. The mean hyperfine field increases with Co content in connection with the enhancement of the negative core electron polarization term upon additional Co electron filling. The same trend is observed for each individual site leading to the sequence H HF {2e}≥H HF {6 l }≥H HF {3g}. (author)

  1. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    Science.gov (United States)

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  2. TiTaCN-Co cermets prepared by mechanochemical technique: microstructure and mechanical properties

    OpenAIRE

    Fides, Martin; Hvizdoš, P.; Balko, Ján; Chicardi, E.; Gotor, F.J.

    2016-01-01

    Microstructure and mechanical characterization of (Ti,Ta)(C,N)-Co based solid solution cermets prepared by two mechanochemical synthesis processes (one- and two-step milling) and a pressureless sintering in protective helium atmosphere. Materials with composition of TixTa1- xC0.5N0.5-20%Co with two different Ti/Ta ratios (x = 0.9 and x = 0.95) were developed to prepare four groups of experimental materials. Microstructures were observed using confocal microscopy and grain size was ev...

  3. Co-ordinated research programme on applications of stable isotope tracers in human nutrition research

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a very brief report on the final Research Co-ordination Meeting of this Co-ordinated Research Project (CRP): the final report on the CRP will be published by the IAEA in the IAEA-TECDOC series. The present document contains a detailed proposal for a new Co-ordinated Research Programme on ''Stable Isotope Tracer Techniques for Studies on Protein-Energy Interactions'', and a brief series of notes on stable isotopic methods for investigating protein and amino-acid metabolism in man. Refs

  4. Synthesis, characterization and visible light photocatalytic activity of Cr 3+ , Ce 3+ and N co-doped TiO 2 for the degradation of humic acid

    KAUST Repository

    Rashid, S. G.; Gondal, M. A.; Hameed, A.; Aslam, M.; Dastageer, M. A.; Yamani, Z. H.; Anjum, Dalaver H.

    2015-01-01

    The synthesis, characterization and photocatalytic activity of Cr3+ and Ce3+ co-doped TiON (N-doped TiO2) for the degradation of humic acid with exposure to visible light is reported. The synthesized bimetal (Cr3+ + Ce3+) modified TiON (Cr-Ce/TiON), with an evaluated bandgap of 2.1 eV, exhibited an enhanced spectral response in the visible region as compared to pure and Ce3+ doped TiON (Ce/TiON). The XRD analysis revealed the insertion of Cr3+ and Ce3+ in the crystal lattice along with Ti4+ and N that resulted in the formation of a strained TiON anatase structure with an average crystallite size of ∼10 nm. Raman analysis also supported the formation of stressed rigid structures after bimetal doping. HRTEM confirmed the homogeneous distribution of both the doped metallic components in the crystal lattice of TiON without the formation of surface oxides of either Cr3+ or Ce3+. Electron energy loss spectroscopy (EELS) analysis revealed no change in the oxidation of either Cr or Ce during the synthesis. The synthesized Cr-Ce/TiON catalyst exhibited appreciable photocatalytic activity for the degradation of humic acid on exposure to visible light. Additionally, a noticeable mineralization of carbon rich humic acid was also witnessed. The photocatalytic activity of the synthesized catalyst was compared with pristine and Ce3+ doped TiON. © The Royal Society of Chemistry 2015.

  5. PAMAM templated N,Pt co-doped TiO2 for visible light photodegradation of brilliant black.

    Science.gov (United States)

    Nzaba, Sarre Kadia Myra; Ntsendwana, Bulelwa; Mamba, Bhekie Brilliance; Kuvarega, Alex Tawanda

    2018-05-01

    This study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal co-doped TiO 2 . N,Pt co-doped TiO 2 photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PG0) as a template and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet/visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25, revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO 2 was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180-min reaction time with an initial concentration of 50 ppm. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The N,Pt co-doped TiO 2 also exhibited pseudo-first-order kinetic behavior with half-life and rate constant of 0.37 and 0.01984 min -1 , respectively. The mechanism of the photodegradation of BB under the visible light irradiation was proposed. The obtained results prove that co-doping of TiO 2 with N and Pt contributed to the enhanced photocatalytic performances of TiO 2 for visible light-induced photodegradation of organic contaminants for environmental remediation. Therefore, this work provides a new approach to the synthesis of PAMAM templated N,Pt co-doped TiO 2 for visible light photodegradation of brilliant black.

  6. Influence of crystallinity on CO gas sensing for TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Bandyopadhyay, Amit [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)], E-mail: amitband@wsu.edu; Bose, Susmita [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2009-08-15

    In the present research, carbon monoxide (CO) gas sensing response was studied for TiO{sub 2} thick films calcined and sintered between 700 and 900 deg. C. Crystalline phase, crystallite size, surface area, particle size, and amorphous content were measured for the calcined powder. Crystallinity of the powder was found to affect sensing response significantly towards CO. Anatase phase of TiO{sub 2} thick film was stable up to 900 deg. C however, as calcination temperature increased from 700 to 900 deg. C, surface area and amorphous phase content decreased. Films calcined and sintered at 700 deg. C showed a lower response towards CO than those calcined at 800 deg. C. Upon increasing the calcination temperature further, particle growth and reduced surface area hindered the sensing response. A calcination temperature of 800 deg. C was necessary to achieve sufficient order in the crystal structure leading to more efficient adsorption and desorption of oxygen ions on the surface of TiO{sub 2}.

  7. AES, EELS and XPS characterization of Ti(C, N, O) films prepared by PLD using a Ti target in N2, CH4, O2 and CO as reactive gases

    International Nuclear Information System (INIS)

    Soto, G.

    2004-01-01

    Titanium-based films were grown on (1 0 0)-Si substrates by the pulsed laser deposition (PLD) method using a Ti target in reactive atmospheres. The films were grown in vacuum (Ti-film), O 2 (TiO x ), N 2 (TiN x ), CH 4 (TiC x ), CO (TiC x O y ), N 2 +CH 4 (TiC x N y ) and CO+N 2 (TiC x N y O z ). After depositions, every film is characterized in situ by Auger, electron-energy loss and X-ray photoelectron (XPS) spectroscopies. For the binary compounds the stoichiometry is regulated without difficulty by gas pressure during ablation. However, for ternary and quaternary compounds there is a tendency to produce chemically inhomogeneous films. For example, the ablation of Ti in a N 2 +CH 4 environment results in a TiNC:C composite. In this case, the overabundance of nitrogen influences the segregation of carbon. In the other hand, the O 2 +CH 4 mixture was ineffectively to produce TiC x O y films, yielding mostly TiO 2 with traces of embedded carbon. By using CO as reactive gas the TiC x O y films were completed. Also, a mixture of CO with N 2 was tested to produce quaternary TiC x N y O z compounds. Based on these results, it is recommended that better control on film stoichiometry and chemical homogeneity can be achieved by using reactive gases with predetermined C:N:O ratios

  8. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO2 nanosheets array film photoelectrodes

    International Nuclear Information System (INIS)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong; Mu, Yannan; Su, Pengyu; Wang, Guangxia; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO 2 NSs) films were reported for the first time. The TiO 2 NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO 2 NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO 2 NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO 2 NSs was with photocurrent density of 6.12 mA cm −2 under an illumination of AM 1.5 G, indicating the TiO 2 NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO 2 nanosheets films were fabricated by a simple hydrothermal. • TiO 2 nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO 2 nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm −2

  9. Laser Spectroscopy of Neutron Rich Bismuth Isotopes

    CERN Multimedia

    2002-01-01

    %IS344 :\\\\ \\\\ The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii ($\\delta\\langle r^{2}\\rangle$) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink ($\\delta\\langle r^{2}\\rangle)$ seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below $^{201}$Bi to study the systematics across the $i_{13/2}$ neutron sub-shell closure at N=118.\\\\ \\\\ During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, $ ^{210,212,213}$Bi and the 9$^{-}$ isomer of $^{210}$Bi have been measured. The accuracy of the previous measurements of $^{205,206,208}$Bi have been greatly improved. The samples of $ ^{208,210,210^{m}}$Bi were prepared by c...

  10. CORRELATION OF {sup 48}Ca, {sup 50}Ti, AND {sup 138}La HETEROGENEITY IN THE ALLENDE REFRACTORY INCLUSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Wei; Lee, Typhoon; Lee, Der-Chuen; Chen, Jiang-Chang, E-mail: hart.chen@bristol.ac.uk [Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, ROC (China)

    2015-06-10

    Precise determinations of {sup 48}Ca anomalies in Allende calcium–aluminum-rich inclusions (CAIs) are reported in this work. There are endemic positive {sup 48}Ca/{sup 44}Ca anomalies in all analyzed CAIs after normalization to {sup 42}Ca/{sup 44}Ca, and it is clearly shown that there is no simple correlation between {sup 48}Ca/{sup 44}Ca and {sup 50}Ti/{sup 48}Ti anomalies, in agreement with Jungck et al. Compared to the {sup 48}Ca/{sup 44}Ca versus {sup 50}Ti/{sup 48}Ti correlation line defined by differentiated meteorites, reported by Chen et al., the CAIs plot to elevated {sup 50}Ti/{sup 48}Ti. Assuming the {sup 48}Ca/{sup 44}Ca anomalies of both CAIs and differentiated meteorites came from the same source, excess {sup 50}Ti anomalies in CAIs can be calculated by subtracting the part associated with {sup 48}Ca/{sup 44}Ca. These excesses show a linear correlation with {sup 138}La anomalies, a neutrino-process nuclide. According to current stellar nucleosynthetic models, we therefore suggest that the solar system {sup 48}Ca, {sup 50}Ti, and {sup 138}La isotopic variations are made of mixtures between grains condensed from ejecta of neutron-rich accretion-induced SNe Ia and the O/Ne–O/C zone of core-collapse SNe II.

  11. Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS

    Energy Technology Data Exchange (ETDEWEB)

    Kurcewicz, J., E-mail: j.kurcewicz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Farinon, F.; Geissel, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Pietri, S.; Nociforo, C. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Prochazka, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Weick, H.; Winfield, J.S. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Estrade, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Allegro, P.R.P. [Institute of Physics, Universidade de Sao Paulo, CEP 05508-090 Cidade Universitaria, Sao Paulo (Brazil); Bail, A.; Belier, G. [CEA DAM DiF, 91290 Arpajon Cedex (France); Benlliure, J. [Universidad de Santiago de Compostela, E-15706 Santiago de Compostella (Spain); Benzoni, G. [INFN sezione di Milano, I-20133 Milano (Italy); Bunce, M.; Bowry, M. [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Caballero-Folch, R. [Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); and others

    2012-10-31

    Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60 Less-Than-Or-Slanted-Equal-To Z Less-Than-Or-Slanted-Equal-To 78. The new isotopes were unambiguously identified in reactions with a {sup 238}U beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium.

  12. Decay studies and mass measurements on isobarically pure neutron-rich Hg and Tl isotopes

    CERN Multimedia

    Schweikhard, L C; Savreux, R P; Hager, U D K; Beck, D; Blaum, K

    2007-01-01

    We propose to perform mass measurements followed by $\\beta$- and $\\gamma$-decay studies on isobarically pure beams of neutron-rich Hg and Tl isotopes, which are very poorly known due to a large contamination at ISOL-facilities with surface-ionised francium. The aim is to study the binding energies of mother Hg and Tl nuclides, as well as the energies, spins and parities of the excited and ground states in the daughter Tl and Pb isotopes. The proposed studies will address a new subsection of the nuclear chart, with Z 126, where only 9 nuclides have been observed so far. Our studies will provide valuable input for mass models and shell-model calculations: they will probe the proton hole-neutron interaction and will allow to refine the matrix elements for the two-body residual interaction. Furthermore, they also give prospects for discovering new isomeric states or even new isotopes, for which the half-lives are predicted in the minute- and second-range.\\\\ To reach the isobaric purity, the experiments will be p...

  13. Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of E(2+1) and E(4+1)/E({2}+1) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B( E2) transition probabilities and g-factors in these nuclei. The observed systematics of E(2+1) values and R_{42} ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B( E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B( E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

  14. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    Science.gov (United States)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  15. Identification of new neutron-rich actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Oura, Yasuji; Sakama, Minoru; Ohyama, T. [Tokyo Metropolitan Univ. (Japan)] [and others

    1999-10-01

    To advance research on new neutron-deficient actinide isotopes using an on-line isotope separator combined with a gas-jet injector installed in the JAERI Tandem accelerator, Tokai, performance test of the equipment was carried out. Efficiency of the product isotopes being transported from the target chamber to the measuring system was greatly improved by employing lead iodides (PbI{sub 2}) as the aerosol carrier. With the help of this technique, the authors succeeded in synthesizing and identifying actinide isotopes, {sup 235}Am and {sup 236}Am, and measured their alpha-decay half-life. (S. Ohno)

  16. The Origin and Evolution of Nucleosynthetic Sr Isotope Variability in Calcium and Aluminum-rich Refractory Inclusions

    Science.gov (United States)

    Myojo, Kunihiro; Yokoyama, Tetsuya; Okabayashi, Satoki; Wakaki, Shigeyuki; Sugiura, Naoji; Iwamori, Hikaru

    2018-01-01

    Nucleosynthetic isotope anomalies in meteorites are useful for investigating the origin of materials in the protoplanetary disk and dynamical processes of planetary formation. In particular, calcium and aluminum-rich inclusions (CAIs) found in chondrites are key minerals for decoding the initial conditions of the solar system before the accretion of small planetary bodies. In this study, we report isotopic analyses for three Allende CAIs, fluffy type A (FTA), type B, and fine-grained spinel rich (FS) inclusions, with a specific emphasis on the measurements of 84Sr/86Sr ratios. It was found that the average μ 84Sr values (106 relative deviations from a standard material) were 175, 129, and 56 ppm for the samples of FTA, type B, and FS inclusions, respectively. Additionally, the FTA samples exhibited heterogeneous μ 84Sr values, while those for the type B and FS inclusions were homogeneous within individual inclusions. The elevated μ 84Sr values were most likely explained by the relative enrichment of r-process nuclides in the CAI formation region. The variation of μ 84Sr values between the FTA and type B inclusions, as well as within the FTA inclusion, suggests the presence of multiple CAI source reservoirs with distinct isotopic compositions, which is either inherited from isotopic heterogeneity in the molecular cloud or caused by the selective destruction of r-process-enriched supernova grains via nebular thermal processing. On the other hand, the reaction between a refractory precursor of the FS inclusion and a gaseous reservoir enriched in Mg, Si, and 16O resulted in the lowest μ 84Sr values for the FS inclusion.

  17. Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity

    International Nuclear Information System (INIS)

    Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti; Sen, Tapas; Bhaumik, Asim

    2017-01-01

    Targeted synthesis of microporous adsorbents for CO 2 capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO 2 storage capacities: SB-TRZ-CRZ displayed the CO 2 uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO 2 boosts the selectivity for CO 2 /N 2 . SB-TRZ-CRZ has this CO 2 /N 2 selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO 2 storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO 2 /N 2 selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO 2 uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO 2 /N 2 selectivity.

  18. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  19. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  20. Beta-decay of {sup 71}Co and {sup 73}Co

    Energy Technology Data Exchange (ETDEWEB)

    Sawicka, M.; Pfuetzner, M. [Warsaw University, IEP, Warsaw (Poland); Matea, I.; Lewitowicz, M.; France, G. de; Georgiev, G. [GANIL, B.P. 5027, Caen Cedex 5 (France); Grawe, H.; Becker, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt, Darmstadt (Germany); Grzywacz, R. [Warsaw University, IEP, Warsaw (Poland); ORNL, Physics Division, Oak Ridge, TN (United States); Daugas, J.M.; Belier, G. [CEA Bruyeres-le-Chatel DIF/DPTA/SPN, B.P. 12, Bruyeres-le-Chatel (France); Brown, B.A.; Lisetskiy, A. [Michigan State University, Department of Physics and Astronomy and NSCL, East Lansing, MI (United States); Bingham, C. [University of Tennesse, Department of Physics and Astronomy, Knoxville, TN (United States); Borcea, R.; Buta, A.; Dragulescu, E. [IFIN, P.O. Box MG6, Bucharest-Magurele (Romania); Bouchez, E. [DSM/DAPNIA/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Giovinazzo, J. [CENBG, B.P. 120, Gradignan Cedex (France); Hammache, F. [IPN, Orsay Cedex (France); Ibrahim, F.; Mayet, P.; Meot, V.; Negoita, F.; De Oliveira-Santos, F; Perru, O.; Roig, O.; Rykaczewski, K.; Saint-Laurent, M.G.; Sauvestre, J.E.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Theisen, C.; Verney, D.; Zylicz, J.

    2004-12-01

    A decay spectroscopy study of the neutron-rich cobalt isotopes has been performed using fragmentation of a {sup 86}Kr{sup 36+} beam and the new LISE2000 spectrometer at GANIL. For {sup 71}Co and {sup 73}Co, the {beta}-delayed {gamma} radiation has been observed for the first time, and the half-lives were found to be 79(5) ms and 41(4) ms, respectively. Features of the decay are discussed qualitatively in terms of nuclear models. (orig.)

  1. Anisotropies in sputtered FeCoV films and FeCoV/Ti:N multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D.; Vananti, A.; Terrier, C.; Boeni, P.; Schnyder, B.; Tixier, S.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    SQUID and MOKE magnetometry as well as mechanical and X-ray stress analysis have been used in order to prove the magnetostrictive nature of the anisotropy in Fe{sub 0.50}Co{sub 0.48}V{sub 0.02} films and Fe{sub 0.50}Co{sub 0.48}V{sub 0.02} /Ti:N multilayers. The investigation stresses on the dependence on the sputter gas pressure and on the thickness of the deposited layer. (author) 1 fig., 6 refs.

  2. Effect of V-Nd co-doping on phase transformation and grain growth process of TiO2

    Science.gov (United States)

    Khatun, Nasima; Amin, Ruhul; Anita, Sen, Somaditya

    2018-05-01

    The pure and V-Nd co-doped TiO2 samples are prepared by the modified sol-gel process. The phase formation is confirmed by XRD spectrum. Phase transformation is delayed in V-Nd co-doped TiO2 (TVN) samples compared to pure TiO2. The particle size is comparatively small in TVN samples at both the temperature 450 °C and 900 °C. Hence the effect of Nd doping is dominated over V doping in both phase transformation and grain growth process of TiO2.

  3. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO{sub 2} (MWCNT/N, Pd co-doped TiO{sub 2}) for visible light photocatalytic degradation of Eosin Yellow in water

    Energy Technology Data Exchange (ETDEWEB)

    Kuvarega, Alex T.; Krause, Rui W. M., E-mail: rkrause@uj.ac.za; Mamba, Bhekie B. [University of Johannesburg, Department of Applied Chemistry, UJ Center for Nanomaterials Science (South Africa)

    2012-03-15

    Multiwalled carbon nanotube (MWCNT/N), Pd co-doped TiO{sub 2} nanocomposites were prepared by calcining the hydrolysis products of the reaction of titanium isopropoxide, Ti(OC{sub 3}H{sub 7}){sub 4} containing multiwalled carbon nanotubes with aqueous ammonia. The prepared samples were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, diffuse reflectance UV-Vis spectrophotometry (DRUV-Vis), XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DRUV-Vis analysis confirmed the red shift in the absorption edge at lower MWCNT percentages. SEM and TEM images showed the complete coverage of the MWCNTs with clusters of anatase TiO{sub 2} at low MWCNT percentages. Higher MWCNT levels led to their aggregation and consequently poor coverage by N, Pd co-doped TiO{sub 2}. The photocatalytic activities of the nanocomposites were monitored by photodegradation of Eosin Yellow under simulated solar and visible light irradiation ({lambda} > 450 nm). Irradiation with simulated solar radiation gave higher dye-degradation rates compared to visible radiation. The optimum MWCNT weight percentage in the composites was found to be 0.5. High degradation-rate constants of 3.42 Multiplication-Sign 10{sup -2} and 5.18 Multiplication-Sign 10{sup -3} min{sup -1} were realised for the 0.5% MWCNT/N, Pd co-doped TiO{sub 2} composite, using simulated solar light and visible light, respectively.

  4. The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO{sub 2}:Co films produced by cobalt ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, O. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany); Cornelius, S.; Hübner, R.; Potzger, K. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Smekhova, A.; Zykov, G.; Gan' shina, E. A.; Granovsky, A. B. [Lomonosov Moscow State University (MSU), Faculty of Physics, 119991 Moscow (Russian Federation); Bähtz, C. [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2015-05-14

    Amorphous, polycrystalline anatase and epitaxial anatase TiO{sub 2} films have been implanted with 5 at. % Co{sup +}. The magnetic and structural properties of different microstructures of TiO{sub 2}:Co, along with the local coordination of the implanted Co atoms within the host lattice are investigated. In amorphous TiO{sub 2}:Co film, Co atoms are in the (II) oxidation state with a complex coordination and exhibit a paramagnetic response. However, for the TiO{sub 2}:Co epitaxial and polycrystalline anatase films, Co atoms have a distorted octahedral (II) oxygen coordination assigned to a substitutional environment with traces of metallic Co clusters, which gives a rise to a superparamagnetic behavior. Despite the incorporation of the implanted atoms into the host lattice, high temperature ferromagnetism is absent in the films. On the other hand, it is found that the concentration and size of the implantation-induced nanoclusters and the magnetic properties of TiO{sub 2}:Co films have a strong dependency on the initial microstructure of TiO{sub 2}. Consequently, metallic nanocluster formation within ion implantation prepared transition metal doped TiO{sub 2} can be suppressed by tuning the film microstructure.

  5. Corrosion protection of AISI 1018 steel using Co-doped TiO{sub 2}/polypyrrole nanocomposites in 3.5% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Ladan, Magaji, E-mail: ladanmagaji@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Department of Pure and Industrial Chemistry, Bayero University Kano (Nigeria); Basirun, Wan Jeffrey, E-mail: jeff@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Institute of Nanotechnology and Catalysis (NanoCat), University of Malaya, Kuala Lumpur, 50603 (Malaysia); Kazi, Salim Newaz; Rahman, Fariza Abdul [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2017-05-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO{sub 2} and Co-doped TiO{sub 2} nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO{sub 2}/PPy NTCs was smaller than TiO{sub 2}/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO{sub 2}/PPy NTCs and TiO{sub 2}/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO{sub 2} NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO{sub 2}/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO{sub 2} NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO{sub 2} decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO{sub 2}/PPy NTCs is considerably higher. • TiO{sub 2}/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  6. Current Travertines Precipitation from CO{sub 2}-rich Groundwaters as an alert of CO{sub 2} Leakages from a Natural CO{sub 2} Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-02-01

    Carbon capture and storage technologies (CCS) represent the most suitable solutions related to the high anthropogenic CO{sub 2} emissions to the atmosphere. As a consequence, monitoring of the possible CO{sub 2} leakages from an artificial deep geological CO{sub 2} storage (DGS) is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO{sub 2} leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO{sub 2} DGS, natural CO{sub 2} storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO{sub 2} storage. In this context, a natural CO{sub 2} reservoir affected by artificial CO{sub 2} escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO{sub 2}-rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO{sub 2}; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a

  7. Evaluation of resistive switching properties of Si-rich oxide embedded with Ti nanodots by applying constant voltage and current

    Science.gov (United States)

    Ohta, Akio; Kato, Yusuke; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    We have studied the resistive switching behaviors of electron beam (EB) evaporated Si-rich oxide (SiO x ) sandwiched between Ni electrodes by applying a constant voltage and current. Additionally, the impact of Ti nanodots (NDs) embedded into SiO x on resistive switching behaviors was investigated because it is expected that NDs can trigger the formation of a conductive filament path in SiO x . The resistive switching behaviors of SiO x show that the response time during resistance switching was decreased by increasing the applied constant current or constant voltage. It was found that Ti-NDs in SiO x enhance the conductive filament path formation owing to electric field concentration by Ti-NDs.

  8. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  9. Chronology of formation of early solar system solids from bulk Mg isotope analyses of CV3 chondrules

    Science.gov (United States)

    Chen, Hsin-Wei; Claydon, Jennifer L.; Elliott, Tim; Coath, Christopher D.; Lai, Yi-Jen; Russell, Sara S.

    2018-04-01

    We have analysed the petrography, major element abundances and bulk Al-Mg isotope systematics of 19 ferromagnesian chondrules from the CV3 chondrites Allende, Mokoia, and Vigarano, together with an Al-rich chondrule and refractory olivine from Mokoia. Co-variations of Al/Mg with Na/Mg and Ti/Mg in our bulk chondrules suggest their compositions are dominantly controlled by reworking of different proportions of chondrule components (e.g. mafic minerals and mesostatis); their precursors are thus fragments from prior generations of chondrules. Our samples show a range in fractionation corrected 26Mg/24Mg (Δ‧26Mg) ∼ 60 ppm, relative to precisions behaviour once 26Al was effectively extinct ((26Al/27Al)0 3.4 ± 0.6 × 10-5. Overall, our samples record a sequence of events from the formation of ferromagnesian objects within 0.5 Ma of CAI to re-equilibration of chondrules and silicate vapour >2 Ma post CAI, assuming an initially homogeneous 26Al/27Al. Metamorphism on the asteroid parent body may have played a subsequent role in affecting Mg isotope composition, but we argue this had a minor influence on the observations here.

  10. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula.

    Science.gov (United States)

    Hashizume, Ko; Chaussidon, Marc

    2005-03-31

    The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.

  11. Adsorption and Photodesorption of CO from Charged Point Defects on TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Rentao; Dahal, Arjun P.; Wang, Zhitao; Dohnalek, Zdenek; Kimmel, Gregory A.; Petrik, Nikolay G.; Lyubinetsky, Igor V.

    2017-09-12

    Adsorption and photodesorption of weakly-bound carbon monoxide, CO, from reduced and hydroxylated rutile TiO2(110) (r- and h- TiO2(110)) at sub-monolayer coverages is studied with atomically-resolved scanning tunneling microscopy (STM) along with ensemble-averaged temperature-programmed desorption (TPD) and angle-resolved photon-stimulated desorption (PSD) at low temperatures ( 50 K). STM data weighted by the concentration of each kind of adsorption sites on r-TiO2(110) give an adsorption probability which is the highest for the bridging oxygen vacancies (VO) and very low for the Ti5c sites closest to VO. Occupancy of the remaining Ti5c sites with CO is significant, but smaller than for VO. The probability distribution for the different adsorption sites corresponds to a very small difference in CO adsorption energies: < 0.02 eV. We also find that UV irradiation stimulates both diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bi-modal angular distribution. In addition to a major, normal to the surface component, there is a broader cosine component indicating scattering from the surface which likely also leads to photo-stimulated diffusion. Hydroxylation of VO’s does not significantly change the CO PSD yield and angular distribution, indicating that not atomic but rather electronic surface defects are involved in the site-specific PSD process. We suggest that photodesorption can be initiated by recombination of photo-generated holes with excess unpaired electrons localized near the surface point-defect (either VO or bridging hydroxyl), leading to the surface atoms rearrangement and ejection of the weakly-bound CO molecules.

  12. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  13. Synergistic effect of Ti and F co-doping on dehydrogenation properties of MgH2 from first-principles calculations

    International Nuclear Information System (INIS)

    Zhang, J.; Huang, Y.N.; Mao, C.; Peng, P.

    2012-01-01

    Highlights: ► The co-incorporation of Ti and F into MgH 2 lattice is energetically favorable. ► The incorporated Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. ► The synergistic effect of Ti and F is superior to that of pure Ti. ► The weakened interactions of Mg–H explain enhanced dehydrogenation properties. - Abstract: The energetic and electronic properties of MgH 2 co-doped with Ti and F are investigated using first-principles calculations based on density functional theory. The calculation results show that incorporation of Ti combined with F atoms into MgH 2 lattice is energetically favorable relative to single incorporation of Ti atom. After dehydrogenation, the co-doped Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. Comparatively, the combined effect of Ti and F in improving the dehydrogenation properties of MgH 2 is superior to that of pure Ti. These results provide a reasonable explanation for experimental observations. Analysis of electronic structures suggests the enhanced dehydrogenation properties of doped MgH 2 can be attributed to the weakened bonding interactions between Mg and H due to foreign species doping.

  14. CO 2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia

    Science.gov (United States)

    Shimizu, Kenji; Shimizu, Nobumichi; Komiya, Tsuyoshi; Suzuki, Katsuhiko; Maruyama, Shigenori; Tatsumi, Yoshiyuki

    2009-10-01

    The volatile content of komatiite is a key to constrain the thermal and chemical evolution of the deep Earth. We report the volatile contents with major and trace element compositions of ~ 80 melt inclusions in chromian spinels (Cr-spinels) from beach sands on Gorgona Island, Colombia. Gorgona Island is a ~ 90 Ma volcanic island, where picrites and the youngest komatiites known on the Earth are present. Melt inclusions are classified into three types on the basis of their host Cr-spinel compositions: low Ti (P type), high Ti with high Cr # (K1 type) and high Ti with low Cr # (K2 type). Chemical variations of melt inclusions in the Cr-spinels cover all of the island's lava types. P-type inclusions mainly occur in the picrites, K1-type in high-TiO 2 komatiites (some enriched basalts: E-basalts) and K2-type in low-TiO 2 komatiites. The H 2O and CO 2 contents of melt inclusions within Cr-spinels from the beach sand are highly variable (H 2O: 0.03-0.9 wt.%; CO 2: 40-4000 ppm). Evaluation of volatile content is not entirely successful because of compositional alterations of the original melt by degassing, seawater/brine assimilation and post-entrapment modification of certain elements and volatiles. However, the occurrence of many melt inclusions with low H 2O/K 2O ratios indicates that H 2O/K 2O of Gorgona komatiite is not much different from that of modern mid-oceanic ridge basalt (MORB) or oceanic island basalt. Trend of CO 2/Nb and Zr/Y ratios, accounted for by two-component mixing between the least degassed primary komatiite and low-CO 2/Nb evolved basalt, allow us to estimate a primary CO 2/Nb ratio of 4000 ± 2200 or a CO 2 content of 0.16 ± 0.09 wt.%. The determined CO 2/Nb ratio is unusually high, compared to that of MORB (530). Although the presence of CO 2 in the Gorgona komatiite does not affect the magma generation temperature, CO 2 degassing may have contributed to the eruption of high-density magmas. High CO 2/Nb and the relatively anhydrous nature of

  15. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    Directory of Open Access Journals (Sweden)

    Higashiyama Koji

    2014-03-01

    Full Text Available The quantum-number projected generator coordinate method (GCM is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  16. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO{sub 2} nanosheets array film photoelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Mu, Yannan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Department of Physics and Chemistry, Heihe University, Heihe 164300 (China); Su, Pengyu; Wang, Guangxia; Fu, Wuyou [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Yang, Haibin, E-mail: yanghb@jlu.edu.cn [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-10-25

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO{sub 2}NSs) films were reported for the first time. The TiO{sub 2}NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO{sub 2}NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO{sub 2}NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO{sub 2}NSs was with photocurrent density of 6.12 mA cm{sup −2} under an illumination of AM 1.5 G, indicating the TiO{sub 2}NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO{sub 2} nanosheets films were fabricated by a simple hydrothermal. • TiO{sub 2} nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO{sub 2} nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm{sup −2}.

  17. Synthesis of Co3O4/TiO2 composite by pyrolyzing ZIF-67 for detection of xylene

    Science.gov (United States)

    Bai, Shouli; Tian, Ke; Tian, Ye; Guo, Jun; Feng, Yongjun; Luo, Ruixian; Li, Dianqing; Chen, Aifan; Liu, Chung Chiun

    2018-03-01

    Co3O4/TiO2 composites with p-n heterojunction have been successfully prepared by pyrolyzing sacrificial template of Ti ion loaded Co-based Zeolitic imidazolate framework (ZIF-67). The structure and morphology of composite have been characterized by means of the analysis of XRD, FESEM, HRTEM and XPS spectra. The composite with a Co/Ti molar ratio of 4:1 exhibits the maximum sensing response of 6.17-50 ppm xylene, which is 5 times higher than pristine Co3O4. Moreover, Co3O4/TiO2 composite also shows good selectivity, long-term stability and rapid response and recovery. Such excellent sensing performances are attributed to material porous structure, high specific surface and the formation of abundant p-n heterojunction that permits the gas adsorption, diffusion and surface reaction and then improve the gas sensing performance. This work develops a promising synthesized approach of metal oxide composites for broader MOFs application in gas sensor field.

  18. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  19. Visible light-responded C, N and S co-doped anatase TiO{sub 2} for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lei, X.F., E-mail: leixuefei69@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Xue, X.X.; Yang, H. [Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Chen, C.; Li, X.; Pei, J.X.; Niu, M.C.; Yang, Y.T.; Gao, X.Y. [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-10-15

    The (C, N and S) co-doped TiO{sub 2} (TH-TiO{sub 2}) samples were synthesized by a sol-gel method calcined at 500 °C, employing butyl titanate as the titanium source and thiourea as the dopant. The structures of TH-TiO{sub 2} samples were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectroscopy, Thermo gravimetry and differential thermal analysis (TG-DTA), Scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherms. The photocatalytic activities were checked through the photocatalytic reduction of Cr(VI) as a model compound under visible light irradiation. The results showed that the thiourea content played an important role on the microstructure and photocatalytic activity of the samples. According to XPS results, (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. TH-TiO{sub 2} samples with thiourea: Ti molar ratio of 1.5 exhibits higher photocatalytic activity than that of the other samples under visible light irradiation, which can be attributed to the synergic effect of the pure anatase structure, the higher light absorption characteristics in visible regions, separation efficiency of electron–hole pairs, the specific surface area and the optimum (C, N and S) content. - Graphical abstract: (C, N and S) co-doped TiO{sub 2} samples show good photocatalytic activity for Cr (VI) reduction under visible light irradiation. - Highlights: • (C, N and S) co-doping in TH-TiO{sub 2} samples can promote the formation of the pure anatase structure. • (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. • The band gap energy of TH-TiO{sub 2} samples reduced after (C, N and S) co-doping. • (C, N and S) co-doped TiO{sub 2} samples were effective for the photocatalytic reduction of Cr(VI) under visible light

  20. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  1. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  2. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    Science.gov (United States)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  3. Magnetic properties of co-modified Fe,N-TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Zolnierkiewicz Grzegorz

    2015-01-01

    Full Text Available Iron and nitrogen co-modified titanium dioxide nanocomposites, nFe,N-TiO2 (where n = 1, 5 and 10 wt% of Fe, were investigated by detailed dc susceptibility and magnetization measurements. Different kinds of magnetic interactions were evidenced depending essentially on iron loading of TiO2. The coexistence of superparamagnetic, paramagnetic and ferromagnetic phases was identified at high temperatures. Strong antiferromagnetic interactions were observed below 50 K, where some part of the nanocomposite entered into a long range antiferromagnetic ordering. Antiferromagnetic interactions were attributed to the magnetic agglomerates of iron-based and trivalent iron ions in FeTiO3 phase,whereas ferromagnetic interactions stemmed from the F-center mediated bound magnetic polarons.

  4. Photocatalytic Reduction of CO2 to Methane on Pt/TiO2 Nanosheet Porous Film

    Directory of Open Access Journals (Sweden)

    Li Qiu-ye

    2014-01-01

    Full Text Available Anatase TiO2 nanosheet porous films were prepared by calcination of the orthorhombic titanic acid films at 400°C. They showed an excellent photocatalytic activity for CO2 photoreduction to methane, which should be related to their special porous structure and large Brunauer-Emmett-Teller (BET surface area. In order to further improve the photocatalytic activity, Pt nanoparticles were loaded uniformly with the average size of 3-4 nm on TiO2 porous films by the photoreduction method. It was found that the loading of Pt expanded the light absorption ability of the porous film and improved the transformation efficiency of CO2 to methane. The conversion yield of CO2 to methane on Pt/TiO2 film reached 20.51 ppm/h·cm2. The Pt/TiO2 nanosheet porous film was characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscope (TEM, and ultraviolet-visible light diffuse reflectance spectra (UV-vis DRS. Moreover, the transient photocurrent-time curves showed that the Pt/TiO2 nanosheet porous film exhibited higher photocurrent, indicating that the higher separation efficiency of the photogenerated charge carriers was achieved.

  5. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    Science.gov (United States)

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  6. Interaction between Nd-rich phase particles and liquid-solid interface in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd titanium alloy

    International Nuclear Information System (INIS)

    Li, G.P.; Li, D.; Liu, Y.Y.; Hu, Z.Q.

    1995-01-01

    The composition (wt%) of ingot fir this investigation is 86.75%Ti, 5%Al, 4%Sn, 2%Zr, 1%Mo, 0.25%Si, 1%Nd. The alloy was prepared by vacuum arc melting in the form of buttons of mass 500 kg, which was remelted three times repeatedly to obtain homogeneous composition. The Nd-rich phase particles in the as-cast Ti-55 alloy are about 1.2∼11.07 microm and uniformly distribute in the matrix. The shapes of the particles are mainly ellipsoids together with short needle-like and blocky morphologies. The calculated diameter of the Nd-rich phase particles is ∼ 10 microm, which is within the 1.2∼11.07 microm range of the particle diameter experimentally measured in the as-cast Ti-55 alloy. The practical interface velocity is three orders of magnitude greater than V c, and the Nd-rich phase particles in the as-cast Ti-55 alloy are trapped by the liquid-solid interface

  7. Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V alloy using laser surface cladding technique

    CSIR Research Space (South Africa)

    Adesina, OS

    2017-11-01

    Full Text Available properties can be enhanced by appropriate enhancement of the microstructure via surface modification technique without altering the bulk material. In this work, Cp-Ti and Co powders were deposited at different admixed percentages by laser cladding on Ti-6Al-4...

  8. Multi-isotope tracing of CO2 leakage and water-rock interaction in a natural CCS analogue.

    Science.gov (United States)

    Kloppmann, Wolfram; Gemeni, Vasiliki; Lions, Julie; Koukouzas, Nikolaos; Humez, Pauline; Vasilatos, Charalampos; Millot, Romain; Pauwels, Hélène

    2015-04-01

    Natural analogues of CO2 accumulation and, potentially, leakage, provide a highly valuable opportunity to study (1) geochemical processes within a CO2-reservoir and the overlying aquifers or aquicludes, i.e. gas-water-rock interactions, (2) geology and tightness of reservoirs over geological timescales, (3) potential or real leakage pathways, (3) impact of leakage on shallow groundwater resources quality, and (4) direct and indirect geochemical indicators of gas leakage (Lions et al., 2014, Humez et al., 2014). The Florina Basin in NW Macedonia, Greece, contains a deep CO2-rich aquifer within a graben structure. The graben filling consists of highly heterogeneous Neogene clastic sediments constituted by components from the adjacent massifs including carbonates, schists, gneiss as well as some ultramafic volcanic rocks. Clay layers are observed that isolate hydraulically the deep, partly artesian aquifer. Organic matter, in form of lignite accumulations, is abundant in the Neogene series. The underlying bedrocks are metamorphic carbonates and silicate rocks. The origin of the CO2 accumulation is controversial (deep, partially mantle-derived D'Allessandro et al., 2008 or resulting from thermal decomposition of carbonates, Hatziyannis and Arvanitis, 2011). Groundwaters have been sampled from springs and borewells over 3 years at different depths. First results on major, minor and trace elements give evidence of water-rock interaction, mainly with carbonates but also with ultramafic components but do not indicate that CO2-seepage is the principal driver of those processes (Gemeni et al., submitted). Here we present isotope data on a selection of groundwaters (δ2H , δ18O, δ13CTDIC, 87Sr/86Sr, δ11B, δ7Li). Stable isotopes of water indicate paleo-recharge for some of the groundwaters, limited exchange with gaseous CO2 and, in one case, possibly thermal exchange processes with silicates. Sr isotope ratios vary between marine ratios and radiogenic values indicating

  9. Modification of WC-Co Hard Metal by Ion Implantation with Ti+, AI+, N+, C+ and B+

    International Nuclear Information System (INIS)

    Rassoul, El.M.A.; Saleh, Z.A.; Waheed, A.F.; Abdel- Samad, S.M.; EI- Awadi, G.A.

    2010-01-01

    WC/Co hard metal was implanted by Ti + , AI + , N + , C + , and B + ions at a dose of 5x 10 17 ions/cm 2 at different energies ranging from 50 keV to 200 keV. The implanted layers were investigated by means of nano indentation, calotte measurements, SEM, X-ray diffraction XRD, tribometer and EDX. The maximum implanted zone was about 0.13 μm. The hardness of WC-Co was increased by a factor of 140% after its implantation by Ti, AI, and N and increased by a factor of 170 % after implantation by Ti + , AI + , C + , N + and B + ions as compared to the original value. Also friction coefficient of WC/Co was improved after ion implantation.

  10. Slurry Erosion Behavior of AlxCoCrFeNiTi0.5 High-Entropy Alloy Coatings Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2018-02-01

    Full Text Available High-entropy alloys (HEAs have gained extensive attention due to their excellent properties and the related scientific value in the last decade. In this work, AlxCoCrFeNiTi0.5 HEA coatings (x: molar ratio, x = 1.0, 1.5, 2.0, and 2.5 were fabricated on Q345 steel substrate by laser-cladding process to develop a practical protection technology for fluid machines. The effect of Al content on their phase evolution, microstructure, and slurry erosion performance of the HEA coatings was studied. The AlxCoCrFeNiTi0.5 HEA coatings are composed of simple face-centered cubic (FCC, body-centered cubic (BCC and their mixture phase. Slurry erosion tests were conducted on the HEA coatings with a constant velocity of 10.08 m/s and 16–40 meshs and particles at impingement angles of 15, 30, 45, 60 and 90 degrees. The effect of three parameters, namely impingement angle, sand concentration and erosion time, on the slurry erosion behavior of AlxCoCrFeNiTi0.5 HEA coatings was investigated. Experimental results show AlCoCrFeNiTi0.5 HEA coating follows a ductile erosion mode and a mixed mode (neither ductile nor brittle for Al1.5CoCrFeNiTi0.5 HEA coating, while Al2.0CoCrFeNiTi0.5 and Al2.5CoCrFeNiTi0.5 HEA coatings mainly exhibit brittle erosion mode. AlCoCrFeNiTi0.5 HEA coating has good erosion resistance at all investigated impingement angles due to its high hardness, good plasticity, and low stacking fault energy (SFE.

  11. Cross-continental triple oxygen isotope analysis of tropospheric CO2

    Science.gov (United States)

    Liang, M. C.; Rangarajan, R.; Newman, S.; Laskar, A. H.

    2016-12-01

    The abundance variations of near surface atmospheric CO2 isotopologues (primarily 16O12C16O, 16O13C16O, 17O12C16O, and 18O12C16O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO2 biogeochemical cycles, D17O (= ln(1+d17O) - 0.516´ln(1+d18O)) provides an alternative constraint on the strengths of the associated cycles involving CO2. Here, we report more than one year of data obtained from Taiwan (Taipei), South China Sea, and USA (Pasadena, CA and Palos Verdes, CA). On average, the D17O values from these locations are similar and show no significant influence from the 2014-2016 El Nino event, in contrast to what has been reported for the 1997-1998 El Nino from the CO2 data collected from La Jolla, CA. Implications for utilizing the new tracer D17O for carbon cycling studies will be made.

  12. Preparation and photocatalytic activity of B, Y co-doped nanosized TiO_2 catalyst

    Institute of Scientific and Technical Information of China (English)

    石中亮; 刘富梅; 姚淑华

    2010-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) powders were prepared by sol-gel method with Ti(OC4H9)4 as a raw material. The photocatalytic decomposition of phenol in aqueous solution under UV light was used as a probe reaction to evaluate their photocatalytic activities. The effects of B, Y co-doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalyst were investigated by thermogravimetric differential thermal analysis, X-ray d...

  13. Correlation between donating or accepting electron behavior of the adsorbed CO or H_2 and its oxidation over TiO_2 under ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Peng, Xiaoying; He, Zhoujun; Yang, Kai; Chen, Xun; Wang, Xuxu; Dai, Wenxin; Fu, Xianzhi

    2016-01-01

    Graphical abstract: Although both H_2 and CO can be thermodynamically oxidized by O_2 over TiO_2 under UV irradiation, only CO was oxidized by O_2 over TiO_2 due to its donating electrons to TiO_2, while H_2 was not oxidized by O_2 under the same condition due to its accepting electrons from TiO_2. - Highlights: • CO could but H_2 could not be oxidized over TiO_2 under UV irradiation. • Electron transfer behaviors of species adsorbed at TiO_2 were characterized by gas sensing testing. • Adsorbed CO donated electrons to TiO_2 but adsorbed H_2 accepted electrons from TiO_2 under UV irradiation. • Photocatalytic oxidation of species over TiO_2 maybe depends on the electron transfer direction between species and TiO_2. - Abstract: Although both H_2 and CO can be thermodynamically oxidized by O_2 over TiO_2 under ultraviolet light (UV) irradiation, it was found that CO not H_2 could be oxidized over an anatase TiO_2 in this work. The chemisorption results of CO and H_2 at TiO_2 surface under UV irradiation, investigated by a gas sensing testing, showed that CO adsorption at TiO_2 would cause the decrease of TiO_2 surface impedance, whereas H_2 adsorption would cause its increase. It is proposed that the CO adsorbed at TiO_2 donate electrons to TiO_2 (as a process of CO pre-oxidation), resulting in its oxidation. In contrast, the H_2 adsorbed at TiO_2 accept electrons from TiO_2 (as a process of H_2 pre-reduction), which makes it difficult to be oxidized. This result indicates that the photocatalytic oxidation of a reactant over TiO_2 not only depends on the formation of the photo-generated carriers and the subsequent activated oxidizing species, but maybe also depends on the electron transfer behavior at the interface of the adsorbed reactant and TiO_2.

  14. Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Johansen, Jacob; Schrock, Philipp [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    Reactions of neutron-rich tin isotopes in a mass range of A=124 to A=134 have been measured at the R{sup 3}B setup at GSI in inverse kinematics. Due to the neutron excess, which results in a weaker binding of the valence neutrons such isotopes are expected to form a neutron skin. The investigation of this phenomenon is an important goal in nuclear-structure physics. Reactions of the tin isotopes with different targets have been performed kinematically complete. The taken data set therefore allows for the extraction of the neutron-skin thickness from two independent reaction channels. These are dipole excitations on the one hand and nuclear-induced reactions on the other hand. This contribution focuses on the latter mechanism. The analysis techniques which are used to extract the total charge-changing as well as the total neutron-removal cross section are presented using the example of {sup 124}Sn. The total neutron-removal cross section is of particular interest because of its high sensitivity to the neutron-skin thickness.

  15. Can a sponge fractionate isotopes?

    Science.gov (United States)

    Patel, B; Patel, S; Balani, M C

    1985-03-22

    The study has unequivocally demonstrated that siliceous sponges Spirastrella cuspidifera and Prostylyssa foetida from the same microecological niche exhibit a high degree of species specificity, while accumulating a host of heavy metal ions (Ni, Cr, Cd, Sn, Ti, Mo, Zr). S. cuspidifera accumulated, in addition, 60Co and 63Ni, showing discrimination against other radionuclides, 137Cs and 131I, present in the ambient waters receiving controlled low level waste discharges from a B.W.R. nuclear power station. P. foetida, on the other hand, accumulated only 131I and showed discrimination against other radionuclides including 60Co, although the stable iodine concentrations in both the sponges were the same. The specific activity of 60Co (in becquerels per gram of 59Co) in S. cuspidifera and 131I (in becquerels per gram of 127I) in P. foetida were at least two orders of magnitude greater than in the ambient sea water. That of 63Ni (in becquerels per gram of 62Ni) in S. cuspidifera, on the other hand, was lower by two orders of magnitude than in either abiotic matrices from the same environment. Thus, not only did both the species show bioaccumulation of a specific element, but also preferential uptake of isotopes of the same element, though they were equally available for intake. Such differential uptake of isotopes can possibly be explained in terms of two quite different mechanisms operating, each applicable in a particular case. One is that the xenobiotic isotope enters the environment in a physicochemical form or as a complex different from that of its natural counterpart. If equilibration with the latter is slow, so that the organism acquires the xenobiotic in an unfamiliar chemical context, it may treat it as a chemically distinct entity so that its concentration factor differs from that of stable isotope, thus changing the specific activity. Alternatively, if the xenobiotic is present in the same chemical form as the stable isotope, the only way in which specific

  16. β-decay spectroscopy of neutron-rich 160,161,162Sm isotopes

    Directory of Open Access Journals (Sweden)

    Patel Z.

    2016-01-01

    Full Text Available Neutron-rich 160,161,162Sm isotopes have been populated at the RIBF, RIKEN via β first time. β-coincident γ rays were observed in all three isotopes including γ rays from the isomeric decay of 160Sm and 162Sm. The isomers in 160Sm and 162Sm have previously been observed but have been populated via β decay for the first time. The isomeric state in 162Sm is assigned a 4−v72+[ 633 ]⊗v12−[ 521 ]${4^ - }v{{7 \\over 2}^ + }\\left[ {633} \\right] \\otimes v{{1 \\over 2}^ - }\\left[ {521} \\right]$ configuration based on the decay pattern. The level schemes of 160Sm and 162Sm are presented. The ground states in the parent nuclei 160Pm and 162Pm are both assigned a 6−v72+[633]⊗π52−[532]${6^ - }v{{7 \\over 2}^ + }\\left[ {633} \\right] \\otimes \\pi {{5 \\over 2}^ - }\\left[ {532} \\right]$ configuration based on the population of states in the daughter nuclei. Blocked BCS calculations were performed to further investigate the spin-parities of the ground states in 160Pm, 161Pm, and 162Pm, and the isomeric state in 162Sm

  17. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3−xTi2 (0 ≤ x ≤ 3

    Directory of Open Access Journals (Sweden)

    Balamurugan Balasubramanian

    2016-11-01

    Full Text Available We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3 and saturation magnetic polarization (11.4 kG are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.

  18. NMR evidence of metal-support interaction in syngas conversion catalyst Co-TiO2

    International Nuclear Information System (INIS)

    Murty, A.N.; Seamster, M.; Thorpe, A.N.; Obermyer, R.T.; Rao, V.U.S.

    1990-01-01

    To examine the relation between catalytic and magnetic properties, the zero-field NMR spectra and hysteresis loops of cobalt supported on silica, alumina, magnesia, titania, and ZSM-5 with and without the promoter thoria were investigated. Cobalt was incorporated on the support by simple physical admixture of precipitated cobalt and support, and by aqueous impregnation technique. Our studies indicate that the particle sizes are consistently lower in the presence of thoria. Of all the catalysts examined, the Co/Th/TiO 2 catalyst exhibits a high saturation magnetization value---about 20% higher than pure cobalt. In addition, the NMR spectrum of the aqueous impregnation Co/TiO 2 catalyst is distinctly different from the rest. All the NMR lines are shifted to a higher frequency by about 4 MHz. These two features---enhancement of the magnetic moment of cobalt atoms and increases in the hyperfine field at the Co nucleus---clearly indicate that there occurs strong metal-support interaction between cobalt and titania support. The higher hydrocarbon yields observed by the earlier investigators with Co/TiO 2 catalysts might be related to this phenomenon

  19. Impact of Overlapping Fe/TiO2 Prepared by Sol-Gel and Dip-Coating Process on CO2 Reduction

    Directory of Open Access Journals (Sweden)

    Akira Nishimura

    2016-01-01

    Full Text Available Fe-doped TiO2 (Fe/TiO2 film photocatalyst was prepared by sol-gel and dip-coating process to extend its photoresponsivity to the visible spectrum. To promote the CO2 reduction performance with the photocatalyst, some types of base materials used for coating Fe/TiO2, which were netlike glass fiber and Cu disc, were investigated. The characterization of prepared Fe/TiO2 film coated on netlike glass fiber and Cu disc was analyzed by SEM and EPMA. In addition, the CO2 reduction performance of Fe/TiO2 film coated on netlike glass disc, Cu disc, and their overlap was tested under a Xe lamp with or without ultraviolet (UV light, respectively. The results show that the concentration of produced CO increases by Fe doping irrespective of base material used under the illumination condition with UV light as well as that without UV light. Since the electron transfer between two overlapped photocatalysts is promoted, the peak concentration of CO for the Fe/TiO2 double overlapping is approximately 1.5 times as large as the Fe/TiO2 single overlapping under the illumination condition with UV light, while the promotion ratio is approximately 1.1 times under that without UV light.

  20. Water Isotope framework for lake water balance monitoring and modelling in the Nam Co Basin, Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Shichang Kang

    2017-08-01

    New hydrological insights: A water isotope framework for the Nam Co basin, including the Local Meteoric Water Line, limiting isotopic composition of evaporation and two hypothetical evaporation trajectories, is established. We further applied the isotope mass balance model to estimate the overall isotopic composition of input water to the Nam Co, the evaporation over inputs ratios (E/I for three consecutive years, and the water yields (Wy, depth equivalent runoff at a basin scale. Our results clearly suggest a positive water budget (i.e., E/I < 1, providing another line of evidence that the subsurface leakage from Nam Co is likely. The discrepancy between isotope-based water yields estimations and field-based runoff observations suggest that, compared to the well-studied Nyainqentanglha Mountains and southwestern mountains, the ridge-and-valley landscape in the western highlands and northwestern hogbacks are possibly low yields area, which should draw more research attentions in future hydrological investigations.

  1. Nano-structure and tribological properties of B+ and Ti+ co-implanted silicon nitride

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Noda, Katsutoshi; Yamauchi, Yukihiko

    2005-01-01

    Silicon nitride ceramics have been co-implanted with boron and titanium ions at a fluence of 2 x 10 17 ions/cm 2 and an energy of 200 keV. TEM results indicated that the boron and titanium-implanted layers were amorphized separately and titanium nitride nano-crystallites were formed in the titanium-implanted layer. XPS results indicated that the implantation profile varied a little depending on the ion implantation sequence of boron and titanium ions, with the boron implantation peak shifting to a shallower position when implanted after Ti + -implantation. Wear tests of these ion-implanted materials were carried out using a block-on-ring wear tester under non-lubricated conditions against commercially available silicon nitride materials. The specific wear rate was reduced by ion implantation and showed that the specific wear rate of Ti + -implanted sample was the lowest, followed by B + , Ti + co-implanted and B + -implanted samples

  2. Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Billo, Tadesse; Fu, Fang-Yu; Raghunath, Putikam; Shown, Indrajit; Chen, Wei-Fu; Lien, Hsiang-Ting; Shen, Tzu-Hsien; Lee, Jyh-Fu; Chan, Ting-Shan; Huang, Kuo-You; Wu, Chih-I; Lin, M C; Hwang, Jih-Shang; Lee, Chih-Hao; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-01

    One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO 2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO 2 (Ni/TiO 2[Vo] ) with built-in dual active sites for selective photocatalytic CO 2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO 2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO 2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO 2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Theoretical and experimental study on solid chemical reaction between BaCO3 and TiO2 in microwave field

    International Nuclear Information System (INIS)

    Liu Hanxing; Guo, Liling; Zou Long; Cao Minhe; Zhou Jian; Ouyang Shixi

    2004-01-01

    Solid-state chemical reaction mechanism for the reaction between BaCO 3 and TiO 2 in microwave field was investigated based on X-ray power diffraction (XRD) data and theory of diffusion. The compositions of the resultant after reaction under different conditions were studied by employing XRD. The quantitative analyses based on XRD data showed the reaction in microwave field was quite different from that in the conventional method. A model was proposed to explain the change of the ratio between the reactant BaCO 3 , TiO 2 and the resultant BaTiO 3 for the chemical reaction. The formation kinetic of BaTiO 3 from the BaCO 3 and TiO 2 was calculated by employing this theoretical model. The reaction rate between BaCO 3 and TiO 2 in microwave field was much higher than that in conventional method. The activation energy of the atomic diffusions in this solid chemical reaction is only 58 kJ/mol, which was only about 1/4 of 232 kJ/mol in the conventional value. The result suggests that the microwave field enhance atomic diffusion during the reaction

  4. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  5. Recent activities for β-decay half-lives and β-delayed neutron emission of very neutron-rich isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dillmann, Iris [TRIUMF, Vancouver BC, V6T 2A3, Canada and GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Abriola, Daniel [Laboratorio Tandar, Comisión Nacional de Energía Atómica, B1650KINA, San Martín, Buenos Aires (Argentina); Singh, Balraj [Department of Physics and Astronomy, McMaster University, Hamilton ON, L8S 4M1 (Canada)

    2014-05-02

    Beta-delayed neutron (βn) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material β-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure βn-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 β-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 β-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of β-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and

  6. Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption

    KAUST Repository

    Helali, Zeineb

    2015-04-01

    Following our strategy to analyze the metal–support interaction, we present periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, θ = 1/3) to investigate the interaction of an individual metal atom, M, with TiO2 and its consequence on the coadsorption of H and CO over M/TiO2. M under investigation varies in a systematic way from K to Zn. It is found that the presence of the support decreases or increases the strength of M–H or M–CO interaction according to the nature of M. The site of the adsorption for H and the formation of HCO/M also depend on M. From the left- to the right-hand side of the period, C and O both interact while O progressively detaches from M. On the contrary, for M = Fe–Cu, CO dissociation is more likely to happen. For CO and H coadsorption, two extreme cases emerge: For Ni, the hydrogen adsorbed should easily move on the support and CO dissociation is more likely. For Ti or Sc, H is easily coadsorbed with CO on the metal and CO hydrogenation could be the initial step. © 2015, Springer-Verlag Berlin Heidelberg.

  7. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  8. Evolution of deformation in neutron-rich Ba isotopes up to A =150

    Science.gov (United States)

    Licǎ, R.; Benzoni, G.; Rodríguez, T. R.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Morales, A. I.; Madurga, M.; Sotty, C. O.; Vedia, V.; De Witte, H.; Benito, J.; Bernard, R. N.; Berry, T.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernandez-Martínez, G.; Fynbo, H.; Greenlees, P. T.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Lund, M. V.; Mǎrginean, N.; Mǎrginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Regis, J. M.; Robledo, L. M.; Rotaru, F.; Saed-Samii, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.; IDS Collaboration

    2018-02-01

    The occurrence of octupolar shapes in the Ba isotopic chain was recently established experimentally up to N =90 . To further extend the systematics, the evolution of shapes in the most neutron-rich members of the Z =56 isotopic chain accessible at present, Ba,150148, has been studied via β decay at the ISOLDE Decay Station. This paper reports on the first measurement of the positive- and negative-parity low-spin excited states of 150Ba and presents an extension of the β -decay scheme of 148Cs. Employing the fast timing technique, half-lives for the 21+ level in both nuclei have been determined, resulting in T1 /2=1.51 (1 ) ns for 148Ba and T1 /2=3.4 (2 ) ns for 150Ba. The systematics of low-spin states, together with the experimental determination of the B (E 2 :2+→0+) transition probabilities, indicate an increasing collectivity in Ba-150148, towards prolate deformed shapes. The experimental data are compared to symmetry conserving configuration mixing (SCCM) calculations, confirming an evolution of increasingly quadrupole deformed shapes with a definite octupolar character.

  9. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation.

    Science.gov (United States)

    Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude

    2016-02-01

    Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. Copyright © 2016. Published by Elsevier B.V.

  10. Tropical epiphytes in a CO 2-rich atmosphere

    Science.gov (United States)

    Monteiro, José Alberto Fernandez; Zotz, Gerhard; Körner, Christian

    2009-01-01

    We tested the effect on epiphyte growth of a doubling of pre-industrial CO 2 concentration (280 vs. 560 ppm) combined with two light (three fold) and two nutrition (ten fold) treatments under close to natural humid conditions in daylight growth cabinets over 6 months. Across co-treatments and six species, elevated CO 2 increased relative growth rates by only 6% ( p = 0.03). Although the three C3 species, on average, grew 60% faster than the three CAM species, the two groups did not significantly differ in their CO 2 response. The two Orchidaceae, Bulbophyllum (CAM) and Oncidium (C3) showed no CO 2 response, and three out of four Bromeliaceae showed a positive one: Aechmea (CAM, +32% p = 0.08), Catopsis (C3, +11% p = 0.01) and Vriesea (C3, +4% p = 0.02). In contrast, the representative of the species-rich genus Tillandsia (CAM), which grew very well under experimental conditions, showed no stimulation. On average, high light increased growth by 21% and high nutrients by 10%. Interactions between CO 2, light and nutrient treatments (low vs. high) were inconsistent across species. CO 2 responsive taxa such as Catopsis, could accelerate tropical forest dynamics and increase branch breakage, but overall, the responses to doubling CO 2 of these epiphytes was relatively small and the responses were taxa specific.

  11. Conditional CO2 flux analysis of a managed grassland with the aid of stable isotopes

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Emmenegger, L.; Knohl, A.; Buchmann, N.; Eugster, W.

    2009-04-01

    Short statured managed ecosystems, such as agricultural grasslands, exhibit high temporal changes in carbon dioxide assimilation and respiration fluxes for which measurements of the net CO2 flux, e.g. by using the eddy covariance (EC) method, give only limited insight. We have therefore adopted a recently proposed concept for conditional EC flux analysis of forest to grasslands, in order to identify and quantify daytime sub-canopy respiration fluxes. To validate the concept, high frequency (≈5 Hz) stable carbon isotope analyis of CO2 was used. We made eddy covariance measurements of CO2 and its isotopologues during four days in August 2007, using a novel quantum cascade laser absorption spectrometer, capable of high time resolution stable isotope analysis. The effects of a grass cut during the measurement period could be detected and resulted in a sub-canopy source conditional flux classification, for which the isotope composition of the CO2 could be confirmed to be of a respiration source. However, the conditional flux method did not work for an undisturbed grassland canopy. We attribute this to the flux measurement height that was chosen well above the roughness sublayer, where the natural isotopic tracer (δ13C) of respiration was too well mixed with background air.

  12. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  13. BASIN TCP Stable Isotope Composition of CO2 in Terrestrial Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports stable isotope ratio data of CO2 (13C/12C and 18O/16O) associated with photosynthetic and respiratory exchanges across the...

  14. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    Science.gov (United States)

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials.

  15. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  16. On the relations between the oceanic uptake of CO2 and its carbon isotopes

    International Nuclear Information System (INIS)

    Heimann, M.; Maier-Reimer, E.

    1994-01-01

    The recent proposals to estimate the oceanic uptake of CO 2 by monitoring the oceanic change in 13 C/ 12 C isotope ratio or the air-sea 13 C/ 12 C isotopic disequilibrium is reviewed. Because the history of atmospheric CO 2 and 13 CO 2 since preindustrial times is almost the same, the oceanic penetration depth of both tracers must be the same. This dynamic constraint permits the establishment of yet a third method to estimate the global ocean uptake of CO 2 from 13 C measurements. Using available observations in conjunction with canonical values for the global carbon cycle parameters the three methods yield inconsistent oceanic CO 2 uptake rates for the time period 1970-1990, ranging from 0 to over 3 GtC year -1 . However, uncertainties in the available carbon cycle data must be taken into account. Using a non-linear estimation procedure, a consistent scenario with an oceanic CO 2 uptake rate of 2.2±0.8 GtC year -1 can be established. The method also permits an investigation of the sensitivities of the different approaches. An analysis of the results of two three-dimensional simulations with the Hamburg Model of the Oceanic Carbon Cycle shows that the 13 C isotope indeed tracks the oceanic penetration of anthropogenic CO 2 . Because of its different time history, bomb produced radiocarbon, as measured at the time of GEOSECS, correlates much less well to excess carbon. (orig.)

  17. Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Bamidele V. Ayodele

    2016-08-01

    Full Text Available Production of CO-rich hydrogen gas from methane dry reforming was investigated over CeO2-supported Co catalyst. The catalyst was synthesized by wet impregnation and subsequently characterized by field emission scanning electron microscope (FESEM, energy dispersion X-ray spectroscopy (EDX, liquid N2 adsorption-desorption, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA for the structure, surface and thermal properties. The catalytic activity test of the Co/CeO2 was investigated between 923-1023 K under reaction conditions in a stainless steel fixed bed reactor. The composition of the products (CO2 and H2 from the methane dry reforming reaction was measured by gas chromatography (GC coupled with thermal conductivity detector (TCD. The effects of feed ratios and reaction temperatures were investigated on the catalytic activity toward product selectivity, yield, and syngas ratio. Significantly, the selectivity and yield of both H2 and CO increases with feed ratio and temperature. However, the catalyst shows higher activity towards CO selectivity. The highest H2 and CO selectivity of 19.56% and 20.95% respectively were obtained at 1023 K while the highest yield of 41.98% and 38.05% were recorded for H2 and CO under the same condition. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 23rd February 2016; Accepted: 23rd February 2016 How to Cite: Ayodele, B.V., Khan, M.R., Cheng, C. K. (2016. Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 210-219 (doi:10.9767/bcrec.11.2.552.210-219 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.552.210-219

  18. PCDDs, PCDFs, and PCBs co-occurrence in TiO2 nanoparticles

    NARCIS (Netherlands)

    Ctistis, Georgios; Schön, Peter; Bakker, Wouter; Luthe, Gregor

    2016-01-01

    In the present study, we report on the co-occurrence of persistent organic pollutants (POPs) adsorbed on nanoparticular titanium dioxide (TiO2). We report on the finding of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) on the

  19. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  20. Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films

    Science.gov (United States)

    Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang

    2018-04-01

    In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.

  1. BASIN TCP Stable Isotope Composition of CO2 in Terrestrial Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports stable isotope ratio data of CO2 (13C/12C and 18O/16O) associated with photosynthetic and respiratory exchanges across the biosphere-atmosphere...

  2. Measurement of the 64Zn,47Ti(n,p) cross sections using a DD neutron generator for medical isotope studies

    Science.gov (United States)

    Voyles, A. S.; Basunia, M. S.; Batchelder, J. C.; Bauer, J. D.; Becker, T. A.; Bernstein, L. A.; Matthews, E. F.; Renne, P. R.; Rutte, D.; Unzueta, M. A.; van Bibber, K. A.

    2017-11-01

    Cross sections for the 47Ti(n,p)47Sc and 64Zn(n,p)64Cu reactions have been measured for quasi-monoenergetic DD neutrons produced by the UC Berkeley High Flux Neutron Generator (HFNG). The HFNG is a compact neutron generator designed as a "flux-trap" that maximizes the probability that a neutron will interact with a sample loaded into a specific, central location. The study was motivated by interest in the production of 47Sc and 64Cu as emerging medical isotopes. The cross sections were measured in ratio to the 113In(n,n‧)113mIn and 115In(n,n‧)115mIn inelastic scattering reactions on co-irradiated indium samples. Post-irradiation counting using an HPGe and LEPS detectors allowed for cross section determination to within 5% uncertainty. The 64Zn(n,p)64Cu cross section for 2.76-0.02+0.01 MeV neutrons is reported as 49.3 ± 2.6 mb (relative to 113In) or 46.4 ± 1.7 mb (relative to 115In), and the 47Ti(n,p)47Sc cross section is reported as 26.26 ± 0.82 mb. The measured cross sections are found to be in good agreement with existing measured values but with lower uncertainty (neutron sources for nuclear data measurements and potentially the production of radionuclides for medical applications.

  3. Photocatalytic Degradation of Eosin Yellow Using Poly(pyrrole-co-aniline-Coated TiO2/Nanocellulose Composite under Solar Light Irradiation

    Directory of Open Access Journals (Sweden)

    T. S. Anirudhan

    2015-01-01

    Full Text Available The present study describes the feasibility of a novel adsorbent cum photocatalyst, poly(pyrrole-co-aniline-coated TiO2/nanocellulose composite (P(Py-co-An-TiO2/NCC, to remove eosin yellow (EY from aqueous solutions. The removal of EY was investigated by batch adsorption followed by photocatalysis. The effect of various adsorption parameters like adsorbent dose, pH, contact time, initial concentration, and ionic strength has been optimized for treating effluents from the dye industry. Adsorption of EY reached maximum at pH 4.5 and complete removal of dye was achieved using 3.5 g/L of P(Py-co-An-TiO2/NCC. Adsorption equilibrium data were fitted with Langmuir and Fritz-Schlunder isotherm models and the kinetics of adsorption follows a second-order mechanism. The adsorption capacity of P(Py-co-An-TiO2/NCC was found to be 3.39 × 10−5 mol/g and reached equilibrium within 90 min. The photocatalytic degradation of adsorbed dye under sunlight was possible and about 92.3% of dye was degraded within 90 min. The reusability of P(Py-co-An-TiO2/NCC was also investigated. The results indicate that P(Py-co-An-TiO2/NCC is the best material for the wiping out of EY from aqueous solutions.

  4. Relation between separation factor of carbon isotope and chemical reaction of CO2 with amine in nonaqueous solvent

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1989-01-01

    The separation factor for carbon isotope exchange reaction between CO 2 and amine in nonaqueous solvent was related to absorption reaction of CO 2 in a solution. The test solutions were mixtures of primary amine (such as butylamine and tert-butylamine) or secondary amine (such as diethylamine, dipropylamine and dibutylamine) diluted with nonpolar solvent (octane or triethyalmine) or polar solvent (methanol), respectively. The isotope exchange reaction consists of three steps related to chemical reaction of CO 2 in amine and nonaqueous solvent mixture, namely the reaction between CO 2 and carbamic acid, that between CO 2 and amine carbamate, and that between CO 2 and carbamic ion. Above all, the isotope separation factor between CO 2 and carbamic acid had the highest value. The overall separation factor can be higher in amine-nonaqueous solvent mixture where the concentration of carbamic acid becomes higher. (author)

  5. Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2015-09-01

    Full Text Available Using MnSO4·H2O as manganese source and urea as nitrogen source, Mn/N co-doped TiO2 loaded on wood-based activated carbon fiber (Mn/Ti-N-WACF was prepared by sol–gel method. Mn/Ti-N-WACF with different Mn doping contents was characterized by scanning electron microscopy, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS, and ultraviolet-visible spectrophotometer. Results showed that the loading rate of TiO2 in Mn/Ti-N-WACF was improved by Mn/N co-doping. After calcination at 450 °C, the degree of crystallinity of TiO2 was reduced due to Mn/N co-doption in the resulting Mn/Ti-N-WACF samples, but the TiO2 crystal phase was not changed. XPS spectra revealed that some Ti4+ ions from the TiO2 lattice of Mn/Ti-N-WACF system were substituted by doped Mn. Moreover, new bonds formed within N–Ti–N and Ti–N–O because of the doped N that substituted some oxygen atoms in the TiO2 lattice. Notably, the degradation rate of methylene blue for Mn/Ti-N-WACF was improved because of the co-doped Mn/N under visible-light irradiation.

  6. submitter Development of a processing route for carbon allotrope-based TiC porous nanocomposites

    CERN Document Server

    Ramos, J P; Stora, T; Fernandes, C M; Bowen, P

    2017-01-01

    Ti-foils are currently used as a spallation target material to produce radioisotopes for physics research at the ISOLDE facility at CERN. However, radioisotope production rates often decrease over time due to material degradation from high operation temperatures. Due to enhanced release rates, porous nanomaterials are being studied as spallation target materials for isotope production. TiC is a material with a very high melting point making it an interesting material to replace the Ti-foils. However, in its nanometric form it sinters readily at high temperatures. To overcome this, a new processing route was developed where TiC was co-milled with graphite, carbon black or multi-wall carbon nanotubes in order to hinder the sintering of TiC. The obtained nanocomposite particle sizes, density, specific surface area and porosity were characterized and compared using ANOVA. All carbon allotropes mixed with the TiC, were able to successfully stabilize the nanometric TiC, hindering its sintering up to 1500 °C for 10...

  7. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  8. CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank

    2017-10-04

    Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.

  9. PREPRARATION OF CoPcS/TiO2/BEADS AND THEIR PHOTOCATALYTIC REACTIVITY FOR PHOTODEGRADATION OF VEGETABLE OIL FLOATING ON WATER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper introduces the preparation of floating TiO2/beads photocalyst attached to the hollow glass micro-beads surface by sol-gel technique using tetrabutyl titanate as material and the preparation of floating CoPcS/TiO2/beads by dip-coatig technique. The optimal factor of degradation of vegetable oil floating on water using CoPcS/TiO2/beads was studied. The result showed that the removal rate of vegetable oil floating on water can highly reach 90% at the optimal condition (acidity or neutrality, 375W medium-pressure mercury vapour lamp, illumination 2h~3h, 1g CoPcS/TiO2/beads). The photocatalytic removal efficiency causing by CoPcS/TiO2/beads was increased rapidly by adding a trace amount of H2O2.

  10. PREPRARATION OF CoPcS/TiO2/BEADS AND THEIR PHOTOCATALYTIC REACTIVITY FOR PHOTODEGRADATION OF VEGETABLE OIL FLOATING ON WATER

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoye; YAN Yongsheng; KONG Feng; WANG Yun

    2007-01-01

    The paper introduces the preparation of floating TiO2/beads photocalyst attached to the hollow glass micro-beads surface by sol-gel technique using tetrabutyl titanate as material and the preparation of floating CoPcS/TiO2/beads by dip-coatig technique. The optimal factor of degradation of vegetable oil floating on water using CoPcS/TiO2/beads was studied. The result showed that the removal rate of vegetable oil floating on water can highly reach 90% at the optimal condition (acidity or neutrality, 375W medium-pressure mercury vapour lamp, illumination 2h~3h, 1g CoPcS/TiO2/beads). The photocatalytic removal efficiency causing by CoPcS/TiO2/beads was increased rapidly by adding a trace amount of H2O2.

  11. Formation of fine aggregate structure by solid-state displacement reaction of Ti with CoO or NiO. CoO oyobi NiO to Ti kan no koso chikan hanno ni yoru bisai fukugo soshiki no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Taimatsu, H; Kaneko, H [Akita Univ., Akita (Japan). Mining College; Wada, K [Akita Univ., Akita (Japan). Graduate School

    1992-09-20

    As a result of search for systems which have aggregate structures, the displacement reaction products of Ti with CoO or NiO are found to have aggregate structures in which the produced oxides and metals are entangled with each other. The displacement reaction of Ti with CoO or NiO is investigated at the temperature of 1273K. In the reaction of either couple, aggregate products are produced, and reacted layer is observed in the TiO2 matrix wherein Co or Ni phases are three dimensionally entangled in finely dispersed state of micron order. 2 layers of cavitated and dense TiO2 layers are found in the reacted layer. The thicknesses of the reacted layer are not constant according to locations, but thick portions are grown obeying the parabolic rate law. As a result of the study on the possibility of fabricating cermet by the reaction between powders, finely mixed characteristic structures are found to be easily obtained using systems which can produce aggregate structures. 24 refs., 9 figs.

  12. Nuclear structure of light Ca and heavy Cr isotopes

    International Nuclear Information System (INIS)

    Buerger, A.

    2007-01-01

    In the present thesis, the shell structure in exotic nuclei has been investigated. The focus of the work was on finding new experimental data in neutron-rich Cr and proton-rich Ca isotopes. The investigation of light Ca isotopes concentrated on the nucleus 36 Ca which was produced in a knockout reaction from a radioactive 37 Ca beam. For 36 Ca, the excitation energy of the first 2 + state has been measured for the first time. Furthermore, momentum distributions were analyzed using a Monte-Carlo simulation of the knockout reaction. This analysis yielded the contributions of neutrons from individual orbitals to the total knockout cross section. In principle, these may be used to calculate spectroscopic factors, but such a calculation is hampered by difficulties of present knockout-reaction models in predicting precise single-particle cross sections. The measured branching ratio to the ground and excited states, on the other hand, is close to the predicted value. A remaining difference might be due to emission of protons which cannot be detected with the present experimental setup. Both the branching ratio and the large excitation energy are compatible with a large N=16 gap in 36 Ca that leads to relatively pure configurations both in the ground state and the excited 2 + state. As a by-product of the experiment, two excitation energies in the T=2 nuclei 32 Ar and 28 S have been confirmed, and two γ-ray transitions have been observed for the first time in 37 Ca. While the mirror energy differences in the T=2 pairs 36 Ca- 36 S, 32 Ar- 32 Si, and 28 S- 28 Mg can be reproduced in shell model calculations using a modified USD interaction, these modifications are not sufficient to explain the mirror energy differences for the pair 37 Ca- 37 Cl. In the heavy Cr isotopes, new experimental evidence for a sub-shell closure at N=32 was found in a measurement of B(E2) values using high-energy Coulomb excitation of radioactive beams. Prior to this experiment, the assumption of a

  13. Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2.

    Science.gov (United States)

    Kaiser, Jan; Röckmann, Thomas

    2008-12-01

    Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass-to-charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as delta values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental delta values. Here, we present a reformulation of this data reduction procedure entirely in terms of delta values and the 'absolute' isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. Copyright 2008 John Wiley & Sons, Ltd.

  14. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    Science.gov (United States)

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  15. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rubing, E-mail: zrb86411680@126.com [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Deming [Beijing General Research Institute of Mining and Metallurgy, Beijing 100044 (China); Chen, Guiqing [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yuesheng [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  16. Effect of isotopic substitution on the collisional quenching of vibronically excited CO+

    International Nuclear Information System (INIS)

    Katayama, D.H.; Welsh, J.A.

    1983-01-01

    Rovibronic levels of the A 2 Pi/sub i/ state for 12 C 16 O + and 13 C 16 O + have been selectively excited by a pulsed, tunable dye laser and their time resolved fluorescence obtained as a function of helium pressure. These ions are formed by reaction of neutral carbon monoxide with helium metastable atoms created in a dc discharge. Since 13 CO + has essentially the same potential energy curves as 12 CO + , but differs primarily in its vibrational energy spacings, this experiment accentuates the role, in the collisional deactivation process, of the high lying ground state vibrational levels which are adjacent to the laser populated vibronic levels of the A 2 Pi/sub i/ state. Quenching rates are determined for the v' = 0, 1, and 2 levels which have relatively insignificant isotope shifts of a few wave numbers for the two isotopes. The difference in rates for the two isotopic ions demonstrates the importance of the positions for the high lying v'' = 10 and 11 ground state levels which have large isotope shifts of hundreds of wave numbers. A discussion of the deactivation process is given in terms of perturbations, Franck--Condon factors, energy gaps, and other considerations

  17. Synthesis and characterization of Sr2Ir1−xMxO4 (M=Ti, Fe, Co) solid solutions

    International Nuclear Information System (INIS)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W.; Subramanian, M.A.

    2012-01-01

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr 2 IrO 4 are investigated. A complete solid solution Sr 2 Ir 1−x Ti x O 4 is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO 6 octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr 2 IrO 4 . - Graphical abstract: Solid solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO 6 octahedra tilting are found to be correlated. Highlights: ► Solid Solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) are synthesized. ► The Sr 2 Ir 1−x Ti x O 4 solid solution is complete while those of Fe and Co are relatively limited. ► The change in a cell parameter with substitution is much less than that of the c parameter. ► Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. ► Doping results in a suppression of the weak ferromagnetic ordering in Sr 2 IrO 4 .

  18. A Practical Cryogen-Free CO2 Purification and Freezing Technique for Stable Isotope Analysis.

    Science.gov (United States)

    Sakai, Saburo; Matsuda, Shinichi

    2017-04-18

    Since isotopic analysis by mass spectrometry began in the early 1900s, sample gas for light-element isotopic measurements has been purified by the use of cryogens and vacuum-line systems. However, this conventional purification technique can achieve only certain temperatures that depend on the cryogens and can be sustained only as long as there is a continuous cryogen supply. Here, we demonstrate a practical cryogen-free CO 2 purification technique using an electrical operated cryocooler for stable isotope analysis. This approach is based on portable free-piston Stirling cooling technology and controls the temperature to an accuracy of 0.1 °C in a range from room temperature to -196 °C (liquid-nitrogen temperature). The lowest temperature can be achieved in as little as 10 min. We successfully purified CO 2 gas generated by carbonates and phosphoric acid reaction and found its sublimation point to be -155.6 °C at 0.1 Torr in the vacuum line. This means that the temperature required for CO 2 trapping is much higher than the liquid-nitrogen temperature. Our portable cooling system offers the ability to be free from the inconvenience of cryogen use for stable isotope analysis. It also offers a new cooling method applicable to a number of fields that use gas measurements.

  19. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motemani, Y. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Nili-Ahmadabadi, M. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of); Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: mmjtan@ntu.edu.sg; Bornapour, M.; Rayagan, Sh. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of)

    2009-02-05

    TiNi alloy is a well-known shape memory alloy and has been widely used for bio-medical, mechanical and electrical applications. In this study, a Ni-rich NiTi alloy was prepared by vacuum arc melting in a water-cooled copper crucible. Three samples of this alloy were heated to 1000 deg. C and cooled in three media: furnace, water, and dry-ice bath. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), hardness measurement and tensile test were carried out to investigate the effect of cooling rate on transformation temperature and mechanical properties. The results show that Ni{sub 3}Ti intermetallic compounds have a great influence on martensitic phase transformation temperature. These tests clearly showed the correlation between cooling rate and properties of the alloy.

  20. Spin-Coating and Characterization of Multiferroic MFe2O4 (M=Co, Ni) / BaTiO3 Bilayers

    Science.gov (United States)

    Quandt, Norman; Roth, Robert; Syrowatka, Frank; Steimecke, Matthias; Ebbinghaus, Stefan G.

    2016-01-01

    Bilayer films of MFe2O4 (M=Co, Ni) and BaTiO3 were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO3. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm-3 for the CoFe2O4/BaTiO3 and 188 emu cm-3 for the NiFe2O4/BaTiO3 bilayer, respectively were found. For the CoFe2O4/BaTiO3 bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe2O4/BaTiO3 bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems.

  1. Ab initio study of the magnetic ordering in the semiconductors Mn{sub x}Ti{sub 1-x}O{sub 2}, Co{sub x}Ti{sub 1-x}O{sub 2} and Fe{sub x}Ti{sub 1-x}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Errico, L.A. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900, La Plata (Argentina)]. E-mail: errico@fisica.unlp.edu.ar; Weissmann, M. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avda. del Libertador 8250, 1429 Buenos Aires (Argentina); Renteria, M. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900, La Plata (Argentina)

    2004-12-31

    In this work we present a set of density-functional-theory calculations in the systems Mn{sub x}Ti{sub 1-x}O{sub 2}, Fe{sub x}Ti{sub 1-x}O{sub 2}, and Co{sub x}Ti{sub 1-x}O{sub 2}. The calculations were performed with the full-potential linearized augmented plane wave method, assuming that the magnetic impurities substitutionally replace the Ti ions and considering different distributions of them in the host lattice. Our results show that the system Co{sub x}Ti{sub 1-x}O{sub 2} is ferromagnetic, while Mn{sub x}Ti{sub 1-x}O{sub 2} is antiferromagnetic. In both cases, this is independent of the distribution of the impurities in the TiO{sub 2} lattice. First results obtained in the system Fe{sub x}Ti{sub 1-x}O{sub 2} are also presented.

  2. Magnetic and ferroelectric characteristics of Gd 3 + and Ti 4 + co ...

    Indian Academy of Sciences (India)

    The crystallographicsite occupancies of Gd and Ti were confirmed by Rietveld refinement of XRD data,Mössbauer spectroscopy and magnetization measurements. An enhancement in ferromagnetic properties along with moderate ferroelectricproperties have been observed after co-doping. There was an increasing trend in ...

  3. Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng

    2018-04-17

    Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.

  4. Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE, CERN

    Directory of Open Access Journals (Sweden)

    Clément E.

    2013-12-01

    Full Text Available A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N = 60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  5. Voltage-controlled ferromagnetism and magnetoresistance in LaCoO3/SrTiO3 heterostructures

    International Nuclear Information System (INIS)

    Hu, Chengqing; Park, Keun Woo; Yu, Edward T.; Posadas, Agham; Demkov, Alexander A.; Jordan-Sweet, Jean L.

    2013-01-01

    A LaCoO 3 /SrTiO 3 heterostructure grown on Si (001) is shown to provide electrically switchable ferromagnetism, a large, electrically tunable magnetoresistance, and a vehicle for achieving and probing electrical control over ferromagnetic behavior at submicron dimensions. Fabrication of devices in a field-effect transistor geometry enables application of a gate bias voltage that modulates strain in the heterostructure via the converse piezoelectric effect in SrTiO 3 , leading to an artificial inverse magnetoelectric effect arising from the dependence of ferromagnetism in the LaCoO 3 layer on strain. Below the Curie temperature of the LaCoO 3 layer, this effect leads to modulation of resistance in LaCoO 3 as large as 100%, and magnetoresistance as high as 80%, both of which arise from carrier scattering at ferromagnetic-nonmagnetic interfaces in LaCoO 3 . Finite-element numerical modeling of electric field distributions is used to explain the dependence of carrier transport behavior on gate contact geometry, and a Valet-Fert transport model enables determination of spin polarization in the LaCoO 3 layer. Piezoresponse force microscopy is used to confirm the existence of piezoelectric response in SrTiO 3 grown on Si (001). It is also shown that this structure offers the possibility of achieving exclusive-NOR logic functionality within a single device

  6. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  7. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  8. Nuclear reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Horvat, Andrea [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Schrock, Philipp [CNS, University of Tokyo (Japan); Johansen, Jacob [Aarhus University (Denmark); Collaboration: R3B-Collaboration

    2016-07-01

    Nuclei with a large neutron excess are expected to form a neutron-rich surface layer which is often referred to as the neutron skin. The investigation of this phenomenon is of great interest in nuclear-structure physics and offers a possibility to constrain the equation-of-state of neutron-rich matter. Assuming a geometrical description of reaction processes as in the eikonal approximation, nuclear-induced reactions are a good tool to probe the neutron skin. Measured reaction cross sections can be used to constrain the density distributions of protons and neutrons in the nucleus and therefore the neutron-skin thickness. For this purpose, reactions of neutron-rich tin isotopes in the A=124-134 mass range have been measured on a carbon target at the R{sup 3}B-setup at GSI in inverse kinematics in a kinematically complete manner. Preliminary results for the reaction cross sections of {sup 124}Sn are presented.

  9. No influence of CO2 on stable isotope analyses of soil waters with off-axis integrated cavity output spectroscopy (OA-ICOS).

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-03-15

    It was recently shown that the presence of CO 2 affects the stable isotope (δ 2 H and δ 18 O values) analysis of water vapor via Wavelength-Scanned Cavity Ring-Down Spectroscopy. Here, we test how much CO 2 is emitted from soil samples and if the CO 2 in the headspace influences the isotope analysis with the direct equilibration method by Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). The headspace above different amounts of sparkling water was sampled, and its stable isotopic composition (δ 2 H and δ 18 O values) and CO 2 concentration were measured by direct equilibration and by gas chromatography, respectively. In addition, the headspace above soil samples was analyzed in the same way. Furthermore, the gravimetric water content and the loss on ignition were measured for the soil samples. The experiment with the sparkling water showed that CO 2 does not influence the stable isotope analysis by OA-ICOS. CO 2 was emitted from the soil samples and correlated with the isotopic fractionation signal, but no causal relationship between the two was determined. Instead, the fractionation signal in pore water isotopes can be explained by soil evaporation and the CO 2 can be related to soil moisture and organic matter which both enhance microbial activity. We found, despite the high CO 2 emissions from soil samples, no need for a post-correction of the pore water stable isotope analysis results, since there is no relation between CO 2 concentrations and the stable isotope results of vapor samples obtained with OA-ICOS. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  10. A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6

    International Nuclear Information System (INIS)

    Chen Daimei; Jiang Zhongyi; Geng Jiaqing; Zhu Juhong; Yang Dong

    2009-01-01

    The nitrogen and fluorine co-doped TiO 2 (N-F-TiO 2 ) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH 4 ) 2 TiF 6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH 4 ) 2 TiF 6 decomposed into TiOF 2 and NH 4 TiOF 3 at first, and then formed anatase-type TiO 2 with thin sheet morphology. H 3 BO 3 as oxygen source can promote the formation of anatase TiO 2 , but decrease the F content in the N-F-TiO 2 materials due to the formation of volatile BF 3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO 2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO 2 are discussed.

  11. On the isotope effects of ZrCoX3 (X = H, D and T): a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2013-01-01

    In the ITER project, the ZrCo-X (X= H, D and T) systems have gained considerable attention because of its use in the hydrogen isotope storage. The isotopic effects on the ZrCoX 3 (X= H, D and T) compounds have been studied in terms of the variation of the thermodynamic parameters using the DFT and frozen phonon approach. A significant difference between the ZrCoH 3 and its isotopic analogues has been noticed in terms of zero point energy (ZPE) and phonon frequencies. The zero point energies are 65.47 kJ/mol, 48.07 kJ/mol and 39.32 kJ/mol for ZrCoH 3 , ZrCoD 3 and ZrCoT 3 , respectively. The enthalpy of formation of ZrCoX 3 compounds, including the ZPE contributions, are -124.84, -142.24 and -150.99 kJ/(mole of compound) for X = H, D and T, respectively. (author)

  12. Positron source based on the 48V isotope dedicated to positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Dryzek, Jerzy

    2009-01-01

    In the paper we consider application of the 48 V isotope as a source in the positron lifetime spectroscopy. The isotope was produced in the 48 Ti(p,n) 48 V reaction using 15 MeV proton beam. As a target the natural titanium thin plate was used. The measurements using the typical positron lifetime spectrometer have shown the usefulness of the source obtained for this application. Due to its properties, the source may be used for measurements of positron annihilation characteristics in high temperature or aggressive environments. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  14. CoFe2O4-TiO2 Hybrid Nanomaterials: Synthesis Approaches Based on the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Arturo Adrián Rodríguez-Rodríguez

    2017-01-01

    Full Text Available CoFe2O4 nanoparticles decorated and wrapped with TiO2 nanoparticles have been prepared by mixing well-dispersed CoFe2O4 with amorphous TiO2 (impregnation approach and growing amorphous TiO2 over the magnetic core (seed approach, respectively, followed by thermal treatment to achieve TiO2 crystallinity. Synthesis strategies were based on the oil-in-water microemulsion reaction method. Thermally treated nanomaterials were characterized in terms of structure, morphology, and composition, to confirm hybrid nanoparticles formation and relate with the synthesis approaches; textural, optical, and magnetic properties were evaluated. X-ray diffraction revealed coexistence of cubic spinel-type CoFe2O4 and tetragonal anatase TiO2. Electron microscopy images depicted crystalline nanoparticles (sizes below 25 nm, with homogeneous Ti distribution for the hybrid nanoparticles synthesized by seed approach. EDX microanalysis and ICP-AES corroborated established chemical composition. XPS evidenced chemical states, as well as TiO2 predominance over CoFe2O4 surface. According to BET measurements, the hybrid nanoparticles were mesoporous. UV-Vis spectroscopy showed optical response along the UV-visible light region. Magnetic properties suggested the breaking order of magnetic domains due to modification with TiO2, especially for mediated seed approach sample. The properties of the obtained hybrid nanoparticles were different in comparison with its individual components. The results highlight the usefulness of designed microemulsion approaches for the straightforward synthesis of CoFe2O4-TiO2 nanostructured hybrids.

  15. NiCo_2O_4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    International Nuclear Information System (INIS)

    Wang, Ruiqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Highlights: • NiCo_2O_4 nanostructures are prepared via a simple hydrothermal method. • Outer shell of TiN is then grown through conformal atomic layer deposition. • Electrodes exhibit significantly enhanced rate capability with TiN coating. • Solid-state polymer electrolyte is employed to improve cycling stability. • Full devices show a stack power density of 58.205 mW cm"−"3 at 0.061 mWh cm"−"3. - Abstract: Ternary transition metal oxides such as NiCo_2O_4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo_2O_4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo_2O_4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo_2O_4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo_2O_4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm"−"3 at a stack energy density of 0.061 mWh cm"−"3. To the best of our knowledge, these values are the highest of any NiCo_2O_4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo_2O_4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm"−"2. These results illustrate the promise of ALD-assisted hybrid NiCo_2O_4@TiN electrodes within sustainable and integrated energy storage applications.

  16. The hydro- and multi-isotope geochemistry of iron-rich ground waters emerging at the southern Baltic Sea coast line

    Science.gov (United States)

    Lipka, Marko; Wu, Zijun; Escher, Peter; Struck, Ulrich; Dellwig, Olaf; Schafmeister, Maria; Böttcher*, Michael E.

    2013-04-01

    Iron-rich groundwater springs emerging at the shore zone of the southern Baltic Sea (BS; Site Meschendorf) were examined on a seasonal base for a period of about two years. Besides major, minor, and trace elements, stable isotopes of water (H-2, O-18), dissolved inorganic carbon (DIC; C-13), and sulfate (S-34) were analyzed. The stream bed sediment was extracted for the geochemistry of the newly formed precipitates and further characterized via SEM-EDAX. Subsequently, the hydrogeochemical results were subjected to a thermodynamic analysis via the PHREEQC speciation model. The springs emerge from small pits (about 60 cm diameter; up to 15cm depth). Surrounding sediments are sandy with gravels found at depth and corresponding high permeabilities. The positions of different springs on the shore zone were stable during the investigation period while the shape of the pits and the stream beds may vary due to wind- and wave-driven forces. Selected measurements of spring yield discharges close to 10 L/min. The H-2 and O-18 contents of the spring waters indicate the ground water to originate from relatively young mixed meteoric waters. The hydrochemistry of the springs was similar and showed some variability in between which indicates that the genetic processes for the ground water before reaching the surface may slightly differ. The springs are characterized by dissolved Ca, Mg, Na, DIC and sulfate, mainly reflecting the interaction with soils and bedrocks in the recharge area that is dominated by marly till. The oxygen-free ground water is rich in Fe, P, and DIC. Iron and dissolved sulfate originate from the oxidation of pyrite, as further confirmed by the 34-S signature of sulfate. The carbon isotope signature of DIC indicates a mixture of biogenic CO2 from the soil zone with some water-rock interaction with carbonate minerals. The streams flow towards the BS and, in contact with the atmosphere, outgas carbon dioxide and takes up oxygen. Upon CO2-degassing, C-12 is

  17. Hydrogen isotope behavior on Li2TiO3

    International Nuclear Information System (INIS)

    Olivares, Ryan; Oda, Takuji; Tanaka, Satoru; Oya, Yasuhisa; Tsuchiya, Kunihiko

    2004-01-01

    The surface nature of Li 2 TiO 3 and the adsorption behavior of water on Li 2 TiO 3 surface were studied by XPS/UPS and FT/IR. Preliminary experiments by Ar ion sputtering, heating and water exposure were conducted, and the following results were obtained. (1) By Ar sputtering, Li deficient surface was made, and Ti was reduced from Ti 4+ to Ti 3+ . (2) By heating sputtered samples over 573-673 K, Li emerged on the surface and Ti was re-oxidized to Ti 4+ . The surface -OH was removed. The valence band of Li 2 TiO 3 became similar to that of TiO 2 . (3) By water exposure at 623 K, H 2 O could be adsorbed dissociatively on the surface. LiOH was not formed. (4) The nature of Li 2 TiO 3 surface resembles that of TiO 2 , rather than Li 2 O. (author)

  18. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  19. A discussion for the evolution model of Pb isotope of the upper mantle in western Yunnan and its interpretation to the lead isotopic compositions of the regional alkali-rich porphyries and their related rocks

    International Nuclear Information System (INIS)

    Wu Kaixing; Hu Ruizhong; Bi Xianwu; Zhang Qian; Peng Jiantang

    2003-01-01

    Thirty Pb isotope data of the upper mantle in the area of western Yunnan have the similar trends with the Stacey-Kramers' two stage model growth curves but apparently deviate from it on the lead isotope composition programs, which may suggest Pb isotope of the upper mantle in the area of western Yunnan might have two stage evolution history though not fit very well to the Stacey-Kramers' two stage model growth curves. In this paper, a two-stage growth curves which can better fit the Pb isotope data was constructed based on the lead isotope data of the upper mantle in western Yunnan and the principle that Stacey and Kramers constructed the two-stage model and a reasonable interpretation was given to the lead isotopic compositions of the regional alkali-rich porphyries and their related rocks using the model. (authors)

  20. The isotopic record of Northern Hemisphere atmospheric carbon monoxide since 1950: implications for the CO budget

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2012-05-01

    Full Text Available We present a 60-year record of the stable isotopes of atmospheric carbon monoxide (CO from firn air samples collected under the framework of the North Greenland Eemian Ice Drilling (NEEM project. CO concentration, δ13C, and δ18O of CO were measured by gas chromatography/isotope ratio mass spectrometry (gc-IRMS from trapped gases in the firn. We applied LGGE-GIPSA firn air models (Witrant et al., 2011 to correlate gas age with firn air depth and then reconstructed the trend of atmospheric CO and its stable isotopic composition at high northern latitudes since 1950. The most probable firn air model scenarios show that δ13C decreased slightly from −25.8‰ in 1950 to −26.4‰ in 2000, then decreased more significantly to −27.2‰ in 2008. δ18O decreased more regularly from 9.8‰ in 1950 to 7.1‰ in 2008. Those same scenarios show CO concentration increased gradually from 1950 and peaked in the late 1970s, followed by a gradual decrease to present day values (Petrenko et al., 2012. Results from an isotope mass balance model indicate that a slight increase, followed by a large reduction, in CO derived from fossil fuel combustion has occurred since 1950. The reduction of CO emission from fossil fuel combustion after the mid-1970s is the most plausible mechanism for the drop of CO concentration during this time. Fossil fuel CO emissions decreased as a result of the implementation of catalytic converters and the relative growth of diesel engines, in spite of the global vehicle fleet size having grown several fold over the same time period.

  1. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  2. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  3. Correlated silicon and titanium isotopic compositions of presolar SiC grains from the Murchison CM2 chondrite

    Science.gov (United States)

    Gyngard, Frank; Amari, Sachiko; Zinner, Ernst; Marhas, Kuljeet Kaur

    2018-01-01

    We report correlated Si, and Ti isotopic compositions and elemental concentrations of 238 presolar SiC grains from the Murchison CM2 meteorite. Combined with measurements of the C and N isotopic compositions of these 238 grains, 220 were determined to be of type mainstream, 10 type AB, 4 type Y and 4 type Z. SiC grains of diameter ≳2.5 μm, to ensure enough material to attempt Ti measurements, were randomly chosen without any other prejudice. The Ti isotopic compositions of the majority of the grains are characterized by enrichments in 46Ti, 47Ti, 49Ti, and 50Ti relative to 48Ti, and show linear isotopic correlations indicative of galactic chemical evolution and neutron capture of the grains parent stars. The variability in the observed Ti signal as a function of depth in most of the grains indicates the presence of distinct subgrains, likely TiC that have been previously observed in TEM studies. Vandium-51 concentrations correlate with those of Ti, indicating V substitutes for Ti in the TiC matrix in many of the grains. No isotopic anomalies in 52Cr/53Cr ratios were observed, and Cr concentrations did not correlate with those of either Ti or V.

  4. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents.

    Science.gov (United States)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2018-03-15

    The sol-gel auto-combustion technique is an effective method for the synthesis of the composites. In this research for the first time, CoTiO 3 /CoFe 2 O 4 nanocomposites are successfully synthesized via a new sol-gel auto-combustion technique. The glucose, maltose and starch are used as fuel, capping and reducing agents, also the optimal reducing agent is chosen. The effects of quantity of reducing agent, molar ratio of Ti:Co, calcination temperature and time on the morphology, particle size, magnetic property, purity and phase of the nanocomposites are investigated. XRD patterns show formation of CoTiO 3 /CoFe 2 O 4 spherical nanoparticles with nearly evenly distribution, when the molar ratio of Co/Ti is 1:1. EDS analysis confirm results of XRD. The magnetic behavior of the nanocomposites is studied by VSM. The nanocomposites exhibit a high coercivity at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The origin and relation among hot and cold CO{sub 2}-rich mineral waters in Vilarelho da Raia - Pedras Salgadas region, northern Portugal: A geochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J.M.; Aires-Barros, L.; Graca, R.C. [Technical Univ. of Lisbon, Lisboa (Portugal)

    1996-12-31

    Coupled isotopic and chemical studies, carried out on hot and cold CO{sub 2}-rich mineral waters discharging in Vilarelho da Raia - Pedras Salgadas region (northern Portugal), have been adopted to purpose some hypothesis on the origin and path-ways of fluids emerging along one of the major regional NNE-trending faults (the so called {open_quotes}Chaves Depression{close_quotes}). Chemical and isotopic ({delta}{sup 18}O and {delta}D) composition of Vilarelho da. Raia cold waters indicate that these waters could be traced as a ramification of the Chaves thermal waters. The enrichment in {sup 18}O and D content in Vidago and Pedras Salgadas cold waters could be attributed either to different recharge altitudes or mixing between deep regional waters with more recent waters derived from local infiltration, in accordance with {sup 3}H activity. Geothermometric interpretation indicates that hot and cold mineral waters have had deep circulation. Model calculations to estimate circulation depth of the groundwater flow system are also indicate deep (about 4km) circulation. Regarding the origin of CO{sub 2} in the thermal and cold mineral waters, two hypothesis could be considered: deep-seated (mantle degassing) or rock (graphitic slates) leaching.

  6. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  7. Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy

    Science.gov (United States)

    Drury, Anna Joy; John, Cédric M.

    2016-10-01

    Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and δ18O) or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (U37k'). We examine clumped isotope (Δ47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The Δ47-derived temperatures from 63 μm fraction removes most nonmixed layer components; however, the Δ47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 μm) are removed during the size fraction separation process. The c1 and <63 μm c2 Δ47-derived temperatures are comparable to concurrent U37k' SSTs. The <20, <10, and 2-5 μm c2 Δ47-derived temperatures are consistently cooler than expected. The Δ47-U37k' temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 μm fraction (˜53% by area), which potentially precipitated at bottom water temperatures of ˜6°C. Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and time scale is undertaken.

  8. Excited-state lifetimes in neutron-rich Ce isotopes from EXILL and FATIMA

    Energy Technology Data Exchange (ETDEWEB)

    Koseoglou, P.; Pietralla, N.; Stoyanka, I.; Kroell, T. [IKP, TU-Darmstadt, Darmstadt (Germany); Werner, V. [IKP, TU-Darmstadt, Darmstadt (Germany); Yale University (United States); Bernards, C.; Cooper, N. [Yale University (United States); Blanc, A.; Jentschel, M.; Koester, U.; Mutti, P.; Soldner, T.; Urban, W. [ILL Grenoble (France); Bruce, A.M.; Roberts, O.J. [University of Brighton (United Kingdom); Cakirli, R.B. [MPIK Heidelberg (Germany); France, G. de [GANIL Caen (France); Humby, P.; Patel, Z.; Podolyak, Zs.; Regan, P.H.; Wilson, E. [University of Surrey (United Kingdom); Jolie, J.; Regis, J.-M.; Saed-Samii, N.; Wilmsen, D. [KP, University of Cologne (Germany); Paziy, V. [Universidad Complutense (Spain); Simpson, G.S. [PSC Grenoble (France); Ur, C.A. [INFN Legnaro (Italy)

    2016-07-01

    {sup 235}U and {sup 241}Pu fission fragments were measured by a mixed spectrometer consisting of high-resolution Ge and fast LaBr{sub 3}(Ce)-scintillator detectors at the high-flux reactor of the ILL. Prompt γ-ray cascades from the nuclei of interest are selected via Ge-Ge-LaBr{sub 3}-LaBr{sub 3} coincidences. The good energy resolution of the Ge allow precise gates to be set, selecting the cascade, hence, the nucleus of interest. The excellent timing performance of the LaBr{sub 3} detectors in combination with the General Centroid Difference method allows the measurement of lifetimes in the ps range in preparation for the FATIMA experiment at FAIR. The first results on neutron-rich Ce isotopes are presented.

  9. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  10. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    Science.gov (United States)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  11. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.

    Science.gov (United States)

    Li, Guixin; Nan, Hongyan; Zheng, Xingwang

    2009-07-01

    A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).

  12. Genesis of fumarolic emissions as inferred by isotope mass balances: CO 2 and water at Vulcano Island, Italy

    Science.gov (United States)

    Paonita, A.; Favara, R.; Nuccio, P. M.; Sortino, F.

    2002-03-01

    We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits. The δ13CCO2 of the magmatic gases varies around -3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (-1 to -‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect. The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and -2 to -6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks

  13. Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer

    International Nuclear Information System (INIS)

    Ibusuki, Takahiro; Miyajima, Toyoo; Umehara, Shinjiro; Eguchi, Shin; Sato, Masashige

    2009-01-01

    Effects of capping materials on magnetoresistance (MR) properties of MgO magnetic tunnel junctions (MTJs) with a CoFeB free layer were investigated. MR ratios of samples with various capping materials showed a difference in annealing temperature dependence. MTJ with a Ti capping layer annealed at 270 deg. C showed a MR ratio 1.4 times greater than that with a conventional Ta or Ru capping layer. Secondary ion mass spectroscopy and high-resolution transmission electron microscopy images revealed that crystallization of CoFeB was remarkably affected by adjacent materials and the Ti capping layer adjoining CoFeB acted as a boron-absorption layer. These results suggest that the crystallization process can be controlled by choosing proper capping materials. Ti is one of the effective materials that accelerate the crystallization of CoFeB layers at lower annealing temperature

  14. Triazine containing N-rich microporous organic polymers for CO{sub 2} capture and unprecedented CO{sub 2}/N{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti [Department of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Sen, Tapas [Nanobiomaterials Research Group, Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2017-03-15

    Targeted synthesis of microporous adsorbents for CO{sub 2} capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO{sub 2} storage capacities: SB-TRZ-CRZ displayed the CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO{sub 2} boosts the selectivity for CO{sub 2}/N{sub 2}. SB-TRZ-CRZ has this CO{sub 2}/N{sub 2} selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO{sub 2} storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO{sub 2}/N{sub 2} selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO{sub 2}/N{sub 2} selectivity.

  15. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    Science.gov (United States)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate

  16. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0Raman peak area can be used for the determination of δ 13 C values within the relative errors range of 0.076% to 1.154% in 13 CO 2 / 12 CO 2 binary mixtures when F 12CO2 /F 13CO2 is 0.466972625. In addition, measurement of δ 13 C values by Micro-Laser Raman analysis were carried out on natural CO 2 gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  17. The effect of Co particle structures on the mechanical properties and microstructure of TiCN-based cermets

    International Nuclear Information System (INIS)

    Deng, Y.; Jiang, X.Q.; Zhang, Y.H.; Chen, H.; Tu, M.J.; Deng, L.; Zou, J.P.

    2016-01-01

    Ti(C,N) based cermets are composite materials composed of a hard phase and a binder phase structure. Cubic-structured Co particles are the best choice for the binder phase of Ti(C,N) based cermets due to their excellent toughness performance. However, the application of β-Co particles in cermets has not been reported in the literature so far. In this pioneer study, ultrafine Ti(C,N) based cermet samples were prepared by separately using Co particles of different structures as the binder phase, and the effect of the Co particle structures on the mechanical properties and microstructure of the cermets were studied: First, the Empirical Electron Theory was used to calculate the difference in the interface density (∆ρ) for different crystals, and the interface combined strength between the hard phase of different structures containing Co particles were evaluated. Second, we systematically investigated the evolution of the microstructures of the two cermets during the sintering process, and evaluated the characteristics of the microstructure (which determines the properties of the cermets). Finally, the mechanical properties of the samples were tested, and the performances of the Co structures were evaluated. The results show that β-Co particles can optimize the cermet microstructure, which leads to excellent mechanical performance.

  18. The effect of Co particle structures on the mechanical properties and microstructure of TiCN-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y. [Chongqing University of Arts and Science, Chongqing 402160 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Jiang, X.Q. [Southwest University, Chongqing Academy Science and Technology, Chongqing 4100715 (China); Zhang, Y.H.; Chen, H.; Tu, M.J. [Chongqing University of Arts and Science, Chongqing 402160 (China); Deng, L., E-mail: dengying.163@163.com [Chengdu Chengliang Tool Group Co., Ltd., Chengdu 610056 (China); Zou, J.P., E-mail: 1042551842@qq.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2016-10-15

    Ti(C,N) based cermets are composite materials composed of a hard phase and a binder phase structure. Cubic-structured Co particles are the best choice for the binder phase of Ti(C,N) based cermets due to their excellent toughness performance. However, the application of β-Co particles in cermets has not been reported in the literature so far. In this pioneer study, ultrafine Ti(C,N) based cermet samples were prepared by separately using Co particles of different structures as the binder phase, and the effect of the Co particle structures on the mechanical properties and microstructure of the cermets were studied: First, the Empirical Electron Theory was used to calculate the difference in the interface density (∆ρ) for different crystals, and the interface combined strength between the hard phase of different structures containing Co particles were evaluated. Second, we systematically investigated the evolution of the microstructures of the two cermets during the sintering process, and evaluated the characteristics of the microstructure (which determines the properties of the cermets). Finally, the mechanical properties of the samples were tested, and the performances of the Co structures were evaluated. The results show that β-Co particles can optimize the cermet microstructure, which leads to excellent mechanical performance.

  19. Calculation of radiation production of high specific activity isotopes 192Ir and 60Co

    International Nuclear Information System (INIS)

    Zhou Quan; Zhong Wenfa; Xu Xiaolin

    1997-01-01

    The high specific activity isotopes: 192 Ir and 60 Co in the high neutron flux reactor are calculated with the method of reactor physics. The results of calculation are analyzed in two aspects: the production of isotopes and the influence to parameters of the reactor, and hence a better case is proposed as a reference to the production

  20. Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction

    Science.gov (United States)

    Kim, Il To; Song, Myeong Jun; Shin, Seoyoon; Shin, Moo Whan

    2018-03-01

    Many efforts are continuously devoted to developing high-efficiency, low-cost, and highly scalable oxygen reduction reaction (ORR) electrocatalysts to replace precious metal catalysts. Herein, we successfully synthesize Co- and defect-rich carbon nanofibers (CNFs) using an efficient heat treatment approach involving the pyrolysis of electrospun fibers at 370 °C under air. The heat treatment process produces Co-decorated CNFs with a high Co mass ratio, enriched pyridinic N, Co-pyridinic Nx clusters, and defect-rich carbon structures. The synergistic effects from composition and structural changes in the designed material increase the number of catalytically active sites for the ORR in an alkaline solution. The prepared Co- and defect-rich CNFs exhibit excellent ORR activities with a high ORR onset potential (0.954 V vs. RHE), a large reduction current density (4.426 mA cm-2 at 0.40 V), and a nearly four-electron pathway. The catalyst also exhibits a better long-term durability than commercial Pt/C catalysts. This study provides a novel hybrid material as an efficient ORR catalyst and important insight into the design strategy for CNF-based hybrid materials as electrochemical electrodes.

  1. Enhanced Photocatalytic Reduction of CO2 to CO through TiO2 Passivation of InP in Ionic Liquids.

    Science.gov (United States)

    Zeng, Guangtong; Qiu, Jing; Hou, Bingya; Shi, Haotian; Lin, Yongjing; Hettick, Mark; Javey, Ali; Cronin, Stephen B

    2015-09-21

    A robust and reliable method for improving the photocatalytic performance of InP, which is one of the best known materials for solar photoconversion (i.e., solar cells). In this article, we report substantial improvements (up to 18×) in the photocatalytic yields for CO2 reduction to CO through the surface passivation of InP with TiO2 deposited by atomic layer deposition (ALD). Here, the main mechanisms of enhancement are the introduction of catalytically active sites and the formation of a pn-junction. Photoelectrochemical reactions were carried out in a nonaqueous solution consisting of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4), dissolved in acetonitrile, which enables CO2 reduction with a Faradaic efficiency of 99% at an underpotential of +0.78 V. While the photocatalytic yield increases with the addition of the TiO2 layer, a corresponding drop in the photoluminescence intensity indicates the presence of catalytically active sites, which cause an increase in the electron-hole pair recombination rate. NMR spectra show that the [EMIM](+) ions in solution form an intermediate complex with CO2(-), thus lowering the energy barrier of this reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser

    Science.gov (United States)

    Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.

    2017-10-01

    TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.

  3. Fabrication and Mechanical Properties of Nanostructured TiC-TiAl by the Pulsed Current Activated Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Bong-Won; Shon, In-Jin [Chonbuk National University, Chonbuk (Korea, Republic of); Kim, Byung-Su [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Yoon, Jin-Kook; Hong, Kyung-Tae [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2016-08-15

    TiC-Co or TiC-Ni hard materials have been used for cutting tools. However, the high cost and the low hardness of Ni or Co, and the low corrosion resistance of the TiC-Ni and TiC-Co cermets have generated interest in recent years in using them as alternative binder phases. In this study, TiAl was used as a novel binder and consolidated by the pulsed current activated sintering(PCAS) method. Nanopowders of TiC and TiAl were fabricated using high energy ball milling. Highly dense TiC-TiAl hard materials with a relative density of up to 99.5% were sintered within three min by PCAS. Not only the hardness but also the fracture toughness of the TiC-10 vol%TiAl were better than those of TiC-10 vol%Ni or TiC-10 vol%Co.

  4. Fabrication and Mechanical Properties of Nanostructured TiC-TiAl by the Pulsed Current Activated Sintering

    International Nuclear Information System (INIS)

    Kwak, Bong-Won; Shon, In-Jin; Kim, Byung-Su; Yoon, Jin-Kook; Hong, Kyung-Tae

    2016-01-01

    TiC-Co or TiC-Ni hard materials have been used for cutting tools. However, the high cost and the low hardness of Ni or Co, and the low corrosion resistance of the TiC-Ni and TiC-Co cermets have generated interest in recent years in using them as alternative binder phases. In this study, TiAl was used as a novel binder and consolidated by the pulsed current activated sintering(PCAS) method. Nanopowders of TiC and TiAl were fabricated using high energy ball milling. Highly dense TiC-TiAl hard materials with a relative density of up to 99.5% were sintered within three min by PCAS. Not only the hardness but also the fracture toughness of the TiC-10 vol%TiAl were better than those of TiC-10 vol%Ni or TiC-10 vol%Co.

  5. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net [DBC Technology Corp., 4221 Mesa St, Torrance, California 90505 (United States)

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  6. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Mousis, Olivier [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, F-25010 Besancon Cedex (France); Johnson, Torrence V. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lunine, Jonathan I., E-mail: nmadhu@astro.princeton.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions

  7. Hybrid chitosan–Pluronic F-127 films with BaTiO3:Co nanoparticles: Synthesis and properties

    International Nuclear Information System (INIS)

    Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E.

    2015-01-01

    In this study, magnetic BaTiO 3 :Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO 3 :Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO 3 :Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices

  8. Determination of spin, magnetic moment and isotopic shift of neutron rich 205Hg by optical pumping

    International Nuclear Information System (INIS)

    Rodriguez, J.; Bonn, J.; Huber, G.; Kluge, H.J.; Otten, E.W.; European Organisation for Nuclear Research, Geneva

    1975-01-01

    Neutron rich 205 Hg(Tsub(1/2) = 5.2 min) was produced and on-line mass separated at the ISOLDE facility at CERN. The polarization achieved by optical pumping via the atomic line (6s 21 S 0 - 6s6p 3 P 1 , lambda = 2,537 A) was monitored by the β decay asymmetry. Hyperfine structure and isotopic shift of the 205 Hg absorption line was determined by Zeeman scanning. In addition a magnetic resoncance was performed on the polarized 205 Hg nuclei in the atomic ground state. The results are: I( 205 Hg) = 1/2 (confirmed); μ(I, 205 Hg) = 0.5915(1)μ(N) (uncorrected for diamagnetism); isotopic shift deltaν(204/205) = ν( 205 Hg) - ν( 204 Hg) = -1.8(1)GHz. μ(I) and IS are discussed briefly in the frame of current literature. (orig.) [de

  9. Synthesis and characterization of palladium nanoparticles, deposited on a modified support of TiO{sub 2} and its study in the oxidation reaction of CO to CO{sub 2}; Sintesis y caracterizacion de nanoparticulas de paladio, depositadas sobre un soporte modificado de TiO{sub 2} y su estudio en la reaccion de oxidacion de CO a CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Arreola S, R.; Fierro M, S. I.; Garcia M, J. A., E-mail: arreola@fisica.unam.mx [UNAM, Instituto de Fisica, Departameto de Estado Solido, Circuito Exterior, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2017-11-01

    In this article, we report the synthesis of heterogeneous catalysts with low palladium loading (Pd/TiO{sub 2}) by deposition-precipitation using urea (DPU) and the catalyst activity that was evaluated by means of the CO-CO{sub 2} oxidation reaction, showing CO conversion at room temperature. The results indicate that Pd/TiO{sub 2} catalyst with 2% Pd exhibits excellent activity for CO oxidation and high stability during forty-nine days. The characterization was carried out by X-ray diffraction and transmission electron microscopy. (Author)

  10. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  11. Preferential growth in FeCoV/Ti:N multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D.; Senthil Kumar, M.; Boeni, P.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The preferential growth in Fe{sub 0.50}Co{sub 0.48}V{sub 0.02}/Ti:N multilayers was studied by X-ray diffraction. X-ray specular reflectometry and subsequent simulation of the spectra was used to extract information about the thickness and interface roughness of individual layers. The investigation gives structural information about the material combination and its potential for the use of neutron polarizers. (author) 2 figs., 1 tab., 2 refs.

  12. Investigation on the structural and magnetic properties of Co{sup +} implanted rutile TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Fengfeng [State Key Laboratory for Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Ding Binfeng [State Key Laboratory for Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Department of Physics and Electronic Information, Langfang Teachers College, Langfang 065000 (China); Pan Feng [State Key Laboratory for Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Department of Physics, Shanxi University of Technology, Hanzhong 723001 (China); Yao Shude, E-mail: sdyao@pku.edu.cn [State Key Laboratory for Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Potzger, Kay; Zhou Shengqiang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rosssendorf, 01314 Dresden (Germany)

    2012-09-01

    Crystalline Co nanoparticles in rutile TiO{sub 2} were synthesized by 180 keV Co{sup +} ion implantation at 623 K with the fluence of {Phi} = 4 Multiplication-Sign 10{sup 16} cm{sup -2}. The structural and magnetic properties of samples after thermal annealing at different temperatures were characterized by synchrotron radiation X-ray diffraction (SR-XRD), Rutherford backscattering/channeling (RBS/C) and superconducting quantum interference device (SQUID) magnetometer. The SR-XRD results reveal the formation of hcp Co nanoparticles in the as-implanted samples. With increasing annealing temperature, the transition of Co nanoparticles from hcp to fcc is observed. After annealing at 1073 K, the lattice damage is significantly repaired compared with the as-implanted one. The Co nanoparticles forming inside TiO{sub 2} are the major contribution of the measured ferromagnetism.

  13. DSC study of martensite transformation in TiPt alloys

    CSIR Research Space (South Africa)

    Chikosha, S

    2012-09-01

    Full Text Available Conclusions drawn from this presentation were that when SPS, HP and Press and Sinter methods were used to form TiPt phase from elemental Ti and Pt powders, Press and Sinter was less successful. Presence of Ti-rich and Pt-rich phases coexisting...

  14. Comparative Study on The Photocatalytic Hydrogen Production from Methanol over Cu-, Pd-, Co- and Au-Loaded TiO2

    Directory of Open Access Journals (Sweden)

    Udani P.P.C.

    2015-09-01

    Full Text Available Photocatalytic hydrogen production from a methanol-water solution was investigated in a semi-continuous reactor over different metal-loaded TiO2 catalysts under UltraViolet (UV light irradiation. The catalysts were mainly prepared by the incipient wetness impregnation method by varying the metal weight ratio in the range of 1-10 wt%. The effects of metal loading and H2 pre-treatment on the photocatalytic activity were investigated. In addition, the activity of the catalysts was also compared with a reference Au-TiO2 catalyst from the World Gold Council (WGC. The photocatalysts were characterized by using X-Ray Diffraction (XRD and N2 physisorption before and after the activity measurements. The photocatalytic activity decreased in the order of Pd > Au > Cu > Co in the comparative study of Cu-TiO2, Co-TiO2, Au-TiO2 and Pd-TiO2. Optimum hydrogen evolution was achieved with 5 wt% Pd-TiO2 and 5 wt% Cu-TiO2.

  15. Early stages of the mechanical alloying of TiC–TiN powder mixtures

    International Nuclear Information System (INIS)

    Mura, Giovanna; Musu, Elodia; Delogu, Francesco

    2013-01-01

    The present work focuses on the alloying behavior of TiC–TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: ► Mechanically processed TiC–TiN powder mixtures form two solid solutions. ► An analytical model was developed to describe the mechanical alloying kinetics. ► The amount of powder alloyed at collision was indirectly estimated. ► A few nanomoles of material participate in the alloying process at each collision. ► The chemical composition of the solid solutions was shown to change discontinuously.

  16. Mo-Co catalyst nanoparticles: Comparative study between TiN and Si surfaces for single-walled carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Morant, C., E-mail: c.morant@uam.es [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Campo, T. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Marquez, F. [School of Science and Technology, University of Turabo, 00778-PR (United States); Domingo, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain); Sanz, J.M.; Elizalde, E. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-06-01

    Highly pure single-walled carbon nanotubes (SWNT) were synthesized by alcohol catalytic chemical vapor deposition on silicon substrates partially covered by a thin layer of TiN. The TiN coating selectively prevented the growth of carbon nanotubes. Field emission scanning electron microscopy and Raman spectroscopy revealed the formation of high purity vertically aligned SWNT in the Si region. X-ray Photoelectron Spectroscopy and Atomic Force Microscopy indicated that Co nanoparticles are present on the Si regions, and not on the TiN regions. This clearly explains the obtained experimental results: the SWNT only grow where the Co is presented as nanoparticles, i.e. on the Si regions. - Highlights: Black-Right-Pointing-Pointer Single-wall carbon nanotubes (SWNT) ontained by catalytic chemical vapor-deposition. Black-Right-Pointing-Pointer Substrate/Co-Mo catalyst behaviour plays a key role in the SWNT growth. Black-Right-Pointing-Pointer Co nanoparticles (the effective catalyst) have been only observed on the Si region. Black-Right-Pointing-Pointer High purity SWNT were spatially confined in specific locations (Si regions). Black-Right-Pointing-Pointer TiN-coated surfaces, adjacent to a Si oxide region, prevent the growth of SWNT.

  17. Synthesis of ascorbic acid enhanced TiO2 photocatalyst: its characterization and catalytic activity in CO2 photoreduction

    Directory of Open Access Journals (Sweden)

    Mohd Farid Bin Mohd Na'aim

    2018-04-01

    Full Text Available To date, the development of solar environmental remediation has shifted more emphasis on the green and simple synthesis of catalyst for CO2 photocatalysis process. Herein, TiO2 photocatalyst was successfully synthesized via hydrothermal method. The effects of the different molar ratio of ascorbic acid C6H8O6, (AA added during the preparation of TiO2 nanoparticles were comprehensively studied. The characterization of TiO2 nanocrystals was performed via XRD, XPS, DRUV-vis, and FTIR. The results show the AA loading into TiO2 nanoparticles significantly intensified the XRD spectra of anatase structure. In fact, this feature had signified a reactivity of the photocatalyst in the visible region. In an instance, BET surface area was also enhanced with the highest recorded value of 135.14 m2/g for 0.8AA. Meanwhile, the CO2 photoreduction over synthesized TiO2 had produced the highest amount of HCOOH at 39.3 μmol/g cat for 0.8AA within 6 hours of reaction time. Furthermore, the DRUV-vis analysis had illustrated better light absorption ability of 0.8AA. This profound finding is attributed to the correlation between large surface area, pure anatase phase, and high adsorbed water molecules. Therefore, this study had significantly demonstrated the potential of modified TiO2 with AA in CO2 photocatalysis area while simultaneously presents a green and simple method for TiO2 synthesis.

  18. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites

    Science.gov (United States)

    Agarwal, Shivani; Caltun, O. F.; Sreenivas, K.

    2012-11-01

    Influence of a static magnetic field (HDC) on the hysteresis and remanence in the longitudinal and transverse magneto electric voltage coefficients (MEVC) observed in [BaTiO3]1-x-[CoFe2O4]x bulk composites are analyzed. Remanence in MEVC at zero bias (HDC=0) is stronger in the transverse configuration over the longitudinal case. The observed hysteretic behavior in MEVC vs. HDC is correlated with the changes observed in the magnetostriction characteristics (λ and dλ/dH) reported for [BaTiO3]1-x-[CoFe2O4]x bulk composites.

  19. Investigations on the electronic, structural, magnetic properties related to shape-memory behavior in Ti2CoX (X=Al, Ga, In)

    International Nuclear Information System (INIS)

    Wei, Xiao-Ping; Chu, Yan-Dong; Sun, Xiao-Wei; E, Yan; Deng, Jian-Bo; Xing, Yong-Zhong

    2015-01-01

    Highlights: • The analysis of phase stability trend is studied for Ti 2 CoX(X = Al, Ga, In). • Ti 2 CoGa is more suitable as shape memory alloy. • Total magnetic moments disappear with a increase of c/a ratio for all systems. • Density of states at the Fermi level are also shown. - Abstract: Using the full-potential local orbital minimum-basis method, we have performed a systematic investigations on the electronic, structural, and magnetic properties related to shape memory applications for Ti 2 CoX (X=Al, Ga, In) alloys. Our results confirm that these alloys are half-metallic ferromagnets with total magnetic moment of 2μ B per formula unit in austenite phase, and undergo a martensitic transformation at low temperatures. The relative stabilities of the martensitic phases differ considerably between Ti 2 CoX (X=Al, Ga, In). Details of the electronic structures suggest that the differences in hybridizations between the magnetic components are responsible for trends of phase. Quantitative estimates for the energetics and the magnetizations indicate that Ti 2 CoGa is a promising candidate for shape memory applications

  20. The subcontinental mantle beneath southern New Zealand, characterised by helium isotopes in intraplate basalts and gas-rich springs

    Science.gov (United States)

    Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.

    2000-07-01

    relationship with either age or proximity to the Cenozoic intraplate volcanic centres or with major faults. In general, areas characterised by mantle 3He emission are interpreted to define those regions beneath which mantle melting and basalt magma addition to the crust are recent. The strongest mantle 3He anomaly (equivalent to >80% mantle helium component) is centred over southern Dunedin, measured in magmatic CO 2-rich mineral water springs issuing from crystalline basement rocks which outcrop at the southern extent of Miocene intraplate basaltic volcanism which ceased 9 Ma ago. This mantle helium anomaly overlaps with an area characterised by elevated surface high heat flow, compatible with a long-lived mantle melt/heat input into the crust. In comparison Banks Peninsula, another Miocene intraplate basaltic centre, is characterised by relatively low surface heat flow and a small mantle helium contribution measured in a nitrogen-rich spring. Here the thermal transient induced by the magmatic event has either dissipated or has not reached the surface. In the former case one might be dealing with storage and mixing of magmatic and crustal gases at shallow crustal levels and in the latter with active to recent mantle-melt degassing at depth. Along the most actively deforming part of the plate boundary zone, the transpressional Alpine Fault and Marlborough fault systems, mantle helium is present in gas-rich springs in all those areas underlain by actively subducting oceanic crust (the Australian plate in the south and Pacific plate in the north), whereas the central part of the Alpine transpressional fault is characterised by pure crustal radiogenic helium. Areas where the mantle helium component is negligible are restricted to the centre part of the South Island, extending along its length from Southland to northern Canterbury and Murchison. These areas are interpreted to delineate the extent of thicker and colder lithosphere compared to all other areas where mantle helium

  1. Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Science.gov (United States)

    Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.

    2012-01-01

    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.

  2. Multiple isotopes (O, C, Li, Sr) as tracers of CO2 and brine leakage from CO2-enhanced oil recovery activities in Permian Basin, Texas, USA

    Science.gov (United States)

    Phan, T. T.; Sharma, S.; Gardiner, J. B.; Thomas, R. B.; Stuckman, M.; Spaulding, R.; Lopano, C. L.; Hakala, A.

    2017-12-01

    Potential CO2 and brine migration or leakage into shallow groundwater is a critical issue associated with CO2 injection at both enhanced oil recovery (EOR) and carbon sequestration sites. The effectiveness of multiple isotope systems (δ18OH2O, δ13C, δ7Li, 87Sr/86Sr) in monitoring CO2 and brine leakage at a CO2-EOR site located within the Permian basin (Seminole, Texas, USA) was studied. Water samples collected from an oil producing formation (San Andres), a deep groundwater formation (Santa Rosa), and a shallow groundwater aquifer (Ogallala) over a four-year period were analyzed for elemental and isotopic compositions. The absence of any change in δ18OH2O or δ13CDIC values of water in the overlying Ogallala aquifer after CO2 injection indicates that injected CO2 did not leak into this aquifer. The range of Ogallala water δ7Li (13-17‰) overlaps the San Andres water δ7Li (13-15‰) whereas 87Sr/86Sr of Ogallala (0.70792±0.00005) significantly differs from San Andres water (0.70865±0.00003). This observation demonstrates that Sr isotopes are much more sensitive than Li isotopes in tracking brine leakage into shallow groundwater at the studied site. In contrast, deep groundwater δ7Li (21-25‰) is isotopically distinct from San Andres produced water; thus, monitoring this intermitted formation water can provide an early indication of CO2 injection-induced brine migration from the underlying oil producing formation. During water alternating with gas (WAG) operations, a significant shift towards more positive δ13CDIC values was observed in the produced water from several of the San Andres formation wells. The carbon isotope trend suggests that the 13C enriched injected CO2 and formation carbonates became the primary sources of dissolved inorganic carbon in the area surrounding the injection wells. Moreover, one-way ANOVA statistical analysis shows that the differences in δ7Li (F(1,16) = 2.09, p = 0.17) and 87Sr/86Sr (F(1,18) = 4.47, p = 0.05) values of

  3. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  4. Microstructure and mechanical properties of Ti/Al co-doped DLC films: Dependence on sputtering current, source gas, and substrate bias

    International Nuclear Information System (INIS)

    Guo, Ting; Kong, Cuicui; Li, Xiaowei; Guo, Peng; Wang, Zhenyu; Wang, Aiying

    2017-01-01

    Highlights: • Ti/Al co-doped diamond-like carbon films were fabricated by a hybrid ion beam method. • Process parameters affected the structure and chemical state of co-doped Ti and Al. • The relation between microstructure and properties was investigated systematically. • The guidance to tailor the Ti/Al-DLC films with high performance was provided. - Abstract: Co-doping two metal elements into diamond-like carbon (DLC) films can reach the desirable combined properties, but the preparation and commercialized application of metal co-doped DLC films with well-defined structural properties are currently hindered by the non-comprehensive understanding of structural evolutions under different process parameters. Here, we fabricated the Ti/Al-DLC films using a unique hybrid ion beam system which enabled the independent control of metal content and carbon structure. The evolutions of microstructure, residual compressive stress and mechanical properties induced by the different process parameters including sputtering currents, C_2H_2 or CH_4 source gases and bias voltages were investigated systematically in order to perform in-depth analysis on the relation between the structure and properties in Ti/Al-DLC films. Results revealed that the variations of process parameters seriously affected the concentration and chemical bond state of co-doped Ti/Al atoms in amorphous carbon matrix or incident energies of C ions, which brought the complicated effect on amorphous carbon structures, accounting for the change of residual compressive stress, hardness and toughness. The present results provide the guidance for suitable, effective parameters selection to tailor the Ti/Al-DLC films with high performance for further applications.

  5. Microstructure and mechanical properties of Ti/Al co-doped DLC films: Dependence on sputtering current, source gas, and substrate bias

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Kong, Cuicui [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Ningbo University, Ningbo 315201 (China); Li, Xiaowei, E-mail: lixw@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Guo, Peng; Wang, Zhenyu [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-07-15

    Highlights: • Ti/Al co-doped diamond-like carbon films were fabricated by a hybrid ion beam method. • Process parameters affected the structure and chemical state of co-doped Ti and Al. • The relation between microstructure and properties was investigated systematically. • The guidance to tailor the Ti/Al-DLC films with high performance was provided. - Abstract: Co-doping two metal elements into diamond-like carbon (DLC) films can reach the desirable combined properties, but the preparation and commercialized application of metal co-doped DLC films with well-defined structural properties are currently hindered by the non-comprehensive understanding of structural evolutions under different process parameters. Here, we fabricated the Ti/Al-DLC films using a unique hybrid ion beam system which enabled the independent control of metal content and carbon structure. The evolutions of microstructure, residual compressive stress and mechanical properties induced by the different process parameters including sputtering currents, C{sub 2}H{sub 2} or CH{sub 4} source gases and bias voltages were investigated systematically in order to perform in-depth analysis on the relation between the structure and properties in Ti/Al-DLC films. Results revealed that the variations of process parameters seriously affected the concentration and chemical bond state of co-doped Ti/Al atoms in amorphous carbon matrix or incident energies of C ions, which brought the complicated effect on amorphous carbon structures, accounting for the change of residual compressive stress, hardness and toughness. The present results provide the guidance for suitable, effective parameters selection to tailor the Ti/Al-DLC films with high performance for further applications.

  6. Nuclear structure of light Ca and heavy Cr isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, A.

    2007-07-01

    In the present thesis, the shell structure in exotic nuclei has been investigated. The focus of the work was on finding new experimental data in neutron-rich Cr and proton-rich Ca isotopes. The investigation of light Ca isotopes concentrated on the nucleus {sup 36}Ca which was produced in a knockout reaction from a radioactive {sup 37}Ca beam. For {sup 36}Ca, the excitation energy of the first 2{sup +} state has been measured for the first time. Furthermore, momentum distributions were analyzed using a Monte-Carlo simulation of the knockout reaction. This analysis yielded the contributions of neutrons from individual orbitals to the total knockout cross section. In principle, these may be used to calculate spectroscopic factors, but such a calculation is hampered by difficulties of present knockout-reaction models in predicting precise single-particle cross sections. The measured branching ratio to the ground and excited states, on the other hand, is close to the predicted value. A remaining difference might be due to emission of protons which cannot be detected with the present experimental setup. Both the branching ratio and the large excitation energy are compatible with a large N=16 gap in {sup 36}Ca that leads to relatively pure configurations both in the ground state and the excited 2{sup +} state. As a by-product of the experiment, two excitation energies in the T=2 nuclei {sup 32}Ar and {sup 28}S have been confirmed, and two {gamma}-ray transitions have been observed for the first time in {sup 37}Ca. While the mirror energy differences in the T=2 pairs {sup 36}Ca-{sup 36}S, {sup 32}Ar-{sup 32}Si, and {sup 28}S-{sup 28}Mg can be reproduced in shell model calculations using a modified USD interaction, these modifications are not sufficient to explain the mirror energy differences for the pair {sup 37}Ca-{sup 37}Cl. In the heavy Cr isotopes, new experimental evidence for a sub-shell closure at N=32 was found in a measurement of B(E2) values using high

  7. Co-ordinated research programme applications of stable isotope tracers in human nutrition research

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of this Co-ordinated Research Programme is to help establish competence in the use of stable isotope techniques, particularly in developing countries. This report summarizes the discussions that took, place during the Second Research Co-ordination Meeting, held in Bangalore in November 1990. Working papers presented by the participants are included as annexes. Refs, figs and tabs

  8. Enhanced photocatalytic degradation of dye under visible light on mesoporous microspheres by defects in manganese- and nitrogen-co-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Lu; Jiang, Heng, E-mail: hjiang78@hotmail.com [Liaoning Shihua University, School of Chemistry and Materials Science (China); Zou, Mingming; Xiong, Fengqiang; Ganeshraja, Ayyakannu Sundaram; Pervaiz, Erum [Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (China); Liu, Yinan; Zou, Shunying [Dalian Environmental Protection Laboratory (China); Yang, Minghui, E-mail: myang@dicp.ac.cn [Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (China)

    2016-09-15

    Manganese- and nitrogen-co-doped mesoporous TiO{sub 2} microsphere photocatalysts are prepared by a simple sol–gel method with controllable sizes in the range of 400–500 nm and high surface area of 112 m{sup 2} g{sup −1}. Manganous acetate is the Mn source, and ammonia gas is the nitrogen source used. The dopants are found to be uniformly distributed in the TiO{sub 2} matrix. Interestingly, in (Mn,N)-co-doped TiO{sub 2}, we observe an effective indirect band gap of ~2.58 eV. (Mn,N)-co-doped mesoporous TiO{sub 2} microspheres show higher photocatalytic activity than Mn–TiO{sub 2} microspheres under visible light irradiation. Among the samples reported in this work, 0.2 at.% Mn doping and 500 °C 2-h nitriding condition give the highest photocatalytic activity. The observed photocatalytic activity in the (Mn,N)-co-doped TiO{sub 2} is attributed to the contribution from improved absorption due to trap levels of Mn, oxygen vacancies and N doping.Graphical AbstractManganese- and nitrogen-co-doped mesoporous TiO{sub 2} microspheres containing substitutional N, interstitial N and O vacancies show high visible light photocatalytic activity.

  9. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    International Nuclear Information System (INIS)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-01-01

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO_2 anatase surface (101) is studied. • Effect of Mg defect to the TiO_2 anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO_2 anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO_2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO_2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J_S_C of the surface while slightly decreasing V_O_C compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  10. Automated CO2 extraction from air for clumped isotope analysis in the atmo- and biosphere

    Science.gov (United States)

    Hofmann, Magdalena; Ziegler, Martin; Pons, Thijs; Lourens, Lucas; Röckmann, Thomas

    2015-04-01

    The conventional stable isotope ratios 13C/12C and 18O/16O in atmospheric CO2 are a powerful tool for unraveling the global carbon cycle. In recent years, it has been suggested that the abundance of the very rare isotopologue 13C18O16O on m/z 47 might be a promising tracer to complement conventional stable isotope analysis of atmospheric CO2 [Affek and Eiler, 2006; Affek et al. 2007; Eiler and Schauble, 2004; Yeung et al., 2009]. Here we present an automated analytical system that is designed for clumped isotope analysis of atmo- and biospheric CO2. The carbon dioxide gas is quantitatively extracted from about 1.5L of air (ATP). The automated stainless steel extraction and purification line consists of three main components: (i) a drying unit (a magnesium perchlorate unit and a cryogenic water trap), (ii) two CO2 traps cooled with liquid nitrogen [Werner et al., 2001] and (iii) a GC column packed with Porapak Q that can be cooled with liquid nitrogen to -30°C during purification and heated up to 230°C in-between two extraction runs. After CO2 extraction and purification, the CO2 is automatically transferred to the mass spectrometer. Mass spectrometric analysis of the 13C18O16O abundance is carried out in dual inlet mode on a MAT 253 mass spectrometer. Each analysis generally consists of 80 change-over-cycles. Three additional Faraday cups were added to the mass spectrometer for simultaneous analysis of the mass-to-charge ratios 44, 45, 46, 47, 48 and 49. The reproducibility for δ13C, δ18O and Δ47 for repeated CO2 extractions from air is in the range of 0.11o (SD), 0.18o (SD) and 0.02 (SD)o respectively. This automated CO2 extraction and purification system will be used to analyse the clumped isotopic signature in atmospheric CO2 (tall tower, Cabauw, Netherlands) and to study the clumped isotopic fractionation during photosynthesis (leaf chamber experiments) and soil respiration. References Affek, H. P., Xu, X. & Eiler, J. M., Geochim. Cosmochim. Acta 71, 5033

  11. Elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on separated targets of {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn and {sup 208}Pb using the Saclay fixed-energy cyclotron; Sections efficaces differentielles elastiques et inelastiques obtenues par diffusion de particules {alpha} de 44 MeV sur des cibles de {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn et {sup 208}Pb au cyclotron a energie fixe de saclay

    Energy Technology Data Exchange (ETDEWEB)

    Bruge, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physique nucleaire, service de physique nucleaire a moyenne energie

    1967-01-01

    This report contains elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn and Pb enriched targets. (author) [French] Ce rapport contient les tableaux des sections efficaces differentielles obtenues par diffusion elastique et inelastique des particules {alpha} de 44 MeV, fournies par le cyclotron a energie fixe de Saclay, sur des cibles d'isotopes separes de Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn et Pb. (auteur)

  12. Hollow TiO2@Co9S8 Core-Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production.

    Science.gov (United States)

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Lu, Xihong; Xia, Xinhui; Tu, Jiangping

    2018-03-01

    Designing ever more efficient and cost-effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder-free hollow TiO 2 @Co 9 S 8 core-branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core-branch arrays of TiO 2 @Co 9 S 8 are readily realized by the rational combination of crosslinked Co 9 S 8 nanoflakes on TiO 2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as-obtained TiO 2 @Co 9 S 8 core-branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm -2 as well as low Tafel slopes of 55 and 65 mV Dec -1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO 2 @Co 9 S 8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm -2 and long-term durability with no decay after 10 d. The versatile fabrication protocol and smart branch-core design provide a new way to construct other advanced metal sulfides for energy conversion and storage.

  13. (Sm,Zr(Fe,Co11.0-11.5Ti1.0-0.5 compounds as new permanent magnet materials

    Directory of Open Access Journals (Sweden)

    Tomoko Kuno

    2016-02-01

    Full Text Available We investigated (Sm,Zr(Fe,Co11.0-11.5Ti1.0-0.5 compounds as permanent magnet materials. Good magnetic properties were observed in (Sm0.8Zr0.2(Fe0.75Co0.2511.5Ti0.5 powder containing a limited amount of the α-(Fe, Co phase, including saturation polarization (Js of 1.63 T, an anisotropic field (Ha of 5.90 MA/m at room temperature, and a Curie temperature (Tc of about 880 K. Notably, Js and Ha remained above 1.5 T and 3.70 MA/m, respectively, even at 473 K. The high-temperature magnetic properties of (Sm0.8Zr0.2(Fe0.75Co0.2511.5Ti0.5 were superior to those of Nd2Fe14B.

  14. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    Science.gov (United States)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  15. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO 2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO 2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO 2 -rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m –2 (global mean) unlikely to lose more than one Earth ocean of H 2 O over their lifetimes unless they lose all their atmospheric N 2 /CO 2 early on. Because of the variability of H 2 O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO 2 /H 2 O-rich atmospheres, and high mean surface temperatures.

  16. Evaluation of Co-rich manganese deposits by image analysis and photogrammetric techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R.; Tsurusaki, K.

    Stereo-seabed photographs of Co-rich manganese deposits on a mid-Pacific seamount, were analysed using an image analysis software for coverage estimation and size classification of nodules, and a photogrammetric software for calculation of height...

  17. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    International Nuclear Information System (INIS)

    Lugaro, Maria; Liffman, Kurt; Ireland, Trevor R.; Maddison, Sarah T.

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16 O-rich CO and 16 O-poor H 2 O, where the H 2 O subsequently combined with interstellar dust to form relatively 16 O-poor solids within the solar nebula. Another model for creating the different reservoirs of 16 O-rich gas and 16 O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the 18 O/ 17 O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  18. The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel

    Science.gov (United States)

    Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong

    2017-02-01

    The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.

  19. Titanates of the lindsleyite-mathiasite (LIMA) group reveal isotope disequilibrium associated with metasomatism in the mantle beneath Kimberley (South Africa)

    Science.gov (United States)

    Giuliani, Andrea; Woodhead, Jon D.; Phillips, David; Maas, Roland; Davies, Gareth R.; Griffin, William L.

    2018-01-01

    Radiogenic isotope variations unrelated to radiogenic ingrowth are common between minerals found in metasomatised mantle xenoliths entrained in kimberlite, basalts and related magmas. As the metasomatic minerals are assumed to have been in isotopic equilibrium originally, such variations are typically attributed to contamination by the magma host and/or interaction with mantle fluids during or before xenolith transport to surface. However, the increasing evidence of metasomatism by multiple, compositionally distinct fluids permeating the lithospheric mantle, coeval with specific magmatic events, suggests that isotopic disequilibrium might be a consequence of discrete, though complex, metasomatic events. Here we provide clear evidence of elemental and Sr isotope heterogeneity between coeval Ti-rich LIMA (lindsleyite-mathiasite) minerals at the time of their formation in the mantle. LIMA minerals occur in close textural association with clinopyroxene and phlogopite in low-temperature (∼800-900 °C), strongly metasomatised mantle xenoliths from the ∼84 Ma Bultfontein kimberlite (South Africa). Previous U/Pb dating of the LIMA phases was used to argue that each xenolith recorded a single event of LIMA crystallisation at ∼180-190 Ma, coeval with the emplacement of Karoo magmas. SEM imaging reveals that up to four types of LIMA phases coexist in each xenolith, and occasionally in a single LIMA grain. Major element and in situ Sr isotope analyses of the different LIMA types show that each phase has a distinct elemental composition and initial 87Sr/86Sr ratio (e.g., 0.7068-0.7086 and 0.7115-0.7129 for two LIMA types in a single xenolith; 0.7053-0.7131 across the entire sample suite). These combined age and isotopic constraints require that multiple fluids metasomatised these rocks at broadly the same time (i.e. within a few thousands to millions of years), and produced similar mineralogical features. Elemental and isotopic variations between different LIMA types

  20. Use of isotope techniques in lake dynamics investigations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    The Co-ordinated Research Programme (CRP) on the Use of Isotope Techniques in Lake Dynamics Investigations was launched with the aim of assessing the potential of environmental isotope techniques in studying the dynamics of surface water bodies and related problems such as: dynamics of solutes; sediment focusing; establishment of water balance components; vulnerability to pollution. The CRP enabled a number of isotope and geochemical studies to be carried out on small and large water bodies, with the general aim of understanding of the dynamics of these systems under the growing anthropogenic influence. This publication is a compilation of the papers presented at the final Research Co-ordination Meeting (RCM) held in Rehovot, Israel, from 10 to 13 March 1997. Individual contributions have been indexed separately

  1. Geochemistry contribution of Pb isotopes on basalts origin study from Parana basin, Brazil

    International Nuclear Information System (INIS)

    Marques, L.S.; Dupre, B.; Allegre, C.J.

    1990-01-01

    This paper presents thirty new Pb-isotope and concentration data for low- and high-tiO sub(2) continental flood basalts of the Parana Basin. The results obtained from representative samples show significant differences with respect to type and location of these basic rocks. The low- and high-TiO sub(2) basalts from the northern region of the Parana Basin exhibit very similar Pb-isotope compositions. On the other hand, the low-TiO sub(2) basalts of central and southern areas, which exhibit low Sr initial isotope ratios (less than 0,7060), show very small variation in Pb isotope compositions which are highly enriched in radiogenic Pb in comparison with the analogues of northern region. The high-TiO sub(2) basic rocks analysed from northern and central regions have the same values for Pb isotope ratios, which are slightly more radiogenic compared with high-TiO sub(2) basalts from southern region. The data obtained, combined with other geochemical (major and trace elements, including rare earths) and isotope (Sr and Nd) results support the view that the basalts from northern and southern areas of the Parana Basin originated in lithospheric mantle reservoirs with different geochemical characteristics. (author)

  2. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance

    Science.gov (United States)

    Guo, Yanru; Xiao, Limin; Zhang, Min; Li, Qiuye; Yang, Jianjun

    2018-05-01

    An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 ternary nanocomposite was fabricated using nanotubular titanic acid as precursors via a simple photo-deposition of Pd nanoparticles and calcination process. The prepared nanocomposites were investigated by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy, respectively. For g-C3N4/TiO2 binary nanocomposites, at the optimal content of g-C3N4 (2%), the apparent photocatalytic activity of 2%g-C3N4/TiO2 was 9 times higher than that of pure TiO2 under visible-light illumination. After deposition of Pd (1 wt%) at the contact interface between g-C3N4 and TiO2, the 2%g-C3N4/Pd/TiO2 ternary nanocomposites demonstrated the highest visible-light-driven photocatalytic activity for the degradation of gaseous propylene, which was 16- and 2-fold higher activities than pure TiO2 and 2%g-C3N4/TiO2, respectively. The mechanism for the enhanced photocatalytic performance of the g-C3N4/Pd/TiO2 photo-catalyst is proposed to be based on the efficient separation of photo-generated electron-hole pairs through Z-scheme system, in which uniform dispersity of Pd nanoparticles at contact interface between g-C3N4 and TiO2 and oxygen vacancies promote charge separation.

  3. Early stages of the mechanical alloying of TiC-TiN powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Giovanna [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Musu, Elodia [Industrial Telemicroscopy Laboratory, Sardegna Ricerche, Polaris, Technology Park of Sardinia, Edificio 3, Loc. Piscinamanna, 09010 Pula (Italy); Delogu, Francesco, E-mail: francesco.delogu@dimcm.unica.it [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Universita degli Studi di Cagliari, via Marengo 2, I-09123 Cagliari (Italy)

    2013-01-15

    The present work focuses on the alloying behavior of TiC-TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: Black-Right-Pointing-Pointer Mechanically processed TiC-TiN powder mixtures form two solid solutions. Black-Right-Pointing-Pointer An analytical model was developed to describe the mechanical alloying kinetics. Black-Right-Pointing-Pointer The amount of powder alloyed at collision was indirectly estimated. Black-Right-Pointing-Pointer A few nanomoles of material participate in the alloying process at each collision. Black-Right-Pointing-Pointer The chemical composition of the solid solutions was shown to change discontinuously.

  4. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  5. Near-surface microstructural modification of (Ti,W)(C,N)-based compacts with nitrogen

    International Nuclear Information System (INIS)

    Ucakar, V.; Kral, C.; Lengauer, W.

    2001-01-01

    For developing of functional-gradient hardmetals the interaction of nitrogen with (Ti,W)(C,N)-based compacts was investigated. Hot-pressed (Ti,W)(C,N) compacts as well as sintered compacts of (Ti,W)(C,N)+Co were subjected to sintering and heat treatment at 1200-1500 o C and up to 30 bar N 2 . In (Ti,W)(C,N) compacts four microstructure types were obtained upon reaction with nitrogen. A uniform single-phase (Ti,W)(C,N) forms in samples with a low WC and high TiN content. If medium WC and high TiN/TiC ratio is present a core-rim type structure forms during Ar annealing which remains the same when nitrogen in-diffusion occurs. The third type of microstructure shows sub-micron lamellae of nitrogen-rich fcc phase and WC. This structure forms at increased WC and/or TiC content. If the WC content is increased again a WC layer forms at the outermost surface. Compressive stresses introduced by phase formation/decomposition were obtained for the nitrogen in-diffusion. Sintered (Ti,W)(C,N)+Co compacts were heat treated above and below the eutectic temperature. Above the eutectic temperature compact Ti(C,N) top-layers independent an sample composition were observed. Below the eutectic temperature the microstructure formation is mainly influenced by the sample composition. A Ti(C,N) top-layer forms in materials with a high Ti(C,N) content. Contrary, interaction zones without a layer were obtained in compacts with high WC/Ti(C,N) ratio. Some of these surface modified compacts show surfaces and particle sizes favorable for a cutting tool. (author)

  6. Evidence for extreme Ti-50 enrichments in primitive meteorites

    International Nuclear Information System (INIS)

    Fahey, A.; Mckeegan, K.D.; Zinner, E.; Goswami, J.N.; Physical Research Lab., Ahmedabad, India)

    1985-01-01

    The results of the first high mass resolution ion microprobe study of Ti isotopic compositions in individual refractory grains from primitive carbonaceous meteorites are reported. One hibonite from the Murray carbonaceous chondrite has a 10 percent excess of Ti-50, 25 times higher than the maximum value previously reported for bulk samples of refractory inclusions from carbonaceous chondrites. The variation of the Ti compositions between different hibonite grains, and among pyroxenes from a single Allende refractory inclusion, indicates isotopic inhomogeneities over small scale lengths in the solar nebula and emphasizes the importance of the analysis of small individual phases. This heterogeneity makes it unlikely that the isotopic anomalies were carried into the solar system in the gas phase. 20 references

  7. Preferential flow pathways revealed by field based stable isotope analysis of CO2 by mid-infrared laser spectroscopy

    Science.gov (United States)

    van Geldern, Robert; Nowak, Martin; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A. C.; Jost, Hj

    2016-04-01

    A newly developed and commercially available isotope ratio laser spectrometer for CO2 analyses has been tested during a 10-day field monitoring campaign at the Ketzin pilot site for CO2 storage in northern Germany. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10-day carbon stable isotope data set with 30 minutes resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within 2σ analytical precision (<0.3 ‰). This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time table isotope data directly in the field. The injected CO2 tracer had a distinct δ13C value that was largely different from the reservoir background value. The laser spectroscopy data revealed a prior to this study unknown, intensive dynamic with fast changing δ13C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The new technique might contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.

  8. New nanostructured silica incorporated with isolated Ti material for the photocatalytic conversion of CO2 to fuels

    Science.gov (United States)

    2014-01-01

    In this work, new nanoporous silica (Korea Advanced Institute of Science and Technology-6 (KIT-6)-dried or KIT-6-calcined) incorporated with isolated Ti materials with different Si/Ti ratios (Si/Ti = 200, 100, and 50) has been synthesized and investigated to establish photocatalytic reduction of CO2 in the presence of H2O vapors. The properties of the materials have been characterized through N2 adsorption/desorption, UV-vis, TEM, FT-IR, and XPS analysis techniques. The intermediate amount of the isolated Ti (Si/Ti = 100) has resulted to be more uniformly distributed on the surface and within the three-dimensional pore structure of the KIT-6 material, without its structure collapsing, than the other two ratios (Si/Ti = 200 and 50). However, titania agglomerates have been observed to have formed due to the increased Ti content (Si/Ti = 50). The Ti-KIT-6 (calcined) materials in the reaction showed higher activity than the Ti-KIT-6 (dried) materials, which produced CH4, H2, CO, and CH3OH (vapors) as fuel products. The Ti-KIT-6 (Si/Ti = 100) material also showed more OH groups, which are useful to obtain a higher production rate of the products, particularly methane, which was even higher than the rate of the best commercial TiO2 (Aeroxide P25, Evonik Industries AG, Essen, Germany) photocatalyst. PMID:24690396

  9. Significant enhancement in the photocatalytic activity of N, W co-doped TiO2 nanomaterials for promising environmental applications

    International Nuclear Information System (INIS)

    Thind, Sapanbir S; Wu Guosheng; Tian Min; Chen Aicheng

    2012-01-01

    In this work, a mesoporous N, W co-doped TiO 2 photocatalyst was synthesized via a one-step solution combustion method, which utilized urea as the nitrogen source and sodium tungstate as the tungsten source. The photocatalytic activity of the N, W co-doped TiO 2 photocatalyst was significantly enhanced by a facile UV pretreatment approach and was evaluated by measuring the rate of photodegradation of Rhodamine B under both UV and visible (λ > 420) light. Following the UV pretreatment, the UV photocatalytic activity of the N, W co-doped TiO 2 was doubled. In terms of visible light activity, the UV pretreatment resulted in an extraordinary >12 fold improvement. In order to gain insight into this substantial enhancement, the N, W co-doped TiO 2 photocatalysts were studied using x-ray diffraction, transmission electron microscopy, N 2 physisorption, UV–vis absorbance spectroscopy and x-ray photoelectron spectroscopy prior to and following the UV pretreatment. Our experimental results have revealed that this significant augmentation of photocatalytic activity may be attributed to several synergetic factors, including increase of the specific surface area, reduction of the band gap energy and the removal of carbon impurities. (paper)

  10. Hybrid chitosan–Pluronic F-127 films with BaTiO{sub 3}:Co nanoparticles: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Dubo, J. [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); González, R. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Veloso, E. [Dirección de Investigaciones Científicas y Tecnológicas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-01

    In this study, magnetic BaTiO{sub 3}:Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO{sub 3}:Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO{sub 3}:Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices.

  11. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  12. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  13. Moessbauer spectroscopic determination of magnetic moments of Fe3+ and Co2+ in substituted barium hexaferrite, Ba(Co,Ti)xFe(12-2x)O19

    International Nuclear Information System (INIS)

    Williams, J.M.; Adetunji, J.; Gregori, M.

    2000-01-01

    We report the distribution of magnetic moments of Fe 3+ and Co 2+ in Co 2+ -, Ti 4+ -substituted M-type barium hexaferrite, Ba(Co,Ti) x Fe (12-2x) O 19 , as a function of doping rate, x. The substitution, x, for iron has been varied with x=0, 0.25, 0.50, 0.70 and 0.85. The magnetic moments of Fe 3+ and Co 2+ were calculated from the combined results of Moessbauer measurements for Fe 3+ ions in the sublattices and neutron diffraction data for the total moments of Fe 3+ and Co 2+ . A comparison of the signs of the magnetic moments of Fe 3+ and Co 2+ ions enabled us to attribute spin directions of the Co 2+ ions in the sublattices of the substituted ferrite samples. The spin directions of Co 2+ are opposite to those of Fe 3+ in the 4f 2 and 2b sublattices. They are reversed from the original directions in the 4f 1 and 12K sublattices when the value of x≥0.70. A quantitative analysis shows that Co 2+ and Ti 4+ ions are preferably substituted into 4f 2 and 12K sublattices, respectively. In addition, while the hyperfine field of Fe 3+ in the 2b sublattice gives rise to the 2b-4f 2 interaction it is the partially substituted Co 2+ ions in the 4f 1 and 12K sublattices that contribute to the near neighbour 2a-4f 1 and 2b-12K types of interaction

  14. Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry.

    Science.gov (United States)

    Srivastava, Abneesh; Michael Verkouteren, R

    2018-05-25

    Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO 2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO 2 scale was realized using the pure CO 2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13 C/ 12 C and 18 O/ 16 O isotope ratios are expressed relative to VPDB-CO 2 using the [Formula: see text] and [Formula: see text] notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (-25 to +2) ‰ and (-33 to -1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for [Formula: see text] and [Formula: see text], respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO 2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO 2 in CO 2 -free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values. Graphical abstract CO 2 gas isotope ratio metrology.

  15. Band alignment in visible-light photo-active CoO/SrTiO{sub 3} (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hosung; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-12-28

    Epitaxial oxide heterostructures are of fundamental interest in a number of problems ranging from oxide electronics to model catalysts. The epitaxial CoO/SrTiO{sub 3} (001) heterostructure on Si(001) has been recently studied as a model oxide catalyst for water splitting under visible light irradiation (Ngo et al., J. Appl. Phys. 114, 084901 (2013)). We use density functional theory to investigate the valence band offset at the CoO/SrTiO{sub 3} (001) interface. We examine the mechanism of charge transfer and dielectric screening at the interface and demonstrate that charge transfer is mediated by the metal-induced gap states in SrTiO{sub 3}, while the dielectric screening at the interface is largely governed by the ionic polarization of under-coordinated oxygen. Based on this finding, we argue that strain relaxation in CoO plays a critical role in determining the band offset. We find that the offsets of 1.36–1.10 eV, calculated in the Schottky-limit are in excellent agreement with the experimental value of 1.20 eV. In addition, we investigate the effect of the Hubbard correction, applied on the Co 3d states, on the dipole layer and potential shift at the interface.

  16. Alternative photocatalysts to TiO{sub 2} for the photocatalytic reduction of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nikokavoura, Aspasia; Trapalis, Christos, E-mail: c.trapalis@inn.demokritos.gr

    2017-01-01

    Highlights: • Non TiO{sub 2} containing photocatalysts are intensively studied for CO{sub 2} reduction. • The inorganic and carbon based semiconductors are appropriate for redox reactions. • ZIFs and carbonaceous hybrids exhibited outstanding photocatalytic efficiency. • Highly active photocatalysts for CO{sub 2} conversion to useful materials are needed. - Abstract: The increased concentration of CO{sub 2} in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the “Anthropogenic Greenhouse Effect” and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO{sub 2} atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO{sub 2} concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO{sub 2} reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C{sub 3}N{sub 4} composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO{sub 2} and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  17. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.

    2012-05-10

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  18. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.; Alshareef, Husam N.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2012-01-01

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  19. Electromagnetic and microwave absorption properties of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Meng, Pingyuan [Huzhou Innovation Center of Advanced Materials, Shanghai Institute of Ceramics Chinese Academy of Sciences, Huzhou 215100 (China); Wang, Meiling [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Guanchen [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xinqing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-09-15

    To improve the impedance matching and then achieve a better microwave absorption performance in electromagnetic absorber, the Mg{sup 2+} was added to occupy the sites of Co{sup 2+} in hexagonal-type ferrite BaCoTiFe{sub 10}O{sub 19}. BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} were synthesized by a simple sol-gel combustion technique and the phase of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was confirmed by X-ray diffraction analysis (XRD). The grain size of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was in the range of 100–400 nm and crystal particles were refined with the augment of doped Mg{sup 2+}. Based on the static magnetic measurement, the coercivity (H{sub c}) increased and the saturation magnetization (M{sub s}) decreased as the x increased. Moreover, it was found that BaMg{sub 0.4}Co{sub 0.6}TiFe{sub 10}O{sub 19} possessed a maximum reflection loss of −33.7 dB with a matching thickness of 2.0 mm measured by the vector net-analyzer in the frequency of 0.5–18 GHz, which also had a bandwidth below −20 dB ranging from 11.5 GHz to 17.2 GHz. Meanwhile, the permeability of the prepared ferrites could be adjusted and a proper match was provided between dielectric and magnetic properties by controlling the doped content of Mg{sup 2+}, which would be significant to the application of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} in the field of the microwave absorbing materials. - Highlights: • The Mg{sup 2+} ions were first employed to occupy the place of Co{sup 2+} ions in BaCoTiFe{sub 10}O{sub 19}. • The grains were refined as Co substitution by Mg in ferrite. • The peaks of complex permeability shift to high frequency with Mg{sup 2+} substituted. • The coercivity increased and saturation magnetization slightly decreased. • Substitution of Mg{sup 2+} enhanced microwave absorption and broadened bandwidth.

  20. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  1. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    International Nuclear Information System (INIS)

    Baruah, Sudarshan

    2008-07-01

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of 81 Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ( 72 Zn) down to 290 ms ( 81 Zn). In case of all the nuclides, the relative mass uncertainty (Δm=m) achieved was in the order of 10 -8 corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  2. Friction and wear properties of Ti6Al4V/WC-Co in cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Xu Wenji; Liu Xin; Song Jinlong; Wu Libo; Sun Jing

    2012-01-01

    Highlights: ► Cold plasma jet can effectively reduce the friction coefficients of Ti6Al4V/WC-Co friction pairs. ► Cold plasma jet can easily form nitrides on the surface of Ti6Al4V and on new surfaces generated by tool wear. ► The nitrides can reduce the friction coefficients and protect the friction surface. - Abstract: The friction and wear properties of Ti6Al4V/WC-Co friction pair were studied using an autonomous atmospheric pressure bare electrode cold plasma jet generating device and block-on-ring friction/wear tester, respectively. The study was conducted under air, air jet, nitrogen jet, air cold plasma jet, and nitrogen cold plasma jet atmospheres. Both nitrogen cold and air cold plasma jets effectively reduced the friction coefficients of the friction pairs and decreased friction temperature. The friction coefficient in the nitrogen cold plasma jet decreased to almost 60% compared with that in the air. The scanning electron microscope, energy-dispersive X-ray spectroscope, and X-ray diffraction analyses illustrated that adhesive wear was relieved and the friction surfaces of Ti6Al4V were smoother, both in the nitrogen cold and air cold plasma jets. The roughness value R a of the Ti6Al4V friction surfaces can reach 1.107 μm. A large number of nitrogen particles in the ionic and excited states contained by cold plasma jets reacts easily on the friction surface to produce a large amount of nitrides, which can excellently reduce the wear of Ti6Al4V/WC-Co friction pairs in real-time.

  3. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Directory of Open Access Journals (Sweden)

    H. Graven

    2017-12-01

    Full Text Available The isotopic composition of carbon (Δ14C and δ13C in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6 for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  4. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Science.gov (United States)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  5. Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel

    Science.gov (United States)

    Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong

    2016-11-01

    The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.

  6. Neutron-rich isotopes around the r-process 'waiting-point' nuclei 2979Cu50 and 3080Zn50

    International Nuclear Information System (INIS)

    Kratz, K.L.; Gabelmann, H.; Pfeiffer, B.; Woehr, A.

    1991-01-01

    Beta-decay half-lives (T 1/2 ) and delayed-neutron emission probabilities (P n ) of very neutron-rich Cu to As nuclei have been measured, among them the new isotopes 77 Cu 48 , 79 Cu 50 , 81 Zn 51 and 84 Ga 53 . With the T 1/2 and P n -values of now four N≅50 'waiting-point' nuclei known, our hypothesis that the r-process has attained a local β-flow equilibrium around A≅80 is further strengthened. (orig.)

  7. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2

    Science.gov (United States)

    Nikokavoura, Aspasia; Trapalis, Christos

    2017-01-01

    The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  8. Influence of N-rich material in valorization of industrial eggshell by co-composting.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa

    2016-11-01

    Industrial eggshell (ES) is an animal by-product (ABP) involving some risk if not properly managed. Composting is a possible treatment approved for its safe use. This study aims to assess the influence of using N-rich material (grass clippings (GC)) to improve co-composting of ES mixtures for reaching sanitizing temperatures imposed by the ABP regulation from the European Union. Two sets of mixtures (M1 and M2) were investigated, each containing industrial potato peel waste, GC and rice husks at 3:1.9:1 and 3:0:1 ratios by wet weight. In each set, ES composition ranged from 0% to 30% (w/w). Co-composting trials were performed in self-heating reactors for 25 days, followed by maturation in piles. Results showed that only M1 trials attained temperatures higher than 70°C for nine consecutive hours, but N-losses by stripping on average were four- to five-fold higher than M2. In the absence of N-rich material, biodegradability of mixtures was 'low' to 'moderate' and organic matter conversion was impaired. Physical, chemical and phytotoxic properties of finished composts were suitable for soil improvement, but M1 took 54 more days to achieve maturity. In conclusion, co-composting ES with N-rich materials is important to assure the fulfilment of sanitizing requirements, avoiding any additional thermal treatment.

  9. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.

    Science.gov (United States)

    Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally

    2017-10-13

    The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.

  10. Magnetic properties of a HoCo10Ti2 single crystal

    International Nuclear Information System (INIS)

    Janssen, Y.; Tegus, O.; Klaasse, J.C.P.; Brueck, E.; Buschow, K.H.J.; Boer, F.R. de

    2001-01-01

    The magnetic properties of single-crystalline easy-axis ThMn 12 -type ferrimagnetic HoCo 10 Ti 2 have been studied. At 4.2 K, the magnetization process with the field applied along the easy c-axis is completely different from that, with the field applied perpendicular to it. The bending process of the initially antiparallel Ho and Co magnetic moments, that is observed in the latter measurement, is briefly described in terms of mean-field theory. Furthermore, when the field is applied in the hard magnetization direction, the bending process has directly been observed by means of measurement of the transversal magnetization

  11. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    Science.gov (United States)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  12. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    Science.gov (United States)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  13. Isotope ratios and chemical fractionation of CO in Lynds 134

    International Nuclear Information System (INIS)

    Dickman, R.L.; Langer, W.D.

    1977-01-01

    Mahoney, McCutcheon and Shuter (1976) reported observations of the J = 1 → 0 transition of three isotopes of CO in the dust cloud Lynds 134 using the 4.6 m telescope at Aerospace Corporation. In this paper a new observation of 12 C 17 O is discussed and the question of the ratio 13 C 16 O/ 12 C 18 O across the dust cloud is considered further. (Auth.)

  14. Thermally Oxidized C, N Co-Doped ANATASE-TiO2 Coatings on Stainless Steel for Tribological Properties

    Science.gov (United States)

    Wang, Hefeng; Shu, Xuefeng; Li, Xiuyan; Tang, Bin; Lin, Naiming

    2013-07-01

    Ti(C, N) coatings were prepared on stainless steel (SS) substrates by plasma surface alloying technique. Carbon-nitrogen co-doped titanium dioxide (C-N-TiO2) coatings were fabricated by oxidative of the Ti(C, N) coatings in air. The prepared C-N-TiO2 coatings were characterized by SEM, XPS and XRD. Results reveal that the SS substrates were entirely shielded by the C-N-TiO2 coatings. The C-N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The tribological behavior of the coatings was tested with ball-on-disc sliding wear and compared with substrate. Such a C-N-TiO2 coatings showed good adhesion with the substrate and tribological properties of the SS in terms of much reduced friction coefficient and increased wear resistance.

  15. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Shu, J.; Yue, Cai-Bo; Zhu, Xiao-Dong; Zhou, An-Na; Zhu, Yan-Rong; Zhu, Rong-Sun

    2010-01-01

    The effect of Li 4 Ti 5 O 12 (LTO) coating amount on the electrochemical cycling behavior of the LiCoO 2 cathode was investigated at the high upper voltage limit of 4.5 V. Li 4 Ti 5 O 12 (≤5 wt.%) is not incorporated into the host structure and leads to formation of uniform coating. The cycling performance of LiCoO 2 cathode is related with the amount of Li 4 Ti 5 O 12 coating. The initial capacity of the LTO-coated LiCoO 2 decreased with increasing Li 4 Ti 5 O 12 coating amount but showed enhanced cycling properties, compared to those of pristine material. The 3 wt.% LTO-coated LiCoO 2 has the best electrochemical performance, showing capacity retention of 97.3% between 2.5 V and 4.3 V and 85.1% between 2.5 V and 4.5 V after 40 cycles. The coulomb efficiency shows that the surface coating of Li 4 Ti 5 O 12 is beneficial to the reversible intercalation/de-intercalation of Li + . LTO-coated LiCoO 2 provides good prospects for practical application of lithium secondary batteries free from safety issues.

  16. Experimental study of hydrogen isotopes storage on titanium bed

    International Nuclear Information System (INIS)

    Vasut, Felicia; Zamfirache, Marius; Bornea, Anisia; Pearsica, Claudia; Bidica, Nicolae

    2002-01-01

    As known, the Nuclear Power Plant Cernavoda equipped with a Canadian reactor, of CANDU type, is the most powerful tritium source from Europe. On long term, due to a 6·10 16 Bq/year, Cernavoda area will be contaminated due to the increasing tritium quantity. Also, the continuous contamination of heavy water from the reactor, induces a reduction of moderation's capacity. Therefore, one considers that it is improperly to use heavy water if its activity level is higher than 40 Ci/kg in the moderator and 2 Ci/kg in the cooling fluid. For these reasons, we have developed a detritiation technology, based on catalytic isotopic exchange and cryogenic distillation. Tritium will be removed from the tritiated heavy water, so it appears the necessity of storage of tritium in a special vessel that can provide a high level of protection and safety of environment and personal. There several metals were tested as storage beds for hydrogen isotopes. One of the reference materials used for storage of hydrogen isotopes is uranium, a material with a great storage capacity, but unfortunately it is a radioactive metal and also can react with the impurities from the stored gas. Other metals and alloys as ZrCo, Ti, FeTi are also adequate as storage beds at normal temperature. The paper presents studies about the reaction between hydrogen and titanium used as storage bed for the hydrogen isotopes resulted after the detritiation of tritiated heavy water. The experiments that were carried out used protium and mixture of deuterium and protium at different storage parameters as process gas. (authors)

  17. Flux pinning behaviors of Ti and C co-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y.; Feng, Y.; Cheng, C.H.; Zhang, Y.P.; Zhao, Y.

    2008-01-01

    Flux pinning behavior of carbon and titanium concurrently doped MgB 2 alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB 2 have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB 2 samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg 0.95 Ti 0.05 B 1.95 C 0.05 has been determined to be U(B dc )∝B dc -1 compared to that of MgB 2 U(B dc )∝B dc -1.5 . As to the U(J) behavior, a relationship of U(J) ∝ J -0.17 is found fitting well for Mg 0.95 Ti 0.05 B 1.95 C 0.05 with respect to U(J) ∝ J -0.21 for MgB 2 . All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB 2

  18. Synthesis of N and La co-doped TiO{sub 2}/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan; Wu, Zhansheng, E-mail: wuzhans@126.com; Tian, Fei; Ye, Bang-Ce; Tong, Yanbin, E-mail: tongyanbin@sina.com

    2016-08-15

    La and N co-doped TiO{sub 2} nanoparticles supported on activated carbon (TiO{sub 2}/AC) were synthesized through a microwave-assisted sol–gel method for the synergistic removal of naphthalene solution by photocatalytic degradation. Results showed that the La and N ions were incorporated into the TiO{sub 2} framework in both the anatase and rutile phases of TiO{sub 2} for single doped and co-doped samples, which narrowed the band gap of TiO{sub 2} from 2.82 to 2.20 eV. The PL spectra of the samples showed a decrease in the recombination centers when N and La were introduced in TiO{sub 2}/AC. The 0.001La-N-TiO{sub 2}/AC photocatalyst exhibited the highest degradation efficiency of 93.5% for naphthalene under visible light within 120 min. This result was attributed to a synergistic effect involving the efficient inhibition of the recombination of photogenerated electrons and holes, the increase in surface hydroxyl, surface area, volume pores, and the increase of uptake in the visible light region. In addition, the high apparent rate constant indicated that La and N co-doping result in the increase of photoactivity. This study demonstrated the co-doped TiO{sub 2}/AC is a highly efficient photocatalyst for the removal of naphthalene. The results provided valuable information on the mechanism of naphthalene decomposition. - Highlights: • N, La codoped TiO{sub 2}/AC catalysts were synthesized by microwave-assisted. • N and La doping inhibit the recombination of photogenerated electrons and holes. • 0.001La-N-TiO{sub 2}/AC obtains photodegradation efficiency of 93.5% for naphthalene. • The photocatalysts possess good photochemical stability and reusability.

  19. Preparation and characterization of mesoporous TiO{sub 2}-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping, E-mail: hwp914@nankai.edu.cn [Nankai University, College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), and Tianjin Key Lab of Metal and Molecule-based Material Chemistry (China)

    2016-11-15

    Mesoporous TiO{sub 2}-sphere-supported Au-nanoparticles (Au/m-TiO{sub 2}-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO{sub 2} precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200–400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2–6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO{sub 2} spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO{sub 2}-spheres was as high as 117 m{sup 2} g{sup −1}. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm{sup −1} that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO{sub 2}-spheres could convert CO completely into CO{sub 2} at ambient temperature.

  20. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays.

    Science.gov (United States)

    Wang, He-Xuan; Zhu, Li-Nan; Guo, Fu-Qiao

    2018-06-23

    Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO 2 nanotube arrays (B, F-TiO 2 NTAs), which had similar morphology with the pristine TiO 2 NTAs. The structure and morphology of TiO 2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO 2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO 2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na 2 SO 4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO 2 NTAs. These results showed that B, F-TiO 2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

  1. Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock

    Science.gov (United States)

    Ilgen, A.; Aman, M.; Espinoza, D. N.; Rodriguez, M. A.; Griego, J.; Dewers, T. A.; Feldman, J.; Stewart, T.; Choens, R. C., II

    2017-12-01

    Geological carbon storage (GCS) requires an impermeable caprock (e.g., shale) that prevents the upward migration and escape of carbon dioxide (CO2) from the subsurface. Geochemical alteration can occur at the caprock-reservoir rock interface, which could lead to the altering of the rock's mechanical properties, compromising the seal. We performed laboratory experiments on Mancos shale to quantify the coupled chemical-mechanical response of carbonate-rich shale in CO2-brine mixtures at conditions typical to GCS. We constructed geochemical models, calibrated them using laboratory results, and extended to time scales required for GCS. We observed the dissolution of calcite and kaolinite and the precipitation of gypsum and amorphous aluminum (hydr)oxide following the introduction of CO2. To address whether this mineral alteration causes changes in micro-mechanical properties, we examined altered Mancos shale using micro-mechanical (scratch) testing, measuring the scratch toughness of mm-scale shale lithofacies. The quartz-rich regions of the Mancos shale did not show significant changes in scratch toughness following 1-week alteration in a CO2-brine mixture. However, the scratch toughness of the calcite-rich, originally softer regions decreased by about 50%. These observations illustrate a coupled and localized chemical-mechanical response of carbonate-rich shale to the injection of CO2. This suggests a localized weakening of the caprock may occur, potentially leading to the development of preferential flow paths. The identification of vulnerable lithofacies within caprock and a characterization of mineralogical heterogeneity is imperative at prospective GCS sites. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  2. Eco-friendly synthesis of core-shell structured (TiO2/Li2CO3) nanomaterials for low cost dye-sensitized solar cells.

    Science.gov (United States)

    Karuppuchamy, S; Brundha, C

    2016-12-01

    Core-shell structured TiO 2 /Li 2 CO 3 electrode was successfully synthesized by eco-friendly solution growth technique. TiO 2 /Li 2 CO 3 electrodes were characterized using X-ray Diffractometer (XRD), Scanning electron microscopy (SEM) and photocurrent-voltage measurements. The synthesized core-shell electrode material was sensitized with tetrabutylammonium cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenate(II) (N-719). The performance of dye-sensitized solar cells (DSCs) based on N719 dye modified TiO 2 /Li 2 CO 3 electrodes was investigated. The effect of various shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that Li 2 CO 3 shells of all thicknesses perform as inert barriers which improve open-circuit voltage (V oc ) of the DSCs. The energy conversion efficiency was greatly dependent on the thickness of Li 2 CO 3 on TiO 2 film, and the highest efficiency of 3.7% was achieved at the optimum Li 2 CO 3 shell layer. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: An experimental study at 550-950 degrees C and 1 bar

    International Nuclear Information System (INIS)

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-01-01

    Oxygen isotope partitioning between gaseous CO 2 and a natural rhyolitic glass and melt (77.7 wt% SiO 2 , 0.16 wt% H 2 O total ) has been measured at 550-950 degrees C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors (α CO2-rhyolite = ( 18 O/ 16 O) rhyolite ) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO 2 -silica glass and CO 2 -albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H 2 O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO 2 under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H 2 O total ) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab

  4. Multi - pulse tea CO2 laser beam interaction with the TiN thin films

    International Nuclear Information System (INIS)

    Gakovic, B.; Trtica, M.; Nenadovic, T.; Pavlicevic, B.

    1998-01-01

    The interaction of various types of energetic beams including a laser beam with the high-hardness coatings is of great fundamental and technological interest. The Nd:YAG, excimer and CO 2 are frequently used laser beams for this purpose. The interaction of a laser beam with low thickness coatings, deposited on austenitic stainless steel, is insufficiently known in the literature. Titanium nitride (TiN) possess the excellent physico-chemical characteristics. For this reason TiN films/coatings are widely used. The purpose of this article is a consideration of the effect of TEA C0 2 laser radiation on the TiN film deposited on austenitic stainless steel substrate (AISI 316). Investigation of TiN morphological changes, after multipulse laser irradiation, shown dependence on laser fluence, number of laser pulses and the laser pulse shape. Subsequently fast heating and cooling during multi-pulse laser bombardment cause the grain growth of TiN layer. Both laser pulses (pulses with tail and tail-free pulses) produced periodical wave like structure on polished substrate material. Periodicity is observed also on AISI 316 protected with TiN layer, but only with laser pulse with tail. (author)

  5. Influence of structural disorder on the optical and transport properties of Co0.50 Ti0.50 alloy films

    International Nuclear Information System (INIS)

    Kim, Ki Won; Lee, Y. P.; Rhee, Joo Yull; Kudryavtsev, Yuriy V.; Ri, H. C.

    2000-01-01

    Co 0.50 Ti 0.50 alloy films with a total thickness of about 100 nm were prepared by flash evaporation of the crushed alloy powders onto heated (730 K for the ordered state) and LN 2 -cooled (150 K for the disordered state) substrates. Structural analysis of the films was performed by suing transmission electron microscopy. The optical conductivity (OC) of the samples was measured at room temperature in a spectral range of 265 -2500 nm (4.7 - 0.5 eV). The resistivity measurements were carried out by using the four-probe technique in a temperature range of 4.2 - 300 K. The experimental OC spectra for the Co 0.50 Ti 0.50 alloys show the most significant change in the infrared region upon the order-disorder transformation. The structural disorder in the Co 0.50 Ti 0.50 alloy film leads to a change in the sign of the temperature coefficient of the resistivity from positive to negative. The observed changes in the optical properties and the temperature dependences of resistivity caused by the order-disorder structural transition are analyzed in the framework of the lattice symmetry and the electronic structure of the ordered CoTi compound

  6. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  7. Voltage-controlled ferromagnetism and magnetoresistance in LaCoO{sub 3}/SrTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chengqing; Park, Keun Woo; Yu, Edward T. [Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Posadas, Agham; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, 1 University Station C1600, Austin, Texas 78712 (United States); Jordan-Sweet, Jean L. [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-11-14

    A LaCoO{sub 3}/SrTiO{sub 3} heterostructure grown on Si (001) is shown to provide electrically switchable ferromagnetism, a large, electrically tunable magnetoresistance, and a vehicle for achieving and probing electrical control over ferromagnetic behavior at submicron dimensions. Fabrication of devices in a field-effect transistor geometry enables application of a gate bias voltage that modulates strain in the heterostructure via the converse piezoelectric effect in SrTiO{sub 3}, leading to an artificial inverse magnetoelectric effect arising from the dependence of ferromagnetism in the LaCoO{sub 3} layer on strain. Below the Curie temperature of the LaCoO{sub 3} layer, this effect leads to modulation of resistance in LaCoO{sub 3} as large as 100%, and magnetoresistance as high as 80%, both of which arise from carrier scattering at ferromagnetic-nonmagnetic interfaces in LaCoO{sub 3}. Finite-element numerical modeling of electric field distributions is used to explain the dependence of carrier transport behavior on gate contact geometry, and a Valet-Fert transport model enables determination of spin polarization in the LaCoO{sub 3} layer. Piezoresponse force microscopy is used to confirm the existence of piezoelectric response in SrTiO{sub 3} grown on Si (001). It is also shown that this structure offers the possibility of achieving exclusive-NOR logic functionality within a single device.

  8. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage

    Science.gov (United States)

    Yang, Chao; Yu, Shu; Ma, Yu; Lin, Chunfu; Xu, Zhihao; Zhao, Hua; Wu, Shunqing; Zheng, Peng; Zhu, Zi-Zhong; Li, Jianbao; Wang, Ning

    2017-08-01

    Ti2Nb10O29 is an advanced anode material for lithium-ion batteries due to its large specific capacity and high safety. However, its poor electronic/ionic conductivity significantly limits its rate capability. To tackle this issue, a Cr3+-Nb5+ co-doping is employed, and a series of CrxTi2-2xNb10+xO29 compounds are prepared. The co-doping does not change the Wadsley-Roth shear structure but increases the unit-cell volume and decreases the particle size. Due to the increased unit-cell volumes, the co-doped samples show increased Li+-ion diffusion coefficients. Experimental data and first-principle calculations reveal significantly increased electronic conductivities arising from the formation of impurity bands after the co-doping. The improvements of the electronic/ionic conductivities and the smaller particle sizes in the co-doped samples significantly contribute to improving their electrochemical properties. During the first cycle at 0.1 C, the optimized Cr0.6Ti0.8Nb10.6O29 sample delivers a large reversible capacity of 322 mAh g-1 with a large first-cycle Coulombic efficiency of 94.7%. At 10 C, it retains a large capacity of 206 mAh g-1, while that of Ti2Nb10O29 is only 80 mAh g-1. Furthermore, Cr0.6Ti0.8Nb10.6O29 shows high cyclic stability as demonstrated in over 500 cycles at 10 C with tiny capacity loss of only 0.01% per cycle.

  9. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  10. Co-doping TiO{sub 2} with boron and/or yttrium elements: Effects on antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzheng [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Wu, Yusheng, E-mail: henanwys@sina.com [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Yang, He; Xue, Xiangxin; Liu, Zhihua [Institute of Metallurgical Resources and Environmental Engineering, Northeastern University, Shenyang 110819 (China)

    2016-09-15

    Highlights: • B-Y/TiO{sub 2} nano materials firstly applied to the fields of antibacterial materials. • Systems analysis the existence state of boron and yttrium ion in TiO{sub 2}. • Doping B and Y greatly strengthened the antibacterial activity of TiO{sub 2}. - Abstract: Pure TiO{sub 2}, boron and/or yttrium doped TiO{sub 2} nano-materials were synthesized by a sol–gel method and characterized by XRD, SEM, XPS and PL. XRD analysis indicates that, in the pure TiO{sub 2} and B single doped TiO{sub 2} (B-TiO{sub 2}) nano-materials calcinated at 700 °C, the presence of TiO{sub 2} is a mixture of anatase and rutile; in the Y single doped (Y-TiO{sub 2}), B and Y co-doped TiO{sub 2} nano-materials (B/Y-TiO{sub 2}), the presence of TiO{sub 2} is anatase. SEM image shows the prepared materials have a common round morphology and hexagonal plate morphology caused by the agglomeration of particles. Boron atoms are partially embedded into the TiO{sub 2} interstitial structure or incorporated into the TiO{sub 2} lattice through occupying the position of the oxygen atoms. The results of antimicrobial experiment show that B/Y-TiO{sub 2} material has a remarkable antimicrobial activity. Compared with the visible light irradiation, antimicrobial activity of B/Y-TiO{sub 2} in dark is significant poor.

  11. Thermal Equation of State of Natural Ti-Bearing Clinohumite

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Zhang, Dongzhou; Qin, Shan; Jacobsen, Steven D.

    2017-11-01

    The natural occurrence of clinohumite in metabasalts and hydrothermally altered peridotites provides a source of water-rich minerals in subducted slabs, making knowledge of their phase relations and crystal chemistry under high pressure-temperature (P-T) conditions important for understating volatile recycling and geodynamic process in the Earth's mantle. Here we present a synchrotron-based, single-crystal X-ray diffraction study on two natural Ti-bearing clinohumites up to 28 GPa and 750 K in order to simulate conditions within subducted slabs. No phase transition occurs in clinohumite over this P-T range. Pressure-volume relationships of both compositions at room temperature were fitted to a third-order Birch-Murnaghan equation of state (EoS) with V0 = 650.4(3) Å3, KT0 = 141(4) GPa, and KT0' = 4.0(6) for Ti-poor clinohumite (0.07 Ti per formula unit, pfu) and V0 = 650.8(3) Å3, KT0 = 144(4) GPa, and KT0' = 3.6(7) for Ti-rich clinohumite (0.21 Ti pfu). Both clinohumites exhibit anisotropic compression with βb > βc > βa. We also refined P-V-T equation of state parameters using the high-temperature Birch-Murnaghan EoS, yielding (∂KT0/∂T)P = -0.040(10) GPa/K and αT = 5.1(6) × 10-5 K-1 for Ti-poor clinohumite and (∂KT0/∂T)P = -0.045(11) GPa/K and αT = 5.7(6) × 10-5 K-1 for Ti-rich clinohumite. Ti-poor and Ti-rich clinohumites display similar equations of state but are 20% more incompressible than Mg-pure clinohumite and display 5% higher bulk sound velocity than olivine at upper mantle conditions. Our results provide constraints for modeling geodynamic process related to the subduction and transport of potentially water-rich slabs in the mantle.

  12. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    Energy Technology Data Exchange (ETDEWEB)

    Baruah, Sudarshan

    2008-07-15

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of {sup 81}Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ({sup 72}Zn) down to 290 ms ({sup 81}Zn). In case of all the nuclides, the relative mass uncertainty ({delta}m=m) achieved was in the order of 10{sup -8} corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  13. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  14. Nitrogen and vanadium Co-doped TiO{sub 2} mesosponge layers for enhancement in visible photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jiasong Zhong [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Xu, Jinrong [Department of Mathematics and Physics, Anhui University of Architecture, Hefei, 230022 (China); Wang, Qingyao, E-mail: wangqingyao0532@163.com [School of Chemistry and Materials Science, Ludong University, Yantai, 264025 (China)

    2014-10-01

    Graphical abstract: - Highlights: • N and V co-doped TiO{sub 2} mesosponges were prepared by hydrothermal method. • The first-principle was used to investigate the novel porous materials. • N-V-TMSW had a remarkable visible absorption and photocatalytic activity. - Abstract: Novel N and V co-doped TiO{sub 2} mesosponge (N-V-TMSW) layers were successfully prepared by one-step hydrothermal treatment of TiO{sub 2} nanotube arrays, and the phase composition, morphology and optical property were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffusion reflectance spectroscopy (DRS). The crystal structure and density of states were studied by means of the first-principle pseudo-potential plane wave. The results indicated that titanium ions and oxygen atoms in TiO{sub 2} were successfully substituted by vanadium ions and nitrogen atoms, respectively. The sample N-V0.1-TMSW showed a remarkable absorption in the visible light range of 400–600 nm and high visible photocatalytic activity.

  15. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  16. Isotope Exchange in Oxide Catalyst

    Science.gov (United States)

    Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.

  17. Tetragonal Ce-based Ce-Sm(Fe, Co, Ti){sub 12} alloys for permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Cid, Andres; Salazar, Daniel [BCMaterials, Bizkaia Science and Tecnology Park, 48160 Derio (Spain); Gabay, Aleksandr M.; Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716 (United States); Barandiaran, Jose Manuel [BCMaterials, Bizkaia Science and Tecnology Park, 48160 Derio (Spain); Department of Electricity and Electronics, University Basque Country (UPV/EHU), 48080 Bilbao (Spain)

    2016-12-15

    Abundance and relatively low cost of Ce provide a great incentive for its use in rare-earth permanent magnets. It has been recently reported that the tetragonal Ce(Fe,Co,Ti)12 compounds may exhibit application-worthy intrinsic magnetic properties. In this work the effect of the α-Fe phase formation due to the evaporation of Sm during alloy fabrication has been studied, as a previous step in the attempt to convert the intrinsic magnetic properties into functional properties of a permanent magnet. Ce{sub 0.5}Sm{sub 0.5}Fe{sub 9}Co{sub 2}Ti alloys based on the ThMn12-type crystal structure have been synthesized via melt-spinning with different Sm content. Coercive fields between 2.8 and 1.4 kOe have been found for α-Fe phase contents between 8 and 46% in volume, showing the influence of the α-Fe phase on the coercivity and exchange coupling between the hard and soft phase. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. A (Nd, Zr(Fe, Co11.5Ti0.5Nx compound as a permanent magnet material

    Directory of Open Access Journals (Sweden)

    S. Suzuki

    2014-11-01

    Full Text Available We studied NdFe11TiNx compounds as permanent magnet materials. The (Nd0.7,Zr0.3(Fe0.75Co0.2511.5Ti0.5N0.52 powder that contained a limited amount of the α-(Fe, Co phase shows fairly good magnetic properties, such as a saturation polarization (Js of 1.68 T and an anisotropic field (Ha of 2.88 (Law of approach to saturation – 4.0 MA/m (Intersection of magnetization curves. Both properties are comparable to those of the Nd2Fe14B phase.

  19. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    Science.gov (United States)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  20. CO2 and 12C:13C Isotopic Ratios on Phoebe and Iapetus

    Science.gov (United States)

    Clark, R. N.; Brown, R. H.; Cruikshank, D. P.

    2016-12-01

    Cassini VIMS has obtained spatially resolved 0.35 to 5.1 micron reflectance spectra of Saturn's satellites beginning with the Phoebe fly-by in 2004 and a close fly-by of Iapetus in 2007. Both surfaces contain relatively abundant CO2. The new (2016 RC19) calibration of VIMS has provided a significant increase in the data quality, such that isotopic absorption bands in CO2 are now well defined. CO2 on Saturn's icy satellites is trapped (Cruikshank et al., 2010, Icarus v206 p561; Pinilla-Alonso et al. 2011, Icarus v211, p75i), predominantly in the dark material (Clark et al. 2012, Icarus v218 p831). Clark et al. modeled the CO2 abundance as 2.8% on Iapetus and 3.7% on Phoebe. The main 12CO2 band in VIMS spectra on Iapetus occurs at 4.253 microns and Phoebe at 4.266 microns. The 13CO2 absorption is strong on Phoebe at 4.367 microns and weak on Iapetus at 4.387 microns. Converting the Phoebe, Iapetus, and a lab reflectance spectrum (of trace H2O-CO2 mixture on a diffuse substrate), we derive preliminary values for the ratio of the equivalent widths of the 12C and 13C absorptions as 19±2 on Phoebe, 82±8 on Iapetus, and 98±10 for the laboratory spectrum. These ratios are related to the 12C/13C ratio, but there may be effects due to intra-molecular and inter-molecular coupling that will contribute to systematic errors in the isotopic abundances derived using equivalent-width measurements that we've yet to quantify. We Believe the effects are small, and will be attempting to quantify them in the future. For comparison, the terrestrial value of the 12C/13C ratio is 90.17, and vibrational coupling may explain the slightly high lab mixture result. The local interstellar medium is 69±15 (Boogert et al., 2000, A&A). Because the CO2 bands on Phoebe and Iapetus dark material have different positions, and because the observed 13C absorption strengths are so different, the surface evolutions must be different. The large enrichment in 13C on Phoebe argues for significant