WorldWideScience

Sample records for rich hot-work tool

  1. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    Science.gov (United States)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  2. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    Science.gov (United States)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2018-02-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  3. Investigation of Microstructure and Mechanical Properties in Hot-work Tool Steels

    OpenAIRE

    Rey, Tomas

    2017-01-01

    Hot-work tool steels make up an important group of steels that are able to perform with good strength and toughness properties at elevated temperatures and stresses. They are able to gain this behavior through their alloy composition and heat treatment, which relies on the precipitation of alloy carbides to counter the loss in strength as the tempered material becomes more ductile. As demand grows for materials that are suitable for even harsher applications and that show improved mechanical ...

  4. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    Science.gov (United States)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  5. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  6. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    Science.gov (United States)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  7. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Pellizzari, M. [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Zadra, M. [K4Sint, Start-up of the University of Trento, Viale Dante 300, 38057 Pergine Valsugana (Italy); Marin, E. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100 Udine (Italy)

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  8. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel

    International Nuclear Information System (INIS)

    Kang, Minwoo; Park, Gyujin; Jung, Jae-Gil; Kim, Byung-Hoon; Lee, Young-Kook

    2015-01-01

    Highlights: • Unexpected Mo carbides formed during slow cooling from low annealing temperatures. • Mo carbides formed during the migration of Mo for a transition of Cr-rich carbide. • Mo carbides were precipitated at the boundaries of M 7 C 3 carbides and ferrite grains. • Annealing conditions for the precipitation of Mo carbides were discussed. - Abstract: The precipitation behavior of H13 hot-work tool steel was investigated as a function of both annealing temperature and cooling rate through thermodynamic calculations and microstructural analyses using transmission and scanning electron microscope and a dilatometer. The V-rich MC carbide and Cr-rich M 7 C 3 and M 23 C 6 carbides were observed in all annealed specimens regardless of annealing and cooling conditions, as expected from an equilibrium phase diagram of the steel used. However, Mo-rich M 2 C and M 6 C carbides were unexpectedly precipitated at a temperature between 675 °C and 700 °C during slow cooling at a rate of below 0.01 °C/s from the annealing temperatures of 830 °C and below. The solubility of Mo in both M 7 C 3 and ferrite reduces with decreasing temperature during cooling. Mo atoms diffuse out of both M 7 C 3 and ferrite, and accumulate locally at the interface between M 7 C 3 and ferrite. Mo carbides were form at the interface of M 7 C 3 carbides during the transition of Cr-rich M 7 C 3 to stable M 23 C 6

  9. Investigations of Surface Topography of Hot Working Tool Steel Manufactured with the Use of 3D Print

    Directory of Open Access Journals (Sweden)

    Grobelny Pawel

    2017-01-01

    Full Text Available The paper presents the possibilities of 3D printing of chosen hot working tool steel for manufacturing ready made parts. Results of examination of the surface topography of material manufactured by the technology Laser CUSING®B (Laser melting with metals on the machine, Concept Laser M1 3D printing of metal parts has the potential to revolutionize the market of manufacturing and supplying parts. It makes it possible to dissipate manufacturing and to produce parts on request at lower cost and less energy consumption. The parameters of the surface topography of the hot working tool steel directly after printing can differ depending on the distance from the base plate. The differences of surface roughness values can amount from 32% to 85% for Ra and from 59% to 85% for Rz in comparison of the sample bottom to its top.

  10. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  11. A LOW TEMPERATURE ALUMINIZING TREATMENT OF HOT WORK TOOL STEEL

    OpenAIRE

    Matijević, Božidar

    2013-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to the X40CrMoV5-1 hot tool steel. The aluminizing temperature was from 550 °C to 620 °C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the alumini...

  12. Reducing tool wear by partial cladding of critical zones in hot form tool by laser metal deposition

    Science.gov (United States)

    Vollmer, Robert; Sommitsch, Christof

    2017-10-01

    This paper points out a production method to reduce tool wear in hot stamping applications. Usually tool wear can be observed at locally strongly stressed areas superimposed with gliding movement between blank and tool surface. The shown solution is based on a partial laser cladding of the tool surface with a wear resistant coating to increase the lifespan of tool inserts. Preliminary studies showed good results applying a material combination of tungsten carbide particles embedded in a metallic matrix. Different Nickel based alloys welded on hot work tool steel (1.2343) were tested mechanically in the interface zone. The material with the best bonding characteristic is chosen and reinforced with spherical tungsten carbide particles in a second laser welding step. Since the machining of tungsten carbides is very elaborate a special manufacturing strategy is developed to reduce the milling effort as much as possible. On special test specimens milling tests are carried out to proof the machinability. As outlook a tool insert of a b-pillar is coated to perform real hot forming tests.

  13. A low temperature aluminizing treatment of hot work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Matijevic, B., E-mail: bozidar.matijevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb (Croatia)

    2010-07-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  14. A low temperature aluminizing treatment of hot work tool steel

    International Nuclear Information System (INIS)

    Matijevic, B.

    2010-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  15. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel

    Science.gov (United States)

    Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad

    2011-01-01

    This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.

  16. Hot deformation and processing maps of K310 cold work tool steel

    International Nuclear Information System (INIS)

    Ezatpour, H.R.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Ebrahimi, G.R.

    2012-01-01

    Highlights: ► The steady state stresses are related to strain rate and temperature. ► The study led to n DRX = 3.95 and Q DRX = 219.65 kJ/(mol K) and α = 1.2 × 10 −2 MPa −1 . ► The safe domain occurs in the region of 1000–1100 °C for a strain rate of 0.1 s −1 . - Abstract: Hot working response of cold work tool steel K310 was investigated by means of compression test at temperature range of 900–1100 °C. The equivalent strain rates used in these tests were 0.01, 0.1 and 1 s −1 , respectively in order to obtain the processing and stability maps of the studied material following the Dynamic Material Model. All the zones of flow instability were studied through scanning electron microscopy (SEM). The microstructure of the samples after deformation was then analyzed by light microscopy and the differences were compared together. The steady state stress obtained from the flow curves was related to strain rate (ε . ) and temperature (T) by means of the well known Zener–Holloman equation. A least square analysis of the data led to n = 3.95 and Q DRX = 219.65 kJ/mol and α = 1.2 × 10 −2 MPa −1 . Also, hardness results showed that by increasing strain from peak to steady state strain, hardness was decreased.

  17. 40 CFR 68.85 - Hot work permit.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  18. (F)UV Spectral Analysis of Hot, Hydrogen-Rich Central Stars of Planetary Nebulae

    Science.gov (United States)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    2010-11-01

    Metal abundances of CSPNe are not well known although they provide important constraints on AGB nucleosynthesis. We aim to determine metal abundances of two hot, hydrogen-rich CSPNe (namely of A35 and NGC3587, the latter also known as M97 or the Owl Nebula) and to derive Teff and log g precisely from high-resolution, high-S/N (far-) ultraviolet observations obtained with FUSE and HST/STIS. For this purpose, we utilize NLTE model atmospheres calculated with TMAP, the Tübingen Model Atmosphere Package. Due to strong line absorption of the ISM, simultaneous modeling of interstellar features has become a standard tool in our analyses. We present preliminary results, demonstrating the importance of combining stellar and interstellar models, in order to clearly identify and measure the strengths of strategic photospheric lines.

  19. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    Science.gov (United States)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for

  20. Evaluation of the mechanical properties of Niobium modified cast AISI H 13 hot work tool steel

    International Nuclear Information System (INIS)

    Noorian, A.; Kheirandish, Sh.; Saghafian, H.

    2010-01-01

    In this research, the effects of partially replacing of vanadium and molybdenum with niobium on the mechanical properties of AISIH 13 hot-work tool steel have been studied. Cast samples made of the modified new steel were homogenized and austenitized at different conditions, followed by tempering at the specified temperature ranges. Hardness, red hardness, three point bending test and Charpy impact test were carried out to evaluate the mechanical properties together with characterizing the microstructure of the modified steel using scanning electron microscope. The results show that niobium addition modifies the cast structure of Nb-alloyed steel, and increases its maximum hardness. It was found that bending strength; bending strain, impact strength, and red hardness of the modified cast steel are also higher than those of the cast H13 steel, and lower than those of the wrought H13 steel.

  1. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    International Nuclear Information System (INIS)

    L-Cancelos, R.; Varas, F.; Viéitez, I.; Martín, E.

    2016-01-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved. (paper)

  2. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  3. PM-materials for hot working tools; PM-Werkstoffe fuer warmgehende Werkzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Berns, H.; Broeckmann, C.; Theisen, W. [Bochum Univ. (Germany). Fakultaet fuer Maschinenbau; Wewers, B.

    2001-05-01

    Tools and wear parts for compacting tools are subjected to high abrasive wear and mechanical loading at elevated temperatures. MMC's based in iron- or nickel with hard particles are developed and investigated. The materials were manufactured from powders by hot isostatic pressing (HIP) and subsequently heat treated. Diffusion between hard phases and metal matrix brings about certain micro structures which were tested with respect to the resistance against sliding abrasion at room and elevated temperatures. Three-point bending tests and thermal cycling of the material was utilized to characterise the mechanical behaviour. Based on this results a toolkit for a roller press for briquetting was produced and brought into application. (orig.) [German] Werkzeuge und Verschleissteile fuer die Verarbeitung von mineralischen Guetern bei erhoehter Temperatur unterliegen sowohl hohem abrasivem Verschleiss als auch hohen mechanischen Lasten. Es werden hartphasenhaltige Verbundwerkstoffe auf Eisen- und Nickelbasis entwickelt und untersucht. Die Fertigung dieser MMC's erfolgt durch heiss isostatisches Pressen (HIP) und anschliessende Waermebehandlung. Durch Diffusion zwischen Hartphasen und Metallmatrix entstehen Gefuege, die bezueglich ihres Widerstandes gegen Abrasivverschleiss bei Raumtemperatur und gegen Korngleitverschliess bei erhoehter Temperatur geprueft werden. Zur Charakterisierung der mechanischen Eigeschaften werden Dreipunktbiegeversuche und thermsiche Ermuedungsversuche durchgefuehrt. Die gewonnenen Erkenntnisse werden genutzt, um einen Werkzeugsatz fuer eine Brikettierpresse herzustellen und in Einsatz zu bringen. (orig.)

  4. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    Science.gov (United States)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  5. Chemistry of the organic-rich hot core G327.3-0.6

    Science.gov (United States)

    Gibb, E.; Nummelin, A.; Irvine, W. M.; Whittet, D. C.; Bergman, P.; Ferris, J. P. (Principal Investigator)

    2000-01-01

    We present gas-phase abundances of species found in the organic-rich hot core G327.3-0.6. The data were taken with the Swedish-ESO Submillimetre Telescope (SEST). The 1-3 mm spectrum of this source is dominated by emission features of nitrile species and saturated organics, with abundances greater than those found in many other hot cores, including Sgr B2 and OMC-1. Population diagram analysis indicates that many species (CH3CN, C2H3CN, C2H5CN, CH3OH, etc.) have hot components that originate in a compact (2") region. Gas-phase chemical models cannot reproduce the high abundances of these molecules found in hot cores, and we suggest that they originate from processing and evaporation of icy grain mantle material. In addition, we report the first detection of vibrationally excited ethyl cyanide and the first detection of methyl mercaptan (CH3SH) outside the Galactic center.

  6. Hot-working behavior of cast Pr-Fe-B magnets

    International Nuclear Information System (INIS)

    Shimoda, T.; Akioka, K.; Kobayashi, O.; Yamagami, T.; Ohki, T.; Miyagawa, M.; Yuri, T.

    1989-01-01

    The hot-working behavior of cast Pr-Fe-B magnets is investigated. The hot-working is done both at a low strain rate (hot-pressing) and a high strain rate (hot-rolling). Magnetic alignment induced by the hot-working is found to be closely related to the macrostructure of the cast ingots and the direction of principal stress. The appropriate structure is a columnar structure. The c-axis of the Pr2Fe14B phase is lying in the plane perpendicular to the growth direction of the dendrites. The principal stress during working should be given perpendicular to the growth direction

  7. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  8. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

    Science.gov (United States)

    Fares, M. L.; Athmani, M.; Khelfaoui, Y.; Khettache, A.

    2012-02-01

    The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M23C6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

  9. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements.

    Science.gov (United States)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-09

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  10. Hot working alkali halides for laser window applications

    International Nuclear Information System (INIS)

    Koepke, B.G.; Anderson, R.H.; Stokes, R.J.

    1975-01-01

    The techniques used to hot work alkali halide crystals into laser window blanks are reviewed. From the point of view of high power laser window applications one of the materials with a high figure of merit is KCl. Thus the materials examined are KCl and alloys of KCl-KBr containing 5 mole percent KBr. The fabrication techniques include conventional and constrained press forging, isostatic press forging and hot rolling. Optical properties are paramount to the ultimate usefulness of these materials. Results on the optical properties of the hot worked material are included together with mechanical properties and microstructural data

  11. Standard guide for hot cell specialized support equipment and tools

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 This guide presents practices and guidelines for the design and implementation of equipment and tools to assist assembly, disassembly, alignment, fastening, maintenance, or general handling of equipment in a hot cell. Operating in a remote hot cell environment significantly increases the difficulty and time required to perform a task compared to completing a similar task directly by hand. Successful specialized support equipment and tools minimize the required effort, reduce risks, and increase operating efficiencies. 1.2 Applicability: 1.2.1 This guide may apply to the design of specialized support equipment and tools anywhere it is remotely operated, maintained, and viewed through shielding windows or by other remote viewing systems. 1.2.2 Consideration should be given to the need for specialized support equipment and tools early in the design process. 1.2.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conv...

  12. Identifying fish diversity hot-spots in data-poor situations.

    Science.gov (United States)

    Fonseca, Vinícius Prado; Pennino, Maria Grazia; de Nóbrega, Marcelo Francisco; Oliveira, Jorge Eduardo Lins; de Figueiredo Mendes, Liana

    2017-08-01

    One of the more challenging tasks in Marine Spatial Planning (MSP) is identifying critical areas for management and conservation of fish stocks. However, this objective is difficult to achieve in data-poor situations with different sources of uncertainty. In the present study we propose a combination of hierarchical Bayesian spatial models and remotely sensed estimates of environmental variables to be used as flexible and reliable statistical tools to identify and map fish species richness and abundance hot-spots. Results show higher species aggregates in areas with higher sea floor rugosity and habitat complexity, and identify clear richness hot-spots. Our findings identify sensitive habitats through essential and easy-to-use interpretation tools, such as predictive maps, which can contribute to improving management and operability of the studied data-poor situations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Work plan for development of K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1994-01-01

    The purpose of this document is to provide the engineering work plan for the development of handling tools for the removal of N-Reactor fuel elements from their storage canisters in the K-Basins storage pool and insertion into the Single Fuel Element Cans for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element from the storage canister

  14. Models and methods for hot spot safety work

    DEFF Research Database (Denmark)

    Vistisen, Dorte

    2002-01-01

    Despite the fact that millions DKK each year are spent on improving roadsafety in Denmark, funds for traffic safety are limited. It is therefore vital to spend the resources as effectively as possible. This thesis is concerned with the area of traffic safety denoted "hot spot safety work", which...... is the task of improving road safety through alterations of the geometrical and environmental characteristics of the existing road network. The presently applied models and methods in hot spot safety work on the Danish road network were developed about two decades ago, when data was more limited and software...... and statistical methods less developed. The purpose of this thesis is to contribute to improving "State of the art" in Denmark. Basis for the systematic hot spot safety work are the models describing the variation in accident counts on the road network. In the thesis hierarchical models disaggregated on time...

  15. Control of microstructure during hot working of zirconium alloys

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Banerjee, S.

    2005-01-01

    Hot working is considered to be the most important step involved in the fabrication of zirconium alloys for nuclear reactor applications for two reasons: i) the scale of the microstructure and texture of the final product is decided at this stage and ii) the hot deformed microstructure provides a suitable starting microstructure for the subsequent fabrication steps. The resultant microstructure in turn controls the properties of the final product. In order to obtain final product with a suitable microstructure and with specified mechanical properties on a repeatable basis the control of microstructure during hot working is of paramount importance. This is usually done by studying the constitutive behaviour of the material under hot working conditions and by constructing processing maps. In the latter method, strain rate sensitivity is mapped as a function of temperature and strain rate to delineate domains within the bounds of which a specific deformation mechanism dominates. Detail microstructural analysis is then carried out on the samples deformed within the domains. Using this methodology, processing maps have been constructed for various zirconium alloys. These maps have been found to be very useful for optimizing the hot workability and control of microstructure of zirconium alloys. (author)

  16. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    International Nuclear Information System (INIS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-01-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  17. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  18. Robot Work Platform for Large Hot Cell Deactivation

    International Nuclear Information System (INIS)

    BITTEN, E.J.

    2000-01-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  19. A search for new hot subdwarf stars by means of Virtual Observatory tools

    Science.gov (United States)

    Oreiro, R.; Rodríguez-López, C.; Solano, E.; Ulla, A.; Østensen, R.; García-Torres, M.

    2011-06-01

    Context. Recent massive sky surveys in different bandwidths are providing new opportunities to modern astronomy. The Virtual Observatory (VO) provides the adequate framework to handle the huge amount of information available and filter out data according to specific requirements. Aims: Hot subdwarf stars are faint, blue objects, and are the main contributors to the far-UV excess observed in elliptical galaxies. They offer an excellent laboratory to study close and wide binary systems, and to scrutinize their interiors through asteroseismology, since some of them undergo stellar oscillations. However, their origins are still uncertain, and increasing the number of detections is crucial to undertake statistical studies. In this work, we aim at defining a strategy to find new, uncatalogued hot subdwarfs. Methods: Making use of VO tools we thoroughly search stellar catalogues to retrieve multi-colour photometry and astrometric information of a known sample of blue objects, including hot subdwarfs, white dwarfs, cataclysmic variables and main-sequence OB stars. We define a procedure to distinguish among these spectral classes, which is particularly designed to obtain a hot subdwarf sample with a low contamination factor. To check the validity of the method, this procedure is then applied to two test sky regions: to the Kepler FoV and to a test region of 300 deg2 around (α:225, δ:5) deg. Results: As a result of the procedure we obtained 38 hot subdwarf candidates, 23 of which had already a spectral classification. We have acquired spectroscopy for three other targets, and four additional ones have an available SDSS spectrum, which we used to determine their spectral type. A temperature estimate is provided for the candidates based on their spectral energy distribution, considering two-atmospheres fit for objects with clear infrared excess as a signature of the presence of a cool companion. Eventually, out of 30 candidates with spectral classification, 26 objects were

  20. Influence of hard particle addition and chemical interdiffusion on the properties of hot extruded tool steel compounds

    International Nuclear Information System (INIS)

    Silva, P.A.; Weber, S.; Inden, G.; Pyzalla, A.R.

    2009-01-01

    Low alloyed steel bars were co-extruded with pre-sintered tool steel powders with the addition of tungsten carbides (W 2 C/WC) as hard particles. During the hot extrusion process of these massive and powdery materials, an extrudate is formed consisting of a completely densified wear resistant coating layer and a bulk steel bar as the tough substrate core. This work combines experimental measurements (EPMA) and diffusion calculations (DICTRA TM ) to investigate the effect of hard particle addition and its dissolution, as well as the formation of M 6 C carbides on the properties of two different PM tool steel coatings hot extruded with a 1.2714 steel bar. A carburization effect resulting from the W 2 C hard particles is responsible for an increase of the 1.2344 steel matrix hardness. The mechanical properties of the interface region between coating matrix and substrate are influenced by chemical interdiffusion of carbon and other alloying elements occurring during heat treatment.

  1. 46 CFR 176.710 - Inspection and testing prior to hot work.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection and testing prior to hot work. 176.710... testing prior to hot work. (a) An inspection for flammable or combustible gases must be conducted by a... operations involving riveting, welding, burning, or other fire producing actions may be made aboard a vessel...

  2. 46 CFR 115.710 - Inspection and testing prior to hot work.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection and testing prior to hot work. 115.710... AND CERTIFICATION Repairs and Alterations § 115.710 Inspection and testing prior to hot work. (a) An... involving riveting, welding, burning, or other fire producing actions may be made aboard a vessel: (1...

  3. Research on optimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization

    Directory of Open Access Journals (Sweden)

    He Bin

    2016-01-01

    Full Text Available In order to optimize the layout of the conformal cooling channels in hot stamping tools, a response surface methodology and multi-objective optimization technique are proposed. By means of an Optimal Latin Hypercube experimental design method, a design matrix with 17 factors and 50 levels is generated. Three kinds of design variables, the radius Rad of the cooling channel, the distance H from the channel center to tool work surface and the ratio rat of each channel center, are optimized to determine the layout of cooling channels. The average temperature and temperature deviation of work surface are used to evaluate the cooling performance of hot stamping tools. On the basis of the experimental design results, quadratic response surface models are established to describe the relationship between the design variables and the evaluation objectives. The error analysis is performed to ensure the accuracy of response surface models. Then the layout of the conformal cooling channels is optimized in accordance with a multi-objective optimization method to find the Pareto optimal frontier which consists of some optimal combinations of design variables that can lead to an acceptable cooling performance.

  4. Chapter 2. Experimental testing methods of materials under hot working conditions

    International Nuclear Information System (INIS)

    Rossard, C.

    1976-01-01

    The deformation under hot working conditions is defined and the purpose of laboratory tests is explained: strength, structure, hot-workability. The concepts of generalized stress strain and strain rate are introduced. These concepts find an interesting application in the equivalence principle. The different testing methods (tension, compression, torsion) and their possibilities are reviewed. The softening mechanisms are recalled: dynamic recovery and recrystallization, static and post-dynamic recrystallization. To explain the possibilities of simulation tests in hot working conditions, some examples are given: the evaluation of the stress-strain relationship (effect of the mechanical and thermal history); the determination of structural behavior (quenching, controled cooling law, decomposition kinetics) [fr

  5. The hot working characteristics of a boron bearing and a conventional low carbon steel

    International Nuclear Information System (INIS)

    Stumpf, Waldo; Banks, Kevin

    2006-01-01

    Constitutive hot working constants were determined for an 11 ppm boron low carbon strip steel and compared from 875 to 1140 deg. C and strain rates of 0.001-2.5 s -1 to a high nitrogen low carbon strip steel. The boron steel showed a different hot working behaviour than the conventional steel with the steady state flow stress about 50-60% higher, the peak strain more than 50% higher and the eventual ferrite grain size about 40% smaller, if compared at the same temperature compensated strain rates or Z values. This difference persisted where the soaking temperature before compression was varied between 1140 and 1250 deg. C, proving that undissolved AlN in the boron-bearing steel was not responsible. With systematically varied linear cooling rates after hot working, the final ferrite grain size in the boron steel is finer and is independent of the two Z values applied during hot working. Retarded softening by dynamic recrystallisation during hot working in the boron containing steel is probably caused by boron solute drag of moving grain boundaries

  6. The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    Science.gov (United States)

    Rhee, George F.; West, Michael J.; Villumsen, Jens V.

    1993-01-01

    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias

  7. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  8. Simulative testing of friction in warm/hot forging

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    The objective of sub-task 3.2 is to determine the friction values for different work piece materials, tool materials and lubricants as a function of the main process parameters under conditions reflecting those which are present in typical warm/hot forming operations i.e. surface expansion, work...... piece and tool temperature. Based on this experimental work establish mathematical formulations of friction as a function of the basic parameters....

  9. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  10. Hot working effect on austenite transformations in structural steel in continuous cooling

    International Nuclear Information System (INIS)

    Zajmovskij, V.A.; Kisteh, N.V.; Samedov, O.V.

    1979-01-01

    Austenite transformations in 40, 40Kh, 40KhN and 40KhNMA steels under hot working at 900 deg C with 20% reduction degree and continuous cooling with 1,7-16 0 /s are investigated. Changing of cooling rate in various ways affects the temperature range of austenite transformation in pearlite and bainite regions. Regulating the cooling rate after hot working one can essentially change the impact strength and steel ductility as a result of high temperature thermomechanical treatment effect

  11. Search for trans-iron elements in hot, helium-rich white dwarfs with the HST Cosmic Origins Spectrograph

    Science.gov (United States)

    Hoyer, D.; Rauch, T.; Werner, K.; Kruk, J. W.

    2018-04-01

    The metal abundances in the atmospheres of hot white dwarfs (WDs) entering the cooling sequence are determined by the preceding Asymptotic Giant Branch (AGB) evolutionary phase and, subsequently, by the onset of gravitational settling and radiative levitation. In this paper, we investigate three hot He-rich WDs, which are believed to result from a late He-shell flash. During such a flash, the He-rich intershell matter is dredged up and dominates the surface chemistry. Hence, in contrast to the usual H-rich WDs, their spectra allow direct access to s-process element abundances in the intershell that were synthesized during the AGB stage. In order to look for trans-iron group elements (atomic number Z > 29), we performed a non-local thermodynamic equilibrium model atmosphere analysis of new ultraviolet spectra taken with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. One of our program stars is of PG 1159 spectral type; this star, PG 1707+427, has effective temperature Teff = 85 000 K, and surface gravity logg = 7.5. The two other stars are DO white dwarfs: WD 0111+002 has Teff = 58 000 K and log g = 7.7, and PG 0109+111 has Teff = 70 000 K and log g = 8.0. These stars trace the onset of element diffusion during early WD evolution. While zinc is the only trans-iron element we could detect in the PG 1159 star, both DOs exhibit lines from Zn, Ga, Ge, Se; one additionally exhibits lines from Sr, Sn, Te, and I and the other from As. Generally, the trans-iron elements are very abundant in the DOs, meaning that radiative levitation must be acting. Most extreme is the almost six orders of magnitude oversolar abundance of tellurium in PG 0109+111. In terms of mass fraction, it is the most abundant metal in the atmosphere. The two DOs join the hitherto unique hot DO RE 0503-289, in which 14 trans-iron elements had even been identified. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which

  12. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  13. Metallurgical analysis of spalled work roll of hot strip mill

    International Nuclear Information System (INIS)

    Khan, M.M.; Khan, M.A.

    1993-01-01

    In this study failure analysis of four work roll of the Hot Strip Mill is carried out. The microstructure is correlated with the chemical composition of shell and roll-life. It was concluded that for the longer service of the roll, cementite, graphite and martensite should be balanced (as per working requirement of the mill). (author)

  14. Study of the microstructure evolution of ferritic stainless ODS steels during hot working

    International Nuclear Information System (INIS)

    Karch, Abdellatif

    2014-01-01

    The production of ODS steels involves a powder consolidation step usually using the hot extrusion (HE) process. The anisotropic properties of extruded materials, especially in the ODS ferritic grades (≥wt%12Cr), need a better understanding of the metallurgical phenomena which may occur during HE and lead to the observed microstructure. The hot working behavior of these materials is of particular interest. The methodology of this work includes the microstructure analysis after interrupted hot extrusion, hot torsion and hot compression (1000-1200 C) tests of ferritic steels with 14%Cr and different amounts in Ti and Y 2 O 3 . The microstructure evolution during hot extrusion process is associated with continuous dynamic recrystallization (CDRX). It leads to the creation of new grains by the formation of low angle boundaries, and then the increase of their misorientation under plastic deformation. The investigations highlight also the role of precipitation on the kinetics of this mechanism; it remains incomplete in the presence of fine and dense nano-precipitates. After hot deformation in torsion and compression, it is noticed that both precipitates and temperature deformation have a significant impact on the deformation mechanisms and microstructure evolution. Indeed, the CDRX is dominant when temperature and amount of reinforcement are limited. However, when they are increased, limited microstructure evolution is observed. In this case, the results are interpreted through a mechanism of strain accommodation at grain boundaries, with low dislocation activity in the bulk of the grains. (author) [fr

  15. The effect of hot deformation on the bainite transformation of a working tool steel; Efeito da deformacao a quente sobre a transformacao bainitica de um aco ferramenta

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Lima, Ricardo F. de; Carvalho, Miguel A.; Nogueira, Marcos A.S. [Acos Villares SA, Rio de Janeiro, RJ (Brazil)

    1989-12-31

    The effect of hot deformation of austenite on its isothermal transformation at 400 degrees Celsius for a hot working steel has been investigated. The degrees of transformation was varied and the results were analysed by optical metallography. Increasing the deformation, the bainite nucleation occurs in twins and grain boundaries, and also inside the austenitic grains. (author). 10 refs., 8 figs.

  16. Work strain in decontamination of hot cells, 2

    International Nuclear Information System (INIS)

    Kinouchi, Nobuyuki; Ikezawa, Yoshio

    1991-01-01

    In decontamination of hot cells, the workers should wear suitable protective clothing to protect them from internal exposure and skin contamination. But such protective clothing causes some work strain, especially heat-stress. As a simple method to evaluate quantitative work strain, we used sweat rates of the wearers. In the previous paper, sweat rates for workers with two types of protective clothing were reported. In the present paper, sweat rates under severer working conditions are measured for three types: (1) pressure ventilated blouse; (2) full-face mask and polyethylene coverall; (3) full-face mask and vinyl anorak. The measured values for 65 subjects widely scatter from 0.2 to 2.5 l/h for all the protective clothing. Based on these values, the effects of protective clothing and working conditions (ambient temperature and humidity) on work strain are discussed. (author)

  17. Radiocarbon application in dating 'complex' hot and cold CO{sub 2}-rich mineral water systems: A review of case studies ascribed to the northern Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, Paula M. [Instituto Tecnologico e Nuclear, Departamento de Quimica, Estrada Nacional No 10, 2686-953 Sacavem (Portugal)], E-mail: carreira@itn.pt; Marques, Jose M.; Graca, Rui C.; Aires-Barros, Luis [Instituto Superior Tecnico, Laboratorio de Mineralogia e Petrologia, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2008-10-15

    The use of radioactive isotopes plays a very important role in dating groundwater, providing an apparent age of the systems in the framework of the aquifers conceptual modelling making available important features about the water fluxes, such as recharge, horizontal flow rates and discharge. In this paper, special emphasis has been put on isotopic constraints in the use of {delta}{sup 13}C and {sup 14}C content as a dating tool in some hot (76 deg. C) and cold (17 deg. C) CO{sub 2}-rich mineral waters discharging in the Vilarelho da Raia-Pedras Salgadas region (N-Portugal). The radiocarbon content determined in these CO{sub 2}-rich mineral waters ({sup 14}C activity from 4.3 up to 9.9 pmc) is incompatible with the systematic presence of {sup 3}H (from 1.7 to 7.9 TU). The {delta}{sup 13}C values of the studied CO{sub 2}-rich mineral waters indicate that the total C in the recharge waters is being masked by larger quantities of CO{sub 2} ({sup 14}C-free) introduced from deep-seated (upper mantle) sources. This paper demonstrates that a good knowledge of mineral water systems is essential to allow hydrologists to make sound conclusions on the use of C isotopic data in each particular situation.

  18. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-05-23

    Protein-protein interactions are critically dependent on just a few residues (“hot spots”) at the interfaces. Hot spots make a dominant contribution to the binding free energy and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there exists a need for accurate and reliable computational hot spot prediction methods. Compared to the supervised hot spot prediction algorithms, the semi-supervised prediction methods can take into consideration both the labeled and unlabeled residues in the dataset during the prediction procedure. The transductive support vector machine has been utilized for this task and demonstrated a better prediction performance. To the best of our knowledge, however, none of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue prediction, by considering all the three semisupervised assumptions using nonlinear models. Our algorithm, IterPropMCS, works in an iterative manner. In each iteration, the algorithm first propagates the labels of the labeled residues to the unlabeled ones, along the shortest path between them on a graph, assuming that they lie on a nonlinear manifold. Then it selects the most confident residues as the labeled ones for the next iteration, according to the cluster and smoothness criteria, which is implemented by a nonlinear density estimator. Experiments on a benchmark dataset, using protein structure-based features, demonstrate that our approach is effective in predicting hot spots and compares favorably to other available methods. The results also show that our method outperforms the state-of-the-art transductive learning methods.

  19. Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production

    Science.gov (United States)

    Manuel R. Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell; Rui Zhu; Karl Englund

    2016-01-01

    Hot water extraction (HWE) partially removes hemicelluloses from wood while leaving the majority of the lignin and cellulose; however, the lignin partially migrates to the inner surfaces of the cell wall where it can be deposited as a layer that is sometimes visible as droplets. This lignin-rich material was isolated via Soxhlet extraction with dichloromethane to...

  20. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  1. Laser grooving of surface cracks on hot work tool steel

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2011-10-01

    Full Text Available The paper presents the analysis of laser grooving of 1.2343 tool steel hardened to 46 HRC. The effect of laser power and grooving speed on groove shape (i.e. depth and width, the material removal rate and the purity of produced groove as a measure of groove quality was investigated and analyzed using response surface methodology. Optimal parameters of laser grooving were found, which enables pure grooves suitable for laser welding.

  2. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

    Science.gov (United States)

    Ewing, John F; Freeman, J W

    1957-01-01

    The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

  4. Wear Behavior of Uncoated and Coated Tools under Complex Loading Conditions

    Directory of Open Access Journals (Sweden)

    M. Wieland

    2012-03-01

    Full Text Available In automotive industry crash relevant structures of the body in white are manufactured using the direct hot stamping process. Due to the high temperature difference between the hot blank and the cold tool surfaces and the relative movement between the blank and the tool surfaces during the forming operation, high thermal and mechanical loads are applied on the tool leading to excessive wear in terms of adhesion on the tool surfaces. One possibility to reduce wear of hot stamping tools is the application of tool coating systems. In the scope of this work uncoated and coated tools are characterized under complex loading conditions with respect to adhesive layer build-up.

  5. SOFTWARE SUPPORT FOR RICH PICTURES

    DEFF Research Database (Denmark)

    Valente, Andrea; Marchetti, Emanuela

    2010-01-01

    Rich pictures (RP) are common in object-oriented analysis and design courses, but students seem to have problems in integrating them in their projects' workflow. A new software tool is being developed, specific for RP authoring. To better understand students' issues and working practice with RP...

  6. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    Science.gov (United States)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  7. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia.

    Science.gov (United States)

    McInnes, Judith Anne; MacFarlane, Ewan M; Sim, Malcolm R; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  8. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia

    Science.gov (United States)

    McInnes, Judith Anne; MacFarlane, Ewan M.; Sim, Malcolm R.; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  9. Application of processing maps in the optimization of the parameters of a hot working process. Part 1. Theoretical review

    International Nuclear Information System (INIS)

    Al Omar, A.; Prado, J.M.

    1997-01-01

    The hot working processes constitute an important step in the manufacture of components for engineering applications. In the past, the mechanical processing have been used to impart a shape to the engineering materials. More recently, however, the hot working processes are used not only to achieve the required shape but also to impart desirable mechanical and microstructural characteristics by an adequate design of the thermomechanical process. The aim of the present paper is to summarize the general characteristics of the Dynamic Materials Model. In this model, the work piece material under hot working conditions is considered to be a dissipator of power. Also, the extreme principles of irreversible thermodynamics applied to large plastic flow are described to develop a continuum criterion capable to predict the metallurgical instabilities in a hot worked material. (Author) 22 refs

  10. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    Energy Technology Data Exchange (ETDEWEB)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  11. A Unified Physical Model for Creep and Hot Working of Al-Mg Solid Solution Alloys

    Directory of Open Access Journals (Sweden)

    Stefano Spigarelli

    2017-12-01

    Full Text Available The description of the dependence of steady-state creep rate on applied stress and temperature is almost invariably based on the Norton equation or on derived power-law relationships. In hot working, the Norton equation does not work, and is therefore usually replaced with the Garofalo (sinh equation. Both of these equations are phenomenological in nature and can be seldom unambiguously related to microstructural parameters, such as dislocation density, although early efforts in this sense led to the introduction of the “natural power law” with exponent 3. In an attempt to overcome this deficiency, a recent model with sound physical basis has been successfully used to describe the creep response of fcc metals, such as copper. The main advantage of this model is that it does not require any data fitting to predict the strain rate dependence on applied stress and temperature, which is a particularly attractive peculiarity when studying the hot workability of metals. Thus, the model, properly modified to take into account solid solution strengthening effects, has been here applied to the study of the creep and hot-working of simple Al-Mg single phase alloys. The model demonstrated an excellent accuracy in describing both creep and hot working regimes, still maintaining its most important feature, that is, it does not require any fitting of the experimental data.

  12. Group Work Tests for Context-Rich Problems

    Science.gov (United States)

    Meyer, Chris

    2016-05-01

    The group work test is an assessment strategy that promotes higher-order thinking skills for solving context-rich problems. With this format, teachers are able to pose challenging, nuanced questions on a test, while providing the support weaker students need to get started and show their understanding. The test begins with a group discussion phase, when students are given a "number-free" version of the problem. This phase allows students to digest the story-like problem, explore solution ideas, and alleviate some test anxiety. After 10-15 minutes of discussion, students inform the instructor of their readiness for the individual part of the test. What follows next is a pedagogical phase change from lively group discussion to quiet individual work. The group work test is a natural continuation of the group work in our daily physics classes and helps reinforce the importance of collaboration. This method has met with success at York Mills Collegiate Institute, in Toronto, Ontario, where it has been used consistently for unit tests and the final exam of the grade 12 university preparation physics course.

  13. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  14. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  15. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  16. Tribological performances of new steel grades for hot stamping tools

    Science.gov (United States)

    Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.

    2017-09-01

    In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.

  17. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  18. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Criteria for prediction of plastic instabilities for hot working processes. (Part I: Theoretical review)

    International Nuclear Information System (INIS)

    Al Omar, A.; Prado, J. M.

    2010-01-01

    Hot working processes often induce high levels of deformation at high strain rates, and impose very complex multiaxial modes of solicitation. These processes are essentially limited by apparition and development of plastic instabilities. These may be the direct cause of rapid crack propagation, which lead to a possible final rupture. The complexity of deformation modes and the simultaneous intervention of several parameters have led many researchers to develop various criteria, with different approaches, to predict the occurrence of defects and to optimize process control parameters. The aim of the present paper is to summarize the general characteristics of some instability criteria, widely used in the literature, for the prediction of plastic instabilities during hot working. It was considered appropriate to divide the work into two parts: part I presents the phenomenological criteria for the prediction of plastic instabilities, based on descriptive observation of microscopic phenomena of the deformation (strain hardening and strain rate sensitivity), and discusses the continuum criteria based on the principle of maximum rate of entropy production of irreversible thermodynamics applied to continuum mechanics of large plastic flow. Also, this part provides a bibliographical discussion among several authors with regard to the physical foundations of dynamic materials model. In part II, of the work, a comparative study has been carried out to characterize the flow instability during a hot working process of a medium carbon microalloyed using phenomenological and continuum criteria. (Author) 83 refs.

  20. Simulation of Oscillatory Working Tool

    Directory of Open Access Journals (Sweden)

    Carmen Debeleac

    2010-01-01

    Full Text Available The paper presents a study of the resistance forces in soils cutting, with emphasis on their dependence on working tool motion during the loading process and dynamic regimes. The periodic process of cutting of soil by a tool (blade has described. Different intervals in the cycle of steady-state motion of the tool, and several interaction regimes were considered. The analysis has based on a non-linear approximation of the dependence of the soil resistance force on tool motion. Finally, the influence of frequency on the laws governing the interaction in the cyclic process was established.

  1. New phenomenological and differential model for hot working of metallic polycrystalline materials

    International Nuclear Information System (INIS)

    Castellanos, J.; Munoz, J.; Gutierrez, V.; Rieiro, I.; Ruano, O. A.; Carsi, M.

    2012-01-01

    This paper presents a new phenomenological and differential model (that use differential equations) to predict the flow stress of a metallic polycrystalline material under hot working. The model, called MCC, depends on six parameters and uses two internal variables to consider the strain hardening, dynamic recovery and dynamic recrystallization processes that occur under hot working. The experimental validation of the MCC model has been carried out by means of stress-strain curves from torsion tests at high temperature (900 degree centigrade a 1200 degree centigrade) and moderate high strain rate (0.005 s-1 to 5 s-1) in a high nitrogen steel. The results reveal the very good agreement between experimental and predicted stresses. Furthermore, the Garofalo a-parameter and the strain to reach 50 % of recrystallized volume fraction have been employed as a control check being a first step to the physical interpretation of variables and parameters of the MCC model. (Author) 26 refs.

  2. The international Hip Outcome Tool-33 (iHOT-33): multicenter validation and translation to Spanish.

    Science.gov (United States)

    Ruiz-Ibán, Miguel Angel; Seijas, Roberto; Sallent, Andrea; Ares, Oscar; Marín-Peña, Oliver; Muriel, Alfonso; Cuéllar, Ricardo

    2015-05-20

    The international Hip Outcome Tool-33 (iHOT-33) is a 33-item self administered outcome measure based on a Visual Analogue Scale response format designed for young and active population with hip pathology. The aim of the present study is to translate and validate the iHOT-33 into Spanish. 97 patients undergoing hip arthroscopy were included in this prospective and multicenter study performed between January 2012 and May 2014. Crosscultural adaptation was used to translate iHOT-33 into Spanish. Patients completed the questionnaire before and after surgery. Feasibility, reliability, internal consistency, construct validity (correlation with Western Ontario and McMaster Universities Osteoarthritis Index), ceiling and floor effects and sensitivity to change were assessed for the present study. Mean age was 48 years old. Feasibility: 41.2 % patients had no blank questions, and 71.3 % of patients had fulfilled all but one or two questions. Reliability: ICC for the global questionnaire was 0.97, showing that the questionnaire is highly reproducible. Internal consistency: Cronbach's alpha was 0.98 for the global questionnaire. Construct validity: there was a high correlation with WOMAC (correlation coefficient >0.5). The Ceiling effect (taking into account the minimum detectable change) was 12.1 % and the floor effect was 21.6 %, for the global questionnaire. Large sensitivity to change was shown. the Spanish version of iHOT-33 has shown to be feasible, reliable and sensible to changes for patients undergoing hip arthroscopy. This validated translation of iHOT-33 allows for comparisons between studies involving either Spanish- or English-speaking patients. Prognostic study, Level I.

  3. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  4. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  5. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  6. Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions

    International Nuclear Information System (INIS)

    Rao, K.P.; Prasad, Y.V.R.K.

    2010-01-01

    Research highlights: Mechanical alloying of Ti and Al with small additions of Si and C was used to synthesize metastable phases, which were incorporated in Ti-Al matrices using powder metallurgy techniques. These metastable phases (or also called as precursors), at higher temperatures, transformed in situ into very fine hard reinforcements that develop coherent interface with the surrounding matrix. Typically, Ti5Si3 and TiC are the end products after the synthesis of composite. In this study, hot working behavior of such composites has been studied using the concepts of processing maps to identify the safe and best processing conditions that should be adopted while forming this composite. Also, kinetic analysis of hot deformation has been performed to identify the dominant deformation mechanism. The results are compared with that of base TiAl matrix. The powder metallurgy route offers the advantage of working the material at much lower temperatures compared to the traditional cast and forge route. - Abstract: A titanium aluminide alloy composite with in situ carbide and silicide dispersions has been synthesized by mixing 90% of matrix with elemental composition of 46Ti-46Al-4Nb-2Cr-2Mn and 10% precursor with composition 55Ti-27Al-12Si-6C prepared by mechanical alloying. The powder mixture was blended for 2 h followed by hot isostatic pressing (HIP) at 1150 deg. C for 4 h under a pressure of 150 MPa. In addition to TiAl alloy matrix, the microstructure of the HIP'ed billet showed a small volume fraction of Nb-rich intermetallic phase along with carbide and silicide dispersions formed in situ during HIP'ing. Cylindrical specimens from the HIP'ed billets were compressed at temperatures and strain rates in the ranges of 800-1050 deg. C and 0.0001-1 s -1 . The flow curves exhibited flow softening leading to a steady-state flow at strain rates lower than 0.01 s -1 while fracture occurred at higher strain rates. The processing map developed on the basis of flow stress at

  7. Design tools and materials in creative work

    DEFF Research Database (Denmark)

    Hansen, Nicolai Brodersen; Dalsgaard, Peter; Halskov, Kim

    2017-01-01

    -oriented perspectives, we wish to examine the potentials and limitations in current uses of design tools and materials, and discuss and explore when and how we can introduce ones. Participation in the workshop requires participants to document and analyse central themes in a case, and the resulting material will serve......This workshop aims to examine and discuss the role and nature of design tools and materials in creative work, and to explore how novel tools can meaningfully combine existing and novel tools to support and augment creative work. By exploring and combining methodological, theoretical, and design...

  8. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  9. Estimation of the Thickness and the Material Combination of the Thermal Stress Control Layer (TSCL) for the Stellite21 Hardfaced STD61 Hot Working Tool Steel Using Three-Dimensional Finite Element Analysis

    International Nuclear Information System (INIS)

    Park, Na-Ra; Ahn, Dong-Gyu; Oh, Jin-Woo

    2014-01-01

    The research on a thermal stress control layer (TSCL) begins to undertake to reduce residual stress and strain in the vicinity of the joined region between the hardfacing layer and the base part. The goal of this paper is to estimate the material combination and the thickness of TSCL for the Stellite21 hardfaced STD61 hot working tool steel via three-dimensional finite element analysis (FEA). TSCL is created by the combination of Stellite21 and STD61. The thickness of TSCL ranges from 0.5 mm to 1.5 mm. The influence of the material combination and the thickness of TSCL on temperature, thermal stress and thermal strain distributions of the hardfaced part have been investigated. The results of the investigation have been revealed that a proper material combination of TSCL is Stellite21 of 50 % and STD61 of 50 %, and its appropriate thickness is 1.0 mm

  10. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion.

    Science.gov (United States)

    Wesholowski, Jens; Prill, Sebastian; Berghaus, Andreas; Thommes, Markus

    2018-01-11

    Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.

  11. Adding sleep restriction to the equation: impact on wildland firefighters' work performance and physiology in hot conditions.

    Science.gov (United States)

    Vincent, Grace E; Ferguson, Sally; Larsen, Brianna; Ridgers, Nicola D; Snow, Rod; Aisbett, Brad

    2018-04-06

    To examine the effects of sleep restriction on firefighters' physical task performance, physical activity, and physiological and perceived exertion during simulated hot wildfire conditions. 31 firefighters were randomly allocated to either the hot (n = 18, HOT; 33 °C, 8-h sleep opportunity) or hot and sleep restricted (n = 13, HOT + SR; 33 °C, 4-h sleep opportunity) condition. Intermittent, self-paced work circuits of six firefighting tasks were performed for 3 days. Firefighters self-reported ratings of perceived exertion. Heart rate, core temperature, and physical activity were measured continuously. Fluids were consumed ad libitum, and all food and fluids consumed were recorded. Urine volume and urine specific gravity (USG) were analysed and sleep was assessed using polysomnography (PSG). There were no differences between the HOT and HOT + SR groups in firefighters' physical task performance, heart rate, core temperature, USG, or fluid intake. Ratings of perceived exertion were higher (p HOT + SR group for two of the six firefighting tasks. The HOT group spent approximately 7 min more undertaking moderate physical activity throughout the 2-h work circuits compared to the HOT + SR group. Two nights of sleep restriction did not influence firefighters' physical task performance or physiological responses during 3 days of simulated wildfire suppression. Further research is needed to explore firefighters' pacing strategies during real wildfire suppression.

  12. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    International Nuclear Information System (INIS)

    Ning, Yongquan; Yao, Zekun; Guo, Hongzhen; Fu, M.W.

    2014-01-01

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s −1 . The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s −1 ) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s −1 ), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s −1 and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T opi : 1140 °C, ε opi : 1.0 s −1 ) with the peak efficiency of 0

  13. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: ningke521@163.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Yao, Zekun; Guo, Hongzhen [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2014-01-25

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s{sup −1}. The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s{sup −1}) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s{sup −1}), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s{sup −1} and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T{sub opi}: 1140 °C, ε{sub opi}: 1.0 s{sup −1}) with

  14. Work readiness tools for young adults with chronic conditions.

    Science.gov (United States)

    Metzinger, Courtney; Berg, Christine

    2015-01-01

    Young adults with chronic health conditions can experience barriers to work performance, ability, and their present and future worker roles. Work readiness resources can expand individuals' work skills, abilities, and interests. Five work readiness tools are presented (1) building an occupational profile, (2) generating environmental strategies, (3) on-the-job strategy use, and exploration of online tools (4) O*NET® and (5) O*NET® Interest Profiler, along with two theories (Knowles's Andragogy and Lawton's Ecological Model) to guide tool use. Use of these tools can assist young adults to better manage their health and expand their vocational identities for success at work. These approaches and tools support health professionals, community partners, and vocational organizations in their efforts to help young adults with chronic conditions.

  15. Analysis of the temperature of the hot tool in the cut of woven fabric using infrared images

    Science.gov (United States)

    Borelli, Joao E.; Verderio, Leonardo A.; Gonzaga, Adilson; Ruffino, Rosalvo T.

    2001-03-01

    Textile manufacture occupies a prominence place in the national economy. By virtue of its importance researches have been made on the development of new materials, equipment and methods used in the production process. The cutting of textiles starts in the basic stage, to be followed within the process of the making of clothes and other articles. In the hot cutting of fabric, one of the variables of great importance in the control of the process is the contact temperature between the tool and the fabric. The work presents a technique for the measurement of the temperature based on the processing of infrared images. For this a system was developed composed of an infrared camera, a framegrabber PC board and software that analyzes the punctual temperature in the cut area enabling the operator to achieve the necessary control of the other variables involved in the process.

  16. Regularities in structure formation of magnesium-yttrium alloy of Mg-Y-Mn-Cd system in relation to temperature and hot working rate

    International Nuclear Information System (INIS)

    Ovechkin, B.I.; Miklina, N.V.; Blokhin, N.N.; Sorokin, A.F.

    1981-01-01

    Problems of the structure formation of magnesium-yttrium alloy of Mg-G-Mn-Cd system with 7.8 % G in a wide range of temperature-rate parameters of hot working are studied. On the basis of X-ray analysis results ascertained with metallographic and electron microscopic investigations, a diagram of structural states after hot working of Mg-G-Mn-Cd system alloy has been plotted. A change in grain size in relation to temperature-rate conditions of hot working

  17. Dismantling of a hot cell of high level activity. Method and tools used

    International Nuclear Information System (INIS)

    Jeantet, E.; Miquel, P.; Baudoin, J.C.; Moutonnet, A.

    1981-05-01

    The aim of this operation is the removal of all the equipment and the material introduced and used in the hot cell 'Attila' and its decontamination to obtain an irradiation level as low as possible to allow direct intervention. The Attila facilitie was build in 1964-1966 to study dry processing of irradiated fuels by halogenide volatility process. Dismantling of the out-cell and of the laboratory associated to the shielded cell, dismantling inside the shielded cell with the remote handling equipment of the cell and tools used for these operations are described in this article [fr

  18. Education and working life: VET adults' problem-solving skills in technology-rich environments

    OpenAIRE

    Hämäläinen, Raija; Wever, Bram De; Malin, Antero; Cincinnato, Sebastiano

    2015-01-01

    The rapidly-advancing technological landscape in the European workplace is challenging adults’ problem-solving skills. Workers with vocational education and training need flexible abilities to solve problems in technology-rich work settings. This study builds on Finnish PIAAC data to understand adults’ (N=4503) skills for solving problems in technology-rich environments. The results indicate the critical issue that more than two thirds of adults with vocational education and train...

  19. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  20. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  1. Microstructure distribution and mechanical properties prediction of boron alloy during hot forming using FE simulation

    International Nuclear Information System (INIS)

    Cui Junjia; Lei Chengxi; Xing Zhongwen; Li Chunfeng

    2012-01-01

    Highlights: ► We model microstructural evolution during hot forming using a metallo-thermo-mechanical model. ► The effect of water-cooled on temperature distribution of blank and tools was investigated. ► The effect of process parameters on microstructure and mechanical properties were investigated. ► FE results were compared to experimental results and the errors of mechanical properties were in a reasonable scope. - Abstract: As a theoretical tool predicting microstructural evolution of boron alloy, the finite element (FE) method has received considerable attention in recent years. In this work, we focus on the boron alloy under non-isothermal hot forming conditions and establish a fully coupled metallo-thermo-mechanical model taking account of cooling and oxide. Based on the proposed model, we investigate the phase transformation and predict the hardness during the hot forming process via FE simulation. In addition, according to the hardness, the tensile strength during non-isothermal forming is predicted. Supporting the feasibility of the proposed model is the experiments where BR1500HS alloy is hot-worked at various conditions that derive a promising agreement of microstructures, hardness, and tensile strength to the simulation data.

  2. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  3. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  4. 29 CFR 1917.152 - Welding, cutting and heating (hot work) 12 (See also § 1917.2, definition of Hazardous cargo...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating (hot work) 12 (See also Â..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.152 Welding... Captain of the Port if welding or other hot work is to be carried out at a facility where dangerous...

  5. DYNAMIC S0 GALAXIES. II. THE ROLE OF DIFFUSE HOT GAS

    International Nuclear Information System (INIS)

    Li Jiangtao; Chen Yang; Daniel Wang, Q.; Li Zhiyuan

    2011-01-01

    Cold gas loss is thought to be important in star formation quenching and morphological transition during the evolution of S0 galaxies. In high-density environments, this gas loss can be achieved via many external mechanisms. However, in relatively isolated environments, where these external mechanisms cannot be efficient, the gas loss must then be dominated by some internal processes. We have performed Chandra analysis of hot gas in five nearby isolated S0 galaxies, based on the quantitative subtraction of various stellar contributions. We find that all the galaxies studied in the present work are X-ray faint, with the luminosity of the hot gas (L X ) typically accounting for ∼ X at the low-mass end (typically with K-band luminosity L K ∼ 11 L sun,K ). However, at the high-mass end, S0 galaxies tend to have significantly lower L X than elliptical galaxies of the same stellar masses, as already shown in previous observational and theoretical works. We further discuss the potential relationship of the diffuse X-ray emission with the cold (atomic and molecular) gas content in the S0 and elliptical galaxies included in our study. We find that L X /L 2 K tends to correlate positively with the total cold gas mass (M H 2 +H i ) for cold-gas-poor galaxies with M H 2 +H i ∼ 8 M sun , while they anti-correlate with each other for cold-gas-rich galaxies. This cold-hot gas relationship can be explained in a scenario of early-type galaxy evolution, with the leftover cold gas from the precursor star-forming galaxy mainly removed by the long-lasting Type Ia supernova (SN) feedback. The two different trends for cold-gas-rich and cold-gas-poor galaxies may be the results of the initial fast decreasing SN rate and the later fast decreasing mass loading to hot gas, respectively.

  6. Adaptive Reactive Rich Internet Applications

    Science.gov (United States)

    Schmidt, Kay-Uwe; Stühmer, Roland; Dörflinger, Jörg; Rahmani, Tirdad; Thomas, Susan; Stojanovic, Ljiljana

    Rich Internet Applications significantly raise the user experience compared with legacy page-based Web applications because of their highly responsive user interfaces. Although this is a tremendous advance, it does not solve the problem of the one-size-fits-all approach1 of current Web applications. So although Rich Internet Applications put the user in a position to interact seamlessly with the Web application, they do not adapt to the context in which the user is currently working. In this paper we address the on-the-fly personalization of Rich Internet Applications. We introduce the concept of ARRIAs: Adaptive Reactive Rich Internet Applications and elaborate on how they are able to adapt to the current working context the user is engaged in. An architecture for the ad hoc adaptation of Rich Internet Applications is presented as well as a holistic framework and tools for the realization of our on-the-fly personalization approach. We divided both the architecture and the framework into two levels: offline/design-time and online/run-time. For design-time we explain how to use ontologies in order to annotate Rich Internet Applications and how to use these annotations for conceptual Web usage mining. Furthermore, we describe how to create client-side executable rules from the semantic data mining results. We present our declarative lightweight rule language tailored to the needs of being executed directly on the client. Because of the event-driven nature of the user interfaces of Rich Internet Applications, we designed a lightweight rule language based on the event-condition-action paradigm.2 At run-time the interactions of a user are tracked directly on the client and in real-time a user model is built up. The user model then acts as input to and is evaluated by our client-side complex event processing and rule engine.

  7. Formation of microstructure and properties on hot working and heat treatment of high strength modular cast iron

    International Nuclear Information System (INIS)

    Trajno, A.I.; Yusupov, V.S.; Kugushin, A.A.

    1999-01-01

    The possibility of plastic deformation of high strength modular cast iron (HSNCI) is under study. The microstructure and mechanical properties of hot worked and heat treated cast iron are investigated for the composition, %: Fe - 2.9 C - 2.4 Si - 0.7 Ni - 0.05 Mg - 0.04 Ce. It is stated that HSNCI can withstand various types of hot working without fracturing. Graphite inclusions lose their modular shape irreversibly during plastic deformation. Subsequent heat treatment affects the metal matrix only. The heating in oxidizing environment is noted to result in cast iron surface decarbonization [ru

  8. Characterization of the interfacial heat transfer coefficient for hot stamping processes

    Science.gov (United States)

    Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang

    2016-08-01

    In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.

  9. MIDAS: an effective tool for work management

    International Nuclear Information System (INIS)

    Ball, D.L.; Billings, M.P.; McCargar, S.B.; Talbot, M.D.; Topping, C.F.

    1985-01-01

    The computerized Master Information Data Acquisition System (MIDAS) is used to control work at facilities that support the Liquid Metal Reactor (LMR) program on the Hanford Site at Richland, Washington. Functions of this software system are to: track authorized maintenance activities, enhance operational safety, track schedule, manpower, and material constraints during work preparation, provide a management tool for quality measurement techniques, and provide an overall repository for technical and safety-related information on components at the Hanford Site 400 Area facilities. This paper describes MIDAS and how it is used as a work management tool. 1 fig

  10. Genome Sequence of a Novel Archaeal Rudivirus Recovered from a Mexican Hot Spring

    DEFF Research Database (Denmark)

    Servín-Garcidueñas, L; Peng, X; Garrett, R

    2013-01-01

    We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico.......We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico....

  11. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  12. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor

    Science.gov (United States)

    Dwivedi, Dipankar; Arora, Bhavna; Steefel, Carl I.; Dafflon, Baptiste; Versteeg, Roelof

    2018-01-01

    We use 3-D high-resolution reactive transport modeling to investigate whether the spatial distribution of organic-carbon-rich and chemically reduced sediments located in the riparian zone and temporal variability in groundwater flow direction impact the formation and distribution of nitrogen hot spots (regions that exhibit higher reaction rates when compared to other locations nearby) and hot moments (times that exhibit high reaction rates as compared to longer intervening time periods) within the Rifle floodplain in Colorado. Groundwater flows primarily toward the Colorado River from the floodplain but changes direction at times of high river stage. The result is that oxic river water infiltrates the Rifle floodplain during these relatively short-term events. Simulation results indicate that episodic rainfall in the summer season leads to the formation of nitrogen hot moments associated with Colorado River rise and resulting river infiltration into the floodplain. The results further demonstrate that the naturally reduced zones (NRZs) present in sediments of the Rifle floodplain have a higher potential for nitrate removal, approximately 70% greater than non-NRZs for typical hydrological conditions. During river water infiltration, nitrate reduction capacity remains the same within the NRZs, however, these conditions impact non-NRZs to a greater extent (approximately 95% less nitrate removal). Model simulations indicate chemolithoautotrophs are primarily responsible for the removal of nitrate in the Rifle floodplain. These nitrogen hot spots and hot moments are sustained by microbial respiration and the chemolithoautotrophic oxidation of reduced minerals in the riparian zone.

  13. Effect of fabric stuff of work clothing on the physiological strain index at hot conditions in the climatic chamber

    Directory of Open Access Journals (Sweden)

    Habibollah Dehghan

    2014-01-01

    Full Text Available Aims: The purpose of the present study was to evaluate the effect of fabric stuff of work clothing that are widely used in Iran industries on the physiological strain index (PSI at hot conditions in the climatic chamber. Materials and Methods: This interventional study was performed upon 18 male students in 16 trials, which included combination of four kinds of work clothing (13.7% viscose (VIS 86.3% polyester(PES, 30.2% cotton [CT]-69.8% PES, 68.5% CT-31.5% PES, 100% CT, two activity levels (light and moderate and two kinds of climatic conditions included hot-wet (T a = 35, RH = 70% and hot-dry (T a = 38, RH = 40%. During each trial, the RH and core temperature was recorded once a minute and then PSI was calculated. Data were analyzed by using SPSS-16 software. Results: The results showed that in hot-wet conditions, the least value of PSI in light and moderate activities was related to 100% CT clothing and 30.2% CT-69.8% PES clothing, respectively. In hot-dry conditions, the least value of PSI in both of activities was related to 30.2% CT-69.8% PES clothing. The mean value of PSI in hot-wet conditions, during moderate activity had significant difference for various clothing types (P = 0.044. Conclusion: The research findings showed that for a heat strain reduction in hot-wet conditions at light activity level, 100% CT clothing is suitable. Furthermore, at moderate activity level, 30.2% CT-69.8% PES clothing and in hot-dry conditions, 30.2% CT-69.8% PES is suitable.

  14. Working hot

    International Nuclear Information System (INIS)

    Stix, G.

    1988-01-01

    The author says ''barehand'' methods, where specially trained utility workers are called in conductive suits to equalize voltage over their bodies, to maintain high-voltage transmission lines are on the rise. Utilities are building lines at higher voltages and selling more power to other utilities, making it highly inconvenient to take the lines out of service. However, some unions view the barehand work with less than enthusiasm. Touching lines energized at hundreds of thousands of volts demands flawless equipment and rigid work procedures followed to the letter. Some local unions contend that adequate safety procedures and training, and appropriate penalties for workplace negligence, should be in place before utilities may do barehand work. The author discusses some of the methods of barehand work and the equipment used, i.e. steel-mesh lineman's suit, bucket truck's boom, helicopters, and robots

  15. Birth, life and death of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.; Tamain, B.; Gregoire, C.

    1989-01-01

    Intermediate energy heavy-ions (10-100 MeV/u) are the most powerful tool to study hot nuclear matter properties. In this paper we give a review of experimental and theoretical works which support this statement. The first challenge is to achieve hot nuclei formation. The second one is to study their properties. The formation step is governed by the relative influence of nucleon-nucleon collisions and mean field effects. Fundamental quantities such as excited matter decay time, thermalization time, relaxation time for collective modes are of major importance and are compared with typical collision times. It appears that semi-classical theories are able to give a reasonable description of the collision and that they are a good guide for defining further experiments. We show how it has been possible to experimentally establish that very hot equilibrated nuclei are really formed. Their decay properties are not basically different from decay properties at lower bombarding energy. However specific channels are open: in that sense, we take stock of the multifragmentation process. Moreover, compression effects may be an important feature of this energy range. Future studies will involve heavier projectiles around 30-50 MeV/u. They will be the best probe for hot and compressed nuclear matter studies

  16. Microstructures and recrystallization behavior of severely hot-deformed tungsten

    International Nuclear Information System (INIS)

    Mathaudhu, S.N.; De Rosset, A.J.; Hartwig, K.T.; Kecskes, L.J.

    2009-01-01

    When coarse-grained (CG) tungsten (W) is heavily worked by equal-channel angular extrusion (ECAE), the grain size is reduced to the ultrafine-grained/nanocrystalline regimes (UFG/NC) and the strength and ductility increase. Because of the brittle nature of CG W, the material must be hot-extruded, and, if the temperatures are near the recrystallization temperature (T rc ), gains in properties may not be maximized. In this study, the recrystallization behavior of ECAE-processed CG W is examined as a function of the imparted strain (i.e., number of extrusions) and the hot-working extrusion temperature. Up to four ECAE passes were performed in tooling with a 90 deg. channel intersection, and at temperatures of 1000 deg. C or 1200 deg. C. Subsequent 60 min annealing of the worked material to 1600 deg. C allowed for the determination of T rc . Vickers microhardness measurements and scanning electron microscopy, were used to characterize the microstructures in the as-worked and recrystallized states. The ECAE-processed W shows increased microstructural break-up and refinement with increasing strain and decreasing hot-working temperature in the fully worked state. T rc was determined to be ∼1400 deg. C, which is nearly independent of the number of extrusions and the working temperature. These results show that if ECAE is accomplished below 1400 deg. C (i.e., at 1000 deg. C or lower) the attractive properties of the UFG/NC-worked W may be retained. Specifically, below 1000 deg. C, with increasing strain imparted to the material, high hardness values with a concomitant grain size refinement (∼350 nm) could be expected

  17. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  18. A HOT URANUS ORBITING THE SUPER METAL-RICH STAR HD 77338 AND THE METALLICITY-MASS CONNECTION

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Hoyer, S.; Jones, M. I.; Rojo, P.; Day-Jones, A. C.; Ruiz, M. T.; Jones, H. R. A.; Tuomi, M.; Barnes, J. R.; Pavlenko, Y. V.; Pinfield, D. J.; Murgas, F.; Ivanyuk, O.; Jordán, A.

    2013-01-01

    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD 77338 as part of our ongoing Calan-Hertfordshire Extrasolar Planet Search. The best-fit planet solution has an orbital period of 5.7361 ± 0.0015 days and with a radial velocity semi-amplitude of only 5.96 ± 1.74 ms –1 , we find a minimum mass of 15.9 +4.7 -5.3 M ⊕ . The best-fit eccentricity from this solution is 0.09 +0.25 -0.09 , and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35 ± 0.06 dex, whereas another recent work finds +0.47 ± 0.05 dex. Thus HD 77338b is one of the most metal-rich planet-host stars known and the most metal-rich star hosting a sub-Neptune-mass planet. We searched for a transit signature of HD 77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this low-mass planet desert is statistically significant with the current sample of 36 planets at the ∼4.5σ level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low mass planets can now be discovered with a relatively small number of data points using stable instrumentation.

  19. Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing

    International Nuclear Information System (INIS)

    Henann, David L; Srivastava, Vikas; Taylor, Hayden K; Hale, Melinda R; Hardt, David E; Anand, Lallit

    2009-01-01

    Metallic glasses possess unique mechanical properties which make them attractive materials for fabricating components for a variety of applications. For example, the commercial Zr-based metallic glasses possess high tensile strengths (≈2.0 GPa), good fracture toughnesses (≈10–50 MPa√m) and good wear and corrosion resistances. A particularly important characteristic of metallic glasses is their intrinsic homogeneity to the nanoscale because of the absence of grain boundaries. This characteristic, coupled with their unique mechanical properties, makes them ideal materials for fabricating micron-scale components, or high-aspect-ratio micro-patterned surfaces, which may in turn be used as dies for the hot-embossing of polymeric microfluidic devices. In this paper we consider a commercially available Zr-based metallic glass which has a glass transition temperature of T g ≈ 350 °C and describe the thermoplastic forming of a tool made from this material, which has the (negative) microchannel pattern for a simple microfluidic device. This tool was successfully used to produce the microchannel pattern by micro-hot-embossing of the amorphous polymers poly(methyl methacrylate) (T g ≈ 115 °C) and Zeonex-690R (T g ≈ 136 °C) above their glass transition temperatures. The metallic glass tool was found to be very robust, and it was used to produce hundreds of high-fidelity micron-scale embossed patterns without degradation or failure

  20. In-situ Investigation of Lead-free Solder Alloy Formation Using a Hot-plate Microscope

    DEFF Research Database (Denmark)

    Bergmann, René; Tang, Peter Torben; Hansen, Hans Nørgaard

    2007-01-01

    This work presents the advantages of using a hot-plate microscope for investigation of new (high-temperature) lead- free solders as in-situ analysis tool and preparation equipment. A description of the equipment and the preparation method is given and some examples are outlined. The formation...

  1. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  2. 47 CFR 32.2114 - Tools and other work equipment.

    Science.gov (United States)

    2010-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2114 Tools and other work equipment. This account shall include the original cost of special purpose... 47 Telecommunication 2 2010-10-01 2010-10-01 false Tools and other work equipment. 32.2114 Section...

  3. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  4. Work flow management systems. Selection of Platforms and tools

    International Nuclear Information System (INIS)

    Munoz Garcia, M.

    1997-01-01

    This paper addresses a formal procedure for selecting the Platform and tools necessary to implement a Work Flow system in a company's organisation. The proposed method is based on a preliminary study to ascertain the company's requirements; in other words, the tool is selected on the basis of the environment in which it is to be used, thus making it essential to know the frequency of use, the types of tasks to be executed, the complexity of work flow, etc. Once the preliminary study has been performed, the formal selection method does no differ greatly from that for selecting any other tool. The objective is to establish a series of weighted parameters so that each candidate configuration can be assessed and one finally selected. Lastly, the paper discusses some practical considerations which became evident during the selection of a work flow management tool for our own company. (Author)

  5. Programme of hot points eradication (Co-60) led on French PWR type reactors

    International Nuclear Information System (INIS)

    Rocher, A.; Ridoux, P.; Anthoni, S.; Brun, C.

    1998-01-01

    The question of hot points (pellets rich in cobalt 59 or in cobalt 60 in a PWR type reactor), is studied from the radiation protection point of view. The purpose is to see how to optimize the radiation protection, the elimination of these hot points can bring an improvement. (N.C.)

  6. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  7. Degenerate stars. XII - Recognition of hot nondegenerates

    Science.gov (United States)

    Greenstein, J. L.

    1980-12-01

    Fifty-one newly observed degenerate stars and 14 nondegenerates include 13 faint red stars, most of which do not show any lines except DF, Gr 554. Hot subdwarfs and an X-ray source are discussed along with the problem of low-resolution spectroscopic classification of dense hot stars. The multichannel spectrum of the carbon-rich magnetic star LP 790-29 is examined by fitting the undisturbed parts of the spectrum to a black body of 7625 K by the least squares method; the Swan bands absorb 600 A of the spectrum assuming that the blocked radiation is redistributed in the observed region.

  8. Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots

    Directory of Open Access Journals (Sweden)

    Pitt Joel PW

    2006-07-01

    Full Text Available Abstract Background Meiotic recombination events have been found to concentrate in 1–2.5 kilo base regions, but these recombination hot spots do not share a consensus sequence and why they occur at specific sites is not fully understood. Some previous evidence suggests that poly-purine/poly-pyrimidine (poly-pu/py tracts (PPTs, a class of sequence with distinctive biochemical properties, could be involved in recombination, but no general association of PPTs with meiotic recombination hot spots has previously been reported. Results We used computational methods to investigate in detail the relationship between PPTs and hot spots. We show statistical associations of PPT frequency with hot spots of meiotic recombination initiating lesions, double-strand breaks, in the genome of the yeast S. cerevisiae and with experimentally well characterized human meiotic recombination hot spots. Supporting a possible role of poly-pu/py-rich sequences in hot spot recombination, we also found that all three single nucleotide polymorphisms previously shown to be associated with human hot spot activity changes occur within sequence contexts of 14 bp or longer that are 85% or more poly-pu/py and at least 70% G/C. These polymorphisms are all close to the hot spot mid points. Comparing the sequences of experimentally characterized human hot spots with the orthologous regions of the chimpanzee genome previously shown not to contain hot spots, we found that in all five cases in which comparisons for the hot spot central regions are possible with publicly available sequence data, there are differences near the human hot spot mid points within sequences 14 bp or longer consisting of more than 80% poly-pu/py and at least 50% G/C. Conclusion Our results, along with previous evidence for the unique biochemical properties and recombination-stimulating potential of poly-pu/py-rich sequences, suggest that the possible functional involvement of this type of sequence in meiotic

  9. A model for construction of efficiency and stability maps of hot working processes in polycrystalline metallic materials using the Garofalo's equation

    International Nuclear Information System (INIS)

    Rieiro, I.; Fernandez, A.; Martinez, A.; Casi, M.

    1998-01-01

    Has been developed a fast and easy method for to evaluate the efficiency of the process and some or possible stabilities situations in the hot working process for the polycrystalline metallic materials (p.m.m.), by the obtained dates in the Garofalo's equation resolution for the steady state creep and for wide ranges of the work variables, stress, strain rate and temperature. These method use the fitting parameters obtained for the equation mentioned and of their physical meaning. Has been developed the numerical treatment from our previously developed software for the analysis of creep and we can obtained the efficiency energetic maps for the creep and the more generally advises areas for the hot working. Further more has been obtained maps for parameters of great physical significance; f.e. the effective activation energy for different areas of the materials hot working, and in addition has been developed a method for obtained the values of {n P L} for the different ranges of power-law application, when has been obtained the value of { n G } in the Garofalo's equation. (Author) 13 refs

  10. ON THE FORMATION OF HOT DQ WHITE DWARFS

    International Nuclear Information System (INIS)

    Althaus, L. G.; Corsico, A. H.; Miller Bertolami, M. M.; Romero, A. D.; GarcIa-Berro, E.

    2009-01-01

    We present the first full evolutionary calculations aimed at exploring the origin of hot DQ white dwarfs. These calculations consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Our calculations provide strong support for the diffusive/convective mixing picture for the formation of hot DQs. We find that the hot DQ stage is a short-lived stage and that the range of effective temperatures where hot DQ stars are found can be accounted for by different masses of residual helium and/or different initial stellar masses. In the frame of this scenario, a correlation between the effective temperature and the surface carbon abundance in DQs should be expected, with the largest carbon abundances expected in the hottest DQs. From our calculations, we suggest that most of the hot DQs could be the cooler descendants of some PG 1159 stars characterized by He-rich envelopes markedly smaller than those predicted by the standard theory of stellar evolution. At least for one hot DQ, the high-gravity white dwarf SDSS J142625.70+575218.4, an evolutionary link between this star and the massive PG 1159 star H1504+65, is plausible.

  11. MULTIPLE-PLANET SCATTERING AND THE ORIGIN OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Beaugé, C.; Nesvorný, D.

    2012-01-01

    Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in short timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a 1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.

  12. Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation

    Directory of Open Access Journals (Sweden)

    Asit Kumar Parida

    2018-06-01

    Full Text Available In the present paper, three nickel base alloys (Inconel 718, Inconel 625 and Monel-400 have been studied for chip formation in the hot turning process using flame heating. Cutting force, tool life, chip morphology, tool wear, and surface integrity (surface roughness and microhardness beneath the machined surface have been determined in both room and hot temperature conditions (300 °C and 600 °C. Flame heating (Liquefied petroleum gas and oxygen along with turning operation has been utilized for machining of three materials. It was observed that significant reduction of cutting force, tool wear, chatter formation, surface roughness and increase tool life, chip tool contact length, etc., for all three nickel base alloys in hot machining compared to room temperature machining. Keywords: Hot turning, Nickel base alloys, Machinability, Cutting forces, Tool wear

  13. Hot functional test chemistry - long term experience

    International Nuclear Information System (INIS)

    Vonkova, K.; Kysela, J.; Marcinsky, M.; Martykan, M.

    2010-01-01

    Primary circuit materials undergo general corrosion in high temperature, deoxygenated, neutral or mildly alkaline solutions to form thin oxide films. These oxide layers (films) serve as protective film and mitigate the further corrosion of primary materials. Inner chromium-rich oxide layer has low cation diffusion coefficients and thus control iron and nickel transport from the metal surface to the outer layer and their dissolution into the coolant. Much less corrosion products are generated by the compact, integral and stable oxide (passivation) layer. For the latest Czech and Slovak stations commissioned (Temelin and Mochovce) a modified Hot Functional Test (HFT) chemistry was developed in the NRI Rez. Chromium rich surface layer formatted due to modified HTF chemistry ensures lower corrosion rates and radiation field formation and thus also mitigates crud formation during operation. This procedure was also designed to prepare the commissioned unit for the further proper water chemistry practise. Mochovce 1 (SK) was the first station commissioned using these recommendations in 1998. Mochovce 2 (1999) and Temelin 1 and 2 (CZ - 2000 and 2002) were subsequently commissioned using these guidelines too. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. Samples from Mochovce indicated that duplex oxide layers up to 20 μm thick were produced, which were mainly magnetite substituted with nickel and chromium (e.g. 60-65% Fe, 18-28% Cr, 9-12% Ni, <1% Mn and 1-2% Si on a stainless steel primary circuit sample). Long term operation experience from both nuclear power plants are discussed in this paper. Radiation field, occupational radiation exposure and corrosion layers evolution during the first c. ten years of operation are

  14. A new environment-friendly hot pepper variety "Shiyan No. 1"

    Science.gov (United States)

    Han, Jianming; Xu, Shuzhen; Wang, Ruiling; Zhang, Yanzhao; Yun, Chao

    2018-04-01

    Hot pepper has rich genetic diversity which is the important base of breeding of new variety, and it is also one of the important vegetable in the word. In this study, we bred the "Shiyan No. 1" environment-friendly hot pepper variety using hybrid method on the basis of hot pepper genetic diversity. "Shiyan No. 1" is a new F1 hybrid of hot pepper variety with mid-early maturity. The new variety has a high productivity of 3000-5000kg(667m2)-1 with thick oxhorn shape fruits, green skin, thick flesh, mild-hot taste, good quality and marketable characters. It can reduce chemical pesticides usage and thereby protect environment because it is resistant to virus disease, highly resistant to phytophthora blight, anthracnose and bacterial wilt. In conclusion, the new bred "Shiyan No.1" is suitable for protected cultivation and open field cultivation in China.

  15. Geothermal energy and hot springs in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Koga, T. (Hot Springs Therapeutics Research Institute, Kyushu, Univ., Japan)

    1971-01-01

    The hot springs in Ethiopia are concentrated in two areas: the North Afar depression and adjacent Red Sea shore, and a geothermal field 100 km from northeast to southwest in the central part of Ethiopia. The latter extends not only to the Great Rift Valley but also to the Aden Gulf. In the lake district in the central Great Rift Valley, there are a number of hot springs on the lake shore. These are along NE-SW fault lines, and the water is a sodium bicarbonate-type rich in HCO/sub 3/ and Na but low in C1 and Ca. In Dallol in the North Afar depression, CO/sub 2/-containing hot springs with high temperatures (110/sup 0/C) and a specific gravity of 1.4, were observed. In the South Afar depression, located in the northeastern part of the Rift Valley, there are many active volcanoes and hot springs between the lake district and the Danakil depression. The spring water is a sodium bicarbonate saline type. Nine graphs and maps are included.

  16. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  17. Forecasting HotWater Consumption in Residential Houses

    Directory of Open Access Journals (Sweden)

    Linas Gelažanskas

    2015-11-01

    Full Text Available An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.

  18. New tube fitting range can slash assembly time, reduce tube material costs and eliminate hot work

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-09-15

    Parker Instrumentation has developed a permanent tube connection technology known as Phastite for use in high pressure applications such as in the offshore oil and gas sector. The Phastite push-fit connector offers major savings over traditional permanent and higher pressure connection techniques such as welded or cone-and-thread tube fittings. It also reduces assembly times by 20-fold or more and eliminates the need for hot work permits. The fittings are designed to withstand working pressures up to 1,379 bar. Phastite tube fittings can be used on offshore platforms, as well as on support vessels,, subsea equipment and ROVs such as hydraulic systems for wellhead control, emergency shut down, chemical injection, pumping packages, gas booster systems and test equipment. The connectors offer considerable savings in material cost and weight because they do not need to be used with more expensive tubing with extra thickness to accommodate a thread. Phastite is also resistant to vibration and does not need any anti-vibration accessories. A joint can be made in a matter of seconds with a simple handheld hydraulic tool that makes the push-fit connection. A sealing mechanism based on a series of defined internal ridges creates a secure seal by radial compression. The ridges grip in a way that retains all of the tubing's strength. An additional characteristic is the maintenance free nature of the Phastite connection. 1 fig.

  19. Hot subluminous stars: Highlights from the MUCHFUSS and Kepler missions

    Directory of Open Access Journals (Sweden)

    Geier S.

    2013-03-01

    Full Text Available Research into hot subdwarf stars is progressing rapidly. We present recent important discoveries. First we review the knowledge about magnetic fields in hot subdwarfs and highlight the first detection of a highly-magnetic, helium-rich sdO star. We briefly summarize recent discoveries based on Kepler light curves and finally introduce the closest known sdB+WD binary discovered by the MUCHFUSS project and discuss its relevance as a progenitor of a double-detonation type Ia supernova.

  20. Development of a valid Simplified Chinese version of the International Hip Outcome Tool (SC-iHOT-33) in young patients having total hip arthroplasty.

    Science.gov (United States)

    Li, D H; Wang, W; Li, X; Gao, Y L; Liu, D H; Liu, D L; Xu, W D

    2017-01-01

    The International Hip Outcome Tool (iHOT-33) is a questionnaire designed for young, active patients with hip disorders. It has proven to be a highly reliable and valid questionnaire. The main purpose of our study was to adapt the iHOT-33 questionnaire into simplified Chinese and to assess its psychometric properties in Chinese patients. The iHOT-33 was cross culturally adapted into Chinese and 138 patients completed the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the EuroQol-5D (EQ-5D), and the Chinese version of the iHOT-33(SC-iHOT-33) pre- or postoperatively within 6 months' follow-up. The Cronbach's alpha, intraclass correlation coefficient (ICC), Pearson's correlation coefficient (r), effect size (ES), and standardized response mean (SRM) were calculated to assess the reliability, validity, and responsiveness of the SC-iHOT-33, respectively. Total Cronbach's alpha was 0.965, which represented excellent internal consistency of the SC-iHOT-33. The ICC ranges from 0.866 to 0.929, which shows excellent test-retest reliability. The subscales of SC-iHOT-33 had the highest correlation coefficient (r = 0.812) with the physical function subscales of the WOMAC, as well as good correlation between the social/emotional subscale of the SC-iHOT-33 and the EQ-5D (r = 0.740, r = 0.743). No floor or ceiling effects were found. The ES and SRM values indicated good responsiveness of 2.44 and 2.67, respectively. The SC-iHOT-33 questionnaire is reliable, valid, and responsive for the evaluation of young, Chinese, active patients with hip disorders. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  2. Dose exposure work planning using DMU kinematics tools

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2010-01-01

    The study on the possibility of using DMU Kinematics module in CAE tools for dose exposure work planning was carried out. A case scenario was created using 3D CAD software and transferred to DMU Kinematics module in CAE software. A work plan was created using DMU Kinematics tools and animated to simulate a real time scenario. Data on the phantom position against the radioactive source was collected by activating positioning sensors in the module. The data was used to estimate dose rate exposure for the phantom. The results can be used to plan the safest and optimum procedures in carrying out the radiation related task. (author)

  3. Work on the hot atom chemistry at the Institute of Nuclear Sciences Boris Kidric, Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Veljkovic, S.

    1969-01-01

    A survey of work on hot atom chemistry from the establishment of the Institute up to now, where the role of Prof. P. Savic, should be specially emphasized, is given. The investigations in this domain during the first period, were directed to solve various problems in production of radioactive isotopes. Today these investigations are closely associated with the work in radiochemistry, physical chemistry of liquid and solid systems and fast reaction kinetics improving the development of these branches (author) [sr

  4. ACCRETION AND PRESERVATION OF D-RICH ORGANIC PARTICLES IN CARBONACEOUS CHONDRITES: EVIDENCE FOR IMPORTANT TRANSPORT IN THE EARLY SOLAR SYSTEM NEBULA

    International Nuclear Information System (INIS)

    Remusat, L.; Guan, Y.; Wang, Y.; Eiler, J. M.

    2010-01-01

    We have acquired NanoSIMS images of the matrices of CI, CM, and CR carbonaceous chondrites to study, in situ, the organic matter trapped during the formation of their parent bodies. D/H ratio images reveal the occurrence of D-rich hot spots, constituting isolated organic particles. Not all the organic particles are D-rich hot spots, indicating that at least two kinds of organic particles have been accreted in the parent bodies. Ratio profiles through D-rich hot spots indicate that no significant self-diffusion of deuterium occurs between the D-rich organic matter and the depleted hydrous minerals that are surrounding them. This is not the result of a physical shielding by any constituent of the chondrites. Ab initio calculations indicate that it cannot be explained by isotopic equilibrium. Then it appears that the organic matter that is extremely enriched in D does not exchange with the hydrous minerals, or this exchange is so slow that it is not significant over the 4.5 billion year history on the parent body. If we consider that the D-rich hot spots are the result of an exposure to intense irradiation, then it appears that carbonaceous chondrites accreted organic particles that have been brought to different regions of the solar nebula. This is likely the result of important radial and vertical transport in the early solar system.

  5. A comprehensive review on cold work of AISI D2 tool steel

    Science.gov (United States)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  6. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  7. High Throughput, High Precision Hot Testing Tool for HBLED Wafer Level Testing

    Energy Technology Data Exchange (ETDEWEB)

    Solarz, Richard [KLA-Tencor Corporation, Milpitas, CA (United States); McCord, Mark [KLA-Tencor Corporation, Milpitas, CA (United States)

    2015-12-31

    The Socrates research effort developed an in depth understanding and demonstrated in a prototype tool new precise methods for teh characterization of color characteristics and flux from individual LEDs for the production of uniform quality lighting. This effort was focused on improving the color quality and consistency of solid state lighting and potentially reducing characterization costs for all LED product types. The patented laser hot testing method was demonstrated to be far more accurate than all current state of the art color and flux characterization methods in use by the solid state lighting industry today. A seperately patented LED grouping method (statistical binning) was demonstrated to be a useful approach to improving utilization of entire lots of large color and flux distributions of manufactured LEDs for high quality color solid-state lighting. At the conclusion of the research in late 2015 the solid-state lighting industry was however generally satisfied with its existing production methods for high quality color products for the small segment of customers that demand it, albeit with added costs.

  8. Working with text tools, techniques and approaches for text mining

    CERN Document Server

    Tourte, Gregory J L

    2016-01-01

    Text mining tools and technologies have long been a part of the repository world, where they have been applied to a variety of purposes, from pragmatic aims to support tools. Research areas as diverse as biology, chemistry, sociology and criminology have seen effective use made of text mining technologies. Working With Text collects a subset of the best contributions from the 'Working with text: Tools, techniques and approaches for text mining' workshop, alongside contributions from experts in the area. Text mining tools and technologies in support of academic research include supporting research on the basis of a large body of documents, facilitating access to and reuse of extant work, and bridging between the formal academic world and areas such as traditional and social media. Jisc have funded a number of projects, including NaCTem (the National Centre for Text Mining) and the ResDis programme. Contents are developed from workshop submissions and invited contributions, including: Legal considerations in te...

  9. To built a solar hot water heater to work the sustainability problem

    Directory of Open Access Journals (Sweden)

    Carretero Gómez, María Begoña

    2012-01-01

    Full Text Available We are commemorating the Education Decade for Sustainable Development. If we want to create positive towards our environment and its sustainable development we have to begin working at school. It is necessary to show our students what problems of the environment are and which solutions can be adopted. That is the reason we have planned this activity in our secondary school. We do think that by doing daily activities we have a good opportunity to fulfil this goal. An example of such experiences is the fabrication of a solar hot water heater to make them and their families more environment conscience.

  10. Tools of the Mind. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2008

    2008-01-01

    "Tools of the Mind" is an early childhood curriculum for preschool and kindergarten children, designed to foster children's executive function through development of self-regulation, working memory, and cognitive flexibility. Activities emphasize both executive functioning and academic skills. One study of "Tools of the Mind"…

  11. Physiological characteristics under the influence of heat stress working in the hot environment, (4)

    International Nuclear Information System (INIS)

    Nagasaka, Akihiko; Yoshino, Kenji; Takano, Ken-ichi

    1987-01-01

    There is a possibility that physical and mental stress appears under hot environmental condition for the cause of wearing protection suits on reactor maintenance work. It is important to reduce heat stress rapidly and effectively. This paper mentioned following about the results of static state and simulation work done by testees with or without protection suits under 25 kinds of temperatures and wind velocities in a artificial climate chamber. (1) the correlation between ambient temperatures or wind velocities and subjective symptoms without protection suits. (2) the correlation between ambient temperatures or wind velocities and skin temperatures without protection suits. (3) investigation of the parts of body affecting subjective symptoms. (4) the correlation between ambient temperatures or wind velocities and skin temperatures at working with protection suits. (5) working out countermeasures of recovery from heat stress with the index of skin temperatures and subjective symptoms. (author)

  12. DARWIN-HC: A Tool to Predict Hot Corrosion of Nickel-Based Turbine Disks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot Corrosion of turbine engine components has been studied for many years. The underlying mechan-isms of Type I Hot Corrosion and Type II Hot Corrosion are...

  13. DARWIN-HC: A Tool to Predict Hot Corrosion of Nickel-Based Turbine Disks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot Corrosion of turbine engine components has been studied for many years. The underlying mechan-isms of Type I Hot Corrosion and Type II Hot Corrosion are...

  14. Infusing and sustaining aging content in social work education: findings from GeroRich projects.

    Science.gov (United States)

    Hash, Kristina M; Gottlieb, Jody; Harper-Dorton, Karen V; Crawley-Woods, Geraldine; Shelek-Furbee, Katherine; Smith, John David; Brown, Rita

    2007-01-01

    This article presents findings from experiences of 67 projects involved in GeroRich, an initiative funded by the John A. Hartford Foundation designed to infuse, enrich and sustain aging content in BSW and MSW curricula. Thematic qualitative analysis was used to uncover themes in answers to open-ended questions contained in End-of-Year 2 project reports. Content areas addressed by open-ended answers were: (1) successes and innovations, and (2) challenges requiring responses. Primary successes and innovations identified were as follows: curriculum enrichment, faculty and student involvement, student-learning activities and community. Challenges to be responded to were identified as lack of faculty involvement, competing demands on faculty and programs, and sustainability of project efforts. Examples of strategies implemented to overcome these obstacles include providing teaching resources, instituting financial and other supports, and developing strategic plans for sustaining content infusion post-funding. Experiences of the GeroRich projects offer practical considerations for other social work programs that accept the challenge of attracting and preparing students to work with the increasing population of older adults.

  15. The Resilience of Analog Tools in Creative Work Practices

    DEFF Research Database (Denmark)

    Borum, Nanna; Petersson, Eva; Frimodt-Møller, Søren

    2014-01-01

    This paper discusses the use of digital and analog tools, respectively, in a creative industry. The research was done within the EU-funded research project IdeaGarden, which explores digital platforms for creative collaboration. The findings in a case study of LEGO® Future Lab, one of LEGO Group......’s largest innovation departments, show a preference for analog tools over digital in the creative process. This points towards a general need for tangible tools in the creative work process, a need that has consequences for the development of new digital tools for creative collaboration....

  16. Structural Safety Analysis of Openable Working Table in ACP Hot Cell for Spent Fuel Treatment

    International Nuclear Information System (INIS)

    Kwon, Ki Chan; Ku, Jeong Hoe; Lee, Eun Pyo; Choung, Won Myung; You, Gil Sung; Lee, Won Kyung; Cho, IL Je; Kuk, Dong Hak

    2006-01-01

    A demonstration facility for advanced spent fuel conditioning process (ACP) is under construction in KAERI. In this hot cell facility, all process equipment and materials are taken in and out only through the rear door. The working table in front of the process rear door is specially designed to be openable for the efficient use of the space. This paper presents the structural safety analysis of the openable working table, for the normal operational load condition and accidental drop condition of heavy object. Both cases are investigated through static and dynamic finite element analyses. The analysis results show that structural safety of the working table is sufficiently assured and the working table is not collapsed even when an object of 500 kg is dropped from the height of 50 cm.

  17. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    Walterskirchen, K.M.

    1997-01-01

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  18. Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy

    International Nuclear Information System (INIS)

    Dharmendra, C.; Rao, K.P.; Prasad, Y.V.R.K.; Hort, N.; Kainer, K.U.

    2012-01-01

    Hot deformation mechanisms in Mg-3Sn-2Ca (TX32) alloy containing 0.4% Al are evaluated in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s −1 using processing map and kinetic analysis. The evolution of microstructure and texture during high temperature compression of the alloy has been studied using an electron back scatter diffraction (EBSD) technique. The processing map for hot working revealed two domains of dynamic recrystallization (DRX) occurring in the temperature and strain rate ranges of: (1) 300–360 °C and 0.0003–0.001 s −1 and (2) 400–500 °C and 0.005–0.7 s −1 , which are the two safe hot workability windows for this alloy. A regime of flow instability occurs at higher strain rates and lower temperatures where adiabatic shear banding and flow localization are the microstructural manifestations. The onset of DRX during compression at lower temperatures and strain rates (Domain 1) resulted in a fine, partially recrystallized and necklaced grain microstructure along with a texture where the basal poles are spread along 30° from the compression direction. Specimens deformed at temperatures higher than 450 °C (Domain 2) resulted in a fully recrystallized microstructure and an almost random crystallographic texture, which was attributed to the significant occurrence of pyramidal slip and associated cross-slip. -- Highlights: ► Processing map revealed two DRX domains for hot working of Mg-3Sn-2Ca-0.4Al alloy. ► The alloy exhibited flow instability at lower temperatures and higher strain rates. ► Activation energy values for deformation are high due to the back stress. ► Basal poles spread around 30° to the compression axis for Domain 1 peak condition. ► Texture got randomized at high temperature and strain rate conditions in Domain 2.

  19. Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dharmendra, C. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Rao, K.P., E-mail: mekprao@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Prasad, Y.V.R.K. [Processingmaps.com (formerly at City University of Hong Kong) (Hong Kong); Hort, N.; Kainer, K.U. [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Magnesium Innovation Centre, Max-Planck-Strasse 1, Geesthact 21502 (Germany)

    2012-10-15

    Hot deformation mechanisms in Mg-3Sn-2Ca (TX32) alloy containing 0.4% Al are evaluated in the temperature and strain rate ranges of 300-500 Degree-Sign C and 0.0003-10 s{sup -1} using processing map and kinetic analysis. The evolution of microstructure and texture during high temperature compression of the alloy has been studied using an electron back scatter diffraction (EBSD) technique. The processing map for hot working revealed two domains of dynamic recrystallization (DRX) occurring in the temperature and strain rate ranges of: (1) 300-360 Degree-Sign C and 0.0003-0.001 s{sup -1} and (2) 400-500 Degree-Sign C and 0.005-0.7 s{sup -1}, which are the two safe hot workability windows for this alloy. A regime of flow instability occurs at higher strain rates and lower temperatures where adiabatic shear banding and flow localization are the microstructural manifestations. The onset of DRX during compression at lower temperatures and strain rates (Domain 1) resulted in a fine, partially recrystallized and necklaced grain microstructure along with a texture where the basal poles are spread along 30 Degree-Sign from the compression direction. Specimens deformed at temperatures higher than 450 Degree-Sign C (Domain 2) resulted in a fully recrystallized microstructure and an almost random crystallographic texture, which was attributed to the significant occurrence of pyramidal slip and associated cross-slip. -- Highlights: Black-Right-Pointing-Pointer Processing map revealed two DRX domains for hot working of Mg-3Sn-2Ca-0.4Al alloy. Black-Right-Pointing-Pointer The alloy exhibited flow instability at lower temperatures and higher strain rates. Black-Right-Pointing-Pointer Activation energy values for deformation are high due to the back stress. Black-Right-Pointing-Pointer Basal poles spread around 30 Degree-Sign to the compression axis for Domain 1 peak condition. Black-Right-Pointing-Pointer Texture got randomized at high temperature and strain rate conditions in

  20. Tribological properties of anti-wear PVD coatings for elevated temperatures application deposited onto X37CrMoV5-1 type hot work steel

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Polok, M.; Adamiak, M.

    2003-01-01

    The paper presents results of tribological and adhesion investigations of anti-wear PVD coatings TiN, TiN/(Ti,Al)N and CrN types deposited in ion plating PVD process onto X37CrMoV5-1 type hot work tool steel. It was found that damage mechanism during scratch test in all investigated coatings begins with multiple spallings located on the scratch edges followed by cracking and tool coatings delamination. Regarding to the coating types it can be seen different location of such damages and loads typical for them. According to this observations it can be stated that highest adhesion among investigated coating present, CrN monolayer coating and the lowest one multilayers Ti/(Ti,Al)N coating. The wear resistance was investigated by pin-on-disc method performed in room and elevated to 500 o C temperatures. It was found that the lowest wear in to fixed investigation conditions in both room and elevated temperatures shows TiN monolayer coating. Additionally one can see that TiN coatings application improve wear resistance some five times. (author)

  1. Accelerators and nuclear reactors as tools in hot atom chemistry

    International Nuclear Information System (INIS)

    Lindner, L.

    1975-01-01

    The characteristics of accelerators and of nuclear reactors - the latter to a lesser extent - are discussed in view of their present and future use in hot atom chemistry research and its applications. (author)

  2. The origin and relation among hot and cold CO{sub 2}-rich mineral waters in Vilarelho da Raia - Pedras Salgadas region, northern Portugal: A geochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J.M.; Aires-Barros, L.; Graca, R.C. [Technical Univ. of Lisbon, Lisboa (Portugal)

    1996-12-31

    Coupled isotopic and chemical studies, carried out on hot and cold CO{sub 2}-rich mineral waters discharging in Vilarelho da Raia - Pedras Salgadas region (northern Portugal), have been adopted to purpose some hypothesis on the origin and path-ways of fluids emerging along one of the major regional NNE-trending faults (the so called {open_quotes}Chaves Depression{close_quotes}). Chemical and isotopic ({delta}{sup 18}O and {delta}D) composition of Vilarelho da. Raia cold waters indicate that these waters could be traced as a ramification of the Chaves thermal waters. The enrichment in {sup 18}O and D content in Vidago and Pedras Salgadas cold waters could be attributed either to different recharge altitudes or mixing between deep regional waters with more recent waters derived from local infiltration, in accordance with {sup 3}H activity. Geothermometric interpretation indicates that hot and cold mineral waters have had deep circulation. Model calculations to estimate circulation depth of the groundwater flow system are also indicate deep (about 4km) circulation. Regarding the origin of CO{sub 2} in the thermal and cold mineral waters, two hypothesis could be considered: deep-seated (mantle degassing) or rock (graphitic slates) leaching.

  3. Effect of Tooling Material on the Internal Surface Quality of Ti6Al4V Parts Fabricated by Hot Isostatic Pressing

    Science.gov (United States)

    Cai, Chao; Song, Bo; Wei, Qingsong; Yan, Wu; Xue, Pengju; Shi, Yusheng

    2017-01-01

    For the net-shape hot isostatic pressing (HIP) process, control of the internal surface roughness of as-HIPped parts remains a challenge for practical engineering. To reveal the evolution mechanism of the internal surface of the parts during the HIP process, the effect of different tooling materials (H13, T8, Cr12 steel, and graphite) as internal cores on the interfacial diffusion and surface roughness was systematically studied.

  4. TWRS tank waste pretreatment process development hot test siting report

    International Nuclear Information System (INIS)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities

  5. Hot-stage microscopy for determination of API fragmentation: comparison with other methods.

    Science.gov (United States)

    Šimek, Michal; Grünwaldová, Veronika; Kratochvíl, Bohumil

    2016-08-01

    Although the fragmentation of the active pharmaceutical ingredient (API) is a phenomenon that is mentioned in many literature sources, no well-suited analytical tools for its investigation are currently known. We used the hot-stage microscopy method, already presented in our previous work, and studied the real fragmentation of the tadalafil particles in model tablets which were prepared under different compaction pressures. The morphology, spectral imaging and evaluation of plastic and elastic energies were also analyzed to support the hot-stage method. The prepared blend of tadalafil and excipients was compacted under a several forces from 5 to 35 kN to reveal the trend of fragmentation. The exact fragmentation of tadalafil with increased compaction pressure was revealed by the hot-stage microscopic method and it was in good agreement with plastic and elastic energies. Conversely, spectral imaging, which is being used for this analysis, was considered to be inaccurate methodology as mainly agglomerates, not individual particles, were measured. The availability of the hot-stage microscopic method equips pharmaceutical scientists with an in vitro assessment technique that will more reliably determine the fragmentation of the API in finished tablets and the behavior of the particles when compacted.

  6. Work Ability Index as Tool to Identify Workers at Risk of Premature Work Exit

    NARCIS (Netherlands)

    Roelen, Corne A. M.; Heymans, Martijn W.; Twisk, Jos W. R.; van der Klink, Jac J. L.; Groothoff, Johan W.; van Rhenen, Willem

    2014-01-01

    Purpose To investigate the Work Ability Index (WAI) as tool for identifying workers at risk of premature work exit in terms of disability pension, unemployment, or early retirement. Methods Prospective cohort study of 11,537 male construction workers (mean age 45.5 years), who completed the WAI at

  7. Work ability index as tool to identify workers at risk of premature work exit

    NARCIS (Netherlands)

    Roelen, C.A.M.; Heymans, M.W.; Twisk, J.W.R.; van der Klink, J.J.L.; Groothoff, J.W.; van Rhenen, W.

    2014-01-01

    Purpose To investigate the Work Ability Index (WAI) as tool for identifying workers at risk of premature work exit in terms of disability pension, unemployment, or early retirement. Methods Prospective cohort study of 11,537 male construction workers (mean age 45.5 years), who completed the WAI at

  8. Predicting the Abrasion Resistance of Tool Steels by Means of Neurofuzzy Model

    Directory of Open Access Journals (Sweden)

    Dragutin Lisjak

    2013-07-01

    Full Text Available This work considers use neurofuzzy set theory for estimate abrasion wear resistance of steels based on chemical composition, heat treatment (austenitising temperature, quenchant and tempering temperature, hardness after hardening and different tempering temperature and volume loss of materials according to ASTM G 65-94. Testing of volume loss for the following group of materials as fuzzy data set was taken: carbon tool steels, cold work tool steels, hot work tools steels, high-speed steels. Modelled adaptive neuro fuzzy inference system (ANFIS is compared to statistical model of multivariable non-linear regression (MNLR. From the results it could be concluded that it is possible well estimate abrasion wear resistance for steel whose volume loss is unknown and thus eliminate unnecessary testing.

  9. Flavanol-rich chocolate acutely improves arterial function and working memory performance counteracting the effects of sleep deprivation in healthy individuals.

    Science.gov (United States)

    Grassi, Davide; Socci, Valentina; Tempesta, Daniela; Ferri, Claudio; De Gennaro, Luigi; Desideri, Giovambattista; Ferrara, Michele

    2016-07-01

    Sleep deprivation is a risk factor for cardiovascular disease. Cocoa flavonoids exert cardiovascular benefits and neuroprotection. Whether chocolate consumption may mitigate detrimental effects of sleep loss on cognitive performance and cardiovascular parameters has never been studied. We investigated the effects of flavanol-rich chocolate consumption on cognitive skills and cardiovascular parameters after sleep deprivation. Thirty-two healthy participants underwent two baseline sessions after one night of undisturbed sleep and two experimental sessions after one night of total sleep deprivation. Two hours before each testing session, participants were randomly assigned to consume high or poor flavanol chocolate bars. During the tests were evaluated, the Psychomotor Vigilance Task and a working memory task, office SBP and DBP, flow-mediated dilation and pulse-wave velocity. Sleep deprivation increased SBP/DBP. SBP/DBP and pulse pressure were lower after flavanol-rich treatment respect to flavanol-poor treatment (SBP: 116.9 ± 1.6 vs. 120.8 ± 1.9 mmHg, respectively, P = 0.00005; DBP: 70.5 ± 1.2 vs. 72.3 ± 1.2 mmHg, respectively, P = 0.01; pulse pressure: 46.4 ± 1.3 vs. 48.4 ± 1.5 mmHg, P = 0.004). Sleep deprivation impaired flow-mediated dilation (5.5 ± 0.5 vs. 6.5 ± 0.6%, P = 0.02), flavanol-rich, but not flavanol-poor chocolate counteracted this alteration (flavanol-rich/flavanol-poor chocolate: 7.0 ± 0.6 vs. 5.0 ± 0.4%, P = 0.000001). Flavanol-rich chocolate mitigated the pulse-wave velocity increase (P = 0.001). Flavanol-rich chocolate preserved working memory accuracy in women after sleep deprivation. Flow-mediated dilation correlated with working memory performance accuracy in the sleep condition (P = 0.04). Flavanol-rich chocolate counteracted vascular impairment after sleep deprivation and restored working memory performance. Improvement in cognitive performance could be because

  10. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  11. Systems scenarios: a tool for facilitating the socio-technical design of work systems.

    Science.gov (United States)

    Hughes, Helen P N; Clegg, Chris W; Bolton, Lucy E; Machon, Lauren C

    2017-10-01

    The socio-technical systems approach to design is well documented. Recognising the benefits of this approach, organisations are increasingly trying to work with systems, rather than their component parts. However, few tools attempt to analyse the complexity inherent in such systems, in ways that generate useful, practical outputs. In this paper, we outline the 'System Scenarios Tool' (SST), which is a novel, applied methodology that can be used by designers, end-users, consultants or researchers to help design or re-design work systems. The paper introduces the SST using examples of its application, and describes the potential benefits of its use, before reflecting on its limitations. Finally, we discuss potential opportunities for the tool, and describe sets of circumstances in which it might be used. Practitioner Summary: The paper presents a novel, applied methodological tool, named the 'Systems Scenarios Tool'. We believe this tool can be used as a point of reference by designers, end-users, consultants or researchers, to help design or re-design work systems. Included in the paper are two worked examples, demonstrating the tool's application.

  12. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  13. Hot workability of aluminium alloys

    International Nuclear Information System (INIS)

    Yoo, Yeon Chul; Oh, Kyung Jin

    1986-01-01

    Hot Workability of aluminium alloys, 2024, 6061 and 7075, has been studied by hot torsion tests at temperatures from 320 to 515 deg C and at strain rates from 1.26 x 10 -3 to 5.71 x 10 -3 sec -1 . Hot working condition of these aluminium alloys was determined quantitatively from the constitutive equations obtained from flow stress curves in torsion. Experimental data of the logarith of the Zener-Hollomonn parameter showed good linear relationships to the logarith of sinh(ασ-bar)

  14. Platelet-rich Preparation may serve as a Powerful Tool for Therapeutic Dental Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Hai-Hua Sun

    2011-09-01

    Full Text Available Introduction: Regeneration of dental pulp tissues presents one of the most challenging issues in regenerative dentistry due to their extremely poor intrinsic ability for self-healing and re-growth.The hypothesis: We hypothes-ize that patient-derived platelet-rich preparation can be used in clinical endodontic regenerative procedure, serving as a powerful tool for therapeutic dental pulp regeneration.Evaluation of the hypothesis: The cell transplantation does not always obtain the good result because of the low survival rate of transplanted cells. In addition, the use of ex vivo manipulated cell products faces many translational hurdles in treating non-vital disease. Recently, the body cells are focused as a potential source for therapeutics. Some researchers have demonstrated that endogenous stem cells may be recruited to a desired anatomic site pharma-cologically. This is spurring interest in developing new generation of biomaterials that incorporate and release selected powerful extracellular influences in a near-physiological fashion, and subsequently capture endogenous stem cells and influence their fates for regene-ration. The use of patient-derived products such as platelet-rich preparations that contain a multitude of endogenous growth factors and proteins is a clinically translatable biotechnology for this proposes. These simple and cost efficient procedures may have a potential impact in reducing the economic costs for standard medical treatments in regenerative endodontics.

  15. Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan.

    Science.gov (United States)

    Maity, Jyoti Prakash; Liu, Chia-Chuan; Nath, Bibhash; Bundschuh, Jochen; Kar, Sandeep; Jean, Jiin-Shuh; Bhattacharya, Prosun; Liu, Jiann-Hong; Atla, Shashi B; Chen, Chien-Yen

    2011-01-01

    Hot springs are the important natural sources of geothermally heated groundwater from the Earth's crust. Kuan-Tzu-Ling (KTL), Chung-Lun (CL) and Bao-Lai (BL) are well-known hot springs in southern Taiwan. Fluid and mud (sediments) samples were collected from the eruption points of three hot springs for detailed biogeochemical characterization. The fluid sample displays relatively high concentrations of Na(+) and Cl(-) compared with K(+), Mg(2+), Ca(2+), NO(2) (-), and SO(4) (2-), suggesting a possible marine origin. The concentrations of Fe, Cr, Mn, Ni, V and Zn were significantly higher in the mud sediments compared with fluids, whereas high concentrations of As, Ba, Cu, Se, Sr and Rb were observed in the fluids. This suggests that electronegative elements were released during sediment-water interactions. High As concentration in the fluids was observed to be associated with low redox (Eh) conditions. The FTIR spectra of the humic acid fractions of the sediments showed the presence of possible functional groups of secondary amines, ureas, urethanesm (amide), and silicon. The sulfate-reducing deltaproteobacterium 99% similar to Desulfovibrio psychrotolerans (GU329907) were rich in the CL hot spring while mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium that 99% similar to Clostridium sulfidigenes (GU329908) were rich in the BL hot spring.

  16. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  17. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    Science.gov (United States)

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  18. Five-axis Control Processing Using NC Machine Tools : A Tool Posture Decision Using the Tangent Slope at a Cut Point on a Work

    OpenAIRE

    小島, 龍広; 西田, 知照; 扇谷, 保彦

    2003-01-01

    This report deals with the way to decide tool posture and the way to analytically calculate tool path for the work shape requiring 5-axis control machining. In the tool path calculation, basic equations are derived using the principle that the tangent slope at a cut point on a work and the one at a cutting point on a tool edge are identical. A tool posture decision procedure using the tangent slope at each cut point on a work is proposed for any shape of tool edge. The valid- ity of the way t...

  19. Terminology tools: state of the art and practical lessons.

    Science.gov (United States)

    Cimino, J J

    2001-01-01

    As controlled medical terminologies evolve from simple code-name-hierarchy arrangements, into rich, knowledge-based ontologies of medical concepts, increased demands are placed on both the developers and users of the terminologies. In response, researchers have begun developing tools to address their needs. The aims of this article are to review previous work done to develop these tools and then to describe work done at Columbia University and New York Presbyterian Hospital (NYPH). Researchers working with the Systematized Nomenclature of Medicine (SNOMED), the Unified Medical Language System (UMLS), and NYPH's Medical Entities Dictionary (MED) have created a wide variety of terminology browsers, editors and servers to facilitate creation, maintenance and use of these terminologies. Although much work has been done, no generally available tools have yet emerged. Consensus on requirement for tool functions, especially terminology servers is emerging. Tools at NYPH have been used successfully to support the integration of clinical applications and the merger of health care institutions. Significant advancement has occurred over the past fifteen years in the development of sophisticated controlled terminologies and the tools to support them. The tool set at NYPH provides a case study to demonstrate one feasible architecture.

  20. The development of a practical tool for risk assessment of manual work – the HAT-tool

    NARCIS (Netherlands)

    Kraker, H. de; Douwes, M.

    2008-01-01

    For the Dutch Ministry of Social Affairs and Employment we developed a tool to assess the risks of developing complaints of the arm, neck or shoulders during manual work. The tool was developed for every type of organization and is easy to use, does not require measurements other than time and can

  1. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  2. Study of hot cracking potential in a 6-ton steel ingot casting

    Science.gov (United States)

    Yang, Jing'an; Liu, Baicheng; Shen, Houfa

    2018-04-01

    A new hot cracking potential (HCP) criterion, for the appearance of hot tearing in steel ingot castings, is proposed. The maximum value of the first principal stress, divided by the dynamic yield strength in the brittle temperature range (BTR), was used to identify the HCP. Experiments were carried out on a 6-ton P91 steel ingot in which severe hot tearing was detected in the upper centerline. Another ingot, with a better heat preservation riser, and without hot tearing, was used for comparison. Samples were obtained from the area of the ingot body with hot tearing, and their morphologies were inspected by a X-ray high energy industrial computed tomography. The carbon and sulfur distributions around the hot tearing were characterized by an infrared spectrometry carbon and sulfur analyzer. High temperature mechanical properties were obtained by a Gleeble thermal simulation machine, under different strain rates. Then, thermo-mechanical simulations using an elasto-viscoplastic finite-element model were conducted to analyze the stress and strain evolution during ingot solidification. The results showed that the hot tearing area, which was rich in both carbon and sulfur, was under excessive tensile stress in the BTR, bearing the highest HCP.

  3. The crabs that live where hot and cold collide.

    Science.gov (United States)

    Thurber, Andrew R

    2015-07-01

    The distribution of Kiwa tyleri with the large male individual in the high-temperature flow (right hand side - fluid flow indicated by shimmering water) and the mixed sex assemblage (left). Note the heavy coat of epibiotic bacteria (grey colouring) on the individual in the hottest section of the vent, as expected from being closest to the sulphide needed to sustain the epibiotic bacteria that this species harvests for its food. Image courtesy of Dr. L. Marsh (Credit: NERC ChEsSo Consortium). In Focus: Marsh, L., Copley, J.T., Tyler, P.A. & Thatje, S. (2015) In hot and cold water: differential life-history traits are key to success in contrasting thermal deep-sea environments. Journal of Animal Ecology, 84, 898-913. Southern Ocean hydrothermal vents juxtapose two extremes - intense food-poor cold and scalding food-rich oases. At these vents, Marsh et al. (2015) found a community of Kiwa (Yeti) crabs that separated themselves along this gradient with the largest males sitting in hot, food-rich waters, while smaller males and females co-occur in an intermediate zone of warmth. However, as their eggs start to develop, females embark away from the vent to the food-poor yet stable cold of the Southern Ocean. This species has found an intriguing way to balance foraging risk and population persistence at the interface of hot and cold. © 2015 The Author. Journal of Animal Ecology © 2015 British Ecological Society.

  4. Performance of two honey bee subspecies during harsh weather and Acacia gerrardii nectar-rich flow

    Directory of Open Access Journals (Sweden)

    Awad Mohamed Awad

    Full Text Available ABSTRACT Both climatic factors and bee forage characteristics affect the population size and productivity of honey bee colonies. To our knowledge, no scientific investigation has as yet considered the potential effect of nectar-rich bee forage exposed to drastic subtropical weather conditions on the performance of honey bee colonies. This study investigated the performance of the honey bee subspecies Apis mellifera jemenitica Ruttner (Yemeni and Apis mellifera carnica Pollmann (Carniolan in weather that was hot and dry and in an environment of nectar-rich flora. The brood production, food storage, bee population and honey yield of Yemeni (native and Carniolan (imported colonies on Talh trees (Acacia gerrardii Benth., a nectar-rich, subtropical, and summer bee forage source in Central Arabia were evaluated. Owing to their structural and behavioral adaptations, the Yemeni bees constructed stronger (high population size colonies than the Carniolan bees. Although both groups yielded similar amounts of Talh honey, the Yemeni bees consumed their stored honey rapidly if not timely harvested. A. m. jemenitica has a higher performance than A. m. carnica during extremely hot-dry conditions and A. gerrardii nectar-rich flow.

  5. Friction and wear in hot forging of steels

    International Nuclear Information System (INIS)

    Daouben, E.; Dubar, L.; Dubar, M.; Deltombe, R.; Dubois, A.; Truong-Dinh, N.; Lazzarotto, L.

    2007-01-01

    In the field of hot forging of steels, the mastering of wear phenomena enables to save cost production, especially concerning tools. Surfaces of tools are protected thanks to graphite. The existing lubrication processes are not very well known: amount and quality of lubricant, lubrication techniques have to be strongly optimized to delay wear phenomena occurrence. This optimization is linked with hot forging processes, the lubricant layers must be tested according to representative friction conditions. This paper presents the first part of a global study focused on wear phenomena encountered in hot forging of steels. The goal is the identification of reliable parameters, in order to bring knowledge and models of wear. A prototype testing stand developed in the authors' laboratory is involved in this experimental analysis. This test is called Warm and Hot Upsetting Sliding Test (WHUST). The stand is composed of a heating induction system and a servo-hydraulic system. Workpieces taken from production can be heated until 1200 deg. C. A nitrided contactor representing the tool is heated at 200 deg. C. The contactor is then coated with graphite and rubs against the workpiece, leaving a residual track on it. Friction coefficient and surface parameters on the contactor and the workpiece are the most representative test results. The surface parameters are mainly the sliding length before defects occurrence, and the amplitude of surface profile of the contactor. The developed methodology will be first presented followed by the different parts of the experimental prototype. The results of experiment show clearly different levels of performance according to different lubricants

  6. Effects of excessive grain growth on the magnetic and mechanical properties of hot-deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M., E-mail: linm@nimte.ac.c [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, H.J. [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China); Yi, P.P.; Yan, A.R. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2010-08-15

    The magnetic and mechanical properties of rare-earth magnets hot-deformed at temperature range 750-950 deg. C have been investigated. The grains tended to grow excessively from dozens of nanometers to several microns at the temperatures above 850 deg. C. The alignment of grains was disrupted by the hot deformation at the high temperatures. The Nd-rich phase was extruded at the temperatures which are higher than 850 deg. C. The Nd-rich phase extrusion resulted in the reduction of density by 1% and the reduction of remanence from 1.42 to 0.72 T. The reduction of grain boundaries caused by flat platelet-shaped grains changing to spherical grains and the weak binding strength among large grains of Nd{sub 2}Fe{sub 14}B phase may be the main reasons for the low mechanical strength of hot-deformed magnets.

  7. Densification and Grain Growth in Polycrystalline Olivine Rocks Synthesized By Evacuated Hot-Pressing

    Science.gov (United States)

    Meyers, C. D.; Kohlstedt, D. L.; Zimmerman, M. E.

    2017-12-01

    Experiments on laboratory-synthesized olivine-rich rocks form the starting material for many investigations of physical processes in the Earth's upper mantle (e.g., creep behavior, ionic diffusion, and grain growth). Typically, a fit of a constitutive law to experimental data provides a description of the kinetics of a process needed to extrapolate across several orders of magnitude from laboratory to geological timescales. Although grain-size is a critical parameter in determining physical properties such as viscosity, broad disagreement persists amongst the results of various studies of grain growth kinetics in olivine-rich rocks. Small amounts of impurities or porosity dramatically affect the kinetics of grain growth. In this study, we developed an improved method for densifying olivine-rich rocks fabricated from powdered, gem-quality single crystals that involves evacuating the pore space, with the aim of refining measurements of the kinetics of mantle materials. In previous studies, olivine powders were sealed in a metal can and hydrostatically annealed at roughly 300 MPa and 1250 °C. These samples, which appear opaque and milky-green, typically retain a small amount of porosity. Consequently, when annealed at 1 atm, extensive pore growth occurs, inhibiting grain growth. In addition, Fourier-transform infrared and confocal Raman spectroscopy reveal absorption peaks characteristic of CO2 in the pores of conventionally hot-pressed material. To avoid trapping of adsorbed contaminants, we developed an evacuated hot-pressing method, wherein the pore space of powder compacts is vented to vacuum during heating and pressurization. This method produces a highly dense, green-tinted, transparent material. No CO2 absorptions peaks exist in evacuated hot-pressed material. When reheated to annealing temperatures at 1 atm, the evacuated hot-pressed material undergoes limited pore growth and dramatically enhanced grain-growth rates. High-strain deformation experiments on

  8. Hot neutron stars at birth and energy release

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    1994-01-01

    For the discussion of hot neutron stars at birth, it is necessary to calculate the equation of state for a so-called 'supernova matter' consisting of a neutron-rich nuclear matter and degenerated leptons. One of the aims of this paper is to obtain the realistic results for the equation of state. In 10-20s after the birth, new born hot neutron stars are cooled down by neutrino diffusion process, and gradually contract to usual cold neutron starts. It is another aim of this paper to determine how much energy is released during this cooling stage. The points to which attention was paid are explained. A three-nucleon interaction was introduced phenomenologically, as a two-nucleon interaction is insufficient to satisfy the empirical saturation property of symmetric nuclear matters. The separation of uncertain part from well-known part has the merit to clarify the dependence of the results on the present theoretical uncertainties. The validity of the simplified calculation as an approximation for the exact calculation is discussed. The results by both calculations were compared for the case of hot symmetric nuclear matters. The comparison of the density profiles for a hot neutron star and a cold neutron star is shown. The binding energy for hot and cold neutron stars was plotted. These results are examined. (K.I.)

  9. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  10. Exercise in Experimental Plastics Technology: Hot Embossing of Polymers with surface microstructure

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Rasmussen, Henrik Koblitz

    2004-01-01

    Hot Embossing of polymers with surface microstructure Polymer materials have proven to be good materials for manufacturing nano/ and microstructure. There are three major processing techniques: hot embossing, injection moulding and casting. Hot embossing provides several advantages such as relati......Hot Embossing of polymers with surface microstructure Polymer materials have proven to be good materials for manufacturing nano/ and microstructure. There are three major processing techniques: hot embossing, injection moulding and casting. Hot embossing provides several advantages...... such as relatively low cost for embossing tools, simple operation and high replication accuracy for small features. Two different plastic materials will be used to replicate surface microstructures by hot embossing. The hot embossing will be done in a hydraulic press where it is easy to control temperature...

  11. Modelling and simulations in hot deformation of steels

    International Nuclear Information System (INIS)

    Cabrera, J.M.

    2002-01-01

    Traditionally, hot forming has been employed to provide shape to metals. Nowadays, however, hot working not only produces the desired geometry, but also the mechanical characteristics required. An understanding of the thermomechanical behaviour of metals, and particularly steels, is essential in the simulation and control of the hot forming operations. Moreover, a right prediction of the final properties needs from accurate descriptions of the microstructural features occurring during the shaping step. For this purpose, the determination of constitutive equations describing the stress σ - strain ε relationships at a given strain rate ε, temperature T and initial microstructure, is a useful task. In this sense, computer simulations of hot working processes proportionate a benchmark to engineers and researchers and allow decreasing the cost of developing products and processes. With regard to the prediction of the final microstructure, the simulation of the hot plastic deformation usually gives unsatisfactory results. This is due to the inadequate constitutive equations employed by the conventional and commercial software available to describe the hot flow behaviour. There are scarce models which couple the typical hot working variables (temperature, strain and strain rate) with microstructural characteristics such as grain size. In this review work is presented how the latter limitation can be overcome by using physical-based constitutive equations, some of which have been partially developed by the present authors, where account of the interaction between microstructure and processing variables is taken. Moreover, a practical derivation of the latter expressions on an AISI-304 steel is presented. To conclude, some examples of industrial applications of the latter approach are also presented. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  12. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel

    International Nuclear Information System (INIS)

    Li, Dejun; Feng, Yaorong; Song, Shengyin; Liu, Qiang; Bai, Qiang; Ren, Fengzhang; Shangguan, Fengshou

    2015-01-01

    Highlights: • Influence of Si on work hardening behavior of Fe–25 wt%Mn TWIP steel was investigated. • Influence of Si on hot deformation behavior of Fe–25 wt%Mn TWIP steel was studied. • Si blocks dislocation glide and favors mechanical twinning in Fe–25 wt%Mn TWIP steel. • The addition of Si increases the hot deformation activation energy of Fe–25 wt%Mn TWIP steel. • The addition of Si retards the nucleation and growth of DRX grains of Fe–25 wt%Mn TWIP steel. - Abstract: The influence of silicon on mechanical properties and hot deformation behavior of austenitic Fe–25 wt%Mn TWIP steel was investigated by means of the comparison research between 25Mn3Al and 25Mn3Si3Al steel. The results show that the 25Mn3Si3Al steel has higher yield strength and higher hardness than that of 25Mn3Al steel because of the solution strengthening caused by Si atoms and possesses higher uniform deformation ability and tensile strength than that of 25Mn3Al steel due to the higher work hardening ability of 25Mn3Si3Al steel. 25Mn3Si3Al steel presents a clear four-stage curve of work hardening rate in course of cold compression. Quite the opposite, the 25Mn3Al steel presents a monotonic decline curve of work hardening rate. The difference of the work hardening behavior between 25Mn3Al and 25Mn3Si3Al steel can be attributed to the decline of stacking fault energy (SFE) caused by the addition of 3 wt% Si. The dislocation glide plays an important role in the plastic deformation of 25Mn3Al steel even though the mechanical twinning is still one of the main deformation mechanisms. The 3 wt% Si added into the 25Mn3Al steel blocks the dislocation glide and promotes the mechanical twinning, and then the dislocation glide characteristics cannot be observed in cold deformed microstructure of 25Mn3Si3Al steel. The hot compression tests reveal that the hot deformation resistance of the 25Mn3Si3Al steel is significantly higher than that of the 25Mn3Al steel due to the solid

  13. Assessing Threats and Conservation Status of Historical Centers of Oak Richness in California

    Directory of Open Access Journals (Sweden)

    Kelly Jane Easterday

    2016-12-01

    Full Text Available Oak trees are emblematic of California landscapes, they serve as keystone cultural and ecological species and as indicators of natural biological diversity. As historically undeveloped landscapes are increasingly converted to urban environments, endemic oak woodland extent is reduced, which underscores the importance of strategic placement and reintroduction of oaks and woodland landscape for the maintenance of biodiversity and reduction of habitat fragmentation. This paper investigated the effects of human urban development on oak species in California by first modeling historical patterns of richness for eight oak tree species using historical map and plot data from the California Vegetation Type Mapping (VTM collection. We then examined spatial intersections between hot spots of historical oak richness and modern urban and conservation lands and found that impacts from development and conservation vary by both species and richness. Our findings suggest that the impact of urban development on oaks has been small within the areas of highest oak richness but that areas of highest oak richness are also poorly conserved. Third, we argue that current policy measures are inadequate to conserve oak woodlands and suggest regions to prioritize acquisition of conservation lands as well as examine urban regions where historic centers of oak richness were lost as potential frontiers for oak reintroduction. We argue that urban planning could benefit from the adoption of historical data and modern species distribution modelling techniques primarily used in natural resources and conservation fields to better locate hot spots of species richness, understand where habitats and species have been lost historically and use this evidence as incentive to recover what was lost and preserve what still exists. This adoption of historical data and modern techniques would then serve as a paradigm shift in the way Urban Planners recognize, quantify, and use landscape

  14. Flex 4 Cookbook Real-world recipes for developing Rich Internet Applications

    CERN Document Server

    Noble, Joshua; Braithwaite, Garth; Casario, Marco; Tretola, Rich

    2010-01-01

    With this collection of proven recipes, you have the ideal problem-solving guide for developing interactive Rich Internet Applications on the Adobe Flash Platform. You'll find answers to hundreds of common problems you may encounter when using Adobe Flex, Flex 4 Framework, or Flash Builder, Adobe's GUI-based development tool. Flex 4 Cookbook has hands-on recipes for everything from Flex basics to solutions for working with visual components and data access, as well as tips on application development, unit testing, and Adobe AIR. Each recipe provides an explanation of how and why it works, an

  15. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  16. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  17. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary. - Mechanical properties under compressive stresses. - Material properties at elevated temperatures. - Influence of irradiation on mechanical and physical properties. - Production standards and quality control. The state of the research and the available data of the material testing program are reported. (Auth.)

  18. Cast iron as structural material for hot-working reactor vessels (PCIV)

    International Nuclear Information System (INIS)

    Ostendorf, H.; Schmidt, G.; Pittack, W.

    1977-01-01

    Cast iron with lamellar graphite is best suited for prestressed structures, because its compressive strength is nearly 4 times its tensile strength. In comparison to room temperature, cast iron with lamellar graphite shows essentially no loss of strength up to temperatures of 400 0 C. Under the particular aspect to use cast iron for hot-working prestressed reactor pressure vessels (PCIV) (Prestressed cast iron vessel=PCIV) a materials testing program is carried out, which meets the strict certification requirements for materials in the construction of reactor pressure vessels and which completes the presently available knowledge of cast iron. Especially in the following fields an extension and supplement of the present level of knowledge is necessary: mechanical properties under compressive stresses; material properties at elevated temperatures; influence of irradiation on mechanical and physical properties; production standards and quality control. The state of the research and the available data of the material testing program are reported

  19. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  20. Detection of hot gas in clusters of galaxies by observation of the microwave background radiation

    International Nuclear Information System (INIS)

    Gull, S.F.; Northover, K.J.E.

    1976-01-01

    It is stated that satellite observations have indicated that many rich clusters are powerful sources of x-rays. This has been interpreted as due to either thermal bremsstrahlung from very hot gas filling the clusters or as inverse Compton scattering of photons by relativistic electrons. Spectral evidence appears to favour a thermal origin for the radiation, implying the existence of large amounts of hot gas. This gas may be a major constituent of the Universe, and independent confirmation of its existence is very important. Observations are here reported of small diminutions in the cosmic microwave background radiation in the direction of several rich clusters of galaxies. This is considered to confirm the existence of large amounts of very hot gas in these clusters and to indicate that the x-radiation is thermal bremsstrahlung and not inverse Compton emission. The observations were made in 1975/1976 using the 25m. telescope at the SRC Appleton Laboratory at a frequency of 10.6 GH2, and details are given of the technique employed. (U.K.)

  1. Using intervention mapping to develop a work-related guidance tool for those affected by cancer

    Directory of Open Access Journals (Sweden)

    Munir Fehmidah

    2013-01-01

    Full Text Available Abstract Background Working-aged individuals diagnosed and treated for cancer require support and assistance to make decisions regarding work. However, healthcare professionals do not consider the work-related needs of patients and employers do not understand the full impact cancer can have upon the employee and their work. We therefore developed a work-related guidance tool for those diagnosed with cancer that enables them to take the lead in stimulating discussion with a range of different healthcare professionals, employers, employment agencies and support services. The tool facilitates discussions through a set of questions individuals can utilise to find solutions and minimise the impact cancer diagnosis, prognosis and treatment may have on their employment, sick leave and return to work outcomes. The objective of the present article is to describe the systematic development and content of the tool using Intervention Mapping Protocol (IMP. Methods The study used the first five steps of the intervention mapping process to guide the development of the tool. A needs assessment identified the ‘gaps’ in information/advice received from healthcare professionals and other stakeholders. The intended outcomes and performance objectives for the tool were then identified followed by theory-based methods and an implementation plan. A draft of the tool was developed and subjected to a two-stage Delphi process with various stakeholders. The final tool was piloted with 38 individuals at various stages of the cancer journey. Results The tool was designed to be a self-led tool that can be used by any person with a cancer diagnosis and working for most types of employers. The pilot study indicated that the tool was relevant and much needed. Conclusions Intervention Mapping is a valuable protocol for designing complex guidance tools. The process and design of this particular tool can lend itself to other situations both occupational and more health

  2. Using intervention mapping to develop a work-related guidance tool for those affected by cancer.

    Science.gov (United States)

    Munir, Fehmidah; Kalawsky, Katryna; Wallis, Deborah J; Donaldson-Feilder, Emma

    2013-01-05

    Working-aged individuals diagnosed and treated for cancer require support and assistance to make decisions regarding work. However, healthcare professionals do not consider the work-related needs of patients and employers do not understand the full impact cancer can have upon the employee and their work. We therefore developed a work-related guidance tool for those diagnosed with cancer that enables them to take the lead in stimulating discussion with a range of different healthcare professionals, employers, employment agencies and support services. The tool facilitates discussions through a set of questions individuals can utilise to find solutions and minimise the impact cancer diagnosis, prognosis and treatment may have on their employment, sick leave and return to work outcomes. The objective of the present article is to describe the systematic development and content of the tool using Intervention Mapping Protocol (IMP). The study used the first five steps of the intervention mapping process to guide the development of the tool. A needs assessment identified the 'gaps' in information/advice received from healthcare professionals and other stakeholders. The intended outcomes and performance objectives for the tool were then identified followed by theory-based methods and an implementation plan. A draft of the tool was developed and subjected to a two-stage Delphi process with various stakeholders. The final tool was piloted with 38 individuals at various stages of the cancer journey. The tool was designed to be a self-led tool that can be used by any person with a cancer diagnosis and working for most types of employers. The pilot study indicated that the tool was relevant and much needed. Intervention Mapping is a valuable protocol for designing complex guidance tools. The process and design of this particular tool can lend itself to other situations both occupational and more health-care based.

  3. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    Science.gov (United States)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  4. Depression, quality of life, work productivity, resource use, and costs among women experiencing menopause and hot flashes: a cross-sectional study.

    Science.gov (United States)

    Dibonaventura, Marco Dacosta; Wagner, Jan-Samuel; Alvir, Jose; Whiteley, Jennifer

    2012-01-01

    To examine the effect of depression on health-related quality of life, work productivity, resource use, and costs among women experiencing menopausal symptoms, including hot flashes. The study included data from the 2005 US National Health and Wellness Survey (N = 41,184), a cross-sectional, Internet-based survey representative of the adult US population. Among women who reported experiencing menopausal symptoms, including hot flashes, women who reported experiencing depression in the last year (n = 1,165) were compared with women who did not report experiencing depression in the last year (n = 2,467), controlling for demographic and health characteristics. Outcome measures included health-related quality of life (Medical Outcomes Study 8-item Short-Form Health Survey [SF-8]), work productivity within the past 7 days, self-reported health care resource use within the past 6 months, and indirect and direct costs. Women experiencing depression were significantly more likely to be white, to be unemployed, to be uninsured, to currently smoke, to not exercise, and to be obese (all P women experiencing depression reported significantly lower mental (39.66 vs 50.85, P work (5.31% vs 2.80%, P work (25.00% vs 14.32%, P women experiencing depression. The numbers of physician visits (2.47 vs 1.77, P women experiencing depression. Per woman per year indirect and direct costs were $3,066 and $1,075 higher, respectively, for women experiencing depression compared with those not experiencing depression. Approximately one-third of women experiencing menopausal symptoms, including hot flashes, also reported experiencing depression. These women reported significantly worse quality of life and significantly greater work productivity loss, health care resource use, and costs. Given the prevalence and burden, these findings suggest that proper assessment and management of depressive symptoms among women with menopause may have an important humanistic and economic benefit.

  5. Advances in diamond tools for working lithoid materials

    International Nuclear Information System (INIS)

    Rosso, M.; Ugues, D.; Valle, A.

    2001-01-01

    Lithoid material is a general definition to indicate a wide category of ornamental materials: they can be divided into natural (i.e. granite) or artificial (i.e. conglomerates and ceramics). All the lithoid materials are subjected to surface machining operations in order to obtain final work piece ready to be introduced an the market in form of slabs or tiles. This paper deals with the attempts of producing a machining diamond tools using a sintered steel binder. The opportunity of using a steel binder has been already highly studied by diamond tools industry, but with not satisfying outcomes and not longer developed, basically due to the catalysis action of iron and to the diamond degradation mechanism provided by high processing temperature. The binding matrix was produced by infiltration sintering. Infiltration requires the pore structure to be open and interconnected; thus, the sintered solid skeleton must have an at least 10 % porosity. Therefore, the infiltration sintering of the steel skeleton uses a temperature lower than the usually required for steel sintering one. Using the suitable infiltration agent will result in low infiltration temperature levels too (1). This should give the opportunity to work with a steel binder for diamond dispersed machining tools, without causing excessive damages to the diamond mechanical properties. The paper aims at overcoming the diamond degradation by lowering the production temperature using a definitively controlled infiltration sintering process. (author)

  6. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan; Almasri, Islam; Shi, Yuexiang; Gao, Xin

    2014-01-01

    of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue

  7. An Incremental Physically-Based Model of P91 Steel Flow Behaviour for the Numerical Analysis of Hot-Working Processes

    Directory of Open Access Journals (Sweden)

    Alberto Murillo-Marrodán

    2018-04-01

    Full Text Available This paper is aimed at modelling the flow behaviour of P91 steel at high temperature and a wide range of strain rates for constant and also variable strain-rate deformation conditions, such as those in real hot-working processes. For this purpose, an incremental physically-based model is proposed for the P91 steel flow behavior. This formulation considers the effects of dynamic recovery (DRV and dynamic recrystallization (DRX on the mechanical properties of the material, using only the flow stress, strain rate and temperature as state variables and not the accumulated strain. Therefore, it reproduces accurately the flow stress, work hardening and work softening not only under constant, but also under transient deformation conditions. To accomplish this study, the material is characterised experimentally by means of uniaxial compression tests, conducted at a temperature range of 900–1270 °C and at strain rates in the range of 0.005–10 s−1. Finally, the proposed model is implemented in commercial finite element (FE software to provide evidence of the performance of the proposed formulation. The experimental compression tests are simulated using the novel model and the well-known Hansel–Spittel formulation. In conclusion, the incremental physically-based model shows accurate results when work softening is present, especially under variable strain-rate deformation conditions. Hence, the present formulation is appropriate for the simulation of the hot-working processes typically conducted at industrial scale.

  8. Investigation of the influence of hybrid layers on the life time of hot forging dies

    Directory of Open Access Journals (Sweden)

    S. Legutko

    2013-04-01

    Full Text Available The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical loads, as well as intensive abrasion at raised temperature. The examination has been performed on a set of forging tools made of Unimax steel and intended for forging steel rings of gear box synchronizer in the factory FAS in Swarzedz (Poland.

  9. Draft genome sequence of Lampropedia cohaerens strain CT6(T) isolated from arsenic rich microbial mats of a Himalayan hot water spring.

    Science.gov (United States)

    Tripathi, Charu; Mahato, Nitish K; Rani, Pooja; Singh, Yogendra; Kamra, Komal; Lal, Rup

    2016-01-01

    Lampropedia cohaerens strain CT6(T), a non-motile, aerobic and coccoid strain was isolated from arsenic rich microbial mats (temperature ~45 °C) of a hot water spring located atop the Himalayan ranges at Manikaran, India. The present study reports the first genome sequence of type strain CT6(T) of genus Lampropedia cohaerens. Sequencing data was generated using the Illumina HiSeq 2000 platform and assembled with ABySS v 1.3.5. The 3,158,922 bp genome was assembled into 41 contigs with a mean GC content of 63.5 % and 2823 coding sequences. Strain CT6(T) was found to harbour genes involved in both the Entner-Duodoroff pathway and non-phosphorylated ED pathway. Strain CT6(T) also contained genes responsible for imparting resistance to arsenic, copper, cobalt, zinc, cadmium and magnesium, providing survival advantages at a thermal location. Additionally, the presence of genes associated with biofilm formation, pyrroloquinoline-quinone production, isoquinoline degradation and mineral phosphate solubilisation in the genome demonstrate the diverse genetic potential for survival at stressed niches.

  10. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  11. Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets

    Science.gov (United States)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Fegley, Bruce, Jr.

    2017-06-01

    We describe an experimental and theoretical study of olivine [Mg2SiO4 (Fo)-Fe2SiO4 (Fa)] vaporization. The vaporization behavior and thermodynamic properties of a fosterite-rich olivine (Fo95Fa5) have been explored by high-temperature Knudsen effusion mass spectrometry (KEMS) from 1750 to 2250 K. The gases observed (in order of decreasing partial pressure) are Fe, SiO, Mg, O2 and O. We measured the solidus temperature (∼2050 K), partial pressures of individual gases, the total vapor pressure, and thermodynamic activities and partial molar enthalpies of MgO, 'FeO', and SiO2 for the Fo95Fa5 olivine. The results are compared to other measurements and models of the olivine system. Our experimental data show olivine vaporizes incongruently. We discuss this system both as a psuedo-binary of Fo-Fa and a psuedo-ternary of MgO-'FeO'-SiO2. Iron/magnesium molar ratios in the sample before (∼0.05) and after (∼0.04) vaporization are consistent with the small positive deviations from ideality of fayalite (γ ∼ 1.17) in olivine of the composition studied (e.g., Nafziger and Muan, 1967). Our data for olivine + melt confirm prior theoretical models predicting fractional vaporization of Fe relative to Mg from molten silicates (Fegley and Cameron, 1987; Schaefer and Fegley, 2009; Ito et al., 2015). If loss of silicate atmospheres occurs from hot rocky exoplanets with magma oceans the residual planet may be enriched in magnesium relative to iron.

  12. The rule on granting subsidies for survey of hot drainage influences

    International Nuclear Information System (INIS)

    1977-01-01

    The rule is based on the prescriptions of the Law Concerning Proper Budget Enforcement on Subsidies and its Enforcement Order. These rules apply to the granting subsidies provided for by the Enforcement Order for the Special Account Law for Measures Promoting Power Source Development. Terms are defined, such as nuclear power generating facilities; arrangement work for equipments for surveying hot drainage influences; work of preliminary survey of hot drainage; work of surveying hot drainage influences; establishments, etc. The Minister of International Trade and Industry delivers the subsidies for all or a part of the expenses necessary for arrangement work of equipments for surveying hot drainage influences, work of preliminary survey of hot drainage and work of surveying hot drainage influences to the prefectures where nuclear power generating facilities have been or are to be set up, or their neighboring prefectures. Terms of delivery concerning an establishment vary from two years to four years according to the kinds of such subsidies. Limits of the subsidies concerning an establishment range from 10 million yen to 2.5 million yen. The applicant prefecture files the application to the Minister of International Trade and Industry. The Minister examines such applications, and notifies his decision to the applicants. Conditions on delivery, reports submitted by receivers of the subsidies and other matters related are specified. (Okada, K.)

  13. INTERMEDIATE-MASS HOT CORES AT ∼500 AU: DISKS OR OUTFLOWS?

    International Nuclear Information System (INIS)

    Palau, Aina; Girart, Josep M.; Fuente, Asunción; Alonso-Albi, Tomás; Fontani, Francesco; Sánchez-Monge, Álvaro; Boissier, Jérémie; Piétu, Vincent; Neri, Roberto; Busquet, Gemma; Estalella, Robert; Zapata, Luis A.; Zhang, Qizhou; Ho, Paul T. P.; Audard, Marc

    2011-01-01

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at ∼500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH 3 CH 2 OH, (CH 2 OH) 2 , CH 3 COCH 3 , and CH 3 OH, with, additionally, CH 3 CHO, CH 3 OD, and HCOOD for IRAS 22198+6336, and C 6 H and O 13 CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of ∼300 and ∼600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass ∼> 4 M ☉ . As for AFGL 5142, the hot core emission is resolved into two elongated cores separated ∼1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H 2 O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  14. Lanthanoid abundance of some neutral hot spring waters in Japan

    International Nuclear Information System (INIS)

    Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    1999-01-01

    Contents of lanthanoids (Ln's) in some neutral hot spring waters as well as in acidic hot spring waters were determined by neutron activation analysis. It was found that a higher pH resulted in lower concentrations of Ln's; the value of correlation coefficient (r) between the logarithm of the concentration of Sm ([Sm]), chosen as the representative of Ln's, and the logarithm of pH was -0.90. The sum of [Al] and [Fe] was strongly correlated with [Ln]'s in the pH range of 1.3 and 8.8; the correlation was expressed as log[Sm] = 0.893 log([Al] + [Fe]) - 5.45 with the r value of 0.98. The sum of [Al] and [Fe] was thus a good measure of the Ln contents in acidic and neutral hot spring waters. The Ln abundance patterns of neutral hot spring waters with normal CO 2 concentrations had concave shapes with relative depletion in the middle-heavy Ln's and seemed to reflect the solubility of Ln carbonates. The neutral hot spring water with a high CO 2 content of 1,800 ppm showed a Ln pattern with a relative enrichment in the heavy Ln's and seemed to reflect the solubility of Ln's observed for CO 2 -rich solutions. (author)

  15. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  16. Development of multilayer coatings for forming dies and tools of aluminium alloy from liquid state

    International Nuclear Information System (INIS)

    Torres, E; Ugues, D; Brytan, Z; Perucca, M

    2009-01-01

    In this work, a nanocomposite (Cr,Al) x N 1-x /Si 3 N 4 coating system was deposited on H11 hot work tool steel, using the Lateral Arc Rotating Cathodes (LARC (registered) ) deposition system and modulating the chemical composition of the chromium and aluminium-silicon content. Structural characterizations were performed using scanning electron microscopy, equipped with energy dispersive spectroscopy probe, and applying x-ray diffraction, for the evaluation of phase constitution and crystallite size. In addition to the structural features, the coatings' resistance to cyclic immersions in molten aluminium alloy was evaluated. The deposited CrAlSiN coatings exhibited an fcc-Cr 1-x Al x N type structure with different aluminium contents, which directly influence hardness and wear and fatigue resistance in cyclic immersion tests. The main failure modes that occurred on the coatings' surface were soldering and thermal fatigue cracks mainly in the form of heat checks. The aluminium rich coatings were able to withstand about 15 000 cycles, whereas the decrease in the aluminium content in the coatings results in a decrease in the resistance to the immersion in molten aluminium bath. It is worthwhile to note that uncoated H11, subjected to similar testing conditions, withstood at maximum 5000 cycles.

  17. Ab initio study of hot electrons in GaAs

    OpenAIRE

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation...

  18. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  19. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  20. Determination of optimal tool parameters for hot mandrel bending of pipe elbows

    Science.gov (United States)

    Tabakajew, Dmitri; Homberg, Werner

    2018-05-01

    Seamless pipe elbows are important components in mechanical, plant and apparatus engineering. Typically, they are produced by the so-called `Hamburg process'. In this hot forming process, the initial pipes are subsequently pushed over an ox-horn-shaped bending mandrel. The geometric shape of the mandrel influences the diameter, bending radius and wall thickness distribution of the pipe elbow. This paper presents the numerical simulation model of the hot mandrel bending process created to ensure that the optimum mandrel geometry can be determined at an early stage. A fundamental analysis was conducted to determine the influence of significant parameters on the pipe elbow quality. The chosen methods and approach as well as the corresponding results are described in this paper.

  1. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  2. Establishing a Measurement Tool for a Nursing Work Environment in Taiwan.

    Science.gov (United States)

    Lin, Li-Chiu; Lee, Huan-Fang; Yen, Miaofen

    2017-02-01

    The nursing work environment is a critical global health care problem. Many health care providers are concerned about the associations between the nursing work environment and the outcomes of organizations, nurses, and patients. Nursing work environment instruments have been assessed in the West but have not been considered in Asia. However, different cultures will affect the factorial structure of the tool. Using a stratified nationwide random sample, we created a measurement tool for the nursing work environment in Taiwan. The Nursing Work Environment Index-Revised Scale and the Essentials of Magnetism scale were used to examine the factorial structure. Item analysis, exploratory factor analysis, and confirmatory factor analysis were used to examine the hypothesis model and generate a new factorial structure. The Taiwan Nursing Work Environment Index (TNWEI) was established to evaluate the nursing work environment in Taiwan. The four factors were labeled "Organizational Support" (7 items), "Nurse Staffing and Resources" (4 items), "Nurse-Physician Collaboration" (4 items), and "Support for Continuing Education" (4 items). The 19 items explained 58.5% of the variance. Confirmatory factor analysis showed a good fit to the model (x2/df = 5.99; p nurses' work environment in Taiwan.

  3. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    Science.gov (United States)

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  4. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Kuo-Ting Wang

    2017-12-01

    Full Text Available Miscanthus (Miscanthus sp. Family: Poaceae was hot-water extracted (two h, at 160 °C at three scales: laboratory (Parr reactor, 300 cm3, intermediate (M/K digester, 4000 cm3, and pilot (65 ft3-digester, 1.841 × 106 cm3. Hot-water extracted miscanthus, hydrolyzate, and lignin recovered from hydrolyzate were characterized and evaluated for potential uses aiming at complete utilization of miscanthus. Effects of scale-up on digester yield, removal of hemicelluloses, deashing, delignification degree, lignin recovery and purity, and cellulose retention were studied. The scale-dependent results demonstrated that before implementation, hot-water extraction (HWE should be evaluated on a scale larger than a laboratory scale. The production of energy-enriched fuel pellets from hot-water extracted miscanthus, especially in combination with recovered lignin is recommended, as energy of combustion increased gradually from native to hot-water extracted miscanthus to recovered lignin. The native and pilot-scale hot-water extracted miscanthus samples were also subjected to enzymatic hydrolysis using a cellulase-hemicellulase cocktail, to produce fermentable sugars. Hot-water extracted biomass released higher amount of glucose and xylose verifying benefits of HWE as an effective pretreatment for xylan-rich lignocellulosics. The recovered lignin was used to prepare a formaldehyde-free alternative to phenol-formaldehyde resins and as an antioxidant. Promising results were obtained for these lignin valorization pathways.

  5. Mobile Launch Platform Vehicle Assembly Building Area (SWMU 056) Hot Spot 3 Bioremediation Interim Measures Work Plan, Kennedy Space Center, Florida

    Science.gov (United States)

    Whitney L. Morrison; Daprato, Rebecca C.

    2016-01-01

    This Interim Measures Work Plan (IMWP) presents an approach and design for the remediation of chlorinated volatile organic compound (CVOC) groundwater impacts using bioremediation (biostimulation and bioaugmentation) in Hot Spot 3, which is defined by the area where CVOC (trichloroethene [TCE], cis-1,2-dichloroethene [cDCE], and vinyl chloride [VC]) concentrations are greater than 10 times their respective Florida Department of Environmental Protection (FDEP) Natural Attenuation Default Concentration (NADC) [10xNADC] near the western Mobile Launch Platform (MLP) structure. The IM treatment area is the Hot Spot 3 area, which is approximately 0.07 acres and extends from approximately 6 to 22 and 41 to 55 feet below land surface (ft BLS). Within Hot Spot 3, a source zone (SZ; area with TCE concentrations greater than 1% solubility [11,000 micrograms per liter (micrograms/L)]) was delineated and is approximately 0.02 acres and extends from approximately 6 to 16 and 41 to 50 ft BLS.

  6. COMPUTER MODELING IN DEFORM-3D FOR ANALYSIS OF PLASTIC FLOW IN HIGH-SPEED HOT EXTRUSION OF BIMETALLIC FORMATIVE PARTS OF DIE TOOLING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2015-01-01

    Full Text Available The modern development of industrial production is closely connected with the use of science-based and high technologies to ensure competitiveness of the manufactured products on the world market. There is also much tension around an energy- and resource saving problem which can be solved while introducing new technological processes and  creation of new materials that provide productivity increase through automation and improvement of tool life. Development and implementation of such technologies are rather often considered as time-consuming processes  which are connected with complex calculations and experimental investigations. Implementation of a simulation modelling for materials processing using modern software products serves an alternative to experimental and theoretical methods of research.The aim of this paper is to compare experimental results while obtaining bimetallic samples of a forming tool through the method of speed hot extrusion and the results obtained with the help of computer simulation using DEFORM-3D package and a finite element method. Comparative analysis of plastic flow of real and model samples has shown that the obtained models provide high-quality and reliable picture of plastic flow during high-speed hot extrusion. Modeling in DEFORM-3D make it possible to eliminate complex calculations and significantly reduce a number of experimental studies while developing new technological processes.

  7. Design of Experiment as a powerful tool when applying Finite Element Method: a case study on prediction of hot rolling process parameters

    Directory of Open Access Journals (Sweden)

    Giancarlo G. Bordonaro

    2018-04-01

    Full Text Available The ultimate goal in hot roll pass design is to manufacture a rolled product with the required dimensional accuracy, defect free surface, and mechanical properties. The proper selection of process parameters is crucial to meet increasing requirements for desired quality and geometrical properties of rolled products. Due to the complex behavior of the metal flow at high temperatures and the severe plastic deformations in shape rolling, most efforts that have been made so far only rely upon the practical experience gained by operators. The large number of variables involved and the difficulty in investigating the process characteristics, make the use of finite element (FE tools an effective and attractive opportunity towards a thorough understanding of the rolling process. In this work, Design of Experiment (DOE is proposed as a powerful and viable method for the prediction of rolling process parameters while reducing the computational effort. Nonlinear 3D FE models of the hot rolling process are developed for a large set of complex cross-section shapes and validated against experimental evidences provided by real plant products at each stage of the deformation sequence. Based on the accuracy of the validated FE models, DOE is applied to investigate the flat rolling process under a series of many parameters and scenarios. Effects of main roll forming variables are analyzed on material flow behavior and geometrical features of a rolled product. The selected DOE factors are the workpiece temperature, diameter size, diameter reduction (draught, and rolls angular velocity. The selected DOE responses are workpiece spread, effective stresses, contact stresses, and rolls reaction loads. Eventually, the application of Pareto optimality (a Multi-Criteria Decision Making method allows to detect an optimal combination of design factors which respect desired target requirements for the responses.

  8. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  9. Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

  10. Effect of hot water extracted hardwood and softwood chips on particleboard properties

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Tsai Garcia-Perez; Eini Lowell; Thomas Amidon

    2014-01-01

    The affinity of particleboard (PB) to water is one of the main limitations for using PB in moisture-rich environments. PB dimensional stability and durability can be improved by reducing the available hydroxyl groups in wood through hemicellulose removal, for example, by hot water extraction (HWE), which increases wood resistance to moisture uptake. The resulting...

  11. Verification of the CADRCS RCS tool for NCTR work

    CSIR Research Space (South Africa)

    Botha, L

    2007-03-01

    Full Text Available This paper looks at the suitability of using the CADRCS RCS prediction tool for research into a class of NCTR work where the radar will give a high resolution output of the target, either a High Range Resolution (HRR) plot or Inverse Synthetic...

  12. Study on the hot corrosion behavior of a cast Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Guo, J.T.; Zhang, J.; Yuan, C.; Zhou, L.Z.; Hu, Z.Q. [Chinese Academy of Sciences, Shenyang (China). Inst. of Metal Research

    2010-07-01

    Hot corrosion behavior of Nickel-base cast superalloy K447 in 90% Na{sub 2}SO{sub 4} + 10% NaCl melting salt at 850 C and 900 C was studied. The hot corrosion kinetic of the alloy follows parabolic rate law under the experimental conditions. The external layer is mainly Cr{sub 2}O{sub 3} scale which is protective to the alloy, the intermediate layer is the Ti-rich phase, and the internal layer is mainly the international oxides and sulfides. With increased corrosion time and temperature, the oxide scales are gradually dissolved in the molten salt and then precipitate as a thick and non-protective scale. Chlorides cause the formation of volatile species, which makes the oxide scale disintegrate and break off. The corrosion kinetics and morphology examinations tend to support the basic dissolution model for hot corrosion mechanisms. (orig.)

  13. INTERMEDIATE-MASS HOT CORES AT {approx}500 AU: DISKS OR OUTFLOWS?

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, 08193 Bellaterra, Catalunya (Spain); Fuente, Asuncion; Alonso-Albi, Tomas [Observatorio Astronomico Nacional, P.O. Box 112, 28803 Alcala de Henares, Madrid (Spain); Fontani, Francesco; Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze (Italy); Boissier, Jeremie [Istituto di Radioastronomia, INAF, Via Gobetti 101, Bologna (Italy); Pietu, Vincent; Neri, Roberto [IRAM, 300 Rue de la piscine, 38406 Saint Martin d' Heres (France); Busquet, Gemma [Istituto di Fisica dello Spazio Interplanetario, INAF, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, 00133 Roma (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut Ciencies Cosmos, Universitat Barcelona, Marti Franques 1, 08028 Barcelona (Spain); Zapata, Luis A. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, P.O. Box 3-72, 58090 Morelia, Michoacan (Mexico); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Audard, Marc, E-mail: palau@ieec.uab.es [Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Versoix (Switzerland)

    2011-12-20

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at {approx}500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH{sub 3}CH{sub 2}OH, (CH{sub 2}OH){sub 2}, CH{sub 3}COCH{sub 3}, and CH{sub 3}OH, with, additionally, CH{sub 3}CHO, CH{sub 3}OD, and HCOOD for IRAS 22198+6336, and C{sub 6}H and O{sup 13}CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of {approx}300 and {approx}600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass {approx}> 4 M{sub Sun }. As for AFGL 5142, the hot core emission is resolved into two elongated cores separated {approx}1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H{sub 2}O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  14. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  15. Hot working behavior of selective laser melted and laser metal deposited Inconel 718

    Science.gov (United States)

    Bambach, Markus; Sizova, Irina

    2018-05-01

    The production of Nickel-based high-temperature components is of great importance for the transport and energy sector. Forging of high-temperature alloys often requires expensive dies, multiple forming steps and leads to forged parts with tolerances that require machining to create the final shape and a large amount of scrap. Additive manufacturing offers the possibility to print the desired shapes directly as net-shape components, requiring only little additional effort in machining. Especially for high-temperature alloys carrying a large amount of energy per unit mass, additive manufacturing could be more energy-efficient than forging if the energy contained in the machining scrap exceeds the energy needed for powder production and laser processing. However, the microstructure and performance of 3d-printed parts will not reach the level of forged material unless further expensive processes such as hot-isostatic pressing are used. Using the design freedom and possibilities to locally engineer material, additive manufacturing could be combined with forging operations to novel process chains, offering the possibility to reduce the number of forging steps and to create near-net shape forgings with desired local properties. Some innovative process chains combining additive manufacturing and forging have been patented recently, but almost no scientific knowledge on the workability of 3D printed preforms exists. The present study investigates the flow stress and microstructure evolution during hot working of pre-forms produced by laser powder deposition and selective laser melting (Figure 1) and puts forward a model for the flow stress.

  16. The Tools Used by Science Teachers and Their Relevance to Objectives

    Directory of Open Access Journals (Sweden)

    Ulaş KUBAT

    2018-01-01

    Full Text Available The aim of this study is to reveal the views of science teachers on the use of tools in the learning-teaching process. Well-designed tools provide a rich learning environment. In this research qualitative research method was used. Semi-structured interview form was used as data collection tool. The working group consisted of 16 science teachers. According to the findings of the research, teachers use the most experimental materials as tools and teaching materials and 4 + 4 + 4 system creates problems for tools and materials. In addition, teachers have emphasized the problem of lack of material development. They indicated that well designed tools contribute to the achievement of objectives

  17. Ergonomic design intervention strategy for work tools development for women agro based workers in Northeast India.

    Science.gov (United States)

    Chakrabarti, Debkumar; Bhattachheriya, Nandita

    2012-01-01

    Strategy for finding the appropriate strategy for work tool development has become a crucial issue in occupational wellness of varied nature of women workforce of Northeast India. This paper deals with ergonomics intervention through sustainable work tool design development process. Workers who frequently shift to different activities quite often in unorganised small-scale fruit processing units where productivity is directly related to the harvesting season require different work tools relevant to specific tasks and mostly workers themselves manage work tools of their own with available local resources. Whereas in contrast the tea-leaf pluckers are engaged in a single task throughout the year, and the work schedule and work equipment is decided and supplied to them based on the corporate decision where the workers do not have any individual control. Observations confirm the need for organising participatory workshops specific to trade based occupational well-being and different work tools for different tasks in mostly private owned unorganised sector. Implementation of single variety work tool development that supports a crucial component in tea-leaf plucking for which they are engaged in full time employment; and through a corporate decision a single design with its number of users makes a good effect.

  18. New tools and strategies for the inspection of the psychosocial working environment

    DEFF Research Database (Denmark)

    Rasmussen, Mette Bøgehus; Hansen, Tom; Nielsen, Klaus Tranetoft

    2011-01-01

    In 2007 the Danish Working Environment Authority launched a new strategy to strengthen and qualify primary prevention of work related stress. Part of the strategy consists of increased inspections of the psychosocial working environment as well as the development and implementation of a new...... improvement notices regarding work related stress and violence, and there has been an increasing number of notices issued on several risk factors. For some aspects, the tools have helped increase the clarity and comprehensibility of the improvement notices and reduce the WEA’s time consumption per enterprise....... The guidance tools seem to be a suitable and efficient way of assessing several health and safety risks concerning work related stress and violence thereby allowing the WEA to detect more of the existing problems. Future challenges projected for the strategy include continuously training all WEA inspectors...

  19. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  20. A RICH with aerogel: a study of refractive index uniformity

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Easo, S

    2004-01-01

    The use of aerogel as a radiator in the RICH detectors of LHCb is a challenge due to the hot environment of the hadron collider LHC. Large size tiles of silica aerogel were recently produced with unprecedented optical quality for such dimensions. Results of laboratory measurements and beam tests are briefly reported. A description of a method to measure the uniformity of the index of refraction within the tile is given.

  1. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Shikama, Tatsuo

    1999-01-01

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  2. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1986-01-01

    Accurate remote tightening of fasteners in a radioactive (Hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no ''feel,'' which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Test Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  3. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1987-01-01

    Accurate remote tightening of fasteners in a radioactive (hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no feel, which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Testing Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  4. Qualification of laser based additive production for manufacturing of forging Tools

    Directory of Open Access Journals (Sweden)

    Junker Daniel

    2015-01-01

    Full Text Available Mass customization leads to very short product life cycles, so the costs of a tool have to be amortized with a low number of workpieces. Especially for highly loaded tools, like those for forging, that leads to expensive products. Therefore more economical production processes for tool manufacturing have to be investigated. As laser additive manufacturing is already used for the production of moulds for injection moulding, this technology maybe could also improve the forging tool production. Within this paper laser metal deposition, which is industrially used for tool repair, will be investigated for the use in tool manufacturing. Therefore a mechanical characterization of parts built with different laser process parameters out of the hot work tool steel 1.2709 is made by upsetting tests and hardness measurements. So the influence of the additive manufacturing process on the hardness distribution is analysed.

  5. Working group 8: inspection tools

    Energy Technology Data Exchange (ETDEWEB)

    Billey, Deb; Kania, Richard; Nickle, Randy; Wang, Rick; Westwood, Stephen

    2011-07-01

    This eighth working group of the Banff 2011 conference discussed the inspection tools and techniques used by the upstream and downstream pipeline industry to evaluate pipeline integrity. Special attention was given to the challenges and successes related to in-line inspection (ILI) technology. The background of current dent assessment criteria in B31.8 was presented, including dent definition for ILI vendors and pipeline operators as well as codes (CSA Z662 and B31.8). The workshop described examples of dents and assessments showing inconsistency with current criteria as set out by TCPL and Marathon. This workshop produced a single, industry-wide definition of the dent. It was found that the strain based criteria were more practical because depth based is conservative and may miss shallow occurrences. The creation of joint industry group was proposed to develop strain based criteria for incorporation into CSAZ662 and B31.8.

  6. Remote tool development at the Interim Examination and Maintenance (IEM) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1986-07-01

    Tightening fasteners remotely in a hot cell can be a very exasperating experience. In many places, viewing is difficult and work sometimes must be done using mirrors and/or cameras for viewing. If electromechanical manipulators are used, the operator has no ''feel'', which often can result in broken equipment. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Test Facility (FFTF) are disassembled, several tools have been developed for tightening fasteners under these conditions. The philosophy used for this tool development is to use inexpensive commercially available tools with minimal modification for in-cell use. This philosophy was adopted after spending several years unsuccessfully trying to develop a special electric impact wrench

  7. Hot atom chemistry of carbon

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1975-01-01

    The chemistry of energetic carbon atoms is discussed. The experimental approach to studies that have been carried out is described and the mechanistic framework of hot carbon atom reactions is considered in some detail. Finally, the direction that future work might take is examined, including the relationship of experimental to theoretical work. (author)

  8. Menopausal Hot Flashes and White Matter Hyperintensities

    Science.gov (United States)

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  9. Falling hammer use evaluation for hot deformation hardness testing; Avaliacao do uso de um martelo de queda, para a determinacao da resistencia a deformacao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Beck, J.C.P.C.; Cauduro, Carlos R.; Schaeffer, Lirio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)

    1990-12-31

    This work performs a evaluation of the characteristics hot leaking of a 8620 stainless steel, deformed at 870 deg C. The tools associated with the measurements was described and a comparison between the theoretical values and the values experimentally obtained from the performed tests. 5 figs., 3 refs.

  10. Python data science handbook essential tools for working with data

    CERN Document Server

    VanderPlas, Jake

    2016-01-01

    For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues.

  11. Hot-dry-rock geothermal resource 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  12. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    Science.gov (United States)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural

  13. Analýza teplotního profilu hot bed a hot end u 3D tiskárny pomocí CAE

    OpenAIRE

    Severa, Tomáš

    2014-01-01

    Předkládaná diplomová práce se zabývá 3D tiskem na nekomerčních 3D tiskárnách typu RepRap a materiály, které se používají při tisku. Výstupem této práce je stručný úvod do problematiky 3D tisku, teorie šíření tepla a rozbor dvou nejdůležitějších částí tiskárny hot bed a hot end. K analýze a optimalizaci teplotního profilu hot bed a hot end jsou použity systémy pro podporu inženýrských prací CAD a CAE, SolidWorks a SolidWorks Flow Simulation. This master‘s thesis deals with 3D printing for ...

  14. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  15. Effects of LaB{sub 6} additions on the microstructure and mechanical properties of a sintered and hot worked P/M Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Jia; Gabbitas, Brian, E-mail: briang@waikato.ac.nz; Yang, Fei; Raynova, Stella; Lu, Huiyang

    2016-07-25

    A trace amount of LaB{sub 6} powder was added to P/M Ti and Ti–6Al–4V alloy to improve mechanical properties and refine the microstructure. After sintering, TiB whiskers and La{sub 2}O{sub 3} dispersoids had formed in the microstructure. In a CP Ti alloy, the generation of secondary phases leads to a much refined microstructure, but the alignment of TiB whiskers led to a variation in mechanical properties. Open die forging (ODF) or powder compact extrusion (PCE) was carried out on sintered Ti–6Al–4V alloy to further improve the mechanical properties. This caused severe deformation and re-alignment of the TiB whiskers. Comparing the properties of hot worked Ti–6Al–4V alloy and Ti–6Al–4V alloy with boron additions, an addition of LaB{sub 6} leads to slightly lower strength but gives significant better ductility. - Highlights: • LaB{sub 6} powder was added to sintered and hot worked Ti and Ti–6Al–4V alloy. • TiB whiskers and La{sub 2}O{sub 3} dispersoids formed in the microstructure. • Different alignments of TiB{sub w} led to a variation in mechanical properties. • Hot working caused severe deformation and re-alignment of TiB{sub w}. • An addition of LaB{sub 6} is better than pure boron additions.

  16. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  17. Plasma hot machining for difficult-to-cut materials, 1

    International Nuclear Information System (INIS)

    Kitagawa, Takeaki; Maekawa, Katsuhiro; Kubo, Akihiko

    1987-01-01

    Machinability of difficult-to-cut materials has been a great concern to manufacturing engineers since demands for new materials in the aerospace and nuclear industries are more and more increasing. The purpose of this study is to develop a hot machining to improve machinability of high hardness materials. A plasma arc is used for heating materials cut. The surface just after being heated is removed as a chip by tungsten carbide tools. The turning experiments of high hardness steels with aid of plasma arc heating show not only the decrease in cutting forces but also the following effectiveness: (1) The application of the plasma hot machining to the condition, under which a built-up edge (BUE) appears in turning 0.46%C steel, makes the BUE disappeared, bringing less flank wear. (2) In the case of 18%Mn steel cutting, deep groove wear on the end-cutting edge diminishes, and roughness of the machined surface is improved by the prevention from chatter. (3) Although the chilled cast iron has high hardness of above HB = 350, the plasma hot machining makes it possible to cut it with tungsten carbide tools having less chipping and flank wear. (author)

  18. Improving the Quality of Hot Stamping Parts with Innovative Press Technology and Inline Process Control

    Science.gov (United States)

    Vollmer, R.; Palm, C.

    2017-09-01

    The increasing number of hot stamped parts in the automotive industry is challenging different process areas. This paper presents a method how to improve the production rates over the whole life cycle of a hot forming part. In the core element of a hot forming line, the hydraulic press, mainly two processing steps are performed. Forming and quenching of the sheet metal part. In addition to the forming operation, it is inevitable to optimize the quenching condition in the bottom dead centre in order to reach a fully martensitic structure and tight geometrical tolerances of the part. Deviations in the blank thickness, tool wear, polishing of classical tools impair the quenching condition and therefore the part quality over the time. A new press and tool design has been developed to counter this effect by providing homogenous contact pressure over the whole die. Especially with a multi cavity tool, the new method is advantageous. Test series have shown that the new tool and press concept can produce parts with a blank thickness of 1.0 mm within 8.0 s cycle time. The so called PCH flex principle makes it possible to produce such high output rates under reliable conditions.

  19. Progress report on research and development work 1991 of the Department of Hot Chemistry, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    In the year under review, the Institute of Hot Chemistry (IHCH) was in the midst of a thematic reorientation process. The priority of future chemical-technical work will be in the field of the development of supercriticality processes. The objective of such work consists in seeking new ways for getting rid of resistant chemical pollutants (halogenated organic compounds). The following projects are presented in detail: 1) Waste control in the environment (communal waste management; water and soil; emission-reducing processes; highly polluted soils); 2) Solid state and materials research (chemistry of materials research); basic physical research (neutrino and particle physics); 3) Nuclear waste management (concluding work on reprocessing technology), and 4) Other research projects (Institute-related research). The Annex lists the publications made by the IHCH staff. (BBR) [de

  20. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    Science.gov (United States)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  1. The CRINE initiative -- Producing the engineering tools (functional specifications and common working practices)

    International Nuclear Information System (INIS)

    Tuft, V.

    1995-01-01

    Alongside culture change, CRINE's other challenge is producing the right tools for the North Sea industry to change its traditional method of operation. CRINE, an acronym for Cost Reduction Initiative for the New Era, is an industry-wide program now underway in the UK Continental Shelf whose main objective is to achieve thirty percent or more savings in capital costs and to half operating costs over the next few years. These tools cover functional specifications, common working practices and quality. Turning these tools into deliverables, and on time, was a mixture of painstaking work and willingness by people to adapt to the needs of the task

  2. Self-help cognitive behavior therapy for working women with problematic hot flushes and night sweats (MENOS@Work): a multicenter randomized controlled trial.

    Science.gov (United States)

    Hardy, Claire; Griffiths, Amanda; Norton, Sam; Hunter, Myra S

    2018-05-01

    The aim of the study was to examine the efficacy of an unguided, self-help cognitive behavior therapy (SH-CBT) booklet on hot flush and night sweat (HFNS) problem rating, delivered in a work setting. Women aged 45 to 60 years, having 10 or more problematic HFNS a week, were recruited to a multicenter randomized controlled trial, via the occupational health/human resources departments of eight organizations. Participants were 1:1 randomized to SH-CBT or no treatment waitlist control (NTWC). The primary outcome was HFNS problem rating; secondary outcomes included HFNS frequency, work and social adjustment, sleep, mood, beliefs and behaviors, and work-related variables (absence, performance, turnover intention, and work impairment due to presenteeism). Intention-to-treat analysis was used, and between-group differences estimated using linear mixed models. A total of 124 women were randomly allocated to SH-CBT (n = 60) and NTWC (n = 64). 104 (84%) were assessed for primary outcome at 6 weeks and 102 (82%) at 20 weeks. SH-CBT significantly reduced HFNS problem rating at 6 weeks (SH-CBT vs NTWC adjusted mean difference, -1.49; 95% CI, -2.11 to -0.86; P work and social adjustment; sleep, menopause beliefs, HFNS beliefs/behaviors at 6 and 20 weeks; improved wellbeing and somatic symptoms and reduced work impairment due to menopause-related presenteeism at 20 weeks, compared with the NTWC. There was no difference between groups in other work-related outcomes. A brief, unguided SH-CBT booklet is a potentially effective management option for working women experiencing problematic HFNS.

  3. Using Cognitive Work Analysis to fit decision support tools to nurse managers' work flow.

    Science.gov (United States)

    Effken, Judith A; Brewer, Barbara B; Logue, Melanie D; Gephart, Sheila M; Verran, Joyce A

    2011-10-01

    To better understand the environmental constraints on nurse managers that impact their need for and use of decision support tools, we conducted a Cognitive Work Analysis (CWA). A complete CWA includes system analyses at five levels: work domain, decision-making procedures, decision-making strategies, social organization/collaboration, and worker skill level. Here we describe the results of the Work Domain Analysis (WDA) portion in detail then integrate the WDA with other portions of the CWA, reported previously, to generate a more complete picture of the nurse manager's work domain. Data for the WDA were obtained from semi-structured interviews with nurse managers, division directors, CNOs, and other managers (n = 20) on 10 patient care units in three Arizona hospitals. The WDA described the nurse manager's environment in terms of the constraints it imposes on the nurse manager's ability to achieve targeted outcomes through organizational goals and priorities, functions, processes, as well as work objects and resources (e.g., people, equipment, technology, and data). Constraints were identified and summarized through qualitative thematic analysis. The results highlight the competing priorities, and external and internal constraints that today's nurse managers must satisfy as they try to improve quality and safety outcomes on their units. Nurse managers receive a great deal of data, much in electronic format. Although dashboards were perceived as helpful because they integrated some data elements, no decision support tools were available to help nurse managers with planning or answering "what if" questions. The results suggest both the need for additional decision support to manage the growing complexity of the environment, and the constraints the environment places on the design of that technology if it is to be effective. Limitations of the study include the small homogeneous sample and the reliance on interview data targeting safety and quality. Copyright © 2011

  4. Water chemistry management during hot functional test

    International Nuclear Information System (INIS)

    Yokoyama, Jiro; Kanda, Tomio; Kagawa, Masaru

    1988-01-01

    To reduce radiation exposure in light water reactor, it is important decrease radioactive corrosion product which is a radiation source. One of the countermeasures is to improve water quality during plant trial operation to form a stable oxide film and to minimize metal release to the coolant at the beginning of commercial operation. This study reviews the optimum water quality conditions to form a chromium rich oxide film during hot functional test (HFT) that is thought to be stable under the PWR condition and reduce the release of Ni that is the source of Co-58, the main radiation source of exposure. (author)

  5. Tool and ideological knowledge in Street Outreach Office working process.

    Science.gov (United States)

    Kami, Maria Terumi Maruyama; Larocca, Liliana Muller; Chaves, Maria Marta Nolasco; Piosiadlo, Laura Christina Macedo; Albuquerque, Guilherme Souza

    2016-01-01

    To identify ideological knowledge and tool knowledgethat provide support to the Street Outreach Office working process. Qualitative and exploratory research. TwentyStreet Outreach Office professionals and six users collected the data, applying different semi-structured interview schedules for each category of participants. The resulting categories were analyzed in light of tool and ideological knowledge presented in the working process. From the participant discourses the following ideological knowledge emerged: public policies and the needs of the person ina street situation and tool knowledge, as well as devices and tools for the care of people in street situations and a weekly schedule. The focus on the working process discourse, supported by ideological knowledge, was verified. The structural dimension of the objective reality of the population in street situations was perceptible in the social determination of being situating on the street. When daily situations were revealed, the limitations to be overcome in the working process context were noticed. Identificar os saberes ideológicos e instrumentais que subsidiam o processo de trabalho do Consultório na Rua. Pesquisa qualitativa e exploratória. A coleta de dados foi realizada junto a 20 profissionais e seis usuários do Consultório na Rua de um município do sul do Brasil, por meio de entrevistas com roteiros semiestruturados distintos para cada categoria de participantes. As classes resultantes foram analisadas à luz dos saberes ideológicos e instrumentais presentes no processo de trabalho. Dos discursos dos participantes emergiram os saberes ideológicos: políticas públicas e necessidades da pessoa em situação de rua e os saberes instrumentais: dispositivos e instrumentos no cuidado à pessoa em situação de rua e agenda semanal. Constatou-se a centralidade dos discursos no processo de trabalho, sustentado pelos saberes ideológicos. A dimensão estrutural da realidade objetiva da população em

  6. The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B{sub 4}C composites produced through hot pressing technique and subjected to hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Alpay, E-mail: alpiozer@gmail.com

    2016-11-01

    In this study, B{sub 4}C (5, 10, and 15 wt%) particle-reinforced Ecka Alumix 231{sup ®} aluminum matrix composites were produced through the hot pressing technique. Some of these samples were subjected to hot extrusion as a secondary treatment at 4:1 ratio at a temperature of 555 °C. The obtained samples were subjected to density measurement, hardness test, microstructure analysis, and three-point bending test, and their fracture surfaces were examined. A density of over 99% was found in the samples. Al-rich solid solution and primary Si, CuAl{sub 2}, Al{sub 2}CuMg, and Mg{sub 2}Si phases in the microstructure were determined through X-ray diffraction analysis. Grain sizes were found to be 20 μm and 2 μm in the microstructures of the samples produced through hot pressing technique and of those subjected to additional hot extrusion, respectively. High hardness values were obtained in the samples subjected to hot extrusion. In these samples, wt% B{sub 4}C particle ratio and transverse rupture strength increased considerably. Furthermore, the highest compressive strain value was obtained in the 10 wt% B{sub 4}C particle-reinforced composites subjected to hot extrusion. - Highlights: • Liquid phase formed at the temperature of hot pressing and hot extrusion. • In the samples, over 99.19% density was obtained. • Average matrix grain size was measured to be 2 μm through hot extrusion. • As wt% B{sub 4}C ratio increased, transverse rupture strength values increased. • High compressive strain values were obtained in the hot extrusion samples.

  7. The effect of hot working on structure and strength of a precipitation strengthened austenitic stainless steel

    International Nuclear Information System (INIS)

    Mataya, M.C.; Carr, M.J.; Krauss, G.

    1984-01-01

    The development of microstructure and strength during forging a γ' strengthened austenitic stainless steel, JBK-75, was investigated. The specimens were deformed in a strain range of 0.16 to 1.0, from 800 0 C to 1080 0 C at approximate strain rates of 2 (press forging) and 2 X 10 3 S -1 (high energy rate forging). Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited a wide variety of structures and properties within the range of forging parameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that γ' precipitation is not affected by substructure and that the strengthening contributions were independent and additive. Applications for these findings are discussed in terms of process design criteria

  8. [History of hot spring bath treatment in China].

    Science.gov (United States)

    Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin

    2011-07-01

    As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment.

  9. An Improved Cluster Richness Estimator

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /Ohio State U.; Rykoff, Eli S.; /UC, Santa Barbara; Koester, Benjamin P.; /Chicago U. /KICP, Chicago; McKay, Timothy; /Michigan U.; Hao, Jiangang; /Michigan U.; Evrard, August; /Michigan U.; Wechsler, Risa H.; /SLAC; Hansen, Sarah; /Chicago U. /KICP, Chicago; Sheldon, Erin; /New York U.; Johnston, David; /Houston U.; Becker, Matthew R.; /Chicago U. /KICP, Chicago; Annis, James T.; /Fermilab; Bleem, Lindsey; /Chicago U.; Scranton, Ryan; /Pittsburgh U.

    2009-08-03

    Minimizing the scatter between cluster mass and accessible observables is an important goal for cluster cosmology. In this work, we introduce a new matched filter richness estimator, and test its performance using the maxBCG cluster catalog. Our new estimator significantly reduces the variance in the L{sub X}-richness relation, from {sigma}{sub lnL{sub X}}{sup 2} = (0.86 {+-} 0.02){sup 2} to {sigma}{sub lnL{sub X}}{sup 2} = (0.69 {+-} 0.02){sup 2}. Relative to the maxBCG richness estimate, it also removes the strong redshift dependence of the richness scaling relations, and is significantly more robust to photometric and redshift errors. These improvements are largely due to our more sophisticated treatment of galaxy color data. We also demonstrate the scatter in the L{sub X}-richness relation depends on the aperture used to estimate cluster richness, and introduce a novel approach for optimizing said aperture which can be easily generalized to other mass tracers.

  10. Value engineering on the designed operator work tools for brick and rings wells production

    Science.gov (United States)

    Ayu Bidiawati J., R.; Muchtiar, Yesmizarti; Wariza, Ragil Okta

    2017-06-01

    Operator working tools in making brick and ring wells were designed and made, and the value engineering was calculated to identify and develop the function of these tools in obtaining the balance between cost, reliability and appearance. This study focused on the value of functional components of the tools and attempted to increase the difference between the costs incurred by the generated values. The purpose of this study was to determine the alternatives of tools design and to determine the performance of each alternative. The technique was developed using FAST method that consisted of five stages: information, creative, analytical, development and presentation stage. The results of the analysis concluded that the designed tools have higher value and better function description. There were four alternative draft improvements for operator working tools. The best alternative was determined based on the rank by using matrix evaluation. Best performance was obtained by the alternative II, amounting to 98.92 with a value of 0.77.

  11. Sustainable Industrial Production – undergraduate course on methods and tools in industry’s environmental work

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2003-01-01

    assessment and eco-design, process integration and pinch analysis, and finally a case study of own preference. All project work is done on real industry projects, and the project team gets close encounter with the companies and constructive critique during their work allowing them to incorporate the critique......The course aims at teaching key methods and tools for industry’s environmental work. It focuses on operational tools targeted for environmental improvements at various levels of intervention: the product, the production, the process and the emission. At these intervention levels, engineering...... disciplines are taught within the areas of: Management and planning, System description and inventory, Analysis and assessment, and Design & construction. The student is given the overview and holistic understanding of existing methods and tools and their field of application. Some methods and tools...

  12. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs

    Directory of Open Access Journals (Sweden)

    Chia S. Chan

    2017-07-01

    Full Text Available Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US, Sungai Klah (SK, Dusun Tua (DT, Sungai Serai (SS, Semenyih (SE, and Ayer Hangat (AH hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3–V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334–26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.

  13. Coercivity enhancement of HDDR-processed Nd-Fe-B permanent magnet with the rapid hot-press consolidation process

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, N. [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Ohkubo, T. [Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Hono, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Nishiuchi, T. [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan); Hirosawa, S., E-mail: Satoshi_Hirosawa@hitachi-metals.co.j [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2011-01-15

    High coercivity, fully dense anisotropic permanent magnets of submicron grain sizes were produced by rapid hot-press consolidation of hydrogenation-disproportionation-desorption-recombination (HDDR) processed Nd-Fe-Co-B powders. In the hot-press process, the coercivity of the consolidated material showed a sharp minimum prior to full densification. Thereafter, it reached a value 25% higher than that of the initial powder. Scanning electron microscopy and transmission electron microscopy observations revealed that the variation in H{sub cJ} was caused by a redistribution of Nd along the grain boundaries during hot pressing and that the high coercivity was attributable to the formation of thin, continuous Nd-rich phase along the grain boundaries.

  14. Safety distance for preventing hot particle ignition of building insulation materials

    OpenAIRE

    Jiayun Song; Supan Wang; Haixiang Chen

    2014-01-01

    Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere ...

  15. Advancement of Tools Supporting Improvement of Work Safety in Selected Industrial Company

    Science.gov (United States)

    Gembalska-Kwiecień, Anna

    2018-03-01

    In the presented article, the advancement of tools to improve the safety of work in the researched industrial company was taken into consideration. Attention was paid to the skillful analysis of the working environment, which includes the available technologies, work organization and human capital. These factors determine the development of the best prevention activities to minimize the number of accidents.

  16. Conceptual design of the hot cell facility universal docking station at ITER

    International Nuclear Information System (INIS)

    Dammann, A.; Benchikhoune, M.; Friconneau, J.P.; Ivanov, V.; Lemee, A.; Martins, J.P.; Tamassy, G.

    2011-01-01

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  17. Conceptual design of the hot cell facility universal docking station at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Benchikhoune, M.; Friconneau, J.P.; Ivanov, V. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lemee, A. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France); Martins, J.P. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Tamassy, G. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France)

    2011-10-15

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  18. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  19. Microstructure, Mechanical Properties, and Toughening Mechanisms of a New Hot Stamping-Bake Toughening Steel

    Science.gov (United States)

    Lin, Tao; Song, Hong-Wu; Zhang, Shi-Hong; Cheng, Ming; Liu, Wei-Jie; Chen, Yun

    2015-09-01

    In this article, the hot stamping-bake toughening process has been proposed following the well-known concept of bake hardening. The influences of the bake time on the microstructure and the mechanical properties of the hot stamped-baked part were studied by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and mechanical tests at room temperature. The results show that the amount of the retained austenite was nearly not changed by the bake process. Also observed were spherical Cu-rich precipitates of about 15 nm in martensite laths. According to the Orowan mechanism, their contribution of the Cu-rich precipitates to the strength is approximately 245 MPa. With the increase of the bake time, the tensile strength of the part was decreased, whereas both the ductility and the product of the tensile strength and ductility were increased then decreased. The tensile strength and ductility product and the tensile strength are as high as 21.9 GPa pct, 2086 MPa, respectively. The excellent combined properties are due to the transformation-induced plasticity effect caused by retained austenite.

  20. Development of opto-mechanical tools and procedures for the new generation of RICH-detectors at CERN

    CERN Document Server

    Laub, M; Ullaland, O

    2001-01-01

    This thesis is focused on development of opto-mechanical tools and procedures, which would contribute to the achievement of the best possible performance of new Ring Imaging Cherenkov (RICH) detectors. On the base of requirements, given by the physics objective of the LHCb detector, and an analysis of the detector opto-mechanical system, specifications of individual opto-mechanical components were determined. Spherical mirrors, planar mirrors and mirror adjustable mounts were the components of interest. Next, their parameters to be characterised were defined. Possible measurement methods were studied and relevant set ups based on suitable methods were developed. Meanwhile, available modern metrology technologies, like laser operated instruments or digital image processing, were applied with an attempt to innovate them and to increase their achievable performance limits. When applicable, the set ups were automated in order to make the measurements fast and reliable. An optical laboratory, devoted to the charac...

  1. "Hot", "Cold" and "Warm" Supports: Towards Theorising Where Refugee Students Go for Assistance at University

    Science.gov (United States)

    Baker, Sally; Ramsay, Georgina; Irwin, Evonne; Miles, Lauren

    2018-01-01

    This paper contributes a rich picture of how students from refugee backgrounds navigate their way into and through undergraduate studies in a regional Australian university, paying particular attention to their access to and use of different forms of support. We draw on the conceptualisation of "hot" and "cold" knowledge,…

  2. Ceramide-Enriched Membrane Domains in Red Blood Cells and the Mechanism ofSphingomyelinase-Induced Hot-Cold Hemolysis

    DEFF Research Database (Denmark)

    Montes, Ruth; Lopez, David; Sot, Jesus

    2008-01-01

    Hot-cold hemolysis is the phenomenon whereby red blood cells, preincubated at 37 °C in the presence of certain agents, undergo rapid hemolysis when transferred to 4 °C. The mechanism of this phenomenon is not understood. PlcHR2, a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa......) but also in goat erythrocytes, which lack PC. However, in horse erythrocytes, with a large proportion of PC and almost no SM, hot-cold hemolysis induced by PlcHR2 is not observed. Fluorescence microscopy observations confirm the formation of ceramide-enriched domains as a result of PlcHR2 activity. After......-cold hemolysis. Differential scanning calorimetry of erytrocyte membranes treated with PlcHR2 demonstrates the presence of ceramide-rich domains that are rigid at 4 °C but fluid at 37 °C. Ceramidase treatment causes the disapperance of the calorimetric signal assigned to ceramide-rich domains. Finally...

  3. VARIABILITY IN HOT CARBON-DOMINATED ATMOSPHERE (HOT DQ) WHITE DWARFS: RAPID ROTATION?

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A.; Bierwagen, Michael [Department of Physics and Astrophysics, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX, 75429 (United States); Montgomery, M. H.; Winget, D. E.; Falcon, Ross E., E-mail: Kurtis.Williams@tamuc.edu [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX, 78712 (United States)

    2016-01-20

    Hot white dwarfs (WDs) with carbon-dominated atmospheres (hot DQs) are a cryptic class of WDs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ WDs. Three (SDSS J1426+5752, SDSS J2200−0741, and SDSS J2348−0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are not harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236−0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005−1002, known to exhibit a 2.1-day photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating WDs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ WDs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear—both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions of future work that would best clarify the nature of these rare, intriguing objects.

  4. Tools for integrating environmental objectives into policy and practice: What works where?

    Energy Technology Data Exchange (ETDEWEB)

    Runhaar, Hens

    2016-07-15

    An abundance of approaches, strategies, and instruments – in short: tools – have been developed that intend to stimulate or facilitate the integration of a variety of environmental objectives into development planning, national or regional sectoral policies, international agreements, business strategies, etc. These tools include legally mandatory procedures, such as Environmental Impact Assessment and Strategic Environmental Assessment; more voluntary tools such as environmental indicators developed by scientists and planning tools; green budgeting, etc. A relatively underexplored question is what integration tool fits what particular purposes and contexts, in short: “what works where?”. This paper intends to contribute to answering this question, by first providing conceptual clarity about what integration entails, by suggesting and illustrating a classification of integration tools, and finally by summarising some of the lessons learned about how and why integration tools are (not) used and with what outcomes, particularly in terms of promoting the integration of environmental objectives.

  5. Tools for integrating environmental objectives into policy and practice: What works where?

    International Nuclear Information System (INIS)

    Runhaar, Hens

    2016-01-01

    An abundance of approaches, strategies, and instruments – in short: tools – have been developed that intend to stimulate or facilitate the integration of a variety of environmental objectives into development planning, national or regional sectoral policies, international agreements, business strategies, etc. These tools include legally mandatory procedures, such as Environmental Impact Assessment and Strategic Environmental Assessment; more voluntary tools such as environmental indicators developed by scientists and planning tools; green budgeting, etc. A relatively underexplored question is what integration tool fits what particular purposes and contexts, in short: “what works where?”. This paper intends to contribute to answering this question, by first providing conceptual clarity about what integration entails, by suggesting and illustrating a classification of integration tools, and finally by summarising some of the lessons learned about how and why integration tools are (not) used and with what outcomes, particularly in terms of promoting the integration of environmental objectives.

  6. Hot subdwarfs formed from the merger of two He white dwarfs

    Science.gov (United States)

    Schwab, Josiah

    2018-06-01

    We perform stellar evolution calculations of the remnant of the merger of two He white dwarfs (WDs). Our initial conditions are taken from hydrodynamic simulations of double WD mergers and the viscous disc phase that follows. We evolve these objects from shortly after the merger into their core He-burning phase, when they appear as hot subdwarf stars. We use our models to quantify the amount of H that survives the merger, finding that it is difficult for ≳ 10^{-4} M_{⊙} of H to survive, with even less being concentrated in the surface layers of the object. We also study the rotational evolution of these merger remnants. We find that mass-loss over the {˜ } 10^4 yr following the merger can significantly reduce the angular momentum of these objects. As hot subdwarfs, our models have moderate surface rotation velocities of 30-100 km s-1. The properties of our models are not representative of many apparently isolated hot subdwarfs, suggesting that those objects may form via other channels or that our modelling is incomplete. However, a sub-population of hot subdwarfs are moderate-to-rapid rotators and/or have He-rich atmospheres. Our models help to connect the observed properties of these objects to their progenitor systems.

  7. The effects of polymers' visco-elastoplastic properties on the micro cavities filling step of hot embossing process

    Science.gov (United States)

    Cheng, Gang; Barrière, Thierry

    2018-05-01

    The hot embossing process has been widely used in the manufacturing of polymer components, especially for the fabrication of micro or nano components. The significant advantage of the hot embossing process compared to the traditional injection moulding process is the excellent effective filling ratio for the high aspect ratio components and large surface structural components. The lack of material behavior modeling and numerical simulation limits the further development the hot embossing process, especially at the micro and nano scales. In this paper, a visco-elastoplastic behavior law has been proposed to describe the amorphous thermoplastic polymer mechanical properties in the hot embossing processing temperature range, which is lightly above their glass transition temperature. Uniaxial compression tests have been carried out in order to investigate the amorphous thermoplastic polymers properties. The material parameters in the visco-elastoplastic model have been identified according to the experimental results. A 3D numerical model has been created in the simulation software, which is based on the finite element method. The numerical simulation of the filling step of the hot embossing process has been effectuated by taking into account the viscous, elastic and plastic behaviors of thermoplastic polymers. The micro hot embossing process has been carried out using horizontal injection compression moulding equipment. A complete compression mould tool, equipped with the heating system, the cooling system, the ejection system and the vacuum system, has been designed and elaborated for this research work. The microfluidic devices based on the amorphous thermoplastic polymers have been successfully elaborated by hot embossing process. Proper agreement between the numerical simulation and the experimental elaboration has been obtained.

  8. The Effect of Hot Working on Structure and Strength of a Precipitation Strengthened Austenitic Stainless Steel

    Science.gov (United States)

    Mataya, M. C.; Carr, M. J.; Krauss, G.

    1984-02-01

    The development of microstructure and strength during forging in a γ' strengthened austenitic stainless steel, JBK-75, was investigated by means of forward extrusion of cylindrical specimens. The specimens were deformed in a strain range of 0.16 to 1.0, from 800°C to 1080°C, and at approximate strain rates of 2 (press forging) and 2 × 103 s-1 (high energy rate forging), and structures examined by light and transmission microscopy. Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited an extremely wide variety of structures and properties within the range of forging pzrameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of observed microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that the γ' precipitation process is not affected by substructure and that the strengthening contributions, from substructure and precipitation, were independent and additive. Applications for these findings are discussed in terms

  9. Lower Silurian `hot shales' in North Africa and Arabia: regional distribution and depositional model

    Science.gov (United States)

    Lüning, S.; Craig, J.; Loydell, D. K.; Štorch, P.; Fitches, B.

    2000-03-01

    Lowermost Silurian organic-rich (`hot') shales are the origin of 80-90% of Palaeozoic sourced hydrocarbons in North Africa and also played a major role in petroleum generation on the Arabian Peninsula. In most cases, the shales were deposited directly above upper Ordovician (peri-) glacial sandstones during the initial early Silurian transgression that was a result of the melting of the late Ordovician icecap. Deposition of the main organic-rich shale unit in the North African/Arabian region was restricted to the earliest Silurian Rhuddanian stage ( acuminatus, atavus and probably early cyphus graptolite biozones). During this short period (1-2 m.y.), a favourable combination of factors existed which led to the development of exceptionally strong oxygen-deficiency in the area. In most countries of the study area, the post-Rhuddanian Silurian shales are organically lean and have not contributed to petroleum generation. The distribution and thickness of the basal Silurian `hot' shales have been mapped in detail for the whole North African region, using logs from some 300 exploration wells in Libya, Tunisia, Algeria and Morocco. In addition, all relevant, accessible published and unpublished surface and subsurface data of the lower Silurian shales in North Africa and Arabia have been reviewed, including sedimentological, biostratigraphic and organic geochemical data. The lowermost Silurian hot shales of northern Gondwana are laterally discontinuous and their distribution and thickness were controlled by the early Silurian palaeorelief which was shaped mainly by glacial processes of the late Ordovician ice age and by Pan-African and Infracambrian compressional and extensional tectonism. The thickest and areally most extensive basal Silurian organic-rich shales in North Africa occur in Algeria, Tunisia and western Libya, while on the Arabian Peninsula they are most prolific in Saudi Arabia, Oman, Jordan and Iraq. The hot shales were not deposited in Egypt, which was a

  10. Modeling The Interaction Effects Between Tools And The Work Piece For Metal Forming Processes

    International Nuclear Information System (INIS)

    Franzke, Martin; Puchhala, Sreedhar; Dackweiler, Harald

    2007-01-01

    In metal forming processes especially in cold forming, elastic deformation of the tools has a big impact on the final shape of the work-piece. Computation of such processes considering the plastic effects of the work-piece and elastic deformations of the tools at a time in a single FE model complicates to manage the convergence criteria. This situation is even aggravated if the contact situations (between working and support rolls) have to be considered in the simulation, which requires a very fine discretization of the contact zones of both the tool and work piece. This paper presents recently developed concept which meets the above mentioned demands very effectively. Within this concept, the computation of the elastic effects of the tools is separated from the process simulation (which considers elastic-plastic effects of the work-piece). Both simulations are coupled via automatic data interchange, which is bi-directional, because both simulations influence each other. The advantages of this concept include a quite easy to handle contact situations in process simulation, smaller stiffness matrix compared to single model approach and good convergence of the computation. This concept is highly generalized and successfully applied to simulate rolling, drawing, extrusion and forging processes. The above mentioned concept is being implemented into the FE package PEP and LARSTRAN/SHAPE. Rolling experiments are conducted in duo and quarto configuration. Optical three-dimensional digitalizing system was used to measure the deformations within the machine and work-piece profile. These results are used for the validation of FE simulations. This work is being sponsored by the German Research Foundation (DFG) through the project ''Interaction effects between processes and structures-SPP1180''

  11. Generation and use of process maps for hot extrusion of seamless tubes for nuclear applications

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Full text: Hot extrusion is known as significant bulk deformation step in manufacturing of seamless tube production. Elevated temperature deformation carried out above the recrystallization temperature would enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature and strain rate (Ram speed). Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. Zirconium alloys and special nuclear grade austenitic stainless steels are two important groups of materials used as structural and core components in thermal and fast reactors world wide respectively. The properties of former alloy are very sensitive to the thermo mechanical fabrication steps initiated with hot extrusion due to their anisotropic deformation behaviour. However, nuclear grade austenitic stainless steels have many variants from their commercial grades in terms of micro and macro alloy chemistry. Factors such as these significantly affect the workability of the materials and require proper selection of extrusion parameters especially working temperature and extrusion speed plays a key role in the quality of the product. Modern developments in processing technology envisage the application of processing maps based on dynamic material model for selection of hot extrusion parameters. The present paper is aimed at bringing out significance of the map in selection of working domain with respect to the industrial process conditions for both groups of nuclear materials mentioned earlier. Developed process maps of certain alloys suggest use of extremely slow strain rate and low temperature extrusion which can not be achieved during bulk processing due to design of equipment and heat transfer constraints in industrial scale production. Attempts are made to highlight

  12. Radiophase development in hot-pressed alkoxide-derived titanate ceramics for nuclear waste stabilization

    International Nuclear Information System (INIS)

    Dickson, F.J.; Mitamura, H.; White, T.J.

    1989-01-01

    This paper reports phase development as a function of hot-pressing temperature studied in alkoxide-derived titanate-based ceramics doped with a 10 wt% loading of a sodium-rich (NAR) and a sodium-poor (NAP) simulated high-level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot-pressing temperatures between 890 degrees and 920 degrees C. After hot-pressing at 1100 degrees C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite-type, perovskite, alloy, and reduced rutile (Magneli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (≤50 degrees C), beginning at 870 degrees and 850 degrees C for NAP and NAR, respectively, although full densification was not achieved below 1100 degrees C. Both waste forms exhibited comparable microstructure and aqueous durability

  13. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  14. Sensitivity Analysis of Oxide Scale Influence on General Carbon Steels during Hot Forging

    Directory of Open Access Journals (Sweden)

    Bernd-Arno Behrens

    2018-02-01

    Full Text Available Increasing product requirements have made numerical simulation into a vital tool for the time- and cost-efficient process design. In order to accurately model hot forging processes with finite, element-based numerical methods, reliable models are required, which take the material behaviour, surface phenomena of die and workpiece, and machine kinematics into account. In hot forging processes, the surface properties are strongly affected by the growth of oxide scale, which influences the material flow, friction, and product quality of the finished component. The influence of different carbon contents on material behaviour is investigated by considering three different steel grades (C15, C45, and C60. For a general description of the material behaviour, an empirical approach is used to implement mathematical functions for expressing the relationship between flow stress and dominant influence variables like alloying elements, initial microstructure, and reheating mode. The deformation behaviour of oxide scale is separately modelled for each component with parameterized flow curves. The main focus of this work lies in the consideration of different materials as well as the calculation and assignment of their material properties in dependence on current process parameters by application of subroutines. The validated model is used to carry out the influence of various oxide scale parameters, like the scale thickness and the composition, on the hot forging process. Therefore, selected parameters have been varied within a numerical sensitivity analysis. The results show a strong influence of oxide scale on the friction behaviour as well as on the material flow during hot forging.

  15. Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis

    Directory of Open Access Journals (Sweden)

    Asit Kumar Parida

    2017-04-01

    Full Text Available In the present work, the variation of nose radius on forces, cutting temperature, stress, has been studied using finite element modeling in hot turning operation of Inconel 718. Three values of nose radius were taken (0.4, 0.8 and 1.2 mm. Cutting force, thrust force, stress, and cutting temperature have been predicted using commercial DEFORM™ software at different cutting tool nose radius in both room and heated conditions. With the increase of tool nose radius in both room and elevated machining conditions the cutting force and thrust force increased. The cutting temperature, chip thickness and chip tool contact length also have been studied. In order to validate the numerical results an experimental analysis has been performed and good agreement between them has been observed

  16. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  17. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  18. HTML5 Designing Rich Internet Applications

    CERN Document Server

    David, Matthew

    2010-01-01

    Implement the powerful new multimedia and interactive capabilities offered by HTML5, including style control tools, illustration tools, video, audio, and rich media solutions. Understand how HTML5 is changing the Web development game with this full-color, project-based treatment that shows you-not just tells you-what HTML5 can do for your Web sites. Reinforce your practical understanding of the new standard with demo applications and tutorials, so that execution is one short step away. The companion website, visualizetheweb.com, is packed full of extra information, online code libraries, and

  19. Process for gasifying fuels with the recovery of rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, F

    1921-04-10

    A process for gasifying fuels with recovery of water-free, rich-in-tar gases in a ring-gas-producer characterized by hot-gas-stream arising from the gasification bed of a fresh chamber in the known way is divided. One part is conducted through an old chamber, the other part is led first during the drying through the fresh fuel and with the received water-vapor also through the old chamber and then during the carbonization with the carbonization products is led to the carbonization-gas conduit.

  20. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains

    DEFF Research Database (Denmark)

    Riemann, D; Hansen, Gert Helge; Niels-Christiansen, L

    2001-01-01

    in the regulation of intra-articular levels of neuropeptides and chemotactic mediators as well as in adhesion and cell-cell interactions. Here, we report these peptidases in synoviocytes to be localized predominantly in glycolipid- and cholesterol-rich membrane microdomains known as 'rafts'. At the ultrastructural...... from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T......-lymphocytes, cholesterol depletion of synoviocytes greatly reduced their capability to induce an early lymphocytic expression of aminopeptidase N/CD13. We propose caveolae/rafts to be peptidase-rich 'hot-spot' regions of the synoviocyte plasma membrane required for functional cell-cell interactions with lymphocytes...

  1. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.

    2003-01-01

    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  2. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    2004-01-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  3. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  4. The effect of additional elements on the magnetic properties of hot-rolled Nd-Fe-B alloys

    International Nuclear Information System (INIS)

    Chang, W.C.; Nakamura, H.; Paik, C.R.; Sugimoto, S.; Okada, M.; Homma, M.

    1992-01-01

    The magnetic properties of hot-rolled Nd 16 Fe bal. B 6 M 1.5 (M = Cu, Ga and Al) and Nd 16 Fe 76 B 5.5 Ga 1.5 Al 1 alloys were investigated, in order to study the role of additive elements in improving the magnetic properties in the Nd-Fe-B system. It is found that the original grain size of Cu, Ga or Ga-Al added alloys is much finer than that of the ternary and Al added alloys. But the grain size is almost identical for all the alloys after hot-rolling at 1000degC with 90% reduction in thickness. The coercivity of hot-rolled alloys with Cu, Ga or Ga-Al addition is not improved as was expected, because Nd-rich liquid phase in these alloys is very easily squeezed out during high-reduction-ratio rolling. Less quantity and nonuniform distribution of Nd-rich phase between distributed grains are believed to be the main reasons to depress the effect on the grain boundary smoothing. This effect is not the same as those observed in the Pr-Fe-B system. The highest magnetic properties achieved in this study are B r = 10 kG, i H c = 8.2 kOe, (BH) max = 18.5 MGOe for the Nd 16 Fe 76.5 B 6 Al 1.5 alloy. (orig.)

  5. Quantitative analysis of prediction models for hot cracking in ...

    Indian Academy of Sciences (India)

    A RodrМguez-Prieto

    2017-11-16

    Nov 16, 2017 ... In this paper, a systematic analysis of different methods of d-ferrite estimation is carried out based ... Keywords. d-Ferrite; hot cracking; prediction methods; stringency levels; decision tool. 1. .... prediction of d-ferrite content using a system of multi- ..... support the selection of some materials according to their.

  6. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J W; Irick, D K [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  7. Determination of the Interfacial Heat Transfer Coefficient in the Hot Stamping of AA7075

    Directory of Open Access Journals (Sweden)

    Ji Kang

    2016-01-01

    Full Text Available The interfacial heat transfer coefficient (IHTC is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE simulations to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC values between a hot aluminium alloy 7075 blank and cold dies. The IHTC values were determined at different contact pressures under both dry and lubricated (Omega-35 conditions. In addition, a model to calculate the IHTC value at different contact pressures and area densities of lubricant was developed for the hot stamping process, which was proved to be working well with verification tests.

  8. Determination of Hot Springs Physico-Chemical Water Quality Potentially Use for Balneotherapy

    International Nuclear Information System (INIS)

    Zaini Hamzah; Nurul Latiffah Abd Rani; Ahmad Saat; Ab Khalik Wood

    2013-01-01

    Hot springs areas are attractive places for locals and foreigners either for excursion or for medical purposes such as for healing of various types of diseases. This is because the hot spring water is believed rich in salt, sulfur, and sulfate in the water body. For many thousands of years, people have used hot springs water both for cozy bathing and therapy. Balneotherapy is the term used where the patients were immersed in hot mineral water baths emerged as an important treatment in Europe around 1800s. In view of this fact, a study of hot springs water was performed with the objective to determine the concentration of Na + , K + , Ca 2+ , S, SO 4 2- and Cl - in hot springs water around the State of Selangor, Malaysia. Energy dispersive X-ray Fluorescent Spectrometry (EDXRF) was used to measure the concentrations of Na + , K + , Ca 2+ and S meanwhile for SO 4 2- and Cl - anion, Ion Chromatography (IC) was used. The concentration of Na + obtained for filtered and unfiltered samples ranged from 33.68 to 80.95 and 37.03 to 81.91 ppm respectively. Meanwhile, the corresponding concentrations of K + ranged from 1.47 to 45.72 and 1.70 to 56.81 ppm. Concentrations of Ca 2+ ranged from 2.44 to 18.45 and 3.75 to 19.77 ppm. The concentration of S obtained for filtered and unfiltered samples ranged from 1.87 to 12.41 and 6.25 to 12.86 ppm. The concentrations for SO 4 2- and Cl - obtained ranged from 0.15 to 1.51 ppm and 7.06 to 20.66 ppm for filtered samples. The data signified higher concentration of salt and other important nutrients in hot spring water. (author)

  9. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    In this paper we present a novel method for the generation of doubly-curved, architectural design surfaces using swept Euler elastica and cubic splines. The method enables a direct design to production workflow with robotic hot-blade cutting, a novel robotic fabrication method under development......-trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  10. Effect of unit size on thermal fatigue behavior of hot work steel repaired by a biomimetic laser remelting process

    Science.gov (United States)

    Cong, Dalong; Li, Zhongsheng; He, Qingbing; Chen, Dajun; Chen, Hanbin; Yang, Jiuzhou; Zhang, Peng; Zhou, Hong

    2018-01-01

    AISI H13 hot work steel with fatigue cracks was repaired by a biomimetic laser remelting (BLR) process in the form of lattice units with different sizes. Detailed microstructural studies and microhardness tests were carried out on the units. Studies revealed a mixed microstructure containing martensite, retained austenite and carbide particles with ultrafine grain size in units. BLR samples with defect-free units exhibited superior thermal fatigue resistance due to microstructure strengthening, and mechanisms of crack tip blunting and blocking. In addition, effects of unit size on thermal fatigue resistance of BLR samples were discussed.

  11. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens

    NARCIS (Netherlands)

    Mettrop, I.S.; Cusell, C.; Kooijman, A.M.; Lamers, L.P.M.

    2015-01-01

    In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This

  12. Market survey of forest work tools and heating devices

    International Nuclear Information System (INIS)

    Mutikainen, A.

    2002-01-01

    The TTS Institute has published internet pages where information has been 'gathered on the work tools, equipment, devices and machines needed by forest owners and people who use wood heating. The contact information of manufacturers and merchants for such tools and devices has also been provided. A link to the pages can be found at http://www.tts.fi. The pages are meant to be an aid for product buyers and also for advisory and research use. So far the pages are in trial use and are free of charge. They will be developed on the basis of feedback received. The TTS Institute internet pages operate primarily as a contact list where different product groups and contact information for product manufacturers and merchants can be found. The pages present limited information on the product since updating detailed product information would require intensive market monitoring and great work input. Furthermore, the objective is not to compete in the advertising market, but to publish independent information where the beneficiary is primarily the buyer. The contents of the pages are mainly limited to the products concerned with private forest owners and people who heat detached houses with wood, and information on those products. Information is collected and updated from public sources and also partly direct from the manufacturers and merchants. For clarity, the source of information will be mentioned. (orig.)

  13. Development of hot and cool executive functions in middle childhood: Three-year growth curves of decision making and working memory updating.

    Science.gov (United States)

    Lensing, Nele; Elsner, Birgit

    2018-05-07

    Although middle childhood is an important period for the development of hot and cool executive functions (EFs), longitudinal studies investigating trajectories of childhood EF development are still limited and little is known about predictors for individual developmental trajectories. The current study examined the development of two typical facets of cool and hot EFs over a 3-year period during middle childhood, comparing a younger cohort (6- and 7-year-olds at the first wave [T1]; n = 621) and an older cohort (8- and 9-year-olds at T1; n = 975) of children. "Cool" working memory updating (WM) was assessed using a backward digit span task, and "hot" decision making (DM) was assessed using a child variant of the Iowa Gambling Task. Linear latent growth curve analyses revealed evidence for developmental growth as well as interindividual variance in the initial level and rate of change in both EF facets. Initial level of WM was positively associated with age (both between and within cohorts), socioeconomic status, verbal ability, and processing speed, whereas initial levels of DM were, in addition to a (potentially age-related) cohort effect, exclusively predicted by gender, with boys outperforming girls. None of the variables predicted the rate of change, that is, the developmental trajectories. However, younger children, as compared with older children, had slightly steeper WM growth curves over time, hinting at a leveling off in the development of WM during middle childhood. In sum, these data add important evidence to the understanding of hot and cool EF development during middle childhood. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory East

    International Nuclear Information System (INIS)

    Neimark, L.A.; Jackson, W.D.; Donahue, D.A.

    1979-01-01

    The Alpha-Gamma Hot-Cell Facility has been in operation at Argonne National Laboratory East (ANL-E) for 15 years. The facility was designed for plutonium research in support of ANL's LMFBR program. The facility consists of a kilocurie, nitrogen-atmosphere alpha-gamma hot cell and supporting laboratories. Modifications to the facility and its equipment have been made over the years as the workload and nature of the work changed. These modifications included inerting the entire hot cell, adding four work stations, modifying in-loading procedures and examination equipment to handle longer test articles, and changing to a new sodium-vapor lighting system. Future upgrading includes the addition of a decontamination and repair facility, use of radio-controlled transfer carts, refurbishment of the zinc bromide windows, and the installation of an Auger microprobe

  15. Tribological Behavior of Laser Textured Hot Stamping Dies

    Directory of Open Access Journals (Sweden)

    Andre Shihomatsu

    2016-01-01

    Full Text Available Hot stamping of high strength steels has been continuously developed in the automotive industry to improve mechanical properties and surface quality of stamped components. One of the main challenges faced by researchers and technicians is to improve stamping dies lifetime by reducing the wear caused by high pressures and temperatures present during the process. This paper analyzes the laser texturing of hot stamping dies and discusses how different surfaces textures influence the lubrication and wear mechanisms. To this purpose, experimental tests and numerical simulation were carried out to define the die region to be texturized and to characterize the textured surface topography before and after hot stamping tests with a 3D surface profilometer and scanning electron microscopy. Results showed that laser texturing influences the lubrication at the interface die-hot sheet and improves die lifetime. In this work, the best texture presented dimples with the highest diameter, depth, and spacing, with the surface topography and dimples morphology practically preserved after the hot stamping tests.

  16. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  17. Remarks on theoretical hot-atom chemistry

    International Nuclear Information System (INIS)

    Inokuti, Mitio

    1993-01-01

    The publication of the 'Handbook of Hot Atom Chemistry', following the earlier volume 'Recent Trend and Application', was a major milestone in physical chemistry. Theoretical treatments of hot atom chemistry must address two classes of problems. The first class concerns the individual collisions of hot atoms with other atoms or molecules. The second class concerns the description of the consequences of the many collisions of hot atoms and their chemical environment. Most of the remarks pertain to the problems of the first class. The central issue is the adiabaticity of nuclear motions versus electronic motions. To be precise, any atomic core motion should be mentioned rather than pure nuclear motion, because tightly bound core electrons are largely irrelevant to the chemistry. When nuclear motions are sufficiently slow, or for other reasons that can be regarded as adiabatic, the collision problem is basically straightforward, therefore, interatomic and intermolecular forces can be assumed, and their consequences for nuclear motions are calculable in principle. In the case of non-adiabaticity being important, much more difficult problems arise, and it is briefly discussed, and the work by Phelps is cited. (K.I.)

  18. Isospin and momentum dependence of liquid-gas phase transition in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hongru; Chen, Liewen; Li, Baoan

    2008-01-01

    The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using different interactions with or without isospin and/or momentum dependence. The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy as well as the isospin and momentum dependence of the nuclear interaction. (author)

  19. How "Hot Precursors" Modify Island Nucleation: A Rate-Equation Model

    Science.gov (United States)

    Morales-Cifuentes, Josue R.; Einstein, T. L.; Pimpinelli, A.

    2014-12-01

    We propose a novel island nucleation and growth model explicitly including transient (ballistic) mobility of the monomers deposited at rate F , assumed to be in a hot precursor state before thermalizing. In limiting regimes, corresponding to fast (diffusive) and slow (ballistic) thermalization, the island density N obeys scaling N ∝Fα . In between is found a rich, complex behavior, with various distinctive scaling regimes, characterized by effective exponents αeff and activation energies that we compute exactly. Application to N (F ,T ) of recent organic-molecule deposition experiments yields an excellent fit.

  20. Simplified numerical simulation of hot channel in sodium cooled reactor

    International Nuclear Information System (INIS)

    Fonseca, F. de A.S. da; Silva Filho, E.

    1988-12-01

    The thermal-hydraulic parameter values that restrict the operation of a liquid sodium cooled reactor are not established by the average conditions of the coolant in the reactor core but by the extreme conditions of the hot channel. The present work was developed to analysis of hot channel of a sodium cooled reactor, adapting to this reactor an existent simplified model for hot channel of pressurized water reactor. The model was applied for a standard sodium reactor and the results are considered satisfatory. (author) [pt

  1. Characterization of Leukocyte-platelet Rich Fibrin, A Novel Biomaterial

    OpenAIRE

    Madurantakam, Parthasarathy; Yoganarasimha, Suyog; Hasan, Fadi K.

    2015-01-01

    Autologous platelet concentrates represent promising innovative tools in the field of regenerative medicine and have been extensively used in oral surgery. Unlike platelet rich plasma (PRP) that is a gel or a suspension, Leukocyte-Platelet Rich Fibrin (L-PRF) is a solid 3D fibrin membrane generated chair-side from whole blood containing no anti-coagulant. The membrane has a dense three dimensional fibrin matrix with enriched platelets and abundant growth factors. L-PRF is a popular adjunct in...

  2. Hot ductility behavior of near-alpha titanium alloy IMI834

    International Nuclear Information System (INIS)

    Ghavam, Mohammad Hadi; Morakabati, Maryam; Abbasi, Seyed Mahdi; Badri, Hassan

    2014-01-01

    The hot ductility of rolled IMI834 titanium alloy (Ti-5.3Al-2.9Sn-3.0Zr-0.65Nb-0.5Mo-0.2Si in wt%) has been studied by conducting tensile tests with a strain rate of 0.1 s -1 and temperature range of 750-1100 C to obtain the optimum hot working conditions. The alloy showed minimum hot ductility in the lower alpha-beta region in the temperature range 750-950 C. Further microstructural characterizations showed improvement in hot ductility by increasing temperature, which was attributed to reduction of volume fraction of high strength alpha phase. The best hot ductility was observed at 1000 C, i.e. in the upper alpha-beta region. The better hot ductility at higher temperature could be related to the increase in the volume fraction of beta phase and the occurrence of dynamic restoration phenomena. The second decline in hot ductility appeared at higher temperatures in the beta region and was attributed to the high stacking fault energy and self-diffusion of beta phase leading to limitation of dynamic recrystallization.

  3. Deciphering the Hot Giant Atmospheres Orbiting Nearby Extrasolar Systems with JWST

    Science.gov (United States)

    Afrin Badhan, Mahmuda; Batalha, Natasha; Deming, Drake; Domagal-Goldman, Shawn; HEBRARD, Eric; Kopparapu, Ravi Kumar; Irwin, Patrick Gerard Joseph

    2016-10-01

    Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of the vastly different extrasolar systems that are being continually discovered by present space missions. With orbital separations that are less than one-tenth of the Mercury-Sun distance, these close-in planets provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to their enormous stellar insolation. Observed spectroscopic signatures reveal all spectrally active species in a planet, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA's upcoming missions will give us the high-resolution spectra necessary to constrain the atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric retrieval tools that can model the expected observables adequately. In my work thus far, I have built a Markov Chain Monte Carlo (MCMC) convergence scheme, with an analytical radiative equilibrium formulation for the thermal structures, within the NEMESIS atmospheric modeling tool, to allow sufficient (and efficient) exploration of the parameter space. I also augmented the opacity tables to improve the speed and reliability of retrieval models. I then utilized this upgraded version to infer the pressure-temperature (P-T) structures and volume-mixing ratios (VMRs) of major gas species in hot Jupiter dayside atmospheres, from their emission spectra. I have employed a parameterized thermal structure to retrieve plausible P-T profiles, along with altitude-invariant VMRs. Here I show my retrieval results on published datasets of HD189733b, and compare them with both medium and high spectral resolution JWST/NIRSPEC simulations. In preparation for the upcoming JWST mission, my current work

  4. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  5. Mechanical Properties and Microstructure of High-Strength Steel Controlled by Hot Stamping Process

    Science.gov (United States)

    Ou, Hang; Zhang, Xu; Xu, Junrui; Li, Guangyao; Cui, Junjia

    2018-03-01

    A novel design and manufacturing method, dubbed "precast," of the cooling system and tools for a hot forming process was proposed in this paper. The integrated structures of the punch and blank holder were determined by analyzing the bending and reverse-bending deformation of the forming parts. The desired crashworthiness performance of an automotive front bumper constructed with this process was obtained by a tailored phase transformation, which generated martensite-bainite in the middle and full martensite transformation in the corner areas. Varying cooling effects in the formed parts caused the highest temperature to be located in the bottom and the lowest on the end of the formed parts. Moreover, the microstructural distributions demonstrated that the bottom possessed a relatively lower content of martensite, while, conversely, the end possessed a higher content. This was precisely the most desired phase distributions for the hot formed parts. For the six-process cycle stamping, the temperatures reached a stable status after an initial rapid increase in the first three process cycles. The microstructural results verified the feasibility of the hot forming tools under multiprocess cycles.

  6. Impacts of Implosion Asymmetry And Hot Spot Shape On Ignition Capsules

    Science.gov (United States)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Yi, S. Austin; Batha, Steve

    2017-10-01

    Implosion symmetry plays a critical role in achieving high areal density and internal energy at stagnation during hot spot formation in ICF capsules. Asymmetry causes hot spot irregularity and stagnation de-synchronization that results in lower temperatures and areal densities of the hot fuel. These degradations significantly affect the alpha heating process in the DT fuel as well as on the thermonuclear performance of the capsules. In this work, we explore the physical factors determining the shape of the hot spot late in the implosion and the effects of shape on Î+/-particle transport. We extend our ignition theory [1-4] to include the hot spot shape and quantify the effects of the implosion asymmetry on both the ignition criterion and capsule performance. We validate our theory with the NIF existing experimental data Our theory shows that the ignition criterion becomes more restrictive with the deformation of the hot spot. Through comparison with the NIF data, we demonstrate that the shape effects on the capsules' performance become more explicit as the self-heating and yield of the capsules increases. The degradation of the thermonuclear burn by the hot spot shape for high yield shots to date can be as high as 20%. Our theory is in good agreement with the NIF data. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  7. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  8. Toward common working tools: Arab League Documentation and Information Centre experience

    Energy Technology Data Exchange (ETDEWEB)

    Redissi, M [ALDOC (Tunisia)

    1990-05-01

    The adoption of Arab common working tools in information handling has been one of the priorities of Arab League Documentation and Information Centre (ALDOC). Problems arising from the processing of Arabic language have been progressively settled. The Tunisian experience in the elimination of transliteration is worth mentioning. (author). 17 refs.

  9. Toward common working tools: Arab League Documentation and Information Centre experience

    International Nuclear Information System (INIS)

    Redissi, M.

    1990-05-01

    The adoption of Arab common working tools in information handling has been one of the priorities of Arab League Documentation and Information Centre (ALDOC). Problems arising from the processing of Arabic language have been progressively settled. The Tunisian experience in the elimination of transliteration is worth mentioning. (author). 17 refs

  10. PVD-Alumina Coatings on Cemented Carbide Cutting Tools: A Study About the Effect on Friction and Adhesion Mechanism

    Directory of Open Access Journals (Sweden)

    S.E. Cordes

    2012-03-01

    Full Text Available Crystalline PVD γ-alumina coatings are interesting for machining operations due to their outstanding characteristics, such as high hot hardness, high thermal stability and low tendency to adhesion. In the present work (Ti,AlN/γ-Al2O3-coatings are deposited on cemented carbide by means of MSIP. Objectives of this work are to study the effects of coating and cutting fluid regarding friction in tribological tests and to study the wear mechanisms and cutting performance of γ-Al2O3-based coated cemented carbide cutting tools in machining operations of austenitic stainless steels. Based on the remarkable properties of the coating system the performance of the cutting tools is increasing significantly.

  11. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  12. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  13. Evaluation of Three Hydration Strategies in Detection Dogs Working in a Hot Environment

    Directory of Open Access Journals (Sweden)

    Cynthia M. Otto

    2017-10-01

    Full Text Available Physical activity in hot environments can increase the risk of heat stress or heat stroke in dogs. Heat tolerance is influenced by acclimatization to the environment, physical fitness, and hydration state. Three common strategies to promote hydration in working dogs are free access to water (W, oral electrolyte solutions (OESs, and administration of subcutaneous fluids (SQs. None of these methods have been compared for safety or efficacy in a working environment. In a cross-over design, seven vehicle-screening canines were randomly assigned to each of the three hydration strategies during working shifts at the Sarita, TX checkpoint. Physical, behavioral, and biochemical parameters were collected before, during, and after a work shift (mean 5.7 ± 0.8 h. Dogs were given 10 mL/kg oral W, 10 mL/kg chicken flavored OES, or 15 mL/kg of SQs initially followed by controlled access to W or OES. The dogs drank 15.61 ± 4.47 mL/kg/h of W and OES when in the OES group, compared to 7.04 ± 3.42 and 5.56 ± 4.40 mL of W, for the W and SQ groups, respectively. The median environmental temperature was 84.8°F (29.3°C. The median humidity was 70%. Based on mixed effects linear modeling, dogs in the OES and SQ groups had significantly higher total CO2, and lower packed cell volume and total plasma protein at the end of the day. Creatinine increased a small but significant amount in the SQ group and decreased in the OES group. Searching behaviors were independent of hydration strategy but highly related to the dog specific factors of sex, breed, and activity level. Under conditions of controlled activity in moderate heat and humidity, dogs accustomed to the work and the environment were more likely to increase fluid consumption and hydration when provided a flavored OES. Potential benefits of OES and SQ were indirect and no adverse effects were documented for any of the hydration strategies tested.

  14. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  15. Nuclear track radiography of 'hot' aerosol particles

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P.

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the α-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (γ,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by 235 U, 239 Pu and 241 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 -6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles

  16. Project Management Web Tools at the MICE experiment

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Project management tools like Trac are commonly used within the open-source community to coordinate projects. The Muon Ionization Cooling Experiment (MICE) uses the project management web application Redmine to host mice.rl.ac.uk. Many groups within the experiment have a Redmine project: analysis, computing and software (including offline, online, controls and monitoring, and database subgroups), executive board, and operations. All of these groups use the website to communicate, track effort, develop schedules, and maintain documentation. The issue tracker is a rich tool that is used to identify tasks and monitor progress within groups on timescales ranging from immediate and unexpected problems to milestones that cover the life of the experiment. It allows the prioritization of tasks according to time-sensitivity, while providing a searchable record of work that has been done. This record of work can be used to measure both individual and overall group activity, identify areas lacking sufficient personne...

  17. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell

    International Nuclear Information System (INIS)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J.

    1959-01-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  18. Hydrogen in hot subdwarfs formed by double helium white dwarf mergers

    OpenAIRE

    Hall, Philip D.; Jeffery, C. Simon

    2016-01-01

    Isolated hot subdwarfs might be formed by the merging of two helium-core white dwarfs. Before merging, helium-core white dwarfs have hydrogen-rich envelopes and some of this hydrogen may survive the merger. We calculate the mass of hydrogen that is present at the start of such mergers and, with the assumption that hydrogen is mixed throughout the disrupted white dwarf in the merger process, estimate how much can survive. We find a hydrogen mass of up to about $2 \\times 10^{-3}\\,\\mathrm{M}_{\\o...

  19. Microstructure and textural characterization of hot extruded Zr-2.5Nb alloy PHWR pressure tube fabricated by various ingot processing route

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Neogy, S.; Mani Krishna, K.V.; Srivastava, D.; Dey, G.K.

    2011-01-01

    Zr-2.5 Nb alloys finds its applications as a pressure tube component in pressure tube type thermal reactors such as PHWRs and RBMK due to properties attributed such as low neutron absorption cross section, high temperature strength and corrosion resistance etc. Manufacturing of this life time components involves series of thermo-mechanical processes of hot working and cold working with intermediate annealing. The life time of Pressure tube are limited due to their diametral creep properties which is governed by metallurgical characteristics such as texture, microstructure dislocation density etc. The primary breakdown of cast structure in Vacuum Arc Melted ingot can be effected by either hot extrusion or forging in single or multiple stages before final hot extrusion step into the blank for manufacturing of seamless pressure tube. Elevated temperature deformation carried out in hot working above the recrystallization temperature would enable impositions of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on process parameters such as extrusion ratio, temperature and strain rate. Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. The major texture in α+β Zr-2.5 Nb alloy is established during final extrusion to blank which does not change significantly during subsequent cold pilgering. However, microstructure is modified significantly in subsequent cold working which can be effected by cold pilgering or cold drawing in single or multiple steps. Present paper brings out the various ingot processing routes using forging and or extrusion followed for fabrication of pressure tubes. The development of texture and microstructures has been discussed at the blank stage from these processing routes and also with respect to varying extrusion variable such as extrusion ratio

  20. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  1. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites

    NARCIS (Netherlands)

    Fang, Hong-Hua; Adjokatse, Sampson; Shao, Shuyan; Even, Jacky; Loi, Maria Antonietta

    2018-01-01

    A long-lived hot carrier population is critical in order to develop working hot carrier photovoltaic devices with efficiencies exceeding the Shockley-Queisser limit. Here, we report photoluminescence from hot-carriers with unexpectedly long lifetime (a few ns) in formamidinium tin triiodide. An

  2. The optimization of production and control of hot-electron plasmas

    International Nuclear Information System (INIS)

    1989-01-01

    The present project was initially undertaken to develop a number of innovative concepts for using electron cyclotron heating (ECH) to enhance tokamak performance. A common feature of the various applications under consideration is efficient, spatially-localized generation of hot-electron plasmas; and the first phase of the work addressed the basic aspects of an approach to achieving this Upper Off-Resonant Heating (UORH) and open-resonator couplers to confine the weakly damped microwave power to the particular region where the hot electrons are to be generated. The results of the first year's work provided strong evidence that hot-electron plasmas with electron energies of hundreds of keV could be generated using multiple-frequency ECH and fully-toroidal open-resonator couplers. The evidence was sufficiently compelling to suggest that the project be focused on a suitable near-term application to the TEXT device

  3. A guide to Internet atomic databases for hot plasmas

    International Nuclear Information System (INIS)

    Ralchenko, Yuri

    2006-01-01

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail

  4. A guide to Internet atomic databases for hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Yuri [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)]. E-mail: yuri.ralchenko@nist.gov

    2006-05-15

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail.

  5. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  6. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  7. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    Science.gov (United States)

    Thurmond, Brandi

    2011-01-01

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…

  8. THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko; Aikawa, Yuri

    2016-01-01

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C 17 O, HCO + , H 13 CO + , H 2 CO, NO, SiO, H 2 CS, 33 SO, 32 SO 2 , 34 SO 2 , and 33 SO 2 are detected from a compact region (∼0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis of SO 2 and 34 SO 2 lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH 3 OH, H 2 CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO 2 and its isotopologue line detections in ST11 imply that SO 2 can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.

  9. Tools Beyond Control: Social Media and the Work of Advocacy Organizations

    Directory of Open Access Journals (Sweden)

    Luis E. Hestres

    2017-06-01

    Full Text Available Advocacy organizations rely on social media services, such as Facebook and Twitter, to engage their supporters. These services increasingly influence how citizens and advocacy organizations engage politically online through the technical features and policies they choose to implement—a phenomenon that can sometimes disrupt the work of advocates. Interviews with digital strategists at several US advocacy organizations revealed low levels of awareness of this phenomenon, despite its potential impact on their work; substantial dependence on these services for advocacy work; and a shared sense of necessity to embrace these tools, despite their potential downsides. Implications for the scholarship and practice of Internet governance and digitally mediated advocacy are discussed.

  10. Geomorphic controls on elevational gradients of species richness.

    Science.gov (United States)

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

  11. High-Temperature Nucleosynthesis Processes on the Proton-Rich Side of Stability: the Alpha-Rich Freezeout and the rp^2-Process

    Science.gov (United States)

    Meyer, Bradley S.

    2001-10-01

    Nucleosynthesis on the proton-rich side of stability has at least two intriguing aspects. First, the most abundant of the stable iron-group isotopes, such as ^48Ti, ^52Cr, and ^56,57Fe, are synthesized as proton-rich, radioactive parents in alpha-rich freezeouts from equilibrium. The production of these radioactive progenitors depends in large measure on reactions on the proton-rich side of stability. The second intriguing aspect is that explosive nucleosynthesis in a hydrogen-rich environment (namely, the rp-process) may be associated with exotic astrophysical settings, such as x-ray bursts, and may be responsible for production of some of the light p-process nuclei (for example, ^92,94Mo and ^96,98Ru). We have developed web-based tools to help nuclear physicists determine which nuclear reactions on the proton-rich side of stability govern the nucleosynthesis in these processes. For the alpha-rich freezeout, one may determine the effect of any one of 2,140 reactions on the yield of any isotope in the nuclear reaction network with the web calculator. As a relevant example, I will discuss the governing role of ^57Ni (n,p)^57Co in the synthesis of the important astronomical observable ^57Co. As for explosive, proton-rich burning, I will discuss the synthesis of p-process nuclei in the repetitive rp-process (the rp^2-process). movies/rp.html>Movies of the rp^2-process illustrate its important features and give some indications of the important nuclear reactions.

  12. A tool for design decision making - zero energy residential buildings in hot humid climates

    NARCIS (Netherlands)

    Attia, S.G.

    2012-01-01

    In this thesis, the development and evaluation of a simulation-based decision aid for Net Zero Energy Buildings (NZEBs) design, ZEBO, was explored. The thesis investigates the ability to achieve informed decision making for NZEB design, in hot climate. Four main questions were posed. Firstly, how to

  13. Measurements of hot spots and electron beams in Z-pinch devices

    International Nuclear Information System (INIS)

    Deeney, C.

    1988-04-01

    Hot spots and Electron Beams have been observed in different types of Z-pinches. There is, however, no conclusive evidence on how either are formed although there has been much theoretical interest in both these phenomena. In this thesis, nanosecond time resolved and time correlated, X-ray and optical diagnostics, are performed on two different types of Z-pinch: a 4 kJ, 30 kV Gas Puff Z-pinch and a 28 kJ, 60 kV Plasma Focus. The aim being to study hot spots and electron beams, as well as characterise the plasma, two different Z-pinch devices. Computer codes are developed to analyse the energy and time resolved data obtained in this work. These codes model both, X-ray emission from a plasma and X-ray emission due to electron beam bombardment of a metal surface. The hot spot and electron beam parameters are measured, from the time correlated X-ray data using these computer codes. The electron beams and the hot spots are also correlated to the plasma behaviour and to each other. The results from both devices are compared with each other and with the theoretical work on hot spot and electron beam formation. A previously unreported 3-5 keV electron temperature plasma is identified, in the gas puff Z-pinch plasma, prior to the formation of the hot spots. it is shown, therefore, that the hot spots are more dense but not hotter than the surrounding plasma. Two distinct periods of electron beam generation are identified in both devices. (author)

  14. The kappa Distribution as Tool in Investigating Hot Plasmas in the Magnetospheres of Outer Planets

    Science.gov (United States)

    Krimigis, S. M.; Carbary, J. F.

    2014-12-01

    The first use of a Maxwellian distribution with a high-energy tail (a κ-function) was made by Olbert (1968) and applied by Vasyliunas (1968) in analyzing electron data. The k-function combines aspects of both Maxwellian and power law forms to provide a reasonably complete description of particle density, temperature, pressure and convection velocity, all of which are key parameters of magnetospheric physics. Krimigis et al (1979) used it to describe flowing plasma ions in Jupiter's magnetosphere measured by Voyager 1, and obtained temperatures in the range of 20 to 35 keV. Sarris et al (1981) used the κ-function to describe plasmas in Earth's distant plasma sheet. The κ-function, in various formulations and names (e. g., γ-thermal distribution, Krimigis and Roelof, 1983) has been used routinely to parametrize hot, flowing plasmas in the magnetospheres of the outer planets, with typical kT ~ 10 to 50 keV. Using angular measurements, it has been possible to obtain pitch angle distributions and convective flow directions in sufficient detail for computations of temperatures and densities of hot particle pressures. These 'hot' pressures typically dominate the cold plasma pressures in the high beta (β > 1) magnetospheres of Jupiter and Saturn, but are of less importance in the relatively empty (β Cambridge University Press, New York, 1983

  15. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  16. Thermomechanical behavior of Ti-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Paula, A.S.; Mahesh, K.K.; Santos, C.M.L. dos; Braz Fernandes, F.M.; Costa Viana, C.S. da

    2008-01-01

    Phase transformations associated with shape memory effect in nickel-titanium (NiTi) alloys can be one-stage, B19' (martensite) ↔ B2 (austenite), two-stage including an intermediate R-phase stage, or multiple-stage depending on the thermal and/or mechanical history of the alloy. In the present paper, we highlight the effect of (i) deformation by cold-rolling (from 10% to 40% thickness reduction) and (ii) final annealing on the transformation characteristics of a Ti-rich NiTi shape memory alloy. For this purpose, one set of samples initially heat treated at 773 K followed by cold-rolling (10-40% thickness reduction), has been further heat treated at various temperatures between 673 and 1073 K. Another sample was subjected to heat treatment at 1040 K for 300 s followed by hot rolling (50%) after cooling in air to 773 K and water quenching to room temperature (T room ). Phase transformations were studied using differential scanning calorimetry, electrical resistivity measurements and in situ X-ray diffraction. A specific pattern of transformation sequences is found as a result of combination of the competing effects due to mechanical-working and annealing

  17. CDC MessageWorks: Designing and Validating a Social Marketing Tool to Craft and Defend Effective Messages.

    Science.gov (United States)

    Cole, Galen E; Keller, Punam A; Reynolds, Jennifer; Schaur, Michelle; Krause, Diane

    2016-03-01

    The Centers for Disease Control and Prevention's Division of Cancer Prevention and Control, in partnership with Oak Ridge Associated Universities, designed an online social marketing strategy tool, MessageWorks, to help health communicators effectively formulate messages aimed at changing health behaviors and evaluate message tactics and audience characteristics. MessageWorks is based on the advisor for risk communication model that identifies 10 variables that can be used to predict target audience intentions to comply with health recommendations. This article discusses the value of the MessageWorks tool to health communicators and to the field of social marketing by (1) describing the scientific evidence supporting use of MessageWorks to improve health communication practice and (2) summarizing how to use MessageWorks and interpret the results it produces.

  18. Experimental Investigation of Biotite-Rich Schist Reacting with B-Bearing Fluids at Upper Crustal Conditions and Correlated Tourmaline Formation

    Directory of Open Access Journals (Sweden)

    Andrea Orlando

    2017-08-01

    Full Text Available Fluid–rock interaction experiments between a biotite-rich schist (from Mt. Calamita Formation, Elba Island, Italy and B-bearing aqueous fluids were carried out at 500–600 °C and 100–130 MPa. The experiments have been carried out in order to reproduce the reaction, which would have produced tourmalinisation of the biotite schist, supposedly by circulation of magmatic fluids issued from leucogranitic dykes. The reacting fluids were either NaCl-free or NaCl-bearing (20 wt % aqueous solutions, with variable concentration of H3BO3 (0.01–3.2 M. The experimental results show that tourmaline (belonging to the alkali group crystallise under high-temperature and upper crustal conditions (500–600 °C, 100–130 MPa when H3BO3 concentration in the system is greater than 1.6 M. The composition of tourmaline is either dravitic (Mg-rich or schorlitic (Fe-rich, depending if an NaCl-bearing or NaCl-free aqueous solution is used. In the first case, a significant amount of Fe released from biotite dissolution remains in the Cl-rich solution resulting from the experiment. By contrast, when pure water is used, Na/K exchange in feldspars makes Na available for tourmaline crystallisation. The high concentration of Fe in the residual fluid has an important metallogenic implication because it indicates that the interaction between the saline B-rich fluid of magmatic derivation and biotite-rich schists, besides producing tourmalinisation, is capable of mobilising significant amounts of Fe. This process could have produced, in part or totally, the Fe deposits located close to the quartz–tourmaline veins and metasomatic bodies of the Mt. Calamita Formation. Moreover, the super-hot reservoir that likely occurs in the deepest part of the Larderello–Travale geothermal field would also be the site of an extensive reaction between the B-rich fluid and biotite-bearing rocks producing tourmaline. Thus, tourmaline occurrence can be a useful guide during deep

  19. Rich Language Analysis for Counterterrorism

    Science.gov (United States)

    Guidère, Mathieu; Howard, Newton; Argamon, Shlomo

    Accurate and relevant intelligence is critical for effective counterterrorism. Too much irrelevant information is as bad or worse than not enough information. Modern computational tools promise to provide better search and summarization capabilities to help analysts filter and select relevant and key information. However, to do this task effectively, such tools must have access to levels of meaning beyond the literal. Terrorists operating in context-rich cultures like fundamentalist Islam use messages with multiple levels of interpretation, which are easily misunderstood by non-insiders. This chapter discusses several kinds of such “encryption” used by terrorists and insurgents in the Arabic language, and how knowledge of such methods can be used to enhance computational text analysis techniques for use in counterterrorism.

  20. Hot tensile behaviour in silicon-killed boron microalloyed steels

    Science.gov (United States)

    Chown, Lesley H.; Cornish, Lesley A.

    2017-10-01

    Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was

  1. A primary study on finding hot groundwater using infrared remote sensing

    Science.gov (United States)

    Qiao, Y.; Wu, Q.

    Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U. S. second Landset, Its resolving power of space is as high as 120 m, 10 times more t an one ofh AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.

  2. Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles.

    Science.gov (United States)

    Valenti, Marco; Venugopal, Anirudh; Tordera, Daniel; Jonsson, Magnus P; Biskos, George; Schmidt-Ott, Andreas; Smith, Wilson A

    2017-05-17

    The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO 2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light-induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies.

  3. Polish Listening SPAN: A new tool for measuring verbal working memory

    Directory of Open Access Journals (Sweden)

    Katarzyna Zychowicz

    2017-12-01

    Full Text Available Individual differences in second language acquisition (SLA encompass differences in working memory capacity, which is believed to be one of the most crucial factors influencing language learning. However, in Poland research on the role of working memory in SLA is scarce due to a lack of proper Polish instruments for measuring this construct. The purpose of this paper is to discuss the process of construction and validation of the Polish Listening Span (PLSPAN as a tool intended to measure verbal working memory of adults. The article presents the requisite theoretical background as well as the information about the PLSPAN, that is, the structure of the test, the scoring procedures and the steps taken with the aim of validating it.

  4. Freezing Range, Melt Quality, and Hot Tearing in Al-Si Alloys

    Science.gov (United States)

    Uludağ, Muhammet; Çetin, Remzi; Dispinar, Derya

    2018-02-01

    In this study, three different aluminum-silicon alloys (A356, A413, and A380) that have different solidification morphology and solidification ranges were examined with an aim to evaluate the hot tearing susceptibility. T-shape mold and Constrained Rod Casting (CRC) mold were used for the characterization. Reduced Pressure Test (RPT) was used to quantify the casting quality by measuring bifilm index. It was found that bifilm index and solidification range have an important role on the hot tearing formation. As it is known, bifilms can cause porosity and in this case, it was shown that porosity formed by bifilms decreased hot tearing tendency. As the freezing range of alloy increases, bifilms find the time to unravel that reduces hot tearing. However, for eutectic alloy (A413), due to zero freezing range, regardless of bifilm content, hot tearing was never observed. A380.1 alloy had the highest tendency for hot tearing due to having the highest freezing range among the alloys investigated in this work.

  5. Surveillance of working conditions and the work environment: development of a national hazard surveillance tool in New Zealand.

    Science.gov (United States)

    Lilley, Rebbecca; Feyer, Anne-Marie; Firth, Hilda; Cunningham, Chris; Paul, Charlotte

    2010-02-01

    Changes to work and the impact of these changes on worker health and safety have been significant. A core surveillance data set is needed to understand the impact of working conditions and work environments. Yet, there is little harmony amongst international surveys and a critical lack of guidance identifying the best directions for surveillance efforts. This paper describes the establishment of an instrument suitable for use as a hazard surveillance tool for New Zealand workers. An iterative process of critical review was undertaken to create a dimensional framework and select specific measures from existing instruments. Pilot testing to ascertain participant acceptability of the questions was undertaken. The final questionnaire includes measures of socio-demographic characteristics, occupational history, work organisation, physicochemical, ergonomic and psychosocial hazards. Outcome measures were also included. A robust New Zealand hazard surveillance questionnaire comprehensively covering the key measures of work organisation and work environments that impact upon worker health and safety outcomes was developed. Recommended measures of work organisation, work environment and health outcomes that should be captured in work environment surveillance are made.

  6. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  7. Microstructure evolution of superalloy for large exhaust valve during hot forging

    International Nuclear Information System (INIS)

    Jeong, H.S.; Cho, J.R.; Park, H.C.

    2004-01-01

    The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. These products are used for aerospace, marine engineering and power generation, etc. The control of forging parameters such as strain, strain rate, temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. It is necessary to understand the microstructure variation evolution. The microstructure change evolution occurs by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range 950-1250 deg. C and strain rate range 0.05-5s-1 using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range 950-1250 deg. C and strain rate range 0.05, 5s-1, holding time range 5, 10, 100, 600 sec using hot compression tests. Modeling equations are developed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters of modeling equation are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of initial grain size and holding time. The developed modeling equation was combined with thermo-viscoplastic finite element modeling to predict various microstructure change evolution during thermo mechanical processing. The predicted grain size in developed FE simulation results is compared with results obtained in various tests. In order to obtain a final microstructure and good mechanical properties in forging, the FEM would become a useful tool in the simulation of the microstructure development

  8. Laser Spectroscopy Studies in the Neutron-Rich Sn Region

    CERN Multimedia

    Obert, J

    2002-01-01

    We propose to use the powerful laser spectroscopy method to determine the magnetic moment $\\mu$ and the variation of the mean square charge radius ($\\delta\\,\\langle$r$_{c}^{2}\\,\\rangle$) for ground and long-lived isomeric states of the Sn isotopes from A=125 to the doubly-magic $^{132}$Sn isotope and beyond. For these neutron-rich Sn nuclei, numerous $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ curves have already been calculated and the predictions depend upon the effective interactions used. Therefore, a study of the effect of the shell closure N=82 on the $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ values in the Z=50 magic nuclei is of great interest, especially because $^{132}$Sn is located far from the stability valley. It will help to improve the parameters of the effective interactions and make them more suitable to predict the properties of exotic nuclei. \\\\ \\\\The neutron-rich Sn isotopes produced with an uranium carbide target, are ionized using either a hot plasma ion source or the resonant ionization laser ion ...

  9. Theoretical and experimental study of the rule for heat transfer coefficient in hot stamping of high strength steels

    International Nuclear Information System (INIS)

    Han, Xianhong; Hao, Xin; Yang, Kun; Zhong, Yaoyao

    2013-01-01

    Heat transfer is a crucial aspect for hot stamping process, the fully austenitized boron steel blank with temperature about 900°C is transferred to the tool, then formed rapidly and quenched in the cooled tool. The desired fully martensitic transformation will happen only if the cooling rate exceeds a critical value approximately 27 K/s. During such process, the heat transfer coefficient (abbreviated as HTC) between the tool and blank plays a decisive role for the variation of the blank temperature. In this work, a theoretical formula based on the joint-roughness model is presented to describe the law of HTC, which relies on the roughness, hardness, and other material parameters of the tool and blank. Moreover, a non-contact temperature measuring system based on the infrared thermal camera is built to catch the temperature change course, and then the HTC value is derived through the inverse analysis. Based on the theoretical and experimental results, the change rule of HTC especially its dependence on the process pressure will be discussed in detail

  10. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    Science.gov (United States)

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.

  11. LSTM-Based Temperature Prediction for Hot-Axles of Locomotives

    Directory of Open Access Journals (Sweden)

    Luo Can

    2017-01-01

    Full Text Available The reliability of locomotives plays a central role for the smooth operation of railway systems. Hot-axle failures are one of the most commonly found problems leading to locomotive accidents. Since the operating status of the locomotive axle bearings can be distinctly reflected by the axle temperatures, online temperature monitoring has become an essential way to detect hot-axle failures. In this work, we explore the feasibility of predict the hot-axle failures by identifying the temperature from predicted nominal values. We propose a data-driven approach based on the Long Short-Term Memory (LSTM network to predict the sensor temperature for axle bearings. The effectiveness of the prediction model was validated with operation data collected from commercial locomotives. With a prediction accuracy is within a few percent, the proposed techniques can be used as a dynamic reference for hot-axle monitoring.

  12. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    Science.gov (United States)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  13. Structure and magnetic properties of hot deformed Nd{sub 2}Fe{sub 14}B magnets doped with DyH{sub x} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.G.; Yue, M., E-mail: yueming@bjut.edu.cn; Zhang, D.T.; Liu, W.Q.; Zhang, J.X.

    2016-04-15

    Commercial NdFeB powders mixed with DyH{sub x} nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyH{sub x} is increased by 66.7%, compared with the magnet without DyH{sub x}, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer between Nd-rich phase and NdFeB main phase. - Highlights: • The hot deformed magnet exhibits strong c-axis crystallographic texture. • The coercivity of the magnet significantly improved, and the remanence decreases slight. • TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer.

  14. CDC MessageWorks: Designing and Validating a Social Marketing Tool to Craft and Defend Effective Messages

    Science.gov (United States)

    Cole, Galen E.; Keller, Punam A.; Reynolds, Jennifer; Schaur, Michelle; Krause, Diane

    2016-01-01

    The Centers for Disease Control and Prevention’s Division of Cancer Prevention and Control, in partnership with Oak Ridge Associated Universities, designed an online social marketing strategy tool, MessageWorks, to help health communicators effectively formulate messages aimed at changing health behaviors and evaluate message tactics and audience characteristics. MessageWorks is based on the advisor for risk communication model that identifies 10 variables that can be used to predict target audience intentions to comply with health recommendations. This article discusses the value of the MessageWorks tool to health communicators and to the field of social marketing by (1) describing the scientific evidence supporting use of MessageWorks to improve health communication practice and (2) summarizing how to use MessageWorks and interpret the results it produces. PMID:26877714

  15. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  16. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Toma, Andrea; Francardi, Marco; Malerba, Mario; Alabastri, Alessandro; Proietti Zaccaria, Remo; Stockman, Mark Mark; Di Fabrizio, Enzo M.

    2013-01-01

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  17. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  18. Sol Duc Hot Springs feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  19. Wear Analysis of Die Inserts in the Hot Forging Process of a Forked Type Forging Using Reverse Scanning Techniques

    Directory of Open Access Journals (Sweden)

    Łukasz Dworzak

    2017-12-01

    Full Text Available This article presents a wear analysis of die inserts used in the hot forging process of a forked forging (yoke, an element applied in steering systems of passenger vehicles. Studies involved the application of an original reverse scanning method intended for rapid and reliable wear analysis of forging tools (with complicated shape affording easy assessment without the need to dismount tools from the forging unit. The developed method involves analysis of progressive wear of forging tools based on measurements (scanning of forgings periodically collected from the process and constitutes a useful tool for measurement and testing. As the authors’ earlier works have demonstrated, the proposed new approach to analysis of tool wear with the application of reverse 3D scanning has proven successful in multiple instances in the case of axially symmetrical objects. The presented results of studies indicate that it is possible to utilize the expanded method to analyze the lifetime of forging tools, including tools with complex geometry. Application of the reverse scanning method allows for continuous and practical monitoring of the condition of forging tools over the course of the forging process and should have a positive impact on improving production output and reducing production costs.

  20. Work on the hot atom chemistry at the Institute of Nuclear Sciences Boris Kidric, Vinca, Yugoslavia; Hemija vruceg atoma

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1969-07-01

    A survey of work on hot atom chemistry from the establishment of the Institute up to now, where the role of Prof. P. Savic, should be specially emphasized, is given. The investigations in this domain during the first period, were directed to solve various problems in production of radioactive isotopes. Today these investigations are closely associated with the work in radiochemistry, physical chemistry of liquid and solid systems and fast reaction kinetics improving the development of these branches (author) [Serbo-Croat] Daje se pregled rada na hemiji vruceg atoma od osnivanja Instituta do danas, pri cemu se narocito istice uloga koju je u tome imao prof. P. Savic. Dok su u prvom periodu istrazivanja u ovoj oblasti doprinosila resavanju raznih problema proizvodnje radioaktivnih izotopa, ona su danas tesno povezana sa radom u radiohemiji, fizickoj hemiji tecnih i cvrstih sistema, kinetici brzih reakcija, doprinoseci sa svoje strane razvoju tih oblasti (author)

  1. Process simulation and experimental validation of Hot Metal Gas Forming with new press hardening steels

    Science.gov (United States)

    Paul, A.; Reuther, F.; Neumann, S.; Albert, A.; Landgrebe, D.

    2017-09-01

    One field in the work of the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz is industry applied research in Hot Metal Gas Forming, combined with press hardening in one process step. In this paper the results of investigations on new press hardening steels from SSAB AB (Docol®1800 Bor and Docol®2000 Bor) are presented. Hot tensile tests recorded by the project partner (University of West Bohemia, Faculty of Mechanical Engineering) were used to create a material model for thermo-mechanical forming simulations. For this purpose the provided raw data were converted into flow curve approximations of the real stress-real strain-curves for both materials and afterwards integrated in a LS-DYNA simulation model of Hot Metal Gas Forming with all relevant boundary conditions and sub-stages. Preliminary experimental tests were carried out using a tool at room temperature to permit evaluation of the forming behaviour of Docol 1800 Bor and Docol 2000 Bor tubes as well as validation of the simulation model. Using this demonstrator geometry (outer diameter 57 mm, tube length 300 mm, wall thickness 1.5 mm), the intention was to perform a series of tests with different furnace temperatures (from 870 °C to 1035 °C), maximum internal pressures (up to 67 MPa) and pressure build-up rates (up to 40 MPa/s) to evaluate the formability of Docol 1800 Bor and Docol 2000 Bor. Selected demonstrator parts produced in that way were subsequently analysed by wall thickness and hardness measurements. The tests were carried out using the completely modernized Dunkes/AP&T HS3-1500 hydroforming press at the Fraunhofer IWU. In summary, creating a consistent simulation model with all relevant sub-stages was successfully established in LS-DYNA. The computation results show a high correlation with the experimental data regarding the thinning behaviour. The Hot Metal Gas Forming of the demonstrator geometry was successfully established as well. Different hardness values

  2. Work Ability Index as tool to identify workers at risk of premature work exit.

    Science.gov (United States)

    Roelen, Corné A M; Heymans, Martijn W; Twisk, Jos W R; van der Klink, Jac J L; Groothoff, Johan W; van Rhenen, Willem

    2014-12-01

    To investigate the Work Ability Index (WAI) as tool for identifying workers at risk of premature work exit in terms of disability pension, unemployment, or early retirement. Prospective cohort study of 11,537 male construction workers (mean age 45.5 years), who completed the WAI at baseline and reported their work status (employed, unemployed, disability pension, or retired) after mean 2.3 years of follow-up. Associations between WAI scores and work status were investigated by multinomial logistic regression analysis. The ability of the WAI to discriminate between workers at high and low risk of premature work exit was analyzed by the area (AUC) under the receiver operating characteristic curve. 9,530 (83 %) construction workers had complete data for analysis. At follow-up, 336 (4 %) workers reported disability pension, 125 (1 %) unemployment, and 255 (3 %) retirement. WAI scores were prospectively associated with the risk of disability pension at follow-up, but not with the risk of unemployment and early retirement. The WAI showed fair discrimination to identify workers at risk of disability pension [AUC = 0.74; 95 % confidence interval (CI) 0.70-0.77]. The discriminative ability decreased with age from AUC = 0.78 in workers aged 30-39 years to AUC = 0.69 in workers ≥50 years of age. Discrimination failed for unemployment (AUC = 0.51; 95 % CI 0.47-0.55) and early retirement (AUC = 0.58; 95 % CI 0.53-0.61). The WAI can be used to identify construction workers <50 years of age at increased risk of disability pension and invite them for preventive interventions.

  3. Mechanism of texture formation by hot deformation in rapidly quenched FeNdB

    International Nuclear Information System (INIS)

    Li, L.; Graham, C.D. Jr.

    1990-01-01

    The development of crystallographic texture in rapidly quenched Fe 14 Nd 2 B has been investigated by hot deformation. The method was to catch the process in a state of partial completion, and then use transmission electron microscopy to examine the structure. The degree of texture formation was determined by x-ray diffraction and by magnetic measurements, and the hardness and the anisotropy in hardness were measured up to 600 degree C. It was concluded, in agreement with others but with additional evidence, that preferential growth of favorably oriented grains during plastic deformation produces the texture. The nature of the plastic deformation remains unclear, since no dislocations are observed in Fe 14 Nd 2 B. It was found that when samples are compressed at temperatures near 600 degree C under low stresses for long times, they become Nd rich at the bottom, presumably because of flow of the Nd-rich liquid phase under the influence of gravity. In such samples, plastic deformation and crystallographic orientation occurs preferentially at the Nd-rich end

  4. Intimate Technology: A Tool for Teaching Anti-Racism in Social Work Education

    Science.gov (United States)

    Deepak, Anne C.; Biggs, Mary Jo Garcia

    2011-01-01

    In this article, the authors introduce a new conceptual tool, intimate technology, to mobilize social work students' commitment to anti-racism. Intimate technology is marked by its emotional intensity and accessibility, and its effect of de-centering knowledge and authority. This teaching strategy integrates the modality of intimate technology via…

  5. Multimodal Redesign in Filmmaking Practices: An Inquiry of Young Filmmakers' Deployment of Semiotic Tools in Their Filmmaking Practice

    Science.gov (United States)

    Gilje, Oystein

    2010-01-01

    This article traces the trajectory of one particular scene in the work of three media students writing and filmmaking. The analysis scrutinizes the role of semiotic tools, such as synopsis and storyboard, in students' filmmaking practice. Moreover, the use of interactional data combined with textual data allows for a rich recording of the…

  6. A material based approach to creating wear resistant surfaces for hot forging

    Science.gov (United States)

    Babu, Sailesh

    Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate

  7. An interactive economic GIS tool for Europe using map objects for Java

    Science.gov (United States)

    Srinivasan, Vaishnavi

    Europe is one of the world's seven continents, which has approximately 50 countries and all are rich in culture, traditions, economy, biodiversity, among other things. This thesis focuses on creating a GIS application about Europe which will give an overview of Europe in various aspects. It covers 50 countries including financial centers, currency used, population, GDP growth, private banks, central banks, stock exchange, coat of arms and flags for each country, using the HotLink Tool. A reference link is also provided for detailed understanding of the above mentioned aspects. The other part of the thesis mainly focuses on the economics of the European Union as well as each country independently, which gives a thorough knowledge about the current investment climate in Europe. A part of this idea is to ensure transparency after the financial crisis in 2008. Further the capital markets of the European Union and other European countries are brought to light to provide a clear picture of their present financial situation. The application can help in improving policy and decision making, foreign investments, business environment for various development organizations. So this GIS application will be an effective tool for customers to understand the risks in investments by learning about the economic conditions of Europe.

  8. Experimental and numerical approaches to studying hot cracking in stainless steel welds

    International Nuclear Information System (INIS)

    Le, Minh

    2014-01-01

    This work concerns experimental and numerical approaches to studying hot cracking in welds in stainless steel. Metallurgical weldability of two filler products used for the welding of an AISI-316L(N) austenitic stainless steel grade is evaluated. These filler metals are distinguished by their solidification microstructures: austeno-ferritic for the 19Cr-12Ni-2Mo grade and austenitic for the 19-15H Thermanit grade. The study of weldability concerns the assessment of the susceptibility to hot cracking of these three alloys, the proposition of a hot cracking criterion, and the evaluation of its transferability to structure-scale tests. Hot cracks are material separations occurring at high temperatures along the grain boundaries (dendrite boundaries), when the level of strain and the strain rate exceed a certain level. The hot cracks studied are formed during solidification from the liquid phase of weld metals. The bibliography study brings to the fore the complexity of initiation and propagation mechanisms of these material separations. Three types of tests are studied in this work: hot cracking tests, such as trapezoidal and Varestraint tests, allowing to initiate the phenomenon in controlled experimental conditions, and tests on the Gleeble thermomechanical simulator for thermomechanical (materials behavior laws, fracture properties) and metallurgical (brittle temperature range (BTR), evolution of delta ferrite) characterizations of the alloys. All these tests on the three materials were analyzed via numerical modeling and simulations implemented in the Cast3M finite element code in order to bring out a thermomechanical hot cracking criterion. (author) [fr

  9. Plasticity of low carbon steel in a hot state

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, V P; Rizol' , A I; Shram, N N [Ural' skij Nauchno-Issledovatel' skij Inst. Chernykh Metallov, Sverdlovsk (USSR)

    1977-07-01

    The hot ductility (in tapered-specimen piersing test and the in wedge-shaped specimen rolling test) is studied of the Armeo-type low carbon steel produced by vacuum induction and open hearth techniques. The variations of the chemical composition within specified ranges, particularly as regards sulphur, oxygen and the Mn/S ratio, have a marked effect on the processing ductility. The temperature range of brittle fracture and acceptable hot working reductions as functions of the chemical composition have been revealed.

  10. Plasticity of low carbon steel in a hot state

    International Nuclear Information System (INIS)

    Konovalov, V.P.; Rizol', A.I.; Shram, N.N.

    1977-01-01

    The hot ductility (in tapered-specimen piersing test and the in wedge-shaped specimen rolling test) is studied of the Armeo-type low carbon steel produced by vacuum induction and open hearth techniques. The variations of the chemical composition within specified ranges, particularly as regards sulphur, oxygen and the Mn/S ratio, have a marked effect on the processing ductility. The temperature range of brittle fracture and acceptable hot working reductions as functions of the chemical composition have been revealed

  11. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    OpenAIRE

    Wang, Dan; Li, Heng; Yang, He; Ma, Jun; Li, Guangjun

    2014-01-01

    The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (c...

  12. Microstructure of Sinter Deposit Formed at Hot Springs in West Sumatera

    Science.gov (United States)

    Putra, A.; Inanda, D. Y.; Buspa, F.; Salim, A. F.

    2018-03-01

    Sinter deposit emerged and spread at several hot springs in West Sumatera is divided into three types, they are full silica, half silica-carbonate and full carbonate. This work intends to investigate the characteristic of each type by its crystalline structure and morphology and its correlation to surface temperature. The research is focused on Sapan Maluluang hot spring (full silica), Garara hot spring (half silica-carbonate) and Bawah Kubang hot spring (full carbonate). Crystalline structure is analyzed by X-Ray Diffraction (XRD) methods, it showed that deposit from Sapan Maluluang has opal-A structure, Garara has opal-CT structure and Bawah Kubang has crystalline structure. The Scanning Electron Microscopy (SEM) methods is applied to describe its morphology surface, in which spherical, almost rounded and irregular textured was formed at each deposit, respectively. Surface temperature of hot spring also has given impact on deposit texture.

  13. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Adamczewski, J.; Becker, K.-H.; Belogurov, S.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eom, J.; Eschke, J.; Höhne, C.; Kampert, K.-H.; Kleipa, V.; Kochenda, L.; Kolb, B.; Kopfer, J.; Kravtsov, P.; Lebedev, S.; Lebedeva, E.; Leonova, E.

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype

  14. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M. [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J. [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S., E-mail: s.lebedev@gsi.de [University Gießen (Germany); Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype.

  15. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    Science.gov (United States)

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  16. Robust Optical Richness Estimation with Reduced Scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rykoff, E.S.; /LBL, Berkeley; Koester, B.P.; /Chicago U. /Chicago U., KICP; Rozo, E.; /Chicago U. /Chicago U., KICP; Annis, J.; /Fermilab; Evrard, A.E.; /Michigan U. /Michigan U., MCTP; Hansen, S.M.; /Lick Observ.; Hao, J.; /Fermilab; Johnston, D.E.; /Fermilab; McKay, T.A.; /Michigan U. /Michigan U., MCTP; Wechsler, R.H.; /KIPAC, Menlo Park /SLAC

    2012-06-07

    Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from photometric catalogs. We consider various modifications to the red-sequence matched filter richness estimator of Rozo et al. (2009b), and evaluate their impact on the scatter in X-ray luminosity at fixed richness. Most significantly, we find that deeper luminosity cuts can reduce the recovered scatter, finding that {sigma}{sub ln L{sub X}|{lambda}} = 0.63 {+-} 0.02 for clusters with M{sub 500c} {approx}> 1.6 x 10{sup 14} h{sub 70}{sup -1} M{sub {circle_dot}}. The corresponding scatter in mass at fixed richness is {sigma}{sub ln M|{lambda}} {approx} 0.2-0.3 depending on the richness, comparable to that for total X-ray luminosity. We find that including blue galaxies in the richness estimate increases the scatter, as does weighting galaxies by their optical luminosity. We further demonstrate that our richness estimator is very robust. Specifically, the filter employed when estimating richness can be calibrated directly from the data, without requiring a-priori calibrations of the red-sequence. We also demonstrate that the recovered richness is robust to up to 50% uncertainties in the galaxy background, as well as to the choice of photometric filter employed, so long as the filters span the 4000 {angstrom} break of red-sequence galaxies. Consequently, our richness estimator can be used to compare richness estimates of different clusters, even if they do not share the same photometric data. Appendix A includes 'easy-bake' instructions for implementing our optimal richness estimator, and we are releasing an implementation of the code that works with SDSS data, as well as an augmented maxBCG catalog with the {lambda} richness measured for each cluster.

  17. Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

    International Nuclear Information System (INIS)

    Kim, Seong Hwan; Huh, Joo Youl; Lee, Suk Kyu; Park, Rho Bum; Kim, Jong Sang

    2011-01-01

    The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at 800 .deg. C was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure N 2 atmosphere with a dew point -40 .deg. C promoted the selective oxidation of Mn as a crystalline Mn 2 SiO 4 phase, whereas the N 2 + 10% H 2 atmosphere with the same dew point -40 .deg. C promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the Mn 2 SiO 4 phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure N 2 atmosphere resulted in a higher formation rate of Fe 2 Al 5 particles at the Zn/steel interface and better galvanizability than the N 2 + 10% H 2 atmosphere

  18. Design Report for ACP Hot Cell Rear Door

    Energy Technology Data Exchange (ETDEWEB)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W

    2005-12-15

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation.

  19. Design Report for ACP Hot Cell Rear Door

    International Nuclear Information System (INIS)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W.

    2005-12-01

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation

  20. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    FUJII, Terushige; OHTA, Jun-ichi; AKAGAWA, Koji; NAKAMURA, Toshi; ASANO, Hitoshi

    1992-01-01

    From the viewpoint of energy conservation and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. Among energy conversion device,there is a radial outflow reaction turbine,i.e.,Hero's turbine. Performance characteristics of Hero's turbine are analytically and experimentally clarified for flashing expansion of initially subcooled hot water. It is found that: (a)there is an optimum number of revolutions at which maximum tubine e...

  1. Influence of the ion nitriding temperature in the wear resistance of AISI H13 tool steel

    International Nuclear Information System (INIS)

    Heck, Stenio Cristaldo; Fernandes, Frederico Augusto Pires; Pereira, Ricardo Gomes; Casteletti, Luiz Carlos; Totten, George Edward

    2010-01-01

    The AISI H13 tool steel for hot work is the most used in its category. This steel was developed for injection molds and extrusion of hot metals as well as for conformation in hot presses and hammers. Plasma nitriding can improve significantly the surface properties of these steels, but the treatments conditions, such as temperature, must be optimized. In this work the influence of nitriding treatment temperature on the wear behavior of this steel is investigated. Samples of AISI H13 steel were quenched and tempered and then ion nitrided in the temperatures of 450, 550 and 650 deg C, at 4mbar pressure, during 5 hours. Samples of the treated material were characterized by optical microscopy, Vickers microhardness, x-ray analysis and wear tests. Plasma nitriding formed hard diffusion zones in all the treated samples. White layers were formed in samples treated at 550 deg C and 650 deg C. The treatment temperature of 450 deg C produced the highest hardness. Treatment temperature showed great influence in the diffusion layer thickness. X-ray analysis indicated the formation of the Fe_3N, Fe_4N and CrN phases for all temperatures, but with different concentrations. Nitriding increased significantly the AISI H13 wear resistance. (author)

  2. Computer system for identification of tool wear model in hot forging

    Directory of Open Access Journals (Sweden)

    Wilkus Marek

    2016-01-01

    Full Text Available The aim of the research was to create a methodology that will enable effective and reliable prediction of the tool wear. The idea of the hybrid model, which accounts for various mechanisms of tool material deterioration, is proposed in the paper. The mechanisms, which were considered, include abrasive wear, adhesive wear, thermal fatigue, mechanical fatigue, oxidation and plastic deformation. Individual models of various complexity were used for separate phenomena and strategy of combination of these models in one hybrid system was developed to account for the synergy of various mechanisms. The complex hybrid model was built on the basis of these individual models for various wear mechanisms. The individual models expanded from phenomenological ones for abrasive wear to multi-scale methods for modelling micro cracks initiation and propagation utilizing virtual representations of granular microstructures. The latter have been intensively developed recently and they form potentially a powerful tool that allows modelling of thermal and mechanical fatigue, accounting explicitly for the tool material microstructure.

  3. Microscopic characterizations of membrane electrode assemblies prepared under different hot-pressing conditions

    International Nuclear Information System (INIS)

    Liang, Z.X.; Zhao, T.S.; Xu, C.; Xu, J.B.

    2007-01-01

    The durability of the membrane electrode assembly (MEA) for direct methanol fuel cells (DMFCs) is one of the most critical issues to be addressed before widespread commercialization of the DMFC technology. In this work, we investigated the effect of the hot-pressing duration on the performance and durability of the MEA prepared by hot-pressing technique. It was found that the 60-min hot pressing at 135 deg. C under the pressure of 4.0 MPa yielded a significantly improved MEA durability than did the 3-min hot pressing (a typical duration in practice) under the same condition, but no substantial difference was found in the cell performance of the MEAs prepared with the two different hot-pressing durations. The reason why the hot-pressing duration had no significant effect on cell performance is explained based on X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) characterizations of the changes in the physiochemical properties of MEAs and their constituent components, including the anode, cathode and Nafion membrane, before and after hot pressing with different durations

  4. A framework and tool for assessing Indigenous content in Canadian social work curricula

    OpenAIRE

    Tamburro, Andrea Grayson

    2010-01-01

    Social Work faculties across Canada are mandated through policy and for historical, political, social, and moral reasons to include Indigenous content in their curriculum. While there is policy that mandates Indigenous content, there is no clear framework or tool to assist faculty members to examine how they can assess their curriculum to ensure it includes appropriate Indigenous content. This study has three objectives: 1) to articulate an Aboriginal Assessment Process for Social Work Curri...

  5. EBSD study of purity effects during hot working in austenitic stainless steels

    International Nuclear Information System (INIS)

    El Wahabi, M.; Gavard, L.; Cabrera, J.M.; Prado, J.M.; Montheillet, F.

    2005-01-01

    The technique of electron back scattering diffraction (EBSD) is considered as a powerful instrument for the study of the microstructural changes during hot forming processes and gives the possibility to present the information in different ways (OIM, misorientation diagram and pole figures). The present work is focused on the observation by EBSD of the microstructure evolution during deformation at high temperature of three austenitic stainless steels: AISI-304H, AISI-304L and a high purity steel HP. The difference between the three steels is the content carbon and the presence of residual elements. To this aim compression tests were carried out at a constant strain rate of 0.001 s -1 and different temperatures. The study showed an increase of twin boundary fractions and a diminution of substructure (low angle densities boundaries) at increasing temperatures. On the other hand, increasing carbon content promotes lower twin boundary fractions and larger amounts of low angle boundaries. This effect can be explained by the reduction of grain boundary mobility caused by increasing carbon contents, which in turn reduces the migration rate and consequently the probability of twin boundary generation. Moreover, the increment of low angle boundaries with carbon content accelerates the twin character loss. It was also found that the dynamically recrystallized grain size decreased at increasing carbon content due to a typical drag effect. No important features on textures were found during DDRX

  6. Development of an innovative uav-mounted screening tool for landfill gas emissions

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Thomasen, T. B.; Valbjørn, I. L.

    2015-01-01

    Identification of landfill gas emission hot spots are potentially a very time consuming process, and the use of an Unmanned Aerial Vehicle (UAV) based screening tool could be an effective investigation strategy. In this study, the potential use of a long-wave thermal infrared camera was investiga......Identification of landfill gas emission hot spots are potentially a very time consuming process, and the use of an Unmanned Aerial Vehicle (UAV) based screening tool could be an effective investigation strategy. In this study, the potential use of a long-wave thermal infrared camera...

  7. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    Science.gov (United States)

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  8. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    Science.gov (United States)

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    Science.gov (United States)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  10. Authoring Tools

    Science.gov (United States)

    Treviranus, Jutta

    Authoring tools that are accessible and that enable authors to produce accessible Web content play a critical role in web accessibility. Widespread use of authoring tools that comply to the W3C Authoring Tool Accessibility Guidelines (ATAG) would ensure that even authors who are neither knowledgeable about nor particularly motivated to produce accessible content do so by default. The principles and techniques of ATAG are discussed. Some examples of accessible authoring tools are described including authoring tool content management components such as TinyMCE. Considerations for creating an accessible collaborative environment are also covered. As part of providing accessible content, the debate between system-based personal optimization and one universally accessible site configuration is presented. The issues and potential solutions to address the accessibility crisis presented by the advent of rich internet applications are outlined. This challenge must be met to ensure that a large segment of the population is able to participate in the move toward the web as a two-way communication mechanism.

  11. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  12. Hot embossing of photonic crystal polymer structures with a high aspect ratio

    DEFF Research Database (Denmark)

    Schelb, Mauno; Vannahme, Christoph; Kolew, Alexander

    2011-01-01

    ). A nickel tool for the replication of structures with lateral dimensions of 110 nm and heights of approximately 370 nm is fabricated via electroplating of a nanostructured sample resulting in an aspect ratio of approximately 3.5. The structures are subsequently hot embossed into PMMA and COC substrates....

  13. Hot mechanical behaviour of dispersion strengthened Cu alloys

    International Nuclear Information System (INIS)

    Garcia G, Jose; Espinoza G, Rodrigo; Palma H, Rodrigo; Sepulveda O, Aquiles

    2003-01-01

    This work is part of a research project which objective is the improvement of the high-temperature mechanical properties of copper, without an important decrease of the electrical or thermal conduction properties. The general hypothesis is that this will be done by the incorporation of nanometric ceramic dispersoids for hindering the dislocation and grain boundaries movement. In this context, the object of the present work is the study of the resistance to hot deformation of dispersion-strengthened copper alloys which have prepared by reactive milling. Two different alloys, Cu-2,39wt.%Ti-0.56wt.%C and Cu-1.18wt.%Al, were prepared so as obtain a copper matrix reinforced with nanometric TiC y Al 2 O 3 particles with a nominal total amount of 5 vol.%. The particles were developed by an in-situ formation process during milling. The materials were prepared in an attritor mill, and consolidated by extrusion at 750 o C, with an area reduction rate of 10:1. The resistance to hot deformation was evaluated by hot compression tests at 500 and 850 o C, at initial strain rates of 10 -3 and 10 -4 s-1. To evaluate the material softening due temperature, annealing at 400, 650 y 900 o C during 1h were applied; after that, hardness was measured at room temperature. Both studies alloys presented a higher resistance to hot deformation than pure copper, with or without milling. Moreover, the Cu-Ti-C alloy presented a mechanical resistance higher than that of the Cu-Al one. Both alloys presented strain-stress compression curves with a typical hot-work shape: an initial maximum followed by a stationary plateau. The Cu-Ti-C alloy had a higher hardness and did not present a hardness decay even after annealings at the higher temperature imposed (900 o C), while the Cu-Al alloy did exhibit a strong decay of hardness after the annealing at 900 o C. The best behaviour exhibited by the Cu-Ti C alloy, was attributed to the formation of a major quantity of dispersoids that in the Cu-Al alloy. In

  14. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Zhang, Chunlan; Quan, Qing; Wu, Yongjie; Chen, Youhua; He, Peng; Qu, Yanhua; Lei, Fumin

    2017-04-01

    Large-scale patterns of species richness have gained much attention in recent years; however, the factors that drive high species richness are still controversial in local regions, especially in highly diversified montane regions. The Qinghai-Tibetan Plateau (QTP) and the surrounding mountains are biodiversity hot spots due to a high number of endemic montane species. Here, we explored the factors underlying this high level of diversity by studying the relationship between species richness and environmental variables. The richness patterns of 758 resident bird species were summarized at the scale of 1°×1° grid cell at different taxonomic levels (order, family, genus, and species) and in different taxonomic groups (Passeriformes, Galliformes, Falconiformes, and Columbiformes). These richness patterns were subsequently analyzed against habitat heterogeneity (topographical heterogeneity and land cover), temperature amplitude (annual temperature, annual precipitation, precipitation seasonality, and temperature seasonality) and a vegetation index (net primary productivity). Our results showed that the highest richness was found in the southeastern part of the QTP, the eastern Himalayas. The lowest richness was observed in the central plateau of the QTP. Topographical heterogeneity and temperature amplitude are the primary factors that explain overall patterns of species richness in the QTP, although the specific effect of each environmental variable varies between the different taxonomic groups depending on their own evolutionary histories and ecological requirements. High species richness in the southeastern QTP is mostly due to highly diversified habitat types and temperature zones along elevation gradients, whereas the low species richness in the central plateau of the QTP may be due to environmental and energetic constraints, as the central plateau is harsh environment.

  15. Clumped isotopologue constraints on the origin of methane at seafloor hot springs

    Science.gov (United States)

    Wang, David T.; Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.; Ono, Shuhei

    2018-02-01

    Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a "clumped" isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310-42+53 °C, with no apparent relation to the wide range of fluid temperatures (96-370 °C) and chemical compositions (pH, [H2], [∑CO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270-360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water

  16. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  17. Rarity, Species Richness, and the Threat of Extinction—Are Plants the Same as Animals?

    OpenAIRE

    Knapp, Sandra

    2011-01-01

    Assessment of conservation status is done both for areas or habitats and for species (or taxa). IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely followi...

  18. Beta decay and magnetic moments as tools to probe nuclear structure. Study of neutron-rich nuclei around N=40; Decroissance beta et moments magnetiques comme outils pour sonder la structure nucleaire. Etude des noyaux riches en neutrons autour de N=40

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I

    2003-12-01

    The evolution of nuclear structure in nuclei far from the {beta} stability line is one of the 'hot topics' in modern experimental and theoretical nuclear physics. The present thesis is devoted to the study of structure of neutron-rich nuclei around N=40. The evolution of the neutron g9/2 orbital with increasing number of neutrons is one of the key points defining the structure of these nuclei at low excitation energy. We used for this investigation as experimental tools the magnetic dipole moments measurements and the {beta} decay spectroscopy. For the measurement of the gyromagnetic factor of the 9/2{sup +} isomeric state in Fe{sup 61} we have applied the TDPAD method. This method (like most of measurements of nuclear moments) requires an oriented ensemble of nuclei. The orientation of Fe{sup 61m} was achieved via the fragmentation of Ni{sup 64} at 55 MeV/u and the selection of the fragment momentum with the LISE spectrometer at GANIL. The experimental device was specially conceived to preserve the alignment up to the implantation point. The measured value of the g factor was compared with large-scale shell model and Hartree-Fock-Bogoliubov model predictions. The nuclei studied via {beta} decay were produced by the fragmentation of Kr{sup 86} at 58 MeV/u. For the selection of reaction products we used for the first time the LISE2000 spectrometer and for the detection of {gamma} rays four EXOGAM clover detectors. We measured 5 new lifetimes and 4 lifetimes with a higher precision. From the prompt {beta}{gamma} coincidences we identified new states in the daughter nuclei, as it is the case of the first 2{sup +} excited states in Fe{sup 68} and Ni{sup 72}. The results were compared with the predictions of the large-scale shell model. Other transitions were observed for the first time in {beta}{gamma} decay of Ti{sup 60}, Fe{sup 70} and Co{sup 71,73}. (author)

  19. Implementation of a competency assessment tool for agency nurses working in an acute paediatric setting.

    LENUS (Irish Health Repository)

    Hennerby, Cathy

    2012-02-01

    AIM: This paper reports on the implementation of a competency assessment tool for registered general agency nurses working in an acute paediatric setting, using a change management framework. BACKGROUND: The increased number of registered general agency nurses working in an acute children\\'s hospital alerted concerns around their competency in working with children. These concerns were initially raised via informal complaints about \\'near misses\\

  20. Giant resonances in hot rotating nuclei

    International Nuclear Information System (INIS)

    Ring, P.

    1992-01-01

    Present theoretical descriptions of the giant resonances in hot rotating nuclei are reviewed. Mean field theory is used as a basis for the description of the hot compound states. Starting from the static solution at finite temperature and with fixed angular momentum small amplitude collective vibrations are calculated in the frame work of finite temperature random phase approximation for quasi-particles. The effect of pairing at low temperatures as well as the effect of rotations on the position of the resonance maxima are investigated. Microscopic and phenomenological descriptions of the damping mechanisms are reviewed. In particular it turns out that fluctuations play an important role in understanding of the behaviour of the width as a function of the temperature. Motional narrowing is critically discussed. (author). 99 refs., 5 figs

  1. Absorption signatures of warm-hot gas at low redshift : Ne VIII

    NARCIS (Netherlands)

    Tepper-García, T

    2013-01-01

    At z {lt} 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10$^{5}$-10$^{6}$ K). Absorption by the 770.41, 780.32 å doublet of Ne VIII in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have

  2. Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Srivatsa, Kulkarni, E-mail: srivatsa.kulkarni@kcssl.com; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-11-20

    Improvement of the general mechanical properties and in particular sub-zero impact toughness in a 0.2%C-13%Cr martensitic stainless steel has been explored by varying the hot deformation and heat treatment conditions. The deformation conditions include hot rolling an ingot in one case and cogging the ingot to a semis followed by hot rolling in another case. The bars made from both routes were subjected to a single hardening heat treatment at 980 °C and 1040 °C oil quenched and a double hardening heat treatment at 1040 °C followed by 980 °C oil quenched. The hardened steels were subjected to a standard two stage tempering at 710 °C followed by 680 °C. The impact toughness was found to be doubled in the cogged and rolled steel in double hardened condition. Other processing conditions show varying impact toughness levels. The toughness observed was correlated to the grain size and the carbide distribution in the matrix and the fractography features.

  3. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Nitrogen-Alloyed High-Mn Austenitic Hot Work Die Steel

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-03-01

    Full Text Available In view of the requirements for mechanical properties and service life above 650 °C, a high-Mn austenitic hot work die steel, instead of traditional martensitic hot work die steel such as H13, was developed in the present study. The effect of heat treatment on the microstructure and mechanical properties of the newly developed work die steel was studied. The results show that the microstructure of the high-Mn as-cast electroslag remelting (ESR ingot is composed of γ-Fe, V(C,N, and Mo2C. V(C,N is an irregular multilateral strip or slice shape with severe angles. Most eutectic Mo2C carbides are lamellar fish-skeleton-like, except for a few that are rod-shaped. With increasing solid solution time and temperature, the increased hardness caused by solid solution strengthening exceeds the effect of decreased hardness caused by grain size growth, but this trend is reversed later. As a result, the hardness of specimens after various solid solution heat treatments increases first and then decreases. The optimal combination of hardness and austenitic grain size can be obtained by soaking for 2 h at 1170 °C. The maximum Rockwell hardness (HRC is 47.24 HRC, and the corresponding austenite average grain size is 58.4 μm. When the solid solution time is 3 h at 1230 °C, bimodality presented in the histogram of the austenite grain size as a result of further progress in secondary recrystallization. Compared with the single-stage aging, the maximum impact energy of the specimen after two-stage aging heat treatment was reached at 16.2 J and increased by 29.6%, while the hardness decreased by 1–2 HRC. After two-stage aging heat treatment, the hardness of steel reached the requirements of superior grade H13, and the maximum impact energy was 19.6% higher than that of superior grade H13, as specified in NADCA#207-2003.

  4. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  5. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  6. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  7. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  8. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry.

    Science.gov (United States)

    Najar, Ishfaq Nabi; Sherpa, Mingma Thundu; Das, Sayak; Das, Saurav; Thakur, Nagendra

    2018-10-01

    Northeastern regions of India are known for their floral and faunal biodiversity. Especially the state of Sikkim lies in the eastern Himalayan ecological hotspot region. The state harbors many sulfur rich hot springs which have therapeutic and spiritual values. However, these hot springs are yet to be explored for their microbial ecology. The development of neo generation techniques such as metagenomics has provided an opportunity for inclusive study of microbial community of different environment. The present study describes the microbial diversity in two hot springs of Sikkim that is Polok and Borong with the assist of culture dependent and culture independent approaches. The culture independent techniques used in this study were next generation sequencing (NGS) and Phospholipid Fatty Acid Analysis (PLFA). Having relatively distinct geochemistry both the hot springs are thermophilic environments with the temperature range of 50-77 °C and pH range of 5-8. Metagenomic data revealed the dominance of bacteria over archaea. The most abundant phyla were Proteobacteria and Bacteroidetes although other phyla were also present such as Acidobacteria, Nitrospirae, Firmicutes, Proteobacteria, Parcubacteria and Spirochaetes. The PLFA studies have shown the abundance of Gram Positive bacteria followed by Gram negative bacteria. The culture dependent technique was correlative with PLFA studies. Most abundant bacteria as isolated and identified were Gram-positive genus Geobacillus and Anoxybacillus. The genus Geobacillus has been reported for the first time in North-Eastern states of India. The Geobacillus species obtained from the concerned hot springs were Geobacillus toebii, Geobacillus lituanicus, Geobacillus Kaustophillus and the Anoxybacillus species includes Anoxybacillus gonensis and Anoxybacillus Caldiproteolyticus. The distribution of major genera and their statistical correlation analyses with the geochemistry of the springs predicted that the temperature, p

  9. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  10. Iron abundance in the hot DA white dwarfs Feige 24 and G191 B2B

    Science.gov (United States)

    Vennes, Stephane; Chayer, Pierre; Thorstensen, John R.; Bowyer, Stuart; Shipman, Harry L.

    1992-01-01

    Attention is given to model calculations of the far- and extreme-UV line spectra of highly ionized Fe species (Fe IV, Fe V, and Fe VI) for hot high-gravity H-rich stars. A spectral analysis of 31 hr of exposure of the DA white dwarf Feige 24 with IUE in the echelle mode reveals the presence of Fe with an abundance relative to H by number of (5-10) x 10 exp -6 with an uncertainty dominated by the determination of stellar parameters. An analysis of IUE data from the white dwarf G191 B2B results in a similar Fe abundance if this star shares similar atmospheric parameters (Teff, g) with Feige 24. Fe is thus the second most abundant photospheric element in hot DA white dwarfs.

  11. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  12. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  13. Clues on the hot star content and the ultraviolet output of elliptical galaxies

    International Nuclear Information System (INIS)

    Greggio, L.; Renzini, A.

    1990-01-01

    Purely energetic arguments are used here to investigate the conditions under which old, low-mass stars could be responsible for the UV rising branch of elliptical galaxies. It is argued that presently available observational data are insufficient to unambiguously decide which of various candidates provide the dominant contribution. It is found that the possibility for metal-rich, low-mass stars to evolve through sufficiently hot stages, provide enough UV photons, and produce the observed UV-metallicity correlation is primarily controlled by two poorly known trends with increasing metallicity: helium enrichment and mass-loss rate during the red giant phases. The classical hydrogen-burning post-AGB stars do not appear able to burn enough fuel to account for the most UV-powerful galaxies. Other hot star candidates which appear more promising are identified. It is shown that a very important role is played by the actual metallicity distribution within individual galaxies. 154 refs

  14. Estabilidade dos carotenoides,antocianinas e vitamina C presentes no suco tropical de acerola (Malpighia emarginata DC. adoçado envasado pelos processos Hot-Fill e asséptico Stability of carotenoids, anthocyanins and vitamin C presents in acerola sweetened tropical juice preserved by hot fill and aseptic processes

    Directory of Open Access Journals (Sweden)

    Claisa Andréa Silva de Freitas

    2006-10-01

    Full Text Available As frutas tropicais são muito aceitas pelos consumidores, e são importantes fontes de componentes antioxidantes. A acerola, conhecida por conter grandes quantidades de vitamina C, é também rica em antocianinas e carotenóides. O presente trabalho teve por objetivo avaliar a estabilidade dos carotenóides totais, antocianinas totais e vitamina C do suco tropical de acerola adoçado, elaborado pelos processos Hot Fill (garrafas de vidro e asséptico (embalagens cartonadas, durante 350 dias de armazenamento em condições similares às de comercialização (28ºC ± 2ºC. Ao final do experimento observou-se que não houve perdas de antocianinas totais para o processo Hot Fill, no entanto, para o processo asséptico constatou-se uma redução de 86,89% dos teores iniciais. Os valores de carotenóides totais permaneceram inalterados nas amostras do processo asséptico, enquanto nas do Hot Fill houve uma redução de 12,5%. Constatou-se redução nos teores de vitamina C da ordem de 23,61% para o processo Hot Fill e de 35,95% para o processo asséptico.Tropical fruits are widely accepted by consumers, and important sources of antioxidant compounds. Acerola, known to have high vitamin C levels, is also rich in anthocyanins and carotenoids. The purpose of this work was to evaluate the stability of the total carotenoids, total anthocyanins and ascorbic acid of the acerola sweetened tropical juice produced by the Hot Fill (glass bottles and aseptic (packings carton process during 350 days of storage in similar conditions of trade (28ºC ± 2ºC. It was observed that there were not losses of total anthocyanins for the process Hot Fill, however for the aseptic process a reduction of 86.89% of the initial values was observed. The values of total corotenoids stayed unaffected in the samples of the aseptic process, while in the one of the Hot Fill there was a reduction of 12.5%. A reduction in the values of ascorbic acid of 23.61% was observed for the Hot

  15. Powered mobility intervention: understanding the position of tool use learning as part of implementing the ALP tool.

    Science.gov (United States)

    Nilsson, Lisbeth; Durkin, Josephine

    2017-10-01

    To explore the knowledge necessary for adoption and implementation of the Assessment of Learning Powered mobility use (ALP) tool in different practice settings for both adults and children. To consult with a diverse population of professionals working with adults and children, in different countries and various settings; who were learning about or using the ALP tool, as part of exploring and implementing research findings. Classical grounded theory with a rigorous comparative analysis of data from informants together with reflections on our own rich experiences of powered mobility practice and comparisons with the literature. A core category learning tool use and a new theory of cognizing tool use, with its interdependent properties: motivation, confidence, permissiveness, attentiveness and co-construction has emerged which explains in greater depth what enables the application of the ALP tool. The scientific knowledge base on tool use learning and the new theory conveys the information necessary for practitioner's cognizing how to apply the learning approach of the ALP tool in order to enable tool use learning through powered mobility practice as a therapeutic intervention in its own right. This opens up the possibility for more children and adults to have access to learning through powered mobility practice. Implications for rehabilitation Tool use learning through powered mobility practice is a therapeutic intervention in its own right. Powered mobility practice can be used as a rehabilitation tool with individuals who may not need to become powered wheelchair users. Motivation, confidence, permissiveness, attentiveness and co-construction are key properties for enabling the application of the learning approach of the ALP tool. Labelling and the use of language, together with honing observational skills through viewing video footage, are key to developing successful learning partnerships.

  16. Repair work in the context of English language mediated computer interface use: A conversation analytic study

    DEFF Research Database (Denmark)

    Raudaskoski, Pirkko

    1992-01-01

    The main aim in this study is to develop an understanding of how repair work is managed in the intertwining of activities and actions with talk and language. By doing this, the richness of the concept of repair in interactional studies is shown. The core work concentrates on exploring repair work...... the English language as a resource. The computer interface use context was chosen to show how narrowly traditional research has seen repair work.......The main aim in this study is to develop an understanding of how repair work is managed in the intertwining of activities and actions with talk and language. By doing this, the richness of the concept of repair in interactional studies is shown. The core work concentrates on exploring repair work...... in the context of participants solving interactional troubles in their activities. Many types of resources are potentially available in any situation, from the physical features of tools to the cultural context. In this study the interest lies especially in the more complicated artifacts which also offer...

  17. Pyrolysis Dynamics of Biomass Residues in Hot-Stage

    Directory of Open Access Journals (Sweden)

    Ivan Bergier

    2015-09-01

    Full Text Available Original data for mass, element, and methane dynamics under controlled pyrolysis are presented for several biomass feedstocks. The experimental system consisted of an environmental (low-vacuum scanning electron microscopy (ESEM with a hot-stage and energy-dispersive X-ray spectroscopy (EDS detector. A tunable diode laser (TDL was coupled to the ESEM vacuum pump to measure the methane partial pressure in the exhaust gases. Thermogravimetric analysis and differential thermal analysis (TG/DTA in a N2 atmosphere was also carried out to assess the thermal properties of each biomass. It was found that biochars were depleted or enriched in specific elements, with distinct methane formation change. Results depended on the nature of the biomass, in particular the relative proportion of lignocellulosic materials, complex organic compounds, and ash. As final temperature was increased, N generally decreased by 30 to 100%, C increased by 20 to 50% for biomass rich in lignocellulose, and P, Mg, and Ca increased for ash-rich biomass. Methane formation also allows discriminating structural composition, providing fingerprints of each biomass. Biomass with low ashes and high lignin contents peaks CH4 production at 330 and 460 °C, whereas those biomasses with high ashes and low lignin peaks CH4 production at 330 and/or 400 °C.

  18. Determination of the interfacial heat transfer coefficient in the hot stamping of AA7075

    Directory of Open Access Journals (Sweden)

    Liu Xiaochuan

    2015-01-01

    Full Text Available The interfacial heat transfer coefficient (IHTC is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE models to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC value between a hot aluminium alloy 7075 blank and cold dies. The IHTC was determined at different contact pressures under both dry and lubricated (Omega-35 conditions. In addition, a model to calculate the IHTC value at different contact pressures and area densities of lubricant was developed for the hot stamping process.

  19. Finding radiation hot-spots for a private residence/decontamination manual

    International Nuclear Information System (INIS)

    Nishizawa, Kunihide

    2012-01-01

    Since the Fukushima Daiichi Nuclear Power Station accident, the radio-iodine and cesium analysis group of ad hoc committee of safety measures has investigated initial screening monitor of the soils and examined contamination and experienced decontamination works. Existence of hot-spots where Cs 137 is concentrated is confirmed. The report makes a manual to find such a hot-spot in a private residence and how the decontamination should be carried out. Particularly, the report provides the definite examples of hot-spots, for instances, a roof, an eaves trough (a gutter), a side drain (a ditch), dead leaves (withered grass), surface land, a wood block, etc. and how the decontamination should be confirmed and the dusts be collected and kept. (S. Ohno)

  20. The effects of diffusion in hot subdwarf progenitors from the common envelope channel

    Science.gov (United States)

    Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili

    2018-04-01

    Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.

  1. Iodine speciation in the hot cell effluent gases

    International Nuclear Information System (INIS)

    Lee, B.S.; Jester, W.A.; Olynyk, J.M.

    1990-01-01

    The various species of airborne radioiodine can affect the iodine source term of a severe core damage accident because of the different transport and deposition properties. also, the radiobiological hazardness may vary according to their chemical form. The purpose of the work reported in this paper was to characterize the various chemical forms of airborne radioiodine in hot cell effluent gases of a radiopharmaceutical production facility that produces medical radioisotopes from separated fission products of irradiated uranium targets. It is concluded that the methyl iodide is the youngest chemical species in terms of effective decay time age, and the hot cell filter bank is least efficient in removing the methyl iodide

  2. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  3. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.

    Science.gov (United States)

    Peng, Tianhuan; Miao, Junjian; Gao, Zhaoshuai; Zhang, Linjuan; Gao, Yi; Fan, Chunhai; Li, Di

    2018-03-01

    Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Large eddy simulation of mixing between hot and cold sodium flows - comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, J.P.; Noe, H.; Menant, B.

    1995-09-01

    The large eddy simulation is becoming a potential powerful tool for the calculation of turbulent flows. In nuclear liquid metal cooled fast reactors, the knowledge of the turbulence characteristics is of great interest for the prediction and the analysis of thermal stripping phenomena. The objective of this paper is to give a contribution in the evaluation of the large eddy simulation technique is an individual case. The problem chosen is the case of the mixing between hot and cold sodium flows. The computations are compared with available sodium tests. This study shows acceptable qualitative results but the simple model used is not able to predict the turbulence characteristics. More complex models including larger domains around the fluctuating zone and fluctuating boundary conditions could be necessary. Validation works are continuing.

  5. Microstructural evolution of a cold work tool steel after pulsed laser remelting

    Directory of Open Access Journals (Sweden)

    L. Kosec

    2012-01-01

    Full Text Available The aim of this study is the investigation of micro-structural behaviour of a Mat. No. 1.2379 (EN-X160CrMoV121; AISI D2 cold work tool steel after remelting with a precise pulsed Nd:YAG laser. The investigated steel is one of the most hard to weld tool steels, due to large amount of alloying elements. The analysis was done on single spots remelted with specific laser pulse shape and parameters, assuring crack-less solidification. Re-solidifi ed areas were investigated with microscopy, hardness measurements, X-ray spectroscopy and diffraction method. Laser treatment causes rapid solidifi cation leading into a formation of a fine dendritic microstructures containing high amount of retained austenite causing a significant decrease of hardness.

  6. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  7. Biomineralization of radioactive sulfide minerals in strong acidic Tamagawa hot springs

    International Nuclear Information System (INIS)

    Tazaki, Kazue; Watanabe, Hiroaki

    2004-01-01

    Bioaccumulation of radioactive sulfide minerals by bacteria in strong acidic hot spring water was found at Tamagawa Hot Springs, Akita prefecture in Japan. The hot spring water produces Hokutolite of radioactive minerals high radium and radon. The β-ray measurements of sediments and biofilms indicate 1850-2420 and 5700 cpm, respectively, which are 50-100 times higher than that of the water and the air (50-90 cpm). The characteristics of hot spring water show pH (1.2), Eh (140 mV), EC (29 mS/cm), DO (0.8 mg/l), and water temperature (99.5degC), indicating extremely strong acidic and reducing conditions. The hot spring water contains mainly HCl associated with high concentrations of Ca 2+ , Al 3+ , Fe 2+ , HSO 4 - and SO 4 2- . SEM-EDX and TEM demonstrate some insight into how microorganisms affect the chemistry and microbiological characteristics of the strong acidic surroundings with high S, As, Ba, and Ca contents in biofilms. Especially SEM-EDX, ED-XRF, and STEM-EDX elemental content maps illustrate the distribution of sulfur-bearing compounds of barite (BaSO 4 ), gypsum (CaSO 4 ·2H 2 O), elemental sulfur (S) and orpiment(As 2 S 3 ) in the reddish orange biofilms. The presence of a hydrogen sulfide-rich (H 2 S) thermal spring and gypsum deposits suggest the volatilization of H 2 S from the spring water, oxidation of the H 2 S gas to sulfuric acid, and reaction of the sulfuric acid. TEM micrographs of bacteria in the biofilms reveal in detail the intimate connections between biological and mineralogical processes that the cells are entirely accumulated with spherical grains, 100∼200 nm in diameter. The relationship among sulfide minerals, such as barite, gypsum, sulfur, orpiment, and Hakutolite, associated with bacteria implies that heavy metals have been transported from strong acidic hot spring water to sediments through bacteria metabolism. It is possible that the capability of radioactive sulfide biofilms for heavy metal immobilization can be used to

  8. Case Study to Illustrate the Potential of Conformal Cooling Channels for Hot Stamping Dies Manufactured Using Hybrid Process of Laser Metal Deposition (LMD and Milling

    Directory of Open Access Journals (Sweden)

    Magdalena Cortina

    2018-02-01

    Full Text Available Hot stamping dies include cooling channels to treat the formed sheet. The optimum cooling channels of dies and molds should adapt to the shape and surface of the dies, so that a homogeneous temperature distribution and cooling are guaranteed. Nevertheless, cooling ducts are conventionally manufactured by deep drilling, attaining straight channels unable to follow the geometry of the tool. Laser Metal Deposition (LMD is an additive manufacturing technique capable of fabricating nearly free-form integrated cooling channels and therefore shape the so-called conformal cooling. The present work investigates the design and manufacturing of conformal cooling ducts, which are additively built up on hot work steel and then milled in order to attain the final part. Their mechanical performance and heat transfer capability has been evaluated, both experimentally and by means of thermal simulation. Finally, conformal cooling conduits are evaluated and compared to traditional straight channels. The results show that LMD is a proper technology for the generation of cooling ducts, opening the possibility to produce new geometries on dies and molds and, therefore, new products.

  9. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  10. Reversible electron–hole separation in a hot carrier solar cell

    International Nuclear Information System (INIS)

    Limpert, S; Bremner, S; Linke, H

    2015-01-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron–hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron–hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices. (paper)

  11. IMPROVEMENT OF THE RICHNESS ESTIMATES OF maxBCG CLUSTERS

    International Nuclear Information System (INIS)

    Rozo, Eduardo; Rykoff, Eli S.; Koester, Benjamin P.; Hansen, Sarah; Becker, Matthew; Bleem, Lindsey; McKay, Timothy; Hao Jiangang; Evrard, August; Wechsler, Risa H.; Sheldon, Erin; Johnston, David; Annis, James; Scranton, Ryan

    2009-01-01

    Minimizing the scatter between cluster mass and accessible observables is an important goal for cluster cosmology. In this work, we introduce a new matched filter richness estimator, and test its performance using the maxBCG cluster catalog. Our new estimator significantly reduces the variance in the L X -richness relation, from σ lnLx 2 = (0.86±0.02) 2 to σ lnLx 2 = (0.69±0.02) 2 . Relative to the maxBCG richness estimate, it also removes the strong redshift dependence of the L X -richness scaling relations, and is significantly more robust to photometric and redshift errors. These improvements are largely due to the better treatment of galaxy color data. We also demonstrate the scatter in the L X -richness relation depends on the aperture used to estimate cluster richness, and introduce a novel approach for optimizing said aperture which can easily be generalized to other mass tracers.

  12. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  13. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  14. Titanate ceramics for immobilisation of uranium-rich radioactive wastes arising from {sup 99}Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.L.; Li, H. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, Sydney, NSW 2232 (Australia); Zhang, Y. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, Sydney, NSW 2232 (Australia)], E-mail: yzx@ansto.gov.au; Vance, E.R.; Mitchell, D.R.G. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, Sydney, NSW 2232 (Australia)

    2009-02-28

    Uranium-rich liquid wastes arising from UO{sub 2} targets which have been neutron-irradiated to generate medical radioisotopes such as {sup 99m}Tc require immobilisation. A pyrochlore-rich hot isostatically pressed titanate ceramic can accommodate at least 40 wt% of such waste expressed on an oxide basis. In this paper, the baseline waste form composition (containing 40 wt% UO{sub 2}) was adjusted in two ways: (a) varying the UO{sub 2} loading with constant precursor oxide materials, (b) varying the precursor composition with constant waste loading of UO{sub 2}. This resulted in the samples having a similar phase assemblage but the amounts of each phase varied. The oxidation states of U in selected samples were determined using diffuse reflection spectroscopy (DRS) and electron energy loss spectroscopy (EELS). Leaching studies showed that there was no significant difference in the normalised elemental release rates and the normalised release rates are comparable with those from synroc-C. This demonstrates that waste forms based on titanate ceramics are robust and flexible for the immobilisation of U-rich waste streams from radioisotope processing.

  15. Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718

    International Nuclear Information System (INIS)

    Choi, Hong Seok; Ko, Dae Chul; Kim, Byung Min

    2007-01-01

    Metal forming is the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading process of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked product. Die material is SKD61 and initial temperature is 300 .deg. C. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out using DEFORM software before marking the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is know that forming load was decreased according to decreasing punch velocity

  16. Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Hwan; Huh, Joo Youl [Korea University, Seoul (Korea, Republic of); Lee, Suk Kyu; Park, Rho Bum; Kim, Jong Sang [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2011-02-15

    The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at 800 .deg. C was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure N{sub 2} atmosphere with a dew point -40 .deg. C promoted the selective oxidation of Mn as a crystalline Mn{sub 2}SiO{sub 4} phase, whereas the N{sub 2} + 10% H{sub 2} atmosphere with the same dew point -40 .deg. C promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the Mn{sub 2}SiO{sub 4} phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure N{sub 2} atmosphere resulted in a higher formation rate of Fe{sub 2}Al{sub 5} particles at the Zn/steel interface and better galvanizability than the N{sub 2} + 10% H{sub 2} atmosphere.

  17. Shrinking of bumps by drawing scintillating fibres through a hot conical tool

    CERN Document Server

    Rodrigues Cavalcante, Ana Barbara; Gavardi, Laura; Joram, Christian; Kristic, Robert; Pierschel, Gerhard; Schneider, Thomas

    2016-01-01

    The LHCb SciFi tracker will be based on scintillating fibres with a nominal diameter of 250 $\\mu$m. A small length fraction of these fibres shows millimetre-scale fluctuations of the diameter, also known as bumps and necks. In particular, bumps exceeding a diameter of about 350 $\\mu$m are problematic as they can distort the winding pattern of the fibre mats over more extended regions. We present a method to reduce the diameter of large bumps to a diameter of 350 $\\mu$m by locally heating and pulling the fibre through a conical tool. The method has been proven to work for bumps up to 450 – 500 $\\mu$m diameter. Larger bumps need to be treated manually by a cut-and-glue technique which relies on UV-curing instant glue. The bump shrinking and cut-and-glue processes were integrated in a fibre diameter scanner at CERN. The central scanning and bump shrinking of all fibres is expected to minimise bump related issues at the four mat winding centres of the SciFi project.

  18. Identification of hot spot area of sediment contamination in a lake system using texture characteristics.

    Science.gov (United States)

    Sheela, A M; Letha, J; Joseph, Sabu; Thomas, Jobin

    2013-04-01

    Texture plays an important role in the identification of polluted stretch in a lake system. The organic matter as well as toxic elements get accumulated in the finer sediments. The aim of the work is to show the spatio-temporal distribution of texture of the lake sediment (Akkulam-Veli lake, Kerala) and to identify the hot spot areas of contamination. Hot spot areas vary with seasons. During PRM, (premonsoon), the upstream portion of the Akkulam lake is the hot spot. During MON (monsoon), the downstream portion of the Akkulam lake and the upstream portion of the Veli lake are the hot spots. During POM (postmonsoon), hot spot area is the downstream portion of the Akkulam lake. This methodology can be used for the quick identification of hot spots in water bodies.

  19. Characteristics and Origins of Hot Springs in the Tatun Volcano Group in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Mei Liu

    2011-01-01

    Full Text Available This paper systematically surveyed distribution and field occurrences of 13 hot springs as well as geochemical investigation on the geothermal area of the Tatun Volcano Group (TVG. According to Piper diagrams, pH values, field occurrences and water-rock interactions, these hot springs can be classified into three types: (1 Type I, SO42- acidic water where the reservoir is located in the Wuchishan Formation; (2 Type II, HCO3- a near neutral spring where waters originate from the volcanic terrane (andesite; and (3 Type III, Cl- -rich acidic water where waters emanate from shallower Wuchishan Formation. In terms of isotopic ratio, δD and δ18O values, two groups of hot spring can be recognized. One is far away from the meteoric water line of the Tatun area with values ranging between -26.2‰ and -3.5‰, and from -3.2‰ to 1.6‰, respectively. However, another close to the meteoric water line of the Tatun area is between -28.4‰ and -13.6‰, and from -5.5‰ to -4.2‰, respectively. In addition, the δ34S value of thermal waters can also be distinguished into two groups, one ranging from 26.1‰ to 28.5‰, and the other between 0.8‰ and 7.8‰. Based on field occurrences and geochemical characteristics, a model has been proposed to illustrate the origin of these hot springs.

  20. A thermo-electro-mechanical simulation model for hot wire cutting of EPS foam

    DEFF Research Database (Denmark)

    Petkov, Kiril; Hattel, Jesper Henri

    2016-01-01

    A one-dimensional thermo-electro-mechanical mathematical model describing the effects taking place within a Ni-Cr20% wire used in a hot-wire cutting process for free forming and rapid prototyping of expanded polystyrene (EPS) is investigated and simulated. The model implements and solves three semi...... cutting of EPS in contact with a cutting tool made of an electrically heated metal wire attached to a robot device. The finite difference method is used to solve the coupled equations in the two environments (domains) in which the hot-wire operates, namely air and EPS. The model is calibrated against...... experimentally obtained data. Novel findings are a transient temperature-dependent kerfwidth prediction and a relation between kerfwidth and the cutting angle as measured from the horizontal direction. These are important relations in the aim for higher geometrical accuracy of the hot-wire cutting process. (C...

  1. Project management web tools at the MICE experiment

    International Nuclear Information System (INIS)

    Coney, L R; Tunnell, C D

    2012-01-01

    Project management tools like Trac are commonly used within the open-source community to coordinate projects. The Muon Ionization Cooling Experiment (MICE) uses the project management web application Redmine to host mice.rl.ac.uk. Many groups within the experiment have a Redmine project: analysis, computing and software (including offline, online, controls and monitoring, and database subgroups), executive board, and operations. All of these groups use the website to communicate, track effort, develop schedules, and maintain documentation. The issue tracker is a rich tool that is used to identify tasks and monitor progress within groups on timescales ranging from immediate and unexpected problems to milestones that cover the life of the experiment. It allows the prioritization of tasks according to time-sensitivity, while providing a searchable record of work that has been done. This record of work can be used to measure both individual and overall group activity, identify areas lacking sufficient personnel or effort, and as a measure of progress against the schedule. Given that MICE, like many particle physics experiments, is an international community, such a system is required to allow easy communication within a global collaboration. Unlike systems that are purely wiki-based, the structure of a project management tool like Redmine allows information to be maintained in a more structured and logical fashion.

  2. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  3. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  4. Monkeying around: Use of Survey Monkey as a Tool for School Social Work

    Science.gov (United States)

    Massat, Carol Rippey; McKay, Cassandra; Moses, Helene

    2009-01-01

    This article describes the use of an online survey tool called Survey Monkey, which can be used by school social workers and school social work educators for evaluation of practice, needs assessment, and program evaluation. Examples of questions are given. Principles of writing good survey questions are described. (Contains 2 tables and 1…

  5. Confining hot spots in 3C 196 - implications for QSO-companion galaxies

    International Nuclear Information System (INIS)

    Brown, R.L.; Broderick, J.J.; Mitchell, K.J.; Virginia Polytechnic Institute and State Univ., Blacksburg; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1986-01-01

    VLBI observations of the extremely compact hot spot in the northern radio lobe of the QSO 3C 196 reveal the angular size of its smallest substructure to be 0.065 arcsec x 0.045 arcsec or about 300 pc at the redshift distance. The morphology of the hot spot and its orientation relative to the more diffuse radio emission suggest that it is formed by an oblique interaction between the nuclear QSO jet and circum-QSO cloud. The inferred density in this cloud, together with its apparent size, imply that the cloud contains a galactic mass, greater than a billion solar masses of gas. The effect of the jet will be to hasten gravitational collapse of the cloud. If many QSOs such as 3C 196 are formed or found in gas-rich environments, the QSO radio phase may commonly stimulate the metamorphosis of circum-QSO gas to QSO-companion galaxies or it may play a significant part in catalyzing star formation in existing companions. 30 references

  6. Polysaccharide rich fractions from barks of Ximenia americana inhibit peripheral inflammatory nociception in mice Antinociceptive effect of Ximenia americana polysaccharide rich fractions

    Directory of Open Access Journals (Sweden)

    Kaira E.S. da Silva-Leite

    Full Text Available Abstract Ximenia americana L., Olacaceae, barks are utilized in folk medicine as analgesic and anti-inflammatory. The objective was to evaluate the toxicity and antinociceptive effect of polysaccharides rich fractions from X. americana barks. The fractions were obtained by extraction with NaOH, followed by precipitation with ethanol and fractionation by ion exchange chromatography. They were administered i.v. or p.o. before nociception tests (writhing, formalin, carragenan-induced hypernociception, hot plate, or during 14 days for toxicity assay. The total polysaccharides fraction (TPL-Xa: 8.1% yield presented 43% carbohydrate (21% uronic acid and resulted in two main fractions after chromatography (FI: 12%, FII: 22% yield. FII showed better homogeneity/purity, content of 44% carbohydrate, including 39% uronic acid, arabinose and galactose as major monosaccharides, and infrared spectra with peaks in carbohydrate range for COO- groups of uronic acid. TPL-Xa (10 mg/kg and FII (0.1 and 1 mg/kg presented inhibitory effect in behavior tests that evaluate nociception induced by chemical and mechanical, but not thermal stimuli. TPL-Xa did not alter parameters of systemic toxicity. In conclusion, polysaccharides rich fractions of X. americana barks inhibit peripheral inflammatory nociception, being well tolerated by animals.

  7. A framework for laboratory pre-work based on the concepts, tools and techniques questioning method

    International Nuclear Information System (INIS)

    Huntula, J; Sharma, M D; Johnston, I; Chitaree, R

    2011-01-01

    Learning in the laboratory is different from learning in other contexts because students have to engage with various aspects of the practice of science. They have to use many skills and knowledge in parallel-not only to understand the concepts of physics but also to use the tools and analyse the data. The question arises, how to best guide students' learning in the laboratory. This study is about creating and using questions with a specifically designed framework to aid learning in the laboratory. The concepts, tools and techniques questioning (CTTQ) method was initially designed and used at Mahidol University, Thailand, and was subsequently extended to laboratory pre-work at the University of Sydney. The CTTQ method was implemented in Sydney with 190 first-year students. Three pre-work exercises on a series of electrical experiments were created based on the CTTQ method. The pre-works were completed individually and submitted before the experiment started. Analysed pre-work, surveys and interviews were used to evaluate the pre-work questions in this study. The results indicated that the CTTQ method was successful and the flow in the experiments was better than that in the previous year. At the same time students had difficulty with the last experiment in the sequence and with techniques.

  8. Media preparation and bacteriological tools.

    Science.gov (United States)

    Elbing, Karen; Brent, Roger

    2002-08-01

    Recipes are provided in this unit for minimal liquid media, rich liquid media, solid media, top agar, and stab agar. Also included are descriptions and useful information about tools used with growth media such as inoculating loops, sterile toothpicks and spreaders.

  9. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    Directory of Open Access Journals (Sweden)

    María Sofía Urbieta

    2015-07-01

    Full Text Available The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  10. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  11. Perceived Breastfeeding Support Assessment Tool (PBSAT): development and testing of psychometric properties with Pakistani urban working mothers.

    Science.gov (United States)

    Hirani, Shela Akbar Ali; Karmaliani, Rozina; Christie, Thomas; Parpio, Yasmin; Rafique, Ghazala

    2013-06-01

    breast feeding is an essential source of nutrition among young babies; however, in Pakistan a gradual decline in prevalence of breast feeding, especially among urban working mothers, has been reported. Previous studies among Pakistani urban working mothers have revealed that ensuring exclusivity and continuation of breast feeding is challenging if social and/or workplace environmental support is minimal or absent. This problem indicated a crucial need to assess availability of breast-feeding support for Pakistani urban working mothers by using a comprehensive, reliable, and validated tool in their national language (Urdu). to develop and test the psychometric properties of the 'Perceived Breastfeeding Support Assessment Tool' (PBSAT) that can gauge Pakistani urban working mothers' perceptions about breast-feeding support. this methodological research was undertaken in five phases. During phase I, a preliminary draft of the PBSAT was developed by using the Socio-ecological model, reviewing literature, and referring to two United States based tools. In Phase II, the instrument was evaluated by seven different experts, and, in Phase III, the instrument was revised, translated, and back translated. In Phase IV, the tool was pilot tested among 20 participants and then modified on the basis of statistical analysis. In Phase V, the refined instrument was tested on 200 breast-feeding working mothers recruited through purposive sampling from the government and private health-care settings in Karachi, Pakistan. Approvals were received from the Ethical Review Committees of the identified settings. the 29-item based PBSAT revealed an acceptable inter-rater reliability of 0.95, and an internal consistency reliability coefficient (Cronbach's alpha) of 0.85. A construct validity assessment through Exploratory Factor Analysis revealed that the PBSAT has two dimensions, 'workplace environmental support' (12 items; α=0.86) and 'social environmental support' (17 items; α=0.77). the

  12. Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering

    Directory of Open Access Journals (Sweden)

    Angang Ning

    2017-02-01

    Full Text Available The properties of carbides, such as morphology, size, and type, in H13 hot work die steel were studied with optical microscopy, transmission electron microscopy, electron diffraction, and energy dispersive X-ray analysis; their size distribution and quantity after tempering, at different positions within the ingot, were analyzed using Image-Pro Plus software. Thermodynamic calculations were also performed for these carbides. The microstructures near the ingot surface were homogeneous and had slender martensite laths. Two kinds of carbide precipitates have been detected in H13: (1 MC and M6C, generally smaller than 200 nm; and (2 M23C6, usually larger than 200 nm. MC and M6C play the key role in precipitation hardening. These are the most frequent carbides precipitating at the halfway point from the center of the ingot, and the least frequent at the surface. From the center of the ingot to its surface, the size and volume fraction of the carbides decrease, and the toughness improves, while the contribution of the carbides to the yield strength increases.

  13. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    International Nuclear Information System (INIS)

    Veit, R.; Kolleck, R.; Hofmann, H.; Sikora, S.

    2011-01-01

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating.In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  14. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  15. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  16. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  17. Nuclear track radiography of 'hot' aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P

    1999-06-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the {alpha}-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and ({gamma},f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by {sup 235}U, {sup 239}Pu and {sup 241}Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10{sup -6} Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles00.

  18. Rivalry between the collective use of IT tools and working methods of design teams

    NARCIS (Netherlands)

    Otter, den A.F.H.J.; Pels, H.J.

    2008-01-01

    Nowadays a high variety of IT tools is available for communication purposes in design processes on individual and group level. Despite this, the exchange and sharing of design documents collectively in design and engineering teams might be limited mainly, due to habits, preferences, working methods

  19. Structure and characteristics of the hot pressed hydroxyapatite/poly-L-lactide composite

    Directory of Open Access Journals (Sweden)

    Ignjatović Nenad L.

    2002-01-01

    Full Text Available Hydroxyapatite/poly-L-lactide (HAp/PLL composite biomaterial can be obtained by different processing methods. Three-dimensional blocks of HAp/PLLA composite biomaterial with mechanical characteristics close to the natural bone tissue can be obtained by hot pressing procedure. Effects of synthesis and compacting on the structure and characteristics of the HAp/PLLA composite biomaterial were studied in this work. Using wade angle X-ray structural analyses (WAXS, differentially scanning calorimetry (DSC, thermogravimetric analysis (TGA and infrared (IR spectroscopy, the changes occurring in the material during synthesis and hot pressing were monitored. Surface microstructure was analyzed by scanning electronic microscopy (SEM coupled with electron-dispersion analysis (EDX. The results obtained indicate a possible decrease in the degree of crystallinity with hot pressing time increase. A block of HAp/PLLA composite biomaterial with 1.6 times lower crystallinity of the polymer phase was obtained by hot pressing in a given time interval with a maximum of 60 minutes. Results of TG analysis show that PLLA stability decreases with increasing hot pressing time, and vice versa. IR study proved that neither destructive changes in constituents nor formation of new phases occurred during hot pressing.

  20. Hot embossing of microstructures on addition curing polydimethylsiloxane films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager

    2013-01-01

    The aim of this research work is to establish a hot embossing process for addition curing vinyl-terminated polydimethylsiloxane (PDMS), which are thermosetting elastomers, based on the existing and widely applied technology for thermoplasts. To our knowledge, no known technologies or processes...

  1. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  2. Hot forming of composite prepreg : Experimental study

    Science.gov (United States)

    Tardif, Xavier; Duthille, Bertrand; Bechtel, Stephane; le Pinru, Louis; Campagne, Benjamin; Destombes, Gautier; Deshors, Antoine; Marchand, Christophe; Azzouzi, Khalid El; Moro, Tanguy

    2017-10-01

    The hot forming of thermoset prepreg consists in bending an uncured composite part by applying a mechanical constrain on the hot laminate. Most of the time, the mold is inserted in a vacuum box and the mechanical constrain is applied on the composite laminate by a single membrane or a double-membrane. But the performance improvement products resulted in forming increasingly complex parts with advanced materials having a less formability. These new complex parts require a finer comprehension of the process and an optimization of the key parameters to get acceptable quality. In this work, an experimental study has been carried out to identify the process conditions that do not lead to unacceptable defaults: undulations of fibers. In the present study, downward-bending has been evaluated with an original light mechanical forming concept, for a given stacking sequence. The influence of the part's temperature and the part's bending speed are investigated. To carry this study out, a hot forming test bench has been designed and manufactured to have a precise supervision of the process conditions. It is able to bend parts of 1500 mm length x 600 mm width x 20 mm thick.

  3. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  4. Hot news recommendation system from heterogeneous websites based on bayesian model.

    Science.gov (United States)

    Xia, Zhengyou; Xu, Shengwu; Liu, Ningzhong; Zhao, Zhengkang

    2014-01-01

    The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.

  5. Safety distance for preventing hot particle ignition of building insulation materials

    Directory of Open Access Journals (Sweden)

    Jiayun Song

    2014-01-01

    Full Text Available Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial temperatures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temperature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.

  6. The Occurrence Rate of Hot Jupiters

    Science.gov (United States)

    Rampalli, Rayna; Catanzarite, Joseph; Batalha, Natalie M.

    2017-01-01

    As the first kind of exoplanet to be discovered, hot Jupiters have always been objects of interest. Despite being prevalent in radial velocity and ground-based surveys, they were found to be much rarer based on Kepler observations. These data show a pile-up at radii of 9-22 Rearth and orbital periods of 1-10 days. Computing accurate occurrence rates can lend insight into planet-formation and migration-theories. To get a more accurate look, the idea of reliability was introduced. Each hot Jupiter candidate was assigned a reliability based on its location in the galactic plane and likelihood of being a false positive. Numbers were updated if ground-based follow-up indicated a candidate was indeed a false positive. These reliabilities were introduced into an occurrence rate calculation and yielded about a 12% decrease in occurrence rate for each period bin examined and a 25% decrease across all the bins. To get a better idea of the cause behind the pileup, occurrence rates based on parent stellar metallicity were calculated. As expected from previous work, higher metallicity stars yield higher occurrence rates. Future work includes examining period distributions in both the high metallicity and low metallicity sample for a better understanding and confirmation of the pile-up effect.

  7. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  8. A radioecological survey of eatable organisms for natural radionuclides in hot spring water

    International Nuclear Information System (INIS)

    Zhu, H.; Huang, X.; Song, H.; Li, J.; Zhang, J.

    1993-01-01

    This paper reports a radioecological survey on some aquatic eatable organisms raised in a hot spring water, which is rich in 226 Ra, in Hubei Province; and on agricultural products irrigated with the water. The contents of 226 Ra, 210 Pb and 210 Po in the water, some aquatic organisms, rice, vegetable an some other connected environmental samples were determined. The Concentration Factor (CF) or Transfer Coefficient (TC) from environmental medium into the eatable parts of the organisms for these nuclides as well as relative Distribution Factor (DF) was calculated. (author). 6 refs, 1 fig., 9 tabs

  9. Structural elucidation, molecular representation and solvent interactions of vitrinite-rich and inertinite-rich South African coals

    Science.gov (United States)

    van Niekerk, Daniel

    the kinetic parameters and it was found that the swelling was governed by relaxation of the coal structure (super-Case II swelling). X-ray computed tomography was conducted confirming anisotropic swelling. The petrographic transitions (maceral-group composition and reflectance) with solvent swelling and extraction were quantified. No changes in the maceral compositions were found, but changes in some coal particles were observed. Random reflectance analysis showed that, for both vitrinite and inertinite, there is a decrease in reflectance values with solvent treatment. Vitrinite reflectograms showed a shift from the dominant reflecting V-types to lower V-types. The inertinite reflectograms exhibited an increase in number of I-types (broadening of reflectrograms). Molecular simulation and visualization approaches to solvent swelling and extraction were performed on the proposed molecular models of vitrinite-rich and inertinite-rich coals. A theoretical extraction yield was determined using solubility parameters and showed agreement with experimental extraction yield trends. Statistical Associating Fluid Theory (SAFT) modeling was explored to test whether this method could predict swelling extent. The predicted swelling trends of SAFT were comparable to that of the experimental swelling results. SAFT was found to be a promising tool for solvent-coal interaction predictions. Partially solvent swollen structures were constructed by the addition of solvent molecules to the original coal molecules using a amorphous building approach. This method showed that coal-coal non-bonding interaction changed with the introduction of solvent. A disruption in the van der Waals interaction energies and a change in hydrogen bond distributions were observed in the swollen coal models and quantified. It was concluded that small changes in coal structure translates to significant changes in solvent interaction behavior. These changes were successfully visualized and simulated using

  10. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  11. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin

    2015-12-01

    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  12. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    Science.gov (United States)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  13. Determination of the constants of constitutive hot working equations and obtention of ISO-Z {sigma} x {epsilon} curves for Al-Li alloys; Determinacao das constantes de equacoes constitutivas de trabalho a quente e obtencao de curvas {sigma} x {epsilon} ISO-Z para ligas Al-Li

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Marcelo [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Simielli, Eider A [Coordenadoria para Projetos Especiais (COPESP), Sao Paulo, SP (Brazil)

    1993-12-31

    A method for determining the contents of constructive hot working equations are described. The experimental data used were obtained by plane strain compression tests for different conditions of temperature and strain rate, for both alloys 8090 and 8091. The results are very important due to their applicability in the prediction of stress and microstructural features developed during hot working of the alloys studied. (author). 8 refs., 5 figs.

  14. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)

    1971-01-01

    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  15. Zirconium Recycle Test Equipment for Hot Cell Operations

    International Nuclear Information System (INIS)

    Collins, Emory D.; DelCul, Guillermo Daniel; Spencer, Barry B.; Bradley, Eric Craig; Brunson, Ronald Ray

    2015-01-01

    The equipment components and assembly support work were modified for optimized, remote hot cell operations to complete this milestone. The modifications include installation of a charging door, Swagelok connector for the off-gas line between the reactor and condenser, and slide valve installation to permit attachment/replacement of the product salt collector bottle.

  16. Features of surface enhanced Raman scattering in the systems with «hot spots»

    Directory of Open Access Journals (Sweden)

    Solovyeva E.V.

    2017-01-01

    Full Text Available In this work we demonstrate the features of SERS on the substrates with «hot spots» on the example of system «diaminostilbene - colloidal silver». We found that «hot spots» forming on aggregated nanoparticles exist on the metal substrates only at low concentration of ligand. This effect caused by the gradual filling of first monolayer by adsorbate molecules. Significantly higher enhancement factor is obtained for substrates with «hot spots», for which the participation of resonance processes in the formation of SERS signal is revealed also.

  17. Study of hot electrons in a ECR ion source

    International Nuclear Information System (INIS)

    Barue, C.

    1992-12-01

    The perfecting of diagnosis connected with hot electrons of plasma, and then the behaviour of measured parameters of plasma according to parameters of source working are the purpose of this thesis. The experimental results obtained give new information on hot electrons of an ECR ion source. This thesis is divided in 4 parts: the first part presents an ECR source and the experimental configuration (ECRIS physics, minimafios GHz, diagnosis used); the second part, the diagnosis (computer code of cyclotron emission and calibration); the third part gives experimental results in continuous regime (emission cyclotron diagnosis, bremsstrahlung); the fourth part, experimental results in pulsed regime (emission cyclotron diagnosis, diamagnetism) calibration)

  18. Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots

    Science.gov (United States)

    2014-01-01

    Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581

  19. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites

    OpenAIRE

    Fang, Hong-Hua; Adjokatse, Sampson; Shao, Shuyan; Even, Jacky; Loi, Maria Antonietta

    2018-01-01

    A long-lived hot carrier population is critical in order to develop working hot carrier photovoltaic devices with efficiencies exceeding the Shockley-Queisser limit. Here, we report photoluminescence from hot-carriers with unexpectedly long lifetime (a few ns) in formamidinium tin triiodide. An unusual large blue shift of the time-integrated photoluminescence with increasing excitation power (150 meV at 24 K and 75 meV at 293 K) is displayed. On the basis of the analysis of energy-resolved an...

  20. Performative Tools and Collaborative Learning

    DEFF Research Database (Denmark)

    Minder, Bettina; Lassen, Astrid Heidemann

    of performative tools used in transdisciplinary events for collaborative learning. The results of this single case study add to extant knowledge- and learning literature by providing the reader with a rich description of characteristics and learning functions of performative tools in transdisciplinary events......The use of performative tools can support collaborative learning across knowledge domains (i.e. science and practice), because they create new spaces for dialog. However, so far innovation literature provides little answers to the important discussion of how to describe the effects and requirements...... and a description of how they interrelate with the specific setting of such an event. Furthermore, they complement previous findings by relating performative tools to collaborative learning for knowledge intensive ideas....