WorldWideScience

Sample records for rich photon detector

  1. Fast photon detection for the COMPASS RICH detector

    CERN Document Server

    Abbon, P; Alekseev, M; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, Franco; Bressan, A; Busso, L; Chiosso, M; Ciliberti, P; Colantoni, M L; Costa, S; Dalla Torre, S; Dafni, T; Delagnes, E; Deschamps, H; Díaz, V; Dibiase, N; Duic, V; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; Von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K C; Kolosov, V N; Konorov, I; Kramer, Daniel; Kunne, Fabienne; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nahle, O; Nerling, F; Neyret, D; Pagano, P; Panebianco, S; Panzieri, D; Paul, S; Pesaro, G; Polak, J; Rebourgeard, P; Robinet, F; Rocco, E; Schiavon, Paolo; Schroder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2007-01-01

    The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10^6 per second and channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. The upgraded detector showed an excellent performance during the 2006 data taking.

  2. Quantum Efficiency of Hybrid Photon Detectors for the LHCb RICH

    CERN Document Server

    Lambert, R W

    2008-01-01

    The production of Hybrid Photon Detectors to be used as the single-photon sensors for the RICH detectors of the LHCb experiment has recently finished. We present the quantum efficiency measurements of the entire sample of 550 tubes. The manufacturer has succeeded in consistently improving the quantum efficiency of the employed S20-type multi-alkali photocathode above our expectations, by a relative 27 % integrated over the energy spectrum. We also report measurements of the vacuum quality using the photocurrent of the device as a monitor for possible vacuum degradation.

  3. LHCb: Quantum Efficiency of Hybrid Photon Detectors for the LHCb RICH

    CERN Multimedia

    Lambert, Robert W

    2007-01-01

    The production of 550 hybrid photon detectors to be used within the LHCb RICH detectors has recently finished. Photonis-DEP have succeeded in consistently improving the tube quantum efficiency, by a relative 27,% with respect to preseries and prototype tubes, when integrated over the energy spectrum.

  4. Performance study of hybrid photon detectors for the LHCb RICH

    CERN Document Server

    Kanaya, N; Gys, Thierry; Piedigrossi, D; Wyllie, K

    2005-01-01

    The LHCb experiment is designed to study CP violation and rare phenomena of B mesons with very high accuracy. The LHCb RICH detectors are essential for positive kaon identification, and several strict demands are required of its photon detectors to achieve excellent particle identification performance. In particular, they should have good single photon sensitivity for visible and UV wavelengths and large coverage with fine granularity. HPDs have been developed to meet these requirements in collaboration with industry. They have now been chosen as the photon detector for LHCb, and pre-series tubes are under test prior to mass production. At the same time, more detailed studies are on-going to understand more deeply their characteristics. The result of various performance tests of these tubes as well as the fraction of light reflection in the HPD are described in this paper.

  5. Test-beam Results from a RICH Detector Prototype Using Aerogel Radiator and Pixel Hybrid Photon Detectors

    CERN Document Server

    Aglieri-Rinella, G; Van Lysebetten, A; Piedigrossi, D; Wyllie, K; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Somerville, L P; Newby, C; Easo, S; Wotton, S

    2006-01-01

    A test-beam study was performed at CERN with a Ring Imaging Cherenkov (RICH) prototype using three pixel Hybrid Photon Detectors. Results on the photon yield and Cherenkov angle resolution are presented here, for the Aerogel radiator and also for reference runs taken with Nitrogen radiator.

  6. Status of COMPASS RICH-1 Upgrade with MPGD-based Photon Detectors

    Directory of Open Access Journals (Sweden)

    Alexeev M.

    2018-01-01

    Full Text Available A Set of new MPGD-based Photon Detectors is being built for the upgrade of COMPASS RICH-1. The detectors cover a total active area of 1.4 m2 and are based on a hybrid architecture consisting of two THGEM layers and a Micromegas. A CsI film on one THGEM acts as a reflective photocathode. The characteristics of the detector, the production of the components and their validation tests are described in detail.

  7. The novel photon detectors based on MPGD technologies for the upgrade of COMPASS RICH-1

    CERN Document Server

    Tessarotto, F.; Alexeev, M.; Azevedo, C.D.R.; Birsa, R.; Bradamante, F.; Bressan, A.; Chatterjee, C.; Chiosso, M.; Cicuttin, A.; Ciliberti, P.; Crespo, M.L.; Dalla Torre, S.; Dasgupta, S.S.; Denisov, O.; Finger, M.; Finger Jr., M.; Gobbo, B.; Gregori, M.; Hamar, G.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Novy, J.; Panzieri, D.; Pereira, F.A.B.; Santos, C.A.; Sbrizzai, G.; Slunecka, M.; Steiger, K.; Steiger, L.; Sulc, M.; Veloso, J.F.C.A.; Zhao,Y.

    2018-01-01

    The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade in 2016. Four new photon detectors, based on MPGD technology and covering a total active area larger than 1.2~m2 have replaced the previously used MWPC-based photon detectors. The new detector architecture, resulting from a dedicated, eight years long, R\\&D program, consists in a hybrid MPGD combination of two THGEMs and a Micromegas stage; the first THGEM, coated with a CsI layer, acts as a reflective photocathode. The signals are extracted from the anode pads by capacitive coupling and read-out by analog front-end electronics based on the APV25 chip. The new COMPASS RICH-1 photon detectors are described in detail: the detector design, the engineering aspects, the mass production, and the quality assessment are discussed. The assembly of the MPGD components and the installation of the new detectors are illustrated together with the main aspects of the commissioning. Preliminary indication of performance results a...

  8. The LHCb RICH system; detector description and operation

    Energy Technology Data Exchange (ETDEWEB)

    Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk

    2014-12-01

    Two RICH detectors provide positive charged hadron identification in the LHCb experiment at the Large Hadron Collider at CERN. RICH 1 covers the full acceptance of the spectrometer and contains two radiators: aerogel and C{sub 4}F{sub 10}. RICH 2 covers half the acceptance and uses CF{sub 4} as a Cherenkov radiator. Photon detection is performed by the Hybrid Photon Detectors (HPDs), with silicon pixel sensors and bump-bonded readout encapsulated in a vacuum tube for efficient, low-noise single photon detection. The LHCb RICH detectors form a complex system of three radiators, 120 mirrors and 484 photon detectors operating in the very challenging environment of the LHC. The high performance of the system in pion and kaon identification in the momentum range of 2–100 GeV/c is reached only after careful calibration of many parameters. Operational efficiency above 99% was achieved by a high level of automatization in the operation of the detectors, from switching-on to error recovery. The challenges of calibrating and operating such a system will be presented. - Highlights: • This paper describes the operation and calibration of the LHCb RICH detectors. • The scintillation of CF{sub 4} was successfully suppressed with CO{sub 2}. • The refractive index of the gas radiators was calibrated with data to an accuracy better than 0.1%. • The Hybrid Photons Detectors were calibrated for operation in a magnetic field without loss of resolution.

  9. LHCb RICH Upgrade: an overview of the photon detector and electronics system

    CERN Document Server

    Cassina, L

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to $2\\cdot10^{33}$ cm$^{-2}$ s$^{-1}$ with 25 ns bunch spacing are planned, with the goal of collecting 5 fb$^{-1}$ of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using a 8-channels chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides featu...

  10. Characterisation of the Photon Detection System for the LHCb RICH Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2097582; D'Ambrosio, Carmelo; Easo, Sajan

    The LHCb Experiment will be upgraded during Long Shutdown II of the Large Hadron Collider (LHC) in 2019 and 2020. The goal of the upgrade is to efficiently use the increased instantaneous luminosity in LHC Run 3 and to collect data at the proton collision rate of 40 MHz. The Ring Imaging Cherenkov (RICH) particle identification detectors will be upgraded to perform in the new operating conditions with continuing reliability. The photon detection system will be replaced using multi-anode photomultiplier tubes (MaPMTs) and associated read-out electronics. The photon detection chain was studied at CERN using a pulsed laser to test the system under high event rates and high photon intensities. The behaviour of two types of MaPMTs which are foreseen for the upgrade is presented for varying rates and intensities, and different applied bias voltages. A simulation was created to model the photon detection chain using the Geant4 simulation toolkit. The RICH Upgrade test beam using 180 GeV positive hadrons from CERN SP...

  11. Silicon photomultiplier as a detector of Cherenkov photons

    International Nuclear Information System (INIS)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Krizan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-01-01

    A novel photon detector-i.e. the silicon photomultiplier-whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency

  12. LHCb RICH Upgrade: an overview of the photon detector and electronic system

    Science.gov (United States)

    Cassina, L.

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 × 1033 cm-2s-1 with 25 ns bunch spacing are planned, with the goal of collecting 5 fb-1 of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using an 8-channel chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides features useful for testing and debugging. Photosensors and electronics are arranged in basic units, the first prototypes of which have been tested in charged particle beams in autumn 2014. An overview of the CLARO features and of the readout electronics is presented.

  13. Fast photon-detection for COMPASS RICH-1

    CERN Document Server

    Chiosso, Michela; Alexeev, M; Angerer, H; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Ciliberti, P; Colantoni, M L; Dafni, T; Dalla Torre, S; Delagnes, E; Denisov, O; Deschamps, H; Diaz, V; Dibiase, N; Duic, V; Eyrich, W; Ferrero, A; Finger, M; Finger Jr, M; Fisher, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; von Harrac, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K; Kolosov, V N; Konorov, I; Kramer, D; Kunne, F; Lehmann, A; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nähle, O; Neyret, D; Nerling, F; Panebianco, S; Panzieri, D; Paul, S; Pesaro, G; Pizzolotto, C; Polak, J; Rebourgeard, P; Robinet, P; Rocco, E; Schiavon, P; Schill, C; Schoenmaier, W; Schröder, W; Silva, L; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2008-01-01

    A fast photon-detection system for the detector RICH-1 of the COMPASS Experiment at CERN SPS is in operation since the 2006 run. It is based on the use of Multi-Anode Photomultipliers (MAPMTs) coupled to individual fused silica lens telescopes and fast read-out electronics. It has been designed taking into account the high photon flux in the central region of the detector and the high rate requirements of the COMPASS Experiment. We present the photon-detection design and construction, together with its characterization and measured performances based on the data collected in 2006.

  14. LHCB : The upgraded LHCb RICH detector: status and perspectives

    CERN Multimedia

    Cardinale, Roberta

    2015-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and search for New Physics using the enormous flux of beauty and charmed hadrons produced at the Large Hadron Collider (LHC). The two RICH detectors installed in LHCb have performed successfully during the 2010-2012 data taking period. The data from these detectors were essential to most of the physics results published by LHCb. In order to extend its potential for discovery and study of new phenomena it is planned to upgrade the LHCb experiment in 2018 with a 40MHz readout and a much more flexible software-based triggering system. This would increase the readout rate and occupancies for the RICH detectors. The RICH detector will require new photon detectors and modifications of the optics of the upstream RICH detector. Tests of the complete opto-electronic chain have been performed during testbeam sessions in autumn 2014. The status and perspectives of the RICH upgrade project will be presented.

  15. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    NARCIS (Netherlands)

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Denisov, O.; Duic, V.; Ferrero, A.; Finger, M.; Finger, M.; Gayde, J. Ch; Giorgi, M.; Gobbo, B.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Panzieri, D.; Pesaro, G.; Polak, J.; Rocco, E.; Sbrizzai, G.; Schiavon, P.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.

    2014-01-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM)

  16. The CLEO RICH detector

    International Nuclear Information System (INIS)

    Artuso, M.; Ayad, R.; Bukin, K.; Efimov, A.; Boulahouache, C.; Dambasuren, E.; Kopp, S.; Li, Ji; Majumder, G.; Menaa, N.; Mountain, R.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Wang, J.C.; Coan, T.E.; Fadeyev, V.; Maravin, Y.; Volobouev, I.; Ye, J.; Anderson, S.; Kubota, Y.; Smith, A.

    2005-01-01

    We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel 'sawtooth'-shaped exit surface. Photons in the wavelength interval 135-165nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent π/K separation is demonstrated

  17. System tests of the LHCb RICH detectors in a charged particle beam

    CERN Document Server

    Skottowe, Hugh

    2009-01-01

    The RICH detectors of the LHCb experiment will provide efficient particle identification over the momentum range 1-100 GeV=c. Results are presented from a beam test of the LHCb RICH system using final production pixel Hybrid Photon Detectors, the final readout electronics and an adapted version of LHCb RICH reconstruction software. Measurements of the photon yields and Cherenkov angle resolutions for both nitrogen and C4F10 radiators agree well with full simulations. The quality of the data and the results obtained demonstrate that all aspects meet the stringent physics requirements of the experiment are now ready for first data.

  18. Development of an external readout electronics for a hybrid photon detector

    CERN Document Server

    Uyttenhove, Simon; Tichon, Jacques; Garcia, Salvador

    The pixel hybrid photon detectors currently installed in the LHCb Cherenkov system encapsulate readout electronics in the vacuum tube envelope. The LHCb upgrade and the new trigger system will require their replacement with new photon detectors. The baseline photon detector candidate is the multi-anode photomultiplier. A hybrid photon detector with external readout electronics has been proposed as a backup option. This master thesis covers a R & D phase to investigate this latter concept. Extensive studies of the initial electronics system underlined the noise contributions from the Beetle chip used as front-end readout ASIC and from the ceramic carrier of the photon detector. New front-end electronic boards have been developed and made fully compatible with the existing LHCb-RICH infrastructure. With this compact readout system, Cherenkov photons have been successfully detected in a real particle beam environment. The proof-of-concept of a hybrid photon detector with external readout electronics was val...

  19. VHMPID RICH prototype using pressurized C{sub 4}F{sub 8}O radiator gas and VUV photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Acconcia, T.V. [UNICAMP, University of Campinas, Campinas (Brazil); Agócs, A.G. [Wigner RCP of the HAS, Budapest (Hungary); Barile, F. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Barnaföldi, G.G. [Wigner RCP of the HAS, Budapest (Hungary); Bellwied, R. [University of Houston, Houston (United States); Bencédi, G. [Wigner RCP of the HAS, Budapest (Hungary); Bencze, G., E-mail: Gyorgy.Bencze@cern.ch [Wigner RCP of the HAS, Budapest (Hungary); Berényi, D.; Boldizsár, L. [Wigner RCP of the HAS, Budapest (Hungary); Chattopadhyay, S. [Saha Institute, Kolkata (India); Chinellato, D.D. [University of Houston, Houston (United States); Cindolo, F. [University of Salerno, Salerno (Italy); Cossyleon, K. [Chicago State University, Chicago, IL (United States); Das, D.; Das, K.; Das-Bose, L. [Saha Institute, Kolkata (India); Dash, A.K. [UNICAMP, University of Campinas, Campinas (Brazil); D' Ambrosio, S. [University of Salerno, Salerno (Italy); De Cataldo, G. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); De Pasquale, S. [University of Salerno, Salerno (Italy); and others

    2014-12-11

    A small-size prototype of a new Ring Imaging Cherenkov (RICH) detector using for the first time pressurized C4F8O radiator gas and a photon detector consisting of MWPC equipped with a CsI photocathode has been built and tested at the PS accelerator at CERN. It contained all the functional elements of the detector proposed as Very High Momentum Particle Identification (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identification in the momentum range starting from 5 potentially up to 25 GeV/c. In the paper the equipment and its elements are described and some characteristic test results are shown.

  20. The high voltage system for the novel MPGD-based photon detectors of COMPASS RICH-1

    CERN Document Server

    Dalla Torre, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Chatterjee, C.; Ciliberti, P.; Dasgupta, S.; Gobbo, B.; Gregori, M.; Hamar, G.; Levorato, S.; Martin, A.; Menon, G.; Tessarotto, F.; Zhao, Y.

    2018-01-01

    The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1 consists in a large-size hybrid MPGD multilayer layout combining two layers of Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the Thick-GEMs are segmented in order to reduce the energy released in case of occasional discharges, while the MICROMEGAS anode is segmented in pads individually biased at positive voltage, while the micromesh is grounded. In total, there are ten different electrode types and more than 20000 electrodes supplied by more than 100 HV channels. Commercial power supply units are used. The original elements of the power supply system are the architecture of the voltage distribution net, the compensation, by voltage adjustment, of the effects of pressure and temperature variation affecting the detector gain and a sophisticated control software, which allows to protect the detectors against errors by the operator, to monitor and log voltages and current at 1 Hz rate and to automatically react ...

  1. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    International Nuclear Information System (INIS)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T.; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K.

    2000-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of ∼5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is ∼11 with a peaking time of 1.2 μs. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 μm. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized

  2. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T. E-mail: thierry.gys@cern.ch; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K

    2000-03-11

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of {approx}5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is {approx}11 with a peaking time of 1.2 {mu}s. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 {mu}m. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized.

  3. arXiv The Future of RICH Detectors through the Light of the LHCb RICH

    CERN Document Server

    D'Ambrosio, C.; Easo, S.; Petrolini, A.; Ullaland, O.

    2017-12-21

    The limitations in performance of the present RICH system in the LHCb experiment are given by the natural chromatic dispersion of the gaseous Cherenkov radiator, the aberrations of the optical system and the pixel size of the photon detectors. Moreover, the overall PID performance can be affected by high detector occupancy as the pattern recognition becomes more difficult with high particle multiplicities. This paper shows a way to improve performance by systematically addressing each of the previously mentioned limitations. These ideas are applied in the present and future upgrade phases of the LHCb experiment. Although applied to specific circumstances, they are used as a paradigm on what is achievable in the development and realisation of high precision RICH detectors.

  4. Design and R&D of RICH detectors for EIC experiments

    Science.gov (United States)

    Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-12-01

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.

  5. The front-end (Level-0) electronics interface module for the LHCb RICH detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Bibby, J.H. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Brisbane, S. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Gibson, V. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Harnew, N. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Jones, M. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Libby, J. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)]. E-mail: j.libby1@physics.ox.ac.uk; Powell, A. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Newby, C. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Rotolo, N. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Smale, N. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Somerville, L.; Sullivan, P.; Topp-Jorgensen, S. [Sub-department of Particle Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Wotton, S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wyllie, K. [CERN, CH-1211, Geneva 23 (Switzerland)

    2007-03-11

    The front-end (Level-0) electronics interface module for the LHCb Ring Imaging Cherenkov (RICH) detectors is described. This module integrates the novel hybrid photon detectors (HPDs), which instrument the RICH detectors, to the LHCb trigger, data acquisition (DAQ) and control systems. The system operates at 40 MHz with a first-level trigger rate of 1 MHz. The module design is presented and results are given for both laboratory and beam tests.

  6. The front-end (Level-0) electronics interface module for the LHCb RICH detectors

    International Nuclear Information System (INIS)

    Adinolfi, M.; Bibby, J.H.; Brisbane, S.; Gibson, V.; Harnew, N.; Jones, M.; Libby, J.; Powell, A.; Newby, C.; Rotolo, N.; Smale, N.; Somerville, L.; Sullivan, P.; Topp-Jorgensen, S.; Wotton, S.; Wyllie, K.

    2007-01-01

    The front-end (Level-0) electronics interface module for the LHCb Ring Imaging Cherenkov (RICH) detectors is described. This module integrates the novel hybrid photon detectors (HPDs), which instrument the RICH detectors, to the LHCb trigger, data acquisition (DAQ) and control systems. The system operates at 40 MHz with a first-level trigger rate of 1 MHz. The module design is presented and results are given for both laboratory and beam tests

  7. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  8. Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Smale, N J

    2004-01-01

    A readout system for the Ring Imaging CHerenkov (RICH) detectors of the LHCb experiment has been developed. Two detector technologies for the measurement of Cherenkov photons are considered, the Multi-Anode Photo-Multiplier Tube (MAPMT) and the Hybrid Photon Detector (HPD), both of which meet the RICH requirements. The properties of the MAPMT are evaluated using a controlled single-photon source; a pixel-to-pixel gain variation of ~3 and a typical signal to noise of ~20 is measured. The relative tube efficiency is found to be reduced by ~26 % due to the detailed focusing structure of the MAPMT device. A radiation hard application-specific integrated circuit (ASIC) chip, the Beetle1.2MA0, has been developed to capture and store signals from a pair of MAPMTs. The Beetle1.2MA0 is built on the architecture of the Beetle family that was designed for silicon strip detectors, the difference being a modified front-end amplifier. The 128 input-channels of the Beetle1.2MA0 have a charge-sensitive pre-amplifier followed...

  9. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  10. LHCb RICH Upgrade: an overview on the photon detector and the electronics system

    CERN Multimedia

    Cassina, Lorenzo

    2015-01-01

    The LHCb experiment is one of the four detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and the search for new physics in beauty and charm hadrons rare decays. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. Up to now the luminosity has reached up to 4 . $10^{32}$ cm$^{-2}$s$^{-1}$ with 50 ns bunch spacing and 3 fb$^{-1}$ have been collected since 2010. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 . $10^{33}$ cm$^{-2}$s$^{-1}$ with 25 ns bunch spacing are planned, with the goal of collecting 5 fb$^{-1}$ of data per year. In order to avoid degradation of the RICH detectors particle identification performance at such high rate (40 MHz), a detector upgrade is necessary. The present photodetectors (HPDs equipped with encapsulated 1 MHz readout chips) will be replaced with flat panel MaPMTs read out by external chips, designed for this purpose. The 25.4x25.4 m...

  11. The high-voltage system for the LHCb RICH hybrid photon detectors

    International Nuclear Information System (INIS)

    Arnaboldi, C.; Bellunato, T.; De Lucia, A.; Fanchini, E.; Perego, D.L.; Pessina, G.

    2009-01-01

    We describe the characterization of the high-voltage (HV) distribution system designed and produced for the pixel hybrid photon detectors of the ring imaging Cherenkov counters of the LHCb experiment. The HV system consists of a series of printed circuit boards with a specific layout designed to prevent any discharge arising from high electric fields. The system has dedicated monitoring and control features to supervise HV set-up during data taking. The full production of the HV system has been now completed and all the boards have been fully characterized and installed in the detector, which is currently being commissioned.

  12. Thermoelectric single-photon detector

    International Nuclear Information System (INIS)

    Kuzanyan, A A; Petrosyan, V A; Kuzanyan, A S

    2012-01-01

    The ability to detect a single photon is the ultimate level of sensitivity in the measurement of optical radiation. Sensors capable of detecting single photons and determining their energy have many scientific and technological applications. Kondo-enhanced Seebeck effect cryogenic detectors are based on thermoelectric heat-to-voltage conversion and voltage readout. We evaluate the prospects of CeB 6 and (La,Ce)B 6 hexaboride crystals for their application as a sensitive element in this type of detectors. We conclude that such detectors can register a single UV photon, have a fast count rate (up to 45 MHz) and a high spectral resolution of 0.1 eV. We calculate the electric potential generated along the thermoelectric sensor upon registering a UV single photon.

  13. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  14. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  15. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  16. Cesium iodide photon converter performance in a gaseous RICH detector

    CERN Document Server

    Gernhäuser, R; Homolka, J; Kastenmüller, A; Kienle, P; Körner, H J; Maier-Komor, P; Peter, M; Zeitelhack, K

    1999-01-01

    The performance of a 48x48 cm sup 2 multi-wire proportional chamber for VUV photon detection in a RICH setup is reported. The MWPC pad cathode was covered with a solid CsI photo converter layer of 230 mu g/cm sup 2 thickness deposited on a resin-stabilized graphite (RSG) coating. Cherenkov light radiated from cosmic muons was detected in the wavelength region 160 nm95% and a constant long-term stability of the photo cathode were observed.

  17. The recent performance of the Omega RICH detector in experiment WA89 at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U [Mainz Univ. (Germany). Inst. fuer Kernphysik; [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Beusch, W [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Boss, M [Heidelberg Univ. (Germany). Physikalisches Inst.; Engelfried, J [Heidelberg Univ. (Germany). Physikalisches Inst.; Gerassimov, S G [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Klempt, W [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Lennert, P [Heidelberg Univ. (Germany). Physikalisches Inst.; Martens, K [Heidelberg Univ. (Germany). Physikalisches Inst.; Newbold, D [Department of Physics, Univ., Bristol (United Kingdom); Rieseberg, H [Heidelberg Univ. (Germany). Physikalisches Inst.; Siebert, H W [Heidelberg Univ. (Germany). Physikalisches Inst.; Smith, V J [Department of Physics, Univ., Bristol (United Kingdom); Thilmann, O [Heidelberg Univ. (Germany). Physikalisches Inst.; Waelder, G [Heidelberg Univ. (Germany). Physikalisches Inst.

    1996-03-01

    The hyperon beam experiment WA89 at CERN uses the upgraded Omega RICH detector for identification of {pi}, K and p/p from {Sigma}{sup -}-N reactions. Cherenkov photons from a 5 m long nitrogen radiator are detected in drift chambers with TMAE-loaded ethane. Recent results on the performance of the detector are presented. (orig.).

  18. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  19. Future high energy physics experiments using RICH detectors: The next generation

    International Nuclear Information System (INIS)

    Ratcliff, B.N.

    1995-08-01

    This report describes some features of the new detectors now being constructed for use in high energy physics experiments that utilize RICH counters as a central element. The scope of this discussion is limited only to experiments which have been formally approved for construction as follows: (1) BaBar at PEP-II, which contains a quartz radiator DIRC counter; (2) CLEO III at the CESR upgrade, which utilizes a LiF/TEA Fast RICH; and (3) HERA-B at HERA, which uses a gas radiator RICH with either a TMAE- or a CsI-based photon detector. These experiments have much in common; all emphasize B-physics, run at the luminosity frontier, and plan to take first data either in 1998 or 1999. This review begins with a discussion of the physics goals and experimental context, and then explore the designs which have been chosen to confront the experimental issues. Particular emphasis is placed on the design and expected performance of the RICH detectors in these systems. Due to space limitations, only a few of the recent R and D results not covered elsewhere at the conference can be presented

  20. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, M. [INFN, Sezione di Torino and University of East Piemonte, Alessandria (Italy); INFN, Sezione di Trieste and University of Bari, Bari (Italy); Birsa, R. [INFN, Sezione di Trieste, Trieste (Italy); Bradamante, F.; Bressan, A. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Chiosso, M. [INFN, Sezione di Torino and University of Torino, Torino (Italy); Ciliberti, P. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Dalla Torre, S. [INFN, Sezione di Trieste, Trieste (Italy); Denisov, O. [INFN, Sezione di Torino, Torino (Italy); Duic, V. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Ferrero, A. [INFN, Sezione di Torino and University of Torino, Torino (Italy); Finger, M.; Finger, M. [Charles University, Prague (Czech Republic); JINR, Dubna (Russian Federation); Gayde, J.Ch. [CERN, European Organization for Nuclear Research, Geneva (Switzerland); Giorgi, M. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Gobbo, B.; Levorato, S. [INFN, Sezione di Trieste, Trieste (Italy); Maggiora, A. [INFN, Sezione di Torino, Torino (Italy); Martin, A. [INFN, Sezione di Trieste and University of Trieste, Trieste (Italy); Menon, G. [INFN, Sezione di Trieste, Trieste (Italy); Panzieri, D. [INFN, Sezione di Torino and University of East Piemonte, Alessandria (Italy); and others

    2014-12-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM) photogrammetry-based method has been implemented to measure the alignment of individual mirrors which can be characterized by the center of curvature. The mirror wall reflects a regular grid of retroreflective strips placed inside the detector vessel. Then, the position of each mirror is determined from the image of the grid reflection. The images are collected by four cameras. Any small mirror misalignment results in changes of the grid lines’ positions in the image. The accuracy limits of the CLAM method were checked by laser interferometry and are below 0.1 mrad.

  1. The HERMES dual-radiator RICH detector

    CERN Document Server

    Jackson, H E

    2003-01-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring recon...

  2. Wavelength shifting films on multianode PMTs with UV-extended window for the CBM RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M., E-mail: Michael.Duerr@ap.physik.uni-giessen.de [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J., E-mail: Jan.Kopfer@uni-wuppertal.de [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S.; Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    Electron identification in the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) will be performed using a gaseous RICH detector. Due to the UV transparency of the CO{sub 2} radiator, a high photon detection efficiency of the PMTs in use at small wavelengths is favourable. The use of wavelength shifting (WLS) films aims at increasing the integral quantum efficiency of the photon sensors. WLS films absorb UV photons and re-emit photons at longer wavelengths where the quantum efficiency of common photocathodes is higher. As photon sensors, multianode PMTs (MAPMTs) with bialkali or superbialkali photocathodes and UV-extended windows are envisaged. We present quantum efficiency measurements with and without WLS coating for different types of MAPMTs as well as results from a beam test at the CERN PS. An increased photon yield was observed when using WLS films. In addition, we discuss the effect of WLS films on the spatial resolution of MAPMTs. - Highlights: • Wavelength shifting (WLS) films were applied on MAPMTs with UV-window. • WLS films considerably enhance MAPMT quantum efficiency in the UV range. • In-beam tests with a RICH detector show an enhanced total photon yield by approx. 20%. • Yield enhancement depends on the MAPMT window and photocathode materials. • No significant effect of WLS films on ring sharpness was detected.

  3. Particle Identification with the Cherenkov imaging technique using MPGD based Photon Detectors for Physics at COMPASS Experiment at CERN

    CERN Document Server

    AUTHOR|(CDS)2070220; Martin, Anna

    A novel technology for the detection of single photons has been developed and implemented in 2016 in the Ring Imaging Cherenkov (RICH) detector of the COMPASS Experiment at CERN SPS. Some basic knowledge in the field of particle identification and RICH counters, Micro Pattern Gaseous Detectors (MPGDs) in general and their development for photon detection applications are provided. The characteristics of the COMPASS setup are summarized and the COMPAS RICH-1 detector is described and shown to provide hadron identification in the momentum range between 3 and 55 GeV/c. The THGEM technology is discussed illustrating their characterization as gas multipliers and as reflective photocathodes: large gains and efficient photodetection collections are achieved when using optimized parameters and conditions (hole diameter = THGEM thickness = 0.4 mm; hole pitch = 0.8 mm and no rim; CH4-rich gas mixtures and electric field values > 1 kV/cm at the CsI surface). The intense R\\&D program leading to the choice of a hybrid...

  4. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  5. Micro-channel plate photon detector studies for the TORCH detector

    Energy Technology Data Exchange (ETDEWEB)

    Castillo García, L., E-mail: lucia.castillo.garcia@cern.ch [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Brook, N.; Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Forty, R.; Frei, C. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Gao, R. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Gys, T. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Harnew, N. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Piedigrossi, D. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Van Dijk, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2015-07-01

    The Time Of internally Reflected Cherenkov light (TORCH) detector is under development. Charged particle tracks passing through a 1 cm plate of quartz will generate the Cherenkov photons, and their arrival will be timed by an array of micro-channel plate photon detectors. As part of the TORCH R&D studies, commercial and custom-made micro-channel plate detectors are being characterized. The final photon detectors for this application are being produced in a three-phase program in collaboration with industry. Custom-made single-channel devices with extended lifetime have been manufactured and their performance is being systematically investigated in the laboratory. Optical studies for the preparation of beam and laboratory tests of a TORCH prototype are also underway.

  6. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  7. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  8. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  9. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  10. Development of large area CsI photocathodes for the Alice/Humped Rich detector

    International Nuclear Information System (INIS)

    Hoedlmoser, H.

    2005-03-01

    The work carried out within the framework of this PhD deals with the measurement of the photoelectric properties of large area thin film cesium iodide photocathodes (PCs) which are to be used as a photon converter in a proximity focusing RICH detector for High Momentum Particle Identification (HMPID) in the ALICE experiment at the LHC. The objective was to commission a VUV-scanner setup for in-situ measurements of the photoelectric response of the CsI PCs and the use of this system to investigate the properties of these photon detectors. Among the investigated phenomena the most important ones were: - Post deposition treatment: from R and D studies it was known, that the PC response can be increased by heating the PC after the coating process. Within this thesis it was shown that the enhancement effect is mandatory to achieve the photon conversion efficiency required by the detector design and that any difference in PC quality is due to differences in this enhancement effect. - Ageing effects: CsI PCs age under exposure to humidity due to the hygroscopicity of CsI and under high photon flux and ion bombardment inside the Multi Wire Proportional Chamber (MWPC) of the detector. All three effects have been investigated with the VUV scanner. The first effect requires a careful treatment of the CsI PCs to avoid exposure to humid air. Furthermore this effect was found to be reversible if the PC is heated. High photon fluxes are irrelevant in a Cherenkov detector dealing with single photons, however, the problem needed to be investigated to verify that the measurement process itself does not damage the PCs. The third mechanism is very important as it occurs during normal detector operation and depends only on the radiation environment of the experiment. For a dose corresponding to 20 years of operation inside ALICE an accelerated test showed a clear degradation of up to 40 % of the PC response. With the results of these studies the first 17 PCs (of 42) for the detector

  11. Quality Assurance of Pixel Hybrid Photon Detectors for the LHCb Ring Imaging Cherenkov Counters

    CERN Document Server

    Carson, Laurence

    Pion/kaon discrimination in the LHCb experiment will be provided by two Ring Imaging Cherenkov (RICH) counters. These use arrays of 484 Hybrid Photon Detectors (HPDs) to detect the Cherenkov photons emitted by charged particles traversing the RICH. The results from comprehensive quality assurance tests on the 550 HPDs manufactured for LHCb are described. Leakage currents, dead channel probabilities, dark count rates and ion feedback rates are reported. Furthermore, measurements carried out on a sample of tubes to determine the efficiency of the HPD pixel chip by measuring the summed analogue response from the backplane of the silicon sensor are described.

  12. Photon detector for MEGA

    International Nuclear Information System (INIS)

    Gagliardi, C.A.; Tribble, R.E.

    1991-01-01

    During the past year, we have continued work on the photon detector for the MEGA experiment at Los Alamos, a search for the rare decay μ → eγ to a sensitivity of a few parts in 10 13 . The MEGA photon detector is designed to observe the 52.38 MeV photon produced in a μ → eγ decay with an energy resolution of 1.25 MeV, a position resolution of 2 x 5 mm 2 , a directional resolution of 10 degrees, a time resolution of 500 ps, and an efficiency of 7%. It will consists of four independent concentric cylindrical pair spectrometers mounted within a 1.5 T magnetic field produced by a superconducting solenoid magnet. Each pair spectrometer includes two thin Pb foils to convert photons into e + e - pairs, and thereby, determine both their locations and their vector momenta. The inner drift chamber layer includes a delay line cathode to determine the z coordinates needed for track reconstruction. An MWPC located between two Pb layers identifies the conversion layer so that energy loss corrections may be applied, while plastic scintillators provide timing information. Our, group together with a group from the University of Houston, is responsible for the design and construction of the photon detector, as well as developing the computer codes necessary for Monte Carlo simulations and data analysis. During the past year, our efforts have focused primarily on two tasks, delay line cathode read-out and software development. This report describes our recent work on delay lines and data analysis along with a discussion of the new plans for multiplexing in the photon arm

  13. The HADES-RICH upgrade using Hamamatsu H12700 MAPMTs with DiRICH FEE + Readout

    Science.gov (United States)

    Patel, V.; Traxler, M.

    2018-03-01

    The High Acceptance Di-Electron Spectrometer (HADES) is operational since the year 2000 and uses a hadron blind RICH detector for electron identification. The RICH photon detector is currently replaced by Hamamatsu H12700 MAPMTs with a readout system based on the DiRICH front-end module. The electronic readout chain is being developed as a joint effort of the HADES-, CBM- and PANDA collaborations and will also be used in the photon detectors for the upcoming Compressed Baryonic Matter (CBM) and PANDA experiments at FAIR . This article gives a brief overview on the photomultipliers and their quality assurance test measurements, as well as first measurements of the new DiRICH front-end module in final configurations.

  14. Tutorial on X-ray photon counting detector characterization.

    Science.gov (United States)

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  15. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    International Nuclear Information System (INIS)

    Klein-Boesing, Melanie

    2009-01-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm 2 . The TRD layout and the detector responses

  16. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Boesing, Melanie

    2009-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm{sup 2}. The TRD layout and the detector

  17. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  18. INDIA: Photon multiplicity detector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-01-15

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to 25 mm

  19. CeB6 Sensor for Thermoelectric Single-Photon Detector

    Directory of Open Access Journals (Sweden)

    Armen KUZANIAN

    2015-08-01

    Full Text Available Interest in single-photon detectors has recently sharply increased. The most developed single-photon detectors are currently based on superconductors. Following the theory, thermoelectric single-photon detectors can compete with superconducting detectors. The operational principle of thermoelectric detector is based on photon absorption by absorber as a result of which a temperature gradient is generated across the sensor. In this work we present the results of computer modeling of heat distribution processes after absorption of a photon of 1 keV - 1 eV energy in different areas of the absorber for different geometries of tungsten absorber and cerium hexaboride sensor. The time dependence of the temperature difference between the ends of the thermoelectric sensor and electric potential appearing across the sensor are calculated. The results of calculations show that it is realistic to detect single photons from IR to X-ray and determine their energy. Count rates up to hundreds gigahertz can be achieved.

  20. Possibility of producing the event-ready two-photon polarization entangled state with normal photon detectors

    International Nuclear Information System (INIS)

    Wang Xiangbin

    2003-01-01

    We propose a scheme to produce the maximally two-photon polarization entangled state with single-photon sources and the passive linear optics devices. In particular, our scheme only requires the normal photon detectors which distinguish the vacuum and non-vacuum Fock number states. A sophisticated photon detector distinguishing between one-photon state and two-photon state is unnecessary in the scheme

  1. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  2. New Generation of Superconducting Nanowire Single-Photon Detectors

    Directory of Open Access Journals (Sweden)

    Goltsman G.N.

    2015-01-01

    Full Text Available We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  3. Development of Large Area CsI Photocathodes for the ALICE/HMPID RICH Detector

    CERN Document Server

    Hoedlmoser, H; Schyns, E

    2005-01-01

    The work carried out within the framework of this PhD deals with the measurement of the photoelectric properties of large area thin film Cesium Iodide (CsI) photocathodes (PCs) which are to be used as a photon converter in a proximity focusing RICH detector for High Momentum Particle Identification (HMPID) in the ALICE experiment at the LHC. The objective was to commission a VUV-scanner setup for in-situ measurements of the photoelectric response of the CsI PCs immediately after the thin film coating process and the use of this system to investigate the properties of these photon detectors. Prior to this work and prior to the finalization of the ALICE/HMPID detector design, R&D work investigating the properties of CsI PCs had been performed at CERN and at other laboratories in order to determine possible substrates and optimized thin film coating procedures. These R&D studies were usually carried out with small samples on different substrates and with various procedures with sometimes ambiguous result...

  4. LHCb: Characterisation and magnetic field properties of Multianode Photomultiplier tubes for the use in LHCb Upgrade RICH detectors

    CERN Multimedia

    Eisenhardt, S; Morris, A; Needham, M; Neill, J

    2013-01-01

    A key feature of the LHCb upgrade, scheduled for 2019, is to remove the first level trigger and its data reduction from 40MHz to 1MHz, which is implemented in the on-detector readout electronics. The consequence for the LHCb Ring Imaging Cherenkov (RICH) detectors is that the Hybrid Photon Detectors need to be replaced as the readout chip is embedded in the tubes. Baseline for replacement are Multianode Photomultiplier tubes (MaPMT) and new readout electronics. Here we report about characterisation studies of the model Hamamatsu R11265 in the effort to qualify them for use in the LHCb RICH upgrade. Comparisons to the known model R7600 are also made. Two types of readout electronics are used. Most measurements to characterise the properties of the MaPMTs are taken with a VME based reference readout, using a x100 linear amplification and the CAEN V792 12-bit charge integrating digitiser. This allows to derive the signal properties from fits to the single photon spectra. In addition a prototype readout using the...

  5. The read-out electronics of the AMS prototype RICH detector

    International Nuclear Information System (INIS)

    Gallin-Martel, L.; Eraud, L.; Pouxe, J.; Aguayo de Hoyos, P.; Marin Munoz, J.; Martinez Botella, G.

    2003-01-01

    A Ring Imaging Cherenkov (RICH) counter dedicated to the AMS experiment is under development. An integrated circuit has been designed with the Austriamicrosystems 0.6 πm CMOS technology to process the signals of the 16 anode PMTs used in the photon detection. To improve the detector compactness, the read out electronics is placed very close to the PMTs. This lead to the design of a detection cell that comprises: a light guide, a PMT, a high voltage divider, an analog front end chip and an analog to digital converter. The analog front-end chips were extensively and successfully tested in a laboratory environment, 96 of them are now mounted on the RICH prototype. Tests with cosmic rays have started. Ion beam tests are planed in a near future. (authors)

  6. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    CERN Document Server

    Bergström, D; Carlson, P J; Francke, T; Grinstein, S; Weber, N; Suffert, Martin; Hof, M; Kremer, J; Menn, W; Simon, M; Stephens, S A; Ambriola, M; Bellotti, R; Cafagna, F; Castellano, M G; Ciacio, F; Circella, M; De Marzo, C; Finetti, N; Papini, P; Piccardi, S; Spillantini, P; Bartalucci, S; Ricci, M; Bidoli, V; Casolino, M; De Pascale, M P; Morselli, A; Picozza, P; Sparvoli, R; Barbiellini, Guido; Schiavon, R P; Vacchi, A; Zampa, N; Mitchell, J W; Ormes, J F; Streitmatter, R E; Bravar, U; Stochaj, S J

    2001-01-01

    A RICH counter using a gas radiator of C/sub 4/F/sub 10/ and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read our using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For beta approximately=1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a beta approximately=1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever u...

  7. Performance in space of the AMS-02 RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Giovacchini, F., E-mail: francesca.giovacchini@cern.ch

    2014-12-01

    AMS-02 was successfully installed on the International Space Station (ISS) in May 2011, to perform precise measurements of galactic cosmic rays in the 100 MV to few TV magnetic rigidity range. Among several specialized sub-detectors, AMS-02 includes a Ring Imaging Cherenkov detector (RICH), which provides a precise measurement of the particle charge and velocity. The Cherenkov light is produced in a radiator made of silica aerogel and sodium fluoride and collected by means of an array of photomultiplier tubes. Since its launch to space, the detector has been taking data without failures; its functionality and data integrity are monitored and show stable response. In order to achieve the optimal detector performance, calibrations have been performed to account for the dependence of the photodetectors response on temperature and for effective non-uniformities in the detector. The knowledge gathered of the photon yield at the percent level resulted in a charge resolution of 0.3 charge units for He and 0.5 charge units for Si ions. The required precision in the measurements of the particle velocity at the per mil level demanded a more accurate determination of the aerogel refractive index. A map of the aerogel radiator refractive index has been directly inferred from in-flight high statistics data with a precision of Δn/n<2×10{sup −5} on average and its stability with time has also been checked. Finally, a velocity resolution of ∼0.8×10{sup −3} for He and ∼0.5×10{sup −3} for Z>5 ions has been obtained. - Highlights: • AMS-02 RICH detector is fully operational in space and monitored from ground. • Detector calibration for t-dependent and t-independent effects is performed. • Aerogel refractive index fine map has been obtained and its stability checked. • Charge and velocity resolution fulfill design requirements.

  8. Superconducting detectors for semiconductor quantum photonics

    International Nuclear Information System (INIS)

    Reithmaier, Guenther M.

    2015-01-01

    In this thesis we present the first successful on-chip detection of quantum light, thereby demonstrating the monolithic integration of superconducting single photon detectors with individually addressable semiconductor quantum dots in a prototypical quantum photonic circuit. Therefore, we optimized both the deposition of high quality superconducting NbN thin films on GaAs substrates and the fabrication of superconducting detectors and successfully integrated these novel devices with GaAs/AlGaAs ridge waveguides loaded with self-assembled InGaAs quantum dots.

  9. The STAR Photon Multiplicity Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, M.M.; Badyal, S.K.; Bhaskar, P.; Bhatia, V.S.; Chattopadhyay, S. E-mail: sub@veccal.ernet.in; Das, S.; Datta, R.; Dubey, A.K.; Dutta Majumdar, M.R.; Ganti, M.S.; Ghosh, P.; Gupta, A.; Gupta, M.; Gupta, R.; Kaur, I.; Kumar, A.; Mahajan, S.; Mahapatra, D.P.; Mangotra, L.K.; Mishra, D.; Mohanty, B.; Nayak, S.K.; Nayak, T.K.; Pal, S.K.; Phatak, S.C.; Potukuchi, B.V.K.S.; Raniwala, R.; Raniwala, S.; Sahoo, R.; Sharma, A.; Singaraju, R.N.; Sood, G.; Trivedi, M.D.; Varma, R.; Viyogi, Y.P

    2003-03-01

    Details concerning the design, fabrication and performance of STAR Photon Multiplicity Detector (PMD) are presented. The PMD will cover the forward region, within the pseudorapidity range 2.3-3.5, behind the forward time projection chamber. It will measure the spatial distribution of photons in order to study collective flow, fluctuation and chiral symmetry restoration.

  10. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  11. Cherenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    CERN Document Server

    Barão, F; Borges, J; Gonçalves, P; Pimenta, M; Pérez, I

    2003-01-01

    The Alpha Magnetic Spectrometer experiment to be installed on the International Space Station will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH are discussed. A Likelihood method for the Cherenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.

  12. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    International Nuclear Information System (INIS)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun

    2008-01-01

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS

  13. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS.

  14. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...... of the responsivity (2–3 A/W in the 1–3 THz-frequency band) range up to several percents of the quantum efficiency e/[h-bar] omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than...

  15. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy

    International Nuclear Information System (INIS)

    Irazola, L.; Terrón, J.A.; Bedogni, R; Pola, A.; Lorenzoli, M.; Sánchez-Nieto, B.; Gómez, F.; Sánchez-Doblado, F.

    2016-01-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. - Highlights: • Neutron-to-photon discrimination of a thermal neutron detector used in radiotherapy. • Photon and anisotropic response study with distance and beam incidence of thermal neutron detector. • Borated rubber for estimating photon contribution in any thermal neutron detector.

  16. The CBM RICH project

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Akishin, P. [Laboratory of Information Technologies, Joint Institute for Nuclear research (JINR-LIT), Dubna (Russian Federation); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42097 Wuppertal (Germany); Belogurov, S. [SSC RF ITEP, 117218 Moscow (Russian Federation); Bendarouach, J. [Institute of Physics II and Institute of Applied Physics, Justus Liebig University Giessen, D-35392 Giessen (Germany); Boldyreva, N. [National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Chernogorov, A. [SSC RF ITEP, 117218 Moscow (Russian Federation); Deveaux, C. [Institute of Physics II and Institute of Applied Physics, Justus Liebig University Giessen, D-35392 Giessen (Germany); Dobyrn, V. [National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Dürr, M. [Institute of Physics II and Institute of Applied Physics, Justus Liebig University Giessen, D-35392 Giessen (Germany); Eschke, J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Förtsch, J. [Department of Physics, University of Wuppertal, D-42097 Wuppertal (Germany); Heep, J.; Höhne, C. [Institute of Physics II and Institute of Applied Physics, Justus Liebig University Giessen, D-35392 Giessen (Germany); Kampert, K.-H. [Department of Physics, University of Wuppertal, D-42097 Wuppertal (Germany); and others

    2017-02-11

    The CBM RICH detector is an integral component of the future CBM experiment at FAIR, providing efficient electron identification and pion suppression necessary for the measurement of rare dileptonic probes in heavy ion collisions. The RICH design is based on CO{sub 2} gas as radiator, a segmented spherical glass focussing mirror with Al+MgF{sub 2} reflective coating, and Multianode Photomultipliers for efficient Cherenkov photon detection. Hamamatsu H12700 MAPMTs have recently been selected as photon sensors, following an extensive sensor evaluation, including irradiation tests to ensure sufficient radiation hardness of the MAPMTs. A brief overview of the detector design and concept is given, results on the radiation hardness of the photon sensors are shown, and the development of a FPGA-TDC based readout chain is discussed.

  17. Fast Photon Detection for COMPASS RICH1

    CERN Document Server

    Abbon, P; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Busso, L; Chiosso, M; Ciliberti, P; Colantoni, M L; Costa, S; Dibiase, N; Dafni, T; Dalla Torre, S; Diaz, V; Duic, v; Delagnes, E; Deschamps, H; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; Von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K; Kolosov, V N; Konorov, I; Kramer, D; Kunne, F; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Menon, G; Mutter, A; Nähle, O; Neyret, D; Nerling, F; Pagano, P; Paul, S; Panebianco, S; Panzieri, D; Pesaro, G; Pizzolotto, C; Polak, J; Rebourgeard, P; Rocco, E; Robinet, F; Schiavon, P; Schill, C; Schoenmeier, P; Silva, L; Slunecka, M; Steiger, L; Sozzi, F; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2006-01-01

    The new photon detection system for COMPASS RICH-1 has been designed to cope with the demanding requests of operation at high beam intensity and at high trigger rates. The detection technique in the central region of RICH-1 has been changed with a system based on multianode photomultipliers coupled to individual fused silica lens telescopes and to a fast, almost dead time free readout system based on the MAD-4 amplifier-discriminator and the F1 TDC-chip. The new photon detection system design and construction are described, as well as its first response in the experiment.

  18. Musculoskeletal imaging with a prototype photon-counting detector.

    Science.gov (United States)

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  19. Photon radiation damage simulations in CZT semiconducting detectors

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Cruz, C.; Abreu, Y.; Dona, O.; Diaz, A.

    2009-01-01

    The use of semiconducting devices based on CZT as X and gamma rays detectors has been extended notably in the last decade thanks to their numerous advantages. The medical imagenology is one of the fields where these detectors have been successfully introduced, for example in positron emission tomography (PET). A typical CZT detector employed PET application was studied applying the Monte Carlo statistical method. All structural and geometric characteristics of the detector as well as the different photon energies usually used in the mentioned applications were considered in the simulations. Taking into account the Oen-Cahn-Holmes classical approach, the effective atomic displacement cross-sections and the number of displacements per atoms were calculated for all atom species and considered photon energies

  20. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    International Nuclear Information System (INIS)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.

    2014-01-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures

  1. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it [INFN Sezione di Ferrara and University of Ferrara (Italy); Baltzell, N. [Argonne National Laboratory, IL (United States); Benmokhtar, F. [Christopher Newport University, VA (United States); Duquesne University, PA (United States); Barion, L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Cisbani, E. [INFN Sezione di Roma – Gruppo Collega to Sanità (Italy); Italian National Institute of Health (Italy); El Alaoui, A. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Argonne National Laboratory, IL (United States); Hafidi, K. [Argonne National Laboratory, IL (United States); Hoek, M. [Glasgow University (United Kingdom); J. Gutenberg Universität, Mainz (Germany); Kubarovsky, V. [Thomas Jefferson National Laboratory, VA (United States); Lagamba, L. [INFN Sezione di Bari, University of Bari (Italy); Lucherini, V. [INFN Laboratori Nazionali di Frascati (Italy); Malaguti, R. [INFN Sezione di Ferrara and University of Ferrara (Italy); Mirazita, M. [INFN Laboratori Nazionali di Frascati (Italy); Montgomery, R. [Glasgow University (United Kingdom); INFN Laboratori Nazionali di Frascati (Italy); Movsisyan, A. [INFN Sezione di Ferrara and University of Ferrara (Italy); Musico, P. [INFN Sezione di Genova (Italy); Orecchini, D.; Orlandi, A. [INFN Laboratori Nazionali di Frascati (Italy); Pappalardo, L.L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Pereira, S. [INFN Laboratori Nazionali di Frascati (Italy); and others

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures.

  2. Cross Talk Study to the Single Photon Response of a Flat Panel PMT for the RICH Upgrade at LHCb

    CERN Multimedia

    Arnaboldi, C; Calvi, M; Fanchini, E; Gotti, C; Maino, M; Matteuzzi, C; Perego, D L; Pessina, G; Wang, J C

    2009-01-01

    The Ring Imaging CHerenkov, RICH, detector at LHCb is now readout by Hybrid Photon Detectors. In view of its upgrade a possible option is the adoption of the flat panel Photon Multipliers Tubes, PMT. An important issue for the good determination of the rings produced in the sensitive media is a negligible level of cross talk. We have experimentally studied the cross talk from the 64x64 pixels of the H9500 PMT from Hamamatsu. Results have shown that at the single photon signal level, as expected at LHCb, the statistics applied to the small number of electrons generated at the first dynode of the PMT chain leads to a cross talk mechanism that must be interpreted in term of the percentage of the number of induced signals rather than on the amplitude of the induced signals. The threshold to suppress cross talk must be increased to a significant fraction of the single photon signal for the worst case. The number of electrons generated at the first dynode is proportional to the biasing voltage. Measurements have sh...

  3. Photon response of silicon diode neutron detectors

    International Nuclear Information System (INIS)

    McCall, R.C.; Jenkins, T.M.; Oliver, G.D. Jr.

    1976-07-01

    The photon response of silicon diode neutron detectors was studied to solve the problem on detecting neutrons in the presence of high energy photons at accelerator neutron sources. For the experiment Si diodes, Si discs, and moderated activation foil detectors were used. The moderated activation foil detector consisted of a commercial moderator and indium foils 2'' in diameter and approximately 2.7 grams each. The moderator is a cylinder of low-density polyethylene 6 1 / 4 '' in diameter by 6 1 / 16 '' long covered with 0.020'' of cadmium. Neutrons are detected by the reaction 115 In (n,γ) 116 In(T/sub 1 / 2 / = 54 min). Photons cannot be detected directly but photoneutrons produced in the moderator assembly can cause a photon response. The Si discs were thin slices of single-crystal Si about 1.4 mils thick and 1'' in diameter which were used as activation detectors, subsequently being counted on a thin-window pancake G.M. counter. The Si diode fast neutron dosimeter 5422, manufactured by AB Atomenergi in Studsvik, Sweden, consists of a superdoped silicon wafer with a base width of 0.050 inches between two silver contacts coated with 2 mm of epoxy. For this experiment, the technique of measuring the percent change of voltage versus dose was used. Good precision was obtained using both unirradiated and preirradiated diodes. All diodes, calibrated against 252 CF in air,were read out 48 hours after irradiation to account for any room temperature annealing. Results are presented and discussed

  4. Detector Motion Method to Increase Spatial Resolution in Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)

    2017-03-15

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photoncounting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former's high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55-μm-pixel image was achieved by application of the proposed method to a 110-μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  5. THGEM based photon detector for Cherenkov imaging applications

    CERN Document Server

    Alexeev, M; Bradamante, F; Bressan, A; Chiosso, M; Ciliberti, P; Croci, G; Colantoni, M L; Dalla Torre, S; Duarte Pinto, S; Denisov, O; Diaz, V; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Giacomini, G; Giorgi, M; Gobbo, B; Heinsius, F H; Herrmann, F; Jahodova, V; Königsmann, K; Lauser, L; Levorato, S; Maggiora, A; Martin, A; Menon, G; Nerling, F; Panzieri, D; Pesaro, G; Polak, J; Rocco, E; Ropelewski, L; Sauli, F; Sbrizzai, G; Schiavon, P; Schill, C; Schopferer, S; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Takekawa, S; Tessarotto, F; Wollny, H

    2010-01-01

    We are developing a single photon detector for Cherenkov imaging counters. This detector is based on the use of THGEM electron multipliers in a multilayer design. The major goals of our project are ion feedback suppression down to a few per cent, large gain, fast response, insensitivity to magnetic fields, and a large detector size. We report about the project status and perspectives. In particular, we present a systematic study of the THGEM response as a function of geometrical parameters, production techniques and the gas mixture composition. The first figures obtained from measuring the response of a CsI coated THGEM to single photons are presented.

  6. CERN-built prototype RICH detector back from the USA

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In summer 1999, a ring-imaging Cherenkov detector (RICH) developed, constructed and tested at CERN was dismantled and sent to the Brookhaven National Laboratory (BNL) where it was used to extend the particle identification range of the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The RICH was a prototype of part of the ALICE-HMPID detector. Here we see members of the STAR-RICH team from ALICE-HMPID group with the detector, still in its shipping crates, back from BNL. L. to r.: A.Braem, E. Schyns, D. Fraissard, C. David, A. Di Mauro, J. van Beelen, G. Paic, Y. Lesenechal, F. Piuz, P. Martinengo, D. Di Bari, G. De Cataldo, Y. Andres, M. Davenport, V. Barozier, E. Nappi, T. D. Williams.

  7. Direct photon-counting scintillation detector readout using an SSPM

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk

  8. The STAR-RICH Detector

    CERN Document Server

    Lasiuk, B; Braem, André; Cozza, D; Davenport, M; De Cataldo, G; Dell'Olio, L; Di Bari, D; Di Mauro, A; Dunlop, J C; Finch, E; Fraissard, Daniel; Franco, A; Gans, J; Ghidini, B; Harris, J W; Horsley, M; Kunde, G J; Lasiuk, B; Lesenechal, Y; Majka, R D; Martinengo, P; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Salur, S; Sandweiss, J; Santiard, Jean-Claude; Satinover, J; Schyns, E M; Smirnov, N; Van Beelen, J; Williams, T D; Xu, Z

    2002-01-01

    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  9. Superconducting nanowire single-photon detectors (SNSPDs) on SOI for near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Trojan, Philipp; Il' in, Konstantin; Henrich, Dagmar; Hofherr, Matthias; Doerner, Steffen; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT) (Germany); Semenov, Alexey [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Huebers, Heinz-Wilhelm [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany)

    2013-07-01

    Superconducting nanowire single-photon detectors are promising devices for photon detectors with high count rates, low dark count rates and low dead times. At wavelengths beyond the visible range, the detection efficiency of today's SNSPDs drops significantly. Moreover, the low absorption in ultra-thin detector films is a limiting factor over the entire spectral range. Solving this problem requires approaches for an enhancement of the absorption range in feeding the light to the detector element. A possibility to obtain a better absorption is the use of multilayer substrate materials for photonic waveguide structures. We present results on development of superconducting nanowire single-photon detectors made from niobium nitride on silicon-on-insulator (SOI) multilayer substrates. Optical and superconducting properties of SNSPDs on SOI will be discussed and compared with the characteristics of detectors on common substrates.

  10. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector

    International Nuclear Information System (INIS)

    Korn, A.

    2007-01-01

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  11. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

    Energy Technology Data Exchange (ETDEWEB)

    Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice; Tomlin, Nathan A.; Fox, Anna E.; Linares, Antia Lamas; Mirin, Richard P.; Nam, Sae Woo [National Institute of Standards and Technology, Boulder, Colorado, 80305 (United States); Thomas-Peter, Nicholas; Metcalf, Benjamin J.; Spring, Justin B.; Langford, Nathan K.; Walmsley, Ian A. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Gates, James C.; Smith, Peter G. R. [Optoelectronics Research Centre, University of Southampton, Highfield SO17 1BJ (United Kingdom)

    2011-12-15

    Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of the detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.

  12. Optimization of a photon rejecter to separate electronic noise in a photon-counting detector

    International Nuclear Information System (INIS)

    Cho, Hyo-Min; Choi, Yu-Na; Lee, Seung-Wan; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2012-01-01

    Photon-counting-based X-ray imaging technology provides the capability to count individual photons and to characterize photon energies. The cadmium telluride (CdTe)-based photon-counting detector is limited in capability, however, under a high X-ray flux. A photon rejecter composed of aluminum, for example, can reduce this limitation by modulating the incident number of photons. In addition to this function, the optimal photon rejecter can separate electronic noise, which degrades image quality. The aim of this work was to optimize a photon rejecter for high-quality image acquisition by removing electronic noise from the actual pulse signal. The images and spectra were acquired using a micro-focus X-ray source with a CdTe-based photon-counting detector. We acquired data with various types of photon-rejecter materials composed of aluminum (Al) and iodine at three different tube voltages (50, 70, and 90 kVp). A phantom composed of high-atomic-number materials was imaged to evaluate the efficiency of the photon rejecter. Photon rejecters composed of 1-mm Al, 10-mm Al, and a combination of 10-mm Al and iodine provided optimum capability at 50, 70, and 90 kVp, respectively. Each optimal combination of photon-rejecter material and voltage effectively separated electronic noise from the actual pulse signal and gave the highest contrast-to-noise ratio for materials on the image. These optimized types of photon rejecters can effectively discriminate electronic noise and improve image quality at different tube voltages.

  13. The physics of nanowire superconducting single-photon detectors

    NARCIS (Netherlands)

    Renema, Jelmer Jan

    2015-01-01

    We investigate the detection mechanism in superconducting single photon detectors via quantum detector tomography. We find that the detection event is caused by diffusion of quasiparticles from the absorption spot, combined with entrance of a vortex. Moreover, we investigate the behaviour of

  14. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  15. The LHCb RICH Upgrade: Development of the DCS and DAQ system.

    CERN Multimedia

    Cavallero, Giovanni

    2018-01-01

    The LHCb experiment is preparing for an upgrade during the second LHC long shutdown in 2019-2020. In order to fully exploit the LHC flavour physics potential with a five-fold increase in the instantaneous luminosity, a trigger-less readout will be implemented. The RICH detectors will require new photon detectors and a brand new front-end electronics. The status of the integration of the RICH photon detector modules with the MiniDAQ, the prototype of the upgraded LHCb readout architecture, has been reported. The development of the prototype of the RICH Upgrade Experiment Control System, integrating the DCS and DAQ partitions in a single FSM, has been described. The status of the development of the RICH Upgrade Inventory, Bookkeeping and Connectivity database has been reported as well.

  16. RICH Detector for Jefferson Labs CLAS12

    Science.gov (United States)

    Trotta, Richard; Torisky, Ben; Benmokhtar, Fatiha

    2015-10-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to its Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beams. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new hybrid Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 8 GeV/c momentum range. This detector will be used for a variety of Semi-Inclusive Deep Inelastic Scattering experiments. Cherenkov light can be accurately detected by a large array of sophisticated Multi-Anode Photomultiplier Tubes (MA-PMT) and heavier particles, like kaons, will span the inner radii. We are presenting our work on the creation of the RICH's geometry within the CLAS12 java framework. This development is crucial for future calibration, reconstructions and analysis of the detector.

  17. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  18. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  19. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  20. Generation of a multi-photon Greenberger-Horne-Zeilinger state with linear optical elements and photon detectors

    International Nuclear Information System (INIS)

    Zou, X B; Pahlke, K; Mathis, W

    2005-01-01

    We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing

  1. MPGD-based counters of single photons developed for COMPASS RICH-1

    Czech Academy of Sciences Publication Activity Database

    Alexeev, M.; Birsa, R.; Bodlak, M.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger jr., M.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Nováková, Kateřina; Nový, J.; Panzieri, D.; Pereira, F.A.; Santos, C.A.; Sbrizzai, G.; Schiavon, P.; Schorb, S.; Slunečka, M.; Sozzi, F.; Steiger, Lukáš; Sulc, M.; Tessarotto, F.; Veloso, J.F.C.A.

    2014-01-01

    Roč. 9, č. 9 (2014), C09017-C09017 ISSN 1748-0221. [International Conference on Instrumentation for Colliding Beam Physics. Budker Inst Nucl Phys, Novosibirsk, 24.02.2014-01.03.2014] Institutional support: RVO:61389021 Keywords : Hybrid detectors * Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc) * Electron multipliers (gas) * visible and IR photons (gas) (gas-photocathodes, solid-photocathodes) * Photon detectors for UV Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014 http://iopscience.iop.org/1748-0221/9/09/C09017/pdf/1748-0221_9_09_C09017.pdf

  2. Photon detector composed of metal and semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Atsuo; Minoura, Norihiko; Karube, Isao

    2005-01-01

    Applying the function of the single electron transistor, a novel photon detector consisting of a self-assembled structure of metal and semiconductor nanoparticles and an organic insulating layer was developed. It showed coulomb blockade behavior under dark conditions and remarkable increase in current corresponding to light intensity under light irradiation. Ultraweak photon emission of about 600 counts per second in the ultraviolet region could be detected at room temperature by this photon counter

  3. R&D studies of a RICH detector using pressurized C$_{4}$F$_{8}$O radiator gas and a CsI-based gaseous photon detector

    CERN Document Server

    Agócs, A.G; Barnaföldi, G.G; Bellwied, R; Bencédi, G; Bencze, G; Berényi, D; Boldizsár, L; Chattopadhyay, S; Chinellato, D.D; Cindolo, F; Das-Bose, L; Das, D; Das, K; De Cataldo, G; Di Bari, D; Di Mauro, A; Futó, E; Garcia, E; Hamar, G; Harton, A; Jimenez, R.T; Kim, D.W; Kim, J.S; Knospe, A; Kovacs, L; Lévai, P; Markert, C; Martinengo, P; Molnar, L; Nappi, E; Olah, L; Paic, G; Pastore, C; Patino, M.E; Peskov, V; Pinsky, L; Piuz, F; Pochybova, S; Sgura, I; Sinha, T; Song, J; Timmins, A; Van Beelen, J.B; Varga, D; Volpe, G; Weber, M; Xaplanteris, L; Yi, J; Yoo, I.-K

    2013-01-01

    We report on studies of layout and performance of a new Ring Imaging Cherenkov detector using for the fi rst time pressurized C 4 F 8 O radiator gas and a photon detector consisting of a MWPC equipped with a CsI photocathode. In particular, we present here the results of beam tests of a MWPC having an adjustable anode – cathode gap, aiming at the optimization of single photoelectron detection and Cherenkov angle resolution. This system was proposed as a Very High Momentum Particle Identi fi cation (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identi fi cation in the momentum range 5 – 25 GeV/c.

  4. Real-time imaging systems for superconducting nanowire single-photon detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hofherr, Matthias

    2014-07-01

    Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.

  5. Single photon detector with high polarization sensitivity.

    Science.gov (United States)

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  6. Rise time of voltage pulses in NbN superconducting single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, K. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow (Russian Federation); Divochiy, A. V.; Karpova, U. V.; Morozov, P. V. [CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Vakhtomin, Yu. B.; Seleznev, V. A. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Sidorova, M. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); Zotova, A. N.; Vodolazov, D. Yu. [Institute for Physics of Microstructure, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  7. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    Science.gov (United States)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  8. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  9. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  10. Photon detector configured to employ the Gunn effect and method of use

    Science.gov (United States)

    Cich, Michael J

    2015-03-17

    Embodiments disclosed herein relate to photon detectors configured to employ the Gunn effect for detecting high-energy photons (e.g., x-rays and gamma rays) and methods of use. In an embodiment, a photon detector for detecting high-energy photons is disclosed. The photon detector includes a p-i-n semiconductor diode having a p-type semiconductor region, an n-type semiconductor region, and a compensated i-region disposed between the p-type semiconductor region and the n-type semiconductor region. The compensated i-region and has a width of about 100 .mu.m to about 400 .mu.m and is configured to exhibit the Gunn effect when the p-i-n semiconductor diode is forward biased a sufficient amount. The compensated i-region is doped to include a free carrier concentration of less than about 10.sup.10 cm.sup.-3.

  11. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    International Nuclear Information System (INIS)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-01-01

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion

  12. Characterization of the Hamamatsu R11265-103-M64 multi-anode photomultiplier tube for the LHCb RICH Upgrade

    CERN Document Server

    Matteuzzi, C; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Khanji, B; Maino, M; Pessina, G

    2014-01-01

    The Hamamatsu R11265-103-M64 MaPMT is the baseline photon sensor to be used for the LHCb RICH Upgrade detector. This choice has been supported by a large number of tests of this device. This note summarizes the measurements performed by the INFN Milano Bicocca group to characterize the photon detector. A description is provided of the unpublished outcomes and particularly of the more recent developments about the aging of the R11265-103-M64 MaPMT and the test of a whole photon detector RICH Elementary Cell.

  13. Prompt photon measurements with the PHENIX MPC-EX detector

    Science.gov (United States)

    Campbell, Sarah

    2013-04-01

    The MPC-EX detector is a preshower extension to PHENIX's Muon Piston Calorimeter (MPC). It consists of eight layers of alternating W absorber and Si mini-pad sensors. Located at forward rapidity, 3.180 GeV, allowing the measurement of prompt photons using the double ratio method. At forward rapidities, prompt photons are dominated by direct photons produced by quark-gluon Compton scattering. In transversely polarized p+p collisions, the prompt photon single spin asymmetry measurement, AN, will resolve the sign discrepancy between the Sivers and twist-3 extractions of AN. In p+Au collisions, the prompt photon RpAu will quantify the level of gluon saturation in the Au nucleus at low-x, 10-3, with a projected systematic error band a factor of four smaller than EPS09's current allowable range. The MPC-EX detector will expand our understanding of gluon nuclear parton distribution functions, providing information about the initial state of heavy ion collisions, and clarify how valence parton's pT and spin correlate to the proton spin.

  14. ArCLight—A Compact Dielectric Large-Area Photon Detector

    Directory of Open Access Journals (Sweden)

    Martin Auger

    2018-02-01

    Full Text Available ArgonCube Light readout system (ArCLight is a novel device for detecting scintillation light over large areas with Photon Detection Efficiency (PDE of the order of a few percent. Its robust technological design allows for efficient use in large-volume particle detectors, such as Liquid Argon Time Projection Chambers (LArTPCs or liquid scintillator detectors. Due to its dielectric structure it can be placed inside volumes with high electric field. It could potentially replace vacuum PhotoMultiplier Tubes (PMTs in applications where high PDE is not required. The photon detection efficiency for a 10 × 10 cm2 detector prototype was measured to be in the range of 0.8% to 2.2% across the active area.

  15. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DEFF Research Database (Denmark)

    Wittmann, Christoffer; Andersen, Ulrik Lund; Takeoka, Masahiro

    2010-01-01

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne...... detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver...

  16. The vertex detector for the Lepton/Photon collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E. [Los Alamos National Lab., NM (United States)

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  17. The vertex detector for the Lepton/Photon Collaboration

    International Nuclear Information System (INIS)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-01-01

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity η distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed

  18. Motivation for an SSC detector with ultra-high resolution photon detection

    International Nuclear Information System (INIS)

    Gunion, J.F.; Kane, G.

    1992-01-01

    It is well known that incorporating ultra-high resolution photon detection into a general purpose detector for the SSC will be extremely difficult. The authors will argue that the physics signals that could be missed without such resolution are of such importance that a special purpose detector designed specifically for photon final state modes should be constructed, if sufficient resolution cannot be achieved with general purpose detectors. The potentially great value of these signals as a probe of extremely high mass scales is stressed

  19. Dual concentric crystal low energy photon detector

    Science.gov (United States)

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  20. The effect of solarradiation and UV photons on the CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Saad, A.F.

    2003-01-01

    The effects induced in the CR-39 polymer detector by total solar radiation (TSR) and UV photons were investigated. Thr exposure of detector samples to solar photons was carried out according to certain conditions. The TSR exposure period started in the middle of july and lasted unitel 12 th of september. 2000: the hottest months in zagazig, egypt. Another set of detector samples was exposed to UV photons from a UV lamp for different intervals. After UV exposure, these detectors were analysed with an FT-IR sepectrometer of jasco type 5300 in transmission mode. The FT-IR spectra does not show any considerable modifications due to UV irradiation in that detector. The effects of UV light were compared with those of solar radiation containing ultraviolet photons , on the registration properties of this polymer detector. Preliminaryresults revealed a proportionate increase in bluk etch rate of CR-39 detector with the increase of exposure time to the solar radiation. The results indicated that the CR-39 polymer detector can be used as a solar radiation dosimeter

  1. Evaluation of a hybrid photon counting pixel detector for X-ray polarimetry

    International Nuclear Information System (INIS)

    Michel, T.; Durst, J.

    2008-01-01

    It has already been shown in literature that X-ray sensitive CCDs can be used to measure the degree of linear polarization of X-rays using the effect that photoelectrons are emitted with a non-isotropic angular distribution in respect to the orientation of the electric field vector of impinging photons. Up to now hybrid semiconductor pixel detectors like the Timepix-detector have never been used for X-ray polarimetry. The main reason for this is that the pixel pitch is large compared to CCDs which results in a much smaller analyzing power. On the other hand, the active thickness of the sensor layer can be larger than in CCDs leading to an increased efficiency. Therefore hybrid photon counting pixel detectors may be used for imaging and polarimetry at higher photon energies. For irradiation with polarized X-ray photons we were able to measure an asymmetry between vertical and horizontal double hit events in neighboring pixels of the hybrid photon counting Timepix-detector at room temperature. For the specific spectrum used in our experiment an average polarization asymmetry of (0.96±0.02)% was measured. Additionally, the Timepix-detector with its spectroscopic time-over-threshold-mode was used to measure the dependence of the polarization asymmetry on energy deposition in the detector. Polarization asymmetries between 0.2% at 29 keV and 3.4% at 78 keV energy deposition were determined. The results can be reproduced with our EGS4-based Monte-Carlo simulation

  2. Photon detection in ring imaging Cherenkov counters

    International Nuclear Information System (INIS)

    Jansen, H.

    1988-01-01

    One of the parts of DELPHI (a detector at the CERN LEP) is the barrel-RICH which uses Cherenkov radiation to determine the velocity of charged particles; together with the measured momentum this information yields the mass of each particle. The performance of the photon detector, which determines to a large extent the analyzing power of the barrel-RICH, is studied. 98 refs.; 40 figs.; 6 tabs

  3. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  4. Graphene-Based Josephson-Junction Single-Photon Detector

    Science.gov (United States)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  5. The HERMES recoil photon-detector and nuclear p{sub t}-Broadening at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Haarlem, Y. van

    2007-09-15

    The first part of this work consists of hardware research and development done in order to construct and test a photon-detector as one of the three detectors of the HERMES recoil detector. The HERMES recoil detector consists of a target cell, a silicon-detector, a scintillating fiber tracker, and a photon-detector. All are inside a super-conducting magnet. The silicon detector uses energy deposition to determine the momentum of the particle because in its energy range the energy deposition is an unambiguous function of the momentum of the particle. The scintillating fiber tracker is located outside the beam-vacuum and is surrounded by the photon-detector. It consists of two barrels with layers of scintillating fibers. It detects particles by converting their energy deposition into light. It measures two space points of a charged particle and from the bending of the assigned track (in the magnetic field provided by the super-conducting magnet) a momentum measurement can be derived. The photon-detector is located between the scintillating fiber tracker and the magnet. It consists (from the inside out) of three layers of tungsten showering material followed by scintillating strips. The second part of this work is an analysis performed concerning the transverse momentum broadening of hadrons produced in deep-inelastic scattering on a nuclear target compared to a D target. (orig.)

  6. Determination of tolerances of mirror displacement and radiator gas impurity for the CBM RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M. [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J. [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S.; Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    The CBM experiment at the future FAIR facility will explore nuclear matter at high net-baryon densities. One of the key observables is di-leptons as they penetrate the created matter without further strong interactions. A gaseous RICH detector in a standard projective geometry using spherical mirrors is one of two detector elements for the required electron identification. The mirror system consists of about 72 trapezoidal mirror tiles. Any misalignment between the tiles relative to the nominal common spherical surface leads to reduction of the reconstruction efficiency of Cherenkov rings and deterioration of their resolution. To determine tolerances in mirror misalignment extensive simulation and measurement studies were carried out. Pure CO{sub 2} will be used as radiator gas. Gas contamination, mainly moisture and Oxygen, reduces the number of detected photons per ring and worsens the quality of reconstructed Cherenkov rings. Therefore a study was carried out to determine tolerances in radiator gas contamination. - Highlights: • Mirror misalignment leads to ring deformation in a RICH detector. • Radiator contamination leads to resolution deterioration of fitted rings. • To determine tolerances measurements and simulations were carried out. • Mirror displacements of up to 0.32 mm at any mirror side can be tolerated. • Oxygen (moisture) contamination of up to 1% (0.0011%) can be safely tolerated.

  7. Implementing a Java Based GUI for RICH Detector Analysis

    Science.gov (United States)

    Lendacky, Andrew; Voloshin, Andrew; Benmokhtar, Fatiha

    2016-09-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the improvements is the addition of a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) are going to be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). The SPS of each pixel of all MAPMTs have been fitted to a mathematical model of roughly 45 parameters for 4 HVs, 3 OD. Out of those parameters, 9 can be used to evaluate the PMTs performance and placement in the detector. To help analyze data when the RICH is operational, a GUI application was written in Java using Swing and detector packages from TJNAF. To store and retrieve the data, a MySQL database program was written in Java using the JDBC package. Using the database, the GUI pulls the values and produces histograms and graphs for a selected PMT at a specific HV and OD. The GUI will allow researchers to easily view a PMT's performance and efficiency to help with data analysis and ring reconstruction when the RICH is finished.

  8. Single photon light detector for deep ocean applications

    International Nuclear Information System (INIS)

    Matsuno, S.; Babson, J.; Learned, J.G.; O'Connor, D.; Grieder, P.K.F.; Wilson, C.

    1989-01-01

    We have developed a single photon sensitive light detector module which can be operated in the ocean to a depth of 5000 m. It was designed primarily to be used as a Cherenkov light detector in conjunction with the DUMAND (Deep Underwater Muon And Neutrino Detector) experiment. After calibration in the laboratory, seven detectors, assembled in a vertical string geometry, have been operated simultaneously in the deep ocean off the coast of the island of Hawaii. Cosmic ray muons have been recorded successfully at dephts ranging from 2000 to 4000 m. The results have demonstrated the capability of the detector; it fulfills the specifications required for the modules to be used in a deep ocean muon and neutrino detector. (orig.)

  9. The HERMES recoil photon detector and the study of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hulse, Charlotte van

    2011-03-15

    The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a {delta}{sup +} resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of {delta}{sup +} decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)

  10. Prompt photon measurements with PHENIX's MPC-EX detector

    Science.gov (United States)

    Campbell, Sarah; PHENIX Collaboration

    2013-08-01

    The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC). The MPC-EX consists of eight layers of alternating W absorber and Si mini-pad sensors. Located at forward rapidity, 3.1 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward π0 and jet measurements, it will provide sufficient prompt photon and π0 separation to make a prompt photon measurement possible. Prompt photon yields at high pT, pT > 3 GeV/c, can be statistically extracted using the double ratio method. In transversely polarized p+p collisions, the measurement of the prompt photon single spin asymmetry, AN, will resolve the sign discrepancy between the Sivers and twist-3 extractions of AN. In p+Au collisions, the prompt photon RpAu will quantify the level of gluon saturation in the Au nucleus at low-x, x ~ 10-3, with a projected systematic error band a factor of four smaller than EPS09's current allowable range. The MPC-EX detector will expand our understanding of the gluon nuclear parton distribution functions, providing important information about the initial state of heavy ion collisions, and clarify how the valence parton's transverse momentum and spin correlates to the proton spin.

  11. Superconducting nanowire single-photon detectors: physics and applications

    International Nuclear Information System (INIS)

    Natarajan, Chandra M; Tanner, Michael G; Hadfield, Robert H

    2012-01-01

    Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly emerged as a highly promising photon-counting technology for infrared wavelengths. These devices offer high efficiency, low dark counts and excellent timing resolution. In this review, we consider the basic SNSPD operating principle and models of device behaviour. We give an overview of the evolution of SNSPD device design and the improvements in performance which have been achieved. We also evaluate device limitations and noise mechanisms. We survey practical refrigeration technologies and optical coupling schemes for SNSPDs. Finally we summarize promising application areas, ranging from quantum cryptography to remote sensing. Our goal is to capture a detailed snapshot of an emerging superconducting detector technology on the threshold of maturity. (topical review)

  12. Photon counting detector for the personal radiography inspection system “SIBSCAN”

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, E.A.; Baru, S.E. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Grigoriev, D.N. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk 630073 (Russian Federation); Leonov, V.V. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Oleynikov, V.P. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Porosev, V.V., E-mail: porosev@inp.nsk.su [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Savinov, G.A. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation)

    2017-02-11

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  13. Photon counting detector for the personal radiography inspection system “SIBSCAN”

    International Nuclear Information System (INIS)

    Babichev, E.A.; Baru, S.E.; Grigoriev, D.N.; Leonov, V.V.; Oleynikov, V.P.; Porosev, V.V.; Savinov, G.A.

    2017-01-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  14. First observation of Cherenkov ring images using hybrid photon detectors

    International Nuclear Information System (INIS)

    Albrecht, E.; Wilkinson, G.; Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N.; Brook, N.H.; Halley, A.W.; O'Shea, V.; French, M.; Gibson, V.; Wotton, S.A.; Schomaker, R.

    1998-01-01

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C 4 F 10 gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  15. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  16. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.

    Science.gov (United States)

    Eklund, Karin; Ahnesjö, Anders

    2010-11-01

    Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., "electron") diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly corrected unshielded diode

  17. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  18. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  19. Integration of Single-Photon Sources and Detectors on GaAs

    Directory of Open Access Journals (Sweden)

    Giulia Enrica Digeronimo

    2016-10-01

    Full Text Available Quantum photonic integrated circuits (QPICs on a GaAs platform allow the generation, manipulation, routing, and detection of non-classical states of light, which could pave the way for quantum information processing based on photons. In this article, the prototype of a multi-functional QPIC is presented together with our recent achievements in terms of nanofabrication and integration of each component of the circuit. Photons are generated by excited InAs quantum dots (QDs and routed through ridge waveguides towards photonic crystal cavities acting as filters. The filters with a transmission of 20% and free spectral range ≥66 nm are able to select a single excitonic line out of the complex emission spectra of the QDs. The QD luminescence can be measured by on-chip superconducting single photon detectors made of niobium nitride (NbN nanowires patterned on top of a suspended nanobeam, reaching a device quantum efficiency up to 28%. Moreover, two electrically independent detectors are integrated on top of the same nanobeam, resulting in a very compact autocorrelator for on-chip g(2(τ measurements.

  20. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    IR: Fourier-transform infrared FTO: Fluorine doped tin oxide G-R: generation-recombination HEIWIP: heterojunction interfacial workfunction internal...SECURITY CLASSIFICATION OF: The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions , (2) J and H...aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost

  1. A universal setup for active control of a single-photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qin; Skaar, Johannes [Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Lamas-Linares, Antía; Kurtsiefer, Christian [Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Makarov, Vadim, E-mail: makarov@vad1.com [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Gerhardt, Ilja, E-mail: ilja@quantumlah.org [Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart (Germany)

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  2. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    Science.gov (United States)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  3. A universal setup for active control of a single-photon detector

    International Nuclear Information System (INIS)

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía; Kurtsiefer, Christian; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors

  4. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  5. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    Science.gov (United States)

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  6. Electron and Photon Reconstruction with the ATLAS Detector

    OpenAIRE

    Mitrevski, J

    2014-01-01

    An excellent performance of the reconstruction of electrons and photons with the ATLAS detector at the LHC is a key component to realize the full physics potential of ATLAS, both in searches for new physics and in precision measurements. For instance, all these played a critical role in the discovery of a Higgs boson, announced by the ATLAS Collaboration in 2012, and in the measurement of its properties. This paper highlights the reconstruction of electrons and photons.

  7. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm{sup 2}, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  8. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  9. A 3-stage gated UV-photon gaseous detector with optical imaging

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Sauvage, D.

    1989-03-01

    UV-photons are detected by a low pressure photosensitive multistep gaseous detector. Photoelectrons are multiplied in two charge amplification stages. A third, light amplification stage operating in a scintillation mode, provides light yields >5.10 7 visible photons per single photoelectron avalanche, in Argon-C 2 H 6 -TMAE gas mixture. We present results on absolute photon yields in various TMAE gas mixtures, at low gas pressure and at low charge gains. We describe the operation mechanism and some basic properties of the gated 3-stage detectors, such as stability of operation at high background rates and localization resolutions particularly at large TMAE concentration and high temperature operation conditions. Further applications are discussed. (authors)

  10. Noise-free high-efficiency photon-number-resolving detectors

    International Nuclear Information System (INIS)

    Rosenberg, Danna; Lita, Adriana E.; Miller, Aaron J.; Nam, Sae Woo

    2005-01-01

    High-efficiency optical detectors that can determine the number of photons in a pulse of monochromatic light have applications in a variety of physics studies, including post-selection-based entanglement protocols for linear optics quantum computing and experiments that simultaneously close the detection and communication loopholes of Bell's inequalities. Here we report on our demonstration of fiber-coupled, noise-free, photon-number-resolving transition-edge sensors with 88% efficiency at 1550 nm. The efficiency of these sensors could be made even higher at any wavelength in the visible and near-infrared spectrum without resulting in a higher dark-count rate or degraded photon-number resolution

  11. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    International Nuclear Information System (INIS)

    Jurdit, M.; Moulin, V.; Ouvrier-Buffet, P.; Verger, L.; Brambilla, A.; Radisson, P.

    2017-01-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm 2 . Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 10 6 incident photons.s −1 .mm −2 .

  12. Cherenkov light imaging tests with state-of-the-art solid state photon counter for the CLAS12 RICH detector

    Science.gov (United States)

    Balossino, Ilaria; Barion, L.; Contalbrigo, M.; Lenisa, P.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Movsisyan, A.; Squerzanti, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector will be operated for hadron identification in the 3 GeV / c to 8 GeV / c momentum range at the CLAS12 experiment at the upgraded continuous electron beam accelerator facility of Jefferson Lab. The detector, consisting of aerogel radiator, composite mirrors and photon counters, will be built with a hybrid optics design to allow the detection of Cherenkov light for both forward and large angle hadron tracks. The active area has to be densely packed and highly segmented, covering about 1m2 with pixels of 6mm2 , and to allow a time resolution of 1 ns. A technology that can offer a cost-effective solution and low material budget could be Silicon Photomultipliers (SiPM) thanks to their high gain at low bias voltage, fast timing, good single-photoelectron resolution and insensitivity to magnetic fields. An investigation is ongoing on samples of 3 × 3mm2 SiPM of different micro-cell size to assess the single photon detection capability in the presence of high dark count rate due to thermal generation effects, after-pulses or optical cross-talk and to study the response to the moderate radiation damage expected at CLAS12. In this work, a brief review of the latest and most interesting results from these studies will be shown.

  13. Photon detector for high energy measurements in the SELEX spectrometer (Fermilab experiment E781)

    International Nuclear Information System (INIS)

    Goncharenko, Yu.M.; Grachov, O.A.; Kurshetsov, V.F.; Landsberg, L.G.; Nurushev, S.B.; Vasil'ev, A.N.

    1995-01-01

    A possibility to use one- or two-photon lead glass detectors for high energy measurements in the SELEX spectrometer with E γ up to 500 GeV is studied. It is shown that a single photon detector equipped with radiation-resistant lead glass counters is applicable for the experiment discussed. It is concluded that for the best energy resolution in the case of Primakoff effect like π - = γ * → π - + γ the combined method would be used with weighted combination of direct E γ measurement in the Photon-3 detector and the π - beam energy precise measurement. 11 refs., 4 tabs., 17 figs

  14. A fast integrated readout system for a cathode pad photon detector

    Energy Technology Data Exchange (ETDEWEB)

    French, M. (Rutherford Appleton Lab., Chilton (United Kingdom)); Lovell, M. (Rutherford Appleton Lab., Chilton (United Kingdom)); Chesi, E. (CERN, ECP Div., Geneva (Switzerland)); Racz, A. (CERN, ECP Div., Geneva (Switzerland)); Seguinot, J. (Coll. de France, Paris (France)); Ypsilantis, T. (Coll. de France, Paris (France)); Arnold, R. (CRN, Louis Pasteur Univ., Strasbourg (France)); Guyonnet, J.L. (CRN, Louis Pasteur Univ., Strasbourg (France)); Egger, J. (Paul Scherrer Inst., Villigen (Switzerland)); Gabathuler, K. (Paul Scherrer Inst., Villigen (Switzerland))

    1994-04-01

    A fast integrated electronic chain is presented to read out the cathode pad array of a multiwire photon detector for a fast RICH counter. Two VLSI circuits have been designed and produced. An analog eight channel, low noise, fast, bipolar, current preamplifier and discriminator chip serves as front-end electronics. It has an rms equivalent noise current of 10 nA (2000 e[sup -]), 50 MHz bandwidth with 10 mW of power consumption per channel. Two analogue chips are coupled to a digital 16 channels CMOS readout chip, operating at 20 MHz, that provides a pipelined delay of 1.3 [mu]s and zero suppression with a power consumption of about 6 mW per channel. Readout of a 4000 pad sector requires 3-4 [mu]s depending on the number of hit pads. The full RICH counter is made up of many of such sectors (the prototype has three fully equipped sectors), read out in parallel. The minimum time to separate successive hits on the same pad is about 70 ns. The time skew of the full chain is about 15 ns. (orig.)

  15. Influence of material and geometry on the performance of superconducting nanowire single-photon detectors

    CERN Document Server

    Henrich, Dagmar

    2013-01-01

    Superconducting Nanowire Single-Photon Detectors offer the capability to detect electromagnetic waves on a single photon level in a wavelength range that far exceeds that of alternative detector types. However, above a certain threshold wavelength, the efficiency of those detectors decreases stronlgy, leading to a poor performance in the far-infrared range. Influences on this threshold are studied and approaches for improvement are verified experimentally by measurement of the device performance.

  16. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    Science.gov (United States)

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  17. Electron and Photon Reconstruction and Identification with the ATLAS Detector

    International Nuclear Information System (INIS)

    Kuna, Marine

    2011-01-01

    This article presents the electron and photon reconstruction performance of the ATLAS detector based on the first LHC collision data at √(s)=7 TeV. Calorimetric and tracker related electron identification variables are in a fair agreement with the Monte Carlo model describing the detector response. The position of the reconstructed photon conversions vertices has been used to compare the description of the inner detector used in Monte Carlo geometry to that from data. The energy flow measured in the electromagnetic calorimeter has been used to provide the same comparison at larger radii. π 0 →γγ and J/Ψ→e + e - peaks were observed with reconstructed masses in good agreement with both Monte Carlo and PDG values. 17 W→eν candidates and one Z→e + e - candidate have been observed in 6.69 nb -1 of data.

  18. Dosimetric properties of carbon loaded LiF detectors for beta photon extremity dosimetry

    International Nuclear Information System (INIS)

    Burgkhardt, B.; Klipfel, A.

    1990-01-01

    The dosimetric properties of carbon loaded LiF detectors manufactured by Alnor and Vinten are presented in comparison with various LiF detectors. In particular, the beta and photon response, the residual reading after repeated annealing in the oven or reader as well as light sensitivity and fading are discussed. In comparison with LiF detectors of 240 mg.cm -2 , LiF + C detectors indicate a photon response of only 2% and in finger rings irradiated on a finger phantom an unexpected high photon energy response. Regarding repeated use, oven annealing in air or N 2 affects mainly Vinten LiF + 1% C by discoloration and reduces the 147 Pm response of LiF + C detectors by between 1% and 6% per N 2 annealing, whereas reader annealing in the Toledo and Alnor reader does not affect the relative beta response. The residual dose H 0 of LiF + C remains sufficiently low after oven annealing, but increases for Alnor LiF + 4% C after reader annealing, which is therefore more suitable for Vinten LiF + 1% C. Spurious detector reading exceeds H 0 and its standard deviation by a factor of 2 to 3. (author)

  19. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Adamczewski, J.; Becker, K.-H.; Belogurov, S.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eom, J.; Eschke, J.; Höhne, C.; Kampert, K.-H.; Kleipa, V.; Kochenda, L.; Kolb, B.; Kopfer, J.; Kravtsov, P.; Lebedev, S.; Lebedeva, E.; Leonova, E.

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype

  20. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M. [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J. [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S., E-mail: s.lebedev@gsi.de [University Gießen (Germany); Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype.

  1. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Science.gov (United States)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  2. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  3. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  4. Performance of fine grained photon position detector using proportional tubes

    International Nuclear Information System (INIS)

    Artemiev, V.; Galaktionov, Y.; Gordeev, A.; Gorodkov, Y.; Kamishkov, Y.; Lubimov, V.; Plyaskin, V.; Pojidaev, V.; Shevchenko, V.; Shumilov, E.; Bamberger, A.; Fuchs, M.; Giesen, G.; Heck, W.; Ludwig, J.; Marx, R.; Mocken, T.; Runge, K.; Skodzek, E.; Weber, H.C.; Weltin, A.; Wuelker, M.

    1984-01-01

    As part of the NA24 experiment at the CERN-SPS a photon position detector serves to separate direct photons from abundantly produced π 0 decay photons: electromagnetic showers are measured with an energy- and position-resolution sufficiently good to give a two-gamma resolving power of 1.2 cm. The shower detector covers 3 x 3 m 2 and consists of 12 layers of triangular proportional tubes (7.73 mm pitch) sandwiched with lead (altogether 9.6 X 0 ). For eight layers the analog information is provided by an ADC system. Ambiguities are resolved by the digital information of four additional layers inclined by 45 0 . Prototypes were built in order to test gas mixtures and electronics. The electromagnetic shower development in the PPD and the prototypes are reproduced by Monte Carlo calculations. The homogeneity of the PPD has been checked by calibration measurements. (orig.)

  5. Photon counting microstrip X-ray detectors with GaAs sensors

    Science.gov (United States)

    Ruat, M.; Andrä, M.; Bergamaschi, A.; Barten, R.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Lozinskaya, A. D.; Mezza, D.; Mozzanica, A.; Novikov, V. A.; Ramilli, M.; Redford, S.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Tolbanov, O. P.; Tyazhev, A.; Vetter, S.; Zarubin, A. N.; Zhang, J.

    2018-01-01

    High-Z sensors are increasingly used to overcome the poor efficiency of Si sensors above 15 keV, and further extend the energy range of synchrotron and FEL experiments. Detector-grade GaAs sensors of 500 μm thickness offer 98% absorption efficiency at 30 keV and 50% at 50 keV . In this work we assess the usability of GaAs sensors in combination with the MYTHEN photon-counting microstrip readout chip developed at PSI. Different strip length and pitch are compared, and the detector performance is evaluated in regard of the sensor material properties. Despite increased leakage current and noise, photon-counting strips mounted with GaAs sensors can be used with photons of energy as low as 5 keV, and exhibit excellent linearity with energy. The charge sharing is doubled as compared to silicon strips, due to the high diffusion coefficient of electrons in GaAs.

  6. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  7. LHCb Upgraded RICH 2 Engineering Design Review Report

    CERN Document Server

    Garsed, Philip John; Cardinale, Roberta; Petrolini, Alessandro; Benettoni, Massimo; Simi, Gabriele; Zago, M; Easo, Sajan; D'Ambrosio, Carmelo; Frei, Christoph; He, Jibo; Piedigrossi, Didier

    2016-01-01

    During the Long Shutdown 2 of the LHC, the LHCb experiment and, specifically, its two Ring Imaging Cherenkov (RICH) detectors will undergo a major upgrade. RICH 2 will be refurbished with new photon detectors and their associated electronics, with the capability of up to 40 MHz sustained acquisition rate. A new support and cooling system has been developed for the two photodetector arrays, retaining the vessel, gas and optical systems unchanged. This document describes their new mechanical arrangement, its engineering design, installation and alignment. A summary of the project schedule and Institute responsibilities is provided.

  8. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  9. Electron and Photon Reconstruction and Identification with the ATLAS Detector

    CERN Document Server

    Kuna, M; The ATLAS collaboration

    2011-01-01

    This article presents the electron and photon reconstruction performance in ATLAS with the first LHC collision data at $sqrt{s}$~=~7~TeV collected up to the beginning of June 2010. Calorimetric and tracker related electron identification variables are shown to be in a fair agreement with the Monte Carlo model. %Material estimations in the inner detector were checked with photon conversions vertex position, complementarily to the energy flow from minimum bias events for material at larger radii. The position of the reconstructed photon conversions vertices has been used to compare the inner detector model used in Monte Carlo to the real one from data. The energy flow measured in the electromagnetic calorimeter with minimum bias data has been used to provide the same comparison at larger radii. $pi^0 ightarrow gamma gamma$ and $J/Psi ightarrow ee$ peaks were observed with a reconstructed mass in good agreement with both Monte Carlo and PDG value. 17 $W ightarrow e u$ candidates and one $Z ightarrow ee$ candidat...

  10. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  11. Ultrathin NbN film superconducting single-photon detector array

    International Nuclear Information System (INIS)

    Smirnov, K; Korneev, A; Minaeva, O; Divochiy, A; Tarkhov, M; Ryabchun, S; Seleznev, V; Kaurova, N; Voronov, B; Gol'tsman, G; Polonsky, S

    2007-01-01

    We report on the fabrication process of the 2 x 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes

  12. A RICH detector for strangeness physics in Hall A at Jefferson Lab

    International Nuclear Information System (INIS)

    Cusanno, F.; Garibaldi, F.; Cisbani, E.; Colilli, S.; De Cataldo, G.; De Leo, R.; Giuliani, F.; Gricia, M.; Lagamba, L.; Lucentini, M.; Reitz, B.; Santavenere, F.; Urciuoli, G.M.

    2004-01-01

    The high-resolution hypernuclear spectroscopy experiment at Jefferson Lab, Hall A (E94-107), needs unambiguous kaon identification. Due to the huge pion and proton background, the standard Hall A hadron particle identification, based on a time of flight and two aerogel threshold Cherenkov detectors, is not sufficient. For this task a proximity focusing C 6 F 14 /CsI RICH has been built. Recently, after some improvements to the mechanical structure of its wire chamber and to its electronics rate capability, the RICH has been tested with cosmic rays. This paper represents a status report of the RICH detector

  13. Using of germanium detectors in nuclear experiments with photon beams

    International Nuclear Information System (INIS)

    Kapitonov, I.M.; Tutin, I.A.

    1995-01-01

    Full text: The study of atomic nuclei with real photons is very important source of the information about nuclear structure. In such experiments the basic electromagnetic interaction between the photon and the target nuclei is well known. Experiments with photon beams become especially valuable when outcoming particles are also photons. In these cases completely model-independent information on nuclear structure can be extracted. The use of semiconductor Ge-spectrometers with excellent resolution and large sensitive volumes for recording outcoming photons gives us such an additional important advantage as possibility to observe individual closely spaced levels of the final nuclei. In the report an experience of using Ge-detectors in two types of nuclear experiments is described. Both of them - nuclear resonance fluorescence (NRF) and nuclear photodisintegration - are carried out in beams of bremsstrahlung gamma radiation. The central element of the setup recording gamma quanta in these experiments is germanium detector. NRF is unique method for studying low-lying excited nuclear states. The spins of the states can be determined easily from the measured angular distributions of scattered photons. Model independent parity assignments in NRF can be achieved by measuring polarization observables. There are two experimental possibilities: the use of linearly polarized photons (off-axis bremsstrahlung) in the entrance channel and the measurement of the linear polarization of the scattered photons using Compton polarimeters. For both methods several germanium detectors (3-5) must be used simultaneously. Nowadays Compton polarimeter can also be done from single large Ge-crystal by segmenting the outer electrode. Advantages and drawbacks of the methods and background conditions are discussed and requirements to Ge-crystals are formulated. The importance of using a new generation of electron accelerators with continuous wave (cw) beams for NRF-measurements is stressed. The

  14. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    International Nuclear Information System (INIS)

    Heath, Robert M.; Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-01-01

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime

  15. On the basic mechanism of Pixelized Photon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Otono, H. [Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)], E-mail: otono@icepp.s.u-tokyo.ac.jp; Oide, H. [Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamashita, S. [International Center for Elementary Particle Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yoshioka, T. [Neutron Science Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-10-21

    A Pixelized Photon Detector (PPD) is a generic name for the semiconductor devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and Multi-Pixel Photon Counter, which has high photon counting capability. While the internal mechanisms of the PPD have been intensively studied in recent years, the existing models do not include the avalanche process. We have simulated the multiplication and quenching of the avalanche process and have succeeded in reproducing the output waveform of the PPD. Furthermore our model predicts the existence of dead-time in the PPD which has never been numerically predicted. For searching the dead-time, we also have developed waveform analysis method using deconvolution which has the potential to distinguish neighboring pulses precisely. In this paper, we discuss our improved model and waveform analysis method.

  16. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    International Nuclear Information System (INIS)

    Kroeninger, K.

    2007-01-01

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in 60 Co, 152 Eu and 228 Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  17. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  18. Determination of photon detector coefficient in neutron flux study

    International Nuclear Information System (INIS)

    Jedol Dayou; Azali Muhammad; Abd Aziz Mohamed; Abdul Razak Daud; Elias Saniman

    1995-01-01

    The efficiency of photon detector which is normally used in neutron flux measurement has been studied. The data obtain have been plotted using mathematical models in the form of reciprocal, exponential and semilog equation and subsequently efficiency coefficient of the detector has been determined. Beside that, energy quadratic equation model has also been used. It has been found that equation model selection is very important in the detector efficiency coefficient determination. In the case of energy quadratic equation, it has been found that the selection of energy set influenced the result. It can be concluded that energy quadratic equation is the best model in the neutron flux determination

  19. Superconducting single X-ray photon detector based on W0.8Si0.2

    Directory of Open Access Journals (Sweden)

    Xiaofu Zhang

    2016-11-01

    Full Text Available We fabricated a superconducting single X-ray photon detector based on W0.8Si0.2, and we characterized its basic detection performance for keV-photons at different temperatures. The detector has a critical temperature of 4.97 K, and it is able to be operated up to 4.8 K, just below the critical temperature. The detector starts to react to X-ray photons at relatively low bias currents, less than 1% of Ic at T = 1.8 K, and it shows a saturated count rate dependence on bias current at all temperatures, indicating that the optimum internal quantum efficiency can always be reached. Dark counts are negligible up to the highest investigated bias currents (99% of Ic and operating temperature (4.8 K. The latching effect affects the detector performance at all temperatures due to the fast recovery of the bias current; however, further modifications of the device geometry are expected to reduce the tendency for latching.

  20. SPHINX phototube RICH detector for diffractive production experiments at Serpukhov accelerator

    International Nuclear Information System (INIS)

    Kozhevnikov, A.; Kubarovsky, V.; Molchanov, V.; Rykalin, V.; Solyanik, V.

    1999-01-01

    The RICH detector used in the SPHINX experiment at the Serpukhov accelerator is described. The optical system of this detector consists of two spherical mirrors with focal length of 125 cm. Two matrices with 736 phototubes in total are used for the photocathode. The standard performance characteristics of the detector are a value of 42 cm -1 for N 0 and a single hit resolution of 0.5 cm. Particle identification capability of the detector is discussed

  1. SPHINX phototube RICH detector for diffractive production experiments at Serpukhov accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, A.; Kubarovsky, V.; Molchanov, V. E-mail: molchanov@mx.ihep.su; Rykalin, V.; Solyanik, V

    1999-08-21

    The RICH detector used in the SPHINX experiment at the Serpukhov accelerator is described. The optical system of this detector consists of two spherical mirrors with focal length of 125 cm. Two matrices with 736 phototubes in total are used for the photocathode. The standard performance characteristics of the detector are a value of 42 cm{sup -1} for N{sub 0} and a single hit resolution of 0.5 cm. Particle identification capability of the detector is discussed.

  2. Di-photon event recorded by the CMS detector (Run 2, 13 TeV)

    CERN Multimedia

    Mc Cauley, Thomas

    2015-01-01

    This image shows a collision event with a photon pair observed by the CMS detector in proton-collision data collected in 2015. The mass of the di-photon system is 750 GeV. Both photon candidates, with transverse momenta of 400 GeV and 230 GeV respectively, are reconstructed in the barrel region. The candidates are consistent with the expectations that they are prompt isolated photons.

  3. Cascaded systems analysis of photon counting detectors

    International Nuclear Information System (INIS)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f 50 (spatial-frequency at

  4. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  5. Flow with photon multiplicity detector: Past and future

    Indian Academy of Sciences (India)

    journal of. April 2003 physics pp. 739–752. Flow with photon multiplicity detector: Past and ... could the quantitative contribution from decay correlations be determined at that time. ... The present analysis deals with the data in the region 3.25 to 3.75 ..... Financial support from the Department of Science and Technology of the ...

  6. Evaluation of scintillators and semiconductor detectors to image three-photon positron annihilation for positron emission tomography

    International Nuclear Information System (INIS)

    Abuelhia, E.; Spyrou, N.M.; Kacperski, K.; College University, Middlesex Hospital, London

    2008-01-01

    Positron emission tomography (PET) is rapidly becoming the main nuclear imaging modality of the present century. The future of PET instrumentation relies on semiconductor detectors because of their excellent characteristics. Three-photon positron annihilation has been recently investigated as a novel imaging modality, which demands the crucial high energy resolution of semiconductor detector. In this work the evaluation of the NaI(Tl) scintillator and HPGe and CdZTe semiconductor detectors, to construct a simple three-photon positron annihilation scanner has been explored. The effect of detector and scanner size on spatial resolution (FWHM) is discussed. The characteristics: energy resolution versus count rate and point-spread function of the three-photon positron annihilation image profile from triple coincidence measurements were investigated. (author)

  7. Four-layer DOI PET detectors using a multi-pixel photon counter array and the light sharing method

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.jp; Inadama, Naoko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2013-11-21

    Silicon photomultipliers (SiPMs) provide many advantages for PET detectors, such as their high internal gain, high photon detection efficiency and insensitivity to magnetic fields. The number of detectable scintillation photons of SiPMs, however, is limited by the number of microcells. Therefore, pulse height of PET detectors using SiPMs is saturated when large numbers of scintillation photons enter the SiPM pixels. On the other hand, we previously presented a depth-of-interaction (DOI) encoding method that is based on the light sharing method. Since our encoding method detects scintillation photons with multiple readout pixels, the saturation effect can be suppressed. We constructed two prototype four-layer DOI detectors using a SiPM array and evaluated their performances. The two prototype detectors consisted of four layers of a 6×6 array of Lu{sub 2(1−x)}Y{sub 2x}SiO{sub 5} (LYSO) crystals and a SiPM (multi-pixel photon detector, MPPC, Hamamatsu Photonics K.K.) array of 4×4 pixels. The size of each LYSO crystal element was 1.46 mm×1.46 mm×4.5 mm and all surfaces of the crystal elements were chemically etched. We used two types of MPPCs. The first one had 3600 microcells and high photon detection efficiency (PDE). The other one had 14,400 microcells and lower PDE. In the evaluation experiment, all the crystals of the detector using the MPPC which had the high PDE were clearly identified. The respective energy and timing resolutions of lower than 15% and 1.0 ns were achieved for each crystal element. No saturation of output signals was observed in the 511 keV energy region due to suppression of the saturation effect by detecting scintillation photons with several MPPC pixels by the light sharing method. -- Highlights: •We constructed and evaluated four-layer DOI detectors by the light sharing method using a MPPC array. •The detectors using two types of the MPPC array were compared. •The energy and timing resolutions of lower than 15% and 1.0 ns were

  8. Four-layer DOI PET detectors using a multi-pixel photon counter array and the light sharing method

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Inadama, Naoko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    Silicon photomultipliers (SiPMs) provide many advantages for PET detectors, such as their high internal gain, high photon detection efficiency and insensitivity to magnetic fields. The number of detectable scintillation photons of SiPMs, however, is limited by the number of microcells. Therefore, pulse height of PET detectors using SiPMs is saturated when large numbers of scintillation photons enter the SiPM pixels. On the other hand, we previously presented a depth-of-interaction (DOI) encoding method that is based on the light sharing method. Since our encoding method detects scintillation photons with multiple readout pixels, the saturation effect can be suppressed. We constructed two prototype four-layer DOI detectors using a SiPM array and evaluated their performances. The two prototype detectors consisted of four layers of a 6×6 array of Lu 2(1−x) Y 2x SiO 5 (LYSO) crystals and a SiPM (multi-pixel photon detector, MPPC, Hamamatsu Photonics K.K.) array of 4×4 pixels. The size of each LYSO crystal element was 1.46 mm×1.46 mm×4.5 mm and all surfaces of the crystal elements were chemically etched. We used two types of MPPCs. The first one had 3600 microcells and high photon detection efficiency (PDE). The other one had 14,400 microcells and lower PDE. In the evaluation experiment, all the crystals of the detector using the MPPC which had the high PDE were clearly identified. The respective energy and timing resolutions of lower than 15% and 1.0 ns were achieved for each crystal element. No saturation of output signals was observed in the 511 keV energy region due to suppression of the saturation effect by detecting scintillation photons with several MPPC pixels by the light sharing method. -- Highlights: •We constructed and evaluated four-layer DOI detectors by the light sharing method using a MPPC array. •The detectors using two types of the MPPC array were compared. •The energy and timing resolutions of lower than 15% and 1.0 ns were achieved for

  9. Quantum random-number generator based on a photon-number-resolving detector

    International Nuclear Information System (INIS)

    Ren Min; Wu, E; Liang Yan; Jian Yi; Wu Guang; Zeng Heping

    2011-01-01

    We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.

  10. SPHINX phototube RICH detector for diffractive production experiments at Serpukhov accelerator

    CERN Document Server

    Kozhevnikov, A; Molchanov, V; Rykalin, V I; Solyanik, V

    1999-01-01

    The RICH detector used in the SPHINX experiment at the Serpukhov accelerator is described. The optical system of this detector consists of two spherical mirrors with focal length of 125 cm. Two matrices with 736 phototubes in total are used for the photocathode. The standard performance characteristics of the detector are a value of 42 cm sup - sup 1 for N sub 0 and a single hit resolution of 0.5 cm. Particle identification capability of the detector is discussed.

  11. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    Science.gov (United States)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  12. An ultrafast NbN hot-electron single-photon detector for electronic applications

    International Nuclear Information System (INIS)

    Lipatov, A; Okunev, O; Smirnov, K; Chulkova, G; Korneev, A; Kouminov, P; Gol'tsman, G; Zhang, J; Slysz, W; Verevkin, A; Sobolewski, R

    2002-01-01

    We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10x10 μm 2 , SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 I c for photons with wavelengths shorter than 1.3 μm

  13. The intensity detection of single-photon detectors based on photon counting probability density statistics

    International Nuclear Information System (INIS)

    Zhang Zijing; Song Jie; Zhao Yuan; Wu Long

    2017-01-01

    Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)

  14. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  15. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    International Nuclear Information System (INIS)

    Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.

    2016-01-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical

  16. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    Science.gov (United States)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  17. Photon detector for MEGA. Final report, July 16, 1992--May 31, 1993

    International Nuclear Information System (INIS)

    Gagliardi, C.A.; Tribble, R.E.

    1993-01-01

    During the past year, we have continued our work on the photon detector for the MEGA experiment at Los Alamos. The MEGA photon detector is designed to observe the 52.83 MeV photon produced in a π → eγ decay with an energy resolution of 1.25 MeV, a position resolution of 2 x 5 mm 2 , a directional resolution of 10 degree, a time resolution of 500 ps, and an efficiency of about 5.4%. (All quoted resolutions are FWHM.) It consists of three independent concentric cylindrical pair spectrometers mounted within a 1.5 T magnetic field produced by a superconducting solenoid magnet. Each pair spectrometer includes two thin (0.045 radiation lengths each) Pb foils to convert photons into e + e - pairs. The two smaller pair spectrometers have three drift chamber layers to track the e + e - pairs and thereby determine both their locations and their vector momenta. The third pair spectrometer has four layers of drift chamber, together with a larger turning region, to provide better tracking information for high energy photons such as those from the π 0 → 2γ decay

  18. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    Science.gov (United States)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  19. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-10-01

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb$^{-1}$ of LHC proton--proton collision data taken at centre-of-mass energies of $\\sqrt{s}$ = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the $Z$ resonance is used to set the absolute energy scale. For electrons from $Z$ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative in...

  20. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  1. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    International Nuclear Information System (INIS)

    Talla, Patrick Takoukam

    2011-01-01

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  2. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    International Nuclear Information System (INIS)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-01-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems

  3. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-11-01

    The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  4. Development of phonon and photon detectors for rare events searches using scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Felix; Enss, Christian; Fleischmann, Andreas; Gastaldo, Loredana; Hassel, Clemens; Hendricks, Sebastian; Kempf, Sebastian [Kirchhoff-Institut fuer Physik, Universit at Heidelberg (Germany); Kim, Yong-Hamb [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Loidl, Martin; Navick, Xavier-Francois; Rodrigues, Matias [Commissariat a l' energie atomique, Saclay (France)

    2016-07-01

    The use of scintillating crystals in cryogenic experiments searching for neutrinoless double beta decay and for direct interaction of dark matter particles allows for an efficient background reduction due to particle discrimination. We develop phonon and photon detectors based on metallic magnetic calorimeters (MMCs) to perform simultaneous measurements of heat and light generated by the interaction of a particle in a scintillating crystal. As designed we expect for the phonon sensor an energy resolution of ΔE{sub FWHM}<100 eV and a signal rise time τ<200 μs whereas for the photon detector we expect ΔE{sub FWHM}<5 eV and τ<50 μs. We discuss the design and the fabrication of these detectors and present recent results.

  5. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    Science.gov (United States)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  6. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.

    Science.gov (United States)

    Panettieri, Vanessa; Duch, Maria Amor; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-07

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm(2) and a thickness of 0.5 microm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can successfully

  7. SiPM as photon counter for Cherenkov detectors

    International Nuclear Information System (INIS)

    Roy, B.J.; Orth, H.; Schwarz, C.; Wilms, A.; Peters, K.

    2009-01-01

    Silicon photomultipliers (SiPMs) are very new type of photon counting devices that show great promise to be used as detection device in combination with scintillators/ Cherenkov radiators. SiPM is essentially an avalanche photo-diode operated in limited Geiger mode. They have been considered as potential readout devices for DIRC counter of the PANDA detector which is one of the large experiment at FAIR- the new international facility to be built at GSI, Darmstadt. In addition, the potential use of SiPM includes medical diagnosis, fluorescence measurement and high energy physics experiments. The SiPM module is a photon counting device capable of low light level detection. It is essentially an opto-semiconductor device with excellent photon counting capability and possesses great advantages over the conventional PMTs because of low voltage operation and insensitivity to magnetic fields. In many of the high energy physics experiments, the photon sensors are required to operate in high magnetic fields precluding the use of conventional PMTs. This problem can be over come with the use of SiPMs. With this motivation in mind, we have developed a SiPM test facility and have tested several commercially available SiPM for their performance study and comparison with other photon counting devices

  8. A high-throughput, multi-channel photon-counting detector with picosecond timing

    Science.gov (United States)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  9. A high-throughput, multi-channel photon-counting detector with picosecond timing

    International Nuclear Information System (INIS)

    Lapington, J.S.; Fraser, G.W.; Miller, G.M.; Ashton, T.J.R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  10. First full dynamic range calibration of the JUNGFRAU photon detector

    Science.gov (United States)

    Redford, S.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Vetter, S.; Zhang, J.

    2018-01-01

    The JUNGFRAU detector is a charge integrating hybrid silicon pixel detector developed at the Paul Scherrer Institut for photon science applications, in particular for the upcoming free electron laser SwissFEL. With a high dynamic range, analogue readout, low noise and three automatically switching gains, JUNGFRAU promises excellent performance not only at XFELs but also at synchrotrons in areas such as protein crystallography, ptychography, pump-probe and time resolved measurements. To achieve its full potential, the detector must be calibrated on a pixel-by-pixel basis. This contribution presents the current status of the JUNGFRAU calibration project, in which a variety of input charge sources are used to parametrise the energy response of the detector across four orders of magnitude of dynamic range. Building on preliminary studies, the first full calibration procedure of a JUNGFRAU 0.5 Mpixel module is described. The calibration is validated using alternative sources of charge deposition, including laboratory experiments and measurements at ESRF and LCLS. The findings from these measurements are presented. Calibrated modules have already been used in proof-of-principle style protein crystallography experiments at the SLS. A first look at selected results is shown. Aspects such as the conversion of charge to number of photons, treatment of multi-size pixels and the origin of non-linear response are also discussed.

  11. Glass-Coated Beryllium Mirrors for the LHCb RICH1 Detector

    CERN Document Server

    Barber, G J; Cameron, W; D'Ambrosio, C; Frei, C; Harnew, N; Head, R; Khimitch, Y P; Khmelnikov, V A; Loveridge, P W; Metlica, F; Obraztsov, V F; Piedigrossi, D; Sizenev, V; Kompozit Joint Stock Company, Moscow, Russia; Szczypka, P M; Ullaland, O; Vygosky, E; Websdale, D M

    2007-01-01

    The design, manufacture and testing of lightweight glass-coated beryllium spherical converging mirrors for the RICH1 detector of LHCb are described. The mirrors need to be lightweight to minimize the material budget and fluorocarbon-compatible to avoid degradation in the RICH1 C4F10 gas radiator. Results of the optical measurements for the small-sized prototypes and for the first full-sized prototype mirror are reported.

  12. Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system

    Science.gov (United States)

    Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.

    1990-05-01

    An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.

  13. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  14. First experimental observation of double-photon Compton scattering using single gamma detector

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2003-01-01

    Full text: The phenomenon of double-photon Compton scattering has been successfully observed using single gamma detector, a technique avoiding the use of complicated slow-fast coincidence set-up used till now for observing this higher order process. Here doubly differentiated collision cross-section integrated over direction of one of the two final photons, the direction of other one being kept fixed, has been measured experimentally for 0.662 MeV incident gamma photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process

  15. Performance of the LHCb RICH detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Brook, N.H.; Coombes, M.; Hampson, T.; Rademacker, J.H.; Solomin, A.; Voong, D. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Aglieri Rinella, G.; Albrecht, E.; D' Ambrosio, C.; Forty, R.; Frei, C.; Gys, T.; Kanaya, N.; Koblitz, S.; Mollen, A.; Morant, J.; Piedigrossi, D.; Storaci, B.; Ullaland, O.; Vervink, K.; Wyllie, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Bellunato, T.; Calvi, M.; Fanchini, E.; Giachero, A.; Gotti, C.; Kucharczyk, M.; Maino, M.; Matteuzzi, C.; Perego, D.L.; Pessina, G. [Sezione INFN di Milano Bicocca, Milano (Italy); Benson, S.; Eisenhardt, S.; Fitzpatrick, C.; Kim, Y.M.; Lambert, D.; Main, A.; Muheim, F.; Playfer, S.; Sparkes, A.; Young, R. [University of Edinburgh, School of Physics and Astronomy, Edinburgh (United Kingdom); Blake, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Imperial College London, London (United Kingdom); Blanks, C.; Cameron, B.; Carson, L.; Egede, U.; Owen, P.; Patel, M.; Plackett, R.; Savidge, T.; Sepp, I.; Soomro, F.; Websdale, D. [Imperial College London, London (United Kingdom); Brisbane, S.; Contu, A.; Gandini, P.; Gao, R.; Harnew, N.; Hill, D.; Hunt, P.; John, M.; Johnson, D.; Malde, S.; Muresan, R.; Powell, A.; Thomas, C.; Topp-Joergensen, S.; Torr, N.; Wilkinson, G.; Xing, F. [University of Oxford, Department of Physics, Oxford (United Kingdom); Cardinale, R.; Fontanelli, F.; Mini' , G.; Petrolini, A.; Sannino, M. [Sezione INFN di Genova, Genova (Italy); Easo, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Garra Tico, J.; Gibson, V.; Gregson, S.; Haines, S.C.; Jones, C.R.; Katvars, S.; Kerzel, U.; Mangiafave, N.; Rogers, G.J.; Sigurdsson, S.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Mountain, R. [Syracuse University, Syracuse, NY (United States); Morris, J.V.; Nardulli, J.; Papanestis, A.; Patrick, G.N.; Ricciardi, S. [STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Sail, P.; Soler, F.J.P.; Spradlin, P. [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Collaboration: The LHCb RICH Collaboration

    2013-05-15

    The LHCb experiment has been taking data at the Large Hadron Collider (LHC) at CERN since the end of 2009. One of its key detector components is the Ring-Imaging Cherenkov (RICH) system. This provides charged particle identification over a wide momentum range, from 2-100 GeV/c. The operation and control, software, and online monitoring of the RICH system are described. The particle identification performance is presented, as measured using data from the LHC. Excellent separation of hadronic particle types ({pi}, K, p) is achieved. (orig.)

  16. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    Science.gov (United States)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54

  17. Updates on Software development for a RICH detector

    Science.gov (United States)

    Voloshin, Andrew; Benmokhtar, Fatiha; Lendacky, Andrew; Goodwill, Justin

    2017-01-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the improvements is the addition of a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) are going to be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Software development for slow control as well as online monitoring is under development. I will be presenting my work on the development of a java based programs for a monitor and explain its interaction with a Mysql database where the MAPMTs information is stored as well as the techniques used to visualize Cherenkov rings.

  18. Development of twin Ge detector for high energy photon measurement and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Shigetome, Yoshiaki; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    Prototype twin HPGe detector composed of two large HPGe crystals was developed to obtain better detection efficiency ({epsilon}) and P/T ratio, which was required for high energy photon spectroscopy. In this work, the performances of the twin HPGe detector were evaluated by computer simulation employing EGS4 code. (author)

  19. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST)

    Science.gov (United States)

    Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem

    2018-01-01

    Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of detector when illuminated with randomly arriving photon events. Our results show that photon counting with >95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility through funding from our recently awarded ROSES-APRA grant and Roman Technology Fellowship award.

  20. Two-photon physics and online beam monitoring using the DELPHI detector at LEP

    International Nuclear Information System (INIS)

    Bjarne, J.

    1994-01-01

    This thesis is based on work done during 1989-1993 using the DELPHI detector at LEP, which is summarized in five articles. It consists of three main parts. The first part describes the Very Small Angle Tagger (VSAT), which is a sub-detector of the DELPHI detector at LEP. It consists of four silicon-tungsten electromagnetic calorimeter modules having a silicon strip planes for position determination. The modules are placed adjacent to the beam pipe, at ±7.7 m from the interaction point and after superconducting quadrupole magnets, allowing the detection of electrons in a polar angle range of 4 to 13 mrad. The second part is devoted to two-photon physics at DELPHI, with strong emphasis on a VSAT single-tagged event analysis. Here is shown, for the first time, evidence of hard scattering processes in single-tagged two-photon collisions. A QCD Resolved Photon Contribution (QCD-RPC) model is introduced. Data is then seen to be well described by a full VDM+(QCD-RPC) model. Different parton density functions are compared with data. The third part first describes the system for online monitoring of LEP beam background and luminosity at the DELPHI interaction point. Details are given of contributing sub-detector signals and program structure. Then follows a description of the VSAT online monitoring program (VSAT-MONITOR). A good agreement is found between the VSAT-MONITOR estimates of luminosity and beam spot and those of other detectors. Finally, results are presented of VSAT measurements of a LEP beam separation scan. 75 refs, figs

  1. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector; Spektrale und bildgebende Eigenschaften photonenzaehlender Roentgendetektoren am Beispiel des Medipix-Detektors

    Energy Technology Data Exchange (ETDEWEB)

    Korn, A.

    2007-05-14

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  2. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem; Levin, Craig S [Molecular Imaging Program at Stanford, Department of Radiology, Stanford, CA (United States)], E-mail: cslevin@stanford.edu

    2009-09-07

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of {gamma}-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains.

  3. The impact of two-photon physics on a B factory detector

    International Nuclear Information System (INIS)

    Bauer, D.A.

    1992-01-01

    While preceding workshops have outlined the broad range of physics topics which could be addressed at a B Factory, the challenge in this workshop was to define the impacts of this physics on the detector and delineate areas which will need further study. In this report, the author briefly recap the two-photon physics prospects at a B Factory and then show studies done to assess how the detector at such a facility could accommodate such physics

  4. A Light Universal Detector for the Study of Correlations between Photons and Charged Particles

    CERN Document Server

    2002-01-01

    The WA93 experiment combines two essential means of quark matter diagnosis: \\item a)~~~~the measurement of photon production rates relative to charged particles or $ \\pi ^0 ^{a}pos $s \\item b)~~~~the measurement of transverse momenta of charged and neutral particles and their correlations. \\end{enumerate} \\\\ \\\\ The experimental setup consists of highly segmented lead glass arrays (3780~modules) at a distance of 9~m from the target covering the range 2~$<$~y~$<$~3. The detector allows to reconstruct the transverse momentum of $ \\pi ^0 ^{a}pos $s and $ \\eta ^{a}pos $s. A preshower detector which can be operated in a hadron-blind mode complements the photon measurement in the range 3~$<$~y~$<$~5.5. The detector yields the number of photons and,~-~to a limited extend~-, information on the total electromagnetic transverse energy. Charged particle tracking is achieved by a set of newly developed multistep avalanche chambers read out by CCD cameras downstream of the GOLIATH vertex magnet. Bose-Einstein c...

  5. Di-photon events recorded by the CMS detector (Run 2, 13 TeV, 0 T)

    CERN Multimedia

    Mc Cauley, Thomas

    2016-01-01

    This image shows a collision event with a photon pair observed by the CMS detector in proton-collision data collected in 2015 with no magnetic field present. The energy deposits of the two photons are represented by the two large green towers. The mass of the di-photon system is between 700 and 800 GeV. The candidates are consistent with what is expected for prompt isolated photons.

  6. A New GEM-like Imaging Detector with Electrodes Coated with Resistive Layers

    CERN Document Server

    Di Mauro, Antonio; Martinengo, Paolo; Napri, Eugenio; Peskov, Vladimir; Periale, Luciano; Picchi, P.; Pietropaolo, Francesco; Rodionov, I.

    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers: CuO or CrO. These detectors can operate stably at gains close to 10E5 and they are very robust. We discovered that the cathodes of these detectors could be coated by CsI layers and in such a way the detectors gain high efficiency for the UV photons. We also demonstrated that such detectors can operate stably in the cascade mode and high overall gains (~10E6) are reachable. This opens applications in several areas, for example in RICH or in noble liquid TPCs. Results from the first applications of these devices for UV photon detection at room and cryogenic temperatures are given.

  7. arXiv Photon detector system performance in the DUNE 35-ton prototype liquid argon time projection chamber

    CERN Document Server

    Adams, D.L.; Anderson, J.T.; Bagby, L.; Baird, M.; Barr, G.; Barros, N.; Biery, K.; Blake, A.; Blaufuss, E.; Boone, T.; Booth, A.; Brailsford, D.; Buchanan, N.; Chatterjee, A.; Convery, M.; Davies, J.; Dealtry, T.; DeLurgio, P.; Deuerling, G.; Dharmapalan, R.; Djurcic, Z.; Drake, G.; Eberly, B.; Freeman, J.; Glavin, S.; Gomes, R.A.; Goodman, M.C.; Graham, M.; Hahn, A.; Haigh, J.T.; Hartnell, J.; Higuera, A.; Himmel, A.; Insler, J.; Jacobsen, J.; Junk, T.; Kirby, B.; Klein, J.; Kudryavtsev, V.A.; Kutter, T.; Li, Y.; Li, X.; Lin, S.; Martin-Albo, J.; McConkey, N.; Moura, C.A.; Mufson, S.; Nicholls, T.C.; Nowak, J.; Oberling, M.; Paley, J.; Qian, X.; Raaf, J.L.; Rivera, D.; Santucci, G.; Sinev, G.; Spooner, N.J. C.; Stancari, M.; Stancu, I.; Stefan, D.; Stewart, J.; Stock, J.; Strauss, T.; Sulej, R.; Sun, Y.; Thiesse, M.; Thompson, L.F.; Tsai, Y.T.; Wallbank, M.; Warburton, T.K.; Warner, D.; Whittington, D.; Wilson, R.J.; Worcester, M.; Worcester, E.; Yang, T.; Zhang, C.

    The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length of $155 \\pm 28$ cm.

  8. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)

    2016-05-15

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  9. Photodetectors and front-end electronics for the LHCb RICH upgrade

    Science.gov (United States)

    Cassina, L.; LHCb RICH

    2017-12-01

    The RICH detectors of the LHCb experiment provide identification of hadrons produced in high energy proton-proton collisions in the LHC at CERN over a wide momentum range (2-100 GeV/c). Cherenkov light is collected on photon detector planes sensitive to single photons. The RICH will be upgraded (in 2019) to read out every bunch crossing, at a rate of 40 MHz. The current hybrid photon detectors (HPD) will be replaced with multi-anode photomultiplier tubes (customisations of the Hamamatsu R11265 and the H12699 MaPMTs). These 8×8 pixel devices meet the experimental requirements thanks to their small pixel size, high gain, negligible dark count rate (∼50 Hz/cm2) and moderate cross-talk. The measured performance of several tubes is reported, together with their long-term stability. A new 8-channel front-end chip, named CLARO, has been designed in 0.35 μm CMOS AMS technology for the MaPMT readout. The CLARO chip operates in binary mode and combines low power consumption (∼1 mW/Ch), wide bandwidth (baseline restored in ⩽ 25 ns) and radiation hardness. A 12-bit digital register permits the optimisation of the dynamic range and the threshold level for each channel and provides tools for the on-site calibration. The design choices and the characterization of the electronics are presented.

  10. Calibration of LHCb RICH detectors with \\Lambda \\to p\\pi decay using data

    CERN Multimedia

    Popovici, Bogdan

    2008-01-01

    The LHCb physics programme will focus on high precision studies of CP violation and rare phenomena in B hadron decays. The RICH detectors of LHCb will provide hadron identification over the wide momentum range 1 to 100 GeV/c, and are central to the physics goals of the experiment. An excellent understanding of the hadron identification performance of the RICH detectors is essential. To achieve this goal, calibration strategies have been devised that will enable the performance to be measured from the data themselves. The decay chain $\\Lambda \\to p \\pi$ can be cleanly selected, based on its kinematic signature, without the use of RICH information. These events can be used as an unbiased sample for calibrating the RICH particle identification performance of pions and protons. In this way, the calibration method using the high purity samples of $\\Lambda$'s will be described.

  11. The RICH detector of the NA62 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Aisa, D.; Anzivino, G. [Dipartimento di Fisica e Geologia dell' Università di Perugia (Italy); INFN – Sezione di Perugia (Italy); Bizzetti, A. [Dipartimento di Fisica dell' Università di Modena e Reggio Emilia (Italy); INFN – Sezione di Firenze (Italy); Bucci, F. [INFN – Sezione di Firenze (Italy); Campeggi, C. [Dipartimento di Fisica e Geologia dell' Università di Perugia (Italy); INFN – Sezione di Perugia (Italy); Carassiti, V. [INFN – Sezione di Ferrara (Italy); Cassese, A. [INFN – Sezione di Firenze (Italy); Dipartimento di Fisica dell' Università di Firenze (Italy); Cenci, P. [INFN – Sezione di Perugia (Italy); Ciaranfi, R. [INFN – Sezione di Firenze (Italy); Duk, V.; Farnesini, L. [INFN – Sezione di Perugia (Italy); Fry, J.R. [University of Liverpool (Italy); CERN (Italy); Iacopini, E. [INFN – Sezione di Firenze (Italy); Dipartimento di Fisica dell' Università di Firenze (Italy); Lami, S. [INFN – Sezione di Pisa (Italy); Lenti, M.; Maletta, F. [INFN – Sezione di Firenze (Italy); Pepe, M. [INFN – Sezione di Perugia (Italy); Piandani, R. [INFN – Sezione di Pisa (Italy); Piccini, M. [INFN – Sezione di Perugia (Italy); Piluso, A. [Dipartimento di Fisica e Geologia dell' Università di Perugia (Italy); INFN – Sezione di Perugia (Italy); and others

    2014-12-01

    The NA62 experiment at CERN aims to measure the branching ratio of the ultra-rare charged kaon decay K{sup +}→π{sup +}νν{sup ¯} with a 10% accuracy and with a background contamination at the 10% level. Since the branching ratio of this decay is O(10{sup −10}), to fulfill such request one of the main backgrounds, the decay K{sup +}→μ{sup +}ν (BR∼63%), must be suppressed by a rejection factor of 4×10{sup −13} (assuming 10% signal acceptance). This can be partially accomplished using a combination of kinematical cuts (8×10{sup −6}) and the different power of penetration through matter of pions and muons (10{sup −5}). A further 5×10{sup −3} suppression factor will be provided by a RICH detector, in a momentum range between 15 and 35 GeV/c. The details of the RICH project as well as the results from test runs performed on a RICH prototype of the same length of the final detector will be presented. The current status of the construction and the description of the final readout and trigger electronics will also be reviewed. - Highlights: • The RICH of the NA62 experiment will separate pions from muons in kaon decays. • Crossing time of charged particles is measured with a resolution better than 100 ps. • RICH will also be fundamental for the low level trigger of the experiment.

  12. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS PC ≥NPS EI and hence DQE PC ≤DQE EI . The necessary and sufficient condition for equality is that the PSF

  13. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  14. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    Czech Academy of Sciences Publication Activity Database

    Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.

    2014-01-01

    Roč. 104, č. 4 (2014), "041113-1"-"041113-4" ISSN 0003-6951 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon- number resolving detector * twin beams * photon fields Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.302, year: 2014

  15. Fast digitization and discrimination of prompt neutron and photon signals using a novel silicon carbide detector

    International Nuclear Information System (INIS)

    Brandon W. Blackburn; James T. Johnson; Scott M. Watson; David L. Chichester; James L. Jones; Frank H. Ruddy; John G. Seidel; Robert W. Flammang

    2007-01-01

    Current requirements of some Homeland Security active interrogation projects for the detection of Special Nuclear Material (SNM) necessitate the development of faster inspection and acquisition capabilities. In order to do so, fast detectors which can operate during and shortly after intense interrogation radiation flashes are being developed. Novel silicon carbide (SiC) semiconductor Schottky diodes have been utilized as robust neutron and photon detectors in both pulsed photon and pulsed neutron fields and are being integrated into active inspection environments to allow exploitation of both prompt and delayed emissions. These detectors have demonstrated the capability of detecting both photon and neutron events during intense photon flashes typical of an active inspection environment. Beyond the inherent insensitivity of SiC to gamma radiation, fast digitization and processing has demonstrated that pulse shape discrimination (PSD) in combination with amplitude discrimination can further suppress unwanted gamma signals and extract fast neutron signatures. Usable neutron signals have been extracted from mixed radiation fields where the background has exceeded the signals of interest by >1000:1

  16. Free-running InGaAs/InP single photon detector with feedback quenching IC

    International Nuclear Information System (INIS)

    Zheng, Fu; Wang, Feilong; Wang, Chao; Sun, Zhibin; Zhai, Guangjie

    2015-01-01

    InGaAs/InP avalanche photodiodes (APD) are usually employed as Geiger-mode single photon detector at near-infrared wavelength between 1.0 μm and 1.7 μm. In order to work in the free-running regime rather than gated regime, we demonstrate a feedback quenching integrated circuit to rapidly quench the avalanche and reset the APD. Because this IC is close to the APD, parasitic capacitance is largely reduced, thus reducing the quench-time, reset-time and also the afterpulsing probability. We investigated the free-running single photon detector's afterpulsing effect, de-trapping time, dark count rate and detection efficiency and also compared with gated regime operation. After corrected for deadtime and afterpulse, we found the free-running detector performance is comparable with gated regime

  17. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  18. Design and test results of the AMS RICH detector

    CERN Document Server

    Casadei, D.

    2002-01-01

    The AMS-02 detector will operate for at least 3 years on the International Space Station, measuring cosmic ray spectra at about 400 km above sea level over a wide range of geomagnetic latitude. The proximity focusing ring imaging \\v{C}erenkov counter of AMS-02 will measure the particle velocity $\\beta$ with $\\approx 0.1%$ uncertainty, making possible to discriminate Beryllium isotopes up to about 15 GeV/nucl. In addition its charge measurement will allow to study the elemental composition of cosmic rays up to Iron. A prototype of the RICH detector was tested with cosmic rays and on a ion beam accelerated by SPS, at CERN (October 2002).

  19. Hartmann test of the COMPASS RICH-1 optical telescopes

    CERN Document Server

    Polak, J; Alekseev, M; Angerer, H; Apollonio, M; Birsa, R; Bordalo, P; Bradamante, F; Bressan, A; Busso, L; Chiosso, V M; Ciliberti, P; Colantoni, M L; Costa, S; Dibiase, N; Dafni, T; Dalla Torre, S; Diaz, V; Duic, V; Delagnes, E; Deschamps, H; Eyrich, W; Faso, D; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Gerassimov, S; Giorgi, M; Gobbo, B; Hagemann, R; von Harrach, D; Heinsius, F H; Joosten, R; Ketzer, B; Königsmann, K; Kolosov, V N; Konorov, I; Kramer, D; Kunne, F; Levorato, S; Maggiora, A; Magnon, A; Mann, A; Martin, A; Rebourgeard, P; Mutter, A; Nähle, O; Neyret, D; Nerling, F; Pagano, P; Paul, S; Panebianco, S; Panzieri, D; Pesaro, G; Pizzolotto, C; Menon, G; Rocco, E; Robinet, F; Schiavon, P; Schill, C; Schoenmeier, P; Silva, L; Slunecka, M; Steiger, L; Sozzi, F; Sulc, M; Svec, M; Tessarotto, F; Teufel, A; Wollny, H

    2008-01-01

    The central region of COMPASS RICH-1 has been equipped with a new photon detection system based on MultiAnode PhotoMultiplier Tubes (MAPMT). The Cherenkov photons are focused by an array of 576 fused silica telescopes onto 576 MAPMTs. The quality and positioning of all optical components have been tested by Hartmann method. The validation procedures are described. The quality of the optical concentrators was checked and alignment corrections were made. The upgraded detector showed excellent performances during 2006 data taking.

  20. Fast readout of the COMPASS RICH CsI-MWPC photon chambers

    International Nuclear Information System (INIS)

    Abbon, P.; Delagnes, E.; Deschamps, H.; Kunne, F.; Gerasimov, S.; Ketzer, B.; Konorov, I.; Kravtchuk, N.; Magnon, A.; Neyret, D.; Panebianco, S.; Paul, S.; Rebourgeard, P.; Tessaroto, F.

    2006-01-01

    A new readout system for CsI-coated MWPCs, used in the COMPASS RICH detector, has been proposed and tested in nominal high-rate conditions. It is based on the APV25-S1 analog sampling chip, and will replace the Gassiplex chip readout used up to now. The APV chip, originally designed for silicon microstrip detectors, is shown to perform well even with 'slow' signals from a MWPC, keeping a signal-to-noise ratio of 9. For every trigger the system reads three consecutive in-time samples, thus allowing to extract information on the signal shape and its timing. The effective time window is reduced from ∼3 μs for the Gassiplex to below 400 ns for the APV25-S1 chip, reducing pile-up events at high particle rate. A significant improvement of the signal-to-background ratio by a factor 5-6 with respect to the original readout has been measured in the central region of the RICH detector. Due to its pipelined architecture, the new readout system also considerably reduces the dead time per event, allowing efficient data taking at higher trigger rate

  1. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  2. Ge-rich graded-index Si1-xGex devices for MID-IR integrated photonics

    Science.gov (United States)

    Ramirez, J. M.; Vakarin, V.; Liu, Q.; Frigerio, J.; Ballabio, A.; Le Roux, X.; Benedikovic, D.; Alonso-Ramos, C.; Isella, G.; Vivien, L.; Marris-Morini, D.

    2018-02-01

    Mid-infrared (mid-IR) silicon photonics is becoming a prominent research with remarkable potential in several applications such as in early medical diagnosis, safe communications, imaging, food safety and many more. In the quest for the best material platform to develop new photonic systems, Si and Ge depart with a notable advantage over other materials due to the high processing maturity accomplished during the last part of the 20th century through the deployment of the CMOS technology. From an optical viewpoint, combining Si with Ge to obtain SiGe alloys with controlled stoichiometry is also of interest for the photonic community since permits to increase the effective refractive index and the nonlinear parameter, providing a fascinating playground to exploit nonlinear effects. Furthermore, using Ge-rich SiGe gives access to a range of deep mid-IR wavelengths otherwise inaccessible (λ 2-20 μm). In this paper, we explore for the first time the limits of this approach by measuring the spectral loss characteristic over a broadband wavelength range spanning from λ = 5.5 μm to 8.5 μm. Three different SiGe waveguide platforms are compared, each one showing higher compactness than the preceding through the engineering of the vertical Ge profile, giving rise to different confinement characteristics to the propagating modes. A flat propagation loss characteristic of 2-3 dB/cm over the entire wavelength span is demonstrated in Ge-rich graded-index SiGe waveguides of only 6 μm thick. Also, the role of the overlap fraction of the confined optical mode with the Si-rich area at the bottom side of the epitaxial SiGe waveguide is put in perspective, revealing a lossy characteristic compared to the other designs were the optical mode is located in the Ge-rich area at the top of the waveguide uniquely. These Ge-rich graded-index SiGe waveguides may pave the way towards a new generation of photonic integrated circuits operating at deep mid-IR wavelengths.

  3. Imaging Hybrid Photon Detectors with a Reflective Photocathode

    CERN Document Server

    Ferenc, D

    2000-01-01

    Modern epitaxially grown photocathodes, like GaAsP, bring a very high inherent quantum efficiency, but are rather expensive due to the complicated manufacturing and mounting process. We argue that such photocathodes could be used in reflective mode, in order to avoid the risky and expensive removal of the epitaxial growth substrate. Besides that the quantum efficiency should increase considerably. In this paper we present results of the development of large imaging Hybrid Photon Detectors (HPDs), particularly designed for such reflective photocathodes.

  4. Cadmium-Zinc-Telluride photon detector for epithermal neutron spectroscopy--pulse height response characterisation

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Bracco, A.; D'Angelo, A.; Gorini, G.; Imberti, S.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    The Resonance Detector Spectrometer was recently revised for neutron spectroscopic studies in the eV energy region. In this technique one makes use of a photon detector to record the gamma emission from analyser foils used as neutron-gamma converters. The pulse-height response of a Cadmium-Zinc-Telluride photon detector to neutron capture emission from 238 U and 197 Au analyser foils was characterised in the neutron energy range 1-200 eV. The experiment was performed on the VESUVIO spectrometer at the ISIS neutron-pulsed source. A biparametric data acquisition, specifically developed for these measurements, allowed the simultaneous measurements of both the neutron time of flight and γ pulse-height spectra. Through the analysis of the γ pulse-height spectra the main components of the signal associated with resonant and non-resonant neutron absorption were identified. It was also shown that, in principle, energy discrimination can be used to improve the signal to background ratio of the neutron time-of-flight measurement

  5. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    Science.gov (United States)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  6. Photon-counting digital radiography using high-pressure xenon filled detectors

    CERN Document Server

    Li, Maozhen; Johns, P C

    2001-01-01

    Digital radiography overcomes many of the limitations of the traditional screen/film system. Further enhancements in the digital radiography image are possible if the X-ray image receptor could measure the energy of individual photons instead of simply integrating their energy, as is the case at present. A prototype photon counting scanned projection radiography system has been constructed, which combines a Gas Electron Multiplier (GEM) and a Gas Microstrip Detector (GMD) using Xe : CH sub 4 (90 : 10) at high pressure. With the gain contribution from the GEM, the GMD can be operated at lower and safer voltages making the imaging system more reliable. Good energy resolution, and spatial resolution comparable to that of screen/film, have been demonstrated for the GEM/GMD hybrid imaging system in photon counting mode for X-ray spectra up to 50 kV.

  7. The effect of event shape on centroiding in photon counting detectors

    International Nuclear Information System (INIS)

    Kawakami, Hajime; Bone, David; Fordham, John; Michel, Raul

    1994-01-01

    High resolution, CCD readout, photon counting detectors employ simple centroiding algorithms for defining the spatial position of each detected event. The accuracy of centroiding is very dependent upon a number of parameters including the profile, energy and width of the intensified event. In this paper, we provide an analysis of how the characteristics of an intensified event change as the input count rate increases and the consequent effect on centroiding. The changes in these parameters are applied in particular to the MIC photon counting detector developed at UCL for ground and space based astronomical applications. This detector has a maximum format of 3072x2304 pixels permitting its use in the highest resolution applications. Individual events, at light level from 5 to 1000k events/s over the detector area, were analysed. It was found that both the asymmetry and width of event profiles were strongly dependent upon the energy of the intensified event. The variation in profile then affected the centroiding accuracy leading to loss of resolution. These inaccuracies have been quantified for two different 3 CCD pixel centroiding algorithms and one 2 pixel algorithm. The results show that a maximum error of less than 0.05 CCD pixel occurs with the 3 pixel algorithms and 0.1 CCD pixel for the 2 pixel algorithm. An improvement is proposed by utilising straight pore MCPs in the intensifier and a 70 μm air gap in front of the CCD. ((orig.))

  8. Development and first tests of GEM-like detectors with resistive electrodes

    CERN Document Server

    Peskov, Vladimir; Centro, Sandro; Di Mauro, A; Lund-Jensen, B; Martinengo, P; Nappi, E; Oliveira, R; Pietropaolo, F; Picchi, P; Periale, L; Rodionov, I; Ventura, Sandro

    2007-01-01

    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers or completely made of resistive materials. These detectors can operate stably at gains close to 105. The resistive layers limit the energy of discharges appearing at higher gains thus making the detectors very robust. We demonstrated that the cathodes of some of these detectors could be coated by CsI or SbCs layers to enhance the detection efficiency for the UV and visible photons. We also discovered that such detectors can operate stably in the cascade mode and high overall gains ($~10^{6}$) are reachable. Applications in several areas, for example in RICH or in noble liquid TPCs are therefore possible. The first results from the detection of UV photons at room and cryogenic temperatures will be given.

  9. A neutron calibration technique for detectors with low neutron/high photon sensitivity

    International Nuclear Information System (INIS)

    Jahr, R.; Guldbakke, S.; Cosack, M.; Dietze, G.; Klein, H.

    1978-03-01

    The neutron response of a detector with low neutron-/high photon sensitivity is given by the difference of two terms: the response to the mixed neutron-photon field, measured directly, and the response to the photons, deduced from additional measurements with a photon spectrometer. The technique is particularly suited for use in connection with targets which consist of a thick backing and thin layer of neutron producing material such as T, D, Li nuclei. Then the photon component of the mixed field is very nearly the same as the pure photon field from a 'phantom target', being identical with the neutron producing target except for the missing neutron producing material. Using this technique in connection with a T target (Ti-T-layer on silver backing) and the corresponding phantom target (Ti-layer on silver backing), a GM counter was calibrated at a neutron energy of 2.5 MeV. Possibilities are discussed to subsequently calibrate the GM counter at other neutron energies without the use of the photon spectrometer. (orig./HP) [de

  10. GEM - A novel gaseous particle detector

    CERN Document Server

    Meinschad, T

    2005-01-01

    The work carried out within the framework of this Ph.D. deals with the construction of gaseous prototype detectors using Gas Electron Multiplier electrodes for the amplification of charges released by ionizing particles. The Gas Electron Multiplier (GEM) is a thin metal-clad polymer foil, etched with a high density of narrow holes, typically 50-100mm-2. On the application of a potential difference between the conductive top and bottom sides each hole acts as independent proportional counter. This new fast device permits to reach large amplification factors at high rates with a strong photon and ion-mediated feedback suppression due to the avalanche confinement in the GEM-holes. Here, in particular studies have been performed, which should prove, that the GEM-technology is applicable for an efficient measurement of single Cherenkov photons. These UV-photons can be detected in different ways. An elegant solution to develop large area RICH-detectors is to evaporate a pad-segmented readout-cathode of a multi-wire...

  11. Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xiaolei; Ma Jian; Jin Ge; Chen Zengbing; Zhang Jun; Pan Jianwei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu Jianhong; Wang Quan; Du Debing [Anhui Quantum Communication Technology Co., Ltd., Hefei, Anhui 230088 (China)

    2012-08-15

    InGaAs/InP single-photon avalanche diodes (SPADs) working in the regime of GHz clock rates are crucial components for the high-speed quantum key distribution (QKD). We have developed for the first time a compact, stable, and user-friendly tabletop InGaAs/InP single-photon detector system operating at a 1.25 GHz gate rate that fully integrates functions for controlling and optimizing SPAD performance. We characterize the key parameters of the detector system and test the long-term stability of the system for continuous operation of 75 h. The detector system can substantially enhance QKD performance and our present work paves the way for practical high-speed QKD applications.

  12. A Preshower Photon Multiplicity Detector for the ALICE Experiment

    CERN Document Server

    Aggarwal, M M; Baba, P V K S; Badyal, S K; Bharti, A; Bhasin, A; Bhati, A K; Bhatia, V S; Chattopadhyay, S; Dubey, A K; Dutta-Majumdar, M R; Mazumdar, K; Ganti, M S; Ghosh, P; Sen-Gupta, A; Gupta, V K; Mahapatra, D P; Mangotra, L K; Mohanty, B; Nayak, T K; Phatak, S C; Raniwala, R; Raniwala, S; Rao, N K; Sambyal, S S; Singaraju, R N; Sinha, B; Trivedi, M D; Viyogi, Y P

    1999-01-01

    A preshower Photon Multiplicity Detector (PMD) is proposed to be implemented in the ALICE experiment to study event shapes and isospin fluctuations. The PMD, to be mounted on the magnet door at 6m from the vertex, has fine granularity and full azimuthal coverage in the pseudo-rapidity region 1.8detector is based on a cellular honeycomb proportional chamber design for both the PMD and the CPV, and has a total of about 2 x 105 cels of 1 cm2 area. The honeycomb walls form a common cathode, operated at a high negative voltage. The signal is read out from the anode wires at ground potential using gassiplex electronics. The detector employs an inert gas mixture of Ar (70%) and CO2 (30%). Beam test results for a small prototype indicate that about 80% of the central volume of the detector has almost uniform efficiency (about 95%) for MIP detection. The average number of cells fired by a MIP is close to uni...

  13. Isolated photon production measurement in p-p collisions at √s = 7 TeV with the ALICE detector

    International Nuclear Information System (INIS)

    Mas, A.

    2013-01-01

    The high transverse momentum photon production in proton-proton collisions (p-p) is described by perturbative quantum chromodynamics (pQCD). Among these photons, those produced directly by an energetic partonic interaction (called direct photons) are of great interest since their measurement allows to test pQCD predictions and it allows also the constraint of proton structure functions. The work of this thesis aims at studying and measuring direct photons produced in p-p collisions at 7 TeV with the ALICE detector. The ALICE electromagnetic calorimeter (EMCal) is used to achieve this measurement which is based on an isolation procedure that allows to reduce background coming from other photon production modes (fragmentation, decay). Multiple aspects like EMCal data quality, photon identification as well as spectrum correction and its normalization are highlighted. Finally, the first isolated prompt photon cross-section measured with ALICE detector is presented, compared to theoretical predictions and to the last results from other LHC experiments. (author)

  14. The LHCb RICH system: current detector performance and status of the upgrade program

    CERN Document Server

    Fiorini, Massimiliano

    2016-01-01

    LHCb is a precision experiment devoted to the study of CP violation and rare decays of b and c quarks, and to the search for new physics beyond the Standard Model at the Large Hadron Collider (LHC) at CERN. The Ring-Imaging Cherenkov (RICH) system is a key component of the LHCb experiment: it consists of two RICH detectors that provide charged particle identification over a wide momentum range (2-100 GeV/c) and angular acceptance (15-300 mrad). The LHCb RICH system has been performing extremely well during Run 1 and is providing the LHCb experiment also in Run 2 with a robust, reliable and precise particle identification system. Performance of the RICH detectors measured from data will be presented, with special reference to its dependence on calibration parameters and event multiplicities. The LHCb experiment is preparing for an upgrade during the second LHC long shutdown (2019-2020) in order to fully exploit the LHC flavour physics potential. A five-fold increase in instantaneous luminosity is foreseen reac...

  15. Broadband illumination of superconducting pair breaking photon detectors

    International Nuclear Information System (INIS)

    Guruswamy, T; Goldie, D J; Withington, S

    2016-01-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)

  16. Measurement of differential di-photon plus jet cross sections using the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bessner, Martin Florian

    2017-08-15

    A good understanding of the strong interaction is crucial for every experiment at a hadron collider. Events with photons provide a direct access to study processes of the strong interaction. This thesis presents the measurement of differential cross sections of events with two photons as a function of the number of hadronic jets. Photons are required to be isolated from hadronic activity in the event. Collision data is used corresponding to an integrated luminosity of 20.3 fb{sup -1} at a proton-proton collision energy of √(s)=8 TeV collected by the ATLAS detector at the Large Hadron Collider (LHC) in 2012. The dominant background contribution comes from hadronic jets which are identified as photons, occurring mainly when a π{sup 0} carries most of the jet energy. Two methods to remove this contribution are presented. A smaller background contribution arising from electrons misidentified as photons is removed as well. The measured event yields are corrected for detector inefficiencies and resolution effects. An unfolding method based on singular value decomposition of the resolution matrix is extended to two-dimensional distributions and applied to the reconstructed distributions. All systematic uncertainties are evaluated, the dominant uncertainties arise from the jet background subtraction and the uncertainty in the jet energy scale. 16 observables are studied to explore the photon and jet kinematics. Double differential cross sections are shown as function of those observables and the number of jets, both inclusively (≥n jets) and exclusively (=n jets). The results are compared to theoretical predictions from Sherpa, Pythia and GoSam.

  17. Measurement of differential di-photon plus jet cross sections using the ATLAS detector

    International Nuclear Information System (INIS)

    Bessner, Martin Florian

    2017-08-01

    A good understanding of the strong interaction is crucial for every experiment at a hadron collider. Events with photons provide a direct access to study processes of the strong interaction. This thesis presents the measurement of differential cross sections of events with two photons as a function of the number of hadronic jets. Photons are required to be isolated from hadronic activity in the event. Collision data is used corresponding to an integrated luminosity of 20.3 fb"-"1 at a proton-proton collision energy of √(s)=8 TeV collected by the ATLAS detector at the Large Hadron Collider (LHC) in 2012. The dominant background contribution comes from hadronic jets which are identified as photons, occurring mainly when a π"0 carries most of the jet energy. Two methods to remove this contribution are presented. A smaller background contribution arising from electrons misidentified as photons is removed as well. The measured event yields are corrected for detector inefficiencies and resolution effects. An unfolding method based on singular value decomposition of the resolution matrix is extended to two-dimensional distributions and applied to the reconstructed distributions. All systematic uncertainties are evaluated, the dominant uncertainties arise from the jet background subtraction and the uncertainty in the jet energy scale. 16 observables are studied to explore the photon and jet kinematics. Double differential cross sections are shown as function of those observables and the number of jets, both inclusively (≥n jets) and exclusively (=n jets). The results are compared to theoretical predictions from Sherpa, Pythia and GoSam.

  18. Decay spectroscopy of neutron-rich nuclei with the CAITEN detector

    Energy Technology Data Exchange (ETDEWEB)

    Steiger, Konrad [Physik-Department E12, Technische Universitaet Muenchen (Germany); Collaboration: CAITEN-Collaboration

    2012-07-01

    An experiment in fall 2010 at the RIBF (Radioactive Ion Beam Factory at RIKEN, Japan) investigated the neutron-rich nuclei in the neighborhood of {sup 30}Ne and {sup 36}Mg. These nuclei were produced by relativistic projectile fragmentation of a 345 AMeV {sup 48}Ca primary beam which was delivered from the superconducting ring cyclotron SRC with an average intensity of 70 pnA. The secondary cocktail beam was separated and identified with the BigRIPS fragment separator and the ZeroDegree spectrometer. The unambiguous particle identification was achieved by measuring the energy loss, time of flight and magnetic rigidity event-by-event. The identified fragments were implanted in the CAITEN detector (Cylindrical Active Implantation Target for Efficient Nuclear-decay study). The main part of this detector is a 4 x 10{sup 4}-fold segmented plastic scintillator with the shape of a hollow cylinder. To reduce background events the scintillator was moved continuously in axial and vertical direction (similar to a tape-transporting system). Implantations and decays were correlated in time and space. {gamma}-rays were detected with three germanium clover detectors. For the first time {beta}-delayed gammas were measured in the neutron-rich isotopes {sup 36-38}Si. The status of the analysis and preliminary results including new half-life values and tentative level schemes for these very exotic nuclei are presented.

  19. SU-E-T-432: Field Size Influence On the Electron and Photon Spectra Within Small MV Field Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benmakhlouf, H; Andreo, P [Department of Medical Physics, Karolinska University Hospital, Stockholm and Department of Physics, Medical Radiation Physics, Stockholm University (Sweden)

    2015-06-15

    Purpose: To investigate the influence of photon field size on the electron and photon fluence spectra in the active volume of small field detectors. Methods: The PENELOPE MC system based usercode PenEasy was used to calculate the material influence on the spectra by scoring the differential fluence in inserts of silicon, carbon, phosphorus and aluminium having 3 mm diameter and height. The spectra were then calculated inside the active volume of eleven detectors (ion chambers and solid-state detectors) whose geometry was simulated with great detail. The inserts/detectors were placed at 10 cm depth in a 30 cm x 30 cm x 30 cm water phantom and irradiated with 2.5 MeV photons and Varian Clinac 6 MV beams of small, medium and large size. Results: For all configurations, photon spectra in the scoring volume were similar to that in a small water volume except for additional characteristic x-ray peaks resulting from the material itself and from the materials surrounding the detectors (i.e. high-Z shielding the silicon). Electron fluence calculated in the inserts were up to 60% larger than in water; the difference increased with material density and decreasing field size. MC-calculated doses were compared to analytically determined collision kerma and restricted cema (cut-off=15keV). For the inserts, with large and medium fields K-col agreed with MC-dose, but K-col overestimated the dose for small fields due to lack of lateral CPE. For the detectors, up to 15% differences between K-col and the MC-dose were found. For all configurations the C-delta and MC-dose agreed within ±2%. Conclusion: The most relevant findings were that shielding affects substantially the photon spectra and material conditions the electron spectra, their field size dependence varying with the geometry configuration. These affect the values of factors entering into relative dosimetry.

  20. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR-80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES-08193 Bellaterra, Barcelona (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE-55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW-Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE-221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU-Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: stathes.paganis@cern.ch [Yale University, Department of Physics, PO Box 208121, New Haven, CT06520-8121 (United States)

    2011-04-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  1. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  2. Evaluation of the charge-sharing effects on spot intensity in XRD setup using photon-counting pixel detectors

    International Nuclear Information System (INIS)

    Nilsson, H.-E.; Mattsson, C.G.; Norlin, B.; Froejdh, C.; Bethke, K.; Vries, R. de

    2006-01-01

    In this study, we examine how charge loss due to charge sharing in photon-counting pixels detectors affects the recording of spot intensity in an X-ray diffraction (XRD) setup. In the photon-counting configuration, the charge from photons that are absorbed at the boarder of a pixel will be shared between two pixels. If the threshold is high enough, these photons will not be counted whereas if it is low enough, they will be counted twice. In an XRD setup, the intensity and position of various spots should be recorded. Thus, the intensity measure will be affected by the setting of the threshold. In this study, we used a system level Monte Carlo simulator to evaluate the variations in the intensity signals for different threshold settings and spot sizes. The simulated setup included an 8keV mono-chromatic source (providing a Gaussian shaped spot) and the MEDIPIX2 photon-counting pixel detector (55 μm x 55 μm pixel size with 300μm silicon) at various detector biases. Our study shows that the charge-sharing distortion can be compensated by numerical post processing and that high resolution in both charge distribution and position can be achieved

  3. Extensive tests of Hybrid Photon Detectors (HPD) used to collect Cherenkov light

    International Nuclear Information System (INIS)

    Borsato, E.; Buccheri, A.; DalCorso, F.; Ferroni, F.; Iacovella, F.; Mazzoni, M.A.; Morandin, M.; Morganti, S.; Piredda, G.; Posocco, M.; Santacesaria, R.; Stroili, R.; Torassa, E.; Voci, C.

    1997-01-01

    The principle of operation of a newly developed proximity focused Hybrid Photon Detector is described. The HPD characteristics, performance and calibration are reported. Results from beam tests of aerogel threshold counters read out by HPD and the particle identification performance are presented. (orig.)

  4. Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm [DLR, Institut fuer Planetenforschung, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Karlsruher Institut fuer Technologie (Germany); Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory [Moscow State Pedagogical University (Russian Federation)

    2013-07-01

    The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.

  5. Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements

    NARCIS (Netherlands)

    Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Reiger, E.; Dorenbos, S.; Zwiller, V.; Milostnaya, I.; Minaeva, O.

    2007-01-01

    We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast

  6. Characterization, 1064 nm photon signals and background events of a tungsten TES detector for the ALPS experiment

    International Nuclear Information System (INIS)

    Dreyling-Eschweiler, J.; Doebrich, B.; Januschek, F.; Lindner, A.; Bastidon, N.; Horns, D.

    2015-02-01

    The high efficiency, low-background, and single-photon detection with transition-edge sensors (TES) is making this type of detector attractive in widely different types of application. In this paper, we present first characterizations of a TES to be used in the Any Light Particle Search (ALPS) experiment searching for new fundamental ultra-light particles. Firstly, we describe the setup and the main components of the ALPS TES detector (TES, millikelvin-cryostat and SQUID read-out) and their performances. Secondly, we explain a dedicated analysis method for single-photon spectroscopy and rejection of non-photon background. Finally, we report on results from extensive background measurements. Considering an event-selection, optimized for a wavelength of 1064 nm, we achieved a background suppression of ∝10 -3 with a ∝ 50 % efficiency for photons passing the selection. The resulting overall efficiency was 23 % with a dark count rate of 8.6.10 -3 s -1 . We observed that pile-up events of thermal photons are the main background component.

  7. Photon counting and energy discriminating X-ray detectors. Benefits and applications

    International Nuclear Information System (INIS)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe

    2016-01-01

    Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.

  8. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  9. Heralded linear optical quantum Fredkin gate based on one auxiliary qubit and one single photon detector

    International Nuclear Information System (INIS)

    Zhu Chang-Hua; Cao Xin; Quan Dong-Xiao; Pei Chang-Xing

    2014-01-01

    Linear optical quantum Fredkin gate can be applied to quantum computing and quantum multi-user communication networks. In the existing linear optical scheme, two single photon detectors (SPDs) are used to herald the success of the quantum Fredkin gate while they have no photon count. But analysis results show that for non-perfect SPD, the lower the detector efficiency, the higher the heralded success rate by this scheme is. We propose an improved linear optical quantum Fredkin gate by designing a new heralding scheme with an auxiliary qubit and only one SPD, in which the higher the detection efficiency of the heralding detector, the higher the success rate of the gate is. The new heralding scheme can also work efficiently under a non-ideal single photon source. Based on this quantum Fredkin gate, large-scale quantum switching networks can be built. As an example, a quantum Beneš network is shown in which only one SPD is used. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Spatio-energetic cross talk in photon counting detectors: Detector model and correlated Poisson data generator.

    Science.gov (United States)

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Stierstorfer, Karl; Kappler, Steffen

    2016-12-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the pixels. This is called double-counting with charge sharing. (A photoelectric effect with K-shell fluorescence x-ray emission would result in double-counting as well). As a result, PCD data are spatially and energetically correlated, although the output of individual PCD pixels is Poisson distributed. Major problems include the lack of a detector noise model for the spatio-energetic cross talk and lack of a computationally efficient simulation tool for generating correlated Poisson data. A Monte Carlo (MC) simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, the authors developed a new detector model and implemented it in an efficient software simulator that uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account: (1) detection efficiency; (2) incomplete charge collection and ballistic effect; (3) interaction with PCDs via photoelectric effect (with or without K-shell fluorescence x-ray emission, which may escape from the PCDs or be reabsorbed); and (4) electronic noise. The correlation was modeled by using these two simplifying assumptions: energy conservation and mutual exclusiveness. The mutual exclusiveness is that no more than two pixels measure energy from one photon. The effect of model parameters has been studied and results were compared with MC simulations. The agreement, with respect to the spectrum, was evaluated using the reduced χ 2 statistics or a weighted sum of squared errors, χ red 2 (≥1), where χ red 2 =1 indicates a perfect fit. The model produced spectra with flat field irradiation that

  11. High bit rate germanium single photon detectors for 1310nm

    Science.gov (United States)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  12. Search of isolated photons by CELLO detector at PETRA

    International Nuclear Information System (INIS)

    Ros Martinez, E.

    1984-03-01

    The CELLO detector at PETRA has been used to search for isolated photons at 22 GeV beam energy. The aim is to study reactions such as e + e - → γνantiν or e + e - → γlambda anti-lambda, where lambda is the photino, the hypothetical supersymmetric partner of the photon. The absence of such a signal should allow the determination of an upper limit to the number of neutrino generations, and of a lower limit to the mass of the scalar electron. The luminosity integrated until now is still insufficient to set up such limits but techniques which will be used when high luminosity becomes available have been developed. In particular a high level of cosmic ray rejection is achieved using the granularity and improved time resolution of the CELLO lead-liquid argon electromagnetic calorimeter [fr

  13. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    International Nuclear Information System (INIS)

    Alemi, M.; Campbell, M.; Gys, T.; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K.

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface

  14. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Campbell, M.; Gys, T. E-mail: thierry.gys@cern.ch; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K

    2000-07-11

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.

  15. 6LiF sandwich type detectors for low dose individual monitoring in mixed neutron-photon fields

    International Nuclear Information System (INIS)

    Olko, P.; Budzanowski, M.; Bilski, P.; Burgkhardt, B.; Piesch, E.

    1994-01-01

    ICRP Publication 60 recommends the reduction of the annual dose limit for occupational exposure from 50 to 20 mSv and a doubling of the quality factor for medium energy neutrons. If occupational doses are evaluated every month (which is obligatory e.g. in Germany and in Poland), the individual neutron dosemeter will have to measure neutron doses in the range of 100 μSv. No commercially available, automatic individual dosimetry monitoring system exists that fulfils this requirement. Some of the parameters which influence the evaluation of the neutron dose from readings of TL dosemeters have been studied in order to decrease the variance of the measured neutron signal. In mixed neutron-photon fields, clear separation of the neutron component from the total reading depends also on the uncertainty of the gamma dose measurements. While the thermal albedo neutrons are absorbed mostly at the surface of the 6 LiF detector, the reduction of the detector thickness results in a decrease of its photon sensitivity, while its neutron sensitivity is almost principally maintained. As a consequence, the uncertainty of gamma dose contributes with lower weight to the variance of the evaluated neutron signal. First tests of an optimised 200 μm thick sandwich detector and 0.9 mm thick standard LiF chips were made at low neutron and photon dose ranges using different readers, in order to determine the uncertainty versus dose for different neutron-photon combinations. The conditions under which the new sandwich type detectors may improve albedo neutron dosimetry are demonstrated. (Author)

  16. Conception and design of a control and monitoring system for the mirror alignment of the CBM RICH detector

    Science.gov (United States)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2017-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) will investigate the phase diagram of strongly interacting matter at high net-baryon density and moderate temperature in A+A collisions. One of the key detectors of CBM to explore this physics program is a Ring Imaging CHerenkov (RICH) detector for electron identification. For a high performance of the RICH detector precise mirror alignment is essential. A three-step correction cycle has been developed, which will be discussed: First a qualitative, fast check of the mirror positions, second a quantitative determination of possible misalignments and third a software correction routine, allowing a proper functioning of the RICH under misalignment conditions.

  17. Application of PHOTON simulation software on calibration of HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, J., E-mail: jnikolic@vinca.rs [University of Belgrade Institute for Nuclear Sciences Vinča, Mike Petrovica Alasa 12-16, 11001 Belgrade (Serbia); Puzovic, J. [University of Belgrade Faculty of Physics, Studentski trg 6, 11000 Belgrade (Serbia); Todorovic, D.; Rajacic, M. [University of Belgrade Institute for Nuclear Sciences Vinča, Mike Petrovica Alasa 12-16, 11001 Belgrade (Serbia)

    2015-11-01

    One of the major difficulties in gamma spectrometry of voluminous environmental samples is the efficiency calibration of the detectors used for the measurement. The direct measurement of different calibration sources, containing isolated γ-ray emitters within the energy range of interest, and subsequent fitting to a parametric function, is the most accurate and at the same time most complicated and time consuming method of efficiency calibration. Many other methods are developed in time, some of them using Monte Carlo simulation. One of such methods is a dedicated and user-friendly program PHOTON, developed to simulate the passage of photons through different media with different geometries. This program was used for efficiency calibration of three HPGe detectors, readily used in Laboratory for Environment and Radiation Protection of the Institute for Nuclear Sciences Vinca, Belgrade, Serbia. The simulation produced the spectral response of the detectors for fixed energy and for different sample geometries and matrices. Thus obtained efficiencies were compared to the values obtained by the measurement of the secondary reference materials and to the results obtained by GEANT4 simulation, in order to establish whether the simulated values agree with the experimental ones. To further analyze the results, a realistic measurement of the materials provided by the IAEA within different interlaboratory proficiency tests, was performed. The activities obtained using simulated efficiencies were compared to the reference values provided by the organizer. A good agreement in the mid energy section of the spectrum was obtained, while for low energies the lack of some parameters in the simulation libraries proved to produce unacceptable discrepancies.

  18. Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hubmayr, J., E-mail: hubmayr@nist.gov; Beall, J.; Becker, D.; Cho, H.-M.; Hilton, G. C.; Li, D.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.; Gao, J. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Devlin, M.; Dober, B. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, Pennsylvania 19104 (United States); Groppi, C.; Mauskopf, P. [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Rd., Tempe, Arizona 85281 (United States); Irwin, K. D. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Wang, Y. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China); Wei, L. F. [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China)

    2015-02-16

    We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4 K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250 μm. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >0.5 pW, corresponding to noise equivalent powers >3×10{sup −17} W/√(Hz). This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.

  19. Multipixel geiger-mode photon detectors for ultra-weak light sources

    International Nuclear Information System (INIS)

    Campisi, A.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.; Musumeci, F.; Privitera, S.; Scordino, A.; Tudisco, S.; Fallica, G.; Sanfilippo, D.; Mazzillo, M.; Condorelli, G.; Piazza, A.; Valvo, G.; Lombardo, S.; Sciacca, E.; Bonanno, G.; Belluso, M.

    2007-01-01

    Arrays of Single Photon Avalanche Detectors (SPAD) are considered today as a possible alternative to PMTs and other semiconductor devices in several applications, like physics research, bioluminescence, Positron Emission Tomography (PET) systems, etc. We have developed and characterized a first prototype array produced by STMicroelectronics in silicon planar technology and working at low voltage (30-40 V) in Geiger mode operation. The single cell structure (size down to 20 μm) and the geometrical arrangement give rise to appealing intrinsic characteristics of the device, such as photon detection efficiency, dark count map, cross-talk effects, timing and energy resolution. New prototypes are under construction with a higher number of pixels that have a common output signal to obtain a so-called SiPM (Silicon PhotoMultiplier) configuration

  20. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S. [University of California (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  1. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    International Nuclear Information System (INIS)

    Molloi, S.

    2015-01-01

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  2. The high voltage system of the RICH and the multiplicity study with LHCb data

    CERN Document Server

    Fanchini, E; Pessina, G; Gys, T

    2011-01-01

    This thesis is about the work done during my PhD at the Univerità degli studi di Milano–Bicocca. During these three years I was involved in the RICH group of the LHCb experiment. LHCb is one of the four main experiments at CERN. It uses proton–proton collisions to study CP violation and to search for new physics beyond the Standard Model in the $b$ decays. One of the main feature of the experiment is the particle identification, performed with the Ring Imaging Cherenkov (RICH) technology. The RICH detects Cherenkov rings via photons emitted by charged particles traversing radiator materials. The photon detection system used consists of pixel Hybrid Photon Detectors (HPDs). They convert photons into photoelectrons which are then accelerated by means of a field generated by three electrodes, biased with high voltages (-18 kV, -17.7 kV and -14.8 kV), onto the silicon pixel anode. The energy released in the pixel is converted into a binary output. My work can be divided in two main parts: the hardware and th...

  3. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    Science.gov (United States)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  4. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  5. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths.

    Science.gov (United States)

    You, Lixing; Wu, Junjie; Xu, Yingxin; Hou, Xintong; Fang, Wei; Li, Hao; Zhang, Weijun; Zhang, Lu; Liu, Xiaoyu; Tong, Limin; Wang, Zhen; Xie, Xiaoming

    2017-12-11

    High-performance superconducting nanowire single-photon detectors (SNSPDs) have facilitated numerous experiments and applications, particularly in the fields of modern quantum optics and quantum communication. Two kinds of optical coupling methods have thus far been developed for SNSPDs: one produces standard fiber-coupled SNSPDs in which the fibers vertically illuminate the meandered nanowires; the other produces waveguide-coupled SNSPDs in which nanowires are fabricated on the surface of a waveguide that guides photons, and the fibers are coupled to the waveguide. In this paper, we report on first experimental demonstration of a new type of SNSPD that is coupled with a microfiber (MF). Photons are guided by the MF and are evanescently absorbed by the nanowires of the SNSPD when the MF is placed on top of superconducting NbN nanowires. Room-temperature optical experiments indicated that this device has a coupling efficiency of up to 90% when a 1.3 μm-diameter MF is used for light with wavelength of 1550 nm. We were also able to demonstrate that our MF-coupled detector achieved system detection efficiencies of 50% and 20% at incident wavelengths of 1064 and 1550 nm, respectively, for a 2 μm-diameter MF at 2.2K. We expect that MF-coupled SNSPDs may show both high efficiency and broadband characteristics upon optimization and will be used for various novel applications, such as micro/nano-fiber optics.

  6. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    Science.gov (United States)

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  7. A 'LEGO' Hybrid Photon Detector - assembled from standard mass-produced vacuum components

    International Nuclear Information System (INIS)

    Ferenc, Daniel; Lorenz, Eckart; Mirzoyan, Razmik

    2000-01-01

    Motivated primarily by the MAGIC atmospheric Cherenkov telescope project, we have developed a 'LEGO' Hybrid Photon Detector (HPD) comprising excellent focusing properties and protection against positive ion feedback. LEGO-HPD is supposed to be assembled from standard high vacuum components, which insures simplicity in the assembly procedure and reliability of operation

  8. Aerogel RICH for the Belle II forward PID

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Japan Aerospace Exploration Agency (JAXA), Sagamihara (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2014-12-01

    The Belle II spectrometer, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity focusing ring-imaging Cherenkov (RICH) counter with an aerogel radiator is being developed. The counter will provide a 4σ separation of pions and kaons up to momenta of 4 GeV/c. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector (HAPD) has been developed with Hamamatsu Photonics K.K. The readout electronics is based on the custom developed ASIC. The design of the components is currently being finalized and part of their mass production have already started. Herein, we report the final design of the counter and a prototype test conducted with test beams at DESY. - Highlights: • We are constructing a RICH counter with aerogel radiator for Belle II. • Beam test for the prototype Aerogel RICH shows its good performance. • The effect of the neutron irradiation of the photodetector is examined.

  9. Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector

    Energy Technology Data Exchange (ETDEWEB)

    Gajos, A.; Kamińska, D. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow (Poland); Czerwiński, E., E-mail: eryk.czerwinski@uj.edu.pl [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow (Poland); Alfs, D.; Bednarski, T.; Białas, P.; Głowacz, B. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow (Poland); Gorgol, M.; Jasińska, B. [Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, 20-031 Lublin (Poland); Kapłon, Ł. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow (Poland); Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Cracow (Poland); Korcyl, G. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow (Poland); Kowalski, P. [Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kozik, T. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow (Poland); Krzemień, W. [High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow (Poland); and others

    2016-05-21

    This work reports on a new reconstruction algorithm allowing us to reconstruct the decays of ortho-positronium atoms into three photons using the places and times of photons recorded in the detector. The method is based on trilateration and allows for a simultaneous reconstruction of both location and time of the decay. Results of resolution tests of the new reconstruction in the J-PET detector based on Monte Carlo simulations are presented, which yield a spatial resolution at the level of 2 cm (FWHM) for X and Y and at the level of 1 cm (FWHM) for Z available with the present resolution of J-PET after application of a kinematic fit. Prospects of employment of this method for studying angular correlations of photons in decays of polarized ortho-positronia for the needs of tests of CP and CPT discrete symmetries are also discussed. The new reconstruction method allows for discrimination of background from random three-photon coincidences as well as for application of a novel method for determination of the linear polarization of ortho-positronium atoms, which is also introduced in this work.

  10. Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector

    International Nuclear Information System (INIS)

    Gajos, A.; Kamińska, D.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.

    2016-01-01

    This work reports on a new reconstruction algorithm allowing us to reconstruct the decays of ortho-positronium atoms into three photons using the places and times of photons recorded in the detector. The method is based on trilateration and allows for a simultaneous reconstruction of both location and time of the decay. Results of resolution tests of the new reconstruction in the J-PET detector based on Monte Carlo simulations are presented, which yield a spatial resolution at the level of 2 cm (FWHM) for X and Y and at the level of 1 cm (FWHM) for Z available with the present resolution of J-PET after application of a kinematic fit. Prospects of employment of this method for studying angular correlations of photons in decays of polarized ortho-positronia for the needs of tests of CP and CPT discrete symmetries are also discussed. The new reconstruction method allows for discrimination of background from random three-photon coincidences as well as for application of a novel method for determination of the linear polarization of ortho-positronium atoms, which is also introduced in this work.

  11. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    International Nuclear Information System (INIS)

    Holland, S.E.

    2000-01-01

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels

  12. Microcomputed tomography with a second generation photon-counting x-ray detector: contrast analysis and material separation

    Science.gov (United States)

    Wang, X.; Meier, D.; Oya, P.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2010-04-01

    The overall aim of this work was to evaluate the potential for improving in vivo small animal microCT through the use of an energy resolved photon-counting detector. To this end, we developed and evaluated a prototype microCT system based on a second-generation photon-counting x-ray detector which simultaneously counted photons with energies above six energy thresholds. First, we developed a threshold tuning procedure to reduce the dependence of detector uniformity and to reduce ring artifacts. Next, we evaluated the system in terms of the contrast-to-noise ratio in different energy windows for different target materials. These differences provided the possibility to weight the data acquired in different windows in order to optimize the contrast-to-noise ratio. We also explored the ability of the system to use data from different energy windows to aid in distinguishing various materials. We found that the energy discrimination capability provided the possibility for improved contrast-to-noise ratios and allowed separation of more than two materials, e.g., bone, soft-tissue and one or more contrast materials having K-absorption edges in the energy ranges of interest.

  13. Design of Pixellated CMOS Photon Detector for Secondary Electron Detection in the Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Joon Huang Chuah

    2011-01-01

    Full Text Available This paper presents a novel method of detecting secondary electrons generated in the scanning electron microscope (SEM. The method suggests that the photomultiplier tube (PMT, traditionally used in the Everhart-Thornley (ET detector, is to be replaced with a configurable multipixel solid-state photon detector offering the advantages of smaller dimension, lower supply voltage and power requirements, and potentially cheaper product cost. The design of the proposed detector has been implemented using a standard 0.35 μm CMOS technology with optical enhancement. This microchip comprises main circuit constituents of an array of photodiodes connecting to respective noise-optimised transimpedance amplifiers (TIAs, a selector-combiner (SC circuit, and a postamplifier (PA. The design possesses the capability of detecting photons with low input optical power in the range of 1 nW with 100 μm × 100 μm sized photodiodes and achieves a total amplification of 180 dBΩ at the output.

  14. Measurements of the mirror surface homogeneity in the CBM-RICH

    Energy Technology Data Exchange (ETDEWEB)

    Lebedeva, Elena; Hoehne, Claudia [II. Physikalisches Institut, JLU Giessen (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR (Facility for Antiproton and Ion Research) complex will investigate the phase diagram of strongly interacting matter at high baryon densities and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. One of the key detector components required for the CBM physics program is the RICH (Ring Imaging CHerenkov) detector, which is developed for efficient and clean electron identification and pion suppression. The CBM-RICH detector is being planned with gaseous radiator and in a standard projective geometry with focusing mirror elements and photon detector planes. One of the important criteria for the selection of appropriate mirrors is their optical surface quality (surface homogeneity). It defines the imaging quality of projected Cherenkov rings, and directly effects the ring finding and fitting performance. The global homogeneity has been tested with the D0 measurement. Local deformations e.g. by the mirror holding structure can be investigated with the Ronchi test and Shack-Hartmann method from which first results are discussed in this contribution.

  15. Measurement of collision integral cross-sections of double-photon Compton effect using a single gamma ray detector: A response matrix approach

    International Nuclear Information System (INIS)

    Saddi, M.B.; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The collision integral cross-sections of double-photon Compton process are measured experimentally for 662 keV incident gamma photons. The measurements are successfully carried out using a single gamma ray detector, and do not require the complicated slow-fast coincidence technique used till now for observing this higher order quantum electrodynamics (QED) process. The energy spectra of one of the two final photons, originating in this process, in direction of the gamma ray detector are observed as a long tail to the single-photon Compton line on lower side of the full energy peak in the observed spectra. An inverse response matrix converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a true photon spectrum. This also results in extraction of events originating from double-photon Compton interactions. The present measured values of collision integral cross-section, although of same magnitude, deviate from the corresponding values obtained from the theory. In view of the magnitude of deviations, in addition to small value of probability of occurrence of this process, the agreement of measured values with theory is reasonably acceptable

  16. Modifications of radiation detection response of PADC track detectors by photons

    CERN Document Server

    Sinha, D

    1998-01-01

    Photon induced modifications in polyalyldiglycol carbonate (PADC) track detectors have been studied in the dose range of 10 sup 1 -10 sup 6 Gy. It was found that some of the properties like bulk-etch rate, track-etch rate got enhanced at the dose of 10 sup 6 Gy. Activation energy for bulk-etching has been determined for different gamma doses. In order to correlate the high etch rate with the chemical modifications, UV-Vis, IR and ESR studies were carried out. These studies clearly give the indication that radiation damage results into radical formation through bond cleavage. TGA study was performed for understanding the thermal resistance of this detector. The results are presented and discussed.

  17. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  18. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  19. Theoretical analysis of the effect of charge-sharing on the Detective Quantum Efficiency of single-photon counting segmented silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, J [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)], E-mail: julien.marchal@diamond.ac.uk

    2010-01-15

    A detector cascaded model is proposed to describe charge-sharing effect in single-photon counting segmented silicon detectors. Linear system theory is applied to this cascaded model in order to derive detector performance parameters such as large-area gain, presampling Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE) as a function of energy detection threshold. This theory is used to model one-dimensional detectors (i.e. strip detectors) where X-ray-generated charge can be shared between two sampling elements, but the concepts developed in this article can be generalized to two-dimensional arrays of detecting elements (i.e. pixels detectors). The zero-frequency DQE derived from this model is consistent with expressions reported in the literature using a different method. The ability of this model to simulate the effect of charge sharing on image quality in the spatial frequency domain is demonstrated by applying it to a hypothetical one-dimensional single-photon counting detector illuminated with a typical mammography spectrum.

  20. Superconducting single-photon detectors designed for operation at 1.55-μm telecommunication wavelength

    International Nuclear Information System (INIS)

    Milostnaya, I; Korneev, A; Rubtsova, I; Seleznev, V; Minaeva, O; Chulkova, G; Okunev, O; Voronov, B; Smirnov, K; Gol'tsman, G; Slysz, W; Wegrzecki, M; Guziewicz, M; Bar, J; Gorska, M; Pearlman, A; Kitaygorsky, J; Cross, A; Sobolewski, Roman

    2006-01-01

    We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ∼30-40%, which is limited by the NbN film absorption. For the infrared range (1.55μm), QE is ∼6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ∼20% for 1.55-μm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 μm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 μm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-μm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ∼1% system QE for 1.55 μm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications

  1. WE-DE-207B-01: Optimization for Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Molloi, S [University of California, Irvine, CA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of optimizing the imaging parameters for contrast-enhanced spectral mammography based on Si strip photon-counting detectors. Methods: A computer simulation model using polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector was evaluated for contrast-enhanced spectral mammography. The simulation traces the emission of photons from the x-ray source, attenuation through the breast and subsequent absorption in the detector. The breast was modeled as a mixture of adipose and mammary gland tissues with a breast density of 30%. A 4 mm iodine signal with a concentration of 4 mg/ml was used to simulate the enhancement of a lesion. Quantum efficiency of the detector was calculated based on the effective attenuation length in the Si strips. The figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and pre-filtrations for breast of various thicknesses and densities. Results: The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy of 45 kVp with a splitting energy at 34 keV for an averaged breast thickness of 4 cm with a standard 0.75 mm Al pre-filtration. The optimal tube voltage varied slightly from 46 to 44 kVp as the breast thickness increases from 2 to 8 cm. The optimal tube voltage decreased to 42 kVp when the Al pre-filtration was increased to 3 mm. Conclusion: This simulation study predicted the optimal imaging parameters for application of photon-counting spectral mammography to contrast-enhanced imaging. The simulation results laid the ground work for future phantom and clinical studies. Grant funding from Philips Medical Systems.

  2. Testing prototypes of novel radiator for LHCb-RICH

    CERN Document Server

    Saini, Divya

    2017-01-01

    The LHCb experiment at CERN aims to look for signals for physics beyond the standard model in particle physics. The data from Ring Imaging Cherenkov detector (RICH) in LHCb are used to identify the hadronic particles that are produced in proton-proton collisions in different momentum ranges. The particle identification performance of the current detector in the 1-10 GeV/c range needs a significant improvement. For this an R&D project to use a new type of radiator using photonic crystals is underway. In a laboratory at CERN, prototypes of crystals will be exposed to charged particles from a source and the Cherenkov photons created will be detected using multianode photomultiplier tubes (MaPMTs). The data collected will be compared with expectations from optical simulations. These simulations use the solutions of Maxwell’s equations based on the quantum mechanical properties of the crystals. The MaPMTs and the optical components outside the crystals are simulated using GEANT4 and analysis involve using t...

  3. An iterative method for the analysis of Cherenkov rings in the HERA-B RICH

    International Nuclear Information System (INIS)

    Staric, M.; Krizan, P.

    1999-01-01

    A new method is presented for the analysis of data recorded with a Ring Imaging Cherenkov (RICH) counter. The method, an iterative sorting of hits on the photon detector, is particularly useful for events where rings overlap considerably. The algorithm was tested on simulated data for the HERA-B experiment

  4. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  5. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  6. Simultaneous resolution of spectral and temporal properties of UV and visible fluorescence using single-photon counting with a position-sensitive detector

    International Nuclear Information System (INIS)

    Kelly, L.A.; Trunk, J.G.; Polewski, K.; Sutherland, J.C.

    1995-01-01

    A new fluorescence spectrometer has been assembled at the U9B beamline of the National Synchrotron Light Source to allow simultaneous multiwavelength and time-resolved fluorescence detection, as well as spatial imaging of the sample fluorescence. The spectrometer employs monochromatized, tunable UV and visible excitation light from a synchrotron bending magnet and an imaging spectrograph equipped with a single-photon sensitive emission detector. The detector is comprised of microchannel plates in series, with a resistive anode for encoding the position of the photon-derived current. The centroid position of the photon-induced electron cascade is derived in a position analyzer from the four signals measured at the corners of the resistive anode. Spectral information is obtained by dispersing the fluorescence spectrum across one dimension of the detector photocathode. Timing information is obtained by monitoring the voltage divider circuit at the last MCP detector. The signal from the MCP is used as a ''start'' signal to perform a time-correlated single photon counting experiment. The analog signal representing the position, and hence wavelength, is digitized concomitantly with the start/stop time difference and stored in the two-dimensional histogramming memory of a multiparameter analyzer

  7. [Clinical application of high-pitch excretory phase images during dual-source CT urography with stellar photon detector].

    Science.gov (United States)

    Sun, Hao; Xue, Hua-dan; Jin, Zheng-yu; Wang, Xuan; Chen, Yu; He, Yong-lan; Zhang, Da-ming; Zhu, Liang; Wang, Yun; Qi, Bing; Xu, Kai; Wang, Ming

    2014-10-01

    To retrospectively evaluate the clinical feasibility of high-pitch excretory phase images during dual-source CT urography with Stellar photon detector. Totally 100 patients received dual-source CT high-pitch urinary excretory phase scanning with Stellar photon detector [80 kV, ref.92 mAs, CARE Dose 4D and CARE kV, pitch of 3.0, filter back projection reconstruction algorithm (FBP)] (group A). Another 100 patients received dual-source CT high-pitch urinary excretory phase scanning with common detector(100 kV, ref.140 mAs, CARE Dose 4D, pitch of 3.0, FBP) (group B). Quantitative measurement of CT value of urinary segments (Hounsfield units), image noise (Hounsfield units), and effective radiation dose (millisievert) were compared using independent-samples t test between two groups. Urinary system subjective opacification scores were compared using Mann-Whitney U test between two groups. There was no significant difference in subjective opacification score of intrarenal collecting system and ureters between two groups (all P>0.05). The group A images yielded significantly higher CT values of all urinary segments (all P0.05). The effective radiation dose of group A (1.1 mSv) was significantly lower than that of group B (3.79 mSv) (Ppitch low-tube-voltage during excretory phase dual-source CT urography with Stellar photon detector is feasible, with acceptable image noise and lower radiation dose.

  8. Performance and Characterization of a Modular Superconducting Nanowire Single Photon Detector System for Space-to-Earth Optical Communications Links

    Science.gov (United States)

    Vyhnalek, Brian E.; Tedder, Sarah A.; Nappier, Jennifer M.

    2018-01-01

    Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases.

  9. A single photon emission computed tomograph based on a limited dumber of detectors for fluid flow visualization

    International Nuclear Information System (INIS)

    Legoupil, S.

    1999-01-01

    We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system. This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)

  10. Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle

    CERN Document Server

    Pichler, A; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; D'Ufflzi, A.; Egger, J.P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Sperandio, L.; Vazquez-Doce, O.; Widmann, E.; Zmeskal, J.

    2016-01-01

    The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist Wolfgang Pauli in 1925. Since then, several experiments have checked its validity. From 2006 until 2010, the VIP (VIolation of the Pauli Principle) experiment took data at the LNGS underground laboratory to test the PEP. This experiment looked for electronic 2p to 1s transitions in copper, where 2 electrons are in the 1s state before the transition happens. These transitions violate the PEP. The lack of detection of X-ray photons coming from these transitions resulted in a preliminary upper limit for the violation of the PEP of $4.7 \\times 10^{-29}$. Currently, the successor experiment VIP2 is under preparation. The main improvements are, on one side, the use of Silicon Drift Detectors (SDDs) as X-ray photon detectors. On the other side an active shielding is implemented, which consists of plastic scintillator bars read by Silicon Photomultipliers (SiPMs). The employment of these detectors will improve the upper limit for the violati...

  11. Investigation of Avalanche Photodiodes and Multipixel Photon Counters as Light Detectors for Cosmic Rays

    Science.gov (United States)

    Vasquez, Jaime; Saavedra, Arthur; Ramos, Roxana; Tavares, Pablo; Wade, Marcus; Fan, Sewan; Haag, Brooke

    2013-04-01

    Through the Research Scholars Institute, students of Hartnell Community College experimented with the application of avalanche photodiodes (APDs) as cosmic ray detectors during the summer of 2012. An APD detector was coupled with a 10 meter long wavelength shifting fiber (WSF) wrapped around a cylindrical plastic scintillator to maximize signal detection. A photomultiplier tube (PMT) was used in conjunction to detect the same scintillation light caused by incoming cosmic rays. Two APD detectors were evaluated to confirm the viability of the setup. In addition, a similar setup was recently utilized to implement multi-pixel photon counters (MPPCs) as readout detectors. Under this configuration, a high gain preamplifier was used to amplify the signals for both the MPPC and APD detectors. We report on our results characterizing the MPPC and discuss its overall performance. Compared to the APD, our findings suggest that the MPPC detector has greater sensitivity in detecting weak light signals, and can be used in place of the PMT for certain counting applications.

  12. The experience of building and operating COMPASS RICH-1

    CERN Document Server

    Birsa, R; Rocco, E; Schiavon, P; Kramer, D; Schroder, W; Dafni, T; Tessarotto, F; Bressan, A; Schill, C; Deschamps, H; Mann, A; Sozzi, F; Colantoni, M; Dibiase, N; Abbon, P; Svec, M; Delagnes, E; Ketzer, B; Joosten, R; Steiger, L; Ciliberti, P; Konigsmann, K; Maggiora, A; Kolosov, V N; Giorgi, M; Sbrizzai, G; Nahle, O; Kunne, F; Sulc, M; Teufel, A; Paul, S; Neyret, D; Rebourgeard, P; Menon, G; Dalla Torre, S; Hagemann, R; Slunecka, M; Martin, A; Magnon, A; Takekawa, S; Finger, M; Bradamante, F; Heinsius, F H; Nerling, F; Gerassimov, S; Polak, J; Alexeev, M; Pizzolotto, C; Chiosso, M; Gobbo, B; Angerer, H; Denisov, O; Ferrero, A; Baum, G; Franco, C; Lehmann, A; Bordalo, P; Duic, V; Konorov, I; Mutter, A; Levorato, S; Robinet, F; von Harrach, D; Fischer, H; Schoenmeier, P; Pesaro, G; Wollny, H; Panzieri, D

    2011-01-01

    COMPASS RICH-1 is a large size gaseous Imaging Cherenkov Detector providing hadron identification in the range from 3 to 55 GeV/c, in the wide acceptance spectrometer of the COMPASS Experiment at CERN SPS. It uses a 3 m long C(4)F(10) radiator, a 21 m(2) large VUV mirror surface and two kinds of photon detectors: MAPMTs and MWPCs with CsI photocathodes, covering a total of 5.5 m(2). It is in operation since 2002 and its performance has increased in time thanks to progressive optimization and mostly to a major upgrade which was implemented in 2006. The main characteristics of COMPASS RICH-1 components are described and some specific aspects related to the radiator gas system, the mirror alignment, the MWPC electrical stability and the readout electronics are discussed. Some key features of the event reconstruction and the PID analysis are presented together with results from the COMPASS RICH-1 performance characterization study. (C) 2010 Elsevier B.V. All rights reserved.

  13. Waveguide superconducting single-photon autocorrelators for quantum photonic applications

    NARCIS (Netherlands)

    Sahin, D.; Gaggero, A.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J.P.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Fiore, A.; Hasan, Z.U.; Hemmer, P.R.; Lee, H.; Santori, C.M.

    2013-01-01

    We report a novel component for integrated quantum photonic applications, a waveguide single-photon autocorrelator. It is based on two superconducting nanowire detectors patterned onto the same GaAs ridge waveguide. Combining the electrical output of the two detectors in a correlation card enables

  14. The Present Development of CsI Rich Detectors for the ALICE Experiment at CERN

    CERN Document Server

    Nappi, E; Colonna, N; Di Mauro, A; Elia, D; Galantucci, L; Ghidini, B; Grimaldi, A; Goret, B; Monno, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Santiard, Jean-Claude; Tomasicchio, G; Williams, T D; Ljubicic, A; Tustonic, T; Stucchi, S

    1999-01-01

    The ALICE Collaboration plans to implement a 12m^2 array consisting of 7 proximity focussed C6F^14 liquid radiator RICH modules devoted to the particle identification in the momentum range: 1 GeV/c - 3.5 GeV/c for pions and kaons. A large area CSI-RICH prototype has been designed and built with the aim to validate the detector parameter assumptions made to predict the performance of the High Momentum Particle Identification System (HMPID) of the ALICE Experiment. The main elements of the prototype will be described with emphasis on the engineering solutions adopted. First results from the analysis of multitrack events recorded with this prototype exposed to hadron beams at the CERN SPS will be discussedList of FiguresFigure 1 General view of the ALICE lay-outFigure 2 Schematic layout of the fast CsI-RICHFigure 3 Perspective view of the HMPID layout with the seven RICH modules tilted according to their position with respect to the interaction vertex. The frame that supports the detectors is also shownFigure 4 ...

  15. A photon pressure calibrator for the GEO 600 gravitational wave detector

    International Nuclear Information System (INIS)

    Mossavi, K.; Hewitson, M.; Hild, S.; Seifert, F.; Weiland, U.; Smith, J.R.; Lueck, H.; Grote, H.; Willke, B.; Danzmann, K.

    2006-01-01

    Interferometer mirror displacement induced by radiation pressure is used to demonstrate an alternative calibration method for the GEO 600 detector. The photon calibrator utilizes an amplitude modulated laser diode with up to 1.4 W output power at a wavelength of 1035 nm. The achieved accuracy of the strain amplitude calibration is dominated by the laser power calibration error, which is in the range of ±4% for the measurements presented in this Letter

  16. Light composite mirrors for RICH detectors Production, characterisation and stability tests

    CERN Document Server

    Bellunato, T F; Calvi, M; Chignoli, F; D'Ambrosio, C; Matteuzzi, C; Musy, M; Perego, D L

    2005-01-01

    The production of lightweight composite mirror prototypes suitable for application in Ring Imaging Cherenkov (RICH) detectors is described. The goal is the use of such mirrors whenever material budget is a concern. The manufacturing technique is described in detail, together with the achieved results in terms of optical quality. Several ageing tests have been performed on some of the prototypes. The results of these tests are reported.

  17. Fast parallel ring recognition algorithm in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, S.

    2011-01-01

    The Compressed Baryonic Matter (CBM)experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detector (TRD). Very fast data reconstruction is extremely important for CBM because of the huge amount of data which has to be handled. In this contribution, a parallelized ring recognition algorithm is presented. Modern CPUs have two features, which enable parallel programming. First, the SSE technology allows using the SIMD execution model. Second, multicore CPUs enable the use of multithreading. Both features have been implemented in the ring reconstruction of the RICH detector. A considerable speedup factor from 357 to 2.5 ms/event has been achieved including preceding code optimization for Intel Xeon X5550 processors at 2.67 GHz

  18. Modelling and simulation of pixelated photon counting X-ray detectors for imaging; Modellierung und Simulation physikalischer Eigenschaften photonenzaehlender Roentgenpixeldetektoren fuer die Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Juergen

    2008-07-22

    First of all the physics processes generating the energy deposition in the sensor volume are investigated. The spatial resolution limits of photon interactions and the range of secondary electrons are discussed. The signatures in the energy deposition spectrum in pixelated detectors with direct conversion layers are described. The energy deposition for single events can be generated by the Monte-Carlo-Simulation package ROSI. The basic interactions of photons with matter are evaluated, resulting in the ability to use ROSI as a basis for the simulation of photon counting pixel detectors with direct conversion. In the context of this thesis a detector class is developed to simulate the response of hybrid photon counting pixel detectors using high-Z sensor materials like Cadmium Telluride (CdTe) or Gallium Arsenide (GaAs) in addition to silicon. To enable the realisation of such a simulation, the relevant physics processes and properties have to be implemented: processes in the sensor layer (provided by EGS4/LSCAT in ROSI), generation of charge carriers as electron hole pairs, diffusion and repulsion of charge carriers during drift and lifetime. Furthermore, several noise contributions of the electronics can be taken into account. The result is a detector class which allows the simulation of photon counting detectors. In this thesis the multiplicity framework is developed, including a formula to calculate or measure the zero frequency detective quantum efficiency (DQE). To enable the measurement of the multiplicity of detected events a cluster analysis program was developed. Random and systematic errors introduced by the cluster analysis are discussed. It is also shown that the cluster analysis method can be used to determine the averaged multiplicity with high accuracy. The method is applied to experimental data. As an example using the implemented detector class, the discriminator threshold dependency of the DQE and modulation transfer function is investigated in

  19. Performance of Differential-Phase-Shift Keying Protocol Applying 1310 nm Up-Conversion Single-Photon Detector

    International Nuclear Information System (INIS)

    Chen-Xu, Feng; Rong-Zhen, Jiao; Wen-Han, Zhang

    2008-01-01

    The performance of the differential-phase-shift keying (DPSK) protocol applying a 1310 nm up-conversion single-photon detector is analysed. The error rate and the communication rate as a function of distance for three quantum key distribution protocols, the Bennett–Brassard 1984, the Bennett–Brassard–Mermin 1992, and the DPSK, are presented. Then we compare the performance of these three protocols using the 1310nm up-conversion detector. We draw the conclusion that the DPSK protocol applying the detector has significant advantage over the other two protocols. Longer transmission distance and lower error rate can be achieved. (general)

  20. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications.

    Science.gov (United States)

    Yu, Chao; Shangguan, Mingjia; Xia, Haiyun; Zhang, Jun; Dou, Xiankang; Pan, Jian-Wei

    2017-06-26

    We present a fully integrated InGaAs/InP negative feedback avalanche diode (NFAD) based free-running single-photon detector (SPD) designed for accurate lidar applications. A free-piston Stirling cooler is used to cool down the NFAD with a large temperature range, and an active hold-off circuit implemented in a field programmable gate array is applied to further suppress the afterpulsing contribution. The key parameters of the free-running SPD including photon detection efficiency (PDE), dark count rate (DCR), afterpulse probability, and maximum count rate (MCR) are dedicatedly optimized for lidar application in practice. We then perform a field experiment using a Mie lidar system with 20 kHz pulse repetition frequency to compare the performance between the free-running InGaAs/InP SPD and a commercial superconducting nanowire single-photon detector (SNSPD). Our detector exhibits good performance with 1.6 Mcps MCR (0.6 μs hold-off time), 10% PDE, 950 cps DCR, and 18% afterpulse probability over 50 μs period. Such performance is worse than the SNSPD with 60% PDE and 300 cps DCR. However, after performing a specific algorithm that we have developed for afterpulse and count rate corrections, the lidar system performance in terms of range-corrected signal (Pr 2 ) distribution using our SPD agrees very well with the result using the SNSPD, with only a relative error of ∼2%. Due to the advantages of low-cost and small size of InGaAs/InP NFADs, such detector provides a practical solution for accurate lidar applications.

  1. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    Science.gov (United States)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  2. Conception and design of a control and monitoring system for the mirror alignment of the CBM RICH detector

    Science.gov (United States)

    Bendarouach, J.

    2016-08-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures created in A+A collisions. For the SIS100 accelerator, the foreseen beam energy will range up to 11 AGeV for the heaviest nuclei. One of the key detector components required for the CBM physics program is the Ring Imaging CHerenkov (RICH) detector, which is developed for efficient and clean electron identification and pion suppression. An important aspect to guarantee a stable operation of the RICH detector is the alignment of the mirrors. A qualitative alignment control procedure for the mirror system has been implemented in the CBM RICH prototype detector and tested under real conditions at the CERN PS/T9 beamline. Collected data and results of image processing are reviewed and discussed. In parallel a quantitative method using recorded data has also been employed to compute mirror displacements of the RICH mirrors. Results based on simulated events and the limits of the method are presented and discussed as well. If mirror misalignment is detected, it can be subsequently included and rectified by correction routines. A first correction routine is presented and a comparison between misaligned, corrected and ideal geometries is shown.

  3. Conception and design of a control and monitoring system for the mirror alignment of the CBM RICH detector

    International Nuclear Information System (INIS)

    Bendarouach, J

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures created in A+A collisions. For the SIS100 accelerator, the foreseen beam energy will range up to 11 AGeV for the heaviest nuclei. One of the key detector components required for the CBM physics program is the Ring Imaging CHerenkov (RICH) detector, which is developed for efficient and clean electron identification and pion suppression. An important aspect to guarantee a stable operation of the RICH detector is the alignment of the mirrors. A qualitative alignment control procedure for the mirror system has been implemented in the CBM RICH prototype detector and tested under real conditions at the CERN PS/T9 beamline. Collected data and results of image processing are reviewed and discussed. In parallel a quantitative method using recorded data has also been employed to compute mirror displacements of the RICH mirrors. Results based on simulated events and the limits of the method are presented and discussed as well. If mirror misalignment is detected, it can be subsequently included and rectified by correction routines. A first correction routine is presented and a comparison between misaligned, corrected and ideal geometries is shown. (paper)

  4. Photon reconstruction in the ATLAS inner detector and liquid argon barrel calorimeter at the 2004 combined test beam

    NARCIS (Netherlands)

    Abat, E.; et al., [Unknown; Ferrari, P.; Gorfine, G.; Liebig, W.

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal

  5. Level structures of neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    The level structures of neutron-rich Xe isotopes were determined by observing prompt gamma-ray coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 248}Cm, in the form of {sup 248}Cm-KCl pellet, was placed inside Eurogam array which consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. Transitions in Xe isotopes were identified by the appearance of new peaks in the {gamma}-ray spectra obtained by gating on the gamma peaks of the complementary Mo fragments.

  6. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    Czech Academy of Sciences Publication Activity Database

    Pichotka, Martin; Jakůbek, Jan; Vavřík, Daniel

    2015-01-01

    Roč. 10, č. 12 (2015), C12033 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : micro-tomography * photon-counting detectors * metallic-organic composites Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.310, year: 2015 http://iopscience.iop.org/article/10.1088/1748-0221/10/12/C12033/pdf

  7. The Omega RICH in the CERN hyperon beam experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Beusch, W; Boss, M; Engelfried, J; Gerassimov, S G; Klempt, W; Lennert, P; Martens, K; Newbold, D; Rieseberg, H; Siebert, H -W; Smith, V J; Thilmann, O; Waelder, G

    1999-08-21

    The Omega RICH, a large-aperture detector for identification of secondary pions, kaons, and (anti) protons was in operation at the CERN Omega spectrometer facility between 1984 and 1994. Cherenkov photons from a 5 m long radiator were detected in drift chambers with quartz windows, using TMAE-loaded counting gases. The RICH was used by experiments WA69 and WA82, until 1988. It was then equipped with new drift chambers and mirrors and was in use since 1990 in experiments WA89 and WA94. The setup in the WA89 hyperon beam experiment is described in more detail and efficiencies, resolutions, and physics results are discussed.

  8. Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation

    International Nuclear Information System (INIS)

    Scherf, Christian; Moog, Jussi; Licher, Joerg; Kara, Eugen; Roedel, Claus; Ramm, Ulla; Peter, Christiane; Zink, Klemens

    2009-01-01

    Background: Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. Material and Methods: The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm 3 thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. Results: The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm 2 because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Conclusion: Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector. (orig.)

  9. Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation.

    Science.gov (United States)

    Scherf, Christian; Peter, Christiane; Moog, Jussi; Licher, Jörg; Kara, Eugen; Zink, Klemens; Rödel, Claus; Ramm, Ulla

    2009-08-01

    Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm(3) thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm(2) because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector.

  10. Development of a model-independent evaluation of photon-deuteron reactions for the SAPHIR detector

    International Nuclear Information System (INIS)

    Wolf, A.

    1993-01-01

    The SAPHIR detector measures photon induced reactions with many particles in the final state. Thus a detailed investigation of those processes at photon energies between 0.4 and 3.3 GeV is possible. The interpretation of the distribution of the sample of events, which SAPHIR is able to reconstruct, has to be done after a correction of influences induced by the detector acceptance. In this work a model independent method of correcting and analysing the data is discussed. The implementation of the basic tools of this analysis is described and first tests with simulated and real events are performed. SAPHIR uses a time-of-flight system for the identification of particles. This work describes the structure of a program library, which supports an easy way of decoding the digitizations of this system (including calibration of the hardware) and obtaining the flight time for a particle in a event. The necessary step for calibrating the system are outlined, too. (orig.)

  11. RICH High Voltages & PDF Analysis @ LHCb

    CERN Multimedia

    Fanchini, E

    2009-01-01

    In the LHCb experiment an important issue is the identification of the hadrons of the final states of the B mesons decays. Two RICH subdetectors are devoted to this task, and the Hybrid Photon Detectors (HPDs) are the photodetectors used to detect Cherenkov light. In this poster there is a description of how the very high voltage (-18 KV) supply stability used to power the HPDs is monitored. It is also presented the basics of a study which can be done with the first collision data: the analysis of the dimuons from the Drell-Yan process. This process is well known and the acceptance of the LHCb detector in terms of pseudorapidity will be very useful to improve the knowledge of the proton structure functions or, alternatively, try to estimate the luminosity from it.

  12. A successful experimental observation of double-photon Compton scattering of γ rays using a single γ detector

    International Nuclear Information System (INIS)

    Saddi, M.B.; Sandhu, B.S.; Singh, B.

    2006-01-01

    The phenomenon of double-photon Compton scattering has been successfully observed using a single γ detector, a technique avoiding the use of the complicated slow-fast coincidence set-up used till now for observing this higher-order process. Here doubly differential collision cross-sections integrated over the directions of one of the two final photons, the direction of other one being kept fixed, are measured experimentally for 0.662 MeV incident γ photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process

  13. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  14. Optimised quantum hacking of superconducting nanowire single-photon detectors.

    Science.gov (United States)

    Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H

    2014-03-24

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  15. Optimised quantum hacking of superconducting nanowire single-photon detectors

    Science.gov (United States)

    Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.

    2014-03-01

    We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

  16. Experimental response function of NaI(Tl) scintillation detector for gamma photons and tomographic measurements for defect detection

    International Nuclear Information System (INIS)

    Sharma, Amandeep; Singh, Karamjit; Singh, Bhajan; Sandhu, B.S.

    2011-01-01

    The response function of gamma detector is an important factor for spectrum analysis because some photons and secondary electrons may escape the detector volume before fully depositing their energy, of course destroys the ideal delta function response. An inverse matrix approach, for unfolding of observed pulse-height distribution to a true photon spectrum, is used for construction of experimental response function by formulating a 40 x 40 matrix with bin mesh (E 1/2 ) of 0.025 (MeV) 1/2 for the present measurements. A tomographic scanner system, operating in a non-destructive and non-invasive way, is also presented for inspection of density variation in any object. The incoherent scattered intensity of 662 keV gamma photons, obtained by unfolding (deconvolution) the experimental pulse-height distribution of NaI(Tl) scintillation detector, provides the desired information. The method is quite sensitive, for showing inclusion of medium Z (atomic number) material (iron) in low Z material (aluminium) and detecting a void of ∼2 mm in size for iron block, to investigate the inhomogeneities in the object. Also, the grey scale images (using 'MATLAB') are shown to visualise the presence of defects/inclusion in metal samples.

  17. Comparison of Cadmium-Zinc-Telluride semiconductor and Yttrium-Aluminum-Perovskite scintillator as photon detectors for epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Imberti, S.; Perelli-Cippo, E.; Senesi, R.; Rhodes, N.; Schooneveld, E.M.

    2006-01-01

    The range of applications of epithermal neutron scattering experiments has been recently extended by the development of the Resonance Detector. In a Resonance Detector, resonant neutron absorption in an analyzer foil results in prompt emission of X- and γ-rays which are detected by a photon counter. Several combinations of analyzer foils and photon detectors have been studied and tested over the years and best results have been obtained with the combination of a natural uranium and (i) Cadmium-Zinc-Telluride (CZT) semiconductor (ii) Yttrium-Aluminum-Perovskite (YAP) scintillators. Here we compare the performance of the CZT semiconductor and YAP scintillator as Resonance Detector units. Two Resonance Detector prototypes made of natural uranium foil viewed by CZT and YAP were tested on the VESUVIO spectrometer at the ISIS spallation neutron source. The results show that both YAP and CZT can be used to detect epithermal neutrons in the energy range from 1 up to 66 eV. It was found that the signal-to-background ratio of the measurement can significantly be improved by raising the lower level discrimination threshold on the γ energy to about 600 keV. The advantages/disadvantages of the choice of a Resonance Detector based on YAP or CZT are discussed together with some potential applications

  18. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  19. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    Science.gov (United States)

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  20. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  1. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  2. Analysis of a photon number resolving detector based on fluorescence readout of an ion Coulomb crystal quantum memory inside an optical cavity

    DEFF Research Database (Denmark)

    Clausen, Christoph; Sangouard, N.; Drewsen, M.

    2013-01-01

    The ability to detect single photons with a high efficiency is a crucial requirement for various quantum information applications. By combining the storage process of a quantum memory for photons with fluorescence-based quantum state measurement, it is, in principle, possible to achieve high......-efficiency photon counting in large ensembles of atoms. The large number of atoms can, however, pose significant problems in terms of noise stemming from imperfect initial state preparation and off-resonant fluorescence. We identify and analyse a concrete implementation of a photon number resolving detector based...... larger than 93%. Moderate experimental parameters allow for repetition rates of about 3 kHz, limited by the time needed for fluorescence collection and re-cooling of the ions between trials. Our analysis may lead to the first implementation of a photon number resolving detector in atomic ensembles....

  3. Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy.

    Science.gov (United States)

    Kohno, Ryosuke; Hirano, Eriko; Nishio, Teiji; Miyagishi, Tomoko; Goka, Tomonori; Kawashima, Mitsuhiko; Ogino, Takashi

    2008-01-01

    Dosimetric characteristics of a metal oxide-silicon semiconductor field effect transistor (MOSFET) detector are studied with megavoltage photon beams for patient dose verification. The major advantages of this detector are its size, which makes it a point dosimeter, and its ease of use. In order to use the MOSFET detector for dose verification of intensity-modulated radiation therapy (IMRT) and in-vivo dosimetry for radiation therapy, we need to evaluate the dosimetric properties of the MOSFET detector. Therefore, we investigated the reproducibility, dose-rate effect, accumulated-dose effect, angular dependence, and accuracy in tissue-maximum ratio measurements. Then, as it takes about 20 min in actual IMRT for the patient, we evaluated fading effect of MOSFET response. When the MOSFETs were read-out 20 min after irradiation, we observed a fading effect of 0.9% with 0.9% standard error of the mean. Further, we applied the MOSFET to the measurement of small field total scatter factor. The MOSFET for dose measurements of small field sizes was better than the reference pinpoint chamber with vertical direction. In conclusion, we assessed the accuracy, reliability, and usefulness of the MOSFET detector in clinical applications such as pinpoint absolute dosimetry for small fields.

  4. Response of a BGO detector to photon and neutron sources simulations and measurements

    CERN Document Server

    Vincke, H H; Fabjan, Christian Wolfgang; Otto, T

    2002-01-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters $\\left({}^{60}\\rm{Co},\\right.$ ${}^{54}\\rm{Mn},$ $\\left. {}^{137}\\rm{Cs}\\right)$ were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  5. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  6. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    Science.gov (United States)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  7. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  8. A segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics for a PET scanner

    CERN Document Server

    Chesi, Enrico Guido; Joram, C; Mathot, S; Séguinot, Jacques; Weilhammer, P; Ciocia, F; De Leo, R; Nappi, E; Vilardi, I; Argentieri, A; Corsi, F; Dragone, A; Pasqua, D

    2006-01-01

    We describe the design, fabrication and test results of a segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics. Both the photodetector and its VLSI readout electronics are custom designed and have been tailored to the requirements of a recently proposed novel geometrical concept of a Positron Emission Tomograph. Emphasis is put on the PET specific features of the device. The detector has been fabricated in the photocathode facility at CERN.

  9. Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors.

    Science.gov (United States)

    Ziarkash, Abdul Waris; Joshi, Siddarth Koduru; Stipčević, Mario; Ursin, Rupert

    2018-03-22

    Single-photon avalanche diode (SPAD) detectors, have a great importance in fields like quantum key distribution, laser ranging, florescence microscopy, etc. Afterpulsing is a non-ideal behavior of SPADs that adversely affects any application that measures the number or timing of detection events. Several studies based on a few individual detectors, derived distinct mathematical models from semiconductor physics perspectives. With a consistent testing procedure and statistically large data sets, we show that different individual detectors - even if identical in type, make, brand, etc. - behave according to fundamentally different mathematical models. Thus, every detector must be characterized individually and it is wrong to draw universal conclusions about the physical meaning behind these models. We also report the presence of high-order afterpulses that are not accounted for in any of the standard models.

  10. Detecting an infrared photon within an hour. Transition-edge detector at ALPS-II

    Energy Technology Data Exchange (ETDEWEB)

    Dreyling-Eschweiler, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Horns, Dieter [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Collaboration: ALPS-II collaboration

    2013-09-15

    An essential design requirement of the ALPS-II experiment is the efficient detection of single photons with a very low instrumental background of 10 {mu}Hz. In 2011 the ALPS collaboration started to set up a TES detector (Transition-Edge Sensor) for ALPS-II, the second phase of the experiment. Since mid of 2013 the setup is ready for characterization in the ALPS laboratory: an ADR cryostat (Adiabatic Demagnetization Refrigerator) as millikelvin environment, a low noise SQUID (Superconducting Quantum Interference Device) with electronics for read-out and a fiber-coupled high-efficient TES for near-infrared photons as sensor. First measurements have shown a good discrimination between noise and 1064 nm signals.

  11. Detecting an infrared photon within an hour. Transition-edge detector at ALPS-II

    International Nuclear Information System (INIS)

    Dreyling-Eschweiler, Jan; Hamburg Univ.; Horns, Dieter

    2013-09-01

    An essential design requirement of the ALPS-II experiment is the efficient detection of single photons with a very low instrumental background of 10 μHz. In 2011 the ALPS collaboration started to set up a TES detector (Transition-Edge Sensor) for ALPS-II, the second phase of the experiment. Since mid of 2013 the setup is ready for characterization in the ALPS laboratory: an ADR cryostat (Adiabatic Demagnetization Refrigerator) as millikelvin environment, a low noise SQUID (Superconducting Quantum Interference Device) with electronics for read-out and a fiber-coupled high-efficient TES for near-infrared photons as sensor. First measurements have shown a good discrimination between noise and 1064 nm signals.

  12. The characterisation of the multianode photomultiplier tubes for the RICH-1 upgrade project at COMPASS

    Science.gov (United States)

    Abbon, P.; Alexeev, M.; Angerer, H.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Dafni, T.; Dalla Torre, S.; Delagnes, E.; Denisov, O.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Kolosov, V. N.; Königsmann, K.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Panzieri, D.; Paul, S.; Pesaro, G.; Pizzolotto, C.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schoenmeier, P.; Schroeder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Takekawa, S.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2008-09-01

    A major upgrade of the Cherenkov photon detection system of COMPASS RICH-1 has been performed and it has been in operation since the 2006 physics run. The inner part of the photon detector has been replaced by a different technology in order to measure Cherenkov photons at high photoelectron rates, up to several times 10 6 per second and per channel. Cherenkov photons from 200 to 750 nm are detected by 576 multianode photomultiplier tubes (MAPMTs) with 16 channels each, coupled to individual fused silica lens telescopes and fast, high sensitivity and high time resolution electronics read-out. To guarantee an optimal performance of the complete system, parameters like dark current, gain, uniformity, relative quantum efficiency have been measured for a totality of more than 600 MAPMTs (about 10 000 channels) in a fully automated test-stand, developed for this purpose. The ideal working point for each individual pixel could be ascertained by these measurements. In 2006 the newly equipped detector exhibited an excellent performance: about 56 detected photons per ring at saturation and a time resolution of better than 1 ns. We report about the MAPMT characterisation and the quality control set-up, protocol and results.

  13. Discrimination of optical coherent states using a photon number resolving detector

    DEFF Research Database (Denmark)

    Wittmann, C.; Andersen, Ulrik Lund; Leuchs, G.

    2010-01-01

    The discrimination of non-orthogonal quantum states with reduced or without errors is a fundamental task in quantum measurement theory. In this work, we investigate a quantum measurement strategy capable of discriminating two coherent states probabilistically with significantly smaller error...... probabilities than can be obtained using non-probabilistic state discrimination. We find that appropriate postselection of the measurement data of a photon number resolving detector can be used to discriminate two coherent states with small error probability. We compare our new receiver to an optimal...

  14. Athermal avalanche in bilayer superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B., E-mail: verma@nist.gov; Lita, A. E.; Stevens, M. J.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2016-03-28

    We demonstrate that two superconducting nanowires separated by a thin insulating barrier can undergo an avalanche process. In this process, Joule heating caused by a photodetection event in one nanowire and the associated production of athermal phonons which are transmitted through the barrier cause the transition of the adjacent nanowire from the superconducting to the normal state. We show that this process can be utilized in the fabrication of superconducting nanowire single photon detectors to improve the signal-to-noise ratio, reduce system jitter, maximize device area, and increase the external efficiency over a very broad range of wavelengths. Furthermore, the avalanche mechanism may provide a path towards a superconducting logic element based on athermal gating.

  15. One-dimensional position sensitive detector based on photonic crystals

    International Nuclear Information System (INIS)

    Xi Feng; Qin Lan; Xue Lian; Duan Ying

    2013-01-01

    Position sensitive detectors (PSDs) are an important class of optical sensors which utilizes the lateral photovoltaic effect (LPVE). According to the operation principle of PSD, we demonstrate that LPVE can be enhanced by lengthening the lifetime of photo-generated carriers. A PSD based on photonic crystals (PCs) composed of MgF 2 and InP is proposed and designed. The transmittances of the defect PC and the reflectance of the perfect PC in the PSD are obtained with transfer matrix method. The theoretical research on the designed device shows that LPVE is enhanced by improving the transmittance of the defect PC and the reflectance of the perfect PC to lengthen the lifetime of photo-generated carriers. (authors)

  16. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    Science.gov (United States)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 me

  17. Deriving the effective focal plane for the CBM-RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Kres, Ievgenii [Wuppertal University (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100). A central component of the proposed detector setup is a ring imaging Cherenkov detector (RICH) using CO2 as radiator gas, and a focussing optic with a large spherical mirror. In the present design, the optimal focal plane is approximated using four individual, flat detection surfaces. However, the exact shape and position of the ideal focal plane is subject to further optimization due to effects from tilting the focussing mirror and from momentum dependant deflection of the electron tracks in the magnetic stray field. In this talk, we present a new approach to derive the effective 3-dimensional shape of the focal plane based on a set of Monte Carlo simulations, comparing the ring sharpness at each point of a preliminary focal plane as function of z-position.

  18. Picosecond UV single photon detectors with lateral drift field: Concept and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, M.; Oktyabrsky, S.; Murat, P.

    2015-09-01

    Group III–V semiconductor materials are being considered as a Si replacement for advanced logic devices for quite some time. Advances in III–V processing technologies, such as interface and surface passivation, large area deep submicron lithography with high-aspect ratio etching primarily driven by the metal-oxide-semiconductor field-effect transistor development can also be used for other applications. In this paper we will focus on photodetectors with the drift field parallel to the surface. We compare the proposed concept to the state-of-the-art Si-based technology and discuss requirements which need to be satisfied for such detectors to be used in a single photon counting mode in blue and ultraviolet spectral region with about 10 ps photon timing resolution essential for numerous applications ranging from high-energy physics to medical imaging.

  19. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    International Nuclear Information System (INIS)

    Song, Tae Yong; Wu Heyu; Komarov, Sergey; Tai, Yuan-Chuan; Siegel, Stefan B

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm 3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  20. Study of GMSB models with photon final states using the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Terwort, Mark

    2009-11-30

    Models with gauge mediated supersymmetry breaking (GMSB) provide a possible mechanism to mediate supersymmetry breaking to the electroweak scale. In these models the lightest-supersymmetric particle is the gravitino, while the next-to-lightest supersymmetric particle is either the lightest neutralino or a slepton. In the former case final states with large missing transverse energy from the gravitinos, multiple jets and two hard photons are expected in pp-collisions at the LHC. Depending on the lifetime of the neutralino the photons might not point back to the interaction vertex, which requires dedicated search strategies. Additionally, this feature can be used to measure the neutralino lifetime using either the timing information from the electromagnetic calorimeter or the reconstructed photon direction. Together with the measurements of kinematic endpoints in invariant mass distributions, the lifetime can be used as input for fits of the GMSB model and for the determination of the underlying parameters. The signal selection and the discovery potential for GMSB models with photons in the nal state are discussed using simulated data of the ATLAS detector. In addition, the measurement of supersymmetric particle masses and of the neutralino lifetime as well as the results of the global GMSB fits are presented. (orig.)

  1. LHCb : Behaviour of Multi-anode Photomultipliers in Magnetic Fields for the LHCb RICH Upgrde

    CERN Multimedia

    Gambetta, Silvia

    2015-01-01

    A key feature of the LHCb upgrade, scheduled for 2019, is to remove the first level trigger and its data reduction from 40MHz to 1MHz, which is implemented in the on-detector readout electronics. The consequence for the LHCb Ring Imaging Cherenkov (RICH) detectors is that the Hybrid Photon Detectors need to be replaced as the readout chip is inside the detector vacuum. The baseline for replacement are Multianode Photomultiplier tubes (MaPMT) and new readout electronics. The MaPMTs will be located in the fringe field of the LHCb dipole magnet with residual fields up to 25 G. Therefore, their behaviour in magnetic fields is critical. Here we report about studies of the Hamamatsu models R11265 and H12700 in a magnetic field in an effort to qualify them for use in the LHCb RICH upgrade. Comparisons to the known model R7600 are also made. Measurements of the collection efficiency and gain were performed for all three space directions as a function of the magnetic field strength. In addition to measurements with ba...

  2. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  3. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 74, č. 10 (2014), "3071-1"-"3071-48" ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : photon * energy * calibration * detector * resolution * showers * electromagnetic * electron * transverse energy * CERN LHC Coll * calorimeter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.084, year: 2014

  4. The LHCb RICH PMTs Readout Electronics and the Monitoring of the HPDs Quantum Efficiency

    CERN Document Server

    Villa, Marco; Matteuzzi, Clara; D'Ambrosio, Carmelo; Pessina, Gianluigi

    2007-01-01

    LHCb is one of the four main experiments under construction on the Large Hadron Collider at CERN. Its purpose is to study CP violation in B mesons and to look for new physics effects in rare decays of b-hadrons. Particle identification will be essential to enhance the signal/background ratio in the selection of physics channels. For this reason, the Ring Imaging Cherenkov technique has been implemented: two RICH detectors (RICH1 and RICH2) have been designed to cover the wide momentum range 1-150 GeV/c. The produced Cherenkov photons will be focused on two planes of Hybrid PhotoDetectors (HPDs), which are sensitive to external magnetic fields and then need to be shielded. Despite the shielding, however, there will be some fringe field inside the HPDs volume and so it is necessary to experimentally check what is the behaviour of each photodetector when the LHCb dipole magnet is on and the HPDs are illuminated by test patterns. In RICH2, two LED projectors based on the Digital Light Processing technology are ex...

  5. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    International Nuclear Information System (INIS)

    Mizumoto, T.; Ohta, R.; Horie, T.; Suzuki, J.; Minowa, M.; Inoue, Y.

    2013-01-01

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500 mm and a focal length of 1007 mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter χ depending on the hidden photon mass m γ'

  6. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    International Nuclear Information System (INIS)

    Comandar, L. C.; Fröhlich, B.; Dynes, J. F.; Sharpe, A. W.; Lucamarini, M.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2015-01-01

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with an increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns

  7. Neutron and photon spectrometry with liquid scintillation detectors in mixed fields

    CERN Document Server

    Klein, H

    2002-01-01

    Liquid scintillation detectors of type NE213 or BC501A are well suited and routinely used for spectrometry in mixed n-gamma-fields. Neutron- and photon-induced pulse height spectra may be simultaneously recorded making use of the n/gamma-discrimination capability based on pulse shape analysis. The light output functions for the detected secondary charged particles, i.e. electrons, positrons, protons and other charged reaction products, and the pulse height resolution function must carefully be determined. This can be done experimentally, in part via an iterative procedure by comparison with calculations. The response functions can then be reliably calculated by Monte Carlo simulations. Photon response functions calculated with the PHRESP code, which was developed on the basis of the EGS4+PRESTA program package, are in very good agreement with calibrations up to 17 MeV, both in shape and absolute scale. Similarly, neutron response functions calculated with the NRESP7 code well describe the pulse height spectra...

  8. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  9. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    Science.gov (United States)

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  10. X-ray absorption spectroscopy of diluted system by undulator photon source and multi-element solid-state detector

    CERN Document Server

    Tanida, H

    2001-01-01

    In order to measure the extended X-ray absorption fine structure (EXAFS) spectrum of an ultra-diluted system, an optics and detector control system for a synchrotron radiation beamline is developed. The undulator gap width is continuously tuned to obtain the maximum X-ray photon flux during the energy scan for the EXAFS measurement. A piezoelectric translator optimizes the parallelism of the double crystal in a monochromator at each measurement point to compensate for mechanical errors of the monochromator, resulting in a smooth and intense X-ray photon flux during the measurement. For a detection of a weak fluorescence signal from diluted samples, a 19-element solid-state detector and digital signal processor are used. A K-edge EXAFS spectrum of iron in a myoglobin aqueous solution with a concentration of 5.58 parts per million was obtained by this system.

  11. Design of the TORCH detector: A Cherenkov based Time-of-Flight system for particle identification

    CERN Document Server

    AUTHOR|(CDS)2078663; Rademacker, Jonas

    The LHCb detector at the LHC collider has been very successfully operated over the past years, providing new and profound insights into the Standard Model, in particular through study of $b$-hadrons to achieve a better understanding of CP violation. One of the key components of LHCb is its particle identification system, comprised of two RICH detectors, which allow for high precision separation of particle species over a large momentum range. In order to retain and improve the performance of the particle identification system in light of the LHCb upgrade, the TORCH detector has been proposed to supplement the RICH system at low momentum (2-10 GeV/c). The TORCH detector provides (charged) particle identification through precision timing of particles passing through it. Assuming a known momentum from the tracking, it is possible to derive the species of a particle from the time of flight from its primary vertex. This measurement is achieved by timing and combining photons generated in a solid radiator. The geom...

  12. Multi-channeled NbN superconducting single photon detectors (SSPDs) system with NbN meander nanowires

    International Nuclear Information System (INIS)

    Fujiwara, Mikio; Sasaki, Masahide; Miki, Shigehito; Wang Zhen

    2009-01-01

    A superconducting single photon detector (SSPD) is promising candidate of the detector in a quantum key distribution (QKD) system, because of its low dark count and high speed repetition rate. We have developed the SSPD system cooled by a GM cryocooler. In this system, and the work surface can be cooled 2.95 K and up to 6 SSPDs can be installed. The active areas of SSPDs are 10x10 μm 2 or 20x20 μm 2 , and the system detection efficiency at dark count rate of 100 Hz reached 2.6% at a wavelength of 1550 nm.

  13. Ring recognition and electron identification in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, S; Hoehne, C; Ososkov, G

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In this contribution we will present algorithms and software which have been developed for electron identification in CBM. Efficient and fast ring recognition in the RICH detector is based on the Hough Transform method which has been accelerated considerably compared to a standard implementation. Ring quality selection is done using an Artificial Neural Network which also has been used for electron identification. Due to optical distortions ellipse fitting and radius corre ction routines are used for improved ring radius resolution. These methods allow for a high purity and efficiency of reconstructed electron rings. For momenta above 2 GeV/c the ring reconstruction efficiency for electrons embedded in central Au+Au collisions at 25 AGeV beam energy is 95% resulting in an electron identification efficiency of 90% at a pion suppression factor of 500. Including information from the TRD a pion suppression of 10 4 is reached at 80% efficiency. The developed algorithm is very robust to a high ring density environment. Current work focusses on detector layout studies in order to optimize the detector setup while keeping a high performance. All developed algorithms were tested on large statistics of simulated events and are included into the CBM software framework for common use.

  14. Photon signature analysis using template matching

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A., E-mail: d.a.bradley@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saripan, M.I. [Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Wells, K. [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH (United Kingdom); Dunn, W.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506 (United States)

    2011-10-01

    We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming {gamma} photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP{sup TM}) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly.

  15. Liquid argon as an electron/photon detector in the energy range of 50 MeV to 2 GeV: a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Goodman, M.S.; Denis, G.; Hall, M.; Karpovsky, A.; Wilson, R.; Gabriel, T.A.; Bishop, B.L.

    1980-12-01

    Monte Carlo techniques which have been used to study the characteristics of a proposed electron/photon detector based on the total absorption of electromagnetic showers in liquid argon have been investigated. The energy range studied was 50 MeV to 2 GeV. Results are presented on the energy and angular resolution predicted for the device, along with the detailed predictions of the transverse and longitudinal shower distributions. Comparisons are made with other photon detectors, and possible applications are discussed

  16. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  17. Approaches to single photon detection

    International Nuclear Information System (INIS)

    Thew, R.T.; Curtz, N.; Eraerds, P.; Walenta, N.; Gautier, J.-D.; Koller, E.; Zhang, J.; Gisin, N.; Zbinden, H.

    2009-01-01

    We present recent results on our development of single photon detectors, including: gated and free-running InGaAs/InP avalanche photodiodes (APDs); hybrid detection systems based on sum-frequency generation (SFG) and Si APDs-SFG-Si APDs; and SSPDs (superconducting single photon detectors), for telecom wavelengths; as well as SiPM (Silicon photomultiplier) detectors operating in the visible regime.

  18. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  19. Design and implementation of the reconstruction software for the photon multiplicity detector in object oriented programming framework

    International Nuclear Information System (INIS)

    Chattopadhayay, Subhasis; Ghosh, Premomoy; Gupta, R.; Mishra, D.; Phatak, S.C.; Sood, G.

    2002-01-01

    High granularity photon multiplicity detector (PMD) is scheduled to take data in Relativistic Heavy Ion Collision(RHIC) this year. A detailed scheme has been designed and implemented in object oriented programming framework using C++ for the monitoring and reconstruction job of PMD data

  20. Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Nora L., E-mail: nmaidana@if.usp.br [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Vanin, Vito R.; Jahnke, Viktor [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Fernández-Varea, José M. [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Martins, Marcos N. [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Brualla, Lorenzo [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122 Essen (Germany)

    2013-11-21

    We report on the efficiency calibration of a HPGe x-ray detector using radioactive sources and an analytical expression taken from the literature, in two different arrangements, with and without a broad-angle collimator. The frontal surface of the Ge crystal was scanned with pencil beams of photons. The Ge dead layer was found to be nonuniform, with central and intermediate regions that have thin (μm range) and thick (mm range) dead layers, respectively, surrounded by an insensitive ring. We discuss how this fact explains the observed efficiency curves and generalize the adopted model. We show that changes in the thickness of the Ge-crystal dead layer affect the efficiency of x-ray detectors, but the use of an appropriate broad-beam external collimator limiting the photon flux to the thin dead layer in the central region leads to the expected efficiency dependence with energy and renders the calibration simpler.

  1. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    Science.gov (United States)

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the

  2. Recent Results with a segmented Hybrid Photon Detector for a novel parallax-free PET Scanner for Brain Imaging

    CERN Document Server

    Braem, André; Joram, Christian; Mathot, Serge; Séguinot, Jacques; Weilhammer, Peter; Ciocia, F; De Leo, R; Nappi, E; Vilardi, I; Argentieri, A; Corsi, F; Dragone, A; Pasqua, D

    2007-01-01

    We describe the design, fabrication and test results of a segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics. Both the photodetector and its VLSI readout electronics are custom designed and have been tailored to the requirements of a recently proposed novel geometrical concept of a Positron Emission Tomograph. Emphasis is laid on the PET specific features of the device. The detector has been fabricated in the photocathode facility at CERN.

  3. A simulation study of high-resolution x-ray computed tomography imaging using irregular sampling with a photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2013-01-01

    The purpose of this study was to improve the spatial resolution for the x-ray computed tomography (CT) imaging with a photon-counting detector using an irregular sampling method. The geometric shift-model of detector was proposed to produce the irregular sampling pattern and increase the number of samplings in the radial direction. The conventional micro-x-ray CT system and the novel system with the geometric shift-model of detector were simulated using analytic and Monte Carlo simulations. The projections were reconstructed using filtered back-projection (FBP), algebraic reconstruction technique (ART), and total variation (TV) minimization algorithms, and the reconstructed images were compared in terms of normalized root-mean-square error (NRMSE), full-width at half-maximum (FWHM), and coefficient-of-variation (COV). The results showed that the image quality improved in the novel system with the geometric shift-model of detector, and the NRMSE, FWHM, and COV were lower for the images reconstructed using the TV minimization technique in the novel system with the geometric shift-model of detector. The irregular sampling method produced by the geometric shift-model of detector can improve the spatial resolution and reduce artifacts and noise for reconstructed images obtained from an x-ray CT system with a photon-counting detector. -- Highlights: • We proposed a novel sampling method based on a spiral pattern to improve the spatial resolution. • The novel sampling method increased the number of samplings in the radial direction. • The spatial resolution was improved by the novel sampling method

  4. Evaluation of the photon transmission efficiency of light guides used in scintillation detectors using LightTools code

    International Nuclear Information System (INIS)

    Park, Hye Min; Joo, Koan Sik; Kim, Jeong Ho; Kim, Dong Sung; Park, Ki Hyun; Park, Chan Jong; Han, Woo Jin

    2016-01-01

    To optimize the photon transmission efficiency of light guides used in scintillation detectors, LightTools code, which can construct and track light, was used to analyze photon transmission effectiveness with respect to light guides thickness. This analysis was carried out using the commercial light guide, N-BK 7 Optical Glass by SCHOTT, as a model for this study. The luminous exitance characteristic of the LYSO scintillator was used to analyze the photon transmission effectiveness according to the thickness of the light guide. The results of the simulations showed the effectiveness of the photon transmission according to the thickness of the light guide, which was found to be distributed from 13.38% to 33.57%. In addition, the photon transmission efficiency was found to be the highest for light guides of 4 mm of thickness and a receiving angle of 49 .deg. . Through such simulations, it is confirmed that photon transmission efficiency depends on light guide thickness and subsequent changes in the internal angle of reflection. The aim is to produce an actual light guide based on these results and to evaluate its performance

  5. A Thin detector with ionization tubes for high energy electrons and photons

    International Nuclear Information System (INIS)

    Amatuni, Ts. A.; Denisov, S.P.; Krasnokutsky, R.N.; Lebedenko, V.N.; Shuvalov, R.S.

    1981-01-01

    A possibility to measure the energy of electrons and photons with a simple detector, consisting of a lead convertor and ionization tubes filled with pure argon, has been studied. The measurements have been performed in a 26.6 GeV electron beam. The best energy resolution approximately 16% was achieved for the convertor thickness 40 mm and argon pressure > 20 atm. The performance of the detector in magnetic field up to 16 kGs has been also studied. It turned out that the mean pulse height rises approximately linearly with increasing magnetic field and becomes flat at H approximately 10 kGs. This behaviour is the same for magnetic field perpendicular and parallel with respect to the ionization tubes. The energy resolution depends weakly on the magnetic field. Ionization tubes filled with argon or xenon under high pressure may be used for minimum ionizing particle detection [ru

  6. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    Science.gov (United States)

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  7. Particle identification for a future EIC detector

    Science.gov (United States)

    Ilieva, Y.; Allison, L.; Barber, C.; Cao, T.; Del Dotto, A.; Gleason, C.; He, X.; Kalicy, G.; McKisson, J.; Nadel-Turonski, P.; Park, K.; Rapoport, J.; Schwarz, C.; Schwiening, J.; Wong, C. P.; Zhao, Zh.; Zorn, C.

    2018-03-01

    In its latest Long Range Plan for Nuclear Science Research in the U.S., the Nuclear Science Advisory Committee to the Department of Energy recommended that in regards to new nuclear-physics facilities, the construction of an Electron Ion Collider (EIC) be of the highest priority after the completion of the Facility for Rare Isotope Beams. In order to carry out key aspects of the scientific program of the EIC, the EIC central detector must be capable of hadron particle identification (PID) over a broad momentum range of up to 50 GeV/c. The goal of the EIC-PID consortium is to develop an integrated program for PID at EIC, which employs several different technologies for imaging Cherenkov detectors. Here we discuss the conceptual designs and the expected PID performance of two of these detectors, as well as the newest results of gain evaluation studies of photon sensors that are good candidates to read out these detectors. Development of a gas-aerogel dual-radiator Ring Imaging Cherenkov (dRICH) detector with outward focusing mirrors is being pursued for the hadron endcap. Simulations demonstrate that the dRICH can provide a continuous >= 3σ π /K/p separation from 2.5 GeV/c to 50 GeV/c. A modular aerogel Ring Imaging Cherenkov (mRICH) detector with a Fresnel lens as a focusing element is being pursued for the electron endcap. The design provides for hadron identification over a momentum range of 3 GeV/c-10 GeV/c. The working principle of the mRICH design has been proven in a beam test with a first prototype. The location of the sensor readout planes of the Cherenkov detectors in the magnetic field of the central-detector solenoid, which is expected to be within 1.5 T-3 T, makes is necessary to evaluate the limit of the acceptable performance of commercially available photosensors, such as microchannel-plate photomultipliers (MCP PMTs). Here we present the results of gain evaluation of multi-anode MCP PMTs with a pore size of 10 μm. Overall, our preliminary results

  8. Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Universite Mohamed Premier et LPTPM, Faculte des Sciences, Oujda (Morocco); Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others

    2016-12-15

    The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb{sup -1} of pp collision data collected at the LHC at √(s) = 7 TeV and 20.3 fb{sup -1} at √(s) = 8 TeV. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 TeV data and between 0.5% and 5.6% in 8 TeV data, depending on the photon transverse momentum and pseudorapidity. (orig.)

  9. 15Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging.

    Science.gov (United States)

    Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-01-01

    15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Influence of the Integral Quality Monitor transmission detector on high energy photon beams. A multi-centre study

    Energy Technology Data Exchange (ETDEWEB)

    Casar, Bozidar [Institute of Oncology, Ljubljana (Slovenia). Dept. of Radiation Physics; Pasler, Marlies [Lake Constance Radiation Oncology Center, Singen and Friedrichshafen (Germany); Wegener, Sonja [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; and others

    2017-10-01

    The influence of the Integral Quality Monitor (IQM) transmission detector on photon beam properties was evaluated in a preclinical phase, using data from nine participating centres: (i) the change of beam quality (beam hardening), (ii) the influence on surface dose, and (iii) the attenuation of the IQM detector. For 6 different nominal photon energies (4 standard, 2 FFF) and square field sizes from 1 x 1 cm{sup 2} to 20 x 20 cm{sup 2}, the effect of IQM on beam quality was assessed from the PDD{sub 20,10} values obtained from the percentage dose depth (PDD) curves, measured with and without IQM in the beam path. The change in surface dose with/without IQM was assessed for all available energies and field sizes from 4 x 4 cm{sup 2} to 20 x 20 cm{sup 2}. The transmission factor was calculated by means of measured absorbed dose at 10 cm depth for all available energies and field sizes. (i) A small (0.11-0.53%) yet statistically significant beam hardening effect was observed, depending on photon beam energy. (ii) The increase in surface dose correlated with field size (p < 0.01) for all photon energies except for 18 MV. The change in surface dose was smaller than 3.3% in all cases except for the 20 x 20 cm{sup 2} field and 10 MV FFF beam, where it reached 8.1%. (iii) For standard beams, transmission of the IQM showed a weak dependence on the field size, and a pronounced dependence on the beam energy (0.9412 for 6 MV to 0.9578 for 18 MV and 0.9440 for 6 MV FFF; 0.9533 for 10 MV FFF). The effects of the IQM detector on photon beam properties were found to be small yet statistically significant. The magnitudes of changes which were found justify treating IQM either as tray factors within the treatment planning system (TPS) for a particular energy or alternatively as modified outputs for specific beam energy of linear accelerators, which eases the introduction of the IQM into clinical practice.

  11. Characterization of Multianode Photomultiplier Tubes for a Cherenkov Detector

    Science.gov (United States)

    Benninghoff, Morgen; Turisini, Matteo; Kim, Andrey; Benmokhtar, Fatiha; Kubarovsky, Valery; Duquesne University Collaboration; Jefferson Lab Collaboration

    2017-09-01

    In the Fall of 2017, Jefferson Lab's CLAS12 (CEBAF Large Acceptance Spectrometer) detector is expecting the addition of a RICH (ring imaging Cherenkov) detector which will allow enhanced particle identification in the momentum range of 3 to 8 GeV/c. RICH detectors measure the velocity of charged particles through the detection of produced Cherenkov radiation and the reconstruction of the angle of emission. The emitted Cherenkov photons are detected by a triangular-shaped grid of 391 multianode photomultiplier tubes (MAPMTs) made by Hamamatsu. The custom readout electronics consist of MAROC (multianode read out chip) boards controlled by FPGA (Field Programmable Gate Array) boards, and adapters used to connect the MAROC boards and MAPMTs. The focus of this project is the characterization of the MAPMTs with the new front end electronics. To perform these tests, a black box setup with a picosecond diode laser was constructed with low and high voltage supplies. A highly automated procedure was developed to acquire data at different combinations of high voltage values, light intensities and readout electronics settings. Future work involves using the collected data in calibration procedures and analyzing that data to resolve the best location for each MAPMT. SULI, NSF.

  12. Nonclassicality characterization in photon statistics based on binary-response single-photon detection

    International Nuclear Information System (INIS)

    Guo Yanqiang; Yang Rongcan; Li Gang; Zhang Pengfei; Zhang Yuchi; Wang Junmin; Zhang Tiancai

    2011-01-01

    By employing multiple conventional single-photon counting modules (SPCMs), which are binary-response detectors, instead of photon number resolving detectors, the nonclassicality criteria are investigated for various quantum states. The bounds of the criteria are derived from a system based on three or four SPCMs. The overall efficiency and background are both taken into account. The results of experiments with thermal and coherent light agree with the theoretical analysis. Compared with photon number resolving detectors, the use of a Hanbury Brown-Twiss-like scheme with multiple SPCMs is even better for revealing the nonclassicality of the fields, and the efficiency requirements are not so stringent. Some proposals are presented which can improve the detection performance with binary-response SPCMs for different quantum states.

  13. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    Science.gov (United States)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  14. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    International Nuclear Information System (INIS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; Chen, Baiyu; Yu, Lifeng; McCollough, Cynthia H; Jorgensen, Steven M; Ritman, Erik L; Gutjahr, Ralf; Kappler, Steffen; Halaweish, Ahmed F

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  15. 125 GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit

    Science.gov (United States)

    Jiang, Wen-Hao; Liu, Jian-Hong; Liu, Yin; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2017-12-01

    InGaAs/InP single-photon detectors (SPDs) are the key devices for applications requiring near-infrared single-photon detection. Gating mode is an effective approach to synchronous single-photon detection. Increasing gating frequency and reducing module size are important challenges for the design of such detector system. Here we present for the first time an InGaAs/InP SPD with 1.25 GHz sine wave gating using a monolithically integrated readout circuit (MIRC). The MIRC has a size of 15 mm * 15 mm and implements the miniaturization of avalanche extraction for high-frequency sine wave gating. In the MIRC, low-pass filters and a low-noise radio frequency amplifier are integrated based on the technique of low temperature co-fired ceramic, which can effectively reduce the parasitic capacitance and extract weak avalanche signals. We then characterize the InGaAs/InP SPD to verify the functionality and reliability of MIRC, and the SPD exhibits excellent performance with 27.5 % photon detection efficiency, 1.2 kcps dark count rate, and 9.1 % afterpulse probability at 223 K and 100 ns hold-off time. With this MIRC, one can further design miniaturized high-frequency SPD modules that are highly required for practical applications.

  16. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    Science.gov (United States)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  17. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  18. Time differential {sup 57}Fe Mössbauer spectrometer with unique 4π YAP:Ce 122.06 keV gamma-photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Prochazka, Vit [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Navarik, Jakub [Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 12, 77 146 Olomouc (Czech Republic); Kouril, Lukas; Kohout, Pavel; Vrba, Vlastimil [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Machala, Libor [Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 12, 77 146 Olomouc (Czech Republic)

    2016-10-01

    This paper presents a conceptually new design of the {sup 57}Fe Time Differential Mössbauer Spectrometer (TDMS) with the gamma-photon detector optimized for registration of a radiation emitted in a maximum solid angle. A high detection efficiency of 80% in 4π region was achieved for 122.06 keV photons emitted from {sup 57}Co source. Detector parameters have been optimized for the use in the Time Differential Mössbauer Spectroscopy where the high time resolution in range of 176–200 ns is highly required. Technical concept of the TDMS is based on the virtual instrumentation technique and uses fast digital oscilloscope. Performance and detector utilization have been clarified by decreasing the Mössbauer spectral line-width of K{sub 2}MgFe(CN){sub 6} reference sample from 0.33 mm/s (integral mode) to 0.23 mm/s (time differential mode). This report also describes characterization and utilization of the detector together with additional electronic blocks and two-channel fast data-acquisition system construction.

  19. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    Science.gov (United States)

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible.

  20. Measurement of the inclusive isolated prompt photon cross section in pp collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H.S.; Barak, L.; Baranov, S.P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A.E.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Belhorma, B.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G.J.; Bobrovnikov, V.B.; Bocci, A.; Bock, R.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bona, M.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N.J.; Buchholz, P.; Buckingham, R.M.; Buckley, A.G.; Buda, S.I.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E.J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Buttinger, W.; Byatt, T.; Cabrera Urban, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Calvet, S.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Caprio, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerna, C.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervetto, M.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clifft, R.W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J.G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Correard, S.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Dam, M.; Dameri, M.; Damiani, D.S.; Danielsson, H.O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Daum, C.; Dauvergne, J.P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawe, E.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Cruz-Burelo, E.; De La Taille, C.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedes, G.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S.P.; Dennis, C.; Derendarz, D.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diaz Gomez, M.M.; Diblen, F.; Diehl, E.B.; Dietl, H.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Dowell, J.D.; Doxiadis, A.D.; Doyle, A.T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J.G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Duren, M.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Efthymiopoulos, I.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Ferro, F.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M.J.; Fisher, S.M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fohlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gapienko, V.A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gieraltowski, G.F.; Gilbert, L.M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Golovnia, S.N.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Gorski, B.T.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gouanere, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafstrom, P.; Grah, C.; Grahn, K-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Grebenyuk, O.G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Gris, P.L.Y.; Grishkevich, Y.V.; Grivaz, J.F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V.N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C.J.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harper, D.; Harper, R.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B.M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayden, D; Hayward, H.S.; Haywood, S.J.; Hazen, E.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R.C.W.; Hendriks, P.J.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Herrberg, R.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hill, N.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hindson, D.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Hollins, T.I.; Holmes, A.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homer, R.J.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J-Y.; Hott, T.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howarth, J.; Howell, D.F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jezequel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M.D.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, M.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joo, K.K.; Joram, C.; Jorge, P.M.; Jorgensen, S.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenney, C.J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoo, T.J.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kimura, N.; Kind, O.; King, B.T.; King, M.; King, R.S.B.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiver, A.M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knue, A.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Konig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G.M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S.V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kortner, S.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasel, O.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lambacher, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Landsman, H.; Lane, J.L.; Lange, C.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lapin, V.V.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Leahu, M.; Lebedev, A.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Lei, X.; Leite, M.A.L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepidis, J.; Leroy, C.; Lessard, J-R.; Lesser, J.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Lewandowska, M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linde, F.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S.S.A.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V.P.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maass en, M.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magnoni, L.; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Mangin-Brinet, M.; Manjavidze, I.D.; Mann, A.; Mann, W.A.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C.P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti-Garcia, S.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, Ph.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Mass, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCarthy, T.G.; McCubbin, N.A.; McFarlane, K.W.; Mcfayden, J.A.; McGarvie, S.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; Mclaughlan, T.; McMahon, S.J.; McMahon, T.R.; McMahon, T.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.; Metcalfe, J.; Mete, A.S.; Meuser, S.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Miele, P.; Migas, S.; Migliaccio, A.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, W.J.; Mills, C.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitra, A.; Mitrevski, J.; Mitrofanov, G.Y.; Mitsou, V.A.; Mitsui, S.; Miyagawa, P.S.; Miyazaki, K.; Mjornmark, J.U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A.M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R.W.; Moorhead, G.F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A.K.; Mornacchi, G.; Morone, M-C.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moye, T.H.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nasteva, I.; Nation, N.R.; Nattermann, T.; Naumann, T.; Nauyock, F.; Navarro, G.; Neal, H.A.; Nebot, E.; Nechaeva, P.Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neukermans, L.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newman, P.R.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norniella Francisco, O.; Norton, P.R.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B.J.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohska, T.K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, C.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J.P; Ottewell, B.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Oye, O.K.; Ozcan, V.E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Palmer, M.J.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadelis, A.; Papadopoulou, Th.D.; Paramonov, A.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Patel, N.; Pater, J.R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M.I.; Peeters, S.J.M.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petereit, E.; Peters, O.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Phillips, P.W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Pleskach, A.V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G.E.; Pospisil, S.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rose, M.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosendahl, P.L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L.P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rottlander, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N.C.; Rzaeva, S.; Saavedra, A.F.; Sadeh, I.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J.B.; Savard, P.; Savinov, V.; Savva, P.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmidt, E.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schulz, H.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schweiger, D.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Short, D.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Sjursen, T.B.; Skinnari, L.A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T.J.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Stefanidis, E.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockmanns, T.; Stockton, M.C.; Stodulski, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D.A.; Su, D.; Subramania, S.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, Y.; Sviridov, Yu.M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.; Taylor, G.N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K.K.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, A.S.; Thomson, E.; Thomson, M.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J.M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Ventura, S.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vertogardov, L.; Vest, A.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vovenko, A.S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Will, J.Z.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wooden, G.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S.L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, S.; Yang, U.K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V.G.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zalite, Yo.K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, A.V.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-01-01

    A measurement of the cross section for the inclusive production of isolated prompt photons in $pp$ collisions at a centre-of-mass energy $\\sqrt(s)$ = 7 TeV is presented. The measurement covers the pseudorapidity ranges $|\\eta^{\\gamma}| < 1.37$ and $1.52 \\leq |\\eta^{\\gamma}| < 1.81$ in the transverse energy range $15 \\leq E^{\\gamma}_T\\ \\leq 100~GeV$. The results are based on an integrated luminosity of $880~nb^{−1}$ , collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner detector. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

  1. Superiority of triple-detector single-photon emission tomography over single- and dual-detector systems in the minimization of motion artefacts

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Taki, Junichi; Michigishi, Takatoshi; Tonami, Norihisa

    1998-01-01

    A patient motion-related artefact is one of the most important artefacts in single-photon emission tomography (SPET) imaging. This study evaluated the effect of the number and configuration of SPET detectors on motion artefacts. The following acquisition conditions were simulated based on original 360 projection images: (1) single-detector 180 rotation (S180), (2) a dual-detector rectangular (L-shaped) 180 acquisition (D180L), (3) dual-detector cameras mounted opposite each other with 360 acquisition (D360) and (4) triple-detector 360 acquisition (T360). The motion artefacts were introduced using a syringe and a myocardial phantom. Clinical cases with technetium-99m methoxyisobutylisonitrile and thallium-201 studies were analysed to confirm the validity of this phantom simulation. The effect of continuous alternate rotation acquisition and summing the projections on the reduction of motion artefacts was investigated in each model. The effect of motion depended on the number and the configuration of the SPET detectors. A 1-pixel (6.4 mm) motion in the S180, D180L and D360 models generated only slight artefacts, and a 2-pixel motion led to an apparent decrease in activity or created hot areas in the myocardium. On the other hand, a T360 rotation created few artefacts even with a 2-pixel motion of the last quarter of the projections. Despite the difference in attenuation with 201 Tl and 99m Tc, similar artefact patterns were observed with both radionuclides in selected patient model studies. Continuous alternate rotation could reduce artefacts caused by less than a 2-pixel motion. In conclusion, calculating the average of the sum of the projections of triple-detector 360 rotations with alternate rotation is the best method to minimize motion artefacts. This ''averaging'' effect of motion artefacts is a key to this simulation. (orig.)

  2. Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV $pp$ collisions with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-10-06

    A search is presented for photonic signatures motivated by generalised models of gauge-mediated supersymmetry breaking. This search makes use of 20.3 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s}=8$ TeV recorded by the ATLAS detector at the LHC, and explores models dominated by both strong and electroweak production of supersymmetric partner states. Four experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon, lepton, $b$-quark jet, or jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction and model-dependent 95% confidence-level exclusion limits are set.

  3. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    Science.gov (United States)

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  4. Monte Carlo calculations of the response of an external detector to a source of photons in the lungs of a heterogeneous phantom

    International Nuclear Information System (INIS)

    Bhati, S.; Sharma, R.C.; Somasundaram, S.

    1979-01-01

    A computer program to calculate the response of a 20 cm dia phoswich (3mm thick NaI(Tl) primary detector) to a source of low-energy photons distributed in the lungs of a heterogeneous (MIRD) phantom, approximating ICRP Reference Man, has been developed. Monte Carlo techniques are employed to generate photons and trace their fates in the thorax of MIRD phantom. The acceptable points of photon interactions in skeletal, lung and ordinary tissue are determined by Coleman technique. The photon interactions considered are photoelectric and Compton. The calculations yield the exit photon energy spectrum which is smeared with experimentally determined Gaussian resolution function to convert into pulse-height spectrum observable with the detector. The computer program has provisions for incorporating the effects of iodine K x-ray escape as well as variable intrinsic efficiency of the detector. Computed calibration factors (cpm/μCi integrated over the full spectrum) are given for the phoswich located centrally over and in contact with the chest for several low-energy photon sources distributed uniformly or as points in the lungs of the phantom. The radionuclides considered are 238 Pu, 239 Pu, 241 Am, 244 Cm, 246 Cm, 250 Cf and 103 Pd. Examples of generated exit photon and the corresponding pulse-height spectra are included. The spectral changes observed in these generated spectra, which are also discerned in experimental pulse-height spectra, are discussed in detail. Thus, photopeak energies of 18.4 and 55.5 KeV for Usub(L) x-rays and 241 Am gamma-rays respectively have been observed. It is shown that consideration of the total (i.e. both uncollided and those escaping after collision instead of the uncollided alone) flux of escaping photons improves the calibration factors by about 50% for 239 Pu, 70% for 103 Pd and as much as 340% for 241 Am gamma-rays. In addition, calibration factors are calculated for point 239 Pu sources located at different sites in the phantom lungs

  5. Dual photon absorptiometer utilizing a HpGe detector and microprocessor controller

    International Nuclear Information System (INIS)

    Ellis, K.J.; Vartsky, D.; Pearlstein, T.B.; Alberi, J.L.; Cohn, S.H.

    1978-01-01

    The analysis of bone mineral content (BMC) using a single energy-photon beam assumes that there are only two materials present, bone mineral and a uniform soft tissue component. Uncertainty in the value of BMC increases with different adipose tissue components in the transmitted beam. These errors, however, are reduced by the dual energy technique. Also, extension to additional energies further identifies the separate constituents of the soft tissue component. A multi-energy bone scanning apparatus with data acquisition and analysis capability sufficient to perform multi-energy analysis of bone mineral content was designed and developed. The present work reports on the development of device operated in the dual energy mode. The high purity germanium (HpGe) detector is an integral component of the scanner. Errors in BMC due to multiple small angle scatters are reduced due to the excellent energy resolution of the detector (530 eV at 60 keV). Also, the need to filter the source or additional collimation on the detector is eliminated. A new dual source holder was designed using 200 mCi 125 I and 100 mCi 241 Am. The active areas of the two source capsules are aligned on a common axis. The congruence of the dual source was verified by measuring the collimator response function. This new holder design insures that the same tissue mass simultaneously attenuates both sources. The controller portion of the microprocessor allows for variation in total scan length, step size, and counting time per step. These options allow for multiple measurements without changes in the detector, source, or collimator. The system has been successfully used to determine the BMC content of different bones

  6. Imaging high energy photons with PILATUS II at the tagged photon beam at MAX-lab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V. [School of Physics, University of Melbourne, Parkville 3010 (Australia)], E-mail: leev@physics.unimelb.edu.au; Peake, D.J.; Sobott, B. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Schroeder, B. [MAX-lab, Lund University, Lund (Sweden); Broennimann, Ch. [DECTRIS Ltd., Baden (Switzerland); Henrich, B. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Hansen, K. [MAX-lab, Lund University, Lund (Sweden); O' Keefe, G.J. [Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Taylor, G.N. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Boland, M.J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Thompson, M.N.; Rassool, R.P. [School of Physics, University of Melbourne, Parkville 3010 (Australia)

    2009-05-21

    In photonuclear experiments precise location of the photon beam relative to the experimental sample is critical. Previously used techniques such as using photographic film to identify the position, intensity and centroid of the beam is time-consuming and a faster method is required. PILATUS is a single-photon-counting pixel detector developed at the Paul Scherrer Institute (PSI), Switzerland. It is a silicon-based, two-dimensional detector with a large dynamic range and zero readout noise. Designed as an X-ray detector, its optimal quantum efficiency is between 3 and 30 keV. This paper reports measurements carried out at the MAX-lab tagged photon facility in Lund, Sweden. The beam endpoint energy of approximately 200 MeV is far above the designed optimal energy detection range of PILATUS, and provides a critical test of the use of PILATUS under high energy conditions. The detector was placed in the photon beam and images were taken both downstream of other experiments, and in close range of a 19 mm collimator. The successful measurements demonstrate the versatility and robustness of the detector and provide an effective way of quickly and accurately monitoring beam position and profile in real time.

  7. The LHCb RICH silica aerogel performance with LHC data

    CERN Multimedia

    Perego, D L

    2010-01-01

    In the LHCb detector at the Large Hadron Collider, powerful charged particle identification is performed by Ring Imaging Cherenkov (RICH) technology. In order to cover the full geometric acceptance and the wide momentum range (1-100 GeV/c), two detectors with three Cherenkov radiators have been designed and installed. In the medium (10-40 GeV/c) and high (30-100 GeV/c) momentum range, gas radiators are used (C4F10 and CF4 respectively). In the low momentum range (1 to a few GeV/c) pion/kaon/proton separation will be done with photons produced in solid silica aerogel. A set of 16 tiles, with the large transverse dimensions ever (20x20 cm$^2$) and nominal refractive index 1.03 have been produced. The tiles have excellent optical properties and homogeneity of refractive index within the tile of ~1%. The first data collected at LHC are used to understand the behaviour of the RICH: preliminary results will be presented and discussed on the performance of silica aerogel and of the gas radiators C4F10 and CF4.

  8. First measurement of isolated-photon plus jet production in $pp$ collisions at $\\sqrt{s}$ = 13 TeV with the ATLAS detector

    CERN Document Server

    Callea, Giuseppe; The ATLAS collaboration

    2017-01-01

    The dynamics of isolated-photon plus jet production in pp collisions at $\\sqrt{s}$ = 13 TeV were studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb$^{-1}$. The photons were reconstructed for photon transverse energies larger than 125 GeV. The jets were identified using the anti-kt algorithm with radius parameter R=0.4 and selected in the rapidity range |y|100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the photon transverse energy, the jet transverse momentum, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of- mass system. The leading-logarithm parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD calculations from JETPHOX are compared to the measurements.

  9. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  10. 15 Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Sugimura, Shigeaki [Tokyo Denpa Co. Ltd., 82-5 Ueno, Ichinohe, Iwate 028-5321 (Japan); Endo, Haruyuki [Iwate Industrial Research Insutitute 3, 3-35-2 Shinden, Iioka, Morioka, Iwate 020-0852 (Japan); Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0193 (Japan); Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2012-01-15

    15 Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2 mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 1.95 mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15 min, and photon-counting CT was accomplished using gadolinium-based contrast media. - Highlights: Black-Right-Pointing-Pointer We developed a first-generation 15 Mcps photon-counting X-ray computed tomography (CT) system. Black-Right-Pointing-Pointer High-speed photon counting was carried out using a zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module in the X-ray CT system. Black-Right-Pointing-Pointer Tomography is accomplished by repeated translations and rotations of an object. Black-Right-Pointing-Pointer The minimum exposure time for obtaining a tomogram was 15 min. Black-Right-Pointing-Pointer The photon-counting CT was accomplished using gadolinium-based contrast media.

  11. Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems.

    Science.gov (United States)

    da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre

    2012-08-13

    By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.

  12. A Post Shower detector for the FMS to study Drell Yan and Direct Photons

    Science.gov (United States)

    Kapukchyan, David; STAR Collaboration

    2017-09-01

    One of the goals of the 2017 run at STAR was to measure the direct photon and Drell Yan electrons in polarized pp collisions in order to understand the Sivers and Collins effects. To make such a measurement a postshower detector (FPOST) for the Forward Meson spectrometer (FMS) was commissioned and installed for the 2017 run. The FMS together with its preshower (FPS) detector and the new FPOST cover 2 FPS the FPOST is a scintillator hodoscope with a channel size that matches that of the FMS. Its purpose is to discriminate the hadrons that punch through and the partially contained showers that leak out of the FMS. This talk will discuss the design requirements and performance of the FPOST during the 2017 run. Funding by DOE Award No. DE-FG02-04ER41325.

  13. Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons

    Energy Technology Data Exchange (ETDEWEB)

    Guadilla, V., E-mail: victor.guadilla@ific.uv.es [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Algora, A. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen H-4026 (Hungary); Tain, J.L.; Agramunt, J. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Äystö, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 (Finland); Briz, J.A.; Cucoanes, A. [Subatech, CNRS/IN2P3, Nantes, EMN, F-44307 Nantes (France); Eronen, T. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 (Finland); Estienne, M.; Fallot, M. [Subatech, CNRS/IN2P3, Nantes, EMN, F-44307 Nantes (France); Fraile, L.M. [Universidad Complutense, Grupo de Física Nuclear, CEI Moncloa, E-28040 Madrid (Spain); Ganioğlu, E. [Department of Physics, Istanbul University, 34134 Istanbul (Turkey); Gelletly, W. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Department of Physics, University of Surrey, GU2 7XH Guildford (United Kingdom); Gorelov, D.; Hakala, J.; Jokinen, A. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 (Finland); Jordan, D. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Kankainen, A.; Kolhinen, V.; Koponen, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 (Finland); and others

    2017-05-11

    In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic β-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption γ-ray spectroscopy analysis.

  14. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  15. Femtosecond Photon-Counting Receiver

    Science.gov (United States)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  16. Evaluation of the usefulness of a MOSFET detector in an anthropomorphic phantom for 6-MV photon beam.

    Science.gov (United States)

    Kohno, Ryosuke; Hirano, Eriko; Kitou, Satoshi; Goka, Tomonori; Matsubara, Kana; Kameoka, Satoru; Matsuura, Taeko; Ariji, Takaki; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2010-07-01

    In order to evaluate the usefulness of a metal oxide-silicon field-effect transistor (MOSFET) detector as a in vivo dosimeter, we performed in vivo dosimetry using the MOSFET detector with an anthropomorphic phantom. We used the RANDO phantom as an anthropomorphic phantom, and dose measurements were carried out in the abdominal, thoracic, and head and neck regions for simple square field sizes of 10 x 10, 5 x 5, and 3 x 3 cm(2) with a 6-MV photon beam. The dose measured by the MOSFET detector was verified by the dose calculations of the superposition (SP) algorithm in the XiO radiotherapy treatment-planning system. In most cases, the measured doses agreed with the results of the SP algorithm within +/-3%. Our results demonstrated the utility of the MOSFET detector for in vivo dosimetry even in the presence of clinical tissue inhomogeneities.

  17. The CBM RICH project

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M. [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J. [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S.; Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    The Compressed Baryonic Matter (CBM) experiment will study the properties of super dense nuclear matter by means of heavy ion collisions at the future FAIR facility. An integral detector component is a large Ring Imaging Cherenkov detector with CO{sub 2} gas radiator, which will mainly serve for electron identification and pion suppression necessary to access rare dileptonic probes like e{sup +}e{sup −} decays of light vector mesons or J/Ψ. We describe the design of this future RICH detector and focus on results obtained by building a CBM RICH detector prototype tested at CERN-PS.

  18. Setting Single Photon Detectors for Use with an Entangled Photon Distribution System

    Science.gov (United States)

    2017-12-01

    EPA software). 5) If a TPI measurement is to be performed, the polarization of the PAs must first be adjusted to account for the birefringence of the... measurement of the entangled photon pairs generated by an entangled photon pair source require at least 2 SPDs operating at their highest possible...v 1. Introduction 1 2. Generation, Detection, and Measurement of Entangled Photon Pairs 1 2.1 Generation of Entangled Photon Pairs 2 2.2

  19. Performance of various quantum-key-distribution systems using 1.55-μm up-conversion single-photon detectors

    International Nuclear Information System (INIS)

    Diamanti, Eleni; Takesue, Hiroki; Honjo, Toshimori; Inoue, Kyo; Yamamoto, Yoshihisa

    2005-01-01

    We compare the performance of various quantum-key-distribution (QKD) systems using a single-photon detector, which combines frequency up-conversion in a periodically poled lithium niobate waveguide and a silicon avalanche photodiode (APD). The comparison is based on the secure communication rate as a function of distance for three QKD protocols: the Bennett-Brassard 1984, the Bennett-Brassard-Mermin 1992, and the coherent differential-phase-shift keying protocols. We show that the up-conversion detector allows for higher communication rates and longer communication distances than the commonly used InGaAs/InP APD for all three QKD protocols

  20. First measurement of isolated-photon plus jet production in $pp$ collisions at $\\sqrt{s} =$ 13 TeV with the ATLAS detector

    CERN Document Server

    Callea, Giuseppe; The ATLAS collaboration

    2017-01-01

    The dynamics of isolated-photon plus jet production in $pp$ collisions at $\\sqrt{s}$ = 13 TeV were studied with the ATLAS detector at the LHC, using a dataset with an integrated luminosity of 3.2 fb$^{-1}$. The photons were reconstructed for photon transverse energies larger than 125 GeV. The jets were identified using the anti-k$_{t}$ algorithm with radius parameter R=0.4 and selected in the rapidity range $|y| $ 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the photon transverse energy, the jet transverse momentum, the azimuthal separation between the selected photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. The leading-logarithm parton-shower preditions from SHERPA and PYTHIA as well as the next-to-leading order QCD calculations from JETPHOX and multi-leg plus parton shower NLO SHERPA are compared to the measurements.

  1. Observation of a BEH-like boson decaying into two photons with the ATLAS detector at the LHC

    International Nuclear Information System (INIS)

    Andari, N.

    2012-01-01

    In this thesis, I will show my own contribution to the search and observation of the scalar boson within the ATLAS detector in the channel when it decays into a pair of photons. A brief review of the history of the spontaneous symmetry breaking mechanism is presented in Chapter 1 as well as the expected production and decay of the standard model scalar boson at the LHC. Chapter 2 presents the statistical methods used at the LHC. A description of the test statistic used for establishing a discovery or setting an exclusion limit is given. Chapter briefly describes the LHC machine and then details the ATLAS detector focusing mainly on the description of the inner detector and the electromagnetic calorimeter. Chapter 4 explains the calibration of the electrons and photons in ATLAS in 3 different steps: the electronic calibration, the Monte-Carlo based calibration and the in-situ calibration. Chapter 5 describes the reconstruction and the identification of the photons. Chapter 6 presents the evolution of the analyses in the H → γγ channel from 2010 to 2012. The systematic uncertainties on the signal yield and on the mass resolution are detailed. Chapter 7 recalls the results for the H → γγ search from 2010 to 2012. An excess over the background is observed in this channel with a local significance of 4.5σ at a mass of 126.5 GeV while the expected significance is about 2.5σ. The maximum observed local significance is 5.9σ for a mass of 126.5 GeV while the expected significance is 4.9σ. Chapter 8 summarizes briefly the H → γγ search within the CMS experiment

  2. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    International Nuclear Information System (INIS)

    Deluca Silberberg, Carolina

    2009-01-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb -1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb -1 . Both Run I and Run II results show agreement with the theoretical predictions except for the low p T γ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower p T γ ranges, showing excess of data compared to the theory, particularly at high x T . From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons require a good understanding of the background, mainly dominated by

  3. Status report on front end electronics for the EUSO photon detector

    International Nuclear Information System (INIS)

    Bosson, G.; Dzahini, D.; Koang, D.H.; Musico, P.; Pallavicini, M.; Pouxe, J.; Pratolongo, F.; Richer, J.P.

    2002-01-01

    In this paper we'll give a status report on the design of the front end electronic system which will be used for the EUSO photon detector. For space, mass and power consumption constraints the system will be implemented developing an ASIC chip using a deep submicron technology. Two complementary approaches will be described: a digital one (DFEE) and an analog one (AFEE). The DFEE is able to count the single photoelectrons coming form the detector, store the numbers in a memory buffer and read them out after a trigger using a serial communication line. The AFEE integrate the anode signals, store them in an analog memory and serially send all the values to a single output after a trigger for digitalisation (external to the chip). Since the approaches are complementary the idea is to put both of them in the final front end chip. An overview of the system is given together to the actual status of the design. Results from simulations are shown: the system is feasible and we think to implement some devices this year to extensively test the proposed solutions

  4. Status report on front end electronics for the EUSO photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, G.; Dzahini, D.; Koang, D.H.; Musico, P.; Pallavicini, M.; Pouxe, J.; Pratolongo, F.; Richer, J.P

    2002-12-01

    In this paper we'll give a status report on the design of the front end electronic system which will be used for the EUSO photon detector. For space, mass and power consumption constraints the system will be implemented developing an ASIC chip using a deep submicron technology. Two complementary approaches will be described: a digital one (DFEE) and an analog one (AFEE). The DFEE is able to count the single photoelectrons coming form the detector, store the numbers in a memory buffer and read them out after a trigger using a serial communication line. The AFEE integrate the anode signals, store them in an analog memory and serially send all the values to a single output after a trigger for digitalisation (external to the chip). Since the approaches are complementary the idea is to put both of them in the final front end chip. An overview of the system is given together to the actual status of the design. Results from simulations are shown: the system is feasible and we think to implement some devices this year to extensively test the proposed solutions.

  5. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  6. Comparison of HPGe detector response data for low energy photons using MCNP, EGS, and its codes

    International Nuclear Information System (INIS)

    Kim, Soon Young; Kim, Jong Kyung

    1995-01-01

    In this study, the photopeak efficiency, K α and K β escape fractions of HPGe detector(100mm 2 X 10mm) are calculated and tabulated as a function of incident X-ray energies from 12 to 60keV in 2-keV increments. Compton, elastic, and penetration fractions are not tabulated from this work since they are negligible amounts in this energy range. The results calculated from this work are compared with earlier Monte Carlo results which had been carried out by Chin-Tu Chen et al.. From the comparison, it is found that the results calculated from each code show a large difference when the incident photon energy approaches to 12keV as compared with energy ranges from 50 to 60keV. In X-ray dosimetry and diagnostic radiology, it is essential to have accurate knowledge of X-ray spectra for studies of patient dose and image quality. Being X-ray spectra measured with a detection system, some distortions due to the incomplete absorption of primary photon or escape before interacting with the detector which have finite dimension can take place

  7. Conditional preparation of states containing a definite number of photons

    International Nuclear Information System (INIS)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.; Lakshminarayanan, Vasudevan

    2008-01-01

    A technique for conditionally creating single-mode or multimode photon-number states is analyzed using Bayesian theory. We consider the heralded N-photon states created from the photons produced by an unseeded optical parametric amplifier when the heralding detector is the time-multiplexed photon-number-resolving detector recently demonstrated by Fitch et al. [Phys. Rev. A 68, 043814 (2003)] and simultaneously by Achilles et al. [Opt. Lett. 28, 2387 (2003)]. We find that even with significant loss in the heralding detector, fields with sub-Poissonian photon-number distributions can be created. We also show that heralded multimode fields created using this technique are more robust against detector loss than are single-mode fields

  8. The AQUA-RICH atmospheric neutrino experiment

    CERN Document Server

    Antonioli, P; Bellagamba, L; Chesi, Enrico Guido; Cindolo, F; De Pasquale, S; Ekelöf, T J C; Garbini, M; Giusti, P; Grossheim, A; Pesci, A; Learned, J G; Margotti, A; Pinfold, James L; Sartorelli, G; Séguinot, Jacques; Tarantino, A; Weilhammer, Peter; Ypsilantis, Thomas; Zichichi, A; Zuber, K

    1999-01-01

    We describe a 125 m diameter spherical detector containing 1 Mt of water, capable of high rate observation of atmospheric neutrino events (30000/y). The ring imaging Cherenkov (RICH) technique is used to measure velocity, momentum and direction of particles produced by neutrinos interacting in water. The detector will be sited outdoors (under a 50 m water shield) in a natural (further excavated) pit, probably in Sicily. Spherical reflecting mirrors focus Cherenkov light produced by secondaries from interacting neutrinos. Photons are detected by 5310 hybrid photodiodes (HPDs) of 1 m diameter each with 396 pads of 45*45 mm/sup 2/ on the photocathode surface, demagnified to 9*9 mm/sup 2/ on the silicon sensor. For most tracks the ring width will be dominated by multiple scattering which should allow momentum to be determined. Hadrons of momentum p

  9. Photon and photon+jet production measurements with the ATLAS detector

    CERN Document Server

    Bessner, Martin Florian; The ATLAS collaboration

    2015-01-01

    Isolated prompt photons provide a direct probe of short-distance physics, complementary to that provided by measurements of jets or vector-bosons and are sensitive to the gluon density of the proton. The inclusive prompt photon cross sections have been measured by the ATLAS collaboration at 7 and 8 TeV pp collision centre-of-mass energies, over a wide range of transverse momenta. The diphoton and photon+jet system cross sections have also been measured as a function of several kinematic variables. These experimental results are reported in different fiducial regions covering a wide acceptance and are compared to next-to-leading order QCD calculations with different models of the parton content of the proton. First LHC Run-2 results are included.

  10. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann-Smith, J. H., E-mail: jsmith@magnet.fsu.edu; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Cartier, S. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETHZ, 8092 Zürich (Switzerland); Medjoubi, K. [Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin–BP 48, 91192 GIF-sur-Yvette Cedex (France)

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  11. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers

    Science.gov (United States)

    Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.

    2018-04-01

    Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.

  12. Influence of the Integral Quality Monitor transmission detector on high energy photon beams: A multi-centre study.

    Science.gov (United States)

    Casar, Bozidar; Pasler, Marlies; Wegener, Sonja; Hoffman, David; Talamonti, Cinzia; Qian, Jianguo; Mendez, Ignasi; Brojan, Denis; Perrin, Bruce; Kusters, Martijn; Canters, Richard; Pallotta, Stefania; Peterlin, Primoz

    2017-09-01

    The influence of the Integral Quality Monitor (IQM) transmission detector on photon beam properties was evaluated in a preclinical phase, using data from nine participating centres: (i) the change of beam quality (beam hardening), (ii) the influence on surface dose, and (iii) the attenuation of the IQM detector. For 6 different nominal photon energies (4 standard, 2 FFF) and square field sizes from 1×1cm 2 to 20×20cm 2 , the effect of IQM on beam quality was assessed from the PDD 20,10 values obtained from the percentage dose depth (PDD) curves, measured with and without IQM in the beam path. The change in surface dose with/without IQM was assessed for all available energies and field sizes from 4×4cm 2 to 20×20cm 2 . The transmission factor was calculated by means of measured absorbed dose at 10cm depth for all available energies and field sizes. (i) A small (0.11-0.53%) yet statistically significant beam hardening effect was observed, depending on photon beam energy. (ii) The increase in surface dose correlated with field size (pphoton energies except for 18MV. The change in surface dose was smaller than 3.3% in all cases except for the 20×20cm 2 field and 10MV FFF beam, where it reached 8.1%. (iii) For standard beams, transmission of the IQM showed a weak dependence on the field size, and a pronounced dependence on the beam energy (0.9412 for 6MV to 0.9578 for 18MV and 0.9440 for 6MV FFF; 0.9533 for 10MV FFF). The effects of the IQM detector on photon beam properties were found to be small yet statistically significant. The magnitudes of changes which were found justify treating IQM either as tray factors within the treatment planning system (TPS) for a particular energy or alternatively as modified outputs for specific beam energy of linear accelerators, which eases the introduction of the IQM into clinical practice. Copyright © 2017. Published by Elsevier GmbH.

  13. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    Science.gov (United States)

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam.

  14. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  15. Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Belenguer, Marcos; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-12-03

    The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb$^{-1}$ of $pp$ collision data collected at the LHC at $\\sqrt{s} = 7$ TeV and 20.3 fb$^{-1}$ at $\\sqrt{s} = 8$ TeV. The efficiencies are measured separately for converted and unconverted photons, in four different pseudo rapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 TeV data and between 0.5% and 3% in 8 TeV dat...

  16. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    Science.gov (United States)

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  17. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    Science.gov (United States)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  18. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    Science.gov (United States)

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater

  19. CBM RICH geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.

  20. Photon statistics in scintillation crystals

    Science.gov (United States)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  1. High-$E_T$ isolated-photon plus jets production in $pp$ collisions at $\\sqrt s$ = 8 TeV with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236142; The ATLAS collaboration

    2017-01-01

    The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of $8$ TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of $20.2$ fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

  2. Particle identification in Lep-Delphi experience. Experimental study of photoelectron detection and of Cerenkov angle resolution with the Barrel Rich prototype

    International Nuclear Information System (INIS)

    Dracos, M.

    1987-06-01

    One of the four LEP experiments, DELPHI, will be equipped with Ring Cherenkov (RICH) detectors for hadrons identification. These detectors will provide pion, kaon, proton identification for momenta from 0.3 to 25 GeV/c over nearly all the solid angle. The technique of the long drift is used which combines liquid and gas radiators on opposite sides of a simple photosensitive drift volume. A full-scale prototype of the DELPHI Barrel RICH was built to study the feasibility and the performances of a big RICH system. We have obtained: - an absorption length of photoelectrons in the drift gas more than 10 m; - a merit factor of 53 cm -1 for the liquid radiator (perfluoro-hexane C 6 F 14 ) and 77 cm -1 for the gas radiator (isobutance iC 4 H 10 ) - a resolution of the single photon Cerenkov angle of 11.5 mrad for the liquid radiator and 4.5 mrad for the gas radiator [fr

  3. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    Science.gov (United States)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  4. Two-arm electron/photon/hadron spectrometer TALES collaboration

    International Nuclear Information System (INIS)

    Hayano, R.S.; Sakurai, H.; Shigaki, K.

    1990-12-01

    To discover and probe the existence of a quark gluon plasma, it would seem desirable to have a detector which is sensitive to as many of the proposed 'signatures' as possible, so that they could all be observed and turned on and off in a predictable, reproducible, controllable and unified way. By emphasizing an open geometry experiment, optimized for detecting low-mass, low P T electron-positron pairs, a reasonably comprehensive measurement of the majority of the quark gluon plasma signatures must be obtained. Thus, the report first addresses physics motivation and goals, focusing on dielectron production; π 0 , η and direct photon measurements; global event characterization; identified hadron P T spectra; and charm production. An overview of the proposed central detector is then presented. Next, major detector components and expected performance are discussed, focusing on tracking, electron-pair reconstruction (a gas ring-imaging Cerenkov RICH counter), Dalitz-decay rejection, a highly-segmented electromagnetic calorimeter, global event characterization, an optical forward spectrometer, and a summary of performance. Finally, the report describes major research and development items and estimated costs. (N.K.)

  5. Ultra compact spectrometer apparatus and method using photonic crystals

    Science.gov (United States)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  6. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav

    2010-01-01

    Roč. 6, č. 4 (2010), P04001/1-P04001/32 ISSN 1748-0221 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter * tracking detector * photon * Monte Carlo Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.148, year: 2010

  7. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    Science.gov (United States)

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  8. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    Science.gov (United States)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  9. Fast broad-band photon detector based on quantum well devices and charge-integrating electronics for non-invasive FEL monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M., E-mail: matias.antonelli@elettra.eu; Cautero, G.; Sergo, R.; Castellaro, C.; Menk, R. H. [Elettra – Sincrotrone Trieste S.C.p.A., Trieste (Italy); Ganbold, T. [School in Nanotechnology, University of Trieste, Trieste (Italy); IOM CNR, Laboratorio TASC, Trieste (Italy); Biasiol, G. [IOM CNR, Laboratorio TASC, Trieste (Italy)

    2016-07-27

    The recent evolution of free-electron lasers has not been matched by the development of adequate beam-monitoring instrumentation. However, for both experimental and diagnostics purposes, it is crucial to keep such photon beams under control, avoiding at the same time the absorption of the beam and the possible destruction of the detector. These requirements can be fulfilled by utilizing fast and non-invasive photon detectors operated in situ, upstream from the experimental station. From this perspective, sensors based on Quantum Well (QW) devices can be the key to detecting ultra-short light pulses. In fact, owing to their high electron mobility, InGaAs/InAlAs QW devices operated at room temperature exhibit sub-nanosecond response times. Their direct, low-energy band gap renders them capable of detecting photons ranging from visible to X-ray. Furthermore, the 2D electron gas forming inside the QW is responsible for a charge amplification mechanism, which increases the charge collection efficiency of these devices. In order to acquire the signals produced by these QW sensors, a novel readout electronics has been developed. It is based on a high-speed charge integrator, which allows short, low-intensity current pulses to be read within a 50-ns window. The integrated signal is acquired through an ADC and the entire process can be performed at a 10-MHz repetition rate. This work provides a detailed description of the development of the QW detectors and the acquisition electronics, as well as reporting the main experimental results, which show how these tools are well suited for the realization of fast, broad-band beam monitors.

  10. Photon imaging using post-processed CMOS chips

    NARCIS (Netherlands)

    Melai, J.

    2010-01-01

    This thesis presents our work on an integrated photon detector made by post-processing of CMOS sensor arrays. The aim of the post-processing is to combine all elements of the detector into a single monolithic device. These elements include a photocathode to convert photon radiation into electronic

  11. Time-dependent delayed signatures from energetic photon interrogations

    International Nuclear Information System (INIS)

    Norman, Daren R.; Jones, James L.; Blackburn, Brandon W.; Haskell, Kevin J.; Johnson, James T.; Watson, Scott M.; Hunt, Alan W.; Spaulding, Randy; Harmon, Frank

    2007-01-01

    Pulsed photonuclear interrogation environments generated by 8-24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods

  12. Development of opto-mechanical tools and procedures for the new generation of RICH-detectors at CERN

    CERN Document Server

    Laub, M; Ullaland, O

    2001-01-01

    This thesis is focused on development of opto-mechanical tools and procedures, which would contribute to the achievement of the best possible performance of new Ring Imaging Cherenkov (RICH) detectors. On the base of requirements, given by the physics objective of the LHCb detector, and an analysis of the detector opto-mechanical system, specifications of individual opto-mechanical components were determined. Spherical mirrors, planar mirrors and mirror adjustable mounts were the components of interest. Next, their parameters to be characterised were defined. Possible measurement methods were studied and relevant set ups based on suitable methods were developed. Meanwhile, available modern metrology technologies, like laser operated instruments or digital image processing, were applied with an attempt to innovate them and to increase their achievable performance limits. When applicable, the set ups were automated in order to make the measurements fast and reliable. An optical laboratory, devoted to the charac...

  13. Performance of the inverse photoemission spectrometer with a new bandpass photon detector of narrow bandwidth and high sensitivity

    International Nuclear Information System (INIS)

    Ueda, Yoshifumi; Nishihara, Katsuhiro; Mimura, Kojiro; Hari, Yasuko; Taniguchi, Masaki; Fujisawa, Masami

    1993-01-01

    A combination of a SrF 2 entrance window and a photomultiplier with the Cu-BeO first dynode coated with KCl film realizes the bandpass photon detector with the FWHM of 0.47 eV centered at 9.43 eV and the sensitivity improved by about one order of magnitude in comparison with the detector without the KCl film. The overall energy resolution of the inverse photoemission spectrometer consisting of an electron gun with a BaO cathode and the new detector has been estimated to be 0.56 eV using polycrystalline Au. Typical counting rate is 10 2 -10 3 counts/(μA s) for unoccupied states near the Fermi level of the Au at an acceptance angle of about 0.8π sr with an Al collecting mirror. (orig.)

  14. High-ET isolated-photon plus jets production in pp collisions at s=8 TeV with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    M. Aaboud

    2017-05-01

    Full Text Available The dynamics of isolated-photon plus one-, two- and three-jet production in pp collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb−1. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

  15. Measurement of the cross section for inclusive isolated-photon production in $pp$ collisions at $\\sqrt s=13$ TeV using the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kravchenko, Anton; Kremer, Jakub Andrzej; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Ng, Tsz Yu; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sopczak, Andre; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2017-07-10

    Inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb$^{-1}$. The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

  16. Measurement of the cross section for inclusive isolated-photon production in pp collisions at s=13 TeV using the ATLAS detector

    Directory of Open Access Journals (Sweden)

    M. Aaboud

    2017-07-01

    Full Text Available Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb−1. The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

  17. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    Science.gov (United States)

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-10-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  18. An innovative seeding technique for photon conversion reconstruction at CMS

    International Nuclear Information System (INIS)

    Giordano, D; Sguazzoni, G

    2012-01-01

    The conversion of photons into electron-positron pairs in the detector material is a nuisance in the event reconstruction of high energy physics experiments, since the measurement of the electromagnetic component of interaction products results degraded. Nonetheless this unavoidable detector effect can also be extremely useful. The reconstruction of photon conversions can be used to probe the detector material and to accurately measure soft photons that come from radiative decays in heavy flavor physics. In fact a converted photon can be measured with very high momentum resolution by exploiting the excellent reconstruction of charged tracks of a tracking detector as the one of CMS at LHC. The main issue is that photon conversion tracks are difficult to reconstruct for standard reconstruction algorithms. They are typically soft and very displaced from the primary interaction vertex. An innovative seeding technique that exploits the peculiar photon conversion topology, successfully applied in the CMS track reconstruction sequence, is presented. The performances of this technique and the substantial enhancement of photon conversion reconstruction efficiency are discussed. Application examples are given.

  19. Position sensitive detector for X-ray photons

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1988-01-01

    This work reports the theoretical basis and the details of the construction process, characterization and application of gas X-ray position sensitive detectors. The unidimensional detector consists of a gas camera (argon and CH 4 ), a metallic anode, a cathode and a delay line. Details of the construction process are given in order to allow the reproduction of the detector. It has been characterized by measuring its spatial resolution, homogeneity and linerity. The built linear detector has been used to obtain diffraction diagrams from polycrystalline silicon, C 23 H 48 paraffin and glassy carbon. These diagrams have been compared with those obtained under equivalent conditions with a conventional proportional detector by the step scanning method. It has been shown that the detector provides diffraction diagrams of equivalent quality to those obtained by the step scanning method, in appreciably lower time intervals. (author) [pt

  20. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    Science.gov (United States)

    Korzh, B.; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.

    2014-02-01

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of -110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  1. CaLIPSO: An novel detector concept for positron annihilation detection

    International Nuclear Information System (INIS)

    Yvon, D.; Tauzin, G.; Verrecchia, P.; Flouzat, C.; Sharyy, S.; Ramos, E.; Renault, J-Ph.

    2013-06-01

    The CaLIPSO project focuses on the development of an innovative energetic-photon detector. The detector uses a 'heavy' organometallic liquid: the Trimethyl Bismuth (TMBi), 82% by weight of Bismuth. TMBi efficiently converts through the photo-electric effect photons of energies below 1 MeV. The ionisation signal and light produced in the liquid are both detected. Beyond the measurement of gamma photon energies, this detector will allow locating photon interactions in the detector in three dimensions down to 1 mm 3 and a sub nanosecond timing accuracy. All these desirable properties can be obtained simultaneously with liquid TMBi detector. The optical properties relevant for particle detection are measured. Preliminary results on TMBi ionization properties are shown. (authors)

  2. First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    CERN Document Server

    Peskov, V; Di Mauro, A; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Paic, G; Smirnov, N; Anand, H; Shukla, I

    2012-01-01

    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.

  3. High-$E_{\\rm T}$ isolated-photon plus jets production in $pp$ collisions at $\\sqrt s=$ 8 TeV with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Comotti, Silvia; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, George; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

  4. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    Science.gov (United States)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  5. ScintSim1: a new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    International Nuclear Information System (INIS)

    Mosleh-Shirazi, Mohammad Amin; Karbasi, Sareh; Zarrini-Monfared, Zinat; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. (author)

  6. Photon and electron identification with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00431162; The ATLAS collaboration

    2016-01-01

    The identification of prompt photons and the rejection of background, originating mostly from photons from hadron decays, relies on the high granularity of the ATLAS calorimeter. The electron identification is based on a likelihood discriminant to separate isolated electron from background electron originating from photon conversions, hadron misidentification and heavy flavour decays. Additionally, isolation variables provide further handles to separate signal and background. The measurements of the efficiencies of the electron and photon identification and isolation selections are performed with data. Tag and probe techniques are used with Z$\\rightarrow$ee, J/$\\psi$ $\\rightarrow$ee and Z$\\rightarrow$l l$\\gamma$ decays. Inclusive photon samples are also used to measure photon identification efficiency.\\\\ The results of these measurement with the pp collisions data recorded in 2015 at $\\sqrt {s}$ = 13 TeV, corresponding to an integrated luminosity of 3.2 fb$^{-1}$, are presented. as well as a first look at 201...

  7. Photons, photon jets and dark photons at 750 GeV and beyond

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Kopp, Joachim

    2016-03-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to ''photon jets''. For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance S → γγ can be mimicked by a process of the form pp → S → aa → 4γ, where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an e + e - pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to S → A'A' → e + e - e + e - , where there are no photons at all but the dark photon A' decays to e + e - pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  8. A counting silicon microstrip detector for precision compton polarimetry

    CERN Document Server

    Doll, D W; Hillert, W; Krüger, H; Stammschroer, K; Wermes, N

    2002-01-01

    A detector for the detection of laser photons backscattered off an incident high-energy electron beam for precision Compton polarimetry in the 3.5 GeV electron stretcher ring ELSA at Bonn University has been developed using individual photon counting. The photon counting detector is based on a silicon microstrip detector system using dedicated ASIC chips. The produced hits by the pair converted Compton photons are accumulated rather than individually read out. A transverse profile displacement can be measured with mu m accuracy rendering a polarization measurement of the order of 1% on the time scale of 10-15 min possible.

  9. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  10. Performance of a C4F8O gas radiator ring imaging Cherenkov detector using multi-anode photomultiplier tubes

    International Nuclear Information System (INIS)

    Artuso, M.; Boulahouache, C.; Blusk, S.; Butt, J.; Dorjkhaidav, O.; Menaa, N.; Mountain, R.; Muramatsu, H.; Nandakumar, R.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J.C.; Zhang, K.

    2006-01-01

    We report on tests of a novel ring imaging Cherenkov (RICH) detection system consisting of a 3-m-long gaseous C 4 F 8 O radiator, a focusing mirror, and a photon detector array based on Hamamatsu multi-anode photomultiplier tubes. This system was developed to identify charged particles in the momentum range from 3 to 70GeV/c for the BTeV experiment

  11. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Sottile, G.; Russo, F.; Agnetta, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Belluso, M.; Billotta, S. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Biondo, B. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Bonanno, G. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Catalano, O.; Giarrusso, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Grillo, A. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Impiombato, D.; La Rosa, G.; Maccarone, M.C.; Mangano, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Marano, D. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Mineo, T.; Segreto, A.; Strazzeri, E. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Timpanaro, M.C. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy)

    2013-06-15

    UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320–900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.

  12. Measurement of the production cross section of three isolated photons in pp collisions at √{ s } = 8 TeV using the ATLAS detector

    Science.gov (United States)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allaire, C.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkin, R. J.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Bakshi Gupta, D.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bauer, K. T.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, Dr.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Bonilla, J. S.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Buschmann, E.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Cinca, D.; Cindro, V.; Cioară, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Clark, A.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corrigan, E. E.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dahbi, S.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dreyer, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feickert, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, M.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores, L. M.; Flores Castillo, L. R.; Fomin, N.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Freund, W. S.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gasnikova, K.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giulini, M.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonnella, F.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Goy, C.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Graham, E. C.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guerguichon, A.; Guescini, F.; Guest, D.; Gueta, O.; Gugel, R.; Gui, B.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Han, K.; Han, L.; Han, S.; Hanagaki, K.; Hance, M.; Handl, D. M.; Haney, B.; Hankache, R.; Hanke, P.; Hansen, E.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Hohov, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Hupe, A. M.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iguchi, R.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakel, G.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanjir, L.; Kano, Y.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kiehn, M.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laudrain, A.; Law, A. T.; Laycock, P.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.-Q.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J. B.; Liu, K.; Liu, M.; Liu, P.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meadows, Z. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murin, P.; Murray, W. J.; Muškinja, M.; Mwewa, C.; Myagkov, A. G.; Myers, J.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Novotny, R.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver, J. L.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orgill, E. C.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parida, B.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Pham, T.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pitt, M.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Qureshi, A.; Radeka, V.; Radhakrishnan, S. K.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rivera Vergara, J. C.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Rodríguez Vera, A. M.; Roe, S.; Rogan, C. S.; Røhne, O.; Röhrig, R.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sasaki, O.; Sato, K.; Sauvan, E.; Savard, P.; Savic, N.; Sawada, R.; Sawyer, C.; Sawyer, L.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaeffer, J.; Schaepe, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, E. J.; Schioppa, M.; Schleicher, K. E.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultz-Coulon, H.-C.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Scyboz, L. M.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shahinian, J. D.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silva, M.; Silverstein, S. B.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffa, A. M.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, W.; Sopczak, A.; Sopkova, F.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoicea, G.; Stolte, P.; Stonjek, S.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sydorenko, A.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarek Abouelfadl Mohamed, A. T.; Tarem, S.; Tarna, G.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von Buddenbrock, S. E.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, A. M.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yajima, K.; Yallup, D. P.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, S.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zhulanov, V.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-06-01

    A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy √{ s } = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb-1 collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.

  13. Test of the CLAS12 RICH large-scale prototype in the direct proximity focusing configuration

    Energy Technology Data Exchange (ETDEWEB)

    Anefalos Pereira, S.; Lucherini, V.; Mirazita, M.; Orlandi, A.; Orecchini, D.; Pisano, S.; Tomassini, S.; Viticchie, A. [Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Baltzell, N.; El Alaoui, A.; Hafidi, K. [Physics Division, Argonne National Laboratory, Argonne, IL (United States); Barion, L.; Contalbrigo, M.; Malaguti, R.; Movsisyan, A.; Pappalardo, L.L.; Squerzanti, S. [INFN, Ferrara (Italy); Benmokhtar, F. [Department of Physics, Duquesne University, Pittsburgh, PA (United States); Brooks, W. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Cisbani, E. [Gruppo Sanita and Istituto Superiore di Sanita, INFN, Rome (Italy); Hoek, M.; Phillips, J. [School of Physics and Astronomy, Kelvin Building, University of Glasgow, Scotland (United Kingdom); Kubarovsky, V. [Thomas Jefferson National Accelerator Facility, Jefferson Laboratory, Newport News, VA (United States); Lagamba, L.; Perrino, R. [INFN, Bari (Italy); Montgomery, R.A. [Laboratori Nazionali di Frascati, INFN, Frascati (Italy); School of Physics and Astronomy, Kelvin Building, University of Glasgow, Scotland (United Kingdom); Musico, P. [INFN, Genova (Italy); Rossi, P. [Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Thomas Jefferson National Accelerator Facility, Jefferson Laboratory, Newport News, VA (United States); Turisini, M. [INFN, Ferrara (Italy); Universidad Tecnica Federico Santa Maria, Valparaiso (Chile)

    2016-02-15

    A large-area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3GeV/c up to 8GeV/c for the CLAS12 experiment at the upgraded 12GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and highly packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large-angle tracks). We report here the results of the tests of a large-scale prototype of the RICH detector performed with the hadron beam of the CERN T9 experimental hall for the direct detection configuration. The tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1: 500 in the whole momentum range. (orig.)

  14. Optimization of the ATLAS detector to search for the two-photon decaying Higgs boson at LHC; Optimisation du detecteur ATLAS pour la recherche du boson de Higgs se desintegrant en deux photons au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, V [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire; [Universite de Paris Sud, 91 - Orsay (France)

    1997-02-03

    The two photon decay channel is the most clear and promising way to detect a Higgs boson of an intermediate mass between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} at the future large proton collider of CERN (LHC). As the Higgs mass is narrow in this range, the observation of this channel relies on the performance of the electromagnetic calorimeter. A full simulation study has been performed to evaluate the discovery potential of the ATLAS detector. The results of this simulation have been confirmed by beam tests with a prototype. This simulation includes different contributions such as energy resolution sampling term, electronic and pile-up noise, global constant term and angular measurement of the two photon opening angle. The levels of the irreducible background from prompt di-photon production and the reducible background from jets with isolated leading neutrals pions have been estimated, taking into account the rejection capability of the detector. After the computation of the two photon invariant mass resolution, and the evaluation of signal and background rates, the discovery potential of the Higgs boson with the ATLAS detector was calculated. The Higgs can be discovered at five sigma confidence level after less than a year of data taking at LHC with the nominal luminosity of 10{sup 34} cm{sup -2}.s{sup -1} if the Higgs mass is between 100 GeV/c{sup 2} and 150 GeV/c{sup 2}. The Higgs mass window between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} will be covered with an integrated luminosity of 3.10{sup 5} pb{sup -1}. In the case of the Minimal Supersymmetric Model (MSSM) the plane (m{sub A{sup 0}}, tan({beta})) will be fully explored if m{sub A{sup 0}} > 175 GeV/c{sup 2}. (author)

  15. 1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit.

    Science.gov (United States)

    Jiang, Wen-Hao; Liu, Jian-Hong; Liu, Yin; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2017-12-15

    InGaAs/InP single-photon detectors (SPDs) are the key devices for applications requiring near-infrared single-photon detection. The gating mode is an effective approach to synchronous single-photon detection. Increasing gating frequency and reducing the module size are important challenges for the design of such a detector system. Here we present for the first time, to the best of our knowledge, an InGaAs/InP SPD with 1.25 GHz sine wave gating (SWG) using a monolithically integrated readout circuit (MIRC). The MIRC has a size of 15  mm×15  mm and implements the miniaturization of avalanche extraction for high-frequency SWG. In the MIRC, low-pass filters and a low-noise radio frequency amplifier are integrated based on the technique of low temperature co-fired ceramic, which can effectively reduce the parasitic capacitance and extract weak avalanche signals. We then characterize the InGaAs/InP SPD to verify the functionality and reliability of the MIRC, and the SPD exhibits excellent performance with 27.5% photon detection efficiency, a 1.2 kcps dark count rate, and 9.1% afterpulse probability at 223 K and 100 ns hold-off time. With this MIRC, one can further design miniaturized high-frequency SPD modules that are highly required for practical applications.

  16. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Korzh, B., E-mail: Boris.Korzh@unige.ch; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H. [Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, CH-1211 Geneva 4 (Switzerland)

    2014-02-24

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of −110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  17. Optical concentrators for Čerenkov light detector

    CERN Document Server

    Kramer, Daniel

    2005-01-01

    RICH1 (Ring Imaging Cherenkov) detector is an important part of COMPASS particle physics experiment in CERN. Its central area photon detection part is being upgraded from wire chambers with CsI layers to very fast UV extended Hamamatsu MAPMTs (Multi Anode Photo Multiplier Tubes) array. MAPMTs have approx. 3 times smaller active area than the covered region, thus optical concentrators transforming image from old system focal plane to the new photocathode were needed. System was expected to be efficient from 200 to 600nm with best performance at 300nm and with angular acceptance including all interesting physics processes. Several design types (including i.e. a hollow waveguide) were investigated and the “telescopic” two lens aspherical design concept was selected for its proven functionality in HERA-B experiment. Chosen material was UV grade fused silica. System consists of a field lens placed in the focal plane of the RICH mirrors and a condenser lens downstream. Designing procedure started with a high op...

  18. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  19. Photons, photon jets, and dark photons at 750 GeV and beyond.

    Science.gov (United States)

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro

    2016-01-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance [Formula: see text] can be mimicked by a process of the form [Formula: see text], where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an [Formula: see text] pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to [Formula: see text], where there are no photons at all but the dark photon [Formula: see text] decays to [Formula: see text] pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  20. Development of a Large Area Advanced Fast RICH Detector for Particle Identification at the Large Hadron Collider Operated with Heavy Ions

    CERN Multimedia

    Piuz, F; Braem, A; Van beelen, J B; Lion, G; Gandi, A

    2002-01-01

    %RD26 %title\\\\ \\\\During the past two years, RD26 groups have focused their activities on the production of CsI-RICH prototypes of large area, up to a square meter, to demonstrate their application in High Energy experiments. Many large CsI-photocathodes (up to 40) were produced following the processing techniques furthermore developped in the collaboration. Taking the Quantum Efficiency (QE) measured at 180 nm as a comparative figure of merit of a CsI-PC. Figure 1 shows the increase of the performance while improvements were successively implemented in the PC processing sequence. Most efficient were the use of substrates made of nickel, the heat treatment and handling of the PCs under inert gas. Actually, three large systems based on CsI-RICH have got approval in the following HEP experiments: HADES at GSI, COMPASS/NA58 at CERN and HMPID/ALICE at LHC implying up to 14 square metres of CsI-PC. In addition, several CsI-RICH detectors have been successfully operated in the Threshold Imaging Detector at NA44 and ...

  1. submitter The TORCH detector R&D: Status and perspectives

    CERN Document Server

    Gys, T; Castillo García, L; Cussans, D; Föhl, K; Forty, R; Frei, C; Gao, R; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment upgrade. TORCH is using plates of quartz radiator in a modular design. A fraction of the Cherenkov photons produced by charged particles passing through this radiator propagate by total internal reflection, they emerge at the edges and are subsequently focused onto fast, position-sensitive single-photon detectors. The recorded position and arrival time of the photons are used to precisely reconstruct their trajectory and propagation time in the quartz. The on-going R&D; programme aims at demonstrating the TORCH basic concept through the realization of a full detector module and has been organized on the following main development lines: micro-channel plate photon detectors featuring the required granularity and lifetime, dedicated fast front-end electronics preserving the picosecond timing information provided by single p...

  2. Detector decoy quantum key distribution

    International Nuclear Information System (INIS)

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2009-01-01

    Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is especially suited to those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement-based quantum key distribution scheme with an untrusted source without the need for a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single-photon security proof to its physical, full optical implementation. We show that in this scenario, the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.

  3. Studies of diffractive scattering of photons at large momentum transfer and of the VFPS detector at HERA

    International Nuclear Information System (INIS)

    Hreus, Tomas

    2008-09-01

    In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep → eXp in the regime of high photon virtuality (Q 2 >few GeV 2 ), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb -1 was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F D(3) 2 at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x P is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, γp → γY, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p T > 2 GeV. Large p T imply the presence of the hard scale t (vertical stroke t vertical stroke ≅ p 2 T ) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb -1 of data collected in the 1999-2000 running period. Cross sections σ(W) as a function of the incident photon-proton centre of mass energy, W, and dσ/d vertical stroke t vertical stroke are measured in the range Q 2 2 , 175 2 and y P <0.05. The cross section measurements have been compared to predictions of LLA BFKL calculations. (orig.)

  4. Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV $pp$ collisions with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Afik, Yoav; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; {\\AA}kesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allaire, Corentin; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; \\'{A}lvarez Piqueras, Dami\\'{a}n; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Ambroz, Luca; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Annovi, Alberto; Antel, Claire; Anthony, Matthew; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Araujo Pereira, Rodrigo; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkin, Ryan Justin; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Oliver Keith; Bakker, Pepijn Johannes; Bakshi Gupta, Debottam; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnea, Rotem; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimar\\~{a}es da Costa, Jo\\~{a}o; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bauer, Kevin Thomas; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behera, Arabinda; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, J\\"urg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Bertsche, Carolyn; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Bonilla, Johan Sebastian; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; B\\"uscher, Daniel; B\\"uscher, Volker; Buschmann, Eric; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabras, Grazia; Cabrera Urb\\'an, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Calvetti, Milene; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Cao, Yumeng; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carr\\'a, Sonia; Carrillo-Montoya, German D; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, David; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Jue; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgeniya; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, I-huan; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Cinca, Diane; Cindro, Vladimir; Cioar\\u{a}, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Clark, Allan G; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Conde Mui\\~no, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corrigan, Eric Edward; Corriveau, Francois; Cortes-Gonzalez, Arely; Costa, Mar\\'ia Jos\\'e; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Cr\\'ep\\'e-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; C\\'uth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dahbi, Salah-eddine; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dartsi, Olympia; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Dias do Vale, Tiago; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; D\\'iez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dreyer, Etienne; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubinin, Filipp; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; D\\"uhrssen, Michael; Dulsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; D\\"uren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feickert, Matthew; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Minyu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filip\\v{c}i\\v{c}, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores, Lucas Macrorie; Flores Castillo, Luis; Fomin, Nikolai; Forcolin, Giulio Tiziano; Formica, Andrea; F\\"orster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Spolidoro Freund, Werner; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gadow, Philipp; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gamboa Goni, Rodrigo; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garc\\'ia, Carmen; Garc\\'ia Navarro, Jos\\'e Enrique; Garc\\'ia Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gasnikova, Ksenia; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-H\\'el\\`ene; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Ge\\ss{}ner, Gregor; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giulini, Maddalena; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gon\\c calo, Ricardo; Goncalves Gama, Rafael; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonnella, Francesco; Gonski, Julia; Gonz\\'alez de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorini, Benedetto; Gorini, Edoardo; Gori\\v{s}ek, Andrej; Goshaw, Alfred; G\\"ossling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Goy, Corinne; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Graham, Emily Charlotte; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guerguichon, Antinea; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gugel, Ralf; Gui, Bin; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gurbuz, Saime; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageb\\"ock, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Hanke, Paul; Hansen, Eva; Hansen, J{\\o}rgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellesund, Simen; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hern\\'andez Jim\\'enez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Hig\\'on-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Horyn, Lesya Anna; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis Holub; Huo, Peng; Hupe, Andre Marc; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche, Franziska; Introzzi, Gianluca; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jacka, Petr; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakel, Gunnar; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, G\\"oran; Javadov, Namig; Jav\\r{u}rek, Tom\\'{a}\\v{s}; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; J\\'ez\\'equel, St\\'ephane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Junggeburth, Johannes Josef; Juste Rozas, Aurelio; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanjir, Luka; Kano, Yuya; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James; Keoshkerian, Houry; Kepka, Oldrich; Ker\\v{s}evan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kiehn, Moritz; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; K\\"ohler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Nataliia; K\\"oneke, Karsten; K\\"onig, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kr\\"uger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lan\\c con, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J \\"{o}rn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laudrain, Antoine; Law, Alexander; Laycock, Paul; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Leight, William Axel; Leisos, Antonios; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Lev\\^eque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Simon; Lin, Tai-Hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Little, Jared David; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jianbei; Liu, Kun; Liu, Minghui; Liu, Peilian; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; L{\\"o}sel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Luise, Ilaria; Lukas, Wolfgang; Luminari, Lamberto; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Ma\\v{c}ek, Bo\\v{s}tjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maidantchik, Carmen; Maier, Thomas; Maio, Am\\'elia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandi\\'{c}, Igor; Maneira, Jos\\'e; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; M\\"attig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Thomas; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McKay, Madalyn; McMahon, Steve; McNamara, Peter Charles; McNicol, Christopher John; McPherson, Robert; Meadows, Zachary Alden; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijovi\\'{c}, Liza; Mikenberg, Giora; Mikestikova, Marcela; Miku\\v{z}, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mj\\"ornmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; M\\"onig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Ll\\'acer, Mar\\'ia; Morettini, Paolo; Morgenstern, Marcus; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murin, Pavel; Murray, Bill; Murrone, Alessia; Mu\\v{s}kinja, Miha; Mwewa, Chilufya; Myagkov, Alexey; Myers, John; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Sam Yanwing; Nguyen, Hoang Dai Nghia; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novak, Tadej; Novgorodova, Olga; Novotny, Radek; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'Connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver, Jason; Olsson, Joakim; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, Ant\\'onio; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orgill, Emily Claire; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parida, Bibhuti; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Pereira Peixoto, Ana Paula; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Pham, Thu; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pitt, Michael; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia Mar\\'ia; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Qureshi, Anum; Radeka, Veljko; Radhakrishnan, Sooraj Krishnan; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravina, Baptiste; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Risti\\'{c}, Branislav; Ritsch, Elmar; Riu, Imma; Rivera Vergara, Juan Cristobal; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Rodr\\'iguez Vera, Ana Mar\\'ia; Roe, Shaun; Rogan, Christopher Sean; R{\\o}hne, Ole; R\\"ohrig, Rainer; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rossini, Lorenzo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; R\\"uhr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; R{\\"u}ttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Salamani, Dalila; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, Jos\\'e; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; S\\'anchez, Javier; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, Jo\\~ao; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savard, Pierre; Savic, Natascha; Sawada, Ryu; Sawyer, Craig; Sawyer, Lee; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaeffer, Jan; Schaepe, Steffen; Sch\\"afer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillaci, Zachary Michael; Schillo, Christian; Schioppa, Enrico Junior; Schioppa, Marco; Schleicher, Katharina; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Scyboz, Ludovic Michel; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, Jos\\'e; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Severini, Horst; \\v{S}filigoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shahinian, Jeffrey David; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Sharma, Abhishek; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, Jos\\'e; Silva Jr, Manuel; Silverstein, Samuel; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sj\\"{o}lin, J\\"{o}rgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffa, Aaron Michael; Soffer, Abner; S{\\o}gaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Weimin; Sopczak, Andre; Sopkova, Filomena; Sosa, David; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Span\\`o, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; St\\"arz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Str\\"ohmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sydorenko, Alexander; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarek Abouelfadl Mohamed, Ahmed; Tarem, Shlomit; Tarna, Grigore; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timoth\\'ee; Thiele, Fabian; Thomas, Juergen; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tok\\'ar, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torr\\'o Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocm\\'e, Benjamin; Trofymov, Artur; Troncon, Clara; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Val\\'ery, Lo\\"ic; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; von Buddenbrock, Stefan; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Ann Miao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Renjie; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Sebastian Mario; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Hanlin; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yajima, Kazuki; Yallup, David; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Siqi; Yang, Yi; Yang, Yi-lin; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemaityte, Gabija; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; \\v{Z}eni\\v{s}, Tibor; Zerwas, Dirk; Zhang, Dengfeng; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zhulanov, Vladimir; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; \\v{Z}ivkovi\\'{c}, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zorbas, Theodore Georgio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2018-01-01

    A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton--proton collision data at $\\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded by the ATLAS detector at the LHC, and explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, ...

  5. Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV $pp$ collisions with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    A search is presented for photonic signatures motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of 36.1 fb$^{−1}$ of proton-proton collision data at $\\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC, and explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction and 95$\\%$ confidence-level upper limits of between 0.083 and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediate...

  6. Reference detectors for low flux optical radiation measurements

    International Nuclear Information System (INIS)

    Bellouati-Ghazi, Amal

    2003-01-01

    The parametric down conversion of photons generated in a non-linear crystal gives rise to two correlated photons. Associated to a System of counting of coincidences, this phenomenon makes possible the quantum efficiency measurements of detectors working on photon counting levels, without using neither sources nor detectors of references. This new method was developed at BNMINM with the aim to realize new standards detectors in the field of weak flows. It allows the determination of quantum efficiency with a relative uncertainty of 1,1%. A comparison with the IENGF (Italy) bearing on the quantum determination of efficiency of one of BNM-FNM detectors made possible to confront the exactitude of the measuring equipment. This detector was also made the object of a comparison with the French reference of radiometry, the cryogenic radiometer, the results were in agreement with uncertainties of measurements. (author) [fr

  7. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  8. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    Science.gov (United States)

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  9. Upper limits of the photon fluence rate on CT detectors: Case study on a commercial scanner

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mats, E-mail: mats.persson@mi.physics.kth.se; Bornefalk, Hans; Danielsson, Mats [Department of Physics, Royal Institute of Technology, Stockholm SE-10691 (Sweden); Bujila, Robert; Nowik, Patrik; Andersson, Henrik [Unit of X-ray Physics, Section of Imaging Physics Solna, Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176 (Sweden); Kull, Love [Medical Radiation Physics, Sunderby Hospital, Luleå SE-97180 (Sweden); Andersson, Jonas [Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå SE-90185 (Sweden)

    2016-07-15

    Purpose: The highest photon fluence rate that a computed tomography (CT) detector must be able to measure is an important parameter. The authors calculate the maximum transmitted fluence rate in a commercial CT scanner as a function of patient size for standard head, chest, and abdomen protocols. Methods: The authors scanned an anthropomorphic phantom (Kyoto Kagaku PBU-60) with the reference CT protocols provided by AAPM on a GE LightSpeed VCT scanner and noted the tube current applied with the tube current modulation (TCM) system. By rescaling this tube current using published measurements on the tube current modulation of a GE scanner [N. Keat, “CT scanner automatic exposure control systems,” MHRA Evaluation Report 05016, ImPACT, London, UK, 2005], the authors could estimate the tube current that these protocols would have resulted in for other patient sizes. An ECG gated chest protocol was also simulated. Using measured dose rate profiles along the bowtie filters, the authors simulated imaging of anonymized patient images with a range of sizes on a GE VCT scanner and calculated the maximum transmitted fluence rate. In addition, the 99th and the 95th percentiles of the transmitted fluence rate distribution behind the patient are calculated and the effect of omitting projection lines passing just below the skin line is investigated. Results: The highest transmitted fluence rates on the detector for the AAPM reference protocols with centered patients are found for head images and for intermediate-sized chest images, both with a maximum of 3.4 ⋅ 10{sup 8} mm{sup −2} s{sup −1}, at 949 mm distance from the source. Miscentering the head by 50 mm downward increases the maximum transmitted fluence rate to 5.7 ⋅ 10{sup 8} mm{sup −2} s{sup −1}. The ECG gated chest protocol gives fluence rates up to 2.3 ⋅ 10{sup 8} − 3.6 ⋅ 10{sup 8} mm{sup −2} s{sup −1} depending on miscentering. Conclusions: The fluence rate on a CT detector reaches 3 ⋅ 10{sup 8

  10. Investigation of surface homogeneity of mirrors for the CBM-RICH detector and low-mass di-electron feasibility studies

    International Nuclear Information System (INIS)

    Lebedeva, E; Hoehne, C

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate high net-baryon density matter at moderate temperatures in A+A collisions from 4-45 AGeV. One of the key observables of the CBM physics program is electromagnetic radiation as a probe of strongly interacting matter in heavy-ion collisions, carrying undistorted information on its conditions to the detector. This includes detailed investigations of low-mass vector mesons in their di-electron channel. A clean and efficient identification of electrons is required for such measurements. In CBM the electron identification will be performed by a Ring Imaging Cherenkov detector and several layers of Transition Radiation Detectors. The RICH detector will be operated with CO 2 radiator gas, MAPMTs as photodetector and spherical glass mirrors as focusing elements. A high quality of the mirrors in terms of reflectivity and surface homogeneity is required. In the first part of the contribution results on measurements of the mirror surface homogeneity are presented. Results on the feasibility studies of low-mass di-electron measurements with realistic detector response are discussed in the second part of the contribution.

  11. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    Science.gov (United States)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina substrate. The charge cloud is matched to the anode period so that it is collected on several neighboring fingers to ensure an accurate event charge centroid can be determined. Each finger of the anode is connected to a low noise charge sensitive amplifier and followed by subsequent A/D conversion of individual strip charge values and a hardware centroid determination of better than 1/100 of a strip are possible. Recently we have commissioned a full 32 x 32 mm XS open face laboratory detector and demonstrated excellent resolution (Los Alamos National Laboratory, NASA and NSF we are developing high rate (>107 Hz) XS encoding electronics that will encode temporally simultaneous

  12. Measurement of the cross section for isolated-photon plus jet production in pp collisions at √{ s } = 13 TeV using the ATLAS detector

    Science.gov (United States)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, Dr.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, C.; Li, B.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-05-01

    The dynamics of isolated-photon production in association with a jet in proton-proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb-1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti-kt algorithm with radius parameter R = 0.4 and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. Tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as next-to-leading-order QCD predictions from JETPHOX and SHERPA are compared to the measurements.

  13. Measurement of the cross section for isolated-photon plus jet production in $pp$ collisions at $\\sqrt s=13$ TeV using the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The dynamics of isolated-photon production in association with a jet in proton--proton collisions at a centre-of-mass energy of $13$ TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of $3.2$ fb$^{-1}$. Photons are required to have transverse energies above $125$ GeV. Jets are identified using the anti-$k_t$ algorithm with radius parameter $R=0.4$ and required to have transverse momenta above $100$ GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading photon transverse energy, the leading jet transverse momentum, the angular separation in azimuth between the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system. The measurements are compared to tree-level plus parton-shower predictions from Sherpa and Pythia as well as to next-to-leading-order QCD predictions from Jetphox and Sherpa.

  14. Study of the material photon and electron background and the liquid argon detector veto efficiency of the CDEX-10 experiment

    International Nuclear Information System (INIS)

    Su Jian; Zeng Zhi; Ma Hao

    2015-01-01

    The China Dark Matter Experiment (CDEX) is located at the China Jinping Underground Laboratory (CJPL) and aims to directly detect the weakly interacting massive particles (WIMP) flux with high sensitivity in the low mass region. Here we present a study of the predicted photon and electron backgrounds including the background contribution of the structure materials of the germanium detector, the passive shielding materials, and the intrinsic radioactivity of the liquid argon that serves as an anti-Compton active shielding detector. A detailed geometry is modeled and the background contribution has been simulated based on the measured radioactivities of all possible components within the GEANT4 program. Then the photon and electron background level in the energy region of interest (< 10 -2 events·kg 1 ·day -1 ·keV -1 (cpkkd)) is predicted based on Monte Carlo simulations. The simulated result is consistent with the design goal of the CDEX-10 experiment, 0.1cpkkd, which shows that the active and passive shield design of CDEX-10 is effective and feasible. (authors)

  15. Silicon drift detectors coupled to CsI(Tl) scintillators for spaceborne gamma-ray detectors

    International Nuclear Information System (INIS)

    Marisaldi, M.; Fiorini, C.; Labanti, C.; Longoni, A.; Perotti, F.; Rossi, E.; Soltau, H.

    2006-01-01

    Silicon Drift Detectors (SDDs), thanks to their peculiar low noise characteristics, have proven to be excellent photodetectors for CsI(Tl) scintillation light detection. Two basic detector configurations have been developed: either a single SDD or a monolithic array of SDDs coupled to a single CsI(Tl) crystal. A 16 independent detectors prototype is under construction, designed to work in conjunction with the MEGA Compton telescope prototype under development at MPE, Garching, Germany. A single SDD coupled to a CsI(Tl) crystal has also been tested as a monolithic detector with an extended energy range between 1.5 keV and 1 MeV. The SDD is used as a direct X-ray detector for low energy photons interacting in silicon and as a scintillation light photodetector for photons interacting in the crystal. The type of interaction is identified by means of pulse shape discrimination technique. Detectors based on an array of SDDs coupled to a single CsI(Tl) crystal have also been built. The readout of these detectors is based on the Anger camera technique, and submillimeter spatial resolution can be achieved. The two detectors' approaches and their applications will be described

  16. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    International Nuclear Information System (INIS)

    Miller, William H.; Manuel Diaz de Leon

    2003-01-01

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed

  17. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    William H. Miller; Manuel Diaz de Leon

    2003-04-15

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  18. A low-Z PET detector

    International Nuclear Information System (INIS)

    Burnham, C.A.; Kaufman, D.E.; Chesler, D.A.; Stearns, C.W.; Correia, J.A.; Brownell, G.L.

    1990-01-01

    In order to examine the potential of low-Z detector materials for PET, a small field imaging system using plastic detectors has been designed. In this system the site of a photon interaction in the detector is located using light produced by the first Compton electron. This is in contrast to high-Z detectors where multiple interactions occur. The calculated performance of the detector and supporting measurements are presented

  19. Search for photons with energies above 10{sup 18} eV using the hybrid detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A. [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud Universiteit, Nijmegen (Netherlands); Abreu, P.; Andringa, S. [Laboratório de Instrumentação e Física Experimental de Partículas—LIP and Instituto Superior Técnico—IST, Universidade de Lisboa—UL (Portugal); Aglietta, M. [Osservatorio Astrofisico di Torino (INAF), Torino (Italy); Samarai, I. Al [Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3 (France); Albuquerque, I.F.M. [Universidade de São Paulo, Inst. de Física, São Paulo (Brazil); Allekotte, I. [Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET) (Argentina); Almela, A.; Andrada, B. [Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina); Castillo, J. Alvarez [Universidad Nacional Autónoma de México, México (Mexico); Alvarez-Muñiz, J. [Universidad de Santiago de Compostela (Spain); Anastasi, G.A. [Gran Sasso Science Institute (INFN), L' Aquila (Italy); Anchordoqui, L., E-mail: auger_spokespersons@fnal.gov [Department of Physics and Astronomy, Lehman College, City University of New York (United States); and others

    2017-04-01

    A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1–2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km{sup −2} sr{sup −1} yr{sup −1} are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10 EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.1%, 0.15%, 0.33%, 0.85% and 2.7%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. The new results rule-out the early top-down models − in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles − and challenge the most recent super-heavy dark matter models.

  20. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles.

    Science.gov (United States)

    Poppinga, D; Meyners, J; Delfs, B; Muru, A; Harder, D; Poppe, B; Looe, H K

    2015-12-21

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with