WorldWideScience

Sample records for rice-based cropping pattern

  1. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  2. Climate change and farmers’ cropping patterns in Cemoro watershed area, Central Java, Indonesia

    Science.gov (United States)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Cropping pattern applied by farmers is usually based on the availability of water. Farmers cultivate rice when water is available. If it is unavailable, farmers will choose to plant crops that need less water. Climate change greatly affects to farmers in determining the cropping pattern as it alters the rainfall pattern and distribution in the region. This condition requires farmers to adjust the cropping pattern so that they can do the farming successfully. This study aims to examine the application of cropping patterns applied by the farmers in the Cemoro Watershed, Central Java, Indonesia. Descriptive analysis approach is employed in this research. The results showed that farmers’ cropping pattern is not based on the availability of water. However, it adopts a habit that has been practiced since long time ago or just adopt others farmer's habit. The cropping pattern applied by irrigated paddy farmers in Cemoro watershed area consists of two types: rice-rice-rice and rice-rice-secondary crops. Among those two types, most farmers apply the rice-rice-rice pattern. Meanwhile, there are three cropping patterns applied in the rain-land, namely rice-rice-rice, rice-rice-secondary crop, and rice-rice-fallow. The majority of farmers apply the second pattern (rice-rice-secondary crops). It was also found that farmers’ cropping pattern was not in accordance with the recommendation of the local government.

  3. Improvement of potato based cropping patterns by inclusion of short duration Mungbean and T. Aman rice in Monga prone areas of Rangpur

    Directory of Open Access Journals (Sweden)

    M.K. Islam

    2014-12-01

    Full Text Available The experiment was carried out to compare the improved cropping patterns against the farmers existing potato based cropping patterns having no mungbean/brown manure crop for higher yield, economic return and income generation in agricultural field in the off period following RCBD design with three replications at farmer’s field at Paikan Gangachara, Rangpur district during September- October. The treatments (cropping patterns were T1 = T. aman rice (BINA 7 - Potato - Mungbean (BARI mungbean 6 (Improved pattern, T2 = T. aman rice (BR11 - Potato - Fallow (Farmers pattern, T3 = T. aman rice (BINA 7 - Potato + Maize intercrop - Mungbean (Improved pattern and T4 = T. aman rice (BR11 - Potato / Maize relay (Farmers pattern. The highest yield (4.16 t ha-1 was recorded in T2 (BR11 which is statistically at par with T4 (4.15 t ha-1 but higher than the other treatments. Early planting sole potato (T1 gave highest yield (26.10 t ha-1 which was significantly higher than all other treatments. Late planting sole potato (T2, intercropped early potato (T3 and relay potato (T4 showed similar yield (23.61 – 24.79 t ha-1. Intercropped (T3 and Relay (T4 maize did not vary significantly in the studied parameters and yields were 8.21 and 7.92 t ha-1, respectively. Mungbean after sole potato (T1 gave higher number of pods/plant (17.25, and yield (1.47 t ha-1 which is significantly higher than those of T3 (14.89 and 1.28 t ha-1, respectively. Highest gross return (GR (Tk. 417720 and gross margin (GM (Tk. 220220 were calculated in improved pattern T3 and the lowest of those (Tk. 289670, Tk. 146020 in farmers pattern T2 . The other improved pattern T3 was the second highest performer considering GR and GM. But BCR (2.21 was highest in T1 and second highest in T3. The results indicated that the improved patterns (T1, T3 were better than farmers pattern (T2, T4. The improved pattern (T1 gave GR Tk. 67890 and GM Tk. 51785 higher than farmers pattern (T2. Similarly, the

  4. The feasibility of crop diversification in rice based cropping systems in haor ecosystem

    OpenAIRE

    Shopan, J.; Bhuiya, M.S.U.; Kader, M.A.; Hasan, M.K.

    2012-01-01

    An experiment was conducted in five farmers’ field in Dingaputa haor of Purba Tetulia village, Mohangonj Upazila in Netrakona district during the period from 20 July 2010 to 15 May 2011. The objective of the study was to determine the feasibility of growing short duration vegetable and oil crops in seasonal fallow of Boro rice-Fallow-Fallow cropping patterns in terms of both combined yields and economic performance. Six short duration vegetables such as potato, red amaranth, stem amaranth, sp...

  5. Mapping cropping patterns in irrigated rice fields in West Java: Towards mapping vulnerability to flooding using time-series MODIS imageries

    Science.gov (United States)

    Sianturi, Riswan; Jetten, V. G.; Sartohadi, Junun

    2018-04-01

    Information on the vulnerability to flooding is vital to understand the potential damages from flood events. A method to determine the vulnerability to flooding in irrigated rice fields using the Enhanced Vegetation Index (EVI) was proposed in this study. In doing so, the time-series EVI derived from time-series 8 day 500 m spatial resolution MODIS imageries (MOD09A1) was used to generate cropping patterns in irrigated rice fields in West Java. Cropping patterns were derived from the spatial distribution and phenology metrics so that it is possible to show the variation of vulnerability in space and time. Vulnerability curves and cropping patterns were used to determine the vulnerability to flooding in irrigated rice fields. Cropping patterns capture the shift in the vulnerability, which may lead to either an increase or decrease of the degree of damage in rice fields of origin and other rice fields. The comparison of rice field areas between MOD09A1 and ALOS PALSAR and MOD09A1 and Agricultural Statistics showed consistent results with R2 = 0.81 and R2 = 0.93, respectively. The estimated and observed DOYs showed RMSEs = 9.21, 9.29, and 9.69 days for the Start of Season (SOS), heading stage, and End of Season (EOS), respectively. Using the method, one can estimate the relative damage provided available information on the flood depth and velocity. The results of the study may support the efforts to reduce the potential damages from flooding in irrigated rice fields.

  6. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  7. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    Science.gov (United States)

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  8. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance

    Directory of Open Access Journals (Sweden)

    Xudong Guan

    2016-01-01

    Full Text Available Normalized Difference Vegetation Index (NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS time-series data has been widely used in the fields of crop and rice classification. The cloudy and rainy weather characteristics of the monsoon season greatly reduce the likelihood of obtaining high-quality optical remote sensing images. In addition, the diverse crop-planting system in Vietnam also hinders the comparison of NDVI among different crop stages. To address these problems, we apply a Dynamic Time Warping (DTW distance-based similarity measure approach and use the entire yearly NDVI time series to reduce the inaccuracy of classification using a single image. We first de-noise the NDVI time series using S-G filtering based on the TIMESAT software. Then, a standard NDVI time-series base for rice growth is established based on field survey data and Google Earth sample data. NDVI time-series data for each pixel are constructed and the DTW distance with the standard rice growth NDVI time series is calculated. Then, we apply thresholds to extract rice growth areas. A qualitative assessment using statistical data and a spatial assessment using sampled data from the rice-cropping map reveal a high mapping accuracy at the national scale between the statistical data, with the corresponding R2 being as high as 0.809; however, the mapped rice accuracy decreased at the provincial scale due to the reduced number of rice planting areas per province. An analysis of the results indicates that the 500-m resolution MODIS data are limited in terms of mapping scattered rice parcels. The results demonstrate that the DTW-based similarity measure of the NDVI time series can be effectively used to map large-area rice cropping systems with diverse cultivation processes.

  9. Rice crop risk map in Babahoyo canton (Ecuador)

    Science.gov (United States)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  10. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen-Thanh Son

    2013-12-01

    Full Text Available Rice crop monitoring is an important activity for crop management. This study aimed to develop a phenology-based classification approach for the assessment of rice cropping systems in Mekong Delta, Vietnam, using Moderate Resolution Imaging Spectroradiometer (MODIS data. The data were processed from December 2000, to December 2012, using empirical mode decomposition (EMD in three main steps: (1 data pre-processing to construct the smooth MODIS enhanced vegetation index (EVI time-series data; (2 rice crop classification; and (3 accuracy assessment. The comparisons between the classification maps and the ground reference data indicated overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2012. The results by comparisons between MODIS-derived rice area and rice area statistics were slightly overestimated, with a relative error in area (REA from 0.9–15.9%. There was, however, a close correlation between the two datasets (R2 ≥ 0.89. From 2001 to 2012, the areas of triple-cropped rice increased approximately 31.6%, while those of the single-cropped rain-fed rice, double-cropped irrigated rice and double-cropped rain-fed rice decreased roughly −5.0%, −19.2% and −7.4%, respectively. This study demonstrates the validity of such an approach for rice-crop monitoring with MODIS data and could be transferable to other regions.

  11. Support vector machine-based open crop model (SBOCM: Case of rice production in China

    Directory of Open Access Journals (Sweden)

    Ying-xue Su

    2017-03-01

    Full Text Available Existing crop models produce unsatisfactory simulation results and are operationally complicated. The present study, however, demonstrated the unique advantages of statistical crop models for large-scale simulation. Using rice as the research crop, a support vector machine-based open crop model (SBOCM was developed by integrating developmental stage and yield prediction models. Basic geographical information obtained by surface weather observation stations in China and the 1:1000000 soil database published by the Chinese Academy of Sciences were used. Based on the principle of scale compatibility of modeling data, an open reading frame was designed for the dynamic daily input of meteorological data and output of rice development and yield records. This was used to generate rice developmental stage and yield prediction models, which were integrated into the SBOCM system. The parameters, methods, error resources, and other factors were analyzed. Although not a crop physiology simulation model, the proposed SBOCM can be used for perennial simulation and one-year rice predictions within certain scale ranges. It is convenient for data acquisition, regionally applicable, parametrically simple, and effective for multi-scale factor integration. It has the potential for future integration with extensive social and economic factors to improve the prediction accuracy and practicability.

  12. Genome-wide patterns of nucleotide polymorphism in domesticated rice

    DEFF Research Database (Denmark)

    Caicedo, Ana L; Williamson, Scott H; Hernandez, Ryan D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments......, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models...... to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been...

  13. RICE CROP MAPPING USING SENTINEL-1A PHENOLOGICAL METRICS

    Directory of Open Access Journals (Sweden)

    C. F. Chen

    2016-06-01

    Full Text Available Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter–spring, summer–autumn in the Mekong River Delta (MRD, Vietnam through three main steps: (1 data pre-processing, (3 rice classification based on crop phenological metrics, and (4 accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government’s rice area statistics for such crops (R2 > 0.95. The values of relative error in area obtained for the winter–spring and summer–autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  14. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This study demonstrates advantages of using EVI2-based phenology metrics (derived from Landsat-MODIS fusion data) for rice yield estimation in Taiwan prior to the harvest period.

  15. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model

    Directory of Open Access Journals (Sweden)

    Tri D. Setiyono

    2018-02-01

    Full Text Available Crop insurance is a viable solution to reduce the vulnerability of smallholder farmers to risks from pest and disease outbreaks, extreme weather events, and market shocks that threaten their household food and income security. In developing and emerging countries, the implementation of area yield-based insurance, the form of crop insurance preferred by clients and industry, is constrained by the limited availability of detailed historical yield records. Remote-sensing technology can help to fill this gap by providing an unbiased and replicable source of the needed data. This study is dedicated to demonstrating and validating the methodology of remote sensing and crop growth model-based rice yield estimation with the intention of historical yield data generation for application in crop insurance. The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. MODIS reflectance data were used to generate multitemporal LAI maps using the inverted Radiative Transfer Model (RTM. SAR data were used to generate rice area maps using MAPScape-RICE to mask LAI map products for further processing, including smoothing with logistic function and running yield simulation using the ORYZA crop growth model facilitated by the Rice Yield Estimation System (Rice-YES. Results from this study indicate that the approach of assimilating MODIS and SAR data into a crop growth model can generate well-adjusted yield estimates that adequately describe spatial yield distribution in the study area while reliably replicating official yield data with root mean square error, RMSE, of 0.30 and 0.46 t ha−1 (normalized root mean square error, NRMSE of 5% and 8% for the 2016 spring and summer seasons, respectively, in the Red River Delta of Vietnam, as evaluated at district level aggregation. The information from remote-sensing technology was also useful for identifying geographic locations with

  16. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  17. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    Science.gov (United States)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2

  18. Remote sensing-based Information for crop monitoring: contribution of SAR and Moderate resolution optical data on Asian rice production

    Science.gov (United States)

    Boschetti, Mirco; Holectz, Francesco; Manfron, Giacinto; Collivignarelli, Francesco; Nelson, Andrew

    2013-04-01

    Updated information on crop typology and status are strongly required to support suitable action to better manage agriculture production and reduce food insecurity. In this field, remote sensing has been demonstrated to be a suitable tool to monitor crop condition however rarely the tested system became really operative. The ones today available, such as the European Commission MARS, are mainly based on the analysis of NDVI time series and required ancillary external information like crop mask to interpret the seasonal signal. This condition is not always guarantied worldwide reducing the potentiality of the remote sensing monitoring. Moreover in tropical countries cloud contamination strongly reduce the possibility of using optical remote sensing data for crop monitoring. In this framework we focused our analysis on the rice production monitoring in Asian tropical area. Rice is in fact the staple food for half of the world population (FAO 2004), in Asia almost 90% of the world's rice is produced and consumed and Rice and poverty often coincide. In this contest the production of reliable rice production information is of extreme interest. We tried to address two important issue in terms of required geospatial information for crop monitoring: rice crop detection (rice map) and seasonal dynamics analysis (phenology). We use both SAR and Optical data in order to exploit the potential complementarity of this system. Multi-temporal ASAR Wide Swath data are in fact the best option to deal with cloud contamination. SAR can easily penetrate the clouds providing information on the surface target. Temporal analysis of archive ASAR data allowed to derived accurate map, at 100m spatial resolution, of permanent rice cultivated areas. On the other and high frequency revisiting optical data, in this case MODIS, have been used to extract seasonal information for the year under analysis. MOD09A1 Surface Reflectance 8-Day L3 Global 500m have been exploited to derive time series of

  19. Optimal Cropping Pattern Based on Multiple Economic, Regional, and Agricultural Sustainability Criteria in Sari, Iran: Application of a Consolidated Model of AHP and Linear Programming

    Directory of Open Access Journals (Sweden)

    E. Fallahi

    2016-10-01

    Full Text Available Introduction: Determining a suitable cropping pattern is an important task for planners and requires an exact and realistic decision-making process based on several goals and criteria corresponding to secure the interest of agricultural beneficiaries in long-term. Accordingly, this study reviews the current pattern operated by farmers in Sari, Iran, and intends to provide a cropping pattern that considers the multifold regional and agricultural sustainability criteria along with economic considerations. Materials and Methods: In order to achieve the study goals, a consolidated model of AHP and Linear Programming was applied. For this purpose, we constructed a three-level AHP, including a goal (determining the weight of each crop, seven criteria, and seven alternatives. Profitability, compatibility with regional and geographical conditions, water consumption, environmental effects of cropping, job creation opportunities, skill and proficiency required for producing a crop, and risk taken to cultivate a crop were considered as the criteria in the model. Seven alternative crops including rice, wheat, rapeseed, barley, soybean, clover, and vegetables were considered too. The next step is determining the weight of each criterion with regard to the goal and the weight of each alternative with regard to each criteria. By multiplying these weights, final weights for various crops were obtained from the model. Derived weights for each crop were then applied as objective function coefficients in the Linear Programming model and the model was solved subject to the constraints. Results and Discussion: Optimal cropping pattern determined based on the consolidated model of AHP and Linear Programming and the results compared to a scenario that only looks forward to maximizing the economic interests. Due to the low profitability of rapeseed and barley, these crops eliminated from the pattern in the profit-maximizing scenario. According to the results, the

  20. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Science.gov (United States)

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  1. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  2. Rice in cropping systems - Modelling transitions between flooded and non-flooded soil environments

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Suriadi, A.; Dobermann, A.; Bouman, B.A.M.; Timsina, J.

    2012-01-01

    Water shortages in many rice-growing regions, combined with growing global imperatives to increase food production, are driving research into increased water use efficiency and modified agricultural practices in rice-based cropping systems. Well-tested cropping systems models that capture

  3. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  4. Climate variability impacts on rice crop production in pakistan

    International Nuclear Information System (INIS)

    Shakoor, U.; Saboor, A.; Baig, I.

    2015-01-01

    The climate variability has affected the agriculture production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate changes are believed to have declining effects towards crop production in Pakistan. This study carries an empirical investigation of the effects of climate change on rice crop of Pakistan by employing Vector Auto Regression (VAR) model. Annual seasonal data of the climatic variables from 1980 to 2013 has been used. Results confirmed that rising mean maximum temperature would lead to reduction in rice production while increase in mean minimum temperature would be advantageous towards rice production. Variation in mean minimum temperature brought about seven percent increase in rice productivity as shown by Variance Decomposition. Mean precipitation and mean temperature would increase rice production but simulations scenarios for 2030 confirmed that much increase in rainfall and mean temperature in long run will negatively affect rice production in future. It is therefore important to follow adequate policy action to safeguard crop productions from disastrous effects. Development of varieties resistant to high temperatures as well as droughts will definitely enhance resilience of rice crop in Pakistan. (author)

  5. Utilization of fertilizer phosphorus in rice wheat cropping sequence on different soils

    International Nuclear Information System (INIS)

    Singhania, R.A.; Goswami, N.N.

    1975-01-01

    Uptake and utilization of fertilizer phosphorus was studied in a rice-wheat cropping pattern on alluvial, black, red and laterite soils from representative model agronomic centres. Phosphorus was applied as 32 P-tagged superphosphate to rice at varying doses, depending upon the phosphorus fixing capacity of the soil, and to wheat at 30 kg P 2 O 5 /ha. Results showed that rice responded to phosphorus in all soils, but to higher doses only in black and laterite soils which had higher P-fixation capacity. Phosphorus applied to rice had little residual effect on the suceeding crop of wheat but the latter showed higher uptake and utilization of fertilizer phosphorus directly applied to it as compared to that by rice. Wheat responded to P only in red and laterite soils. Results on the transformation of applied P was converted to Fe-P which was of lower availability. These findings suggest that phosphorus in a rice-wheat sequence should preferably be applied to wheat primarily because of (1) greater uptake of fertilizer P by wheat (2) under flooded conditions in which rice is grown most of the applied P is transformed into Fe-P and (3) rice can utilize Fe-P better. (author)

  6. Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information

    Science.gov (United States)

    Mishra, Varun Narayan; Prasad, Rajendra; Kumar, Pradeep; Srivastava, Prashant K.; Rai, Praveen Kumar

    2017-10-01

    Updated and accurate information of rice-growing areas is vital for food security and investigating the environmental impact of rice ecosystems. The intent of this work is to explore the feasibility of dual-polarimetric C-band Radar Imaging Satellite-1 (RISAT-1) data in delineating rice crop fields from other land cover features. A two polarization combination of RISAT-1 backscatter, namely ratio (HH/HV) and difference (HH-HV), significantly enhanced the backscatter difference between rice and nonrice categories. With these inputs, a QUEST decision tree (DT) classifier is successfully employed to extract the spatial distribution of rice crop areas. The results showed the optimal polarization combination to be HH along with HH/HV and HH-HV for rice crop mapping with an accuracy of 88.57%. Results were further compared with a Landsat-8 operational land imager (OLI) optical sensor-derived rice crop map. Spatial agreement of almost 90% was achieved between outputs produced from Landsat-8 OLI and RISAT-1 data. The simplicity of the approach used in this work may serve as an effective tool for rice crop mapping.

  7. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    Science.gov (United States)

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-01-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI. PMID:26626733

  9. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  10. Mineralization of nitrogen from nitrogen-15 labeled crop residues and utilization by rice

    International Nuclear Information System (INIS)

    Norman, R.J.; Gilmour, J.T.; Wells, B.R.

    1990-01-01

    The availability of N from the residues of the previous crop to the subsequent rice (Oryza sativa L.) crop is largely unknown. The objectives of this study were to (1) measure the mineralization of N from 15 N-labeled rice, soybean (Glycine max L.), and wheat (Triticum aestivum L.) residues and the uptake by a subsequent rice crop; and (2) compare the 15 N tracer method with the standard fertilizer-N response method used in field studies to quantify the N contribution from the crop residue to the next crop. Nitrogen mineralization from decomposing crop residues was measured by soil sampling prior to seeding the rice crop and after seeding by plant sampling the rice at maturity. The minimum estimate of the amount of residue N mineralized from the time of residue incorporation until rice harvest was 9, 52, and 38% of the rice, soybean, and wheat residue N, respectively. The amount of residue N recovered in the rice crop was 3, 11, and 37% of the rice, soybean, and wheat residue N, respectively. The lower the C/N ratio and the higher the amount of N in the residue, the lower was the amount of residue N recovered in the soil organic fraction at harvest and the higher was the amount of residue N mineralized. The 15 N tracer method compared favorably with the fertilizer N response method when the uptake efficiency of the fertilizer N was taken into account

  11. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... reinsured policies: Cultivated Wild Rice Crop Provisions. 1. Definitions Approved laboratory. A testing.... Cultivated Wild Rice. A member of the grass family Zizania Palustris L., adapted for growing in man-made... for the crop year. Planted acreage. In addition to the definition contained in the Basic Provisions...

  12. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    Science.gov (United States)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4

  13. Factors affecting the income from major crops in rice-wheat ecological zone

    International Nuclear Information System (INIS)

    Ashfaq, M.; Naseer, M.Z.; Hassan, S.

    2008-01-01

    Agriculture is an important sector of our economy. About twenty-two percent of national income and 44.8 percent of total employment is generated by this sector. About 66 percent of country's population is living in rural areas and is directly or indirectly linked with agriculture for their livelihood. It also supplies raw materials to industry. The rice-wheat zone of Punjab covers 1.1 million hectare, 72% of wheat is grown in rotation with rice. The main purpose of this paper was to determine the effect of different factors on the productivity and ultimately on income from of major crops (wheat, rice and sugar-cane) in rice-wheat ecological zone. The results show that for wheat crop, land preparation, use of fertilizer and chemicals, for Sugarcane crop, area under cultivation, fertilizer and chemical costs and for rice crop, applications of chemicals, irrigation and land holding were the main determinants of productivity and crop income. (author)

  14. Residues and accumulation of molinate in rice crops and aquatic weeds in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Sabri Junoh; Nuriati Nurdin; Ramli Ishak

    2002-01-01

    Plant and soil residue levels and its accumulation in rice crops and rice aquatic weed plants were studied. Molinate residue levels in rice, weeds and soil were not significantly different between the recycled and the non-recycled area, even though they were higher in the non-recycled area. In the rice plant, the residue level at 10 DAT (days after treatment) was significantly higher than 30 DAT in the recycled area. In rice aquatic weed plants, the residue level was significantly higher at 10 DAT as compared to 30 DAT in the non-recycled area. Molinate residue levels in soil at 10 DAT and 30 DAT were similar. Molinate accumulated (ratio of molinate concentration in plant over soil) more in the rice crop as compared to rice aquatic weeds at 10 DAT, in both the recycled and the non-recycled areas. (Author)

  15. Toxicity of Pesticide Tank Mixtures from Rice Crops Against Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    de B Pazini, J; Pasini, R A; Rakes, M; de Armas, F S; Seidel, E J; da S Martins, J F; Grützmacher, A D

    2017-08-01

    The use of insecticides, herbicides, and fungicides commonly occurs in mixtures in tanks in order to control phytosanitary problems in crops. However, there is no information regarding the effects of these mixtures on non-target organisms associated to the rice agroecosystem. The aim of this study was to know the toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Based on the methods adapted from the International Organisation for Biological and Integrated Control of Noxious Animals and Plants (IOBC), adults of T. podisi were exposed to residues of insecticides, herbicides, and fungicides, individually or in mixture commonly used by growers, in laboratory and on rice plants in a greenhouse. The mixture between fungicides tebuconazole, triclyclazole, and azoxystrobin and the mixture between herbicides cyhalofop-butyl, imazethapyr, imazapyr/imazapic, and penoxsulam are harmless to T. podisi and can be used in irrigated rice crops without harming the natural biological control. The insecticides cypermethin, thiamethoxam, and bifenthrin/carbosulfan increase the toxicity of the mixtures in tank with herbicides and fungicides, being more toxic to T. podisi and less preferred for use in phytosanitary treatments in the rice crop protection.

  16. Global Rice Atlas: Disaggregated seasonal crop calendar and production

    NARCIS (Netherlands)

    Balanza, Jane Girly; Gutierrez, Mary Anne; Villano, Lorena; Nelson, A.D.; Zwart, S.J.; Boschetti, Mirco; Koo, Jawoo; Reinke, Russell; Murty, M. V.R.; Laborte, Alice G.

    2014-01-01

    Purpose: Rice is an important staple crop cultivated in more than 163 million ha globally. Although information on the distribution of global rice production is available by country and, at times, at subnational level, information on its distribution within a year is often lacking in different rice

  17. Nitrogen fertilizer fate after introducing maize into a continuous paddy rice cropping system

    Science.gov (United States)

    Thiemann, Irabella; He, Yao; Siemens, Jan; Brüggemann, Nicolas; Lehndorf, Eva; Amelung, Wulf

    2017-04-01

    After introducing upland crops into permanent flooded cropping systems, soil conditions temporally change from anaerobic to aerobic, which profoundly impacts nitrogen (N) dynamics. In the framework of the DFG research unit 1701 ICON we applied a single 15N-urea pulse in a field experiment in the Philippines with three different crop rotations: continuous paddy rice, paddy rice-dry rice, and paddy rice-maize. Subsequently, we traced the fate of the labelled urea in bulk soil, rhizosphere, roots, biomass and microbial residues (amino sugars) within the following two years. 15N recovery in the first 5 cm of bulk soil was highest in the first dry season of continuous paddy rice cropping (37.8 % of applied 15N) and lowest in the paddy rice-maize rotation (19.2 %). While an accumulation over time could be observed in bulk soil in 5-20 cm depth of the continuous paddy rice system, the recoveries decreased over time within the following two years in the other cropping systems. Highest 15N-recovery in shoots and roots were found in the continuous paddy rice system in the first dry season (27.3 % in shoots, 3.2 % in roots) as well as in the following wet season (4.2 % in shoots, 0.3 % in roots). Lowest recoveries in biomass were found for the paddy rice-dry rice rotation. Long-term fixation of 15N in microbial biomass residues was observed in all cropping systems (2-3 % in the 3rd dry season). The results indicate that the introduction of maize into a continuous paddy rice cropping system can reduce the fertilizer N use efficiency especially in the first year, most likely due to nitrate leaching and gaseous losses to the atmosphere.

  18. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  19. Application of SAR remote sensing and crop modeling for operational rice crop monitoring in South and South East Asian Countries

    Science.gov (United States)

    Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Maunahan, A. A.; Gatti, L.; Quicho, E. D.; Pazhanivelan, S.; Campos-Taberner, M.; Collivignarelli, F.; Haro, J. G.; Intrman, A.; Phuong, D.; Boschetti, M.; Prasadini, P.; Busetto, L.; Minh, V. Q.; Tuan, V. Q.

    2017-12-01

    This study uses multi-temporal SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations in South and South Asian countries and assimilate the information into ORYZA Crop Growth Simulation Model (CGSM) to monitor rice yield. The study demonstrates examples of operational application of this rice monitoring system in: (1) detecting drought impact on rice planting in Central Thailand and Tamil Nadu, India, (2) mapping heat stress impact on rice yield in Andhra Pradesh, India, and (3) generating historical rice yield data for districts in Red River Delta, Vietnam.

  20. Optimization of the cropping pattern in Egypt

    Directory of Open Access Journals (Sweden)

    Sara Osama

    2017-12-01

    Full Text Available Continuous increase of population in Egypt, limited fresh water, poor maintenance and low efficiency of irrigation systems lead to a real burden on the Egyptian natural water resources. Accordingly, for Egypt, land and water resources management is considered an absolutely strategic priority. In this study, a linear optimization model is developed to maximize the net annual return from the three old regions of Egypt. Data for 28 crops in five years from 2008 to 2012 are being analyzed. The spatial variations of crops, irrigation water needs, crop yields and food requirements are incorporated in the model. The results show that there is a significant reduction in the allocated areas for onion, garlic, barley, flax, fenugreek, chickpeas, lentil and lupine since they are considered as non-strategic crops. On the other side, the allocated areas for strategic crops such as wheat, maize, clover, rice, sugar products and cotton remained almost the same to satisfy their actual food requirements. However, crops with high net returns such as tomatoes have increased substantially. The trend for the gross net benefit is decreasing and is expected to reach a lower value in year 2017. Different approaches and scenarios are analyzed. The developed model proposes a change in the cropping pattern in the old lands of Egypt to increase the gross net return without adding further any other expenses. Keywords: Cropping pattern, Linear programming, Net return, Optimization

  1. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    Science.gov (United States)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  2. Mapping rice extent map with crop intensity in south China through integration of optical and microwave images based on google earth engine

    Science.gov (United States)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.

    2017-12-01

    Rice is one of the main staple foods in East Asia and Southeast Asia, which has occupied more than half of the world's population with 11% of cultivated land. Study on rice can provide direct or indirect information on food security and water source management. Remote sensing has proven to be the most effective method to monitoring the cropland in large scale by using temporary and spectral information. There are two main kinds of satellite have been used to mapping rice including microwave and optical. Rice, as the main crop of paddy fields, the main feature different from other crops is flooding phenomenon at planning stage (Figure 1). Microwave satellites can penetrate through clouds and efficiency on monitoring flooding phenomenon. Meanwhile, the vegetation index based on optical satellite can well distinguish rice from other vegetation. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for processing very large geospatial datasets. Google has collected large number of remote sensing satellite data around the world, which providing researchers with the possibility of doing application by using multi-source remote sensing data in a large area. In this work, we map rice planting area in south China through integration of Landsat-8 OLI, Sentienl-2, and Sentinel-1 Synthetic Aperture Radar (SAR) images. The flowchart is shown in figure 2. First, a threshold method the VH polarized backscatter from SAR sensor and vegetation index including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from optical sensor were used the classify the rice extent map. The forest and water surface extent map provided by earth engine were used to mask forest and water. To overcome the problem of the "salt and pepper effect" by Pixel-based classification when the spatial resolution increased, we segment the optical image and use the pixel- based classification results to merge the object

  3. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images.

    Science.gov (United States)

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-05-12

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.

  4. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  5. Greenhouse Gas Emissions and Global Warming Potential of Traditional and Diversified Tropical Rice Rotation Systems including Impacts of Upland Crop Management Practices i.e. Mulching and Inter-crop Cultivation

    Science.gov (United States)

    Janz, Baldur; Weller, Sebastian; Kraus, David; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-04-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from flooded double-rice systems to the introduction of well-aerated upland crop systems in the dry season. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will increase and soil organic carbon (SOC) stocks will most likely be volatilized in the form of carbon dioxide (CO2). We measured greenhouse gas (GHG) emissions at the International Rice Research Institute (IRRI) in the Philippines to provide a comparative assessment of the global warming potentials (GWP) as well as yield scaled GWPs of different crop rotations and to evaluate mitigation potentials or risks of new management practices i.e. mulching and inter-crop cultivation. New management practices of mulching and intercrop cultivation will also have the potential to change SOC dynamics, thus can play the key role in contributing to the GWP of upland cropping systems. To present, more than three years of continuous measurement data of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation have been collected. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower (pbalance but also with regard to soil fertility. New upland crop management practices where first implemented during land-preparation for dry season (July) 2015 where i) 6t/ha rice straw

  6. Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system

    NARCIS (Netherlands)

    Dai, X.Q.; Zhang, H.Y.; Spiertz, J.H.J.; Yu, J.; Xie, G.H.; Bouman, B.A.M.

    2010-01-01

    In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter

  7. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay.

    Science.gov (United States)

    Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.

  8. [Nitrogen cycling in rice-duck mutual ecosystem during double cropping rice growth season].

    Science.gov (United States)

    Zhang, Fan; Chen, Yuan-Quan; Sui, Peng; Gao, Wang-Sheng

    2012-01-01

    Raising duck in paddy rice field is an evolution of Chinese traditional agriculture. In May-October 2010, a field experiment was conducted in a double cropping rice region of Hunan Province, South-central China to study the nitrogen (N) cycling in rice-duck mutual ecosystem during early rice and late rice growth periods, taking a conventional paddy rice field as the control. Input-output analysis method was adopted. The N output in the early rice-duck mutual ecosystem was 239.5 kg x hm(-2), in which, 12.77 kg x hm(-2) were from ducks, and the N output in the late rice-duck mutual ecosystem was 338.7 kg x hm(-2), in which, 23.35 kg x hm(-2) were from ducks. At the present N input level, there existed soil N deficit during the growth seasons of both early rice and late rice. The N input from duck sub-system was mainly from the feed N, and the cycling rate of the duck feces N recycled within the system was 2.5% during early rice growth season and 3.5% during late rice growth season. After late rice harvested, the soil N sequestration was 178.6 kg x hm(-2).

  9. GHG AND AEROSOL EMISSION FROM FIRE PIXEL DURING CROP RESIDUE BURNING UNDER RICE AND WHEAT CROPPING SYSTEMS IN NORTH-WEST INDIA

    Directory of Open Access Journals (Sweden)

    P. Acharya

    2016-10-01

    Full Text Available Emission of smoke and aerosol from open field burning of crop residue is a long-standing subject matter of atmospheric pollution. In this study, we proposed a new approach of estimating fuel load in the fire pixels and corresponding emissions of selected GHGs and aerosols i.e. CO2, CO, NO2, SO2, and total particulate matter (TPM due to burning of crop residue under rice and wheat cropping systems in Punjab in north-west India from 2002 to 2012. In contrasts to the conventional method that uses RPR ratio to estimate the biomass, fuel load in the fire pixels was estimated as a function of enhanced vegetation index (EVI. MODIS fire products were used to detect the fire pixels during harvesting seasons of rice and wheat. Based on the field measurements, fuel load in the fire pixels were modelled as a function of average EVI using second order polynomial regression. Average EVI for rice and wheat crops that were extracted through Fourier transformation were computed from MODIS time series 16 day EVI composites. About 23 % of net shown area (NSA during rice and 11 % during wheat harvesting seasons are affected by field burning. The computed average fuel loads are 11.32 t/ha (±17.4 during rice and 10.89 t/ha (±8.7 during wheat harvesting seasons. Calculated average total emissions of CO2, CO, NO2, SO2 and TPM were 8108.41, 657.85, 8.10, 4.10, and 133.21 Gg during rice straw burning and 6896.85, 625.09, 1.42, 1.77, and 57.55 Gg during wheat burning. Comparison of estimated values shows better agreement with the previous concurrent estimations. The method, however, shows its efficiency parallel to the conventional method of estimation of fuel load and related pollutant emissions.

  10. Cropping system diversification for food production in Mindanao rubber plantations: a rice cultivar mixture and rice intercropped with mungbean

    Science.gov (United States)

    Elazegui, Francisco; Duque, Jo-Anne Lynne Joy E.; Mundt, Christopher C.; Vera Cruz, Casiana M.

    2017-01-01

    Including food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5. Rice and mungbean intercropping treatments consisted of different combinations of two- or three-row strips of rice and mungbean. We used generalized linear mixed models to evaluate the yield of each crop alone and in the mixture or intercropping treatments. We also evaluated a land equivalent ratio for yield, along with weed biomass (where Ageratum conyzoides was particularly abundant), the severity of disease caused by Magnaporthe oryzae and Cochliobolus miyabeanus, and rice bug (Leptocorisa acuta) abundance. We analyzed the yield ranking of each cropping system across site-year combinations to determine mean relative performance and yield stability. When weighted by their relative economic value, UPL Ri-5 had the highest mean performance, but with decreasing performance in low-yielding environments. A rice and mungbean intercropping system had the second highest performance, tied with high-value Dinorado but without decreasing relative performance in low-yielding environments. Rice and mungbean intercropped with rubber have been adopted by farmers in the Arakan Valley. PMID:28194318

  11. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Timsina, J.

    2012-01-01

    Photosynthetic aquatic biomass (PAB – algae and other floodwater flora) is a significant source of organic carbon (C) in rice-based cropping systems. A portion of PAB is capable of fixing nitrogen (N), and is hence also a source of N for crop nutrition. To account for this phenomenon in long term

  12. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    Science.gov (United States)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was

  13. UV-B effects on crops: response of the irrigated rice ecosystem

    International Nuclear Information System (INIS)

    Olszyk, D.; Dai, Q.; Teng, P.; Leung, H.; Luo, Y.; Peng, S.

    1996-01-01

    Increasing ultraviolet-B (UV-B) radiation resulting from depletion of the stratospheric ozone layer could have damaging effects on crops. This paper reviews recent findings on direct effects of UV-B on rice growth and yield as well as indirect effects via impacts on other organisms in the rice (Oryza sativa) agroecosystem. The findings are based on research by scientists at the International Rice Research Institute (IRRI) in Los Baños, the Philippines, and their collaborators in China and the United States; with comparison to research by scientists in other countries. Current results indicate that while enhanced UV-B directly impacts many aspects of rice growth, physiology, and biochemistry under controlled phytotron conditions; in general rice growth and yield are not affected under natural field conditions. The difference in response may be related both to the levels of UV-B exposure used in phytotron vs. field studies and the lower ratio of UV-A to UV-B in the phytotron compared to field. In terms of indirect effects on rice blast disease, enhanced UV-B affected both the fungus itself (Pyricularia grisea) and the susceptibility of the rice plant to the fungus. Based on these data, simulation models estimated potential impacts of higher UV-B levels on blast severity and rice yield in different countries of southeast and east Asia. Ultimately, results from rice studies can be used to identify strategies to minimize any negative effects of UV-B on rice productivity

  14. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    Directory of Open Access Journals (Sweden)

    Juliano de Bastos Pazini

    2016-09-01

    Full Text Available Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae. Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized experiment, with 25 treatments (24 pesticides + control and four replications. The insecticides clorantraniliprole, flubendiamide and diflubenzuron and the biological insecticides based on Beauveria bassiana and Metarhizium anisopliae were harmless to T. podisi and T. pretiosum. The harmless herbicides were: 2.4-D amine, profoxydim, quinclorac, ethoxysulfuron and saflufenacil. The fungicide epoxiconazole + kresoxim-methyl was also harmless to these two biological control agents. Therefore, these pesticides are indicated for the integrated pest management, in flooded rice areas.

  15. Energy use pattern and sensitivity analysis of rice production: A case ...

    African Journals Online (AJOL)

    Rice is one of the most important crop supplying the world's population's food. Because of the direct links between energy and crop yields, and food supplies, rice energy analysis is essential. The objective of this study was to evaluate the energy balance between inputs and outputs of rice production in Guilane Province of ...

  16. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop.

    Science.gov (United States)

    Bhuvaneshwari, K; Singh, Pawan Kumar

    2015-08-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N 2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influenced the rice crop positively where use of fern as basal plus dual was superior and served the nitrogen requirement of rice. There was marked increase in plant height, number of effective tillers, dry mass and nitrogen content of rice plants with the use of Azolla and N-fertilizers alone and other combinations. The use of Azolla also increased organic matter and potassium contents of the soil.

  17. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    Directory of Open Access Journals (Sweden)

    Motior M. Rahman

    2014-01-01

    Full Text Available Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE, nitrogen recovery efficiency (NRE, N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.

  18. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  19. Radiochemical studies on radiocontaminated rice cropped in Niigata Prefecture in 1954

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, K; Kawashiro, I; Kawamura, S; Takenaka, Y; Nishizaki, S

    1955-01-01

    Radioactivity of various parts of rice seeds cropped in 1954 was detailed and compared with that of 1953. Radioactivity due to /sup 40/K was established as total count of the ash and was subtracted for correction. None of rice seeds in 1953 showed excess radioactivity. With the seeds in 1954 the following results were obtained: unhulled rice 3 to 6 c.p.m./g; chaff 3 to 6 c.p.m./2 g; unpolished rice 0 to 0.3 c.p.m./8 g; polished rice 0; rice bran 0. This radioactivity is thought to come from the rain, adherent to the chaff, but not from soil contamination.

  20. Effects of Different Biochar Application Patterns on Rice Growth and Yield

    Directory of Open Access Journals (Sweden)

    WANG Yue-man

    2017-12-01

    Full Text Available Biochar has positive effect on carbon sequestration and soil improvement, consequently biochar application has been attracted more and more attention in recent years. However, so far, few investigations about the effects of biochar application patterns on crop growth, which may have a direct impact on biochar's application and comprehensive environmental effects have been reported. Herein, soil column study was conducted using four biochars, i.e., wheat straw(WBC and wood sawdust(SBC that pyrolyzed at 500℃ and 700℃, respectively, to study the effects of two different biochar application patterns on rice growth. These two typical biochar application patterns were:generally mixed application(mixed treatment and surface application(surface treatment. The results showed that:(1In comparison with CK, all biochar application treatments promoted the growth of rice in terms of plant height and SPAD(Soil Plant Analysis Development value. Plant height of surface treatment was higher than that of mixed treatments at the heading, filling and maturation stages. SPAD and NDVI(Normalized Different Vegetation Index value of surface treatments were slightly lower than mixed treatment.(2Biochar significantly increased rice seeding setting rate by 4.88%~8.39%, moreover, surface treatments were observed higher rice seeding setting rate than mixed treatments. However, no significant difference was observed in the number of effective panicles, grains per spike and 1 000-grain weight between surface and mixed treatment. (3Application of biochar promoted rice yield, and surface treatments were more likely to increase rice yield compared with the conventional mixed treatments. (4All biochar treatments increased rice harvest index by 2.58%~10.56%, and no significant difference was found between surface and mixed treatment.(5All applications of biochar promoted nitrogen, phosphorus and potassium partial productivity, which was 9.81%~36.25% higher than that of CK.

  1. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    Science.gov (United States)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  2. RiceMetaSys for salt and drought stress responsive genes in rice: a web interface for crop improvement.

    Science.gov (United States)

    Sandhu, Maninder; Sureshkumar, V; Prakash, Chandra; Dixit, Rekha; Solanke, Amolkumar U; Sharma, Tilak Raj; Mohapatra, Trilochan; S V, Amitha Mithra

    2017-09-30

    Genome-wide microarray has enabled development of robust databases for functional genomics studies in rice. However, such databases do not directly cater to the needs of breeders. Here, we have attempted to develop a web interface which combines the information from functional genomic studies across different genetic backgrounds with DNA markers so that they can be readily deployed in crop improvement. In the current version of the database, we have included drought and salinity stress studies since these two are the major abiotic stresses in rice. RiceMetaSys, a user-friendly and freely available web interface provides comprehensive information on salt responsive genes (SRGs) and drought responsive genes (DRGs) across genotypes, crop development stages and tissues, identified from multiple microarray datasets. 'Physical position search' is an attractive tool for those using QTL based approach for dissecting tolerance to salt and drought stress since it can provide the list of SRGs and DRGs in any physical interval. To identify robust candidate genes for use in crop improvement, the 'common genes across varieties' search tool is useful. Graphical visualization of expression profiles across genes and rice genotypes has been enabled to facilitate the user and to make the comparisons more impactful. Simple Sequence Repeat (SSR) search in the SRGs and DRGs is a valuable tool for fine mapping and marker assisted selection since it provides primers for survey of polymorphism. An external link to intron specific markers is also provided for this purpose. Bulk retrieval of data without any limit has been enabled in case of locus and SSR search. The aim of this database is to facilitate users with a simple and straight-forward search options for identification of robust candidate genes from among thousands of SRGs and DRGs so as to facilitate linking variation in expression profiles to variation in phenotype. Database URL: http://14.139.229.201.

  3. Rice Crop Monitoring and Yield Estimation Through Cosmo Skymed and TerraSAR-X: A SAR-Based Experience in India

    OpenAIRE

    Pazhanivelan, S.; Kannan, P.; Christy Nirmala Mary, P.; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M.

    2015-01-01

    Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used...

  4. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  5. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    OpenAIRE

    Pazini,Juliano de Bastos; Grützmacher,Anderson Dionei; Martins,José Francisco da Silva; Pasini,Rafael Antônio; Rakes,Matheus

    2016-01-01

    ABSTRACT Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae) and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized exp...

  6. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    Science.gov (United States)

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  7. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    Science.gov (United States)

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  8. Identification of climate-resilient integrated nutrient management practices for rice-rice cropping system--an empirical approach to uphold food security.

    Science.gov (United States)

    Subash, N; Gangwar, B; Singh, Rajbir; Sikka, A K

    2015-01-01

    Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of

  9. Identification of climate-resilient integrated nutrient management practices for rice-rice cropping system—an empirical approach to uphold food security

    Science.gov (United States)

    Subash, N.; Gangwar, B.; Singh, Rajbir; Sikka, A. K.

    2015-01-01

    Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of

  10. Nitrogen utilization efficiency and nitrogen nutrition of rice crops at MADA using the microplot nitrogen balance method

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Abdul Razak Ruslan; Latiffah Norddin; Hazlina Abdullah; Khairuddin Abdul Rahim

    2004-01-01

    Nitrogen (N) is a very important nutrient for rice crops and is a main component of protein. Nitrogen is essential in the production of plant chlorophyll and involves in vegetative and fruit growth and development processes. Nitrogen is a critical input and exert high cost in rice crop production. Nitrogen fertilizer is not fully utilised by the rice crop; some is lost due the processes of vaporization, hydrolysis, erosion, leaching and used by other plants and microorganisms. Several agronomic practices have been studied and adopted in this country with the purpose of increasing the efficiency nitrogen fertilizer utilization and thus, reducing the output cost for rice crops. The microplot nitrogen balance method is one of the methods used to determine uptake efficiency of nitrogen fertilizers by rice crops. In this research, the microplot of 1 m x 1 m squares in paddy plot were used, to ensure that sequential sampling was done at predetermined areas. Scheduled monthly sampling of soil and rice crops was conducted until the mature stage, harvest and post-harvest period. This MINT-MADA cooperative project contains the elements of information sharing on fertilizer efficiency measurement methods by using the N-15 isotopic tracer technique and the N-balance technique in soil, besides the cooperation on use of infrastructure and facilities, expertise and labour. (Author)

  11. Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR

    Directory of Open Access Journals (Sweden)

    Sonia Asilo

    2014-12-01

    Full Text Available Different rice crop information can be derived from different remote sensing sources to provide information for decision making and policies related to agricultural production and food security. The objective of this study is to generate complementary and comprehensive rice crop information from hypertemporal optical and multitemporal high-resolution SAR imagery. We demonstrate the use of MODIS data for rice-based system characterization and X-band SAR data from TerraSAR-X and CosmoSkyMed for the identification and detailed mapping of rice areas and flooding/transplanting dates. MODIS was classified using ISODATA to generate cropping calendar, cropping intensity, cropping pattern and rice ecosystem information. Season and location specific thresholds from field observations were used to generate detailed maps of rice areas and flooding/transplanting dates from the SAR data. Error matrices were used for the accuracy assessment of the MODIS-derived rice characteristics map and the SAR-derived detailed rice area map, while Root Mean Square Error (RMSE and linear correlation were used to assess the TSX-derived flooding/transplanting dates. Results showed that multitemporal high spatial resolution SAR data is effective for mapping rice areas and flooding/transplanting dates with an overall accuracy of 90% and a kappa of 0.72 and that hypertemporal moderate-resolution optical imagery is effective for the basic characterization of rice areas with an overall accuracy that ranged from 62% to 87% and a kappa of 0.52 to 0.72. This study has also provided the first assessment of the temporal variation in the backscatter of rice from CSK and TSX using large incidence angles covering all rice crop stages from pre-season until harvest. This complementarity in optical and SAR data can be further exploited in the near future with the increased availability of space-borne optical and SAR sensors. This new information can help improve the identification of rice

  12. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems.

    Science.gov (United States)

    Barbee, Gary C; McClain, W Ray; Lanka, Srinivas K; Stout, Michael J

    2010-09-01

    Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice-crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non-target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. The aquatic 96 h median lethal toxicity (LC(50)) data indicate that technical-grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC(50) of 951 microg L(-1) (95% CL = 741-1118 microg L(-1)). A no observed effect concentration (NOEC) of 480 microg L(-1) was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole-treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda-cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice-crayfish crop rotations than pyrethroids. (c) 2010 Society of Chemical Industry.

  13. Using Multi-Temporal Remote Sensing Data to Analyze the Spatio-Temporal Patterns of Dry Season Rice Production in Bangladesh

    Science.gov (United States)

    Shew, A. M.; Ghosh, A.

    2017-10-01

    Remote sensing in the optical domain is widely used in agricultural monitoring; however, such initiatives pose a challenge for developing countries due to a lack of high quality in situ information. Our proposed methodology could help developing countries bridge this gap by demonstrating the potential to quantify patterns of dry season rice production in Bangladesh. To analyze approximately 90,000 km2 of cultivated land in Bangladesh at 30 m spatial resolution, we used two decades of remote sensing data from the Landsat archive and Google Earth Engine (GEE), a cloud-based geospatial data analysis platform built on Google infrastructure and capable of processing petabyte-scale remote sensing data. We reconstructed the seasonal patterns of vegetation indices (VIs) for each pixel using a harmonic time series (HTS) model, which minimizes the effects of missing observations and noise. Next, we combined the seasonality information of VIs with our knowledge of rice cultivation systems in Bangladesh to delineate rice areas in the dry season, which are predominantly hybrid and High Yielding Varieties (HYV). Based on historical Landsat imagery, the harmonic time series of vegetation indices (HTS-VIs) model estimated 4.605 million ha, 3.519 million ha, and 4.021 million ha of rice production for Bangladesh in 2005, 2010, and 2015 respectively. Fine spatial scale information on HYV rice over the last 20 years will greatly improve our understanding of double-cropped rice systems, current status of production, and potential for HYV rice adoption in Bangladesh during the dry season.

  14. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    Science.gov (United States)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  15. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS

    NARCIS (Netherlands)

    Yin, Xinyou; Struik, Paul C.

    2017-01-01

    Various genetic engineering routes to enhance C3 leaf photosynthesis have been proposed to improve crop productivity. However, their potential contribution to crop productivity needs to be assessed under realistic field conditions. Using 31 year weather data, we ran the crop model GECROS for rice

  16. Effect of root extracts of Brachiaria humidicola on fertilizer nitrogen use efficiency in rice and wheat crops

    International Nuclear Information System (INIS)

    Meena, H.M.; Sachdev, M.S.; Sachdev, Pamila

    2010-01-01

    A pot experiment was conducted in 2009-2010 to study the effect of root extracts of Brachiaria humidicola on fertilizer nitrogen use efficiency in rice and wheat crops. The experiment was conducted with rice (var. Pusa Sugandh-5) as the test crop in kharif season and in rabi season wheat (var. HD-2894) was grown as the test crop with seven treatments. Three level of nitrogen were applied as 30, 60 and 90 mg N kg -1 soil through '1 5 N labelled (NH 4 ) 2 SO 4 as source of N. Recommended dose of P (30 mg P 2 O 5 kg -1 soil) and K (30 mg K 2 O kg -1 soil) through KH 2 PO 4 and KCI were applied. Nitrogen levels and inhibitors had significant effect on rice grain yield. It was maximum 20.37 g pot -1 in case of T 4 (buffer solution extract) and low 13.10 g pot -1 in T 7 (control). Nitrogen uptake in rice straw was found more in BNI treatments as compared to plant based (neem oil coating) and standard nitrification inhibitors. Nitrogen use efficiency in rice plant was highest in case of T 1 (70 % alcohol extract) 41.90 followed by T 4 (buffer solution extract) 41.30. Among the treatments T 5 (neem oil coating) performed better in wheat yield as compared to other treatments. Nitrogen uptake and NUE were maximum in T 3 (salt solution extract) followed by T 5 (neem oil coating) in wheat crop. The maximum nitrogen use efficiency was observed at 60 mg N kg -1 soil as compared to other levels. (author)

  17. Dynamics of Phenol Degrading-Iron ReducingBacteria{1mm in Intensive Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Field and greenhouse experiments were conducted to investigate theeffects of cropping season, nitrogen fertilizer input and aeratedfallow on the dynamics of phenol degrading-iron reducingbacteria (PD-IRB) in tropical irrigated rice ({ Oryza sativa L.)systems. The PD-IRB population density was monitored at different stagesof rice growth in two cropping seasons (dry and early wet) in acontinuous annual triple rice cropping system under irrigated condition.In this system, the high nitrogen input (195 and 135 kg N ha-1 indry and wet seasons, respectively) plots and control plots receiving noN fertilizer were compared to investigate the effect of nitrogen rate onpopulation size. The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under cropping systems of tropical irrigatedrice. However, density of the bacterial populations varied with ricegrowth stages. Cropping seasons, rhizosphere, and aerated fallow couldaffect the dynamics of PD-IRB. In the field trial, viable counts ofPD-IRB in the topsoil layer (15 cm) ranged between 102 and 108cells per gram of dry soil. A steep increase in viable counts during thesecond half of the cropping season suggested that the population densityof PD-IRB increased at advanced crop-growth stages. Population growth ofPD-IRB was accelerated during the dry season compared to the wet season.In the greenhouse experiment, the adjacent aerated fallow revealed 1-2orders of magnitude higher in most probable number (MPN) of PD-IRB thanthe wet fallow treated plots. As a prominent group of Fe reducingbacteria, PD-IRB predominated in the rhizosphere of rice, since maximumMPN of PD-IRB (2.62108 g-1 soil) was found in rhizospheresoil. Mineral N fertilizer rates showed no significant effect on PD-IRBpopulation density.

  18. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    Science.gov (United States)

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  19. Enhancing water and fertilizer saving without compromising rice yield through integrated crop management

    NARCIS (Netherlands)

    Wardana, I.P.; Gani, A.; Abdulrachmann, S.; Bindraban, P.S.; Keulen, van H.

    2010-01-01

    Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use

  20. Relative availability of crop residue-N in rice cultivation

    International Nuclear Information System (INIS)

    Sirwando, H; Abdullah, N.

    1988-01-01

    The use of plant residues for soil amendment will reduce the use of chemical fertilizers. The experiment to study the uptake of N from various plant residues by rice crop. Three kinds of plant residue of soybean labelled with 15-N. Four levels of urea (0, 15, 30, 40 kg N/ha) were applied to aluvial soil from Pusakanegara. The factorial experiment was conducted in fully randomize design, with plant residues as the main treatment, and rate of urea as substreatment. The results obtained from this experiment showed that plant dry weight, N content of grain, straw, and the whole plant of Atomita I rice treated with soybean strow seens to be higher than those treated with the straw of rice or corn. (author). 6 refs.; 7 tabs

  1. Water Use and Crop Coefficients in Sprinkler Irrigated Rice

    Directory of Open Access Journals (Sweden)

    Antonino Spanu

    Full Text Available Field experiments were carried out during the years 2002, 2004, 2005 and 2006 to analyze water-soil-atmosphere interactions in sprinkler irrigated rice. The research was carried out in Sardinia (39º 59’ N; 8º 40’ E, at altitude 15 m. The cultivars used in the experiments, respectively in 2002 and in 2004-2005-2006, were Irat 212 and Eurosis. In each year cultivars were subjected to the same crop management. Irrigation was applied since the emergence with the sprinkler method, taking into account the loss of water from ‘Class A’ pan evaporation. Soil water content was monitored at 0.10 m intervals until 1.00-m depth using a ‘Diviner 2000’ (Sentek. In 2002 seven irrigation scheduling treatments were compared. In 2004, 2005, 2006 irrigation treatments provided for optimal soil water conditions during the growing season. In 2002 the results highlighted: 1 0-0.20 m depth was the most important layer for crop water uptake and the best correlated layer with rice rough yield; 2 the positive relationship between yield and water supply was significant until 6500 m3 ha-1 of water applied. Further seasonal irrigation volumes did not increase significantly yield. In 2004, 2005 and 2006 the analysis of the soil water balance at different crop phenological stages allowed to estimate crop coefficients (Kc using the Penman-Monteith equation and the ‘Class A’ pan evaporation (Kcev. Kc varied over the three-year period on average from 0.90 to 1.07 and 0.97, respectively for the emergence-end of tillering, end of tillering-heading and heading-maturing periods, while crop coefficients as a ratio between maximum crop evapotranspiration (ETc and Epan, Kcev ranged from 0.78 to 0.92 and 0.81 for the same time periods.

  2. Increasing Soil Organic Matter Enhances Inherent Soil Productivity while Offsetting Fertilization Effect under a Rice Cropping System

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhao

    2016-09-01

    Full Text Available Understanding the role of soil organic matter (SOM in soil quality and subsequent crop yield and input requirements is useful for agricultural sustainability. SOM is widely considered to affect a wide range of soil properties, however, great uncertainty still remains in identifying the relationships between SOM and crop yield due to the difficulty in separating the effect of SOM from other yield-limiting factors. Based on 543 on-farm experiments, where paired treatments with and without NPK fertilizer were conducted during 2005–2009, we quantified the inherent soil productivity, fertilization effect, and their contribution to rice yield and further evaluated their relationships with SOM contents under a rice cropping system in the Sichuan Basin of China. The inherent soil productivity assessed by rice grain yield under no fertilization (Y-CK was 5.8 t/ha, on average, and contributed 70% to the 8.3 t/ha of rice yield under NPK fertilization (Y-NPK while the other 30% was from the fertilization effect (FE. No significant correlation between SOM content and Y-NPK was observed, however, SOM content positively related to Y-CK and its contribution to Y-NPK but negatively to FE and its contribution to Y-NPK, indicating an increased soil contribution but a decreased fertilizer contribution to rice yield with increasing SOM. There were significantly positive relationships between SOM and soil available N, P, and K, indicating the potential contribution of SOM to inherent soil productivity by supplying nutrients from mineralization. As a result, approaches for SOM accumulation are practical to improve the inherent soil productivity and thereafter maintain a high crop productivity with less dependence on chemical fertilizers, while fertilization recommendations need to be adjusted with the temporal and spatial SOM variation.

  3. Influence of Rapeseed Cake on Heavy Metal Uptake by a Subsequent Rice Crop After Phytoextraction Using Sedum plumbizincicola.

    Science.gov (United States)

    Zhou, Liqiang; Wu, Longhua; Li, Zhu; Yang, Bingfan; Yin, Bin; Luo, Yongming; Christie, Peter

    2015-01-01

    A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23-0.28 mg kg(-1), almost down to the standard limit (0.2 mg kg(-1)). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.

  4. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    Directory of Open Access Journals (Sweden)

    Ning An

    Full Text Available Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG emissions (N2O, CH4 and CO2-equivalent with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield. Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice

  5. Alkaline coal fly ash amendments are recommended for improving rice-peanut crops

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.K.; Ghosh, B.C. [Agricultural and Food Engineering Department, Indi an Inst. of Technology, Kharagpur, West Bengal (India); Rautaray, S.K. [RRLRRS, Gerua Via-Hajo, Dist-Kamrup, Assam (India)

    2007-05-15

    A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997-98 and 1998-99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg/ha was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N/ha and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg/ha through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t/ha in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.

  6. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    Science.gov (United States)

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  8. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    Science.gov (United States)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  9. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  10. A rice-based traditional dietary pattern is associated with obesity in Korean adults.

    Science.gov (United States)

    Kim, Jihye; Jo, Inho; Joung, Hyojee

    2012-02-01

    Dietary patterns are critical in the prevention of chronic disease. The relationship between specific dietary patterns and obesity has not been evaluated in a Korean adult population. This study examined whether specific dietary patterns are associated with obesity using survey data of the largest, nationally representative, general Korean population. The cross-sectional study was comprised of 10,089 Korean adults (19 years or older) who participated in the second and third Korean National Health and Nutrition Examination Surveys conducted in 2001 and 2005, respectively. Dietary data were assessed by 24-hour recall method. Obesity was defined as body mass index (calculated as kg/m(2)) ≥25, which is the cutoff point for adults in the Asian and Pacific regions. Four dietary patterns were derived using factor analysis (white rice and kimchi pattern; high-fat, sweets, and coffee pattern; meat and alcohol pattern; and grains, vegetables, and fish pattern). Each dietary pattern explained 8.6%, 6.7%, 5.7%, and 5.7% of the variation in food intake, respectively. The white rice and kimchi pattern (P for trend=0.0039) and the high-fat, sweets, and coffee pattern (P for trend=0.0054) were positively associated with obesity after adjustments for age, sex, energy intake, alcohol intake, smoking status, physical activity, and chronic diseases. No significant association was found among the meat and alcohol pattern; the grains, vegetables, and fish pattern; and obesity. Specific dietary patterns, which include the white rice and kimchi and high-fat, sweets, and coffee patterns, may be independently associated with obesity in Korean adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation

    Science.gov (United States)

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun

    2018-01-01

    Abstract Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice (Oryza rufipogon) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars (O. sativa), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression. PMID:29308123

  12. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    Directory of Open Access Journals (Sweden)

    Olsen Kenneth M

    2010-06-01

    Full Text Available Abstract Background Weedy rice (red rice, a conspecific weed of cultivated rice (Oryza sativa L., is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. Results We find greater population structure than has been previously reported for U.S. weedy rice, and that the multiple, genetically divergent populations have separate origins. The two main U.S. weedy rice populations share genetic backgrounds with cultivated O. sativa varietal groups not grown commercially in the U.S., suggesting weed origins from domesticated ancestors. Hybridization between weedy groups and between weedy rice and local crops has also led to the evolution of distinct U.S. weedy rice populations. Demographic simulations indicate differences among the main weedy groups in the impact of bottlenecks on their establishment in the U.S., and in the timing of divergence from their cultivated relatives. Conclusions Unlike prior research, we did not find unambiguous evidence for U.S. weedy rice originating via hybridization between cultivated and wild Oryza species. Our results demonstrate the potential for weedy life-histories to evolve directly from within domesticated lineages. The diverse origins of U.S. weedy rice populations demonstrate the multiplicity of evolutionary forces that can influence the emergence of weeds from a single species complex.

  13. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    International Nuclear Information System (INIS)

    Pramanik, Prabhat; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2014-01-01

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH 4 ) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO 3 –N concentrations in soil, which are precursors for the formation of nitrous oxide (N 2 O). However, N 2 O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N 2 O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N 2 O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N 2 O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha −1 and 27 Mg ha −1 rates in rice paddy soil. Cover crop application significantly increased CH 4 emission flux while decreased N 2 O emissions during rice cultivation. The lowest N 2 O emission was observed in 27 Mg ha −1 cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N 2 O emission potentials of these soil aggregates. Fluxes of N 2 O emissions in the fallow season were influenced by the N 2 O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH 4 , but N 2 O should also be considered especially for fallow season to calculate total GWP. - Highlights:

  14. Estimation of effects of photosynthesis response functions on rice yields and seasonal variation of CO2 fixation using a photosynthesis-sterility type of crop yield model

    International Nuclear Information System (INIS)

    Kaneko, D.; Moriwaki, Y.

    2008-01-01

    This study presents a crop production model improvement: the previously adopted Michaelis-Menten (MM) type photosynthesis response function (fsub(rad-MM)) was replaced with a Prioul-Chartier (PC) type function (fsub(rad-PC)). The authors' analysis reflects concerns regarding the background effect of global warming, under simultaneous conditions of high air temperature and strong solar radiation. The MM type function fsub(rad-MM) can give excessive values leading to an overestimate of photosynthesis rate (PSN) and grain yield for paddy-rice. The MM model is applicable to many plants whose (PSN) increases concomitant with increased insolation: wheat, maize, soybean, etc. For paddy rice, the PSN apparently shows a maximum PSN. This paper proves that the MM model overestimated the PSN for paddy rice for sufficient solar radiation: the PSN using the PC model yields 10% lower values. However, the unit crop production index (CPIsub(U)) is almost independent of the MM and PC models because of respective standardization of both PSN and crop production index using average PSNsub(0) and CPIsub(0). The authors improved the estimation method using a photosynthesis-and-sterility based crop situation index (CSIsub(E)) to produce a crop yield index (CYIsub(E)), which is used to estimate rice yields in place of the crop situation index (CSI); the CSI gives a percentage of rice yields compared to normal annual production. The model calculates PSN including biomass effects, low-temperature sterility, and high-temperature injury by incorporating insolation, effective air temperature, the normalized difference vegetation index (NDVI), and effects of temperature on photosynthesis. Based on routine observation data, the method enables automated crop-production monitoring in remote regions without special observations. This method can quantify grain production early to raise an alarm in Southeast Asian countries, which must confront climate fluctuation through this era of global

  15. Molecular Breeding Strategy and Challenges toward Improvement of Blast Disease Resistance in Rice Crops

    Directory of Open Access Journals (Sweden)

    Sadegh eAshkani

    2015-11-01

    Full Text Available Rice is a staple and most important security food crop consumed by almost half of the world’s population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improve blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges toward improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.

  16. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    Science.gov (United States)

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  17. Evaluation of weather-based rice yield models in India

    Science.gov (United States)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  18. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine

    Science.gov (United States)

    Dong, Jinwei; Xiao, Xiangming; Menarguez, Michael A.; Zhang, Geli; Qin, Yuanwei; Thau, David; Biradar, Chandrashekhar; Moore, Berrien

    2016-01-01

    Area and spatial distribution information of paddy rice are important for understanding of food security, water use, greenhouse gas emission, and disease transmission. Due to climatic warming and increasing food demand, paddy rice has been expanding rapidly in high latitude areas in the last decade, particularly in northeastern (NE) Asia. Current knowledge about paddy rice fields in these cold regions is limited. The phenology- and pixel-based paddy rice mapping (PPPM) algorithm, which identifies the flooding signals in the rice transplanting phase, has been effectively applied in tropical areas, but has not been tested at large scale of cold regions yet. Despite the effects from more snow/ice, paddy rice mapping in high latitude areas is assumed to be more encouraging due to less clouds, lower cropping intensity, and more observations from Landsat sidelaps. Moreover, the enhanced temporal and geographic coverage from Landsat 8 provides an opportunity to acquire phenology information and map paddy rice. This study evaluated the potential of Landsat 8 images on annual paddy rice mapping in NE Asia which was dominated by single cropping system, including Japan, North Korea, South Korea, and NE China. The cloud computing approach was used to process all the available Landsat 8 imagery in 2014 (143 path/rows, ~3290 scenes) with the Google Earth Engine (GEE) platform. The results indicated that the Landsat 8, GEE, and improved PPPM algorithm can effectively support the yearly mapping of paddy rice in NE Asia. The resultant paddy rice map has a high accuracy with the producer (user) accuracy of 73% (92%), based on the validation using very high resolution images and intensive field photos. Geographic characteristics of paddy rice distribution were analyzed from aspects of country, elevation, latitude, and climate. The resultant 30-m paddy rice map is expected to provide unprecedented details about the area, spatial distribution, and landscape pattern of paddy rice fields

  19. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    Directory of Open Access Journals (Sweden)

    Desirrê Morais Dias

    2015-11-01

    Full Text Available Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7: Pontal bean (PB; rice + Pontal bean (R + BP; Pontal bean + sweet potato (PB + SP; Pontal bean + pumpkin (PB + P; Pontal bean + rice + sweet potato (PB + R + P; Pontal bean + rice + sweet potato (PB + R + SP; positive control (Ferrous Sulfate. The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE, gene expression of divalente metal transporter 1 (DMT-1, duodenal citocromo B (DcytB, ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC. The test groups, except the PB, showed higher HRE (p < 0.05 than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05 in the groups fed with high content carotenoid crops (sweet potato or pumpkin. The PB group presented lower (p < 0.05 TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity.

  20. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Prabhat, E-mail: prabhat2003@gmail.com; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo, E-mail: pjkim@gnu.ac.kr

    2014-08-15

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH{sub 4}) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO{sub 3}–N concentrations in soil, which are precursors for the formation of nitrous oxide (N{sub 2}O). However, N{sub 2}O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N{sub 2}O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N{sub 2}O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N{sub 2}O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha{sup −1} and 27 Mg ha{sup −1} rates in rice paddy soil. Cover crop application significantly increased CH{sub 4} emission flux while decreased N{sub 2}O emissions during rice cultivation. The lowest N{sub 2}O emission was observed in 27 Mg ha{sup −1} cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N{sub 2}O emission potentials of these soil aggregates. Fluxes of N{sub 2}O emissions in the fallow season were influenced by the N{sub 2}O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH{sub 4}, but N{sub 2}O should also be

  1. Use of nitrogen from fertilizer and cover crops by upland rice in an Oxisol under no-tillage in the Cerrado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Cabral da; Muraoka, Takashi; Bendassolli, Jose Alberto, E-mail: edsoncabralsilva@gmail.com, E-mail: muraoka@cena.usp.br, E-mail: jab@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franzini, Vinicius Ide, E-mail: vinicius.franzini@embrapa.br [Embrapa Amazonia Oriental, Belem, PA (Brazil); Sakadevan, Karuppan, E-mail: K.Sakadevan@iaea.org [Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture, Soil and Water Management and Crop Nutrition Subprogram, Vienna International Centre, Vienna (Austria); Buzetti, Salatier; Arf, Orivaldo, E-mail: sbuzetti@agr.feis.unesp.br, E-mail: arf@agr.feis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia; Soares, Frederico Antonio Loureiro, E-mail: fredalsoares@hotmail.com [Instituto Federal Goiano, Rio Verde, GO (Brazil)

    2016-06-15

    The objective of this work was to evaluate the effects of cover crops on the yield of upland rice (Oryza sativa) grown under no-tillage system, in the presence and absence of N fertilizer, as well as to quantify, in the field, the use efficiency of N from urea and cover crops by upland rice, through the {sup 15}N isotope dilution technique. The field experiment was carried out in the municipality of Selviria, in the state of Mato Grosso do Sul, Brazil, in an Oxisol (Rhodic Hapludox) in the Cerrado (Brazilian savanna) region. The experimental design was a randomized complete block with 15 treatments and four replicates, in a 5 x 3 factorial arrangement. The treatments were four cover crops (Crotalaria juncea, Cajanus cajan, Mucuna pruriens, and Pennisetum glaucum) + spontaneous vegetation (fallow in off-season), combined with three forms of N fertilization: control treatment, without N fertilizer application; 20 kg ha{sup -1} N at sowing; and 20 kg ha{sup -1} N at sowing plus 60 kg ha{sup -1} N as topdressing. Rice is not affected by N fertilizer application as topdressing, when legume cover crops are used. The use of legume cover crops provides higher grain yield and use of fertilizer-N by rice than that of millet or fallow. Legume cover crops promote an effect equivalent to that of the application of 60 kg ha{sup -1} N as urea on rice yield. (author)

  2. Use of nitrogen from fertilizer and cover crops by upland rice in an Oxisol under no-tillage in the Cerrado

    International Nuclear Information System (INIS)

    Silva, Edson Cabral da; Muraoka, Takashi; Bendassolli, Jose Alberto; Franzini, Vinicius Ide; Sakadevan, Karuppan; Buzetti, Salatier; Arf, Orivaldo

    2016-01-01

    The objective of this work was to evaluate the effects of cover crops on the yield of upland rice (Oryza sativa) grown under no-tillage system, in the presence and absence of N fertilizer, as well as to quantify, in the field, the use efficiency of N from urea and cover crops by upland rice, through the 15 N isotope dilution technique. The field experiment was carried out in the municipality of Selviria, in the state of Mato Grosso do Sul, Brazil, in an Oxisol (Rhodic Hapludox) in the Cerrado (Brazilian savanna) region. The experimental design was a randomized complete block with 15 treatments and four replicates, in a 5 x 3 factorial arrangement. The treatments were four cover crops (Crotalaria juncea, Cajanus cajan, Mucuna pruriens, and Pennisetum glaucum) + spontaneous vegetation (fallow in off-season), combined with three forms of N fertilization: control treatment, without N fertilizer application; 20 kg ha -1 N at sowing; and 20 kg ha -1 N at sowing plus 60 kg ha -1 N as topdressing. Rice is not affected by N fertilizer application as topdressing, when legume cover crops are used. The use of legume cover crops provides higher grain yield and use of fertilizer-N by rice than that of millet or fallow. Legume cover crops promote an effect equivalent to that of the application of 60 kg ha -1 N as urea on rice yield. (author)

  3. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  4. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  5. Influence of gypsum and farmyard manure on fertilizer zinc uptake by wheat and its residual effect on succeeding rice and wheat crops in a sodic soil

    International Nuclear Information System (INIS)

    Sachdev, P.; Deb, D.L.

    1990-01-01

    Greenhouse experiments were conducted to evaluate the effectiveness of gypsum and FYM on a sodic soil on fertilizer Zn uptake by wheat and residual effect on succeeding crops of rice and wheat. Application of FYM significantly increased the yield of first wheat crop as well as the yield of subsequent rice and wheat crops, but gypsum showed significant effect only on rice. FYM application also resulted in an increase in Zn content of all the three crops. Utilisation of the fertilizer Zn by the first crop of wheat ranged between 0.30 to 0.54 per cent while succeeding crop of rice utilised 1.00 to 1.25 per cent of the applied Zn. Application of gypsum to the first crop did not influence the fertilizer Zn uptake by wheat, rice and wheat, however, it significantly reduced the soil pH and increased the available Zn content in soil. (author). 15 refs., 6 tabs

  6. Determination of critical nitrogen dilution curve based on stem dry matter in rice.

    Directory of Open Access Journals (Sweden)

    Syed Tahir Ata-Ul-Karim

    Full Text Available Plant analysis is a very promising diagnostic tool for assessment of crop nitrogen (N requirements in perspectives of cost effective and environment friendly agriculture. Diagnosing N nutritional status of rice crop through plant analysis will give insights into optimizing N requirements of future crops. The present study was aimed to develop a new methodology for determining the critical nitrogen (Nc dilution curve based on stem dry matter (SDM and to assess its suitability to estimate the level of N nutrition for rice (Oryza sativa L. in east China. Three field experiments with varied N rates (0-360 kg N ha(-1 using three Japonica rice hybrids, Lingxiangyou-18, Wuxiangjing-14 and Wuyunjing were conducted in Jiangsu province of east China. SDM and stem N concentration (SNC were determined during vegetative stage for growth analysis. A Nc dilution curve based on SDM was described by the equation (Nc = 2.17W(-0.27 with W being SDM in t ha(-1, when SDM ranged from 0.88 to 7.94 t ha(-1. However, for SDM < 0.88 t ha(-1, the constant critical value Nc = 1.76% SDM was applied. The curve was dually validated for N-limiting and non-N-limiting growth conditions. The N nutrition index (NNI and accumulated N deficit (Nand of stem ranged from 0.57 to 1.06 and 51.1 to -7.07 kg N ha(-1, respectively, during key growth stages under varied N rates in 2010 and 2011. The values of ΔN derived from either NNI or Nand could be used as references for N dressing management during rice growth. Our results demonstrated that the present curve well differentiated the conditions of limiting and non-limiting N nutrition in rice crop. The SDM based Nc dilution curve can be adopted as an alternate and novel approach for evaluating plant N status to support N fertilization decision during the vegetative growth of Japonica rice in east China.

  7. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We

  8. Rice peasants and rice research in Colombia

    NARCIS (Netherlands)

    Spijkers, P.A.N.M.

    1983-01-01

    Rice has been grown as a food crop in Latin America from early colonial times. In Colombia rice became a prominent subsistence crop especially on the north coast where it has been grown since the 17th century, sometimes also as a commercial crop. During the last twenty years there has been a sharp

  9. Effect of zeolite on the nitrogen fertilizer efficiency in rice crop

    International Nuclear Information System (INIS)

    Villareal-Nunez, Jose Ezequiel; Barahona-Amores, Luis Alberto; Castillo-Ortiz, Ovidio Antonio

    2015-01-01

    The objective of this work was to evaluate the effect of zeolite on the efficiency of nitrogen fertilizer in rice crop. The experiment was conducted in Cacao, Tonosi, Los Santos, Panama, between August and December 2012 and 2013 under rainfed conditions. The rice variety used was IDIAP FL 106-11 with seeding density of 110 kg/ha in a medium- fertility vertic Fluvisol. This study consisted of five treatments with four replications, following a completely randomized block design using N rate of 80 kg/ha mixed with different percentages of zeolite (0; 15; 25; 35 and 45%). The isotopic technique 15 N 3% excess to determine the nitrogen fertilizer use efficiency (EUNF) was used. Each experimental unit consist of 15 m 2 with three micro-plots of 1 m 2 where 15 N-labeled urea was applied at different times of the crop cycle to determine EUNF in each application. Top grain yields were obtained with 80 kg N + 45% zeolite/ha and 80 kg N + 15% zeolite/ha. A 7% EUNF increase was achieved with the addition of natural zeolite. Small doses of 12 kg/ha (15%) of zeolite can improve EUNF; after subsequent experiments, it is recommended to reduce the amount of N applied in soils with similar soil and climatic conditions suitable for growing rice. (author) [es

  10. Population dynamics and breeding patterns of multimammate mouse, Mastomys natalensis (Smith 1834), in irrigated rice fields in eastern Tanzania.

    Science.gov (United States)

    Mulungu, Loth S; Ngowo, Victoria; Mdangi, Mashaka; Katakweba, Abdul S; Tesha, Protas; Mrosso, Furaha P; Mchomvu, Mary; Sheyo, Paul M; Kilonzo, Bukhet S

    2013-03-01

    Multimammate mice are the most important vertebrate pests in Sub-Saharan Africa and are also reservoirs of many zoonotic diseases, including sylvan plague. This study investigated the population dynamics and breeding patterns of this mouse in irrigated rice cropping systems in eastern Tanzania. The multimammate mouse, Mastomys natalensis, population varied with habitat and months. Fallow land had a more abundant population than rice fields. The highest population peak was observed during the dry season from July to October. Mastomys natalensis is sexually active throughout the year in the study area, although it reaches the highest level in June and December when rice is at the maturity stage. This suggests that breeding is highly influenced by the presence of a rice crop in both seasons. More juvenile individuals were recorded in August and September, indicating that they were produced in the previous breeding months. The sex ratio of M. natalensis was not skewed to either males or females, indicating that it was at parity. Rodent population dynamics during the study periods in all habitats indicated that high birth rates accounted for the rapid population growth and turnover. Regular control and sustainable operations are thus essential if rodent pest populations are to be kept within tolerable limits. Copyright © 2012 Society of Chemical Industry.

  11. Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections.

    Directory of Open Access Journals (Sweden)

    Nyuk Ling Ma

    Full Text Available Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14 and most susceptible line (SS2-18 to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX and catalase (CAT were significantly higher in the sensitive line while superoxide dismutase (SOD was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.

  12. Comparison of net photosynthetic rate and 14C distribution between different cultural conditions on double cropping rice

    International Nuclear Information System (INIS)

    Huang Jianliang; Li Hesong; Zou Yingbin; Tu Naimei; Li Jianhui

    2002-01-01

    By applying the cultural method 'Vigorous Root-Strong Stem-Heavy Panicle Cultural Method' (VSHM), the yield of double cropping rice reached 18000 kg/hm 2 in large area at Liling county, Hunan province. The net photosynthetic rate and 14 C distribution of rice leaves between VSHM and traditional cultural methods (CK) were compared. The photosynthetic rate of the flag leaves at ripening stages under VSHM was higher than that of controls with both earlier rice or later rice. Regarding the net amount of 14 C-assimilate by a single flag leaf and the second top leaf, there were differences at the significant level of 0.01 and 0.05, respectively between VSHM and controls, and VSHM were 7.72%-35.05% higher. The percentage of distribution at panicles of 14 C-assimilate were 51.93%-61.40% when flag leaf was labelled, and 45.34%-54.25% when the second top leaf was labelled, that of earlier rice was higher than later rice respectively, but the differences were not significant between VSHM and CK. The actual yield of double cropping rice under the cultural condition of VSHM was 17710 kg/hm 2 , and increased by 18.33% when compared with controls

  13. N balance sheet pattern under rainfed rice

    International Nuclear Information System (INIS)

    Mukherjee, P.K.; Mandal, S.R.

    1994-01-01

    A pot experiment was conducted in kharif, 1991 in the net house with rice CV. IR-36 receiving 100 (70+20+10) kg N/ha under different rainfall situations in loamy orthent. The per cent recovery of 15 N ranged from 16.2 to 38.0 in the crop, 12.2 to 21.3 in the soil after crop harvest and 0.8 to 3.3 in the leachate. The per cent loss in the unaccounted form ranged from 39.7 to 70.3. The order of 15 N recovery in the crop is : continuous submergence > late stress > early stress > continuous drought; in the soil is : continuous submergence > late stress > continuous drought > early stress, but in the leachate it is : early stress > mid season stress > continuous submergence > continuous drought. The proportion of fertilizer to soil N in the pool was in the order of leachate > crop > soil and continuous drought > early stress > mid season stress > continuous submergence. (author). 4 refs., 2 tabs

  14. Mapping Changes in Area and the Cropping Season of Irrigated Rice in Senegal and Mauritania between 2003 and 2014 Using the PhenoRice Algorithm and MODIS Imagery

    Science.gov (United States)

    Zwart, S.; Busetto, L.; Diagne, M.; Boschetti, M.; Nelson, A.

    2017-12-01

    Government policies have resulted in rapid expansion of irrigated rice area in Mauritania and Senegal through private and public investments. Farmers switch rice cultivation from the wet to the dry season to achieve higher production while rice double cropping is increasingly practiced. As a result Senegal is close to attaining self-sufficiency in the coming years. However, tools to monitor those changes are absent and this inhibits assessments on for example its impact on wetlands located in the delta area, increased water demands and climate induced risks to farmers. In this study we aimed to map changes in irrigated rice area in the wet and dry seasons. We applied the PhenoRice algorithm on a combined time-series of MODIS Aqua and Terra images obtained between 2003 and 2016 to map pixels dominated by rice and determine the start, end and length of the growing season from sowing/transplanting to maturity. Between 2002 and 2010 researchers from the Africa Rice Center interviewed annually around 100 rice farmers located in two irrigation schemes in Senegal. We extracted the reported sowing/transplanting and harvest dates from the data base and used these to validate the estimates obtained by PhenoRice. We also compared the obtained rice areas with official statistics provided by the Senegalese Ministry of Agriculture. Analysis of PhenoRice results highlighted that starting 2008, rice farmers cultivate also during the dry season; the area is steadily increasing from 2008 onwards and in the recent years approximately almost equals that of the wet season. This was confirmed by official statistics, though the total area estimated by PhenoRice is smaller than reported, most likely due to the mismatch between pixel size and the small cultivated areas. However, the algorithm was able to detect the overall trends and inter-annual variations observed in the wet (r2=0.57) and dry season rice cultivated area (r2=0.91). The start of the season, that varied maximally 4 weeks

  15. Production of pulse in mono-cropped rice system in the coastal region of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Nanda, P.; Chandra, Dinesh; Ghorai, A.K.; Behera, M.S.

    2001-04-01

    This experiment was undertaken with an objective to increase the yield of black-gram leguminous pulse crop through optimal doses of phosphatic fertilizer with supplemental irrigation in mono-cropped rice-fallow regions of India. Irrigation and phosphorus fertilizer application were introduced for enhancing productivity of black-gram to provide better returns to available water resources

  16. Comparison of NDVIs from GOCI and MODIS Data towards Improved Assessment of Crop Temporal Dynamics in the Case of Paddy Rice

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2015-09-01

    Full Text Available The monitoring of crop development can benefit from the increased frequency of observation provided by modern geostationary satellites. This paper describes a four-year testing period from 2010 to 2014, during which satellite images from the world's first Geostationary Ocean Color Imager (GOCI were used for spectral analyses of paddy rice in South Korea. A vegetation index was calculated from GOCI data based on the bidirectional reflectance distribution function (BRDF-adjusted reflectance, which was then used to visually analyze the seasonal crop dynamics. These vegetation indices were then compared with those calculated using the Moderate-resolution Imaging Spectroradiometer (MODIS-normalized difference vegetation index (NDVI based on Nadir BRDF-adjusted reflectance. The results show clear advantages of GOCI, which provided four times better temporal resolution than the combined MODIS sensors, interpreting subtle characteristics of the vegetation development. Particularly in the rainy season, when data acquisition under clear weather conditions was very limited, it was possible to find cloudless pixels within the study sites by compiling GOCI images obtained from eight acquisition periods per day, from which the vegetation index could be calculated. In this study, ground spectral measurements from CROPSCAN were also compared with satellite-based vegetation products, despite their different index magnitude, according to systematic discrepancy, showing a similar crop development pattern to the GOCI products. Consequently, we conclude that the very high temporal resolution of GOCI is very beneficial for monitoring crop development, and has potential for providing improved information on phenology.

  17. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.

    Science.gov (United States)

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyungsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-06-30

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

  18. Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Ruhul Amin

    2015-01-01

    Full Text Available The crops that we grow for food need specific climatic conditions to show better performance in view of economic yield. A changing climate could have both beneficial and harmful effects on crops. Keeping the above view in mind, this study is undertaken to investigate the impacts of climate change (viz. changes in maximum temperature, minimum temperature, rainfall, humidity and sunshine on the yield and cropping area of four major food crops (viz. Aus rice, Aman rice, Boro rice and wheat in Bangladesh. Heteroskedasticity and autocorrelation consistent standard error (HAC and feasible generalized least square (FGLS methods were used to determine the climate-crop interrelations using national level time series data for the period of 1972–2010. Findings revealed that the effects of all the climate variables have had significant contributions to the yield and cropping area of major food crops with distinct variation among them. Maximum temperature statistically significantly affected all the food crops’ yield except Aus rice. Maximum temperature also insignificantly affected cropping area of all the crops. Minimum temperature insignificantly affected Aman rice but benefited other three crops’ yield and cropping area. Rainfall significantly benefitted cropping area of Aus rice, but significantly affected both yield and cropping area of Aman rice. Humidity statistically positively contributed to the yield of Aus and Aman rice but, statistically, negatively influenced the cropping area of Aus rice. Sunshine statistically significantly benefitted only Boro rice yield. Overall, maximum temperature adversely affected yield and cropping area of all the major food crops and rainfall severely affected Aman rice only. Concerning the issue of climate change and ensuring food security, the respective authorities thus should give considerable attention to the generation, development and extension of drought (all major food crops and flood (particularly Aman

  19. Realistic Simulation of Rice Plant

    Directory of Open Access Journals (Sweden)

    Wei-long DING

    2011-09-01

    Full Text Available The existing research results of virtual modeling of rice plant, however, is far from perfect compared to that of other crops due to its complex structure and growth process. Techniques to visually simulate the architecture of rice plant and its growth process are presented based on the analysis of the morphological characteristics at different stages. Firstly, the simulations of geometrical shape, the bending status and the structural distortion of rice leaves are conducted. Then, by using an improved model for bending deformation, the curved patterns of panicle axis and various types of panicle branches are generated, and the spatial shape of rice panicle is therefore created. Parametric L-system is employed to generate its topological structures, and finite-state automaton is adopted to describe the development of geometrical structures. Finally, the computer visualization of three-dimensional morphologies of rice plant at both organ and individual levels is achieved. The experimental results showed that the proposed methods of modeling the three-dimensional shapes of organs and simulating the growth of rice plant are feasible and effective, and the generated three-dimensional images are realistic.

  20. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  1. Mapping of crop calendar events by object-based analysis of MODIS and ASTER images

    Directory of Open Access Journals (Sweden)

    A.I. De Castro

    2014-06-01

    Full Text Available A method to generate crop calendar and phenology-related maps at a parcel level of four major irrigated crops (rice, maize, sunflower and tomato is shown. The method combines images from the ASTER and MODIS sensors in an object-based image analysis framework, as well as testing of three different fitting curves by using the TIMESAT software. Averaged estimation of calendar dates were 85%, from 92% in the estimation of emergence and harvest dates in rice to 69% in the case of harvest date in tomato.

  2. Analysis of energy consumption in lowland rice-based cropping system of Malaysia

    Directory of Open Access Journals (Sweden)

    Chan Chee Wan

    2005-07-01

    Full Text Available Sufficient energy is needed in the right form and at the right time for adequate crop production. One way to optimize energy consumption in agriculture is to determine the efficiency of methods and techniques used. With the current increase in world population, energy consumption needs effective planning. That is, the input elements need to be identified in order to prescribe the most efficient methods for controlling them. This study was undertaken in order to determine the direct and indirect energy consumption of field operations in a lowland rice production system of Malaysia. Field time, fuel and other energy requirements were measured for the tillage, planting, fertilizing, spraying and harvesting operations performed. Energy analysis carried out revealed the highest average operational energy consumption was for tillage (1747.33 MJ ha-1 which accounted for about 48.6% of the total operational energy consumption (3595.87 MJ ha-1, followed by harvesting (1171.44 MJ ha-1, 32.6% and planting (562.91 MJ ha-1, 15.7%. Fertilizing and pesticide spraying did not make any significant contributions to the operational energy consumption. Based on energy sources, fuel was the main consumer of direct energy with 2717.82 MJha-1 (22.2%, and fertilizer recording the highest indirect energy consumption of 7721.03 MJha-1 (63.2%. Human labour, pesticides, seeds and indirect energy for machinery use had marginal importance, contributing only 0.2%, 0.6%, 6.8% and 6.9%, respectively to the total energy consumption (12225.97 MJha-1. Average grain yield was 6470.8 kg ha-1, representing energy output of 108321.75 MJha-1, that is, 96095.78 MJ net energy gain or 8.86 MJ output per MJ input. Energy input per kilogram grain yield was 1.89 MJkg-1. The results of the study indicate energy gain in the lowland rice production system of Malaysia.

  3. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.).

    Science.gov (United States)

    Jung, Ha-Il; Lee, Jinwook; Chae, Mi-Jin; Kong, Myung-Suk; Lee, Chang-Hoon; Kang, Seong-Soo; Kim, Yoo-Hak

    2017-11-16

    Arsenic (As) accumulation in rice owing to uptake from the soil is a critical human health issue. Here, we studied the chemical properties of As-treated soils, growth inhibition patterns of As-stressed rice plants, changes in the As content of soil and soil solutions, and the relationship between As accumulation and As transfer factor from the soil to the rice organs. Rice plants were cultivated in a greenhouse under four concentrations of As: 0 (control), 25, 50, and 75 mg kg -1 . A significant positive correlation was found between available P 2 O 5 and exchangeable K and between As concentration and available P 2 O 5 or exchangeable K. The As concentration for 50% shoot growth inhibition was 50 mg kg -1 . As levels in roots and shoots were positively correlated with the growth stages of rice. The transfer factor (TF) root/soil increased with As concentration at the tillering stage but decreased at the heading stage. TF root/soil and TF shoot/soil were higher at the heading stage than at the tillering stage. As accumulation in the 25 mg kg -1 treatment was higher during the heading stage, whereas no difference was found at the tillering stage. As accumulation was related to plant biomass and soil As concentration. We found that As accumulation was greater at As concentrations that allowed for plant growth and development. Thus, species-specific threshold concentrations must be determined based on As phytotoxicity for the phytoremediation of As-contaminated soils. Hence, developing practical approaches for managing safe crop production in farmlands with an As contamination of 25 mg kg -1 or less is necessary.

  4. Agricultural production - Phase 2. Indonesia. Sources and sinks of nitrogen-E phosphorus-based nutrients in cropping systems

    International Nuclear Information System (INIS)

    Wetselaar, R.I.

    1992-01-01

    This document is the report of an expert mission to assist in the initiation of research on sustainable agriculture in rice-based cropping systems as related to the flow of plant nutrients, and on the use of legumes in upland cropping systems. Experimental suggestions include an investigation of the acid tolerance of different soybean strains under upland conditions, an analysis of ways to replace fertilizer nitrogen for rice crops by a green manure such as azolla, and a study of the increase in nutrient availability due to th presence of fish in a paddy field

  5. Weed control in organic rice using plastic mulch and water seeding methods in addition to cover crops

    Science.gov (United States)

    Weeds are a major yield limiting factor in organic rice farming and are more problematic than in conventional production systems. Water seeding is a common method of reducing weed pressure in rice fields as many weeds connot tolerate flooded field conditions. The use of cover crops is another method...

  6. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China.

    Science.gov (United States)

    Chen, Zhongdu; Chen, Fu; Zhang, Hailin; Liu, Shengli

    2016-12-01

    The net global warming potential (NGWP) and net greenhouse gas intensity (NGHGI) of double-rice cropping systems are not well documented. We measured the NGWP and NGHGI including soil organic carbon (SOC) change and indirect emissions (IE) from double-crop rice fields with fertilizing systems in Southern China. These experiments with three different nitrogen (N) application rates since 2012 are as follows: 165 kgN ha -1 for early rice and 225 kgN ha -1 for late rice (N1), which was the local N application rates as the control; 135 kgN ha -1 for early rice and 180 kgN ha -1 for late rice (N2, 20 % reduction); and 105 kgN ha -1 for early rice and 135 kgN ha -1 for late rice (N3, 40 % reduction). Results showed that yields increased with the increase of N application rate, but without significant difference between N1 and N2 plots. Annual SOC sequestration rate under N1 was estimated to be 1.15 MgC ha -1  year -1 , which was higher than those under other fertilizing systems. Higher N application tended to increase CH 4 emissions during the flooded rice season and significantly increased N 2 O emissions from drained soils during the nonrice season, ranking as N1 > N2 > N3 with significant difference (P < 0.05). Two-year average IE has a huge contribution to GHG emissions mainly coming from the higher N inputs in the double-rice cropping system. Reducing N fertilizer usage can effectively decrease the NGWP and NGHGI in the double-rice cropping system, with the lowest NGHGI obtained in the N2 plot (0.99 kg CO 2 -eq kg -1 yield year -1 ). The results suggested that agricultural economic viability and GHG mitigation can be simultaneously achieved by properly reducing N fertilizer application in double-rice cropping systems.

  7. Rice yield estimation with multi-temporal Radarsat-2 data

    Science.gov (United States)

    Chen, Chi-Farn; Son, Nguyen-Thanh; Chen, Cheng-Ru

    2015-04-01

    Rice is the most important food crop in Taiwan. Monitoring rice crop yield is thus crucial for agronomic planners to formulate successful strategies to address national food security and rice grain export issues. However, there is a real challenge for this monitoring purpose because the size of rice fields in Taiwan was generally small and fragmented, and the cropping calendar was also different from region to region. Thus, satellite-based estimation of rice crop yield requires the data that have sufficient spatial and temporal resolutions. This study aimed to develop models to estimate rice crop yield from multi-temporal Radarsat-2 data (5 m resolution). Data processing were carried out for the first rice cropping season from February to July in 2014 in the western part of Taiwan, consisting of four main steps: (1) constructing time-series backscattering coefficient data, (2) spatiotemporal noise filtering of the time-series data, (3) establishment of crop yield models using the time-series backscattering coefficients and in-situ measured yield data, and (4) model validation using field data and government's yield statistics. The results indicated that backscattering behavior varied from region to region due to changes in cultural practices and cropping calendars. The highest correlation coefficient (R2 > 0.8) was obtained at the ripening period. The robustness of the established models was evaluated by comparisons between the estimated yields and in-situ measured yield data showed satisfactory results, with the root mean squared error (RMSE) smaller than 10%. Such results were reaffirmed by the correlation analysis between the estimated yields and government's rice yield statistics (R2 > 0.8). This study demonstrates advantages of using multi-temporal Radarsat-2 backscattering data for estimating rice crop yields in Taiwan prior to the harvesting period, and thus the methods were proposed for rice yield monitoring in other regions.

  8. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    Science.gov (United States)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  9. analysis of the productivity of upland rice and cover crops in relay ...

    African Journals Online (AJOL)

    AISA

    system will be identified. MATERIALS AND METHODS. FIELD EXPERIMENT. Field experiments, comprising monocultures of two rice cultivars, two cover crop ..... Value of SLAnew of the cultivars fluctuated around 23 m2 kg-1, with the values for V4 slightly higher than for WAB56-50 during the first part of development (Table ...

  10. Assessing diel variation of CH4 flux from rice paddies through temperature patterns

    Science.gov (United States)

    Centeno, Caesar Arloo R.; Alberto, Ma Carmelita R.; Wassmann, Reiner; Sander, Bjoern Ole

    2017-10-01

    The diel variation in methane (CH4) flux from irrigated rice was characterized during the dry and wet cropping seasons in 2013 and 2014 using the eddy covariance (EC) technique. The EC technique has the advantage of obtaining measurements of fluxes at an extremely high temporal resolution (10Hz), meaning it records 36,000 measurements per hour. The EC measurements can very well capture the temporal variations of the diel (both diurnal and nocturnal) fluxes of CH4 and the environmental factors (temperature, surface energy flux, and gross ecosystem photosynthesis) at 30-min intervals. The information generated by this technique is important to enhance our mechanistic understanding of the different factors affecting the landscape scale diel CH4 flux. Distinct diel patterns of CH4 flux were observed when the data were partitioned into different cropping periods (pre-planting, growth, and fallow). The temporal variations of the diel CH4 flux during the dry seasons were more pronounced than during the wet seasons because the latter had so much climatic disturbance from heavy monsoon rains and occasional typhoons. Pearson correlation analysis and Granger causality test were used to confirm if the environmental factors evaluated were not only correlated with but also Granger-causing the diel CH4 flux. Soil temperature at 2.5 cm depth (Ts 2.5 cm) can be used as simple proxy for predicting diel variations of CH4 fluxes in rice paddies using simple linear regression during both the dry and wet seasons. This simple site-specific temperature response function can be used for gap-filling CH4 flux data for improving the estimates of CH4 source strength from irrigated rice production.

  11. Soil CH4 and N2O Emissions from Rice Paddy Fields in Southern Brazil as Affected by Crop Management Levels: a Three-Year Field Study

    Directory of Open Access Journals (Sweden)

    Tiago Zschornack

    2018-05-01

    Full Text Available ABSTRACT Rice yield increases in response to improvements in crop management, but the impact on greenhouse gas (GHG emissions in the subtropical region of Southern Brazil remains unknown. A three-year field study was developed aiming to evaluate the impact that an increase in crop management levels (high and very high has on soil methane (CH4 and nitrous oxide (N2O emissions, as compared to the level (medium currently adopted by farmers in Southern Brazil. Differences in crop management included seed and fertilizer rates, irrigation, and pesticide use. The effect of crop management levels on the annual partial global warming potential (pGWP = CH4 × 25 + N2O × 298 ranged from 7,547 to 17,711 kg CO2eq ha−1 and this effect was larger than on the rice grain yield (9,280 to 12,260 kg ha−1, resulting in approximately 60 % higher yield-scaled GHG with the high crop management level compared to the current level. Soil CH4 emissions accounted for 98 % of pGWP in the flooded rice season, whereas N2O prevailed during the drained non-rice season (≈65 %. Although it was impossible to relate emissions to any individual input or practice, soil CH4 emissions in the rice season were linearly related to the biomass produced by the rice crop (p<0.01 and by ryegrass in the previous non-rice season (p<0.1, both of which were possibly related to the supply of labile C for methanogenesis. A future increase in rice yield as a result of the adoption of improved crop management may require additional agricultural practices (e.g., intermittent irrigation to offset the increased GHG emissions.

  12. Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production

    Directory of Open Access Journals (Sweden)

    Md Monjurul Islam

    2018-05-01

    Full Text Available The purpose of this research is to develop a land suitability model for rice production based on suitability levels and to propose insurance premiums to obtain maximum returns based on the harvest index and subsidy dependence factor for the marginal and moderately suitable lands in the northern part of Bangladesh. A multicriteria analysis was undertaken and a rice land suitability map was developed using geographical information system and analytical hierarchy process. The analysis identified that 22.74% of the area was highly suitable, while 14.86% was marginally suitable, and 28.54% was moderately suitable for rice production. However, 32.67% of the area, which was occupied by water bodies, rivers, forests, and settlements, is permanently not suitable; 1.19% is presently not suitable. To motivate low-quality land owners to produce rice, there is no alternative but to provide protection through crop insurance. We suggest producing rice up to marginally suitable lands to obtain support from insurance. The minimum coverage is marginal coverage (70% to cover the production costs, while the maximum coverage is high coverage (90% to enable a maximum return. This new crop insurance model, based on land suitability can be a rational support for owners of different quality land to increase production.

  13. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    Science.gov (United States)

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant’Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-01-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p bioavailability and antioxidant capacity. PMID:26610564

  14. Plant calendar pattern based on rainfall forecast and the probability of its success in Deli Serdang regency of Indonesia

    Science.gov (United States)

    Darnius, O.; Sitorus, S.

    2018-03-01

    The objective of this study was to determine the pattern of plant calendar of three types of crops; namely, palawija, rice, andbanana, based on rainfall in Deli Serdang Regency. In the first stage, we forecasted rainfall by using time series analysis, and obtained appropriate model of ARIMA (1,0,0) (1,1,1)12. Based on the forecast result, we designed a plant calendar pattern for the three types of plant. Furthermore, the probability of success in the plant types following the plant calendar pattern was calculated by using the Markov process by discretizing the continuous rainfall data into three categories; namely, Below Normal (BN), Normal (N), and Above Normal (AN) to form the probability transition matrix. Finally, the combination of rainfall forecasting models and the Markov process were used to determine the pattern of cropping calendars and the probability of success in the three crops. This research used rainfall data of Deli Serdang Regency taken from the office of BMKG (Meteorologist Climatology and Geophysics Agency), Sampali Medan, Indonesia.

  15. Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model.

    Science.gov (United States)

    Muslim, Mohammad; Romshoo, Shakil Ahmad; Rather, A Q

    2015-06-01

    The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h(-1)). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha(-1)). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha(-1)). The observed and simulated yield showed a good match with R (2) = 0.95, RMSE = 132.24 kg/ha, respectively.

  16. Comparison of partial and complete soil K budgets under intensive rice cropping in the Mekong Delta, Vietnam

    NARCIS (Netherlands)

    Hoa, N.M.; Janssen, B.H.; Oenema, O.; Dobermann, A.

    2006-01-01

    Crop response to added fertilizer K was often found to be small in trials conducted on favorable soils of tropical rice ecosystems. Hence, applications of only fertilizer N and P were recommended. This has resulted in soil K mining in intensive cropping systems in China, India and other Asian

  17. Modeling impacts of water and fertilizer management on the ecosystem service of rice rotated cropping system in China

    Science.gov (United States)

    Chen, H.; Yu, C.; Li, C.

    2015-12-01

    Sustainable agricultural intensification demand optimum resource managements of agro-ecosystems. Detailed information on the impacts of water use and nutrient application on agro-ecosystem services including crop yields, greenhouse gas (GHG) emissions and nitrogen (N) loss is the key to guide field managements. In this study, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for rice rotated cropping systems in China. We set varied scenarios of water use in more than 1600 counties, and derived optimal rates of N application for each county in accordance to water use scenarios. Our results suggest that 0.88 ± 0.33 Tg per year (mean ± standard deviation) of synthetic N could be reduced without reducing rice yields, which accounts for 15.7 ± 5.9% of current N application in China. Field managements with shallow flooding and optimal N applications could enhance ecosystem services on a national scale, leading to 34.3% reduction of GHG emissions (CH4, N2O, and CO2), 2.8% reduction of overall N loss (NH3 volatilization, denitrification and N leaching) and 1.7% increase of rice yields, as compared to current management conditions. Among provinces with major rice production, Jiangsu, Yunnan, Guizhou, and Hubei could achieve more than 40% reduction of GHG emissions under appropriate water managements, while Zhejiang, Guangdong, and Fujian could reduce more than 30% N loss with optimal N applications. Our modeling efforts suggest that China is likely to benefit from reforming water and fertilization managements for rice rotated cropping system in terms of sustainable crop yields, GHG emission mitigation and N loss reduction, and the reformation should be prioritized in the above-mentioned provinces. Keywords: water regime, nitrogen fertilization, sustainable management, ecological modeling, DNDC

  18. Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations.

    Science.gov (United States)

    Barbee, Gary C; Stout, Michael J

    2009-11-01

    Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non-target crayfish associated with rice-crayfish crop rotations. One solution to the near-exclusive reliance on pyrethroids in a rice-crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice-crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda-cyhalothrin and etofenprox. Neonicotinoid insecticides are at least 2-3 orders of magnitude less acutely toxic (96 h LC(50)) than pyrethroids to juvenile Procambarid crayfish: lambda-cyhalothrin (0.16 microg AI L(-1)) = etofenprox (0.29 microg AI L(-1)) > clothianidin (59 microg AI L(-1)) > thiamethoxam (967 microg AI L(-1)) > dinotefuran (2032 microg AI L(-1)). Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice-crayfish crop rotations. Further field-level neonicotinoid acute and chronic toxicity testing with crayfish is needed. (c) 2009 Society of Chemical Industry.

  19. Comparative management of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) by convenient pesticides and non-chemical practices in a double rice cropping system

    OpenAIRE

    M. N. Poor Amiri; Faramarz Alinia; Sohrab Imani, et al.

    2017-01-01

    The inclination of rice growers towards double cropping system in north of Iran has raised new concerns about the excessive release of broad-spectrum pesticides, particularly organophosphates, in the environment. In this study, the efficiency of three insecticides and an integrated pest management (IPM) program for management of the striped rice stem borer, Chilo suppressalis (Walker) (Lep: Crambidae), in double cropping system was investigated under field condition. According to the results,...

  20. Modeling impacts of water and fertilizer management on ecosystem services from rice rotated crop systems in China

    Science.gov (United States)

    Chen, Han; Yu, Chaoqing; Li, Changsheng; Huang, Xiao; Zhang, Jie; Yue, Yali; Huang, Guorui

    2015-04-01

    Sustainable intensification in agriculture has stressed the need for management practices that could increase crop yields while simultaneously reducing environmental impacts. It is well recognized that water and nutrient management hold great promise to address these goals. This study uses the DNDC biogeochemical model to stimulate the impacts of water regime and nitrogen fertilizer management interactions on ecosystem services of rice rotated crop systems in China. County-level optimal nitrogen fertilizer application rates under various water management practices were captured and then multiple scenarios of water and nitrogen fertilizer management were set to more than 1600 counties with rice rotations in China. Results indicate that an national average of 15.7±5.9% (the mean value and standard deviation derive from variability of three water management practices) reduction of nitrogen fertilizer inputs can be achieved without significantly sacrificing rice yields. On a national scale, shallow flooding with optimal N application rates appear most potential to enhance ecosystem services, which led to 10.6% reduction of nitrogen fertilizer inputs, 34.3% decrease of total GHG emissions, 2.8% less of overall N loss (NH3 volatilization, denitrification and N leaching) and a 1.7% increase of rice yields compared to the baseline scenario. Regional GHG emissions mitigation derived from water regime change vary with soil properties and the multiple crop index. Among the main production regions of rice in China, the highest reduction happened in Jiangxu, Yunnan, Guizhou and Hubei (more than 40% reduction) with high SOC, high multiple crop index and low clay fraction. The highest reduction of GHG emissions derived from reducing current N application rate to optimal rate appeared in Zhejiang, Guangdong, Jiangsu where the serious over-application of mineral N exit. It was concluded that process models like DNDC would act an essential tool to identify sustainable agricultural

  1. Azolla planting reduces methane emission and nitrogen fertilizer application in double rice cropping system in southern China

    DEFF Research Database (Denmark)

    Xu, Heshui; Zhu, Bo; Liu, Jingna

    2017-01-01

    Rice paddies are a major source of methane. How to reduce the methane emission in the paddy field without decreasing the yield has become a major concern of scientists, environmental groups, and agricultural policymakers worldwide. Azolla, used as a dual crop in rice cultivation, has multiple agr...

  2. All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza.

    Science.gov (United States)

    Huang, Zhongyun; Young, Nelson D; Reagon, Michael; Hyma, Katie E; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2017-06-01

    Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the 'agricultural weed syndrome', making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed-crop pairs, but are not shared among all weed-crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms. © 2017 John Wiley & Sons Ltd.

  3. Super Rice Cropping Will Enhance Rice Yield and Reduce CH4 Emission: A Case Study in Nanjing, China

    Directory of Open Access Journals (Sweden)

    Yu JIANG

    2013-11-01

    Full Text Available A pot experiment was performed to learn the differences in plant productivity and CH4 emission between two rice cultivars, super rice variety Ningjing 1 and traditional variety Zhendao 11, which were currently commercially applied in Nanjing, China. Similar seasonal changes of CH4 emission fluxes and soil solution CH4 contents were found between the tested cultivars. Although there was no significant difference in plant biomass production between the cultivars, the grain yield of Ningjing 1 was significantly higher by 35.0% (P < 0.05 than that of Zhendao 11, whereas the total CH4 emission from Ningjing 1 was 35.2% lower (P < 0.05. The main difference in the amounts of CH4 emission between the cultivars occurred in the period from the tillering stage to the heading stage. The biomass-scaled and yield-scaled CH4 emissions were respectively 3.8 and 5.2 mg/g for Ningjing 1, significantly lower than those for Zhendao 11 (7.4 and 12.8 mg/g, respectively. According to the relationships between the plant growth characteristics and the CH4 emission, a stronger root system contributed mainly to the lower CH4 emission of Ningjing 1, as compared with Zhendao 11. Our results demonstrated that super rice has advantages not only in grain productivity but also in CH4 emission mitigation. Further expansion of super rice cropping will enhance rice yield and reduce greenhouse gas emission in China.

  4. Soil potassium dynamics under intensive rice cropping. A case study in the Mekong Delta, Vietnam

    NARCIS (Netherlands)

    Nguyen, M.H.

    2003-01-01

    Keywords:potassium, nutrient budgets, nutrient depletion, fertilizer, kinetics, adsorption,desorption, fixation, release, modeling, rice cropping system,

  5. Rice management interventions to mitigate greenhouse gas emissions: a review.

    Science.gov (United States)

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  6. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    Science.gov (United States)

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  7. Rethinking crop diversification under changing climate, hydrology and food habit in Bangladesh

    Directory of Open Access Journals (Sweden)

    Aminul Islam Akanda

    2011-11-01

    Full Text Available Extreme temperature, frequent and intensive flood, cyclone and other natural disasters due to climate change became acute in Bangladesh and would be severe in future. Besides, water crisis due to shortage of upstream flow and very little rainfall in dry season would affect in a same way. Gradual higher dependency on groundwater irrigation during last few decades created pressure on groundwater even after a huge discharge during rainy season. Using secondary data, this research analyzed the changes in cropping pattern along with a forecast of area to be distributed among various crops in 2029-30 and proposed a re-distribution considering probable crop failure, water crisis and change in food habit. Inherit rice-dominated food habit and government incentive policy encouraged farmers to be concentrated highly on water-intensive rice farming. However, a recent tendency of less rice consumption would encourage crop diversification in future. An incentive policy for farming of diversified crops and their intensification in all crop seasons would be effective to reduce pressure on groundwater and to persuade a balanced food basket in Bangladesh.

  8. Radiation utilization efficiency, nitrogen uptake and modeling crop growth and yield of rainfed rice under different nitrogen rates

    International Nuclear Information System (INIS)

    Gouranga, Kar; Ashwani Kumar; Mohapatra, Sucharita

    2014-01-01

    Optimum utilization of photosynthetically active radiation (PAR) along with proper nitrogen (N) management for sustainable rice production is still a promising management recommendation for sustainable rainfed rice cultivation in eastern India. The objective of this investigation was to study radiation utilization efficiency (RUE), N uptake and modeling growth and productivity of wet/rainy season rice (cv. Lalat and Gayatri) under 0, 50, 90, 120 and 150 kg ha -1 N application. Results showed that N rates significantly affected plant biomass, leaf area index (LAI), biological yield (straw and grain yield) and N uptake for both the varieties. The intercepted photosynthetically active radiation (IPAR) and spectral reflectance based vegetation indices (IR/R, NDVI) were also different between two varieties and among N rates. Higher rate of N increased the RUE significantly; averaged over years and varieties, mean values of RUE were 1.35, 1.70, 2.01, 2.15 and 2.17 g MJ -1 under 0, 50, 90, 120 and 150 kg N ha -1 , respectively. Though crop growth, yield, N uptake and RUE were higher at 150 kg N ha -1 but the results were at par with 120 kg N ha -1 . Agronomic N use efficiency (ANUE) was also low at 150 kg N ha -1 . The DSSAT v 4.5 model was applied to simulate crop growth, yield and phenology of the crop under different N rates. Model performance was found to be poor at low N rates (0, 50 kg N ha -1 ), but the model performed fairly well at higher N rates (90 kg ha -1 and above). (author)

  9. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  10. Evaluation of cropping pattern in rainfed areas based on studies of pranata mangsa and weather dynamics

    Science.gov (United States)

    Zaki, M. K.; Furi, N. T.; Syamsiyah, Jauhari; Sumani

    2018-03-01

    Weather dynamics such as the fifth time of the rainy season and drought are becoming more frequent. These conditions pose a significant impact on the strategies of cultivation such as cropping pattern and crop yields, especially in rainfed areas. One of the steps that can be taken is to return to local wisdom, such as pranata mangsa. This study aimed at analyzing the relationship of the variability of precipitation in rainfed areas with pranata mangsa and then to evaluate cropping patterns based on the result of the analysis. The study was conducted in rainfed areas of the District of Jumantono, Karanganyar Regency; and District of Teras and District of Ampel, Boyolali Regency in June until December 2014. The research method is a descriptive exploratory survey with purposive sampling based on moderate altitude (200-700 masl). The types of data that are used are primary and secondary. Data analysis was used correlation test. The results showed that precipitation in rainfed areas has a close relationship with paranata mangsa. These results explain that pranata mangsa still relevant to be used even though it has happened weather dynamics.

  11. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  12. Global Rice Watch: Spatial-temporal dynamics, driving factors, and impacts of paddy rice agriculture in the world

    Science.gov (United States)

    Xiao, X.; Dong, J.; Zhang, G.; Xin, F.; Li, X.

    2017-12-01

    Paddy rice croplands account for more than 12% of the global cropland areas, and provide food to feed more than 50% of the world population. Spatial patterns and temporal dynamics of paddy rice croplands have changed remarkably in the past decades, driven by growing human population and their changing diet structure, land use (e.g., urbanization, industrialization), climate, markets, and technologies. In this presentation, we will provide a comprehensive review of our current knowledge on (1) the spatial patterns and temporal dynamics of paddy rice croplands from agricultural statistics data and remote sensing approaches; (2) major driving factors for the observed changes in paddy rice areas, including social, economic, climate, land use, markets, crop breeding technology, and farming technology; and (3) major impacts on atmospheric methane concentration, land surface temperature, water resources and use, and so on. We will highlight the results from a few case studies in China and monsoon Asia. We will also call for a global synthesis analysis of paddy rice agriculture, and invite researchers to join the effort to write and edit a book that provides comprehensive and updated knowledge on paddy rice agriculture.

  13. Suitability analysis for rice growing sites using a multicriteria evaluation and GIS approach in great Mwea region, Kenya.

    Science.gov (United States)

    Kihoro, Joseph; Bosco, Njoroge J; Murage, Hunja

    2013-12-01

    Land suitability analysis is a prerequisite to achieving optimum utilization of the available land resources. Lack of knowledge on best combination of factors that suit production of rice has contributed to the low production. The aim of this study was to develop a suitability map for rice crop based on physical and climatic factors of production using a Multi-Criteria Evaluation (MCE) & GIS approach. The study was carried out in Kirinyaga, Embu and Mberee counties in Kenya. Biophysical variables of soil, climate and topography were considered for suitability analysis. All data were stored in ArcGIS 9.3 environment and the factor maps were generated. For MCE, Pairwise Comparison Matrix was applied and the suitable areas for rice crop were generated and graduated. The current land cover map of the area was developed from a scanned survey map of the rice growing areas. According to the present land cover map, the rice cultivated area was 13,369 ha. Finally, we overlaid the land cover map with the suitability map to identify variances between the present and potential land use. The crop-land evaluation results of the present study showed that, 75% of total area currently being used was under highly suitable areas and 25% was under moderately suitable areas. The results showed that the potential area for rice growing is 86,364 ha and out of this only 12% is under rice cultivation. This research provided information at local level that could be used by farmers to select cropping patterns and suitability.

  14. Use of nuclear and biotechnological methods to improve drought tolerance in rice an tomato crops

    International Nuclear Information System (INIS)

    Gonzalez, Maria C.; Suarez, Lorenzo; Mukandama, Jean P.; Mansoor, Mohamed Ali; Cristo, Elizabeth; Perez, Noraida; Fuentes, Jorge L.; Rodriguez, Yanet

    2001-01-01

    Drought is a limiting factor in the production of different crops and programs for to drought tolerance through mutation inductions are taking place in many countries. At The National Institute of Agricultural Science had been development an Program Breeding in order to obtained new rice an tomato varieties adapted to different drought conditions. For this purposes were irradiated with protons and gamma rays of 60Co different local varieties. Promising line were selected in drought condition during six generation. Was possible to obtain one rice and three tomato drought tolerant genotypes

  15. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Singh

    2018-04-01

    Full Text Available Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host–pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.

  16. Gasified rice hull biochar affects nutrition and growth of five horticulture crops in container culture

    Science.gov (United States)

    Phosphate fertilizers used in the production of greenhouse crops can be problematic if released into the environment. Furthermore, the price of phosphate is increasing as demand increases and world supplies decrease. The objective of this research was to determine if gasified rice hull biochar (GR...

  17. Adapting rice production to climate change for sustainable blue water consumption: an economic and virtual water analysis

    Science.gov (United States)

    Darzi-Naftchali, Abdullah; Karandish, Fatemeh

    2017-12-01

    Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a

  18. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  19. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  20. Genomic diversity among Basmati rice ( Oryza sativa L) mutants ...

    African Journals Online (AJOL)

    Mutation breeding can be considered successful in obtaining new cultivars and broadening the genetic base of rice crop. In order to obtain new varieties of rice with improved agronomic and grain characteristics, gamma radiation (60Co) has been used to generate novel mutants of the Basmati rice. In this study rice cultivars ...

  1. The puzzle of Italian rice origin and evolution: determining genetic divergence and affinity of rice germplasm from Italy and Asia.

    Directory of Open Access Journals (Sweden)

    Xingxing Cai

    Full Text Available The characterization of genetic divergence and relationships of a set of germplasm is essential for its efficient applications in crop breeding and understanding of the origin/evolution of crop varieties from a given geographical region. As the largest rice producing country in Europe, Italy holds rice germplasm with abundant genetic diversity. Although Italian rice varieties and the traditional ones in particular have played important roles in rice production and breeding, knowledge concerning the origin and evolution of Italian traditional varieties is still limited. To solve the puzzle of Italian rice origin, we characterized genetic divergence and relationships of 348 rice varieties from Italy and Asia based on the polymorphisms of microsatellite fingerprints. We also included common wild rice O. rufipogon as a reference in the characterization. Results indicated relatively rich genetic diversity (H(e = 0.63-0.65 in Italian rice varieties. Further analyses revealed a close genetic relationship of the Italian traditional varieties with those from northern China, which provides strong genetic evidence for tracing the possible origin of early established rice varieties in Italy. These findings have significant implications for the rice breeding programs, in which appropriate germplasm can be selected from a given region and utilized for transferring unique genetic traits based on its genetic diversity and evolutionary relationships.

  2. Upper limit for context-based crop classification in robotic weeding applications

    DEFF Research Database (Denmark)

    Midtiby, Henrik Skov; Åstrand, Björn; Jørgensen, Ole

    2016-01-01

    Knowledge of the precise position of crop plants is a prerequisite for effective mechanical weed control in robotic weeding application such as in crops like sugar beets which are sensitive to mechanical stress. Visual detection and recognition of crop plants based on their shapes has been...... described many times in the literature. In this paper the potential of using knowledge about the crop seed pattern is investigated based on simulated output from a perception system. The reliability of position–based crop plant detection is shown to depend on the weed density (ρ, measured in weed plants per...... square metre) and the crop plant pattern position uncertainty (σx and σy, measured in metres along and perpendicular to the crop row, respectively). The recognition reliability can be described with the positive predictive value (PPV), which is limited by the seeding pattern uncertainty and the weed...

  3. ANALYSIS ON THE DYNAMICS OF SPATIAL DISTRIBUTION PATTERN OF MIXED SPIDER POPULATION IN RICE FIELD

    Institute of Scientific and Technical Information of China (English)

    ZhiWang; Zhe-mingYuan; Da-xiangSong; Ming-shengZhu

    2004-01-01

    The results make it clear that there are total 11 families, 29 genera and 43 species of spiders in the rice field of Dong Fang Hong Farm. Among them, there are 8 families, 19 genera and 28 species in the early rice field, and 10 families, 27 genera and 36 species in the late rice field. The spatial distribution pattern of mixed spider populations in rice fields was different during different development stages of rice plant. During the prophase, metaphase and anaphase of early rice plant development, the spatial distribution pattern of mixed spider populations was aggregative, random and aggregative respectively. During the prophase, metaphase and anaphase of late rice plant development, the spatial distribution pattern was uniform, aggregative and uniform respectively.

  4. Classification of glutinous rice (Oryza sativa L.) starches based on X-ray diffraction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Abe, T.; Ando, H.; Sasahara, T.

    1993-07-01

    This study was carried out to analyse the cultivar variability of the X-ray diffraction pattern of glutinous rice starches. Four peaks in the X-ray diffractograms were identified, i.e. 3b, 4a, 4b and 6a. The four peaks were measured from the base line for 71 cultivars and three M{sub 3} lines which were irradiated by γ-rays at the rates of 10, 20 and 30 kr, respectively. Glutinous rice starches were classified into two types by discriminant analysis based on the values of 3b/4b, 4a/4b and 6a/4b. The X-ray diffraction type of the three cultivars did not change with the cultivation areas of different latitude, while that of eleven cultivars varied. Degree of crystallinity was estimated using the formula, (I{sub max} — I{sub i})/I{sub max} where I{sub max} is the maximum height from background intensity line among cultivars, and I{sub i} represents the four peaks. These ratios indicated that the changes in the order of crystallinity were similar to those with the water content and/or hydration and temperature for gelatinization among and/or within cultivars. (author)

  5. RiceAtlas, a spatial database of global rice calendars and production.

    Science.gov (United States)

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  6. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    Science.gov (United States)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  8. Net global warming potential and greenhouse gas intensity as affected by different water management strategies in Chinese double rice-cropping systems.

    Science.gov (United States)

    Wu, Xiaohong; Wang, Wei; Xie, Xiaoli; Yin, Chunmei; Hou, Haijun; Yan, Wende; Wang, Guangjun

    2018-01-15

    This study provides a complete account of global warming potential (GWP) and greenhouse gas intensity (GHGI) in relation to a long-term water management experiment in Chinese double-rice cropping systems. The three strategies of water management comprised continuous (year-round) flooding (CF), flooding during the rice season but with drainage during the midseason and harvest time (F-D-F), and irrigation only for flooding during transplanting and the tillering stage (F-RF). The CH 4 and N 2 O fluxes were measured with the static chamber method. Soil organic carbon (SOC) sequestration rates were estimated based on the changes in the carbon stocks during 1998-2014. Longer periods of soil flooding led to increased CH 4 emissions, reduced N 2 O emissions, and enhanced SOC sequestration. The net GWPs were 22,497, 8,895, and 1,646 kg CO 2 -equivalent ha -1 yr -1 for the CF, F-D-F, and F-RF, respectively. The annual rice grain yields were comparable between the F-D-F and CF, but were reduced significantly (by 13%) in the F-RF. The GHGIs were 2.07, 0.87, and 0.18 kg CO 2 -equivalent kg -1 grain yr -1 for the CF, F-D-F, and F-RF, respectively. These results suggest that F-D-F could be used to maintain the grain yields and simultaneously mitigate the climatic impact of double rice-cropping systems.

  9. Stimulate The Growth of Rice Using Endophytic Bacteria from Lowland Rice Plant Tissue

    Directory of Open Access Journals (Sweden)

    Nuni Gofar

    2015-07-01

    Full Text Available Exploration and selection of endophytic bacteria from healthy food crops grown in lowland ecosystem is important to be conducted in order to get growth-stimulating endophytic bacteria at soil with low fertility level so that capable to optimize initial growth of food crops and subsequently can increase productivity level of lowland soil.The research objective was to isolate and to test the IAA-producing endophytic bacteria isolate in stimulating the rice crop growth at lowland area. Endophytic bacteria are isolated from tissues of rice, corn and peanut crops which grown at shallow swamp land in Ogan Ilir and Ogan Komering Ilir Districts, South Sumatra, Indonesia. There was nine isolates of nitrogen-fixer endophytic bacteria that capable to contribute IAA phytohormone into their growth media. The P31 isolate from rice crop tisssue of 2 months old produce the best rice sprouts than other isolates. This isolate can contribute of about 10 mg kg-1 IAA to its growth medium and increase the crowns dry weight and the roots dry weight respectively with magnitudes of 133% and 225% compared to control treatment. Concentration and absorbtion of N for rice crops innoculated with P31 isolates had increased by 169% and 400%, recpectively. The P31 isolates had been identified as Burkholderia pseudomallei (also known as Pseudomonas pseudomallei.

  10. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Sharif Ahmed

    Full Text Available Weeds are a major constraint to the success of dry-seeded rice (DSR. The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1 on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1 in the 2012 and 2013 seasons, respectively were obtained at the seeding rate of 40 kg ha(-1 and thereafter, yield decreased slightly beyond 40 kg seed ha(-1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1 in the 2012 and 2013 seasons, respectively with increase in seeding rate from 20 to 100 kg ha(-1. In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  11. Effect of Weed Management and Seed Rate on Crop Growth under Direct Dry Seeded Rice Systems in Bangladesh

    Science.gov (United States)

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S.

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha−1) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha−1 in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha−1 and thereafter, yield decreased slightly beyond 40 kg seed ha−1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0–2.2 and 2.9–3.2 t ha−1 in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha−1. In the partially-weedy plots, weed biomass decreased by 41–60% and 54–56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha−1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition. PMID:25000520

  12. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    Science.gov (United States)

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1)) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1) in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha(-1) and thereafter, yield decreased slightly beyond 40 kg seed ha(-1). Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1) in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha(-1). In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1). Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  13. Estimation of rice situation index in Japan using remotely sensed and meteorological data

    International Nuclear Information System (INIS)

    Kaneko, D.

    2006-01-01

    This research aims to develop a remote sensing method for monitoring rice production in Japan. A photosynthesis-based crop production index CPI for rice is proposed that takes into consideration the solar radiation, the effective air temperature, and normalized vegetation index NDVI as a factor representing vegetation biomass. The CPI index incorporates temperature influences such as the effect of temperature on photosynthesis by grain plant leaves, low-temperature effects of sterility, cool summer damage due to delayed growth, and high-temperature injury. These latter factors are significant at around the heading period of rice. The CPI index for rice was modeled at ten monitoring sites in the Kanto, Tohoku, and Hokkaido districts, which occasionally tend to suffer poor harvests as a result of low temperatures. The photosynthesis-based crop production index CPI proposed here can predict the crop situation index of rice by using NDVI, solar radiation at meteorological observatories and air temperature at AMeDAS sites. The method is based on routine observation data, allowing automated monitoring of rice situation index at arbitrary sites in Japan. However, it is possible to further refine the estimation formula for the rice situation index for early monitoring

  14. Development of a remote sensing-based rice yield forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H.

    2016-11-01

    This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh. (Author)

  15. Influence of Crop Nutrition on Grain Yield, Seed Quality and Water Productivity under Two Rice Cultivation Systems

    Directory of Open Access Journals (Sweden)

    Y.V. SINGH

    2013-03-01

    Full Text Available The system of rice intensification (SRI is reported to have advantages like lower seed requirement, less pest attack, shorter crop duration, higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation. With this background, SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute, New Delhi, India during two wet seasons (2009–2011. In the experiment laid out in a factorial randomized block design, two methods of rice cultivation [conventional transplanting (CT and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44 were used under seven crop nutrition treatments, viz. T1, 120 kg/hm2 N, 26.2 kg/hm2 P and 33 kg/hm2 K; T2, 20 t/hm2 farmyard manure (FYM; T3, 10 t/hm2 FYM + 60 kg/hm2 N; T4, 5 t/hm2 FYM + 90 kg/hm2 N; T5, 5 t/hm2 FYM + 60 kg/hm2 N + 1.5 kg/hm2 blue green algae (BGA; T6, 5 t/hm2 FYM + 60 kg/hm2 N + 1.0 t/hm2 Azolla, and T7, N0P0K0 (control, no NPK application to study the effect on seed quality, yield and water use. In SRI, soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2–3 cm was maintained during the reproductive phase of rice, however, in CT, standing water was maintained in crop growing season. Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI. Seed quality was superior in SRI as compared to CT. Integrated nutrient management (INM resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties. Grain yield attributes such as number of effective tillers per hill, panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone. Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer. The grain yield

  16. Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases.

    Science.gov (United States)

    Mattoo, Autar K; Shukla, Vijaya; Fatima, Tahira; Handa, Avtar K; Yachha, Surender K

    2010-01-01

    Nutrition studies have provided unambiguous evidence that a number of human health maladies including chronic coronary artery, hypertension, diabetes, osteoporosis, cancer and age- and lifestyle-related diseases are associated with the diet. Several favorable and a few deleterious natural dietary ingredients have been identified that predispose human populations to various genetic and epigenetic based disorders. Media dissemination of this information has greatly raised public awareness of the beneficial effects due to increased consumption of fruit, vegetables and whole grain cereals-foods rich in phytonutrients, protein and fiber. However, the presence of intrinsically low levels of the beneficial phytonutrients in the available genotypes of crop plants is not always at par with the recommended daily allowance (RDA) for different phytonutrients (nutraceuticals). Molecular engineering of crop plants has offered a number of tools to markedly enhance intracellular concentrations of some of the beneficial nutrients, levels that, in some cases, are closer to the RDA threshold. This review brings together literature on various strategies utilized for bioengineering both major and minor crops to increase the levels of desirable phytonutrients while also decreasing the concentrations of deleterious metabolites. Some of these include increases in: protein level in potato; lysine in corn and rice; methionine in alfalfa; carotenoids (beta-carotene, phytoene, lycopene, zeaxanthin and lutein) in rice, potato, canola, tomato; choline in tomato; folates in rice, corn, tomato and lettuce; vitamin C in corn and lettuce; polyphenolics such as flavonol, isoflavone, resveratrol, chlorogenic acid and other flavonoids in tomato; anthocyanin levels in tomato and potato; alpha-tocopherol in soybean, oil seed, lettuce and potato; iron and zinc in transgenic rice. Also, molecular engineering has succeeded in considerably reducing the levels of the offending protein glutelin in rice

  17. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Science.gov (United States)

    Krishnan S, Gopala; Waters, Daniel L E; Henry, Robert J

    2014-01-01

    Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts). Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  18. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Directory of Open Access Journals (Sweden)

    Gopala Krishnan S

    Full Text Available BACKGROUND: Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. RESULTS: We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts. Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. CONCLUSIONS: Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  19. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems.

    Science.gov (United States)

    Weller, Sebastian; Janz, Baldur; Jörg, Lena; Kraus, David; Racela, Heathcliff S U; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-01-01

    Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4 )/nitrous oxide (N2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2 O emissions increased two- to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4  + N2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops. © 2015 John Wiley & Sons Ltd.

  20. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan.

    Science.gov (United States)

    Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad

    2017-11-01

    Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha -1 ), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.

  1. Rice microstructure

    Science.gov (United States)

    An understanding of plant structure is desirable to obtain a clear idea of the overall impact of a crop. A mature rice plant consists of leafy components (left in the field post-harvest) and paddy rice (collected). The rice plant is supported by a hollow stem (culm) with leaf sheaths attached to nod...

  2. Uncertainties in Integrated Climate Change Impact Assessments by Sub-setting GCMs Based on Annual as well as Crop Growing Period under Rice Based Farming System of Indo-Gangetic Plains of India

    Science.gov (United States)

    Pillai, S. N.; Singh, H.; Panwar, A. S.; Meena, M. S.; Singh, S. V.; Singh, B.; Paudel, G. P.; Baigorria, G. A.; Ruane, A. C.; McDermid, S.; Boote, K. J.; Porter, C.; Valdivia, R. O.

    2016-12-01

    Integrated assessment of climate change impact on agricultural productivity is a challenge to the scientific community due to uncertainties of input data, particularly the climate, soil, crop calibration and socio-economic dataset. However, the uncertainty due to selection of GCMs is the major source due to complex underlying processes involved in initial as well as the boundary conditions dealt in solving the air-sea interactions. Under Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Indo-Gangetic Plains Regional Research Team investigated the uncertainties caused due to selection of GCMs through sub-setting based on annual as well as crop-growth period of rice-wheat systems in AgMIP Integrated Assessment methodology. The AgMIP Phase II protocols were used to study the linking of climate-crop-economic models for two study sites Meerut and Karnal to analyse the sensitivity of current production systems to climate change. Climate Change Projections were made using 29 CMIP5 GCMs under RCP4.5 and RCP 8.5 during mid-century period (2040-2069). Two crop models (APSIM & DSSAT) were used. TOA-MD economic model was used for integrated assessment. Based on RAPs (Representative Agricultural Pathways), some of the parameters, which are not possible to get through modeling, derived from literature and interactions with stakeholders incorporated into the TOA-MD model for integrated assessment.

  3. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIEXiao-mei; LIAOMin; LIUWei-ping; SusanneKLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolyrJc bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport svstem activit), was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growrh stages

  4. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-mei; LIAO Min; LIU Wei-ping; Susanne KLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolytic bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport system activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growth stages.

  5. Object-Based Paddy Rice Mapping Using HJ-1A/B Data and Temporal Features Extracted from Time Series MODIS NDVI Data.

    Science.gov (United States)

    Singha, Mrinal; Wu, Bingfang; Zhang, Miao

    2016-12-22

    Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.

  6. Risk mapping of NO/sub 3/-N contamination on groundwater under intensive rice-based cropping systems in the Philippines

    International Nuclear Information System (INIS)

    Pascual, C.M.; Baga, M.C.S.; Valencia, D.P.

    2005-01-01

    The groundwater resources in a 265 ha watershed of highly diversified and intensive rice-based environment was endangered to NO/sub 3/-N contamination with spatial degree of influence and temporal vulnerability risks as affected by intensive cropping systems with application of high N-fertilizer and judicious use of groundwater for irrigation. Such nitrate contamination levels are above the World Health Organization's maximum contamination level of 10 ppm for drinking water. Tree-joining, complete cluster analysis of monthly groundwater depths on observation wells revealed three distinct groups of wells differentiated by groundwater depths. Planting of nitrate catch crops such as legumes to reduce groundwater contamination and vigorous information dissemination on ill-effects of high NO/sub 3/-N, as well as groundwater recharging were considered to reduce contamination. However, the groundwater extraction for irrigation is still sustainable due to natural recharging of rainfall and hydraulic connections from surface water along rivers and creeks. The combined-use of GIS and GPS proved useful for spatial and temporal risk mapping assessment on groundwater NO/sub 3/-N vulnerability among other geo-referenced attributes of groundwater and other environmental considerations at the study site. Such systems analysis tools can be used by planners, researchers, extension workers, students and farmers for other sustainable development and environmental risk mapping, assessment, extrapolation analysis and strategic planning of sustainable development of the environment. (author)

  7. Supporting Crop Loss Insurance Policy of Indonesia through Rice Yield Modelling and Forecasting

    Science.gov (United States)

    van Verseveld, Willem; Weerts, Albrecht; Trambauer, Patricia; de Vries, Sander; Conijn, Sjaak; van Valkengoed, Eric; Hoekman, Dirk; Grondard, Nicolas; Hengsdijk, Huib; Schrevel, Aart; Vlasbloem, Pieter; Klauser, Dominik

    2017-04-01

    The Government of Indonesia has decided on a crop insurance policy to assist Indonesia's farmers and to boost food security. To support the Indonesian government, the G4INDO project (www.g4indo.org) is developing/constructing an integrated platform implemented in the Delft-FEWS forecasting system (Werner et al., 2013). The integrated platform brings together remote sensed data (both visible and radar) and hydrologic, crop and reservoir modelling and forecasting to improve the modelling and forecasting of rice yield. The hydrological model (wflow_sbm), crop model (wflow_lintul) and reservoir models (RTC-Tools) are coupled on time stepping basis in the OpenStreams framework (see https://github.com/openstreams/wflow) and deployed in the integrated platform to support seasonal forecasting of water availability and crop yield. First we will show the general idea about the G4INDO project, the integrated platform (including Sentinel 1 & 2 data) followed by first (reforecast) results of the coupled models for predicting water availability and crop yield in the Brantas catchment in Java, Indonesia. Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O. and Heynert K, 2013. The Delft-FEWS flow forecasting system, Environmental Modelling & Software; 40:65-77. DOI: 10.1016/j.envsoft.2012.07.010.

  8. Application of Multio-bjective Fuzzy Goal Programming to Optimize Cropping Pattern with Emphasis on Using Conservation Tillage Methods

    Directory of Open Access Journals (Sweden)

    samad erfanifar

    2014-10-01

    Full Text Available In this study, the optimal cropping patterns based on individual aims are presented and followed by a multi-objective cropping pattern with emphasize on the use of conservation tillage methods in Darab region presented. Individual goals consisted of maximizing gross margin and food secIn this study, the optimal cropping patterns based on individual aims were presented and followed by using a multi-objective fuzzy goal programming with emphasize on the use of conservation tillage methods in the Darab region. Individual goals consisted of maximizing gross margin and food security and minimizing water consumption and urea fertilizer use. The results showed that in the multi-objective cropping pattern, gross margin and food security increased by 23.5% and 6.1% , while water and energy consumption decreased by 4% and 5.1%, respectively as compared to the current cropping pattern. The fuzzy composite distance improved by %36, as compared to the current condition. Moreover, having replaced the conventional tillage methods with conservation tillage methods in the cropping pattern, the diesel fuel consumption reduced by 27%. Therefore, replacing multi-objective cropping pattern ,on which the conservation tillage methods are emphasized, with the conventional cropping patterns improves economic and environmental conditions. urity index and minimizing water and urea fertilizer.The results showed that in the multi-objective cropping pattern, gross margin and food security index respectively increase by 23.5% and 6.1% and water and energy consumption decrease by 4% and 5.1% respectively as compared to current cropping pattern. The fuzzy composite distance improves by %36 compares to current condition and represents better cropping pattern than the others. Morever in this cropping pattern, conventional tillage method will be replaced by conservation tillage practices, therefore the amount of diesel fuel consumption reduces by 27% that is equivalent to an

  9. Assessing the impacts of climate change on rice yields in the main rice areas of China

    International Nuclear Information System (INIS)

    Yao, Fengmei; Xu, Yinglong; Lin, Erda; Yokozawa, Masayuki; Zhang, Jiahua

    2007-01-01

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within ± 10% of observed flowering duration and ± 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations

  10. Assessing the impacts of climate change on rice yields in the main rice areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fengmei [College of Earth Sciences, The Graduate University of the Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100049 (China); Xu, Yinglong; Lin, Erda [Agricultural Environment and Sustainable Development Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 (China); Yokozawa, Masayuki [National Institute for Agro-environmental Sciences, Tsukuba 305-8604 (Japan); Zhang, Jiahua [Chinese Academy of Meteorological Sciences, Beijing, 100081 (China)

    2007-02-15

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within {+-} 10% of observed flowering duration and {+-} 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations.

  11. REMOTE-SENSING-BASED BIOPHYSICAL MODELS FOR ESTIMATING LAI OF IRRIGATED CROPS IN MURRY DARLING BASIN

    Directory of Open Access Journals (Sweden)

    I. Wittamperuma

    2012-07-01

    Full Text Available Remote sensing is a rapid and reliable method for estimating crop growth data from individual plant to crops in irrigated agriculture ecosystem. The LAI is one of the important biophysical parameter for determining vegetation health, biomass, photosynthesis and evapotranspiration (ET for the modelling of crop yield and water productivity. Ground measurement of this parameter is tedious and time-consuming due to heterogeneity across the landscape over time and space. This study deals with the development of remote-sensing based empirical relationships for the estimation of ground-based LAI (LAIG using NDVI, modelled with and without atmospheric correction models for three irrigated crops (corn, wheat and rice grown in irrigated farms within Coleambally Irrigation Area (CIA which is located in southern Murray Darling basin, NSW in Australia. Extensive ground truthing campaigns were carried out to measure crop growth and to collect field samples of LAI using LAI- 2000 Plant Canopy Analyser and reflectance using CROPSCAN Multi Spectral Radiometer at several farms within the CIA. A Set of 12 cloud free Landsat 5 TM satellite images for the period of 2010-11 were downloaded and regression analysis was carried out to analyse the co-relationships between satellite and ground measured reflectance and to check the reliability of data sets for the crops. Among all the developed regression relationships between LAI and NDVI, the atmospheric correction process has significantly improved the relationship between LAI and NDVI for Landsat 5 TM images. The regression analysis also shows strong correlations for corn and wheat but weak correlations for rice which is currently being investigated.

  12. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems

    International Nuclear Information System (INIS)

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-01-01

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation—methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. - Highlights: • Correlated uncertainties were integrated into environment-productivity trade-offs. • Life cycle GHG emissions and crop yields were analyzed using field and survey data. • Three rice production systems using chemical or organic fertilizers were compared. • There were portfolio (insurance) effects in matured technologies. • Analysis of trade-offs and correlated uncertainties will be useful for decisions.

  13. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kiyotada, E-mail: hayashi@affrc.go.jp [Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Nagumo, Yoshifumi [Crop Research Center, Niigata Agricultural Research Institute, 857 Nagakura-machi, Nagaoka, Niigata 940-0826 (Japan); Domoto, Akiko [Mie Prefecture Agricultural Research Institute, 530 Kawakita-cho, Ureshino, Matsusaka, Mie 515-2316 (Japan)

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation—methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. - Highlights: • Correlated uncertainties were integrated into environment-productivity trade-offs. • Life cycle GHG emissions and crop yields were analyzed using field and survey data. • Three rice production systems using chemical or organic fertilizers were compared. • There were portfolio (insurance) effects in matured technologies. • Analysis of trade-offs and correlated uncertainties will be useful for decisions.

  14. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  15. Engineered Dwarf Male-Sterile Rice: A Promising Genetic Tool for Facilitating Recurrent Selection in Rice.

    Science.gov (United States)

    Ansari, Afsana; Wang, Chunlian; Wang, Jian; Wang, Fujun; Liu, Piqing; Gao, Ying; Tang, Yongchao; Zhao, Kaijun

    2017-01-01

    Rice is a crop feeding half of the world's population. With the continuous raise of yield potential via genetic improvement, rice breeding has entered an era where multiple genes conferring complex traits must be efficiently manipulated to increase rice yield further. Recurrent selection is a sound strategy for manipulating multiple genes and it has been successfully performed in allogamous crops. However, the difficulties in emasculation and hand pollination had obstructed efficient use of recurrent selection in autogamous rice. Here, we report development of the dwarf male-sterile rice that can facilitate recurrent selection in rice breeding. We adopted RNAi technology to synergistically regulate rice plant height and male fertility to create the dwarf male-sterile rice. The RNAi construct pTCK-EGGE, targeting the OsGA20ox2 and OsEAT1 genes, was constructed and used to transform rice via Agrobacterium -mediated transformation. The transgenic T0 plants showing largely reduced plant height and complete male-sterile phenotypes were designated as the dwarf male-sterile plants. Progenies of the dwarf male-sterile plants were obtained by pollinating them with pollens from the wild-type. In the T1 and T2 populations, half of the plants were still dwarf male-sterile; the other half displayed normal plant height and male fertility which were designated as tall and male-fertile plants. The tall and male-fertile plants are transgene-free and can be self-pollinated to generate new varieties. Since emasculation and hand pollination for dwarf male-sterile rice plants is no longer needed, the dwarf male-sterile rice can be used to perform recurrent selection in rice. A dwarf male-sterile rice-based recurrent selection model has been proposed.

  16. How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with biogeochemical models?

    Science.gov (United States)

    Kraus, David; Weller, Sebastian; Janz, Baldur; Klatt, Steffen; Santabárbara, Ignacio; Haas, Edwin; Werner, Christian; Wassmann, Reiner; Kiese, Ralf; Butterbach-Bahl, Klaus

    2016-04-01

    Paddy rice cultivation is increasingly challenged by physical and economic irrigation water scarcity. This already results in the trend of converting paddy rice to upland crop cultivation (e.g., maize, aerobic rice) in large parts of South East Asia. Such land management change from flooded lowland systems to well-aerated upland systems drastically affects soil C and N cycling and related emissions of greenhouse gases. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will most likely increase. In addition to such fast evolving 'pollution swapping' it is expected that on longer time scales significant amounts of soil organic carbon (SOC) stocks will be lost in form of carbon dioxide (CO2). Within the DFG-funded research unit ICON (Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water cycles), we investigated environmental impacts of land management change from historical paddy rice cultivation to the upland crops maize and aerobic rice at experimental sites at the International Rice Research Institute (IRRI), the Philippines. To present, more than three years of continuous measurement data of CH4 and N2O emissions under different fertilization regimes have been collected. In addition, measurements of SOC contents and bulk densities in different soil horizons allow for an overall very good characterization of the environmental impacts of mentioned land management change. In this contribution we will show how well mentioned land management change effects in tropical agricultural systems can be represented and thus better understood by the help of process-based biogeochemical models. Seasonal emissions of CH4 and N2O are simulated with r2 values of 0.85 and 0.78 and average underestimations of 15 and 14 %, respectively. These underestimations predominantly originate from treatments in which no fertilizer is applied (CH4) as well as uncertainties of soil hydrology (N2O). Long

  17. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    Science.gov (United States)

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil.

  18. Pattern of diseases among rice farmers exposed to pesticides in the MUDA area

    International Nuclear Information System (INIS)

    Syarif Husin Lubis; Jamal Hisham Hashim; Noor Hassim Ismail; Salmaan Hussain Inayat Hussain

    2002-01-01

    The aim of this study was to find out the pattern of diseases among rice farmers exposed to pesticides in the Muda area, Kedah; and to identify those who suffered from these diseases so that they can be referred to the nearest clinic for treatment. A cross sectional study was conducted in August 1994 to identify the pattern of diseases among rice farmers exposed to pesticides. Cluster Random Sampling was employed and the sample size was 136 farmers. A guided questionnaire was used for assessing the usage of protective clothing, symptoms of the farmers diseases and the distribution of these symptoms. Blood obtained by finger prick was taken for cholesterol level, triglycerides, and blood glucose analysis by using the Reflotron. A medical examination was also conducted. The pattern of diseases detected among the rice farmers shows that 57.4% suffered from pterygium., 81.6% suffered contact dermatitis and 97.1% had central nervous system (CNS) symptoms. Regarding the cholesterol level, 47.1% of rice farmers were found with total cholesterol > 5.2 mmol/L and 40.0% with triglycerides > 2.3 mmol/L. The blood glucose level measured was > 6.1 mmol/L in 55.03% of rice farmers. Usage of protective equipment among rice farmers was: gloves (68.4%), boots (52.2%), goggles (40.4%), apron (38.3%) and face mask (77.2%). (Author)

  19. Quantifying N response and N use efficiency in Rice-Wheat (RW) cropping systems under different water management

    NARCIS (Netherlands)

    Jing, Q.; Keulen, van H.; Hengsdijk, H.; Weixing, C.; Bindraban, P.S.; Dai, T.; Jiang, D.

    2009-01-01

    About 0·10 of the food supply in China is produced in rice¿wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as

  20. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh.

    Science.gov (United States)

    Ahmed, M Razu; Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K

    2017-10-14

    The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r ² values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country.

  1. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.

    Science.gov (United States)

    Wang, Yi; Liu, Xinliang; Wang, Hua; Li, Yong; Li, Yuyuan; Liu, Feng; Xiao, Runlin; Shen, Jianlin; Wu, Jinshui

    2017-06-01

    Increased nitrogen (N) concentrations in water bodies have highlighted issues regarding nutrient pollution in agricultural catchments. In this study, the ammonium-N (NH 4 + -N), nitrate-N (NO 3 - -N), and total N (TN) concentrations were observed in the stream water and groundwater of two contrasting catchments (named Tuojia and Jianshan) in subtropical central China from 2010 to 2014, to determine the rice agriculture impacts on the hydrographic patterns, and N export characteristics of the catchments. The results suggested that greater amounts of stream flow (523.0 vs. 434.7 mm year -1 ) and base flow (237.6 vs. 142.8 mm year -1 ) were produced in Tuojia than in Jianshan, and a greater base flow contribution to stream flow and higher frequencies of high-base flow days were observed during the fallow season than during the rice-growing season, indicating that intensive rice agriculture strongly influences the catchment hydrographic pattern. Rice agriculture resulted in moderate N pollution in the stream water and groundwater, particularly in Tuojia. Primarily, rice agriculture increased the NH 4 + -N concentration in the stream water; however, it increased the NO 3 - -N concentrations in the groundwater, suggesting that the different N species in the paddy fields migrated out of the catchments through distinct hydrological pathways. The average TN loading via stream flow and base flow was greater in Tuojia than in Jianshan (1.72 and 0.58 vs. 0.72 and 0.15 kg N ha -1  month -1 , respectively). Greater TN loading via stream flow was observed during the fallow season in Tuojia and during the rice-growing season in Jianshan, and these different results were most likely a result of the higher base flow contribution to TN loading (33.5 vs. 21.3%) and greater base flow enrichment ratio (1.062 vs. 0.876) in Tuojia than in Jianshan. Therefore, the impact of rice agriculture on catchment eco-hydrological processes should be considered when performing water quality

  2. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    Science.gov (United States)

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  3. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues

    Directory of Open Access Journals (Sweden)

    Carlos Meneses

    2016-06-01

    Full Text Available Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol.

  4. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues.

    Science.gov (United States)

    Meneses, Carlos; Silva, Bruna; Medeiros, Betsy; Serrato, Rodrigo; Johnston-Monje, David

    2016-06-25

    Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).

  5. Soil salinization processes in rice irrigation schemes in the Senegal River Delta

    International Nuclear Information System (INIS)

    Ceuppens, J.; Wopereis, M.C.S.; Miezan, K.M.

    1997-01-01

    Soil salinization constitutes a major threat to irrigated agriculture (mainly rice, Oryza sativa L.) in the Senegal River Delta. It is generally hypothesized that salinization is caused by (i) capillary rise from a saline water table and (ii) concentration of salts in the field due to lack of adequate drainage facilities. The impact of field water management and rice cropping intensity on salinization in the Delta was determined using an electromagnetic conductivity meter (Geonics EM38). More than 4000 measurements were made in 40 rice fields on a typical heavy clay soil (Vertic Xerofluvent). Thirty EM38 measurements per field (0.25 ha) estimated average field soil salinity with a relative error of 20%. A multiple linear regression model based on EM38 readings explained 60 to 75% of the variability in conductivity of 1:5 saturation extracts at 0- to 5-, 10- to 15-, and 30- to 35-cm depths. Higher cropping intensity limited upward salt transport from the water table. Average horizontal and vertical EM38 measurements increased in the following order two rice crops per year with drainage: 0.73 and 0.98 dS m -1 ; one rice crop per year with drainage: 1.26 and 1.76 dS m -1 ; one rice crop per year without drainage: 2.23 and 2.98 dS m -1 ; and abandoned fields: 4.77 and 4.29 dS m -1 . Results indicate a beneficial effect of flooded rice on salinity for this type of heavy clay soil. Irrigation development in the area needs to be accompanied by monitoring of water table depth. (author)

  6. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding

    Directory of Open Access Journals (Sweden)

    Norman Uphoff

    2015-06-01

    Full Text Available Intensification in rice crop production is generally understood as requiring increased use of material inputs: water, inorganic fertilizers, and agrochemicals. However, this is not the only kind of intensification available. More productive crop phenotypes, with traits such as more resistance to biotic and abiotic stresses and shorter crop cycles, are possible through modifications in the management of rice plants, soil, water, and nutrients, reducing rather than increasing material inputs. Greater factor productivity can be achieved through the application of new knowledge and more skill, and (initially more labor, as seen from the System of Rice Intensification (SRI, whose practices are used in various combinations by as many as 10 million farmers on about 4 million hectares in over 50 countries. The highest yields achieved with these management methods have come from hybrids and improved rice varieties, confirming the importance of making genetic improvements. However, unimproved varieties are also responsive to these changes, which induce better growth and functioning of rice root systems and more abundance, diversity, and activity of beneficial soil organisms. Some of these organisms as symbiotic endophytes can affect and enhance the expression of rice plants' genetic potential as well as their phenotypic resilience to multiple stresses, including those of climate change. SRI experience and data suggest that decades of plant breeding have been selecting for the best crop genetic endowments under suboptimal growing conditions, with crowding of plants that impedes their photosynthesis and growth, flooding of rice paddies that causes roots to degenerate and forgoes benefits derived from aerobic soil organisms, and overuse of agrochemicals that adversely affect these organisms as well as soil and human health. This review paper reports evidence from research in India and Indonesia that changes in crop and water management can improve the

  7. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    Science.gov (United States)

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  8. Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses.

    Science.gov (United States)

    Nguyen, Van Ngoc Tuyet; Moon, Sunok; Jung, Ki-Hong

    2014-09-01

    Although the super family of ATP-binding cassette (ABC) proteins plays key roles in the physiology and development of plants, the functions of members of this interesting family mostly remain to be clarified, especially in crop plants. Thus, systematic analysis of this family in rice (Oryza sativa), a major model crop plant, will be helpful in the design of effective strategies for functional analysis. Phylogenomic analysis that integrates anatomy and stress meta-profiling data based on a large collection of rice Affymetrix array data into the phylogenic context provides useful clues into the functions for each of the ABC transporter family members in rice. Using anatomy data, we identified 17 root-preferred and 16-shoot preferred genes at the vegetative stage, and 3 pollen, 2 embryo, 2 ovary, 2 endosperm, and 1 anther-preferred gene at the reproductive stage. The stress data revealed significant up-regulation or down-regulation of 47 genes under heavy metal treatment, 16 genes under nutrient deficient conditions, and 51 genes under abiotic stress conditions. Of these, we confirmed the differential expression patterns of 14 genes in root samples exposed to drought stress using quantitative real-time PCR. Network analysis using RiceNet suggests a functional gene network involving nine rice ABC transporters that are differentially regulated by drought stress in root, further enhancing the prediction of biological function. Our analysis provides a molecular basis for the study of diverse biological phenomena mediated by the ABC family in rice and will contribute to the enhancement of crop yield and stress tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. On-farm tillage trials for rice-wheat cropping system in Indo-Gangetic plains of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Prasad, L.K.; Prasad, S.S.; Bhupendra Singh; Singh, S.R.; Gaunt, J.L.

    2002-05-01

    Demonstration plots of deep summer ploughing (DSP) with rice followed by wheat and other winter crops and fields of zero tilled wheat have been established and monitored at head, middle and tail sections of RP distributory Channel - 5 of Patna Canal during kharif (wet) and rabi (winter) seasons of 2001 and 2002, respectively at four different villages. The DSP plots were large (6 acres, 2.42 ha) in each village enabling farmers and researchers to see and assess a new practice at a farming scale. Zero tillage of wheat has involved a total of 181 farmers and total area of 50.4 ha. The plots were not only monitored but also information from farmers on how they view the ploughing/tillage practices was gathered. This information indicates that farmers are assessing the practices from a range of view points relative to their usual practices including land preparation and sowing costs, quality of crop establishment, weed growth and species composition, pest and disease incidence. Main findings are that DSP does not significantly only alter the yield of rice, wheat, lentil and gram and but also reduces the weed burden. Participatory budgeting indicated cost savings for land preparation and crop management costs. Over 60 percent of farmers in a total sample of 86 farmers had a positive reaction to practice during wet season. Similarly farmers recognized cost savings and potential yield gains (due to early and good crop establishment) in zero tilled wheat. After the harvest of winter crops like wheat, lentil and gram in May 2002, farmers dropped their reservation about DSP and there was a change in their attitude from reluctance to partial agreement and now they are ready for tillage operations on self-payment. For both practices, there are some limitations in respect of availability of implements and suitable tractor couplings. Findings indicate that if tractor owners perceive a demand, they would take steps to offer these new practices as land preparation services. (author)

  10. CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDS

    Directory of Open Access Journals (Sweden)

    Rizatus Shofiyati1

    2012-10-01

    Full Text Available This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investi-gating the characteristic of Normalized Differen-ce Vegetation Indices (NDVI and Wetness of Tasseled Cap Transformation (TCT derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identi-fication and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness can also produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guiding more appropriate planning and better agricultural management.

  11. Development of Farming Diversification with Implementation Plant Patterns as a Strategy of Economic Strengthening

    Science.gov (United States)

    Anwar, S.; Setyohadi, D. P. S.; Utami, M. M. D.; Damanhuri; Hariono, B.

    2018-01-01

    Bojonegoro, Tulungagung, and Ponorogo districts are an agrarian area and become one of the leading food crops producers in East Java Province. Diversification of farming in this region is done by applying season-based cropping pattern, which is cultivating various commodities in rotation. Farmers need diversification programs wetland cannot provide an optimal contribution to the income of farmers caused because farmers are not able to cultivate high value-added commodities due to limited capital. This research is to identify the characteristics of farming and to analyse the farming system to know the pattern of planting suggestion and prospect. The research used descriptive method, profit farming analysis, and SWOT. The results showed that each region has a specific planting pattern with rice as the main commodity grown in the rainy season followed by crops and horticultural crops and a suggested planting pattern that needs to be implemented by farmers to increase their income. The prospect of diversification of farming development through the implementation of the proposed planting pattern is very suitable with the character of the region and the market demand.

  12. Leaf development of cultivated rice and weedy red rice under elevated temperature scenarios

    OpenAIRE

    Streck,Nereu A.; Uhlmann,Lilian O.; Gabriel,Luana F.

    2013-01-01

    The objective of this study was to simulate leaf development of cultivated rice genotypes and weedy red rice biotypes in climate change scenarios at Santa Maria, RS, Brazil. A leaf appearance (LAR) model adapted for rice was used to simulate the accumulated leaf number, represented by the Haun Stage, from crop emergence to flag leaf appearance (EM-FL). Three cultivated rice genotypes and two weedy red rice biotypes in six emergence dates were used. The LAR model was run for each emergence dat...

  13. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  14. Rice and foxtail millet cultivation reconstructed from weed seed assemblages in the Chengtoushan site, central China

    International Nuclear Information System (INIS)

    Nasu, H.; Yasuda, Y.; Momohara, A.; Jiejun, H.

    2005-01-01

    Full text: Crop weeds have been successfully used for evaluation of farming practices in archaeological sites and reconstruction of the environmental condition. In rice agricultural sites in East Asia, however, a few studies of crop remains have been attempted. We evaluated the crop husbandry based on plant macrofossils including crop grains and weed seeds in the Chengtoushan site, Hunan Province, central China, which is one of the oldest rice agricultural site around the Yangtze River Basin. In the moat surrounding the site that is located on a loess plateau that juts out into the alluvial plain, we recognized three cultural layers during the Daxi Culture. Plant macrofossils in silty clay deposits in the moat consist of abundant rice and foxtail millet grains with many weed seeds. Radiocarbon age of these fossils shows that rice and foxtail millet cultivation dated back to 6400 cal. years B.P. The weed seed composition characterizes farmland and ruderal environments in the site surrounded by the moat. We assumed foxtail millet and rice cultivation practiced within the site on loess plateau, along with a paddy style rice cultivation in the alluvial lowland outside of the site. (author)

  15. Ownership characteristics and crop selection in California cropland

    Directory of Open Access Journals (Sweden)

    Luke Macaulay

    2017-11-01

    Full Text Available Land ownership is one of the primary determinants of how agricultural land is used, and property size has been shown to drive many land use decisions. Land ownership information is also key to understanding food production systems and land fragmentation, and in targeting outreach materials to improve agricultural production and conservation practices. Using a parcel dataset containing all 58 California counties, we describe the characteristics of cropland ownership across California. The largest 5% of properties — with “property” defined as all parcels owned by a given landowner — account for 50.6% of California cropland, while the smallest 84% of properties account for 25% of cropland. Cropland ownership inequality (few large properties, many small properties was greatest in Kings, Kern and Contra Costa counties and lowest in Mendocino, Napa and Santa Clara counties. Of crop types, rice properties had the largest median size, while properties with orchard trees had the smallest median sizes. Cluster analysis of crop mixes revealed that properties with grapes, rice, almonds and alfalfa/hay tended to be planted to individual crops, while crops such as grains, tomatoes and vegetables were more likely to be mixed within a single property. Analyses of cropland ownership patterns can help researchers prioritize outreach efforts and tailor research to stakeholders' needs.

  16. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production.

    Science.gov (United States)

    Chakraborty, Debashis; Ladha, Jagdish Kumar; Rana, Dharamvir Singh; Jat, Mangi Lal; Gathala, Mahesh Kumar; Yadav, Sudhir; Rao, Adusumilli Narayana; Ramesha, Mugadoli S; Raman, Anitha

    2017-08-24

    Alternative tillage and rice establishment options should aim at less water and labor to produce similar or improved yields compared with traditional puddled-transplanted rice cultivation. The relative performance of these practices in terms of yield, water input, and economics varies across rice-growing regions. A global meta and mixed model analysis was performed, using a dataset involving 323 on-station and 9 on-farm studies (a total of 3878 paired data), to evaluate the yield, water input, greenhouse gas emissions, and cost and net return with five major tillage/crop establishment options. Shifting from transplanting to direct-seeding was advantageous but the change from conventional to zero or reduced tillage reduced yields. Direct-seeded rice under wet tillage was the best alternative with yield advantages of 1.3-4.7% (p Direct-seeding under zero tillage was another potential alternative with high savings in water input and cost of cultivation, with no yield penalty. The alternative practices reduced methane emissions but increased nitrous oxide emissions. Soil texture plays a key role in relative yield advantages, and therefore refinement of the practice to suit a specific agro-ecosystem is needed.

  17. Oxidative stress caused by the use of preemergent herbicides in rice crops

    Directory of Open Access Journals (Sweden)

    Ana Claudia Langaro

    Full Text Available ABSTRACT Among the methods of weed control, stands out chemical control. However, even selective, herbicides can trigger the production of reactive species of oxygen and cause oxidative stress. The aim of the study was to evaluate changes in photosynthetic parameters, oxidative damage, antioxidant enzyme activity and altered metabolism of rice plants after applying pre-emergent herbicides. The experiment was conducted in a greenhouse and herbicides used were oxadiazon, pendimethalin and oxyfluorfen, beyond the control without herbicide. There was a reduction of photosynthetic rate and efficiency of carboxylation, compared to the control, when applied herbicides oxyfluorfen and pendimethalin. The major lipid peroxidation and proline accumulation was observed for the herbicide oxyfluorfen. The oxyfluorfen and oxadiazon herbicides also resulted in increased activity of superoxide dismutase, compared to control. When evaluated ascorbate peroxidase activity, there was a higher enzyme activity in plants treated with oxadiazon and pendimethalin. Even selective herbicides registered for weed control in rice crops cause phytotoxicity, reduce height and alter the metabolism of plants, generating reactive oxygen species, which activate enzymatic and non-enzymatic defense systems and result in the degradation of photosynthetic pigments and in reduced protein content.

  18. Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia. Report of a FAO/IAEA consultants' meeting

    International Nuclear Information System (INIS)

    2000-01-01

    A Consultants' Meeting on 'Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia' was held at FAO, Rome, August 22-25, 2000. Five consultants, together with one staff from IAEA headquarters, one staff from IAEA Laboratories, Seibersdorf, five staff from FAO headquarters, two staff from FAO regional offices, one observer from ACIAR, one observer from Cornell University with expertise in crop, nutrient, soil and water management, attended the meeting. The consultants presented reviews of the situation regarding studies of water and nutrient dynamics in rice-wheat systems in South Asia. These were complemented by a paper on the development of 15 N techniques to study the contribution of N from legumes. The consultants also provided recommendations on the formulation and implementation of an FAO/IAEA Co-ordinated Research Project (CRP). Refs, figs, tabs

  19. A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-10-01

    Full Text Available Biochar, a green way to deal with burning and burying biomass, has attracted more attention in recent years. To fill the gap of the effects of different biochar on crop yield in Northern China, the first field experiment was conducted in farmland located in Hebei Province. Biochars derived from two kinds of feedstocks (rice straw and corn stalk were added into an Inceptisols area with different dosages (1 ton/ha, 2 ton/ha or 4 ton/ha in April 2014. The crop yields were collected for corn, peanut, and sweet potato during one crop season from spring to autumn 2014, and the wheat from winter 2014 to summer 2015, respectively. The results showed biochar amendment could enhance yields, and biochar from rice straw showed a more positive effect on the yield of corn, peanut, and winter wheat than corn stalk biochar. The dosage of biochar of 2 ton/ha or 1 ton/ha could enhance the yield by 5%–15% and biochar of 4 ton/ha could increase the yield by about 20%. The properties of N/P/K, CEC, and pH of soils amended with biochar were not changed, while biochar effects could be related to improvement of soil water content.

  20. Mapping rice areas of South Asia using MODIS multitemporal data

    Science.gov (United States)

    Gumma, Murali Krishna; Nelson, Andrew; Thenkabail, Prasad S.; Singh, Amrendra N.

    2011-01-01

    Our goal is to map the rice areas of six South Asian countries using moderate-resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to 2001. South Asia accounts for almost 40% of the world's harvested rice area and is also home to 74% of the population that lives on less than $2.00 a day. The population of the region is growing faster than its ability to produce rice. Thus, accurate and timely assessment of where and how rice is cultivated is important to craft food security and poverty alleviation strategies. We used a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify and classify rice areas over large spatial extents. These methods are used in conjunction with ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a large volume of field-plot data. The resulting rice maps and statistics are compared against a subset of independent field-plot points and the best available subnational statistics on rice areas for the main crop growing season (kharif season). A fuzzy classification accuracy assessment for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most of the mixing was within rice classes. The derived physical rice area was highly correlated with the subnational statistics with R2 values of 97% at the district level and 99% at the state level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for generating

  1. Methane Emissions and Microbial Communities as Influenced by Dual Cropping of Azolla along with Early Rice

    Science.gov (United States)

    Liu, Jingna; Xu, Heshui; Jiang, Ying; Zhang, Kai; Hu, Yuegao; Zeng, Zhaohai

    2017-01-01

    Azolla caroliniana Willd. is widely used as a green manure accompanying rice, but its ecological importance remains unclear, except for its ability to fix nitrogen in association with cyanobacteria. To investigate the impacts of Azolla cultivation on methane emissions and environmental variables in paddy fields, we performed this study on the plain of Dongting Lake, China, in 2014. The results showed that the dual cropping of Azolla significantly suppressed the methane emissions from paddies, likely due to the increase in redox potential in the root region and dissolved oxygen concentration at the soil-water interface. Furthermore, the floodwater pH decreased in association with Azolla cultivation, which is also a factor significantly correlated with the decrease in methane emissions. An increase in methanotrophic bacteria population (pmoA gene copies) and a reduction in methanogenic archaea (16S rRNA gene copies) were observed in association with Azolla growth. During rice cultivation period, dual cropping of Azolla also intensified increasing trend of 1/Simpson of methanogens and significantly decreased species richness (Chao 1) and species diversity (1/Simpson, 1/D) of methanotrophs. These results clearly demonstrate the suppression of CH4 emissions by culturing Azolla and show the environmental and microbial responses in paddy soil under Azolla cultivation.

  2. Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

    OpenAIRE

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyunsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-01-01

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stab...

  3. KOEFISIEN TANAMAN PADI SAWAH PADA SISTEM IRIGASI HEMAT AIR Crop Coefficient for Paddy Rice Field under Water Saving Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Joko Sujono

    2012-05-01

    Full Text Available Traditional irrigation for paddy rice is the leading of consumer of water, about 80 % of the water resource availabilityused for irrigation purpose. This phenomenon is related to the way how to estimate the crop water requirement where crop coefficient for paddy rice (k (Prosida is always greater than one starting from planting up to nearly harvesting. In this research, a number of water saving irrigations (WSI systems for paddy rice cultivation using pots such asalternate wetting and drying (AWD, shallow water depth with wetting and drying (SWD, semi-dry cultivation (SDC, system of rice intensification (SRI, and  AWD with mulch (AWD-Mul were applied. The amount of irrigated water and when it should be irrigated depend on evapotranspiration rate, soil moisture condition and the WSI system used. For this purpose, daily measurement of the pot weight was carried out. Crop coefficient (k  is then caluculated as a cratio between crop and reference evapotranspiration computed using Penman-Montheit  method. Results show that up to 45 days after transplanting, the k of WSI treatments were around half of the k (Prosida values currently used for computing the water requirement, whereas at the productive stage the k of WSI systems were relatively equal (AWD, SDC to or greater (SRI, SWD than the k (Prosida. Based on the the k values, the AWD and the SDC systems could save much water compared to the SRI or the SWD. Water saving could be increased by applying the AWD with mulch. ABSTRAK Irigasi padi sawah dengan sistem tradisional merupakan sistem irigasi  yang boros air, hampir 80 % sumber air yang ada untuk irigasi. Hal ini tidak terlepas dari perhitungan kebutuhan air tanaman dengan nilai koefisien tanaman (k menurut Standar Perencanaan Irigasi (Prosida selalu lebih besar dari satu mulai dari tanam hingga menjelang panen.Dalam penelitian ini beberapa metoda budidaya padi hemat air seperti alternate wetting and drying (AWD, shallow water depth

  4. The use of induced mutation combined with crossing in high quality rice breeding

    International Nuclear Information System (INIS)

    Do Huu At; Bui Huy Thuy; Nguyen Van Bich; Tran Duy Quy; Nguyen Minh Cong

    2001-01-01

    The high quality rice varieties: Tam thom mutant rice Var., DT17 rice Var, DT21 glutinous rice Var were formed by induced mutation combined with crossing. Tam thom mutant rice Var. lost photosensitivity, could be planted 2 crops/year. DT17 rice Var with high yielding capacity, suitable for growth on lowland in summer crop, is replacing step-by-step Moctuyen rice Var. in North Vietnam. DT21 glutinous rice Var. could be planted 2 crops/year and had short growth duration, average yield was 4.0-4.5 tons/ha. These three ones had good quality, soft and scent cooked rice, suitable for customers and export requirements. Tam thom mutant rice Var. DT17 rice Var., DT21 and glutinous rice Var. were adopted for regional production by Ministry of Agriculture and Rural Development and allowed to be in trial production. (author)

  5. The use of induced mutation combined with crossing in high quality rice breeding

    Energy Technology Data Exchange (ETDEWEB)

    Do Huu At; Bui Huy Thuy; Nguyen Van Bich; Tran Duy Quy [Agricultural Genetics Institute, Division of Genetics and Hybrid Rice Technology, Hanoi (Viet Nam); Nguyen Minh Cong [Hanoi No. 1 Teacher Training Univ., Department of Genetics (Viet Nam)

    2001-03-01

    The high quality rice varieties: Tam thom mutant rice Var., DT17 rice Var, DT21 glutinous rice Var were formed by induced mutation combined with crossing. Tam thom mutant rice Var. lost photosensitivity, could be planted 2 crops/year. DT17 rice Var with high yielding capacity, suitable for growth on lowland in summer crop, is replacing step-by-step Moctuyen rice Var. in North Vietnam. DT21 glutinous rice Var. could be planted 2 crops/year and had short growth duration, average yield was 4.0-4.5 tons/ha. These three ones had good quality, soft and scent cooked rice, suitable for customers and export requirements. Tam thom mutant rice Var. DT17 rice Var., DT21 and glutinous rice Var. were adopted for regional production by Ministry of Agriculture and Rural Development and allowed to be in trial production. (author)

  6. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Danh, Ngo Thanh; Huy, Lai Nguyen; Oanh, Nguyen Thi Kim, E-mail: kimoanh@ait.ac.th

    2016-10-01

    The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O{sub 3}) induced rice production loss in the domain for 2010 using simulated hourly surface O{sub 3} concentrations (WRF/CAMx; 4 km resolution). Simulated O{sub 3} was higher in January–February (largely overlaps the first crop) and September–December (third crop), and lower in March–June (second crop). Spatially, O{sub 3} was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105 days) using three metrics: AOT40, M7 and flux-based O{sub 3} dose of POD{sub 10}. Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O{sub 3} exposure in the study domain in 2010 was the highest for the first crop (up to 25,800 metric tons), the second highest for the third crop (up to 21,500 tons) and the least for the second crop (up to 6800 tons). The low RYL obtained for the second crop by POD{sub 10} may be due to the use of a high threshold value (Y = 10 nmol m{sup −2} s{sup −1}). Linear regression between non-null radiation POD{sub 0} and POD{sub 10} had similar slopes for the first and third crop when POD{sub 0} was higher and very low slope for the second crop when POD{sub 0} was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O{sub 3} exposure. - Highlights: • Simulated O{sub 3} was used to assess rice yield loss in a domain of Southern Vietnam. • Exposure metrics of AOT40, M7, POD{sub 0} and POD{sub 10} were considered. • POD{sub 10} gave the highest rice production loss. • Higher production loss was found downwind of Ho Chi Minh City.

  7. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam

    International Nuclear Information System (INIS)

    Danh, Ngo Thanh; Huy, Lai Nguyen; Oanh, Nguyen Thi Kim

    2016-01-01

    The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O 3 ) induced rice production loss in the domain for 2010 using simulated hourly surface O 3 concentrations (WRF/CAMx; 4 km resolution). Simulated O 3 was higher in January–February (largely overlaps the first crop) and September–December (third crop), and lower in March–June (second crop). Spatially, O 3 was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105 days) using three metrics: AOT40, M7 and flux-based O 3 dose of POD 10 . Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O 3 exposure in the study domain in 2010 was the highest for the first crop (up to 25,800 metric tons), the second highest for the third crop (up to 21,500 tons) and the least for the second crop (up to 6800 tons). The low RYL obtained for the second crop by POD 10 may be due to the use of a high threshold value (Y = 10 nmol m −2 s −1 ). Linear regression between non-null radiation POD 0 and POD 10 had similar slopes for the first and third crop when POD 0 was higher and very low slope for the second crop when POD 0 was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O 3 exposure. - Highlights: • Simulated O 3 was used to assess rice yield loss in a domain of Southern Vietnam. • Exposure metrics of AOT40, M7, POD 0 and POD 10 were considered. • POD 10 gave the highest rice production loss. • Higher production loss was found downwind of Ho Chi Minh City.

  8. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  9. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  10. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  11. Indices to screen for grain yield and grain-zinc mass concentrations in aerobic rice at different soil-Zn levels

    NARCIS (Netherlands)

    Jiang, W.; Struik, P.C.; Zhao, M.; Keulen, van H.; Fan, T.Q.; Stomph, T.J.

    2008-01-01

    Zinc is an important micronutrient for both crop growth and human nutrition. In rice production, yields are often reduced and Zn mass concentrations in the grains are often low when Zn is in short supply to the crop. This may result in malnutrition of people dependent on a rice-based diet. Plant

  12. Mapping Flooded Rice Paddies Using Time Series of MODIS Imagery in the Krishna River Basin, India

    Directory of Open Access Journals (Sweden)

    Pardhasaradhi Teluguntla

    2015-07-01

    Full Text Available Rice is one of the major crops cultivated predominantly in flooded paddies, thus a large amount of water is consumed during its growing season. Accurate paddy rice maps are therefore important inputs for improved estimates of actual evapotranspiration in the agricultural landscape. The main objective of this study was to obtain flooded paddy rice maps using multi-temporal images of Moderate Resolution Imaging Spectroradiometer (MODIS in the Krishna River Basin, India. First, ground-based spectral samples collected by a field spectroradiometer, CROPSCAN, were used to demonstrate unique contrasts between the Normalized Difference Vegetation Index (NDVI and the Land Surface Water Index (LSWI observed during the transplanting season of rice. The contrast between Enhanced Vegetation Index (EVI and Land Surface Water Index (LSWI from MODIS time series data was then used to generate classification decision rules to map flooded rice paddies, for the transplanting seasons of Kharif and Rabi rice crops in the Krishna River Basin. Consistent with ground spectral observations, the relationship of the MODIS EVI vs. LSWI of paddy rice fields showed distinct features from other crops during the transplanting seasons. The MODIS-derived maps were validated against extensive reference data collected from multiple land use field surveys. The accuracy of the paddy rice maps, when determined using field plot data, was approximately 78%. The MODIS-derived rice crop areas were also compared with the areas reported by Department of Agriculture (DOA, Government of India (Government Statistics. The estimated root mean square difference (RMSD of rice area estimated using MODIS and those reported by the Department of Agriculture over 10 districts varied between 3.4% and 6.6% during 10 years of our study period. Some of the major factors responsible for this difference include high noise of the MODIS images during the prolonged monsoon seasons (typically June–October and

  13. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  14. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    Science.gov (United States)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  15. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    Science.gov (United States)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation

  16. Model Optimasi Pola Tanam untuk Meningkatkan Keuntungan Hasil Pertanian dengan Program Linier (Studi Kasus Daerah Irigasi Rambut Kabupaten Tegal Provinsi Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Dina Septyana

    2016-08-01

    Full Text Available The 7634 Ha of Rambut irrigation scheme is technical irrigation network located in Tegal District. The cropping pattern applied to the regulation of Tegal regency in 2014/2015 was rice plant/ sugar cane-rice plant/ crops/sugar cane-sugar cane which beginning in November I, but due to water shortage, it wasn’t applied in 2014/2015. Therefore, optimization of existing available water including suppletion derived from Cacaban Rambut suppletion channels is needed to prepare appropriate cropping patterns and to increase benefit of agriculture outcome to the maximum. Optimization was done by using linear programming through mathematical model solved by simplex method. Cropping pattern optimization consists of three scenarios, which are: (1 the sugar cane area 1500 Ha, (2 the sugar cane area 888 Ha and (3 without limitation of sugar cane area. Every scenario is simulated by four cropping patterns alternative by changing planting schedules existing from November I, November II, December I and December II. Based on the results, the highest profits for each scenario is the alternative 1, start planting on November I. The cropping pattern obtained from optimization is rice plant/crops/sugar cane - crops/sugar cane - crops/sugar cane for scenario I and II, while for scenario III is rice plant/crops- crops - crops.

  17. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  18. Comparing the costs and benefits of floating rice-based and intensive rice-based farming systems in the Mekong delta

    OpenAIRE

    Van Kien Nguyen; Oc Van Vo; Duc Ngoc Huynh

    2015-01-01

    This paper compares financial costs and benefits of floating rice-based and intensive rice farming systems using data from focus group discussions and household survey in four locations in the Mekong Delta. We argue that the net financial benefit per 1000m2 of integrated floating rice-based farming systems is greater than the net financial benefit of intensive rice farming system. The total net benefit of floating rice-leeks shows the highest net benefit (VND 24.8 mil./1000 m2), followed by f...

  19. The rice agroecosystem of the MUDA irrigation scheme: an overview

    International Nuclear Information System (INIS)

    Ho Nai Kin

    2002-01-01

    The Green Revolution technologies were introduced to the Muda area of Malaysia in the late 1960s. These technological innovations have resulted in rapid modification of the crop habitat and triggered a chain reaction in the rice agroecosystem. The impact of these technologies on the pest flora and fauna are significant. Indiscriminate use of pesticides causes disruption of natural enemy equilibrium and other undesirable effects to the farmers and the rice environment. The main emphasis of this paper is focused on the interactions between the various biological factors such as pathogenic microorganisms, arthropods, gastropods, fishes, birds, rodents, weeds, and the physical factors in the rice agroecosystem. The impact of double cropping of rice, the provision of irrigation facilities, the changes of crop establishment methods, and the adoption of pesticides on the rice agroecosystem are found to have far reaching effects on the sustainability of rice production in the Muda area. (Author)

  20. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Pedro Júnior, M.J.; Sentelhas, P.C.; Moraes, A.V.C.; Villela, O.V.

    1995-01-01

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm -2 , day -1 . The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author) [pt

  1. Rice-planted area extraction by time series analysis of ENVISAT ASAR WS data using a phenology-based classification approach: A case study for Red River Delta, Vietnam

    Science.gov (United States)

    Nguyen, D.; Wagner, W.; Naeimi, V.; Cao, S.

    2015-04-01

    Recent studies have shown the potential of Synthetic Aperture Radars (SAR) for mapping of rice fields and some other vegetation types. For rice field classification, conventional classification techniques have been mostly used including manual threshold-based and supervised classification approaches. The challenge of the threshold-based approach is to find acceptable thresholds to be used for each individual SAR scene. Furthermore, the influence of local incidence angle on backscatter hinders using a single threshold for the entire scene. Similarly, the supervised classification approach requires different training samples for different output classes. In case of rice crop, supervised classification using temporal data requires different training datasets to perform classification procedure which might lead to inconsistent mapping results. In this study we present an automatic method to identify rice crop areas by extracting phonological parameters after performing an empirical regression-based normalization of the backscatter to a reference incidence angle. The method is evaluated in the Red River Delta (RRD), Vietnam using the time series of ENVISAT Advanced SAR (ASAR) Wide Swath (WS) mode data. The results of rice mapping algorithm compared to the reference data indicate the Completeness (User accuracy), Correctness (Producer accuracy) and Quality (Overall accuracies) of 88.8%, 92.5 % and 83.9 % respectively. The total area of the classified rice fields corresponds to the total rice cultivation areas given by the official statistics in Vietnam (R2  0.96). The results indicates that applying a phenology-based classification approach using backscatter time series in optimal incidence angle normalization can achieve high classification accuracies. In addition, the method is not only useful for large scale early mapping of rice fields in the Red River Delta using the current and future C-band Sentinal-1A&B backscatter data but also might be applied for other rice

  2. Impacts of climate change on paddy rice yield in a temperate climate.

    Science.gov (United States)

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  3. Yield gap analysis in long-term experiments with intensive rice cultivation

    International Nuclear Information System (INIS)

    Laureles, E.V.; Correa, T. Jr.; Buresh, R.J.

    2007-01-01

    The long-term continuous cropping experiment at IRRI is cultivated with three rice crops in a year, making it the world's most intensively cropped long-term rice experiment. The availability of comprehensive rice production records, compiled weather data, and tested crop models provides a means to evaluate long-term trends in measured and potential yields and yield gaps in this rice production system. Yield trends were assessed using the highest yielding cultivar in each cropping season from 1979 to 2005. Potential yield of the highest yielding cultivar in each season was determined using three rice models (ORYZA, TERM, and CERES) run with the actual transplanting and harvest dates for the cultivar. The yield gap was determined from the difference between the simulated potential grain yield and the measured grain yield. Measured and potential yields and the yield gap varied across seasons and years. Measured yields were higher in the dry season than in the early and late wet seasons. The yield gap tended to be higher in the wet season than in the dry season. Climatic parameters, particularly solar radiation, influenced the performance of rice cultivars. The relatively larger yield gaps in the late wet season than in the dry season were associated with increased spikelet sterility. The cumulative measured yield for the three annual rice crop was near 80 percent of the annual yield potential in years with best practices for fertilizer N and crop management. The long term trends suggest that effective timing and rates of N fertilization and effective control of diseases were critical in achieving 80 percent of the annual yield potential

  4. Are all GMOs the same? Consumer acceptance of cisgenic rice in India.

    Science.gov (United States)

    Shew, Aaron M; Nalley, Lawton L; Danforth, Diana M; Dixon, Bruce L; Nayga, Rodolfo M; Delwaide, Anne-Cecile; Valent, Barbara

    2016-01-01

    India has more than 215 million food-insecure people, many of whom are farmers. Genetically modified (GM) crops have the potential to alleviate this problem by increasing food supplies and strengthening farmer livelihoods. For this to occur, two factors are critical: (i) a change in the regulatory status of GM crops, and (ii) consumer acceptance of GM foods. There are generally two classifications of GM crops based on how they are bred: cisgenically bred, containing only DNA sequences from sexually compatible organisms; and transgenically bred, including DNA sequences from sexually incompatible organisms. Consumers may view cisgenic foods as more natural than those produced via transgenesis, thus influencing consumer acceptance. This premise was the catalyst for our study--would Indian consumers accept cisgenically bred rice and if so, how would they value cisgenics compared to conventionally bred rice, GM-labelled rice and 'no fungicide' rice? In this willingness-to-pay study, respondents did not view cisgenic and GM rice differently. However, participants were willing-to-pay a premium for any aforementioned rice with a 'no fungicide' attribute, which cisgenics and GM could provide. Although not significantly different (P = 0.16), 76% and 73% of respondents stated a willingness-to-consume GM and cisgenic foods, respectively. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Mapping rice areas of South Asia using MODIS multitemporal data

    Science.gov (United States)

    Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N.

    2011-01-01

    Our goal is to map the rice areas of six South Asian countries using moderate-resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to 2001. South Asia accounts for almost 40% of the world's harvested rice area and is also home to 74% of the population that lives on less than $2.00 a day. The population of the region is growing faster than its ability to produce rice. Thus, accurate and timely assessment of where and how rice is cultivated is important to craft food security and poverty alleviation strategies. We used a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify and classify rice areas over large spatial extents. These methods are used in conjunction with ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a large volume of field-plot data. The resulting rice maps and statistics are compared against a subset of independent field-plot points and the best available subnational statistics on rice areas for the main crop growing season (kharif season). A fuzzy classification accuracy assessment for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most of the mixing was within rice classes. The derived physical rice area was highly correlated with the subnational statistics with R2 values of 97% at the district level and 99% at the state level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for generating

  6. Non-uniform distribution pattern for differentially expressed genes of transgenic rice Huahui 1 at different developmental stages and environments.

    Directory of Open Access Journals (Sweden)

    Zhi Liu

    Full Text Available DNA microarray analysis is an effective method to detect unintended effects by detecting differentially expressed genes (DEG in safety assessment of genetically modified (GM crops. With the aim to reveal the distribution of DEG of GM crops under different conditions, we performed DNA microarray analysis using transgenic rice Huahui 1 (HH1 and its non-transgenic parent Minghui 63 (MH63 at different developmental stages and environmental conditions. Considerable DEG were selected in each group of HH1 under different conditions. For each group of HH1, the number of DEG was different; however, considerable common DEG were shared between different groups of HH1. These findings suggested that both DEG and common DEG were adequate for investigation of unintended effects. Furthermore, a number of significantly changed pathways were found in all groups of HH1, indicating genetic modification caused everlasting changes to plants. To our knowledge, our study for the first time provided the non-uniformly distributed pattern for DEG of GM crops at different developmental stages and environments. Our result also suggested that DEG selected in GM plants at specific developmental stage and environment could act as useful clues for further evaluation of unintended effects of GM plants.

  7. Assessing The Representative And Discriminative Ability Of Test Environments For Rice Breeding In Malaysia Using GGE Biplot

    Directory of Open Access Journals (Sweden)

    Yusuff Oladosu

    2017-11-01

    Full Text Available Identification of outstanding rice genotype for target environments is complicated by genotype environment interactions. Using genotype main effect plus genotype by environment interaction GGE Biplot software fifteen rice genotypes were evaluated at five locations representing the major rice producing areas in peninsula Malaysia in two cropping seasons to i identify ideal test environment for selecting superior rice genotype and ii identify discriminative and representative ability of test locations. Genotypes locations years and genotypes by environment interaction effect revealed high significant difference P 0.01 for number of tillers per hill grains per panicle grain weight per hill and yield per hectare. Grain yield per hectare had a non-repeatable crossover pattern that formed a complex and single mega-environment. Based on the crossover pattern a set of cultivars were selected for the whole region on the merit of mean performance and their stability analysis. The tested environments were divided into two mega-environments. An ideal test environment that measures the discriminative and representative ability of test location reveal that environment Sekinchan SC is the best environment while Kedah KD and Penang PN can also be considered as favorable environment whereas Serdang SS and Tanjung Karang TK were the poorest locations for selecting genotypes adapted to the whole region. This study serves a reference for genotypes evaluation as well as identification of test locations for rice breeding in Malaysia.

  8. Utilization of crops residues as compost and biochar for improving soil physical properties and upland rice productivity

    Directory of Open Access Journals (Sweden)

    J. Barus

    2016-07-01

    Full Text Available The abundance of crops waste in the agricultural field can be converted to organic fertilizer throughout the process of composting or pyrolysis to return back into the soil. The study aimed to elucidate the effect of compost and biochar application on the physical properties and productivity of upland rice at Village of Sukaraja Nuban, Batanghari Nuban Sub district, East Lampung Regency in 2015. The amendment treatments were A. control; B. 10 t rice husk biochar/ ha; C. 10 t maize cob biochar/ha; D. 10 t straw compost/ha; E. 10 t stover compost/ha, F. 10 t rice husk biochar/ha + 10 t straw compost/ha; F. 10 t maize cob biochar/ha + 10 t maize stover compost/ha. The treatments were arranged in randomized block design with four replicates. The plot size for each treatment was 10 x 20 m. After incubation for about one month, undisturbed soil samples were taken using copper ring at 10–20 cm depth for laboratory analyzes. Analyses of soil physical properties included bulk density, particle density, total porosity, drainage porosity, and soil water condition. Plant observations conducted at harvest were plant height, number of panicle, number of grain/panicle, and grain weight/plot. Results of the study showed that biochar and compost improved soil physical properties such as bulk density, total porosity, fast drainage pores, water content, and permeability of soil. The combination of rice husk biochar and straw compost gave better effect than single applications on rice production components (numbers of panicle and grains of rice, and gave the highest yield of 4.875 t/ha.

  9. Managing flood prone ecosystem for rice production in Bihar plains

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.

    2002-06-01

    A large area of the eastern region especially Bihar (0.5 million hectare) faces flood submergence and/or drought every year which creates an unfavorable environment for crop production. In this ecosystem only flood prone rice is grown whose cultivation is entirely different than normal rice crop. Managing the flood prone ecosystem for rice production needs to evaluate the reasons and a comprehensive appropriate technology through research efforts for better rice production under such harsh ecology. An attempt was made to develop a suitable agronomic package for rice cultivation during and after flooding in flood prone plains of Bihar. (author)

  10. Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS

    Science.gov (United States)

    Ayoade, Modupe Alake

    2017-08-01

    Rice is one of the most preferred food crops in Nigeria. However, local rice production has declined with the oil boom of the 1970s causing demand to outstrip supply. Rice production can be increased through the integration of Geographic Information Systems (GIS) and crop-land suitability analysis and mapping. Based on the key predictor variables that determine rice yield mentioned in relevant literature, data on rainfall, temperature, relative humidity, slope, and soil of Oyo state were obtained. To develop rice suitability maps for the state, two MCE-GIS techniques, namely the Overlay approach and weighted linear combination (WLC), using fuzzy AHP were used and compared. A Boolean land use map derived from a landsat imagery was used in masking out areas currently unavailable for rice production. Both suitability maps were classified into four categories of very suitable, suitable, moderate, and fairly moderate. Although the maps differ slightly, the overlay and WLC (AHP) approach found most parts of Oyo state (51.79 and 82.9 % respectively) to be moderately suitable for rice production. However, in areas like Eruwa, Oyo, and Shaki, rainfall amount received needs to be supplemented by irrigation for increased rice yield.

  11. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Teng, P.S.

    2002-01-01

    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  12. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines

    International Nuclear Information System (INIS)

    Gadde, Butchaiah; Bonnet, Sebastien; Menke, Christoph; Garivait, Savitri

    2009-01-01

    Rice is a widely grown crop in Asia. China (30%) and India (21%) contribute to about half of the world's total rice production. In this study, three major rice-producing countries in Asia are considered, India, Thailand and the Philippines (the later two contributing 4% and 2% of the world's rice production). Rice straw is one of the main field based residues produced along with this commodity and its applications vary widely in the region. Although rice production practises vary from one country to another, open burning of straw is a common practice in these countries. In this study, an approach was followed aiming at (a) determining the quantity of rice straw being subject to open field burning in those countries, (b) congregating pollutant specific emissions factors for rice straw burning, and (c) quantifying the resulting air pollutant emissions. Uncertainties in the results obtained as compared to a global approach are also discussed. - This research work contributes to enhance scientific knowledge for estimating air pollutant emissions from open burning of crop residues and improve emission results accuracy.

  13. Phylogenetic and CRISPR/Cas9 Studies in Deciphering the Evolutionary Trajectory and Phenotypic Impacts of Rice ERECTA Genes

    Directory of Open Access Journals (Sweden)

    Yanchun Zhang

    2018-04-01

    Full Text Available The ERECTA family genes (ERfs have been found to play diverse functions in Arabidopsis, including controlling cell proliferation and cell growth, regulating stomata patterning, and responding to various stresses. This wide range of functions has rendered them as a potential candidate for crop improvement. However, information on their functional roles, particularly their morphological impact, in crop genomes, such as rice, is limited. Here, through evolutionary prediction, we first depict the evolutionary trajectory of the ER family, and show that the ER family is actually highly conserved across different species, suggesting that most of their functions may also be observed in other plant species. We then take advantage of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats–associated nuclease 9 system to assess their morphological impact on one of the most important crops, rice. Loss-of-function mutants of OsER1 and OsER2 display shortened plant stature and reduced panicle size, suggesting they possibly also functioned in regulating cell proliferation and cell growth in rice. In addition to functions similar to that in Arabidopsis, we also find clues that rice ERfs may play unique functional roles. The OsER2 displayed more severe phenotypic changes than OsER1, indicating putative differentiation in their functions. The OsERL might be of essential in its function, and the proper function of all three rice ER genes might be dependent of their genetic background. Future investigations relating to these functions are key to exploiting ERfs in crop development.

  14. Comparative management of Chilo suppressalis (Walker (Lepidoptera: Crambidae by convenient pesticides and non-chemical practices in a double rice cropping system

    Directory of Open Access Journals (Sweden)

    M. N. Poor Amiri

    2017-12-01

    Full Text Available The inclination of rice growers towards double cropping system in north of Iran has raised new concerns about the excessive release of broad-spectrum pesticides, particularly organophosphates, in the environment. In this study, the efficiency of three insecticides and an integrated pest management (IPM program for management of the striped rice stem borer, Chilo suppressalis (Walker (Lep: Crambidae, in double cropping system was investigated under field condition. According to the results, one accurate application of hexaflumuron EC 10% (1.5 L/ha or diazinon EC 60% (1.5 L/ha for each generation of the pest resulted in significant reduction in dead heart and white head damage and increase in yield performance when compared with one application of fipronil G 0.2%, diazinon G 10% and diazinon EC 60% + diazinon G 10% as well as two application of diazinon EC 60% + diazinon G 10%. Additionally, considerable effect of IPM programs (mechanical, physical, and biological practices on suppression of pest damage and improvement of yield performance was also observed. Given the environmental problems associated with excessive application of diazinon and fipronil, hexaflumuron, as an insect growth regulator with specific mode of action, can be efficiently integrated with other non-chemical methods for successful management of Ch suppressalis in double cropping systems.

  15. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    Science.gov (United States)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  16. [Effects of long-term fertilization on soil organic carbon pool and carbon sequestration under double rice cropping].

    Science.gov (United States)

    Sun, Yu-Tao; Liao, Yu-Lin; Zheng, Sheng-Xian; Nie, Jun; Lu, Yan-Hong; Xie, Jian

    2013-03-01

    This paper studied the effects of 30 years (1981-2010) fertilization with chemical N, P, and K, pig manure (PM), and rice straw (RS) on the soil organic carbon (SOC) and its components contents under intensive double rice cropping. The experiment was established on a typic Hapli-Stagnic Anthrosols in Hunan in 1981, and the soil samples were collected in November 2010. In treatment NPK, the contents of SOC, particulate organic C (POC), and KMnO4-oxidizable C (KMnO4-C) were higher than those in treatments NP and NK. The combined application of chemical and organic fertilizers (treatments NK+PM, NP+RS, and NPK+RS) made the contents of SOC, POC, and KMnO4-C have a significant increase, as compared with chemical fertilizations. Treatment NK+PM had the highest contents of SOC (84.71 t C.hm-2), POC (8.94 t C.hm-2), and KMnO4-C (21.09 t C.hm-2) in top soil (0-45 cm), followed by treatment NPK+RS. Treatment NK+PM had the highest C sequestration (485 kg C.hm-2.a-1) , followed by treatment NPK+RS (375 kg C.hm-2.a-1). The C sequestration efficiency (CSE) of SOC in the treatments of chemical fertilizers plus pig manure or rice straw was obviously higher than that in the treatments of chemical fertilizations, and the CSE of the POC in fertilization treatments (ranging from 0.4% and 1.2%) was lower than that of the KMnO4-C (ranging from 3.0% to 8.3%). By using the values of humification constant (h) and the decay constant (k) in Jenkinson' s equation, it was possible to predict the SOC storages in different treatments in the year 2010; and by using Jenkinson' s equation, it was possible to calculate the C input required to maintain the SOC storages in the year 1981 (AE). The increase of the SOC in treatments NK+PM, NP+RS, and NPK+RS was due to the annual C input being higher than the AE. It was considered that in the double rice cropping areas in subtropical region of China, long-term application of chemical fertilizers combined with pig manure or rice straw could promote the

  17. Genomic prediction accounting for genotype by environment interaction offers an effective framework for breeding simultaneously for adaptation to an abiotic stress and performance under normal cropping conditions in rice

    OpenAIRE

    Ahmadi, Nourollah; Cao, Tuong-Vi; Valé, Giampiero; Bartholomé, Jérôme; Hassen, Manel

    2018-01-01

    Developing rice varieties adapted to alternate wetting and drying water management is crucial for the sustainability of irrigated rice cropping systems. Here we report the first study exploring the feasibility of breeding rice for adaptation to alternate wetting and drying using genomic prediction methods that account for genotype by environment interactions. Two breeding populations (a reference panel of 284 accessions and a progeny population of 97 advanced lines) were evaluated under alter...

  18. Rice yield estimation based on weather conditions and on technological level of production systems in Brazil

    Directory of Open Access Journals (Sweden)

    José Eduardo Boffino de Almeida Monteiro

    2013-02-01

    Full Text Available The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1' ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.

  19. Comunidad de cianobacterias durante el ciclo de cultivo de arroz: Oriza sativa L. Cyanobacteria during a rice (Oriza sativa L. crop cycle

    Directory of Open Access Journals (Sweden)

    Cecilia Isabel Sánchez

    2007-07-01

    Full Text Available El desarrollo de las cianobacterias en el cultivo de arroz se ve afectado por diferentes factores abióticos entre ellos la temperatura. El objetivo de nuestro trabajo fue analizar la evolución de la comunidad de cianobacterias durante el ciclo del cultivo de arroz en sitios con diferentes temperaturas del agua de inundación. El cultivo fue regado con agua subterránea. Se compararon dos ubicaciones respecto de la entrada del agua al lote. En macollaje, a los tres días desde la inundación, los recuentos de cianobacterias totales fueron similares en los dos sitios, pero difirieron en los muestreos de panoja embuchada y madurez fisiológica. Los géneros encontrados durante todo el ciclo fueron: Chroococcus, Aphanocapsa y Gloeocapsa (unicelulares, Oscillatoria, Lyngbya y Arthrospira (filamentosas no heterocísticas, Anabaena, Nostoc,Cylindrospermunm y Gloeotrichia (filamentosas heterocísticas. Las cianobacterias filamentosas heterocísticas no superaron el 45% y, en la mayoría de los muestreos, osciló alrededor del 25%. En la zona de mayor temperatura, la proporción de cianobacterias unicelulares fue mayor, y menor la de filamentosas no heterocísticas, la cual fue menor al 2% durante todo el ciclo. Los valores de diversidad de Simpson fueron mayores en la zona de mayor temperatura en cada uno de los momentos de muestreo. Los géneros dominantes fueron unicelulares (Chroococcus y Gloeocapsa en cinco de los seis muestreos. En ambos sitios, el género Chroococcus siempre estuvo presente. Gloeocapsa y Nostoc aparecieron a partir de panoja embuchada y los géneros Cylindrospermum y Gloeotrichia en madurez fisiológica.Abiotic factors as temperature affect cyanobacterial growth in rice crop fields. The aim of our study was to evaluate cyanobacteria during rice crop development in two crop areas with different water temperature. We worked in a rice crop flooded with subterraneous water. We sampled two sites that differed in the distance from the

  20. SAR Agriculture Rice Production Estimation (SARPE)

    Science.gov (United States)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  1. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae).

    Science.gov (United States)

    Wang, Qianjin; Han, Naishun; Dang, Cong; Lu, Zengbin; Wang, Fang; Yao, Hongwei; Peng, Yufa; Stanley, David; Ye, Gongyin

    2017-01-01

    The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV) and two Bt rice lines, T1C-19 (Cry1C) and T2A-1 (Cry2A), on non-target green rice leafhopper (GRLH), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.

  2. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler (Hemiptera: Cicadellidae.

    Directory of Open Access Journals (Sweden)

    Qianjin Wang

    Full Text Available The advent of genetically modified (GM Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV and two Bt rice lines, T1C-19 (Cry1C and T2A-1 (Cry2A, on non-target green rice leafhopper (GRLH, Nephotettix cincticeps (Uhler (Hemiptera: Cicadellidae. In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.

  3. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  4. Photoperiod shift effects on yield characteristics of rice

    Science.gov (United States)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  5. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk.

    Science.gov (United States)

    Islam, Shofiqul; Rahman, Mohammad Mahmudur; Islam, M R; Naidu, Ravi

    2016-11-01

    Rice is an essential staple food and feeds over half of the world's population. Consumption of rice has increased from limited intake in Western countries some 50years ago to major dietary intake now. Rice consumption represents a major route for inorganic arsenic (As) exposure in many countries, especially for people with a large proportion of rice in their daily diet as much as 60%. Rice plants are more efficient in assimilating As into its grains than other cereal crops and the accumulation may also adversely affect the quality of rice and their nutrition. Rice is generally grown as a lowland crop in flooded soils under reducing conditions. Under these conditions the bioavailability of As is greatly enhanced leading to excessive As bioaccumulation compared to that under oxidizing upland conditions. Inorganic As species are carcinogenic to humans and even at low levels in the diet pose a considerable risk to humans. There is a substantial genetic variation among the rice genotypes in grain-As accumulation as well as speciation. Identifying the extent of genetic variation in grain-As concentration and speciation of As compounds are crucial to determining the rice varieties which accumulate low inorganic As. Varietal selection, irrigation water management, use of fertilizer and soil amendments, cooking practices etc. play a vital role in reducing As exposure from rice grains. In the meantime assessing the bioavailability of As from rice is crucial to understanding human health exposure and reducing the risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Farm Household Economic Model of The Integrated Crop Livestock System: Conceptual and Empirical Study

    Directory of Open Access Journals (Sweden)

    Atien Priyanti

    2007-06-01

    Full Text Available An integrated approach to enhance rice production in Indonesia is very prospectus throughout the implementation of adapted and liable integrated program. One of the challenges in rice crop sub sector is the stagnation of its production due to the limitation of organic matter availability. This provides an opportunity for livestock development to overcome the problems on land fertility through the use of manure as the source of organic fertilizer. Ministry of Agriculture had implemented a program on Increasing Integrated Rice Productivity with an Integrated Crop Livestock System as one of the potential components since 2002. Integrated crop livestock system program with special reference to rice field and beef cattle is an alternative to enhance the potential development of agriculture sector in Indonesia. The implementation on this integrated program is to enhance rice production and productivity through a system involving beef cattle with its goal on increasing farmers’ income. Household economic model can be used as one of the analysis to evaluate the success of the implemented crop livestock system program. The specificity of the farmers is that rationality behavior of the role as production and consumption decision making. In this case, farmers perform the production to meet home consumption based on the resources that used directly for its production. The economic analysis of farmers household can be described to anticipate policy options through this model. Factors influencing farmers’ decisions and direct interrelations to production and consumption aspects that have complex implications for the farmers’ welfare of the integrated crop livestock system program.

  7. Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012.

    Science.gov (United States)

    Swaney, Dennis P; Howarth, Robert W; Hong, Bongghi

    2018-04-17

    National-level summaries of crop production and nutrient use efficiency, important for international comparisons, only partially elucidate agricultural dynamics within a country. Agricultural production and associated environmental impacts in large countries vary significantly because of regional differences in crops, climate, resource use and production practices. Here, we review patterns of regional crop production, nitrogen use efficiency (NUE), and major inputs of nitrogen to US crops over 1987-2012, based on the Farm Resource Regions developed by the Economic Research Service (USDA-ERS). Across the US, NUE generally decreased over time over the period studied, mainly due to increased use in mineral N fertilizer above crop N requirements. The Heartland region dominates production of major crops and thus tends to drive national patterns, showing linear response of crop production to nitrogen inputs broadly consistent with an earlier analysis of global patterns of country-scale data by Lassaletta et al. (2014). Most other regions show similar responses, but the Eastern Uplands region shows a negative response to nitrogen inputs, and the Southern Seaboard shows no significant relationship. The regional differences appear as two branches in the response of aggregate production to N inputs on a cropland area basis, but not on a total area basis, suggesting that the type of scaling used is critical under changing cropland area. Nitrogen use efficiency (NUE) is positively associated with fertilizer as a percentage of N inputs in four regions, and all regions considered together. NUE is positively associated with crop N fixation in all regions except Northern Great Plains. It is negatively associated with manure (livestock excretion); in the US, manure is still treated largely as a waste to be managed rather than a nutrient resource. This significant regional variation in patterns of crop production and NUE vs N inputs, has implications for environmental quality and

  8. Seasonal Patterns of Stored-Product Insects at a Rice Mill.

    Science.gov (United States)

    McKay, Tanja; White, Amanda L; Starkus, Laura A; Arthur, Frank H; Campbell, James F

    2017-06-01

    The temporal and spatial patterns in flight activity outside of a rice mill were evaluated for the lesser grain borer [Rhyzopertha dominica (F.)], warehouse beetle [Trogoderma variabile Ballion], cigarette beetle [Lasioderma serricorne (F.)], and Indian meal moth [Plodia interpunctella (Hüϋbner)] to determine critical times of year when the mill would be vulnerable to invasion. Insect activity was monitored using pheromone-baited glue traps (N = 99) from June 2008 to October 2010. Traps were placed along exterior walls of all major buildings and along the fence around the perimeter of the facility. Trogoderma variabile was the most abundant species, with flight activity between mid-March and November. No activity of T. variabile was observed during December through March. Rhyzopertha dominica was also abundant, with activity in mid-April through October. A few adult R. dominica were captured in traps during winter months in the first year of study. Trap captures for all four species increased with an increase in temperature and can be described by linear equations. Knowing seasonal patterns in insect activity allows rice facilities to better understand when facilities are most vulnerable to pest activity. However, this study demonstrates that more research is needed to address how insects are immigrating and emigrating within and around a rice mill. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Long-term behaviours of 137Cs in simulated crop fields

    International Nuclear Information System (INIS)

    Lim, K. M.; Choi, Y. H.; Park, H. K.; Park, D. W.; Lee, W. Y.

    1999-01-01

    In order to understand the long-term behaviour of 137 Cs in crop fields, root uptake and underground distribution of 137 Cs were investigated through a greenhouse experiment where 137 Cs was mixed with topsoil in culture boxes and rice, soybean and Chinese cabbage were grown for 4 years. Soil-to-plant transfer factors of 137 Cs for hulled rice, rice straw, soybean seed and Chinese cabbage reduced by factors of 3-10 depending on crops, and leaching of 137 Cs from the rice culture box decreased by a factor of about 7, in 3 years. The 137 Cs transfer factor for soybean seed were several times higher than that for hulled rice. The amount of 137 Cs leaching during the growing season of rice was as low as 0.025% of applied activity even in the 1st year. The uniformity of 137 Cs distribution in topsoil tended to improve year by year. The present results may be utilized as basic information for the environmental impact assessment and the counter-measure decision when crop fields are contaminated with 137 Cs

  10. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes

    DEFF Research Database (Denmark)

    Xu, Xun; Liu, Xin; Ge, Song

    2012-01-01

    Rice is a staple crop that has undergone substantial phenotypic and physiological changes during domestication. Here we resequenced the genomes of 40 cultivated accessions selected from the major groups of rice and 10 accessions of their wild progenitors (Oryza rufipogon and Oryza nivara) to >15 x...... diversity in cultivated but not wild rice, which represent candidate regions selected during domestication. Some of these variants are associated with important biological features, whereas others have yet to be functionally characterized. The molecular markers we have identified should be valuable...... raw data coverage. We investigated genome-wide variation patterns in rice and obtained 6.5 million high-quality single nucleotide polymorphisms (SNPs) after excluding sites with missing data in any accession. Using these population SNP data, we identified thousands of genes with significantly lower...

  11. Adding Organic Matter Enhanced the Effectiveness of Silicate Rock Fertilizer for Food Crops Grown on Nutritionally Disorder Soils: A Glasshouse Assessment

    Directory of Open Access Journals (Sweden)

    Zaenal Arifin

    2012-05-01

    Full Text Available A glasshouse experiment was carried to identify effects of the application rate of ground silicate rock as a multinutrientfertilizer (SRF with and without organic matter (OM on growth and nutrient status of food crops (rice,corn, and soybean. Those crops were grown on 3 different soils in 2 cropping patterns, i.e., rice – soybean and corn– soybean, providing 6 experimental sets. A completely randomized design was applied in each experimental set.The treatment in each set consisted of 3 rates of SRF (5, 10, and 15 g kg-1, those 3 rates + 5 g kg-1 of OM, and acontrol (without adding SRF or OM. The first crops (rice and corn were grown up to 65 days, while the secondcrop (soybean was up to 40 days. Results indicated that for crops grown on less fertile soils, the application of SRFonly slightly increased growth of crops, mainly of the 2nd crops, and adding OM greatly increased the growth ofboth the 1st and 2nd crops. In those experimental sets, about 60 – 80% of the variation of crop growth was significantlydetermined by concentration of Cu and several other essential nutrients in crop tissue. In contrast, the growth forcrops grown on more fertile soils was not affected by the application of SRF or/and OM. It was concluded thatadding OM enhanced the effectiveness of SRF as a multi-nutrient fertilizer, and that may be used as an appropriatemulti-nutrient fertilizer or general ameliorant to sustain soil quality and remediate the nutritionally disorder soils.

  12. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice.

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D; Huang, Zhongyun; Hyma, Katie E; Gealy, David R; Caicedo, Ana L

    2014-11-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. © 2014 American Society of Plant Biologists. All Rights Reserved.

  13. Rice and wheat yield improvement by the application of boron in salt affected soils

    International Nuclear Information System (INIS)

    Mehdi, S.M.; Sarfraz, M.; Hassan, N.M.; Hassan, W.

    2007-01-01

    In recent past studies on wheat, rice and fruit plant showed that fairly large percentage of soils and crops are deficient in boron. Several times a question rose to study the boron responses in a cropping system to see the residual effect of boron. With the objective in mind, a field experiment was conducted at two sites in saline sodic soils to see the rice and wheat crops response to boron. Boron was applied to rice at the rate of 0.25, 0.50, 1.0, 1.5, and 2.0 Kg ha/sub -1/ as sodium tetra borate. The results showed that both paddy and straw yields increased with the increasing rates of boron and highest yield was obtained from 2 Kg ha/sub -l/. After harvesting of rice crop wheat was sown in the same layout. The treatments were divided into two equal portions. Boron was applied to one portion at the same rates as to rice while remaining half remained as such to study the residual effect of B on wheat. The results showed that grain anti straw yields increased with increasing rates of boron. In case of untreated plots to see the residual effect grain and straw yield increased with increasing rates of boron applied to rice. It was concluded that B applied to rice did show residual effect to the following wheat crop. Therefore, there is no need to apply B to following crop when B is applied to the previous crop. (author)

  14. Pattern of photosynthesis in saline indica var. of rice Kala Rata

    International Nuclear Information System (INIS)

    Hegde, B.A.; Joshi, G.V.

    1975-01-01

    The present investigation on Kala Rata deals with the pattern of photosynthesis and the salt stress effect on the photosynthetic efficiency in rice. It is evident from the investigation that chlorophyll synthesis is enhanced with the increasing concentration of NaCl in the bathing medium. However, the efficiency of photosynthesis does not increase with increased chlorophyll production. All ions in leaves can stimulate CO 2 incorporation but inhibit at higher concentration. Analysis of short term products of photosynthesis revealed that aspartate is the major product to be heavily labelled which is evident from autoradiogram. PGA has also appreciable label, where as, malate has the least. It appears therefore, that in rice, both, Calvin as well as C 4 type of pathways are operating. 'Aspartate former' type of rice does not seem to be efficient in photosynthesis as it has C 3 pathway also in operation. (author)

  15. Questioning triple rice intensification on the Vietnamese mekong delta floodplains

    NARCIS (Netherlands)

    Tran, Dung Duc; Halsema, van Gerardo; Hellegers, Petra J.G.J.; Ludwig, Fulco; Wyatt, Andrew

    2018-01-01

    Large areas of the Vietnamese Mekong Delta floodplains (VMDF) are protected by high dikes to facilitate three rice crops per year. While this has increased rice production, there is evidence that triple rice systems have negative long-term effects, both environmental and economic. Double rice

  16. Assessing the Challenges in Successful Implementation and Adoption of Crop Insurance in Thailand

    Directory of Open Access Journals (Sweden)

    Shweta Sinha

    2016-12-01

    Full Text Available The purpose of this paper is to assess the gaps in the adoption of crop insurance in Thailand and suggest possible solutions relating to policy support and framework, implementation mechanisms, technology adoption, and awareness amongst farmers. The methodology includes a literature review, interaction with officials, rice experts and insurance experts, and discussion with farmers. A study was undertaken at province level to assess the impact of using rainfall index as a threshold. Additionally, focused group discussions (FGD were conducted with rice farmers at the village level. Key issues targeted in the FGD were to understand the behavior and practices during droughts, impact of drought on crop yield, methods already in use to reduce the impact, such as plantation of drought-resistant rice, and the adoption of crop insurance. Data availability is a challenge and has led to withdrawal of Weather Index Insurance (WII in 2015. WII have threshold levels based on historical rainfall. Adoption of coping mechanisms, such as drought-resistant rice and irrigation increases the chances of adverse selection. In absence of ground based weather data, a combination of satellite agriculture drought information can be used to make crop insurance more attractive as it would help in reducing basis risk and improving insurers and farmers’ confidence in the product. Discussion with farmers, insurance companies, and the Bank of Agriculture and Agricultural Cooperatives (BAAC in Thailand suggested low awareness among farmers about the potential benefits of weather index insurance products. Relatively low compensation is also an obstacle. Proper marketing and awareness raising campaigns should also accompany the introduction of index-based insurance products.

  17. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types].

    Science.gov (United States)

    Zhao, Bing; Shen, Li-bo; Cheng, Miao-miao; Wang, Song-feng; Wu, Long-hua; Zhou, Shou-biao; Luo, Yong-ming

    2011-10-01

    A pot experiment with heavy metals- contaminated black soil from Heilongjiang Province, alluvial soil from Henan Province, and paddy soil from Zhejiang Province was conducted to study the effects of intercropping Sedum plumbizincicola in wheat growth season under wheat (Triticum aestivum) - rice (Oryza sativa) rotation on the growth of the crops and their heavy metals uptake, aimed to explore the feasibility of simultaneous grain production and heavy metals-contaminated soil phytoremediation in main food crop production areas of this country. Comparing with monoculture T. aestivum, intercropping S. plumbizincicola increased the soil NaNO3 -extractable Zn and Cd significantly, with the increment of extractable Zn in test paddy soil, alluvial soil, and black soil being 55%, 32% and 110%, and that of extractable Cd in test paddy soil and black soil being 38% and 110%, respectively. The heavy metals concentration in T. aestivum shoots under intercropping S. plumbizincicola was 0.1-0.9 times higher than that under monoculture T. aestivum, but the intercropping had little effects on the rice growth and its heavy metals uptake. Though the Cd concentration in rice grain after S. plumbizincicola planting was still higher than 0.2 mg kg(-1) (the limit of Cd in food standard), it presented a decreasing trend, as compared with that after monoculture T. aestivum. Therefore, intercropping S. plumbizincicola in wheat growth season under wheat-rice rota- tion could benefit the phytoremediation of heavy metals-contaminated soil, and decrease the food-chain risk of rotated rice.

  18. Water Footprint Analysis of Paddy Rice and the Nexus of Water-Land-Rice in Taiwan: 2005-2014

    Science.gov (United States)

    Wu, T. C.

    2018-05-01

    This paper explores the water footprint (WF) of paddy rice and the nexus of water-land-food (rice) in Taiwan. The research results indicate that the average annual rice WF for the years 2005-2014 was about 7,580 m3/ton, of which 80% was blue, 17% was green, and 3% was grey. This average annual footprint was about 5.7 times larger than the 2000-2004 average annual WF of rice for countries around the globe of 1325 m3/ton, of which 48% was green, 44% was blue, and 8% was grey. The blue WF is the most important source of water for rice production in Taiwan. The water consumption of the second crop is higher than that of the first crop. The water use efficiency in the southern region of Taiwan is the best, while the northern part of Taiwan exhibits relatively high inefficiency. The rates of change in cultivated land and rice production in Taiwan are decreasing in a stable manner. However, the annual rate of change in the rice WF is unstable. The nexus of land, water, and food should be taken into consideration to protect water availability, maintain agricultural production, and avoid land degradation. The results could offer useful information for agriculture policy and water resource management.

  19. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  20. Application of two-stream model to solar radiation of rice canopy

    International Nuclear Information System (INIS)

    Kawakata, T.

    2005-01-01

    The amount of solar radiation absorbed by a crop canopy is correlated with crop production, and thus it is necessary to estimate both transmission and reflection around the canopy for crop growth models. The 'forward and backward streams' representation of radiation has been refined to account for both transmission and reflection in the crop canopy. However, this model has not been applied to a rice canopy through the growing period. The purpose of this study is to examine whether the two-stream model is applicable to the rice canopy, and to investigate the parameters of the model. The values for both transmittance below the rice canopy and reflectance above it that were derived from the two-stream model represent the observed values throughout the growing period. The inclination factor of leaves (F), which is used in the two-stream model, was almost equivalent to the extinction coefficient of transmittance in the case of the rice canopy

  1. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone

  2. Technology management and participatory approach with agroecological rice for local scale. Part II - Impacts assessment of the strategy and action plan in Madruga municipality

    Directory of Open Access Journals (Sweden)

    Deborah González Viera

    2015-02-01

    Full Text Available Land policies to increase the rice production have as purpose to promote the mechanization, to increase the yield for farm area, to enlarge the crop area and to achieve the self-sufficiency in the production or to reduce the imports of this cereal. Other important aspects are the costs of rice crop and their impact in the productive revenues besides the great dependence of the grain on the part of the poor countries; where their potentiality resides in the production to small scale in irrigated ecosystem like a sustainable base for the diversification of the rural economy. For such a reason, this work was developed with the objective of establishing a strategy of sustainable development for the popular rice crop that was based on the technological management with focus agroecologic and participatory focus. Their application conceived on-farm research by means of variety trials simultaneously to a costs studies of three technologies adopted by the producers and during the process, three qualification cycles were made being achieved increasing of rice crop yield in 14 %.

  3. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    Science.gov (United States)

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Analysis of photosynthate translocation velocity and measurement of weighted average velocity in transporting pathway of crops

    International Nuclear Information System (INIS)

    Ge Cailin; Luo Shishi; Gong Jian; Zhang Hao; Ma Fei

    1996-08-01

    The translocation profile pattern of 14 C-photosynthate along the transporting pathway in crops were monitored by pulse-labelling a mature leaf with 14 CO 2 . The progressive spreading of translocation profile pattern along the sheath or stem indicates that the translocation of photosynthate along the sheath or stem proceed with a range of velocities rather than with just a single velocity. The method for measuring the weighted average velocity of photosynthate translocation along the sheath or stem was established in living crops. The weighted average velocity and the maximum velocity of photosynthate translocation along the sheath in rice and maize were measured actually. (4 figs., 3 tabs.)

  5. Designing Crop Simulation Web Service with Service Oriented Architecture Principle

    Science.gov (United States)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.

    2015-12-01

    Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting

  6. Exploring the Potential of TanDEM-X Data in Rice Monitoring

    Science.gov (United States)

    Erten, E.

    2015-12-01

    In this work, phenological parameters such as growth stage, calendar estimation, crop density and yield estimation for rice fields are estimated employing TanDEM-X data. Currently, crop monitoring is country-dependent. Most countries have databases based on cadastral information and annual farmer inputs. Inaccuracies are coming from wrong or missing farmer declarations and/or coarsely updated cadastral boundary definitions. This leads to inefficient regulation of the market, frauds as well as to ecological risks. An accurate crop calendar is also missing, since farmers provide estimations in advance and there is no efficient way to know the growth status over large plantations. SAR data is of particular interest for these purposes. The proposed method includes two step approach including field detection and phenological state estimation. In the context of precise farming it is substantial to define field borders which are usually changing every cultivation period. Linking the SAR inherit properties to transplanting practice such as irrigation, the spatial database of rice-planted agricultural crops can be updated. Boundaries of agricultural fields will be defined in the database, and assignments of crops and sowing dates will be continuously updated by our monitoring system considering that sowing practice variously changes depending on the field owner decision. To define and segment rice crops, the system will make use of the fact that rice fields are characterized as flooded parcels separated by path networks composed by soil or rare grass. This natural segmentation is well detectable by inspecting low amplitude and coherence values of bistatic acquisitions. Once the field borders are defined, the phenology estimation of crops monitored at any time is the key point of monitoring. In this aspect the wavelength and the polarization option of TanDEM-X are enough to characterize the small phenological changes. The combination of bistatic interferometry and Radiative

  7. Rice Genome Research: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Bin Han

    2008-11-01

    Full Text Available Rice ( L. is the leading genomics system among the crop plants. The sequence of the rice genome, the first cereal plant genome, was published in 2005. This review summarizes progress made in rice genome annotations, comparative genomics, and functional genomics researches. It also maps out the status of rice genomics globally and provides a vision of future research directions and resource building.

  8. Physiology and productivity of rice crop influenced by drought stress ...

    African Journals Online (AJOL)

    Rice is sensitive to moisture stress and in view of the water scarcity in the coming years, it is imperative to evaluate the performance of rice cultivar under moisture deficit. The present study aimed to evaluate the physiological responses of two rice cultivars under drought stress induced at panicle initiation and soft dough ...

  9. Global value of GM rice: a review of expected agronomic and consumer benefits.

    Science.gov (United States)

    Demont, Matty; Stein, Alexander J

    2013-06-25

    Unlike the other major crops, no genetically modified (GM) varieties of rice have been commercialized at a large scale. Within the next 2-3 years new transgenic rice varieties could be ready for regulatory approval and subsequent commercialization, though. Given the importance of rice as staple crop for many of the world's poorest people, this will have implications for the alleviation of poverty, hunger and malnutrition. Thus, policy-makers need to be aware of the potential benefits of GM rice. We provide an overview of the literature and discuss the evidence on expected agronomic and consumer benefits of genetically engineered rice. We find that while GM rice with improved agronomic traits could deliver benefits similar to already commercialized biotechnology crops, expected benefits of consumer traits could be higher by an order of magnitude. By aggregating the expected annual benefits, we estimate the global value of GM rice to be US$64 billion per year. This is only an indicative value, as more GM varieties will become available in future. Nevertheless, such a figure can help guide policy-makers when deciding on the approval or funding of biotechnology crops and it may also raise awareness among consumers about what is at stake for their societies. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Timber tree-based contour hedgerow system on sloping acid upland soils: the use of 15N in quantifying tree-crop interaction in agroforestry system

    International Nuclear Information System (INIS)

    Rosales, Crispina M.; Pailagao, Charmaine; Grafia, Alfonso O.; Rivera, Faye G.; Mercado, Agustin R. Jr.

    2004-01-01

    As the population pressures in the upland increase, agroforestry is inevitably the most appropriate technology to enhance the productive and protective functions of farming systems to benefit both the people living inside and outside the watersheds in a suitable manner. Contour hedgerow is one of the agroforestry systems suitable for sloping uplands where farmers grow tree crops as hedgerows and food crops as alleycrops. Smallholder farmers in Southeast Asia have begun farming timber trees in association with food crops on infertile soils as the dominant enterprise using their own capital resources. A collaborative study between the International Centre for Research in Agroforestry (ICRAF) and Philippine Nuclear Research Institute (PNRI) was established to evaluate the performance of fast growing timber trees as hedgerows on subsistence cereal based farming systems, and the role of N-fixing trees as interplant in enhancing the growth of the trees as well as the cereal crops. There were 4 fast growing timber trees being compared: Acacia mangium (N-fixing), Gmelina arborea (non-N-fixing), Euclyptus deglupta (non-N-fixing), and Swietenia macrophylla (non-N-fixing). A mangium was also used as interplant to determine its influence on the growth of the non-N-fixing trees as well as to the cereal crops. Ammonium sulfate enriched with 10.12 15 N atom percent was applied in solution to the upland rice, as alleycrop, at the rate of 69 kgN/ha in the isotope subplot in 2 splits: 30 days after emergence and at panicle initiation stage. This study was conducted in acid upland soil in Claveria, Misamis Oriental. Acacia mangium grew faster compared with G. arborea, E. deglupta, while S. macrophylla grew lower. The growth of E. deglupta and G. arborea was positively affected by N-fixing interplant in low soil fertility environment. G. arborea and A. mangium produced the highest lateral pruning biomass supplying organic nutrients to the associated annual crops. The amount of

  11. Evaluation of phosphate rock as a p-source in the cropping system of upland rice - soybean - mungbean

    International Nuclear Information System (INIS)

    Rasyid, Havid; Sisworo, Elsye L.; Siswoyo, Wijang H.

    1998-01-01

    A seri of pot fertilizer experiments has ben carried out in the cropping system of upland rice - soybean - mungbean by using Red Yellow podsolic soil from Batumerta, South Sumatra. Three phosphate rock (PR) with 3 different sizes and 2 levels of tsp were used as a check and were applied in this study. The results showed that fertilization with PR could increase weight of day plant, % total-P, and total-P uptake . The contribution of P-derived from PR and TSP was determined using the dilution method 32 P isotope. the values for P-derived from PR or TSP raged from 26. % to 89.4 % efficiency of was from 0.15 % to 1.66%, and for TSP it ranged from 1.78 % to 20.0%. Increasing the levels of P-fertilizer either PR or TSP will decrease the P efficiency. Where the order for plants are : efficiency of P upland rice >soybean > mungbean. (author)

  12. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  13. Diversity of global rice markets and the science required for consumer-targeted rice breeding.

    Directory of Open Access Journals (Sweden)

    Mariafe Calingacion

    Full Text Available With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.

  14. Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding

    Science.gov (United States)

    Calingacion, Mariafe; Laborte, Alice; Nelson, Andrew; Resurreccion, Adoracion; Concepcion, Jeanaflor Crystal; Daygon, Venea Dara; Mumm, Roland; Reinke, Russell; Dipti, Sharifa; Bassinello, Priscila Zaczuk; Manful, John; Sophany, Sakhan; Lara, Karla Cordero; Bao, Jinsong; Xie, Lihong; Loaiza, Katerine; El-hissewy, Ahmad; Gayin, Joseph; Sharma, Neerja; Rajeswari, Sivakami; Manonmani, Swaminathan; Rani, N. Shobha; Kota, Suneetha; Indrasari, Siti Dewi; Habibi, Fatemeh; Hosseini, Maryam; Tavasoli, Fatemeh; Suzuki, Keitaro; Umemoto, Takayuki; Boualaphanh, Chanthkone; Lee, Huei Hong; Hung, Yiu Pang; Ramli, Asfaliza; Aung, Pa Pa; Ahmad, Rauf; Wattoo, Javed Iqbal; Bandonill, Evelyn; Romero, Marissa; Brites, Carla Moita; Hafeel, Roshni; Lur, Huu-Sheng; Cheaupun, Kunya; Jongdee, Supanee; Blanco, Pedro; Bryant, Rolfe; Thi Lang, Nguyen; Hall, Robert D.; Fitzgerald, Melissa

    2014-01-01

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a ‘one size fits all’ crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market. PMID:24454799

  15. The Impact of Herbicide-Resistant Rice Technology on Phenotypic Diversity and Population Structure of United States Weedy Rice1[W][OPEN

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D.; Huang, Zhongyun; Hyma, Katie E.; Gealy, David R.; Caicedo, Ana L.

    2014-01-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. PMID:25122473

  16. Developing selection protocols for weed competitiveness in aerobic rice

    NARCIS (Netherlands)

    Zhao, D.L.; Atlin, G.N.; Bastiaans, L.; Spiertz, J.H.J.

    2006-01-01

    Aerobic rice production systems, wherein rice is dry-sown in non-puddled soil and grown as an upland crop, offer large water savings but are subject to severe weed infestation. Weed-competitive cultivars will be critical to the adoption of aerobic rice production by farmers. Breeding

  17. Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses

    Directory of Open Access Journals (Sweden)

    Inja Naga Bheema Lingeswara Reddy

    2017-11-01

    Full Text Available The key for rice plant survival under NaCl salt stress is maintaining a high K+/Na+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K+/Na+ ratios. Seventeen SSR markers reported to be associated with K+/Na+ ratio were used to screen the accessions. Five SSR markers (RM8053, RM345, RM318, RM253 and RM7075 could differentiate accessions classified based on their K+/Na+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K+/Na+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  18. Physiological Age Status of Female Adults and Off-Season Survival of Rice Leaffolder Cnaphalocrocis medinalis in India

    Directory of Open Access Journals (Sweden)

    Padmavathi Chintalapati

    2015-09-01

    Full Text Available Rice leaffolder, Cnaphalocrocis medinalis, is one of the major foliage feeders found in the rice growing regions in India. When the crop was at maturity, numerous adults of rice leaffolder were found in the rice fields though the larval population gradually decreased, and no eggs were found on rice leaves. The population characteristics of C. medinalis were assessed based on the physiological age status of adults at different crop growth stages. Based on egg development within ovarioles, ovariole appearance, number and colour of fat bodies, and characteristics of bursa copulatrix, physiological age status of the adults was described, which served as a basis for the determination of age composition. C. medinalis adults were found during the first week of August on rice plants, of which 44% were in Age 0 with immature ovaries, indicating immigrants. However, 28% adults each were at Ages 1–2 with developing ovaries, indicating local breeding population. The carryover and off-season survival of C. medinalis were also studied to determine the contribution of the alternative hosts in the population growth that helped in devising efficient management strategies. Rice was the most preferred host followed by Triticum aestivum, Echinochloa crusgulli and Brachiaria plantaginea. Various routes of the carryover of C. medinalis from season to season were discussed.

  19. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  20. Optimization of planting pattern plan in Logung irrigation area using linear program

    Science.gov (United States)

    Wardoyo, Wasis; Setyono

    2018-03-01

    Logung irrigation area is located in Kudus Regency, Central Java Province, Indonesia. Irrigation area with 2810 Ha of extent is getting water supply from Logung dam. Yet, the utilization of water at Logung dam is not optimal and the distribution of water is still not evenly distributed. Therefore, this study will discuss about the optimization of irrigation water utilization based on the beginning of plant season. This optimization begins with the analysis of hydrology, climatology and river discharge in order to determine the irrigation water needs. After determining irrigation water needs, six alternatives of planting patterns with the different early planting periods, i.e. 1st November, 2nd November, 3rd November, 1st December, 2nd December, and 3rd December with the planting pattern of rice-secondary crop-sugarcane is introduced. It is continued by the analysis of water distribution conducted using linear program assisted by POM-Quantity method for Windows 3 with the reliable discharge limit and the available land area. Output of this calculation are to determine the land area that can be planted based on the type of plant and growing season, and to obtaine the profits of harvest yields. Based on the optimum area of each plant species with 6 alternatives, the most optimum area was obtained at the early planting periods on 3rd December with the production profit of Rp 113.397.338.854,- with the planting pattern of rice / beans / sugarcane-rice / beans / sugarcane-beans / sugarcane.

  1. Integrated Soil, Water and Nutrient Management for Sustainable Rice–Wheat Cropping Systems in Asia

    International Nuclear Information System (INIS)

    2016-08-01

    The rice-wheat system is a predominant cropping system in Asia providing food, employment and income, ensuring the livelihoods of about 1 billion of resource poor rural and urban people. However, the productivity of the current rice-wheat systems is seriously threatened by increasing land degradation and scarcity of water and labour, inefficient cropping practices and other emerging socio economic and environmental drivers. Responding to the need to develop alternate crop establishment methods and improved cropping practices, this publication summarizes the results from a joint FAO/IAEA coordinated research project on optimizing productivity and sustainability of rice-wheat cropping systems. It provides relevant information on how to modify existing water and nutrient management systems and improve soil management in both traditional and emerging crop establishment methods for sustainable intensification of cereal production in Asia

  2. Stable Food Crops Turning Into Commercial Crops: Case studies of ...

    African Journals Online (AJOL)

    RahelYilma

    case study analyses for the cereal crops of teff3, wheat and rice. Specifically, the ... behavior of households during the process of commercial transformation of subsistence ..... roducer → rural assembler, and producer → consumer. As with teff ...

  3. Occurrence and distribution study of residues from pesticides applied under controlled conditions in the field during rice processing.

    Science.gov (United States)

    Pareja, Lucía; Colazzo, Marcos; Pérez-Parada, Andrés; Besil, Natalia; Heinzen, Horacio; Böcking, Bernardo; Cesio, Verónica; Fernández-Alba, Amadeo R

    2012-05-09

    The results of an experiment to study the occurrence and distribution of pesticide residues during rice cropping and processing are reported. Four herbicides, nine fungicides, and two insecticides (azoxystrobin, byspiribac-sodium, carbendazim, clomazone, difenoconazole, epoxiconazole, isoprothiolane, kresoxim-methyl, propanil, quinclorac, tebuconazole, thiamethoxam, tricyclazole, trifloxystrobin, λ-cyhalotrin) were applied to an isolated rice-crop plot under controlled conditions, during the 2009-2010 cropping season in Uruguay. Paddy rice was harvested and industrially processed to brown rice, white rice, and rice bran, which were analyzed for pesticide residues using the original QuEChERS methodology and its citrate variation by LC-MS/MS and GC-MS. The distribution of pesticide residues was uneven among the different matrices. Ten different pesticide residues were found in paddy rice, seven in brown rice, and eight in rice bran. The highest concentrations were detected in paddy rice. These results provide information regarding the fate of pesticides in the rice food chain and its safety for consumers.

  4. Effect of Abiotic Stresses on the Nondestructive Estimation of Rice Leaf Nitrogen Concentration

    Directory of Open Access Journals (Sweden)

    Stephan M. Haefele

    2010-01-01

    Full Text Available Decision support tools for non-destructive estimation of rice crop nitrogen (N status (e.g., chlorophyll meter [SPAD] or leaf color chart [LCC] are an established technology for improved N management in irrigated systems, but their value in rainfed environments with frequent abiotic stresses remains untested. Therefore, we studied the effect of drought, salinity, phosphorus (P deficiency, and sulfur (S deficiency on leaf N estimates derived from SPAD and LCC measurements in a greenhouse experiment. Linear relations between chlorophyll concentration and leaf N concentration based on dry weight (Ndw between SPAD values adjusted for leaf thickness and Ndw and between LCC scores adjusted for leaf thickness and Ndw could be confirmed for all treatments and varieties used. Leaf spectral reflectance measurements did not show a stress-dependent change in the reflectance pattern, indicating that no specific element of the photosynthetic complex was affected by the stresses and at the stress level applied. We concluded that SPAD and LCC are potentially useful tools for improved N management in moderately unfavorable rice environments. However, calibration for the most common rice varieties in the target region is recommended to increase the precision of the leaf N estimates.

  5. Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture

    Science.gov (United States)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro

    Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.

  6. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.

    Science.gov (United States)

    Song, Beng-Kah; Chuah, Tse-Seng; Tam, Sheh May; Olsen, Kenneth M

    2014-10-01

    Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild-to-weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed-shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations. © 2014 John Wiley & Sons Ltd.

  7. A Web-Based Rice Plant Expert System Using Rule-Based Reasoning

    Directory of Open Access Journals (Sweden)

    Anton Setiawan Honggowibowo

    2009-12-01

    Full Text Available Rice plants can be attacked by various kinds of diseases which are possible to be determined from their symptoms. However, it is to recognize that to find out the exact type of disease, an agricultural expert’s opinion is needed, meanwhile the numbers of agricultural experts are limited and there are too many problems to be solved at the same time. This makes a system with a capability as an expert is required. This system must contain the knowledge of the diseases and symptom of rice plants as an agricultural expert has to have. This research designs a web-based expert system using rule-based reasoning. The rule are modified from the method of forward chaining inference and backward chaining in order to to help farmers in the rice plant disease diagnosis. The web-based rice plants disease diagnosis expert system has the advantages to access and use easily. With web-based features inside, it is expected that the farmer can accesse the expert system everywhere to overcome the problem to diagnose rice diseases.

  8. Effect of selenium application on arsenic uptake in rice (Oryza sativa L.).

    Science.gov (United States)

    Kaur, Sumandeep; Singh, Dhanwinder; Singh, Kuldip

    2017-09-01

    Alluvial aquifers of the agrarian state of Punjab of southwestern arid zone used for irrigation of rice crops are rich in arsenic concentration. In the present study, rice (Oryza sativa L.) crops were raised in pots in a greenhouse with a purpose to study whether selenium (Se) application was effective in ameliorating As uptake. The rice crop was irrigated with arsenic laced water (0, 2.5, 5.0, 10.0 μM As L -1 ) throughout the growing period, without and with selenium (0.05 and 0.10 mg kg -1 ) added through mustard biomass, grown ex situ in seleniferous soil. Arsenic uptake and dry matter yield in different parts of the rice crop were assayed after application of As alone and simultaneous supplementations (As + Se). An antagonistic interaction between Se and As was observed. Addition of As through irrigation water significantly reduced yield of rice grain, straw and root. However, subsequent addition of Se helped in mitigating the harmful effect of As and countered the yield reduction caused due to As toxicity. The effect of Se on dry matter yield was more pronounced at its higher dose (0.10 mg kg -1 ) as compared to its lower dose (0.05 mg kg -1 ). The presence of Se either alone or added along with As significantly reduced the As concentration and its uptake by different parts of rice and higher reduction in As concentration was observed with addition of the highest level of applied Se (0.10 mg kg -1 ). Our observations indicated that Se supplementation might be favourable to reduce As accumulation and toxicity in rice crops.

  9. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  10. Spatially distinct response of rice yield to autonomous adaptation under the CMIP5 multi-model projections

    Science.gov (United States)

    Shin, Yonghee; Lee, Eun-Jeong; Im, Eun-Soon; Jung, Il-Won

    2017-02-01

    Rice ( Oryza sativa L.) is a very important staple crop, as it feeds more than half of the world's population. Numerous studies have focused on the negative impacts of climate change on rice production. However, there is little debate on which region of the world is more vulnerable to climate change and how adaptation to this change can mitigate the negative impacts on rice production. We investigated the impacts of climate change on rice yield, based on simulations combining a global crop model, M-GAZE, and Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model projections. Our focus was the impact of mitigating emission forcings (representative concentration pathway RCP 4.5 vs. RCP 8.5) and autonomous adaptation (i.e., changing crop variety and planting date) on rice yield. In general, our results showed that climate change due to anthropogenic warming leads to a significant reduction in rice yield. However, autonomous adaptation provides the potential to reduce the negative impact of global warming on rice yields in a spatially distinct manner. The adaptation was less beneficial for countries located at a low latitude (e.g., Cambodia, Thailand, Brazil) compared to mid-latitude countries (e.g., USA, China, Pakistan), as regional climates at the lower latitudes are already near the upper temperature thresholds for acceptable rice growth. These findings suggest that the socioeconomic effects from rice production in lowlatitude countries can be highly vulnerable to anthropogenic global warming. Therefore, these countries need to be accountable to develop transformative adaptation strategies, such as adopting (or developing) heat-tolerant varieties, and/or improve irrigation systems and fertilizer use efficiency.

  11. Increasing rice plant growth by Trichoderma sp.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  12. Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia.

    Science.gov (United States)

    Thomas, Evert; Tovar, Eduardo; Villafañe, Carolina; Bocanegra, José Leonardo; Moreno, Rodrigo

    2017-12-01

    Crop wild relatives (CWRs) of rice hold important traits that can contribute to enhancing the ability of cultivated rice (Oryza sativa and O. glaberrima) to produce higher yields, cope with the effects of climate change, and resist attacks of pests and diseases, among others. However, the genetic resources of these species remain dramatically understudied, putting at risk their future availability from in situ and ex situ sources. Here we assess the distribution of genetic diversity of the four rice CWRs known to occur in Colombia (O. glumaepatula, O. alta, O. grandiglumis, and O. latifolia). Furthermore, we estimated the degree of overlap between areas with suitable habitat for cultivated and wild rice, both under current and predicted future climate conditions to assess the potential spatiotemporal scale of potential gene flow from GM rice to its CWRs. Our findings suggest that part of the observed genetic diversity and structure, at least of the most exhaustively sampled species, may be explained by their glacial and post-glacial range dynamics. Furthermore, in assessing the expected impact of climate change and the potential spatiotemporal scale of gene flow between populations of CWRs and GM rice we find significant overlap between present and future suitable areas for cultivated rice and its four CWRs. Climate change is expected to have relatively limited negative effects on the rice CWRs, with three species showing opportunities to expand their distribution ranges in the future. Given (i) the sparse presence of CWR populations in protected areas (ii) the strong suitability overlap between cultivated rice and its four CWRs; and (iii) the complexity of managing and regulating areas to prevent alien gene flow, the first priority should be to establish representative ex situ collections for all CWR species, which currently do not exist. In the absence of studies under field conditions on the scale and extent of gene flow between cultivated rice and its Colombian

  13. Modeling plant density and ponding water effects on flooded rice evapotranspiration and crop coefficients: critical discussion about the concepts used in current methods

    Science.gov (United States)

    Aschonitis, Vassilis; Diamantopoulou, Maria; Papamichail, Dimitris

    2018-05-01

    The aim of the study is to propose new modeling approaches for daily estimations of crop coefficient K c for flooded rice ( Oryza sativa L., ssp. indica) under various plant densities. Non-linear regression (NLR) and artificial neural networks (ANN) were used to predict K c based on leaf area index LAI, crop height, wind speed, water albedo, and ponding water depth. Two years of evapotranspiration ET c measurements from lysimeters located in a Mediterranean environment were used in this study. The NLR approach combines bootstrapping and Bayesian sensitivity analysis based on a semi-empirical formula. This approach provided significant information about the hidden role of the same predictor variables in the Levenberg-Marquardt ANN approach, which improved K c predictions. Relationships of production versus ET c were also built and verified by data obtained from Australia. The results of the study showed that the daily K c values, under extremely high plant densities (e.g., for LAI max > 10), can reach extremely high values ( K c > 3) during the reproductive stage. Justifications given in the discussion question both the K c values given by FAO and the energy budget approaches, which assume that ET c cannot exceed a specific threshold defined by the net radiation. These approaches can no longer explain the continuous increase of global rice yields (currently are more than double in comparison to the 1960s) due to the improvement of cultivars and agriculture intensification. The study suggests that the safest method to verify predefined or modeled K c values is through preconstructed relationships of production versus ET c using field measurements.

  14. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review

    Directory of Open Access Journals (Sweden)

    Anindita Mitra

    2017-10-01

    Full Text Available According to recent reports, millions of people across the globe are suffering from arsenic (As toxicity. Arsenic is present in different oxidative states in the environment and enters in the food chain through soil and water. In the agricultural field, irrigation with arsenic contaminated water, that is, having a higher level of arsenic contamination on the top soil, which may affects the quality of crop production. The major crop like rice (Oryza sativa L. requires a considerable amount of water to complete its lifecycle. Rice plants potentially accumulate arsenic, particularly inorganic arsenic (iAs from the field, in different body parts including grains. Different transporters have been reported in assisting the accumulation of arsenic in plant cells; for example, arsenate (AsV is absorbed with the help of phosphate transporters, and arsenite (AsIII through nodulin 26-like intrinsic protein (NIP by the silicon transport pathway and plasma membrane intrinsic protein aquaporins. Researchers and practitioners are trying their level best to mitigate the problem of As contamination in rice. However, the solution strategies vary considerably with various factors, such as cultural practices, soil, water, and environmental/economic conditions, etc. The contemporary work on rice to explain arsenic uptake, transport, and metabolism processes at rhizosphere, may help to formulate better plans. Common agronomical practices like rain water harvesting for crop irrigation, use of natural components that help in arsenic methylation, and biotechnological approaches may explore how to reduce arsenic uptake by food crops. This review will encompass the research advances and practical agronomic strategies on arsenic contamination in rice crop.

  15. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery

    Science.gov (United States)

    Moharana, Shreedevi; Dutta, Subashisa

    2016-12-01

    Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.

  16. Future Irrigation Requirement of Rice Under Irrigated Area - Uncertainty through GCMs and Crop Models : A Case Study of Indo-Gangetic Plains of India

    Science.gov (United States)

    Pillai, S. N.; Singh, H.; Ruane, A. C.; Boote, K. G.; Porter, C.; Rosenzweig, C.; Panwar, A. S.

    2017-12-01

    Indo-Gangetic Plains (IGP), the food basket of South Asia, characterised by predominantly cereal-based farming systems where livestock is an integral part of farm economy. Climate change is projected to have significant effects on agriculture production and hence on food and livelihood security because more than 90 per cent farmers fall under small and marginal category. The rising temperatures and uncertainties in rainfall associated with global warming may have serious direct and indirect impacts on crop production. A loss of 10-40% crop production is predicted in different crops in India by the end of this century by different researchers. Cereal crops (mainly rice and wheat) are crucial to ensuring the food security in the region, but sustaining their productivity has become a major challenge due to climate variability and uncertainty. Under AgMIP Project, we have analysed the climate change impact on farm level productivity of rice at Meerut District, Uttar Pradesh using 29 GCMs under RCP4.5 and RCP8.5 during mid-century period 2041-2070. Two crop simulation models DSSAT4.6 and APSIM7.7 were used for impact study. There is lot of uncertainty in yield level by different GCMs and crop models. Under RCP4.5, APSIM showed a declining yield up to 14.5 % while DSSAT showed a declining yield level of 6.5 % only compared to the baseline (1980-2010). However, out of 29 GCMs, 15 GCMs showed negative impact and 14 showed positive impact under APSIM while it showed 21 and 8 GCMs, respectively in the case of DSSAT. DSSAT and APSIM simulated irrigation water requirement in future of the order of 645±75 mm and 730±107 mm, respectively under RCP4.5. However, the same will be of the order of 626 ± 99 mm and 749 ± 147 mm, respectively under RCP8.5. Projected irrigation water productivity showed a range of 4.87-12.15 kg ha-1 mm-1 and 6.77-12.63 kg ha-1 mm-1 through APSIM and DSSAT, respectively under RCP4.5, which stands an average of 7.81 and 8.53 kg ha-1 mm-1 during the

  17. Mutation breeding and studies in wheat and rice

    International Nuclear Information System (INIS)

    Bhagwat, S.G.; Das, B.K.; Suman, Bakshi; Vikash Kumar, K.

    2009-01-01

    Wheat and rice are important part of average Indian diet. Efforts are needed to incorporate resistance to various biotic and abiotic stress factors, quality attributes and higher yield potential in the changing scenario. Radiation induced mutations can play important role in these crops as the variability among the cultivars is low. Mutants in wheat for earliness without affecting quality were selected. Grain shape mutants were isolated using computer based image analysis. In rice mutants with short stature in Basmati type and short stature in salinity tolerant background were isolated. Markers have been developed or validated to facilitate combining stress tolerance/quality and agronomic traits. Studies are underway to understand nature of reduced height mutant in wheat and disease mimic mutants in rice. (author)

  18. Levels and patterns of nucleotide variation in domestication QTL regions on rice chromosome 3 suggest lineage-specific selection.

    Directory of Open Access Journals (Sweden)

    Xianfa Xie

    Full Text Available Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa--indica and tropical japonica--as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups.

  19. Temperatures and the growth and development of maize and rice

    DEFF Research Database (Denmark)

    Sánchez, Berta; Rasmussen, Anton; Porter, John Roy

    2014-01-01

    and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize...... defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models....

  20. Damage of crops by environmental air pollution in Yokkaichi area

    Energy Technology Data Exchange (ETDEWEB)

    Taniyama, T; Sawanaka, K

    1972-01-01

    Crop damage from sulfur dioxide was evaluated in the Yokkaichi area in 1971 by measuring dry matter and seed production. The average concentration of SO/sub 2/ per hour was 0.034 ppM from April to November 1971. There were, however, some cases of monthly hourly averages greater than 0.4 ppM. In these situations damages to major crops was largely due to sulfurous and sulfuric acid mists. The damages to major crops included brown and red spots, apical and peripheral chlorosis, yellowing of leaves, belt-like yellowing of sheath, white or black discoloration of rice plants, nonfertilization of rice plants, apical blight and chlorosis of Welsh onion, partial yellowing and general withering of pine trees in summer (and some death), watering and chlorosis of leaves of brassica species, and yellowing and spot formation on Japanese radishes. Also noted was a decrease in tiller number of rice plants (17.4 in polluted vs. 19.4 in unpolluted areas). Some cases were found in which the sulfur content of SO/sub 2/-damaged crops was higher than that of undamaged crops.

  1. Identification of rice supply chain risk to DKI Jakarta through Cipinang primary rice market

    Science.gov (United States)

    Sugiarto, D.; Ariwibowo, A.; Mardianto, I.; Surjasa, D.

    2018-01-01

    This paper identifies several sources of risks in DKI Jakarta rice supply chain that through Cipinang Primary Rice Market (CPRM). Secondary data from several sources were collected and analysed using pareto chart and time series analysis. Based on the pareto analysis, it was known that there was a change in the order of suppliers whereas in 2011, 80% of the supply came only from Cirebon, Karawang and Bandung (West Java Province). While in 2015 the main source of supply changed to Cirebon, Central Java and Karawang. Linear trend equation using decomposition model for Cirebon and Karawang showed trend of decreasing monthly supply while Central Java had a positive trend. Harvest area of wetland paddy in Cirebon and Karawang showed a negative trend in the last 6 years. The data also showed that West Java Province was the province with the largest rice crop area affected by plant organism attack and drought disaster in 2015. DKI Jakarta had several potential supply chain risks from rice supply, drought risk and pests risk where the province of West Java, which previously could become a major supplier began to require supply assistance from other provinces, especially Central Java.

  2. Exploring the possibility of using digital image processing technique to detect diseases of rice leaf

    OpenAIRE

    S. H Peyman; A Bakhshipour Ziaratgahi; A Jafari

    2016-01-01

    Introduction: Rice is a very important staple food crop provides more than half of the world caloric supply. Rice diseases lead to significant annual crop losses, have negative impacts on quality of the final product and destroy plant variety. Rice Blast is one of the most widespread and most destructive fungal diseases in tropical and subtropical humid areas, which causes significant decrease in the amount of paddy yield and quality of milled rice. Brown spot disease is another important ...

  3. Assessing the impact of climate variability on cropping patterns in Kenya

    Science.gov (United States)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm

  4. Selective intake of potassium from K-bearing silicate minerals by sunflower and upland rice inferred from Eu anomaly. Implication for weathering as a direct consequence of plant physiology

    International Nuclear Information System (INIS)

    Akagi, Tasuku; Saito, Sakura; Watanabe, Shin-ichi; Sugiyama, Megumi; Ae, Noriharu

    2006-01-01

    Two crops (sunflower and upland rice) cultivated using three K-bearing minerals and KCl by Sugiyama and Ae (2000) were analyzed for rare earth elements (REEs). The two crops had been reported by them to general more available silica in soil (especially in the case of sunflower) and absorbed silica in plants (especially in the case of upland rice) than that available originally in soil. The K-bearing minerals included biotite, muscovite, and K-feldspar. The REE patterns of individual crop specimens exhibited different extents of Eu anomaly; upland rice exhibited more varying extent of Eu anomaly than sunflower. It is inferred that REEs released from the K-bearing minerals had a longer contact with soil in the case of sunflower than in the case of upland rice. By the scrutiny of the extent of the Eu anomaly, it was found that upland rice took in K and REEs from all the K-bearing minerals, including hardly-soluble feldspar. Eu anomaly can be a good proxy of sources of inorganic nutrients in plants as well as of the directness of absorption of the nutrients. When the present results are viewed from a different angle, they endorse that plant-induced weathering is equivalent to physiological action of plants. (author)

  5. Functional genomics strategies with transposons in rice

    NARCIS (Netherlands)

    Greco, R.

    2003-01-01

    Rice is a major staple food crop and a recognizedmonocotylenedousmodel plant from which gene function discovery is projected to contribute to improvements in a variety of cereals like wheat and maize. The recent release of rough drafts of the rice genome sequence for public

  6. Dynamics of Phenol Degrading—Iron Reducing Bacteria in Intensive Rice Croopping System

    Institute of Scientific and Technical Information of China (English)

    LUWENJING; W.REICHARDT; 等

    2001-01-01

    Field and greenhouse experiments were conducted to investigate the effects of cropping season,nitrogen fertilizer input and aerated fallow o the dynamics of phenol degrading-iron reducing bacteria(PD-IRB)in tropical irrigated rice(Oryza sativa L.)systems,The PD-IRB population density was monitored at different stages of rice growth in two cropping seasons (dry and early wet) in a continuous annual triple rice cropping system under irrigated condition,In this system,the high nitrogen input (195 and 135 kg N ha-1 in dry and ewt seasons ,respectively)plots and control plots receiving no N fertilizer were compared to investigate the effect of nitrogen rate on population size.The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under croppin systems of tropical irrigated rice.However,density of the bacterial populations varied with rice growth stages.Cropping seasons,rhizosphere,and aerated fallow could affect the dynamics of PD-IRB,In the field trial,viable counts of PD-IRB in the topsoil layer(15 cm)ranged between 102 and 108 cells per gram of dry soil.A steep increase in viable counts during the second half of the cropping season suggested that the population density of PD-IRB increased ant advanced crop-growth stages.Population growth of PD-IRB was accelerated during the dry season compared to the wet season,In the greenhouse experiment,the adjacent aerated fallow revealed 1-2 orders of magnitude higher in most probable number(MPN)of PD-IRB than the wet fallow treated plots.As a prominent group of Fe reducing bacteria,PD-IRB predominated in the rhizosphere of rice,since maximum MPN of PD-IRB (2.62×108 g-1 soil) was found in rhizosphere soil.Mineral N fertilizer rates showed no significant effect on PD-IRB population density.

  7. Impact of Organic Amendments on Global Warming Potential of Diversified Tropical Rice Rotation Systems

    Science.gov (United States)

    Janz, B.; Weller, S.; Kraus, D.; Wassmann, R.; Butterbach-Bahl, K.; Ralf, K.

    2017-12-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, which is forcing farmers to change traditional rice cultivation from flooded double-rice systems to the introduction of well-aerated upland crops during dry season. Emissions of methane (CH4) are expected to decrease, while there is a risk of increasing emissions of nitrous oxide (N2O) and decreasing soil organic carbon (SOC) stocks through volatilization in the form of carbon dioxide (CO2). We present a unique dataset of long-term continuous greenhouse gas emission measurements (CH4 and N2O) in the Philippines to assess global warming potentials (GWP) of diversified rice crop rotations including different field management practices such as straw residue application and legume intercropping. Since 2012, more than four years of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) during dry season have been collected. Introduction of upland crops reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Although dry season N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower annual GWP (CH4 + N2O) as compared to the traditional R-R system. Diversified crop management practices were first implemented during land-preparation for dry season 2015 where i) 6 t/ha rice straw was returned to the field and ii) mungbean was grown as a cover-crop between dry and wet season in addition to rice straw application. The input of organic material (straw and mungbean) led to higher substrate availability for methanogens during the following season. Therefore, GWP was 9-39% higher following straw incorporation than the control treatment. This increase was mainly driven by additional CH4 emissions. Even more, mungbean intercropping further increased GWPs, whereby the increment was highest in R-R rotation (88%) and lowest in R

  8. Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability

    Directory of Open Access Journals (Sweden)

    Yufeng Luo

    2014-09-01

    Full Text Available Rice paddies are artificial wetlands that supply people with food and provide wildlife with habitats, breeding areas, shelters, feeding grounds and other services, and rice paddies play an important part in agricultural ecological systems. However, modern agricultural practices with large-scale intensive farming have significantly accelerated the homogenization of the paddy field ecosystem. Modern agriculture mostly relies on chemically-driven modern varieties and irrigation to ensure high production, resulting in the deterioration and imbalance of the ecosystem. Consequently, outbreaks of diseases, insects and weeds have become more frequent in paddy fields. This paper describes the current situation of rice paddy biodiversity in China and analyzes the community characteristics of arthropods and weedy plants. Meanwhile, we discuss how biodiversity was affected by modern agriculture changes, which have brought about a mounting crisis threatening to animals and plants once common in rice paddies. Measures should be focused to firstly preventing further deterioration and, then, also, promoting restoration processes. Ecological sustainability can be achieved by restoring paddy field biodiversity through protecting the ecological environment surrounding the paddy fields, improving paddy cropping patterns, growing rice with less agricultural chemicals and chemical fertilizers, constructing paddy systems with animals and plants and promoting ecological education and public awareness.

  9. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    Directory of Open Access Journals (Sweden)

    Mingsheng Fan

    Full Text Available OBJECTIVE: China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. METHODS: The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. RESULTS: Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. CONCLUSIONS: Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving

  10. Derivation of Optimal Cropping Pattern in Part of Hirakud Command using Cuckoo Search

    Science.gov (United States)

    Rath, Ashutosh; Biswal, Sudarsan; Samantaray, Sandeep; Swain, Prakash Chandra, PROF.

    2017-08-01

    The economicgrowth of a Nation depends on agriculture which relies on the obtainable water resources, available land and crops. The contribution of water in an appropriate quantity at appropriate time plays avitalrole to increase the agricultural production. Optimal utilization of available resources can be achieved by proper planning and management of water resources projects and adoption of appropriate technology. In the present work, the command area of Sambalpur distribrutary System is taken up for investigation. Further, adoption of a fixed cropping pattern causes the reduction of yield. The present study aims at developing different crop planning strategies to increase the net benefit from the command area with minimum investment. Optimization models are developed for Kharif season using LINDO and Cuckoo Search (CS) algorithm for maximization of the net benefits. In process of development of Optimization model the factors such as cultivable land, seeds, fertilizers, man power, water cost, etc. are taken as constraints. The irrigation water needs of major crops and the total available water through canals in the command of Sambalpur Distributary are estimated. LINDO and Cuckoo Search models are formulated and used to derive the optimal cropping pattern yielding maximum net benefits. The net benefits of Rs.585.0 lakhs in Kharif Season are obtained by adopting LINGO and 596.07 lakhs from Cuckoo Search, respectively, whereas the net benefits of 447.0 lakhs is received by the farmers of the locality with the adopting present cropping pattern.

  11. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.

    Science.gov (United States)

    Jeong, Chang Yoon; Dodla, Syam K; Wang, Jim J

    2016-01-01

    Biochar conversion of sugarcane and rice harvest residues provides an alternative for managing these crop residues that are traditionally burned in open field. Sugarcane leaves, bagasse, rice straw and husk were converted to biochar at four pyrolysis temperatures (PTs) of 450 °C, 550 °C, 650 °C, and 750 °C and evaluated for various elemental, molecular and surface properties. The carbon content of biochars was highest for those produced at 650-750 °C. Biochars produced at 550 °C showed the characteristics of biochar that are commonly interpreted as being stable in soil, with low H/C and O/C ratios and pyrolysis fingerprints dominated by aromatic and polyaromatic hydrocarbons. At 550 °C, all biochars also exhibited maximum CEC values with sugarcane leaves biochar (SLB) > sugarcane bagasse biochar (SBB) > rice straw biochar (RSB) > rice husk biochar (RHB). The pore size distribution of biochars was dominated by pores of 20 nm and high PT increased both smaller and larger than 50 nm pores. Water holding capacity of biochars increased with PT but the magnitude of the increase was limited by feedstock types, likely related to the hydrophobicity of biochars as evident by molecular composition, besides pore volume properties of biochars. Py-GC/MS analysis revealed a clear destruction of lignin with decarboxylation and demethoxylation at 450 °C and dehydroxylation at above 550 °C. Overall, biochar molecular compositions became similar as PT increased, and the biochars produced at 550 °C demonstrated characteristics that have potential benefit as soil amendment for improving both C sequestration and nutrient dynamics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in Northeast India.

    Science.gov (United States)

    Choudhury, Baharul Islam; Khan, Mohammed Latif; Dayanandan, Selvadurai

    2014-06-16

    During the domestication of crops, individual plants with traits desirable for human needs have been selected from their wild progenitors. Consequently, genetic and nucleotide diversity of genes associated with these selected traits in crop plants are expected to be lower than their wild progenitors. In the present study, we surveyed the pattern of nucleotide diversity of two selected trait specific genes, Wx and OsC1, which regulate amylose content and apiculus coloration respectively in cultivated rice varieties. The analyzed samples were collected from a wide geographic area in Northeast (NE) India, and included contrasting phenotypes considered to be associated with selected genes, namely glutinous and nonglutinous grains and colored and colorless apiculus. No statistically significant selection signatures were detected in both Wx and OsC1gene sequences. However, low level of selection that varied across the length of each gene was evident. The glutinous type varieties showed higher levels of nucleotide diversity at the Wx locus (πtot = 0.0053) than nonglutinous type varieties (πtot = 0.0043). The OsC1 gene revealed low levels of selection among the colorless apiculus varieties with lower nucleotide diversity (πtot = 0.0010) than in the colored apiculus varieties (πtot = 0.0023). The results revealed that functional mutations at Wx and OsC1genes considered to be associated with specific phenotypes do not necessarily correspond to the phenotypes in indigenous rice varieties in NE India. This suggests that other than previously reported genomic regions may also be involved in determination of these phenotypes.

  13. Direct use of phosphate rock to improve crop production in Indonesia

    International Nuclear Information System (INIS)

    Sisworo, E.L.; Rasjid, H.; Sisworo, W.H.; Haryanto; Idris, K.

    2002-01-01

    In Indonesia most of the areas left for producing crops have soils such as Ultisols and Oxisols that are highly weathered, acid and of low fertility. One of the main constraints is their low available P to support food crop production. P inputs such as inorganic fertilizers, organic matter, and phosphate rock (PR) must be applied. Phosphate rock is one of the options for farmers to use as a P-source for food crops. In the frame of the coordinated research program three pot and five field experiments were conducted to determine the agronomic effectiveness of PR for food crops using 32 P isotopic techniques. Crops used in the pot experiments were lowland rice, soybean, and mungbean. One of the pot experiments was a crop rotation simulation where upland rice, soybean, and mungbean were grown in sequence. Two of the field experiments were a crop rotation of upland rice, soybean, and mungbean. In the field experiments, 32 P was used to determine the agronomic effectiveness, whenever possible. In general, the direct application of PR was able to increase plant growth in the pot experiments and crop production in the field experiments. Use of 32 P was a good tool to determine the agronomic effectiveness of PR in the pot and field experiments. (author)

  14. Genomics of interaction between the brown planthopper and rice.

    Science.gov (United States)

    Jing, Shengli; Zhao, Yan; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun

    2017-02-01

    Rice (Oryza sativa L.) and the brown planthopper (Nilaparvata lugens (Stål)) form a model system for dissection of the mechanism of interaction between insect pest and crop. In this review, we focus on the genomics of BPH-rice interaction. On the side of rice, a number of BPH-resistance genes have been identified genetically. Thirteen of these genes have been cloned which shed a light on the molecular basis of the interaction. On the aspect of BPH, a lot of salivary proteins have been identified using transcriptome and proteome techniques. The genetic loci of virulence were mapped in BPH genome based on the linkage map. The understanding of interaction between BPH and rice will provide novel insights into efficient control of this pest. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. AFLP-Based Analysis of Genetic Diversity, Population Structure, and Relationships with Agronomic Traits in Rice Germplasm from North Region of Iran and World Core Germplasm Set.

    Science.gov (United States)

    Sorkheh, Karim; Masaeli, Mohammad; Chaleshtori, Maryam Hosseini; Adugna, Asfaw; Ercisli, Sezai

    2016-04-01

    Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs.

  16. Nitrogen fixation in rice systems: State of knowledge and future prospects

    International Nuclear Information System (INIS)

    Ladha, J.K.; Reddy, P.M.

    2001-01-01

    Rice is the most important cereal crop. In the next three decades, the world will need to produce about 60% more rice than today's global production to feed the extra billion people. Nitrogen is the major nutrient limiting rice production. Development of fertilizer-responsive varieties in the Green Revolution, coupled with the realization by farmers of the importance of nitrogen, has led to high rates of N fertilizer use on rice. Increased future demand for rice will entail increased application of fertilizer N. Awareness is growing, however, that such an increase in agricultural production needs to be achieved without endangering the environment. To achieve food security through sustainable agriculture, the requirement for fixed nitrogen must increasingly met by biological nitrogen fixation (BNF) rather than by using nitrogen fixed industrially. It is thus imperative to improve existing BNF systems and develop N 2 -fixing non-leguminous crops such as rice. Here we review the potentials and constraints of conventional BNF systems in rice agriculture, as well as the prospects of achieving in planta nitrogen fixation in rice. (author)

  17. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    Science.gov (United States)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  18. Clustering of 18 Local Black Rice Base on Total Anthocyanin

    Directory of Open Access Journals (Sweden)

    Kristamtini Kristamtini

    2017-10-01

    Full Text Available Black rice has a high anthocyanin content in the pericarp layer, which provides a dark purple color. Anthocyanin serve as an antioxidant that control cholesterol level in the blood, prevent anemia, potentially improve the body's resistance to disease, improve damage to liver cells (hepatitis and chirrosis, prevent impaired kidney function, prevent cancer/tumors, slows down antiaging, and prevent atherosclerosis and cardiovascular disease. Exploration results at AIAT Yogyakarta, Indonesia from 2011 to 2014 obtained 18 cultivar of local black rice Indonesia. The names of the rice are related to the color (black, red or purple formed by anthocyanin deposits in the pericarp layer, seed coat or aleuron. The objective of the study was to classify several types of local black rice from explorations based on the total anthocyanin content. The study was conducted by clustering analyzing the total anthocyanin content of 18 local black rice cultivars in Indonesia. Cluster analysis of total anthocyanin content were done using SAS ver. 9.2. Clustering dendogram shows that there were 4 groups of black rice cultivars based on the total anthocyanin content. Group I consists of Melik black rice, Patalan black rice, Yunianto black rice, Muharjo black rice, Ngatijo black rice, short life of Tugiyo black rice, Andel hitam 1, Jlitheng, and Sragen black rice. Group II consists of Pari ireng, Magelang black hairy rice, Banjarnegara-Wonosobo black rice, and Banjarnegara black rice. Group III consists of NTT black rice, Magelang non hairy black rice, Sembada hitam, and longevity Tugiyo black rice. Group IV consist only one type of black rice namely Cempo ireng. The grouping result indicate the existence of duplicate names among the black rice namely Patalan with Yunianto black rice, and short life Tugiyo with Andel hitam 1 black rice.

  19. Rice value chain analysis in Tanzania: identification of constraints ...

    African Journals Online (AJOL)

    The importance of rice (Oryza sativa L.) as a food and cash crop in Eastern Africa, is increasing, but its value chain is becoming complex. In 2012/13, rice value chain analysis was conducted in rice farming systems of Lake, Eastern and Southern-Highlands zones of Tanzania. A sample of 240 producers, 60 traders and 30 ...

  20. Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts

    Science.gov (United States)

    Dhekale, B. S.; Nageswararao, M. M.; Nair, Archana; Mohanty, U. C.; Swain, D. K.; Singh, K. K.; Arunbabu, T.

    2017-08-01

    The Extended Range Forecasts System (ERFS) has been generating monthly and seasonal forecasts on real-time basis throughout the year over India since 2009. India is one of the major rice producer and consumer in South Asia; more than 50% of the Indian population depends on rice as staple food. Rice is mainly grown in kharif season, which contributed 84% of the total annual rice production of the country. Rice cultivation in India is rainfed, which depends largely on rains, so reliability of the rainfall forecast plays a crucial role for planning the kharif rice crop. In the present study, an attempt has been made to test the reliability of seasonal and sub-seasonal ERFS summer monsoon rainfall forecasts for kharif rice yield predictions at Kharagpur, West Bengal by using CERES-Rice (DSSATv4.5) model. These ERFS forecasts are produced as monthly and seasonal mean values and are converted into daily sequences with stochastic weather generators for use with crop growth models. The daily sequences are generated from ERFS seasonal (June-September) and sub-seasonal (July-September, August-September, and September) summer monsoon (June to September) rainfall forecasts which are considered as input in CERES-rice crop simulation model for the crop yield prediction for hindcast (1985-2008) and real-time mode (2009-2015). The yield simulated using India Meteorological Department (IMD) observed daily rainfall data is considered as baseline yield for evaluating the performance of predicted yields using the ERFS forecasts. The findings revealed that the stochastic disaggregation can be used to disaggregate the monthly/seasonal ERFS forecasts into daily sequences. The year to year variability in rice yield at Kharagpur is efficiently predicted by using the ERFS forecast products in hindcast as well as real time, and significant enhancement in the prediction skill is noticed with advancement in the season due to incorporation of observed weather data which reduces uncertainty of

  1. Amendment of Acid Soils with Crop Residues and Biochars

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-Hua; XU Ren-Kou; WANG Ning; LI Jiu-Yu

    2011-01-01

    The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor affecting their liming potential,and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.

  2. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  3. Indica rice (Oryza sativa, BR29 and IR64).

    Science.gov (United States)

    Datta, Karabi; Datta, Swapan Kumar

    2006-01-01

    Rice is the world's most important food crop. Indica-type rice provides the staple food for more than half of the world population. To satisfy the growing demand of the ever-increasing population, more sustained production of indica-type rice is needed. In addition, because of the high per capita consumption of indica rice, improvement of any traits including its nutritive value may have a significant positive health outcome for the rice-consuming population. Rice yield productivity is greatly affected by different biotic stresses, like diseases and insect pests, and abiotic stresses like drought, cold, and salinity. Attempts to improve resistance in rice to these stresses by conventional breeding through introgression of traits have limited success owing to a lack of resistance germplasm in the wild relatives. Gene transfer technology with genes from other sources can be used to make rice plants resistant or tolerant to insect pests, diseases, and different environmental stresses. For improving the nutritional value of the edible endosperm part of the rice, genes for increasing iron, beta-carotene, or better quality protein can be introduced in rice plants by genetic engineering. Different crops have been transformed using various gene transfer methods, such as protoplast transformation, biolistic, and Agrobacterium-mediated transformation. This chapter describes the Agrobacterium-mediated transformation protocol for indica-type rice. The selectable marker genes used are hygromycin phosphotransferase (hpt), neomycin phosphotransferase (nptII), or phosphomannose isomerase (pmi), and, accordingly, the selection agents are hygromycin, kanamycin (G418), or mannose, respectively.

  4. Soil quality assessment of rice production systems in South of Brazil

    OpenAIRE

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2006-01-01

    Soil quality, as a measure of the soil capacity to function, can be quantified by indicators based on physical, chemical and biological properties. Maintaining soil quality at a desirable level in the rice cropping system is a very complex issue due to the nature of the production systems used. In the state of Rio Grande do Sul, Brazil, rice production is one of the most important agricultural activities in the region. The study presented here was conducted with the following objectives: (i) ...

  5. Safety assessment of lepidopteran insect-protected transgenic rice with cry2A* gene.

    Science.gov (United States)

    Zou, Shiying; Huang, Kunlun; Xu, Wentao; Luo, Yunbo; He, Xiaoyun

    2016-04-01

    Numerous genetically modified (GM) crops expressing proteins for insect resistance have been commercialized following extensive testing demonstrating that the foods obtained from them are as safe as that obtained from their corresponding non-GM varieties. In this paper, we report the outcome of safety studies conducted on a newly developed insect-resistant GM rice expressing the cry2A* gene by a subchronic oral toxicity study on rats. GM rice and non-GM rice were incorporated into the diet at levels of 30, 50, and 70% (w/w), No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. These results demonstrate that the GM rice with cry2A* gene is as safe for food as conventional non-GM rice.

  6. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.

    Science.gov (United States)

    Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund

    2005-10-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.

  7. Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach

    Directory of Open Access Journals (Sweden)

    Sanzidur Rahman

    2016-04-01

    Full Text Available The present study jointly determines the factors influencing decisions to diversify into multiple food crops (i.e., rice, yam and cassava vis-à-vis profitability of 400 farmers from Ebonyi and Anambra states of Southeastern Nigeria using a multivariate Tobit model. Model diagnostic reveals that the decisions to diversify into multiple crops and profits generated therefrom are significantly correlated, thereby justifying use of a multivariate approach. Results reveal that 68% of the farmers grew at least two food crops and profitability is highest for only rice producers followed by joint rice and yam producers, which are mainly for sale. Farm size is the most dominant determinant of crop diversity vis-à-vis profitability. A rise in the relative price of plowing significantly reduces profitability of yam and rice. High yield is the main motive for growing yam and cassava whereas ready market is for rice. Other determinants with varying level of influences are proximity to market and/or extension office, extension contact, training, agricultural credit, subsistence pressure and location. Policy recommendations include investments in market infrastructure and credit services, land and/or tenurial reform and input price stabilization to promote food crop diversity vis-à-vis profitability in Southeastern Nigeria.

  8. Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions.

  9. Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Li; Deng, Fei; Ren, Wan-Jun; Yang, Wen-Yu

    2013-01-01

    Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions.

  10. Integrated Soil, Water and Nitrogen Management For Sustainable Rice–Wheat Cropping System in Pakistan

    International Nuclear Information System (INIS)

    Hussain, F.; Yasin, M.; Gurmani, A.R.; Zia, M.S.

    2016-01-01

    The area under the rice–wheat (R–W) cropping system in Pakistan is about 2.2 Mha and despite its great importance as staple foods for the local population, the productivity of the system is poor due to several constraints. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) are normally grown in sequence on the same land in the same year. Field experiments with rice and wheat were conducted during four years on a Typic Halorthid soil at Lahore, in the alluvial plain of Punjab, Pakistan to assess nitrogen use efficiency and water productivity under both traditional and emerging crop establishment methods (raised beds, unpuddled soil, direct seeding). The climate in this region is semiarid. The experimental design was a randomized complete block design with five crop establishment methods as treatments and four replications. One micro-plot was laid down in each main plot to apply 15 N labelled urea (5 atom % 15 N). Both wheat and rice received a uniform application of 120 kg N ha -1 as urea, 30 kg P ha -1 as triple super phosphate, 50 kg K ha -1 as potassium sulphate and 5 kg Zn ha -1 as zinc sulphate. Pooled data of wheat grown in 2002–03, 2004–05 and 2005–06 showed that the highest wheat grain yield (3.89 t ha -1 ) was produced with conventional flatbed sowing (well pulverised soil) followed by raised bed sowing (3.79–3.82 t ha -1 ), whereas the lowest yield (3.45 t ha -1 ) was obtained in flat bed sowing with zero till rice in sequence. The highest rice paddy yield (4.15 t ha -1 ) was achieved with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest paddy yield (3.57 t ha -1 ) was recorded with direct seeding of rice in zero tilled soil. Total N uptake in wheat was maximum (117 kg ha -1 ) with conventional flatbed sowing and it was lowest with zero tilled soil. The highest total N uptake by rice (106 kg ha -1 ) was recorded with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest (89 kg ha -1 ) with

  11. Less adaption of newly approved variety Basmati 515 among aromatic basmati rice varieties in Kallar Tract of Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Latif

    2017-12-01

    Full Text Available A field survey was conducted after harvesting of rice crop 2016 to identify the reasons for less adaption of aromatic rice variety Basmati 515. The rice growers adopting rice-wheat cropping pattern in kallar tract were included in population of research study. Thirty male farmers from each selected district making a total of 180 respondent farmers were interviewed by convenience sampling method. The survey findings showed that the aromatic rice variety Basmati 515 was cultivated on only 2.7% rice area while maximum area (47.3% was under Super basmati variety. The comparison of Basmati 515 was made with Super basmati and PS 2 due to comparatively more cultivated area and declared yield potential of these varieties. Overall the farmers were applying under dosed phosphorus fertilizer (DAP as 0.25, 0.20 and 0.22 bag ha-1 respectively for basmati 515, super basmati and PS-2 varieties. The descriptive analysis showed that the less adaptability of basmati 515 was due to less yield and more attacks of borer (11%, BLB (10% and leaf roller (3.25% in comparison to other aromatic and fine rice varieties. Similarly maximum lodging (16% was recorded on basmati 515. Maximum yield was estimated for PS 2 variety (4.7 t ha-1 followed by super basmati (4.0 t ha-1 and basmati 515 (3.78 t ha-1. The market price of super basmati was still higher due to its natural aroma, long & thin grain and export demand. The research institutes should focus for development of new aromatic high yielding and more qualitative rice varieties to increase the rice production and export.

  12. Crop Dominance Mapping with IRS-P6 and MODIS 250-m Time Series Data

    Directory of Open Access Journals (Sweden)

    Murali Krishna Gumma

    2014-04-01

    Full Text Available This paper describes an approach to accurately separate out and quantify crop dominance areas in the major command area in the Krishna River Basin. Classification was performed using IRS-P6 (Indian Remote Sensing Satellite, series P6 and MODIS eight-day time series remote sensing images with a spatial resolution of 23.6 m, 250 m for the year 2005. Temporal variations in the NDVI (Normalized Difference Vegetation Index pattern obtained in crop dominance classes enables a demarcation between long duration crops and short duration crops. The NDVI pattern was found to be more consistent in long duration crops than in short duration crops due to the continuity of the water supply. Surface water availability, on the other hand, was dependent on canal water release, which affected the time of crop sowing and growth stages, which was, in turn, reflected in the NDVI pattern. The identified crop-wise classes were tested and verified using ground-truth data and state-level census data. The accuracy assessment was performed based on ground-truth data through the error matrix method, with accuracies from 67% to 100% for individual crop dominance classes, with an overall accuracy of 79% for all classes. The derived major crop land areas were highly correlated with the sub-national statistics with R2 values of 87% at the mandal (sub-district level for 2005–2006. These results suggest that the methods, approaches, algorithms and datasets used in this study are ideal for rapid, accurate and large-scale mapping of paddy rice, as well as for generating their statistics over large areas. This study demonstrates that IRS-P6 23.6-m one-time data fusion with MODIS 250-m time series data is very useful for identifying crop type, the source of irrigation water and, in the case of surface water irrigation, the way in which it is applied. The results from this study have assisted in improving surface water and groundwater irrigated areas of the command area and also

  13. Maintaining or Abandoning African Rice: Lessons for Understanding Processes of Seed Innovation

    NARCIS (Netherlands)

    Teeken, B.W.E.; Nuijten, H.A.C.P.; Temudo, M.P.; Okry, F.; Mokuwa, G.A.; Struik, P.C.; Richards, P.

    2012-01-01

    Rice breeding and crop research predominantly emphasize adaptation to ecological conditions. Based on qualitative and quantitative research conducted between 2000 and 2012 we show how ecological factors, combined with socioeconomic variables, cultural norms and values, shape the use and development

  14. Prospects for Genetic Improvement in Internal Nitrogen Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2017-10-01

    Full Text Available While improving the efficiency at which rice plants take up fertiliser nitrogen (N will be critical for the sustainability of rice (Oryza sativa L. farming systems in future, improving the grain yield of rice produced per unit of N accumulated in aboveground plant material (agronomic N use efficiency; NUEagron through breeding may also be a viable means of improving the sustainability of rice cropping. Given that NUEagron (grain yield/total N uptake is a function of harvest index (HI; grain yield/crop biomass × crop biomass/total N uptake, and that improving HI is already the target of most breeding programs, and specific improvement in NUEagron can only really be achieved by increasing the crop biomass/N uptake. Since rice crops take up around 80% of total crop N prior to flowering, improving the biomass/N uptake (NUEveg prior to, or at, flowering may be the best means to improve the NUEagron. Ultimately, however, enhanced NUEagron may come at the expense of grain protein unless the N harvest index increases concurrently. We investigated the relationships between NUEagron, total N uptake, grain yield, grain N concentration (i.e., protein and N harvest index (NHI in 16 rice genotypes under optimal N conditions over two seasons to determine if scope exists to improve the NHI and/or grain protein, while maintaining or enhancing NUEagron in rice. Using data from these experiments and from an additional experiment with cv. IR64 under optimum conditions at an experimental farm to establish a benchmark for NUE parameters in high-input, high yielding conditions, we simulated theoretical potential improvements in NUEveg that could be achieved in both low and high-input scenarios by manipulating target NHIs and grain protein levels. Simulations suggested that scope exists to increase grain protein levels in low yielding scenarios with only modest (5–10% reductions in current NUEagron by increasing the current NHI from 0.6 to 0.8. Furthermore

  15. Impact of mutation breeding in rice

    International Nuclear Information System (INIS)

    Rutger, J.N.

    1992-01-01

    More cultivars have been developed in rice through the use of mutation breeding than in any other crop. Direct releases of mutants as cultivars began some 30 years ago, and now total 198 cultivars. During the last 20 years, increasing use has been made of induced mutants in cross-breeding programs, leading to 80 additional cultivars. Principal improvements through mutation breeding have been earlier maturity, short stature, and grain character modifications. Rice has been a popular subject of mutagenesis because it is the world's leading food crop, has diploid inheritance, and is highly self-pollinated. In recent years induced mutation has been exploited to develop breeding tool mutants, which are defined as mutants that in themselves may not have direct agronomic application but may be useful genetic tools for crop improvement. Examples include the eui gene, hull colour mutants, normal genetic male steriles, and environmentally sensitive genetic male steriles. The environmentally sensitive genetic male steriles, especially those in which male sterility can be turned on or off by different photoperiod lengths, show promise for simplifying hybrid rice seed production both in China and the USA. Future applications of mutation in rice include induction of unusual endosperm starch types, plant types with fewer but more productive tillers, dominant dwarfs, dominant genetic male steriles, extremely early maturing mutants, nutritional mutants, and in vitro-derived mutants for tolerance to herbicides or other growth stresses. Refs, 4 figs, 2 tabs

  16. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    Science.gov (United States)

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha -1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha -1 straw incorporation and 300 kg ha -1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  17. Spatio-Temporal Changes in the Rice Planting Area and Their Relationship to Climate Change in Northeast China: A Model-Based Analysis

    NARCIS (Netherlands)

    Xia, T.; Wu, W.; Zhou, Q.; Yu, Q.; Verburg, P.H.; Yang, P.; Lu, Z.F.; Tang, H.J.

    2014-01-01

    Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so,

  18. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses

    NARCIS (Netherlands)

    Hartman, Y.; Uwimana, B; Hooftman, D.A.P.; Schranz, M.E.; van de Wiel, C.C.M.; Smulders, M.J.M.; Visser, R.G.F.; van Tienderen, P.H.

    2013-01-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL)

  19. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on

  20. Climate Change Implications to Irrigated Rice Production in Southern Brazil: A Modelling Approach

    Science.gov (United States)

    Dos Santos, Thiago

    Rice is one of the staple foods for more than three billion people worldwide. When cultivated under irrigated conditions (i.e. lowland rice), rice is one of the most intensive water consumer crops globally. Therefore, representation of rice growth should be integrated into the latest land surface models to allow studies on food security and to ensure that accurate simulations of the bidirectional feedbacks between the land surface and atmosphere take place. In this study, I present a new process-based model for rice fields that includes rice growth and rice irrigation as modules within the Agro-IBIS dynamic agro-ecosystem model. The model includes a series of equations, agricultural management parameters and an irrigation scheme that are specifically tailored for rice crops. The model was evaluated against leaf area index and biomass observations, obtained for one growing season in Rio Grande do Sul state (southern Brazil), and in Los Banos, Philippines. The model accurately captured the temporal dynamics of leaf area index in both the Brazilian and the Philippine sites, and predicted end-of-season biomass with an error of between -9.5% and 11.3% depending on the location and the plant organ. Rice phenology is predicted by the model based on experimentally-derived growth rates, and was evaluated by comparing simulated and observed durations of the four growth phases considered by the model. Agro-IBIS showed a tendency to overestimate the duration of the growth stages between 3% and 16%, but underestimated by 8% the duration of the panicle formation phase in one growing season. The new irrigation model is based on the water balance at the surface and applies irrigation in order to keep the water layer at the paddy field always in the optimum level. A set of climate projections from global climate models under two emission scenarios, and excluding and considering CO2 fertilizations effects, was used to drive the updated Agro-IBIS to estimate the effects of climate

  1. Leaf application of silicic acid to upland rice and corn

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2013-12-01

    Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.

  2. Agriculture and crop science in China:Innovation and sustainability

    Institute of Scientific and Technical Information of China (English)

    Yunbi Xu; Jiayang Li; Jianmin Wan

    2017-01-01

    The International Crop Science Congress (ICSC) is a regularly held event allowing crop scientists to integrate current knowledge into a global context and international applications. The 7th ICSC was held on August 14–19, 2016 in Beijing, China, with the theme "Crop Science: Innovation and Sustainability". As a companion production for this great congress, the nine papers collected in this special issue feature important fields of crop science in China. This editorial first briefly introduces the 7th ICSC, followed by a brief discussion of the current status of, constraints to, and innovations in Chinese agriculture and crop science. Finally, the main scientific points of the papers published in this special issue are surveyed, covering important advances in hybrid rice breeding, minor cereals, food legumes, rapeseed, crop systems, crop management, cotton, genomics-based germplasm research, and QTL mapping. In a section describing future prospects, it is indicated that China faces a full transition from traditional to modern agriculture and crop science.

  3. Radiation induced mutant crop varieties: accomplishment and societal deployment

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane

  4. Long Term Evaluation of Yield Stability Trend for Cereal Crops in Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2016-05-01

    Full Text Available During the last few decades cereals yield have increased drastically at the national level however, information about yield stability and its resistance to annual environmental variability are scare. In this study long term stability of grin yield of wheat, barley, rice, corn and overall cereals in Iran were evaluated during a 40-year period (1971-2011. Stability analysis was conducted using two different methods. In the first method the residuals of regression between crop yield and time (years were calculated as stability index. For this different segmented regression models including linear, bi-linear and tri-linear were fitted to yield trend data and the best model for each crop was selected based on statistical measures. Absolute residuals (the difference between actual and predicted yields for each year as well as relative residuals (absolute residuals as percent of predicted yield were estimated. In the second method yield stability was estimated from the slope of the regression line between average annual yield of all cereals (environmental index and the yield of each crop in the same year. Results indicted that in wheat and barley absolute and relative residuals were increased during the study period leading to reduction of stability despite considerable yield increment. However, for rice and corn residuals followed a decreasing trend and therefore yield stability of these crops was increased during the last 40 years. The same result was obtained with the environmental index but in this method reduction of yield stability in barley was lower than wheat. Based on the results, yield and yield stability of cereals crops in Iran increased during the last 40 years. However, the percentage increase in stability is lower than that of yield. Application of nitrogen fertilizers was led to reduction in stability. Yield stability of wheat, barley, rice, corn and overall cereals was improved with increasing their cultivated area.

  5. Transgenic strategies to confer resistance against viruses in rice plants

    Directory of Open Access Journals (Sweden)

    Takahide eSasaya

    2014-01-01

    Full Text Available Rice (Oryza sativa L. is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. In an effort to improve control, many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA-interference (RNAi, also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral Achilles’ heel gene to target for RNAi attack when engineering plants.

  6. [Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping].

    Science.gov (United States)

    Wang, Cong; Shen, Jian-Lin; Zheng, Liang; Liu, Jie-Yun; Qin, Hong-Ling; Li, Yong; Wu, Jin-Shui

    2014-08-01

    A field experiment was carried out to study the effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions, which were measured using the static chamber/gas chromatography method, and their global warming potentials in typical paddy fields with double-rice cropping in Hunan province. The results showed that the combined applications of pig manure and chemical fertilizers did not change the seasonal patterns of CH4 and N2O emissions from paddy soils, but significantly changed the magnitudes of CH4 and N2O fluxes in rice growing seasons as compared with sole application of chemical fertilizers. During the two rice growing seasons, the cumulative CH4 emissions for the pig manure and chemical nitrogen (N) fertilizer each contributing to 50% of the total applied N (1/2N + PM) treatment were higher than those for the treatments of no N fertilizer (ON), half amount of chemical N fertilizer (1/2N) and 100% chemical N fertilizer (N) by 54.83%, 33.85% and 43.30%, respectively (P global warming potential (GWP) in both rice growing seasons, which contributed more than 99% to the integrated GWP of CH4 and N2O emissions for all the four treatments. Both GWP and yield-scaled GWP for the treatment of 1/2N + PM were significantly higher than the other three treatments. The yield-scaled GWP for the treatment of 1/2N + PM was higher than those for the N, 1/2N and ON treatments by 58.21%, 26.82% and 20. 63%, respectively. Therefore, combined applications of pig manure and chemical fertilizers in paddy fields would increase the GWP of CH4 and N2O emissions during rice growing seasons and this effect should be considered in regional greenhouse gases emissions inventory.

  7. Biological efficiency of component crops in different geometrical patterns of wheat-linseed intercropping

    International Nuclear Information System (INIS)

    Nazir, M. S.; Saeed, M.; Khan, I.; Ghaffar, A.

    2005-01-01

    An experiment to determine the biological efficiency and agro-economic relationships of component crops in wheat-linseed intercropping under different geometrical patterns, was conducted on sandy-clay loam soil at Faisalabad (Pakistan). Wheat was sown in 100-cm spaced 4, 6, 8, and 10 row strips and was intercropped with three rows of linseed. The component crops were also grown alone in 30-cm spaced single row. Wheat grain yield was reduced by 25.6%, 19.2%, 14.7% and 11.9% by intercropping linseed in wheat grown in the pattern of 4, 6 and 10-row strips, respectively. However, at the cost of this much reduction in wheat yield, linseed gave an additional yields of 516, 412, 335 kg/ha in the respective patterns which resulted in yield advantages of 41%, 31%, 29% and 27%, respectively over sole cropping of wheat. Intercropping also generated higher net monetary gain/ha (Rs. 12378-12826) than monocropped wheat (Rs. 11034) and linseed (Rs. 4249). (author)

  8. Direct use of phosphate rock to improve crop production in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sisworo, E L; Rasjid, H; Sisworo, W H; Haryanto, [Batan, Center for the application of isotopes and radiation, Jakarta (Indonesia); Idris, K [Bogor Agriculture Institute, Bogor (Indonesia)

    2002-02-01

    In Indonesia most of the areas left for producing crops have soils such as Ultisols and Oxisols that are highly weathered, acid and of low fertility. One of the main constraints is their low available P to support food crop production. P inputs such as inorganic fertilizers, organic matter, and phosphate rock (PR) must be applied. Phosphate rock is one of the options for farmers to use as a P-source for food crops. In the frame of the coordinated research program three pot and five field experiments were conducted to determine the agronomic effectiveness of PR for food crops using {sup 32}P isotopic techniques. Crops used in the pot experiments were lowland rice, soybean, and mungbean. One of the pot experiments was a crop rotation simulation where upland rice, soybean, and mungbean were grown in sequence. Two of the field experiments were a crop rotation of upland rice, soybean, and mungbean. In the field experiments, {sup 32}P was used to determine the agronomic effectiveness, whenever possible. In general, the direct application of PR was able to increase plant growth in the pot experiments and crop production in the field experiments. Use of {sup 32}P was a good tool to determine the agronomic effectiveness of PR in the pot and field experiments. (author)

  9. Carbon dioxide (CO2) levels this century will significantly deplete the nutritional quality of rice affecting the health of rice-dependent populations

    Science.gov (United States)

    Globally, rice is the primary food crop and caloric source for the least economically developed countries, especially in Asia. Although studies have explored the impacts of increased carbon dioxide concentration, [CO2] and climate change on rice production, there is limited quantification of the di...

  10. The role of strigolactones and the fungal microbiome in rice during drought adaptation

    NARCIS (Netherlands)

    Andreo Jimenez, Beatriz

    2017-01-01

    Rice is the most important food crop in the world, feeding over half the world’s population. However, rice water use efficiency, defined by units of yield produced per unit of water used, is the lowest of all crops. The aim of this thesis was to study the effect of plant hormones and the root

  11. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    Science.gov (United States)

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.

  12. Evaluation of Heavy Metals Contamination from Environment to Food Matrix by TXRF: The Case of Rice and Rice Husk

    Directory of Open Access Journals (Sweden)

    Fabjola Bilo

    2015-01-01

    Full Text Available This paper is devoted to the chemical analysis of contaminated soils of India and the rice grown in the same area. Total reflection X-ray fluorescence spectroscopy is a well-established technique for elemental chemical analysis of environmental samples, and it can be a useful tool to assess food safety. Metals uptake in rice crop grown in soils from different areas was studied. In this work soil, rice husk and rice samples were analyzed after complete solubilization of samples by microwave acid digestion. Heavy metals concentration detected in rice samples decreases in the following order: Mn > Zn > Cu > Ni > Pb > Cr. The metal content in rice husk was higher than in rice. This study suggests, for the first time, a possible role of heavy metals filter played by rice husk. The knowledge of metals sequestration capability of rice husk may promote some new management practices for rice cultivation to preserve it from pollution.

  13. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  14. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    Science.gov (United States)

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  15. Genetic Architecture of Grain Chalk in Rice and Interactions with a Low Phytic Acid Locus

    Science.gov (United States)

    Grain quality characteristics have a major impact on the value of the harvested rice crop. In addition to grain dimensions which determine rice grain market classes, translucent milled kernels are also important for assuring the highest grain quality and crop value. Over the last several years, ther...

  16. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    Science.gov (United States)

    Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops. PMID:16187411

  17. Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14

    Directory of Open Access Journals (Sweden)

    Selvaraj eKrithika

    2016-04-01

    Full Text Available Zinc (Zn deficiency in major food crops has been considered as an important factor affecting the crop production and subsequently the human health. Rice (Oryza sativa is sensitive to Zn deficiency and thereby causes malnutrition to most of the rice-eating Asian populations. Application of zinc solubilizing bacteria (ZSB could be a sustainable agronomic approach to increase the soil available Zn which can mitigate the yield loss and consequently the nutritional quality of rice. Understanding the molecular interactions between rice and unexplored ZSB is useful for overcoming Zn deficiency problems. In the present study, the role of zinc solubilizing bacterial strain Enterobacter cloacae strain ZSB14 on regulation of Zn-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP genes in rice under iron sufficient and deficient conditions was assessed by quantitative real-time reverse transcription PCR. The expression patterns of OsZIP1, OsZIP4 and OsZIP5 in root and shoot of rice were altered due to the Zn availability as dictated by Zn sources and ZSB inoculation. Fe sufficiency significantly reduced the root and shoot OsZIP1 expression, but not the OsZIP4 and OsZIP5 levels. Zinc oxide in the growth medium up-regulated all the assessed ZIP genes in root and shoot of rice seedlings. When ZSB was inoculated to rice seedlings grown with insoluble zinc oxide in the growth medium, the expression of root and shoot OsZIP1, OsZIP4 and OsZIP5 was reduced. In the absence of zinc oxide, ZSB inoculation up-regulated OsZIP1 and OsZIP5 expressions. Zinc nutrition provided to the rice seedling through ZSB-bound zinc oxide solubilization was comparable to the soluble zinc sulphate application which was evident through the ZIP genes’ expression and the Zn accumulation in root and shoot of rice seedlings. These results demonstrate that zinc solubilizing bacteria could play a crucial role in zinc fertilization and fortification of rice.

  18. Root activity patterns of some tree crops

    International Nuclear Information System (INIS)

    1975-01-01

    A coordinated research programme was followed using a soil injection method which employed 32 P-labelled superphosphate solution. The technique was applied for determining the root activity distribution of various crops. Field experiments were carried out in Uganda on bananas, Spain and Taiwan on citrus, Ghana on cocoa, Columbia and Kenya on coffee, and Ivory Coast and Malaysia on oil palms, to study the patterns of root activity as a function of depth and distance from the tree base, soil type, tree age and season. A few weeks after injection, leaf samples of similar age were taken from well-defined morphological positions on the tree and analyzed for 32 P. The activity of the label in the sample reflects the root activity at the various positions in the soil. Some preliminary experiments were also carried out using 32 P-superphosphate to evaluate the efficiency of different methods of fertilizer placement in relation to phosphate uptake by the plantation as a whole

  19. Tillering and panicle branching genes in rice.

    Science.gov (United States)

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing

    2014-03-01

    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Promising mutant variety of rice evolved through gamma irradiation

    International Nuclear Information System (INIS)

    Prasad, S.C.; Sinha, S.K.

    1980-01-01

    Rice occupies a major share in crop production in the Chotanagpur plateau of Bihar State. Uplands are roughly 40% in area where traditional low yielding rice, known as ''gora'' is cultivated as directly sown crop. Despite introduction of high yielding rice varieties, gora group of rices continue to prevail. It is therefore desired to increase the productivity level of the gora rice by mutation breeding. One such mutant known as ''gora mutant'' was obtained through gamma irradiation (10 kR) of variety Brown gora. The maturity of both parent and mutant remaining constant (ie. 100 days), there is some improvement in other characteristics like plant height, tillering capacity and kernel character. The parent being tall, shy in tillering and red bold kernel, the mutant has dwarfish characteristics, profuse tillering habit and white kernel with fine grains. The yielding capacity of mutant derivative is 30-40% higher than the parent Brown gora. This variety is in pre-release stage, and the farmers have taken great liking for it. (author)

  1. Life cycle assessment of rice straw-based power generation in Malaysia

    International Nuclear Information System (INIS)

    Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I.

    2014-01-01

    This paper presents an application of LCA (Life Cycle Assessment) with a view to analyzing the environment aspects of rice straw-based power generation in Malaysia. It also compares rice straw-based power generation with that of coal and natural gas. GHG (Greenhouse gas) emission savings were calculated. It finds that rice straw power generation can save GHG (greenhouse gas) emissions of about 1.79 kg CO 2 -eq/kWh compared to coal-based and 1.05 kg CO 2 -eq/kWh with natural gas based power generation. While the development of rice straw-based power generation in Malaysia is still in its early stage, these paddy residues offer a large potential to generate electricity because of their availability. Rice straw power plants not only could solve the problem of removing rice straw from fields without open burning, but also could reduce GHG emissions that contribute to climate change, acidification, and eutrophication, among other environmental problems. - Highlights: • Overall rice straw preparations contribute 224.48 g CO 2 -eq/kg rice straw. • The most constraints due to GHG (greenhouse gas) emission is from transportation. • Distance collection centre to plant less than 110 km to obtains minimum emissions. • Rice straw can save GHG emissions 1.79 kg CO 2 -eq/kWh compared to coal power. • GHG saving 1.05 kg CO 2 -eq/kWh compared to natural gas based power generation

  2. Rice Production without Insecticide in Smallholder Farmer's Field

    Directory of Open Access Journals (Sweden)

    M. P. Ali

    2017-05-01

    Full Text Available Highlights:Use of perching, sweeping, and need based insecticide (IPM technique useage produce at par yields compared to prophylactic insecticide useage in rice fields.There exists a technique that can reduce 75% of insecticide useage in rice field.The results were obtained in cooperation between smallholder rice farmers and researchers of Bangladesh.Currently rice protection from insect pests solely depends on chemical pesticides which have tremendous impact on biodiversity, environment, animal, and human health. To reduce their impact from our society we need to cut pesticide use from agricultural practices. To address this issue, we did an experiment to identify realistic solutions that could help farmers build sustainable crop protection systems and minimize useage of insecticides and thus reduce the impact of pesticides in the environment. Innovations developed jointly by farmers and researchers and evaluated for their potential to be adopted by more farmers. In this paper we tested four management practices jointly with smallholder farmer fields in order to select the best one. Four management practices were used namely, T1 = Prophylactic use of insecticide where insecticide was applied in rice field at every 15 days interval without judging the infestation level; T2 = Perching (that is, placing roosting (perching sites for insectivorous birds within the rice field and concurrent sweep net samples along with need-based insecticide application; T3 = Perching only; and T4 = Farmer's own practices. The results revealed that routine application of insecticides for crop protection is not mandatory which is commonly found at use in rice farmers. In our experiment, where prophylactic method or farmers used 3–4 times insecticides without judging the insect pests infestation level, the similar pest population was found when compared to the field where insecticide was not applied. Our management system reduced by 75% the use of insecticides even

  3. Rice status and microwave characteristics: Analysis of rice paddy fields at Kojima Bay [Okayama, Japan] using multi-frequency and polarimetric Pi-SAR radar data images

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.

    2003-01-01

    Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at

  4. CROP SPECIES RECOGNITION AND DISCRIMINATION PADDY-RICE-GROWINGFIELDS FROM REAPED-FIELDS BY THE RADAR VEGETATION INDEX (RVI OF ALOS-2/PALSAR2

    Directory of Open Access Journals (Sweden)

    Y. Yamada

    2016-06-01

    Full Text Available The Japanese ALOS-2 satellite was launched on May 24th, 2014. It has the L-band SAR, PALSAR-2. Kim,Y. and van Zyl, J.J. proposed a kind of Radar Vegetation Index (RVI as RVI = 8 * σ0hv / (σ0hh + σ0vv + 2* σ0hv by L-band full-polarimetric radar data. Kim, Y. and Jackson, T.J., et al. applied the equation into rice and soybean by multi-frequency polarimetric scatterometer above 4.16 meters from the ground. Their report showed the L-band was the most promising wave length for estimating LAI and NDVI from RVI. The author tried to apply the analysis to the actual paddy field areas, both Inashiki region and Miyagi region in the eastern main island, “Honshu”, areas of Japan by ALOS-2/PALSAR-2 full-polarimetry data in the summer season, the main crop growing time, of 2015. Judging from conventional methods, it will be possible to discriminate paddy rice growing fields from reaped fields or the other crops growing fields by the PALSAR-2 data. But the RVI value is vaguely related to such land use or biomass at the present preliminary experiment. The continuous research by the additional PALSAR-2 full-polarimetry data should be desired.

  5. Econometric Model of Rice Policy Based On Presidential Instruction

    Science.gov (United States)

    Abadi Sembiring, Surya; Hutauruk, Julia

    2018-01-01

    The objective of research is to build an econometric model based on Presidential Instruction rice policy. The data was monthly time series from March 2005 to September 2009. Rice policy model specification using simultaneous equation, consisting of 14 structural equations and four identity equation, which was estimated using Two Stages Least Squares (2SLS) method. The results show that: (1) an increase of government purchasing price of dried harvest paddy has a positive impact on to increase in total rice production and community rice stock, (2) an increase community rice stock lead to decrease the rice imports, (3) an increase of the realization of the distribution of subsidized ZA fertilizers and the realization of the distribution of subsidized NPK fertilizers has a positive impact on to increase in total rice production and community rice stock and to reduce rice imports, (4) the price of the dried harvest paddy is highly responsive to the water content of dried harvest paddy both the short run and long run, (5) the quantity of rice imported is highly responsive to the imported rice price, both short run and long run.

  6. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice.

    Science.gov (United States)

    Bessho-Uehara, Kanako; Wang, Diane R; Furuta, Tomoyuki; Minami, Anzu; Nagai, Keisuke; Gamuyao, Rico; Asano, Kenji; Angeles-Shim, Rosalyn B; Shimizu, Yoshihiro; Ayano, Madoka; Komeda, Norio; Doi, Kazuyuki; Miura, Kotaro; Toda, Yosuke; Kinoshita, Toshinori; Okuda, Satohiro; Higashiyama, Tetsuya; Nomoto, Mika; Tada, Yasuomi; Shinohara, Hidefumi; Matsubayashi, Yoshikatsu; Greenberg, Anthony; Wu, Jianzhong; Yasui, Hideshi; Yoshimura, Atsushi; Mori, Hitoshi; McCouch, Susan R; Ashikari, Motoyuki

    2016-08-09

    Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.

  7. Distributional patterns of fall armyworm parasitoids in a corn field and pasture field in Florida

    Science.gov (United States)

    An assessment of parasitoids and their selective patterns among Spodoptera frugiperda corn and rice host strains was performed from August 2008-August 2010 in a corn crop and a grass pasture in northern Florida under different seasonal conditions (spring and fall). Sentinel larvae from our laborator...

  8. Patterns of Cereal Yield Growth across China from 1980 to 2010 and Their Implications for Food Production and Food Security.

    Science.gov (United States)

    Li, Xiaoyun; Liu, Nianjie; You, Liangzhi; Ke, Xinli; Liu, Haijun; Huang, Malan; Waddington, Stephen R

    2016-01-01

    After a remarkable 86% increase in cereal production from 1980 to 2005, recent crop yield growth in China has been slow. County level crop production data between 1980 and 2010 from eastern and middle China were used to analyze spatial and temporal patterns of rice, wheat and maize yield in five major farming systems that include around 90% of China's cereal production. Site-specific yield trends were assessed in areas where those crops have experienced increasing yield or where yields have stagnated or declined. We find that rice yields have continued to increase on over 12.3 million hectares (m. ha) or 41.8% of the rice area in China between 1980 and 2010. However, yields stagnated on 50% of the rice area (around 14.7 m. ha) over this time period. Wheat yields increased on 13.8 m. ha (58.2% of the total harvest area), but stagnated on around 3.8 m. ha (15.8% of the harvest area). Yields increased on a smaller proportion of the maize area (17.7% of harvest area, 5.3 m. ha), while yields have stagnated on over 54% (16.3 m. ha). Many parts of the lowland rice and upland intensive sub-tropical farming systems were more prone to stagnation with rice, the upland intensive sub-tropical system with wheat, and maize in the temperate mixed system. Large areas where wheat yield continues to rise were found in the lowland rice and temperate mixed systems. Land and water constraints, climate variability, and other environmental limitations undermine increased crop yield and agricultural productivity in these systems and threaten future food security. Technology and policy innovations must be implemented to promote crop yields and the sustainable use of agricultural resources to maintain food security in China. In many production regions it is possible to better match the crop with input resources to raise crop yields and benefits. Investments may be especially useful to intensify production in areas where yields continue to improve. For example, increased support to maize

  9. Yield loss and economic thresholds of yellow nutsedge in irrigated rice as a function of the onset of flood irrigation

    Directory of Open Access Journals (Sweden)

    Nixon da Rosa Westendorff

    2014-03-01

    Full Text Available Yellow nutsedge (Cyperus esculentus is adapted to flooding and reduces yield in irrigated rice. Information on the competitive ability of this weed with the crop and the size of the economic damage caused is lacking. Mathematical models quantify the damage to crops and support control decision-making. This study aimed to determine yield losses and economic thresholds (ET of this weed in the culture according to weed population and time of onset of irrigation of the crop. The field study was conducted in the agricultural year of 2010/2011 in Pelotas/RS to evaluate the competitive ability of BRS Querência in competition with different population levels of yellow nutsedge and two periods of onset of flood irrigation (14 and 21 days after emergence. The hyperbolic model satisfactorily estimated yield losses caused by yellow nutsedge. Population of yellow nutsedge was the variable most fitted to the model. The delay of seven days for the beginning of rice irrigation causes decrease in competitive ability of BRS Querência, and based on the ET calculated to the price paid for rice, it is necessary between two and thirteen plants m-2 weed to justify the control in the first and second period of irrigation, respectively. Increases in yield, price paid for rice and control efficiency of the herbicide, besides reduction of costs of controlling promote reduction of ET of yellow nutsedge in rice crops, justifying the adoption of control measures even at smaller weed population.

  10. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  11. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  12. Laboratory Screening for Resistance in Rice to Rice Stem Borer Chilo Suppressalis Walker

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2004-01-01

    Rice stem borer Chilo suppressalis Walker is one of the major insect pests in rice in Indonesia. The use of insect pest resistant variety of rice is one of the effective techniques against pests. Breeding of resistance to insect pests rice crops often faced difficulties in obtaining a lot of insect amounts due to the unavailability of enough number insects pests in the field so that a laboratory bioassay is needed. In this experiments five rice varieties were used: a Pelita I/1, Atomita I, Cisadane, Cisanggarung, and IR 36. Rice seedling 7 days of age were put in 1 liter plastic vials for rice resistance test against the attack of insect pest C. suppressalis. The parameters observed were larval and pupal viability, pupal weight, and eggs production. The larval and pupal viability which were reared on of Pelita I/1 and Atomita I rice seedlings were 68.5 % - 55.5 % and 57.3 % - 46.7 % respectively. The respective lowest percentages were found in IR 36 which was about 41.3 % - 29.8 % .The experiment results on the parameters of pupal weight and egg production showed similar results to that on the parameters of larval and pupal viability. Rice variety of IR 36 showed more resistance to the other varieties, while Pelita I/1 and Atomita I showed the most susceptible to the attack of insect pest C. suppressalis. (author)

  13. Mechanisms of flood tolerance in wheat and rice

    DEFF Research Database (Denmark)

    Herzog, Max

    Most crops are sensitive to excess water, and consequently floods have detrimental effects on crop yields worldwide. In addition, global climate change is expected to regionally increase the number of floods within decades, urging for more flood-tolerant crop cultivars to be released. The aim...... of this thesis was to assess mechanisms conferring rice (Oryza sativa) and wheat (Triticum aestivum) flood tolerance, focusing on the role of leaf gas films during plant submergence. Reviewing the literature showed that wheat germplasm holds genetic variation towards waterlogging (soil flooding), and highlighted...... that the contrasting submergence tolerance could rather be governed by tolerance to radical oxygen species or contrasting metabolic responses (other than carbohydrate consumption) to ethylene accumulation. Manipulating leaf gas film presence affected wheat and rice submergence tolerance such as plant growth...

  14. GROWTH AND YIELD OF ORGANIC RICE WITH COW MANURE APPLICATION IN THE FIRST CROPPING SEASON

    Directory of Open Access Journals (Sweden)

    Wahyu Arif Sudarsono

    2014-02-01

    Full Text Available The study was addressed to investigating the effect of cow manure application rate on organic rice growth and yield in the first cropping season. The study was conducted from January to April 2012 in Blora, Central Java, Indonesia. The experiment was arranged in Randomized Complete Block Design, consisting of four treatments and four replications. There were two types of control treatments i.e. organic fertilizer treatments (statistically analyzed and conventional fertilizer (not statistically analyzed. The treatments were corn biomass, corn biomass+cow manure (7.5 tons ha-1, corn biomass+cow manure (10 tons ha-1 and cow manure (10 tons ha-1 with square spacing of 20 cm x 20 cm. The organic control treatments were corn biomass+sheep manure (7.5 tons ha-1 with spacing of 20 cm x 20 cm and corn biomass+cow manure (7.5 tons ha-1 with double-row spacing of 40 cm x 25 cm x 15 cm. For every treatment, the rate of corn biomass was 3 tons ha-1. All organic treatments were also added with 3 tons rice hull ash ha-1. The application of cow manure (10 tons ha-1 with square spacing or corn biomass+cow manure (7.5 tons ha-1 with double-row spacing resulted in better performance than those of other treatments.

  15. Looking Inward to the Use of Unmanned Aerial Vehicle (UAV) for Rice Production Assessment in Indonesia

    Science.gov (United States)

    Komaladara, A. A. S. P.; Ambarawati, I. G. A. A.; Wijaya, I. M. A. S.; Hongo, C.; Mirah Adi, A. A. A.

    2015-12-01

    Rice is the main source of carbohydrate for most Indonesians. Rice production has been very dynamic due to improved infrastructure, research and development, and better farm management. However, rice production is susceptible to loss caused by drought, pest and disease attack and climate change. With the growing concern on sustainable and self-reliance food production in the country, there is an urgency to encourage research and efforts to increase rice productivity. Attempts to provide spatial distribution of rice fields on high resolution optical remote sensing data have been employed to some extent, however this technology could be costly. The use of UAV has been introduced to estimate damage ratio in rice crop recently in Indonesia. This technology is one of the ways to estimate rice production quicker, cost-saving and before harvesting time. This study aims to analyze spatio temporal and damage ratio of rice crop using UAV in Indonesia. The study empirically presents the use of UAV (Phantom 2 Vision +) on rice fields to the soil condition and development of management zone map in Bali as an example. The study concludes that the use of UAV allows researchers to pin point characteristics of crop and land in a specific area of a farm. This will then allow researchers to assist farmers in implementing specific and appropriate solutions to production issues. Key words: UAV, rice production, damage ratio

  16. Dynamic models of farmers adaptation to climate change (case of rice farmers in Cemoro Watershed, Central Java, Indonesia)

    Science.gov (United States)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Farming activities are generally very sensitive to climate change variations. Global climate change will result in changes of patterns and distribution of rainfall. The impact of changing patterns and distribution of rainfall is the occurrence of early season shifts and periods of planting. Therefore, farmers need to adapt to the occurrence of climate change to avoid the decrease productivity on the farm land. This study aims to examine the impacts of climate change adaptation that farmers practiced on the farming productivity. The analysis is conducted dynamically using the Powersim 2.5. The result of analysis shows that the use of Planting Calendar and Integrated Crops Management technology can increase the rice productivity of certain area unity. Both technologies are the alternatives for farmers to adapt to climate change. Both farmers who adapt to climate change and do not adapt to climate change, experience an increase in rice production, time after time. However, farmers who adapt to climate change, increase their production faster than farmers who do not adapt to climate change. The use of the Planting Calendar and Integrated Crops Management strategy together as a farmers’ adaptation strategy is able to increase production compared to non-adaptive farmers.

  17. Application of Radiation Degraded Chitosan as Plant Growth Promoter. A Pilot Scale Production and Field Trial Study of Radiation Processed Chitosan as Plant Growth Promoter for Rice Crops

    International Nuclear Information System (INIS)

    Dahlan, Khairul Zaman Hj Mohd; Hashim, Kamaruddin; Bahari, Kamarudin

    2010-01-01

    The application of radiation processed chitosan as plant growth promoter has been carried out in the 24 hectares of rice crops. For the field trial, a pilot scale production of oligochitosan was established using gamma irradiation for partial degradation of chitosan powder of DDA 90% and followed by gamma irradiation of aqueous solution of 3% irradiated chitosan powder in 2% lactic acids (3CL2). Radiation dose of 50 kGy was selected for initial degradation of chitosan powder and followed by 12 kGy irradiation of 3CL2. A viscosity average molecular weight of ~10,000 of oligochitosan was obtained and subsequently used in the field trial of MR219 type of rice seeds on 24 hectares of rice plots. The seedlings were carried out after the rice seeds were soaked 24hrs in water and 30 minutes in 200ppm oligochitosan. The rice plots that were sprayed with oligochitosan were found to have higher resistant towards blast diseases. Oligochitosan of 40ppm was found to be effective as fungicides and resulted in the increase of yield of rice seeds of about 5%. (author)

  18. Mercury flow through an Asian rice-based food web

    International Nuclear Information System (INIS)

    Abeysinghe, Kasun S.; Qiu, Guangle; Goodale, Eben; Anderson, Christopher W.N.; Bishop, Kevin; Evers, David C.; Goodale, Morgan W.; Hintelmann, Holger; Liu, Shengjie

    2017-01-01

    Mercury (Hg) is a globally-distributed pollutant, toxic to humans and animals. Emissions are particularly high in Asia, and the source of exposure for humans there may also be different from other regions, including rice as well as fish consumption, particularly in contaminated areas. Yet the threats Asian wildlife face in rice-based ecosystems are as yet unclear. We sought to understand how Hg flows through rice-based food webs in historic mining and non-mining regions of Guizhou, China. We measured total Hg (THg) and methylmercury (MeHg) in soil, rice, 38 animal species (27 for MeHg) spanning multiple trophic levels, and examined the relationship between stable isotopes and Hg concentrations. Our results confirm biomagnification of THg/MeHg, with a high trophic magnification slope. Invertivorous songbirds had concentrations of THg in their feathers that were 15x and 3x the concentration reported to significantly impair reproduction, at mining and non-mining sites, respectively. High concentrations in specialist rice consumers and in granivorous birds, the later as high as in piscivorous birds, suggest rice is a primary source of exposure. Spiders had the highest THg concentrations among invertebrates and may represent a vector through which Hg is passed to vertebrates, especially songbirds. Our findings suggest there could be significant population level health effects and consequent biodiversity loss in sensitive ecosystems, like agricultural wetlands, across Asia, and invertivorous songbirds would be good subjects for further studies investigating this possibility. - Highlights: • Hg concentrations were measured across rice-based food webs in Guizhou, China. • Of 38 animal species, THg concentrations were highest for invertivorous songbirds. • High THg levels in rice pests and in granivorous birds suggest rice as a source. • Levels of THg in songbird feathers at mining site were among highest ever recorded. • Even at non-mining site, THg in such

  19. A global sensitivity analysis of crop virtual water content

    Science.gov (United States)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  20. Soil quality assessment of rice production systems in South of Brazil

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2007-01-01

    Soil quality, as a measure of the soil capacity to function, can be quantified by indicators based on physical, chemical and biological properties. Maintaining soil quality at a desirable level in the rice cropping system is a very complex issue due to the nature of the production systems used. In

  1. A rapid and efficient method to study the function of crop plant transporters in Arabidopsis

    Science.gov (United States)

    Iron (Fe) is an essential micronutrient for humans. Fe deficiency disease is wide-spread and has lead to extensive studies on the mechanisms of Fe uptake and storage, especially in staple food crops such as rice. However, studies of functionally related genes in rice and other crops are often time a...

  2. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice.

    Science.gov (United States)

    Fan, Yourong; Zhang, Qifa

    2018-03-01

    A review on photoperiod and temperature-sensitive genic male sterility in rice. Male sterility in plants, facilitating the development of hybrid crops, has made great contribution to crop productivity worldwide. Environment-sensitive genic male sterility (EGMS), including photoperiod-sensitive genic male sterility (PGMS) and temperature-sensitive genic male sterility (TGMS), has provided a special class of germplasms for the breeding of "two-line" hybrids in several crops. In rice, the finding of the PGMS NK58S mutant in 1973 started the journey of research and breeding of two-line hybrids. Genetic and molecular characterization of these germplasms demonstrated diverse genes and molecular mechanisms of male sterility regulation. Two loci identified from NK58S, PMS1 and PMS3, both encode long noncoding RNAs. A major TGMS locus, TMS5, found in the TGMS line Annong S-1, encodes an RNase Z. A reverse PGMS mutant carbon starved anther encodes an R2R3 MYB transcription factor. Breeding efforts in the last three decades have resulted in hundreds of EGMS lines and two-line hybrids released to rice production, which have greatly elevated the yield potential and grain quality of rice varieties. The enhanced molecular understanding will offer new strategies for the development of EGMS lines thus further improving two-line hybrid breeding of rice as well as other crops.

  3. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Buendia, L.V.; Neue, H.U.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  4. Rice yield prediction from yield components and limiting factors

    NARCIS (Netherlands)

    Casanova, D.; Goudriaan, J.; Catala Former, M.M.; Withagen, J.C.M.

    2002-01-01

    This article aims to quantify growth at field level in relation to crop status and soil properties in irrigated direct-seeded rice. Forty fields were selected in the Ebro Delta (Spain). Rice growth was monitored and soil properties measured. Yield was related to soil properties by a deductive

  5. The road to micronutrient biofortification of rice:Progress and prospects

    Directory of Open Access Journals (Sweden)

    Khurram eBashir

    2013-02-01

    Full Text Available Biofortification (Increasing the contents of vitamins and minerals through plant breeding or biotechnology of food crops with micronutrient elements has the potential to combat widespread micronutrient deficiencies in humans. Rice (Oryza sativa L. feeds more than half of the world’s population and is used as a staple food in many parts of Asia. As in other plants, micronutrient transport in rice is controlled at several stages, including uptake from soil, transport from root to shoot, careful control of subcellular micronutrient transport, and finally, and most importantly, transport to seeds. To enhance micronutrient accumulation in rice seeds, we need to understand and carefully regulate all of these processes. During the last decade, numerous attempts such as increasing the contents/expression of genes encoding metal chelators (mostly phytosiderophores and metal transporters; overexpressing Fe storage protein ferritin and phytase were successfully undertaken to significantly increase the micronutrient content of rice. However, despite the rapid progress in biofortification of rice, the commercialization of biofortified crops has not yet been achieved. Here, we briefly review the progress in biofortification of rice with micronutrient elements (Fe, Zn and Mn and discuss future prospects to mitigate widespread micronutrient deficiencies in humans.

  6. CERTIFICATION OF ORGANIC AGRICULTURE FOR RICE PRODUCTION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Dedik Budianta

    2016-11-01

    Full Text Available To make better the life, it is required safety foods for health. The health foods can be satisfied by organic farming. Organic farming is farming system based on biomass recycling or eliminating the use of materials as a synthetic agrochemical inputs. To determine whether the result of rice called as an organic product needs to be certified by the Organic Certification Board (OCB. According to the Indonesian National Standard (INS 6729: 2013, organic farming systems (OFS are not only limited to not use material agrochemical synthetic, but must meet the requirements of OFS in rice production ranging from cultivating, handling, storage, processing, transportation, labeling, marketing, production facilities and other materials that are allowed start on farm to off farm should be separated from conventional agriculture. The farm is just a negate the use of synthetic agrochemicals without regard to the cultivation process and the system of post-harvest organic results are said to be premium food which is not as organic food, because organic food is food produced from OFS by applying processing practices to preserve the ecosystem of sustainable, control of weeds, pests, diseases, selection and crop rotation, water management, land preparation and planting and the use of biological materials. Thus the system of organic agriculture is a holistic management system to improve and develop the agro-ecosystem health, including biodiversity, biological cycles and soil biological activity. The first step that must be done is the conversion of land for food crops from anorganic to organic farming for 2 years did not get the requisite amount of agrochemical applied to the soil for annual crop and 3 years for perennial crops. If agriculture in paddy soil can control the conventional farms into OFS, then the resulting rice is as an organic product.

  7. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae)

    Science.gov (United States)

    The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability o...

  8. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Yukihiro Yoshimura

    Full Text Available Black rice (Oryza sativa L. Japonica contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS.

  9. Mapping of Biophysical Parameters of Rice Agriculture System from Hyperspectral Imagery

    Science.gov (United States)

    Moharana, Shreedevi; Duta, Subashisa

    2017-04-01

    Chlorophyll, nitrogen and leaf water content are the most essential parameters for paddy crop growth. Ground hyperspectral observations were collected at canopy level during critical growth period of rice by using hand held Spectroradiometer. Chemical analysis was carried out to quantify the total chlorophyll, nitrogen and leaf water content. By exploiting the in-situ hyperspectral measurements, regression models were established between each of the crop growth parameters and the spectral indices specifically designed for chlorophyll, nitrogen and water stress. Narrow band vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the modified simple ratio (SR) and leaf nitrogen concentration (LNC) predictive index models, which followed a linear and nonlinear relationship respectively, produced satisfactory results in predicting rice nitrogen content from hyperspectral imagery. The presently developed model was compared with other models proposed by researchers. It was ascertained that, nitrogen content varied widely from 1-4 percentage and only 2-3 percentage for paddy crop using present modified index models and well-known predicted Tian et al. (2011) model respectively. The modified present LNC index model performed better than the established Tian et al. (2011) model as far as the estimated nitrogen content from Hyperion imagery was concerned. Moreover, within the observed chlorophyll range attained from the rice genotypes cultivated in the studied rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) accomplished satisfactory results in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content widely varied from 1.77-5.81 mg/g (LNC), 3.0-13 mg/g (OASVI) and 2.90-5.40 mg/g (MTCI). Following the similar guideline, it was found that normalized difference water index (NDWI) and normalized

  10. Air Toxics Emissions from Open Burning of Crop Residues in Southeast Asia

    Science.gov (United States)

    KIM Oanh, N. T.; Permadi, D. A.; Hopke, P. K.; Smith, K. R.; Nguyet, D. A.

    2016-12-01

    Agricultural crops production in Southeast Asia (SEA) increases annually to meet domestic consumption of growing population and also for export. Crop residue open burning (CROB) is commonly practiced by farmers to quickly dispose of huge amounts of the agricultural waste, such as rice straw, generated after each crop cycle. This CROB activity emits various toxic air pollutants as well as short-lived climate pollutants such as black carbon particles. Our study focused on quantifying the 2015 annual emissions of semi-volatile organic compounds including polycyclic aromatic hydrocarbons (PAHs), dioxins/furans (PCDD/PCDF), organochlorine pesticides (OCP), along with other conventional trace gases, particulate matter, and greenhouse gases from CROB in 10 major agricultural crop producing SEA countries. Crop production statistics and current field OB practices were gathered from our primary surveys and relevant secondary data sources. Emission factors for rice straw and maize residue burning were taken mainly from our measurements in Thailand while for other crops relevant published data were used. The best emission estimates of air toxics from CROB in SEA were 112 g-TEQ/yr of PCDD/PCDF, 33 t/yr of OCP, and 25 Gg/yr of total PAH of which the well-known carcinogenic benzo[a]pyrene was 0.3 Gg/yr. The CROB of rice production had the highest shares of emissions (33-95%) among considered 8 crop types. Indonesia was the top contributor to the total SEA emissions (30-45%) followed by Vietnam (16-26%), Thailand (6-22%) and Myanmar (5-18%). The spatial distributions of emissions, 0.1º x 0.1º, for each specie were prepared using MODIS land cover data. Temporally, higher emissions were observed in the harvesting months of the main rice crops. This emissions database can be used in regional air quality modeling studies to assess the impacts of CROB activity and to promote non-open burning alternatives.

  11. New strategy for the determination of gliadins in maize- or rice-based foods matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: fractionation of gliadins from maize or rice prolamins by acidic treatment.

    Science.gov (United States)

    Hernando, Alberto; Valdes, Israel; Méndez, Enrique

    2003-08-01

    A procedure for determining small quantities of gliadins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) in gluten-free foods containing relatively large amounts of prolamin proteins from maize or rice is described. We report for the first time that gliadins, the ethanol-soluble wheat prolamin fraction, can be quantitatively solubilized in 1.0 M acetic acid, while the corresponding ethanol-soluble maize or rice prolamin fraction remains insoluble in acetic acid. We describe a methodology for the detection of gliadins in maize and rice foods based on a two-step procedure of extraction (60% aqueous ethanol followed by 1 M acetic acid). Subsequent MALDI-TOFMS analysis of the resulting acidic extract from these gluten-free foods clearly confirms the presence of a typical mass pattern corresponding to gliadin components, ranging from 30 to 45 kDa. Depending on the percentages of maize or rice flours employed in the elaboration of these foods, the combined procedure enables levels of gliadins from 100 to 400 ppm to be detected. The efficiency of this combined procedure corroborates enzyme-linked immunosorbent assay data for a large number of maize/rice gluten-free foods by means of direct visualization of the characteristic gliadin mass pattern in maize or rice foods. Copyright 2003 John Wiley & Sons, Ltd.

  12. A spectral analysis of rice grains

    International Nuclear Information System (INIS)

    McIlvaine, M.S.; Cua, F.T.; Navarro, E.F.

    1976-06-01

    With the advent of extensive nuclear testing and the development and use of highly potent pesticides and fertilizers, the hazardous threats of radioactive contamination due to fallout and to the absorption of pesticide residues have been given due consideration. Among the many forms of life exposed to these threats are food crops and among these is rice. Several rice grain samples - Japanese rice samples ''A'' and ''B'' submitted by the National Grains Authority (NGA) for analysis, random samples of rice being sold to the public at local markets, and ''black rice'' which were picked from along the shores of a Mindoro town were subjected to spectral analysis. Results revealed the presence of trace elements normally found in plants, such as; K-42, I-124, Cl-38, Na-24, Br-82, and Mn-56. No mercury was detected in the sample specimen analyzed

  13. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  14. Management of crop residues for sustainable crop production. Results of a co-ordinated research project 1996-2001

    International Nuclear Information System (INIS)

    2003-05-01

    -residue management practice. More than 30% of N was lost from crop residues. When N was applied as crop residues, its retention in the soil was higher than for fertilizer N, but its recovery by plants was poor, as mentioned above. These results highlight the importance of investigating fertilizer-management practices to minimize the losses, especially during the early part of the cropping season. Application of straw resulted in increases in grain yields of rice and wheat of about 10% in experiments conducted in China. However, in general, addition of straw did not increase crop yields in other locations. This is encouraging, as initial immobilization of N due to application of high inputs of carbon through residues did not exhibit negative effects on crop yields. The experiments in India demonstrated simple practices, using wheat and rice residues, to produce compost as an alternative to stubble burning. Such practices can have important implications apart from the desired maintenance of soil organic matter and improving plant growth. For example, approximately 12 million tonnes of rice and wheat straw are burnt annually in Punjab, India, causing atmospheric pollution and producing over 28 million tonnes of carbon dioxide, a greenhouse gas. In addition, various gaseous forms of N are emitted during burning, representing a loss of $17 million in fertilizer equivalents and significant pollution of the environment by nitrous oxide. The results obtained from crop-residue application studies are of importance for residue-management practices. There is an increasing need for such information as in many countries new legislation has been introduced to ban the on-site burning of crop residues, for environmental reasons. Moreover, this CRP demonstrated the use of 15 N techniques for investigating the fate of N in crop residues and fertilizers under different management practices and cropping systems, which will be useful for other related CRPs on agroforestry, rainfed and rice

  15. Impact of land fragmentation on rice producers' technical efficiency in South-East China

    NARCIS (Netherlands)

    Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu Futian, F.

    2010-01-01

    Rice farming is important for income generation in large parts of China and Asia. This paper uses detailed household, crop- and plot-level data to investigate the levels and determinants of rice producers’ technical efficiency for three villages with different characteristics in a major rice-growing

  16. Concentration of radiocesium in rice, vegetables, and fruits cultivated in evacuation area at Okuma town, Fukushima

    International Nuclear Information System (INIS)

    Ohse, Kenji; Kitayama, Kyo; Kanno, Akira; Suzuki, Chika; Kawatsu, Kencho; Tsukada, Hirofumi; Suenaga, Seiichi; Matsumoto, Kiyoyuki

    2013-01-01

    Rice, vegetables, and fruits were cultivated in the evacuation area at Okuma town, and the radiocesium concentration of the crop samples cultivated in contaminated and decontaminated soil was compared. Decrease of the concentration in every crop by decontamination was observed. The TF of brown rice was higher than previous reports. (author)

  17. The deposition of radioiodine onto rice plant from atmosphere

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Muramatsu, Yasuyuki; Yoshida, Satoshi; Sumiya, Misako; Ohmomo, Yoichiro.

    1994-01-01

    Radiation dose estimations are usually made with the aid of assessment models in which model parameters such as the transfer factors of radionuclides from one environmental compartment to another are involved. In simple models the parameters are often described as the concentration ratio of a radionuclide between two compartments, when the system is under equilibrium condition. In this paper, the authors introduce the values of the parameters of radioiodine obtained by tracer experiments. Laboratory experiments on the transfer parameters of radionuclides from the atmosphere to rice plant were carried out in the atmosphere-to-crops system (deposition pathway). It is known that the typical chemical species of gaseous iodine in the atmosphere are elemental iodine (I 2 ) and methyliodide (CH 3 I). The deposition characteristics of both chemical species of gaseous iodine to rice grains were obtained. Mass normalized deposition velocity (V D ) and grain number normalized deposition velocity (V S ) of gaseous elemental iodine (I 2 ) and also methyliodide (CH 3 I) on unhulled rice were measured. Both V D and V S of methyliodide were about one percent of those of elemental iodine. Distribution pattern of methyliodide between unhulled rice and brown rice was significantly lower than that of elemental one. For wet deposition, we investigated the retention of radioiodines (iodide [I - ] and iodate [IO 3 - ] on rice grains and their translocation from the surface of the grains to brown rice. Though the ears were dipped into the solution containing 125 I - or 125 IO 3 - more than 15 min., both iodine species in the solutions were hardly taken up to the rice grains. The transfer rates of iodide and iodate, which are defined as 'the amount of the iodine in brown rice' divided by 'the amount of iodide in unhulled rice' were about 0.015 and 0.04, respectively. The rates were not changed with time after the radioiodine application. (author)

  18. Identification of Morphological Character and Esterase Isozyme Pattern in Second-Generation Black Rice Plant Irradiated to Gamma Rays

    Science.gov (United States)

    Hartanti, R. S.; Putri, T. A. N.; Zulfa, F.; Sutarno; Suranto

    2017-04-01

    Black rice is one of the functional foods due to its high anthocyanin content. Black rice grain was irradiated by gamma rays with a dose of 200 Gy and 300 Gy. The main purpose of this irradiation is to induce mutation to the black rice plant in order to achieve the improved organism. This study was undertaken to elucidate the morphological character and esterase isozyme pattern of black rice plant after irradiated by gamma rays. There were morphological differences on leaves, stems and grains between irradiated and non irradiated black rice plant. Gamma radiation dose of 200 Gy showed the significant influence of the length of the stem, number of internodes, and length of leaves. The radiation dose of 300 Gy showed the significant influence of the decrease value of diameter of 3rd internodes, number of branches and width of leaves. Flowering time is getting faster as increasing radiation dose. At the age of 74 days after planting there are 9.15% plants of 200 Gy radiation dose that have flowered faster than normal plants. This value increased into 11.45% at the dose of radiation 300 Gy. There were differences in the esterase banding pattern between radiation dose of 200 Gy and 300 Gy than the control plants, indicated that randomly mutation has occurred.

  19. Swamp Rice Production in Ogun Waterside Local Government Area ...

    African Journals Online (AJOL)

    This study examined the economics of swamp rice production among peasant farmers in the Waterside Local Government Area of Ogun State for 2001 cropping year. A total of 50 swamp rice farmers were randomly selected from 5 villages using multistage sampling technique. The data collected, with the aid of ...

  20. Role of varieties in sustainable rice production in Malaysia

    International Nuclear Information System (INIS)

    Othman Omar; Saad Abdullah

    2002-01-01

    Rice is the staple food of Malaysians. Rice production in Malaysia is concentrated in granary areas, which are provided with irrigation facilities. There is no plan to increase the size or the number of these granary areas, thus productivity per unit area must be increased to sustain the current level of self-sufficiency. Variety determines the potential productivity; environment and crop management determine how much of this potential is realized. Crop management is very important, as any drop in the level of management will effect productivity. However there are characteristics / factors that can be incorporated into varieties which can buffer the effect of environment and crop management. Pests and diseases can result in severe yield loss and lead to non-sustainable production. Varietal resistance to some of these diseases can be incorporated into rice varieties. Active breeding to incorporate rice resistance to blast, PMV (tungro), bacterial blight and brown planthopper is being currently carried out Factors that determine or justify the active breeding status are: importance of Oe pests diseases, resistance sources and the availability of efficient screening procedure. Sheath blight is also an important disease in direct seeded crops as it can cause severe yield loss, but good resistant sources are not available for incorporation and the screening procedure is also not very efficient. Biotechnologists are working hard to introduce resistance from other crops and also develop other resistance mechanisms for sheath blight. Water, shortage or excess, is a major cause of non-sustainable production. The breeding of short-term varieties can overcome water problems or shortages. Negative interaction between varietal characteristics and environment do occur. Finally farmers have to decide which factors of the environment cannot be easily controlled, and choose the correct varieties in order to achieve sustainable production. (Author)

  1. Determinants of Pesticide Use in Food Crop Production in Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Sanzidur Rahman

    2018-02-01

    Full Text Available The present study examines pesticide use in producing multiple food crops (i.e., rice, yam, and cassava and identifies the range of socio-economic factors influencing pesticide use by 400 farmers from Ebonyi and Anambra states of Southeastern Nigeria using a Tobit model. Results reveal that 68% of the farmers grew at least two food crops. Overall, 41% of the farmers applied pesticides in at least one food crop, whereas 70% of the farmers producing both rice and yam applied pesticides. Pesticide use rates and costs vary significantly amongst farmers producing different food crops and crop combinations. Pesticide use rate is highest for producing yam followed by cassava estimated at 1.52 L/ha costing Naira 1677.97 per ha and 1.37 L/ha costing Naira 1514.96 per ha. Similarly, pesticide use rate is highest for the farmers that produce both yam and cassava followed by farmers that produce both rice and cassava. The inverse farm size–pesticide use rate exists in the study areas, i.e., the pesticide use rate is highest for the small farmers (p < 0.01. Farmers seem to treat pesticides as substitutes for labor and ploughing services, indicated by the significant positive influence of labor wage and ploughing price on pesticide use. Increases in yam price significantly increase pesticide use. Rice production significantly increases pesticide use, whereas cassava production significantly reduces pesticide use. Male farmers use significantly more pesticides. Farming experience is significantly positively related to pesticide use. Policy recommendations include land reform policies aimed at increasing farm operation size and investment in programmes to promote cassava production to reduce pesticide use in food crop production in Southeastern Nigeria.

  2. Modeling the spatial distribution of crop cultivated areas at a large regional scale combining system dynamics and a modified Dyna-CLUE: A case from Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mesgari, I.; Saeed Jabalameli, M.

    2017-07-01

    Agricultural land use pattern is affected by many factors at different scales and effects that are separated by time and space. This will lead to simulation models that optimize or project the cropping pattern changes and incorporate complexities in terms of details and dynamics. Combining System Dynamics (SD) and a modified Conversion of Land Use and its Effects (CLUE) modelling framework, this paper suggests a new dynamic approach for assessing the demand of different crops at country-level and for predicting the spatial distribution of cultivated areas at provincial scale. As example, a case study is presented for Iran, where we have simulated a scenario of future cropping pattern changes during 2015–2040.The results indicated a change in the spatial distribution of cultivated areas during the next years. An increase in the proportion of rice is expected in northern Iran, whereas the proportion of wheat is increasing in the mountainous western areas. Wheat and barley crops are expected to become dominant within the cropping system throughout the country regions.

  3. Processing Conditions, Rice Properties, Health and Environment

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakamura

    2011-06-01

    Full Text Available Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR, germinated brown rice (GBR and partially-milled rice (PMR contains more health beneficial food components compared to the well milled rice (WMR. Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled, and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society.

  4. Improving crop water use efficiency using carbon isotope discrimination

    International Nuclear Information System (INIS)

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  5. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour.

    Science.gov (United States)

    Baxter, Graeme; Zhao, Jian; Blanchard, Christopher

    2011-09-01

    Salinity is one of the major threats to production of rice and other agricultural crops worldwide. Although numerous studies have shown that salinity can severely reduce rice yield, little is known about its impact on the chemical composition, processing and sensory characteristics of rice. The objective of the current study was to investigate the effect of salinity on the pasting and textural properties of rice flour as well as on the protein content and composition of rice endosperm. Rice grown under saline conditions had significantly lower yields but substantially higher protein content. The increase in protein content was mainly attributed to increases in the amount of glutelin, with lesser contributions from albumin. Salinity also altered the relative proportions of the individual peptides within the glutelin fraction. Flours obtained from rice grown under saline conditions showed significantly higher pasting temperatures, but lower peak and breakdown viscosities. Rice gels prepared from the flour showed significantly higher hardness and adhesiveness values, compared to the freshwater controls. Salinity can significantly affect the pasting and textural characteristics of rice flour. Although some of the effects could be attributed to changes in protein content of the rice flour, especially the increased glutelin level, the impact of salinity on the physicochemical properties of rice is rather complex and may involve the interrelated effects of other rice components such as starch and lipids. Copyright © 2011 Society of Chemical Industry.

  6. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    Science.gov (United States)

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and food

  7. Cropping pattern adjustment in China's grain production and its impact on land and water use

    DEFF Research Database (Denmark)

    Li, Tian-xiang; Zhu, Jing; Balezentis, Tomas

    2016-01-01

    This paper aims at decomposing China's grain output changes into three terms, namely area sown effect, pure yield effect, and cropping pattern adjustment effect. Furthermore, the paper analyses the impact of shifts in cropping pattern on water and land use in China's grain production. An index...... adjustments). However, these effects vary across regions: Southeast China experienced land-saving and water-using changes, while other regions underwent land- and water-saving changes. In general, China's grain output growth has increased the total amount of land and water needed, implying more severe...... played an important role in promoting China's grain production, with a contribution of over 15 per cent during 2003-2012. Moreover, such changes enabled to save about 6.8 million hectares of sown areas and 31.06 billion m3 of water in grain production (if compared to the case without cropping pattern...

  8. Investigating differences in light stable isotopes between Thai jasmine rice and Sungyod rice

    Science.gov (United States)

    Kukusamude, C.; Kongsri, S.

    2017-10-01

    We report the differences in light stable isotopes between two kinds of Thai rice (Thai jasmine and Sungyod rice). Thai jasmine rice and Sungyod rice were cultivated in the northeast and the south of Thailand. Light isotopes including 13C, 15N and 18O of Thai jasmine rice and Sungyod rice samples were carried out using isotope ratio mass spectrometry (IRMS). Thai jasmine rice (Khao Dawk Mali 105) was cultivated from Thung Kula Rong Hai area, whereas Sungyod rice was cultivated from Phathalung province. Hypothesis testing of difference of each isotope between Thai jasmine rice and Sungyod rice was also studied. The study was the feasibility test whether the light stable isotopes can be the variables to identify Thai jasmine rice and Sungyod rice. The result shows that there was difference in the isotope patterns of Thai jasmine rice and Sungyod rice. Our results may provide the useful information in term of stable isotope profiles of Thai rice.

  9. The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone

    International Nuclear Information System (INIS)

    Feng, Youzhi; Yu, Yongjie; Tang, Haoye; Zu, Qianhui; Zhu, Jianguo; Lin, Xiangui

    2015-01-01

    Although elevated ground-level O 3 has a species–specific impact on plant growth, the differences in soil biota responses to O 3 pollution among rice cultivars are rarely reported. Using O 3 Free-Air Concentration Enrichment, the responses of the rhizospheric bacterial communities in the O 3 -tolerant (YD6) and the O 3 -sensitive (IIY084) rice cultivars to O 3 pollution and their differences were assessed by pyrosequencing at rice tillering and anthesis stages. Elevated ground-level O 3 negatively influenced the bacterial community in cultivar YD6 at both rice growth stages by decreasing the bacterial phylogenetic diversities and response ratios. In contrast, in cultivar IIY084, the bacterial community responded positively at the rice tillering stage under O 3 pollution. However, several keystone bacterial guilds were consistently negatively affected by O 3 pollution in two rice cultivars. These findings indicate that continuously O 3 pollution would negatively influence rice agroecosystem and the crop cultivar is important in determining the soil biota responses to elevated O 3 . - Highlights: • We investigated the soil biota in two rice cultivars in presence of elevated O 3 . • The contrasting responses of soil biota were found between two rice cultivars. • Some keystone bacterial guilds were consistently negatively affected by O 3 pollution. • The crop cultivar is important in determining soil biota responses to elevated O 3 . - The crop cultivar is important in determining the soil biota responses to elevated O 3

  10. Reducing Potential Disaster Impacts in Irrigated Rice Fields in West Java

    NARCIS (Netherlands)

    Sianturi, R.S.

    2018-01-01

    The increasing global population inevitably demands for stable food production. As an important food crop, rice plays a major role in maintaining food security. However, irrigated rice fields are increasingly suffered from natural hazard occurrences worldwide, disrupting livelihoods of millions of

  11. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil

    Directory of Open Access Journals (Sweden)

    MARIA HELENA L.R. RECHE

    2016-03-01

    Full Text Available ABSTRACT This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  12. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  13. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    Science.gov (United States)

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  14. Food Crops Breeding in Sri Lanka - Achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, S D.L.; Peiris, R [Central Agricultural Research Institute, Gannoruwa, Peradeniya (Sierra Leone)

    1988-12-31

    Since Rice is the staple food in Sri Lanka strong emphasis has been given for the improvement of Rice in Sri Lanka. Over the last three decades 36 high yielding rice varieties have been developed. The present yield potential of Sri Lanka`s best varieties have been recorded to be be around 10 mt/ha. At present more than 90% of the total paddy extent is grown with modern high yielding rice varieties and as a result the national paddy production has increased from 1.8 mt/ha to 3.5 mt/ha. Induced mutations is used in plant breeding. Use of radiation to produce haploids and for production of transitory sexuality in apomicts have been done. Under the coarse grains and millet varietal program, maize have recorded increasing attention owing to the fact that is is used for human consumption and as feed grain for poultry. Promising varieties of Soya bean, cowpea, mung bean, black gram and ground nut have been recommended for cultivation. Research attention has also been directed towards Root and Tuber crops which have great potential in providong food for the rapidly increasing population in Sri Lanka. Potato is the most important and popular tuber crop. A number of improved varieties with respect to a number of local fruit crops such as banana, sweet orange, lemonime, avocado, pineapple, rambutan, grapes.have been introduced. New improved varieties of indigenous vegetables such as tomato, brinjal etc. have been produced. Chillies and onions with desirable qualities also have been identified. Mutation breeding provides a novel approach to the plant breeders for raising the productivity of crop plants, thus complementing conventional methods. Any way the use of induced mutations in crop improvement has not been properly exploited in Sri Lanka as yet.

  15. Food Crops Breeding in Sri Lanka - Achievements and challenges

    International Nuclear Information System (INIS)

    Jayawardena, S.D.L.; Peiris, R.

    1988-01-01

    Since Rice is the staple food in Sri Lanka strong emphasis has been given for the improvement of Rice in Sri Lanka. Over the last three decades 36 high yielding rice varieties have been developed. The present yield potential of Sri Lanka's best varieties have been recorded to be be around 10 mt/ha. At present more than 90% of the total paddy extent is grown with modern high yielding rice varieties and as a result the national paddy production has increased from 1.8 mt/ha to 3.5 mt/ha. Induced mutations is used in plant breeding. Use of radiation to produce haploids and for production of transitory sexuality in apomicts have been done. Under the coarse grains and millet varietal program, maize have recorded increasing attention owing to the fact that is is used for human consumption and as feed grain for poultry. Promising varieties of Soya bean, cowpea, mung bean, black gram and ground nut have been recommended for cultivation. Research attention has also been directed towards Root and Tuber crops which have great potential in providong food for the rapidly increasing population in Sri Lanka. Potato is the most important and popular tuber crop. A number of improved varieties with respect to a number of local fruit crops such as banana, sweet orange, lemonime, avocado, pineapple, rambutan, grapes.have been introduced. New improved varieties of indigenous vegetables such as tomato, brinjal etc. have been produced. Chillies and onions with desirable qualities also have been identified. Mutation breeding provides a novel approach to the plant breeders for raising the productivity of crop plants, thus complementing conventional methods. Any way the use of induced mutations in crop improvement has not been properly exploited in Sri Lanka as yet

  16. Urea hydrolysis and ammonia volatilization from some urea based fertilizers applied to rice

    International Nuclear Information System (INIS)

    Misra, C.; Jena, D.; Bandyopadhyay, K.K.; Schepers, J.S.

    1995-01-01

    Field experiments were carried out in replicated microplots (1 m x 1 m) with rice (cv. Pathara) to study urea hydrolysis using several urea based N-fertilizer sources. Results indicated highly significant urea based N-fertilizers, among which urea super granule (USG) and prilled urea (PU) (applied in two splits) could be rated as the most efficient sources of N. Based on measured ammonia volatilization loss, NH 2 -N concentration in flood water and soil solution (following fertilizer application); urea hydrolysis was observed to be faster in the case of PU, USG, PU + ECC (encapsulated calcium carbide) and UNP (urea nitro phosphate) (19-19-0) than in the case of GCU (gypsum coated urea) and UNP (27-9-0) treatments. Based on the 15 N tagged prilled urea experiment, it is observed that about 24 per cent of fertilizer nitrogen was utilized by the crop in closed system as compared to 18 per cent in natural free system. (author). 5 refs., 2 figs., 4 tabs

  17. Improving rice-based rainfed production systems in Southeast Asia for contributing towards food security and rural development through sustainable crop production intensification

    Directory of Open Access Journals (Sweden)

    Abha Mishra

    2016-04-01

    Full Text Available Continuing degradation of the environment and the cumulating food, energy, water and financial crises have led to a situation where many people’s access to sufficient, nutritious food is affected as well as their livelihoods, income, and ultimate food and nutrition security. In the wake of these stresses and crises, there is an emerging interest to find efficient, easily accessible and sustainable approaches that can address these crises. One candidate for this is the System of Rice Intensification (SRI with its “less can produce more” prescription. A regional collaborative project currently underway is being implemented in rainfed areas of the Lower Mekong River Basin (LMB countries. This involves smallholder rice farmers, researchers, extension personnel, and development professionals, together with staff of relevant government ministries (http://www.sri-lmb.ait.asia/. The project objective is to produce healthier and profitable rice crops under rainfed conditions using SRI methods, evaluated and refined through farmers’ participatory action research (FPAR. As part of the action-research, more than 120 sets of field experiments have been carried out at 60 FPAR sites in Cambodia and Thailand, directly involving 3600 farmers. The experiments have ranged from the integration of many SRI principles with farmers’ current local practices or improved practices which was termed as “SRI-transition” to full demonstrations and assessments of SRI methodology, i.e., SRI demonstration. The initial calculation of yields has showed an average paddy yield of 5.03 t/ha with SRI-transition, whereas with SRI-demonstration the average yield was 6.41 t/ha. These yields were 60 and 100% higher than the average baseline yield in the region, 3.14 t/ha, for the same farmers and same locales. Productivity gains (dollars gained/dollars spent per ha were calculated for both rainfed and irrigated production areas. In comparative terms, the economic gains for

  18. Drought resistant rice mutants, characteristics and discussions on possibilities for planting them in some Arab Countries which import rice

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.

    1994-01-01

    A number of drought resistant mutants of rice were produced from ordinary rice varieties being planted in several parts of Egypt through utilization of gamma rays as a mutagen. The mutants have water requirements less than one half of that of their mother varieties. According to official data, authorities in Egypt insure about 18000 M 3 of irrigation water for every hectare (10000 M 2 ) of rice and about 6700 M 3 , 6900 M 3 for every hectare of corn and ground nuts, respectively. Peanuts and corn are summer crops like the drought resistant rice mutants. The mentioned mutants can produce good yield under water requirements very near to that of corn and peanuts. The wide gap in agricultural food stuffs for the Arab Countries (more than 20000 million US $ annually) includes rice imports usually exceeds 700 million US $ per year> Rice imports of Arab Countries such as Saudi Arabia, Yemen, Syria, Libya and the Sudan, reached 180, 47, 21, 16 and 14 million US $ in 1988 as an example. Such countries could make use of the drought resistant rice mutants for plantation on water requirements very near to those of usual summer crops such as corn and peanuts which is significantly less than one half of water requirements of their mother varieties. Some characteristics of such mutants as well as discussions on possibilities for planting them in some of the nominated Arab Countries are presented. However, arrangements for ensuring the minimum water requirements during the growing period irrespective to rain which in many cases did not accord the growing period of the mutants should be taken if such countries wants to make use of the drought resistant rice mutants. The author believe that most if not all requirements of rice of such countries could locally be ensured through planting of the above mentioned rice mutants. In this case, maximizing the efficiency of utilizing the limited water resources of such countries could also be counted as another cause for presenting this

  19. Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC-MS/MS.

    Science.gov (United States)

    Pareja, Lucía; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2011-02-15

    Four different extraction and clean-up protocols based on the QuEChERS method were compared for the development of an optimized sample preparation procedure for the multiresidue analysis of 16 commonly applied herbicides in rice crops using LC-QqQ/MS. Additionally the methods were evaluated for the analysis of 26 insecticides and fungicides currently used in rice crops. The methods comprise, in general, the hydratation of the sample with water followed by the extraction with acetonitrile, phase separation with the addition of different salts and finally a clean-up step with various sorbents. Matrix effects were evaluated for the 4 studied methods using LC-QqQ/MS. Additionally LC-TOF/MS was used to compare the co-extractants obtained with the four assayed methodologies. Thirty-six pesticides presented good performance with recoveries in the range 70-120% and relative standard deviations below 20% using 7.5 g of milled polished rice and the buffered acetate QuEChERS method without clean-up at both fortification levels: 10 and 300 μg kg(-1). The other six pesticides presented low recovery rates, nevertheless all these analytes could be analyzed with at least one of the other three studied procedures. Copyright © 2010. Published by Elsevier B.V.

  20. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data

    Science.gov (United States)

    Gumma, Murali Krishna; Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Rao, Mahesh N.; Mohammed, Irshad A.; Whitbread, Anthony M.

    2016-01-01

    The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The

  1. Impact of mutation breeding in rice. A review

    Energy Technology Data Exchange (ETDEWEB)

    Rutger, J N [Department of Agriculture, Stoneville, MS (United States). Agricultural Research Service

    1992-07-01

    More cultivars have been developed in rice through the use of mutation breeding than in any other crop. Direct releases of mutants as cultivars began some 30 years ago, and now total 198 cultivars. During the last 20 years, increasing use has been made of induced mutants in cross-breeding programs, leading to 80 additional cultivars. Principal improvements through mutation breeding have been earlier maturity, short stature, and grain character modifications. Rice has been a popular subject of mutagenesis because it is the world`s leading food crop, has diploid inheritance, and is highly self-pollinated. In recent years induced mutation has been exploited to develop breeding tool mutants, which are defined as mutants that in themselves may not have direct agronomic application but may be useful genetic tools for crop improvement. Examples include the eui gene, hull colour mutants, normal genetic male steriles, and environmentally sensitive genetic male steriles. The environmentally sensitive genetic male steriles, especially those in which male sterility can be turned on or off by different photoperiod lengths, show promise for simplifying hybrid rice seed production both in China and the USA. Future applications of mutation in rice include induction of unusual endosperm starch types, plant types with fewer but more productive tillers, dominant dwarfs, dominant genetic male steriles, extremely early maturing mutants, nutritional mutants, and in vitro-derived mutants for tolerance to herbicides or other growth stresses. Refs, 4 figs, 2 tabs.

  2. Reductions in India's crop yield due to ozone

    Science.gov (United States)

    Ghude, Sachin D.; Jena, Chinmay; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, Rajesh; Ramanathan, V.

    2014-08-01

    This bottom-up modeling study, supported by emission inventories and crop production, simulates ozone on local to regional scales. It quantifies, for the first time, potential impact of ozone on district-wise cotton, soybeans, rice, and wheat crops in India for the first decade of the 21st century. Wheat is the most impacted crop with losses of 3.5 ± 0.8 million tons (Mt), followed by rice at 2.1 ± 0.8 Mt, with the losses concentrated in central and north India. On the national scale, this loss is about 9.2% of the cereals required every year (61.2 Mt) under the provision of the recently implemented National Food Security Bill (in 2013) by the Government of India. The nationally aggregated yield loss is sufficient to feed about 94 million people living below poverty line in India.

  3. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].

    Science.gov (United States)

    Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan

    2015-10-01

    Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai

  4. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): a proteomic approach.

    Science.gov (United States)

    Wei, Zhe; Hu, Wei; Lin, Qishan; Cheng, Xiaoyan; Tong, Mengjie; Zhu, Lili; Chen, Rongzhi; He, Guangcun

    2009-05-01

    Engineering and breeding resistant plant varieties are the most effective and environmentally friendly ways to control agricultural pests and improve crop performance. However, the mechanism of plant resistance to pests is poorly understood. Here we used a quantitative mass-spectrometry-based proteomic approach for comparative analysis of expression profiles of proteins in rice leaf sheaths in responses to infestation by the brown planthopper (Nilaparvata lugens Stål, BPH), which is a serious rice crop pest. Proteins involved in multiple pathways showed significant changes in expression in response to BPH feeding, including jasmonic acid synthesis proteins, oxidative stress response proteins, beta-glucanases, protein; kinases, clathrin protein, glycine cleavage system protein, photosynthesis proteins and aquaporins. The corresponding genes of eight important proteins were further analyzed by quantitative RT-PCR. Proteomic and transcript responses that were related to wounding, oxidative and pathogen stress overlapped considerably between BPH-resistant (carrying the resistance gene BPH15) and susceptible rice lines. In contrast, proteins and genes related to callose metabolism remained unchanged and glycine cleavage system protein was up-regulated in the BPH-resistant lines, indicating that they have an efficient and specific defense mechanism. Our results provide new information about the interaction between rice and the BPH.

  5. Analysis of profit inefficiency in rice production in Eastern and ...

    African Journals Online (AJOL)

    Rice is among the emerging crops in Uganda that play an important role both as a food and a cash crop. It ranks fourth among the cereal crops in area cultivated, occupying a total of 80 thousand hectares of land with an estimated annual output of 120,000 metric tonnes. The study analyses sources of technical and ...

  6. Effects of Soil Veterinary Antibiotics Pollution on Rice Growth

    OpenAIRE

    XU Qiu-tong; GU Guo-ping; ZHANG Ming-kui

    2016-01-01

    To understand the potential effect of soil veterinary antibiotics pollution on the growth of rice, a main food crop in China, oxytetracycline which was used widely in livestock and poultry breeding was selected to test the effects of different levels of soil antibiotics pollution on growth and yield of rice plant at both seedling and growth periods. Relationship between oxytetracycline accumulated in different organs of rice plant and oxytetracycline pollution levels in the soil was character...

  7. Photoprotection as a Trait for Rice Yield Improvement: Status and Prospects.

    Science.gov (United States)

    Murchie, Erik H; Ali, Asgar; Herman, Tiara

    2015-12-01

    Solar radiation is essential for photosynthesis and global crop productivity but it is also variable in space and time, frequently being limiting or in excess of plant requirements depending on season, environment and microclimate. Photoprotective mechanisms at the chloroplast level help to avoid oxidative stress and photoinhibition, which is a light-induced reduction in photosynthetic quantum efficiency often caused by damage to photosystem II. There is convincing evidence that photoinhibition has a large impact on biomass production in crops and this may be especially high in rice, which is typically exposed to high tropical light levels. Thus far there has been little attention to photoinhibition as a target for improvement of crop yield. However, we now have sufficient evidence to examine avenues for alleviation of this particular stress and the physiological and genetic basis for improvement in rice and other crops. Here we examine this evidence and identify new areas for attention. In particular we discuss how photoprotective mechanisms must be optimised at both the molecular and the canopy level in order to coordinate with efficient photosynthetic regulation and realise an increased biomass and yield in rice.

  8. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing

    Directory of Open Access Journals (Sweden)

    Asli Ozdarici-Ok

    2015-05-01

    Full Text Available Mapping agricultural crops is an important application of remote sensing. However, in many cases it is based either on hyperspectral imagery or on multitemporal coverage, both of which are difficult to scale up to large-scale deployment at high spatial resolution. In the present paper, we evaluate the possibility of crop classification based on single images from very high-resolution (VHR satellite sensors. The main objective of this work is to expose performance difference between state-of-the-art parcel-based smoothing and purely data-driven conditional random field (CRF smoothing, which is yet unknown. To fulfill this objective, we perform extensive tests with four different classification methods (Support Vector Machines, Random Forest, Gaussian Mixtures, and Maximum Likelihood to compute the pixel-wise data term; and we also test two different definitions of the pairwise smoothness term. We have performed a detailed evaluation on different multispectral VHR images (Ikonos, QuickBird, Kompsat-2. The main finding of this study is that pairwise CRF smoothing comes close to the state-of-the-art parcel-based method that requires parcel boundaries (average difference ≈ 2.5%. Our results indicate that a single multispectral (R, G, B, NIR image is enough to reach satisfactory classification accuracy for six crop classes (corn, pasture, rice, sugar beet, wheat, and tomato in Mediterranean climate. Overall, it appears that crop mapping using only one-shot VHR imagery taken at the right time may be a viable alternative, especially since high-resolution multitemporal or hyperspectral coverage as well as parcel boundaries are in practice often not available.

  9. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2012-09-01

    Full Text Available In 1996, China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types. Today, approximately 80 super rice varieties have been released and some of them show high grain yields of 12–21 t/hm2 in field experiments. The main reasons for the high yields of super rice varieties, compared with those of conventional varieties, can be summarized as follows: more spikelets per panicle and larger sink size (number of spikelets per square meter; larger leaf area index, longer duration of green leaf, greater photosynthetic rate, higher lodging resistance, greater dry matter accumulation before the heading stage, greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity. However, there are two main problems in super rice production: poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets, and low and unstable seed-setting rate. Here, we review recent research advances in the crop physiology of super rice, focusing on biological features, formation of yield components, and population quality. Finally, we suggest further research on crop physiology of super rice.

  10. Adoption Study Of Seed Priming Technology In Upland Rice ...

    African Journals Online (AJOL)

    Adoption study was carried out during 2003 cropping season on randomly selected 83 farmers out of the 300 that participated in the upland rice seed priming technology transfer between year 2000 – 2002 to determine the impact of the technology on upland rice production in five States of Nigeria, through the use of ...

  11. Distribution pattern assessment of a dual-purpose disc agrochemical applicator for field crops

    Directory of Open Access Journals (Sweden)

    M. S. Abubakar

    2012-08-01

    Full Text Available A dual-purpose disc agrochemical applicator for field crops was developed to boost agricultural mechanization in crop production and also to overcome the safety concern of hazardous spray drift during agrochemical application by the field crop farmers. The dual purpose agrochemical applicator was mounted on a high clearance tractor and tested with respect to the granular fertilizer distribution patterns uniformity/liquid chemical uniformity of droplet sizes in spraying of the agrochemical. Results for NPK granular chemical indicated that, at low (50 kg/ha and high (150 kg/ha application rates with 550 rpm disc speed, distribution patterns skewed to the left whereas the distribution pattern at medium (100 kg/ha application rates was good flattop. Also at high application rate with 1000 rpm disc speed, mean distribution pattern became poor (W-shape. For the liquid chemical herbicide HC 48 amine liquid, the mean values of volume median diameter (VMD and number median diameter (NMD were 108 µm and 80 µm at 90 lt/ha application rate at 5000 rpm rotary disc speed, and also 344 and 222 µm at 30 lt/ha application rate with 2000 rpm rotary disc speed. The mean values of coefficient of uniformity for droplet sizes expressed as VMD/NMD found in this study were in the range of 1.35 to 1.55 for HC amine 48 liquid chemical.

  12. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  13. Letter to the editor: Rice: location is vital in crop management

    NARCIS (Netherlands)

    Hengsdijk, H.; Bindraban, P.S.

    2004-01-01

    Your News Feature about rice cultivation, "Feast or famine?" (Nature 428, 360–361; 2004), is a classic example of how the debate on a potentially interesting technique can be blurred by its opponents and proponents. In this case, proponents of the System of Rice Intensification (SRI) are reported to

  14. Radiation use efficiency of rice under different planting methods and environmental conditions

    International Nuclear Information System (INIS)

    Apakupakul, R.

    1995-01-01

    Radiation use efficiency is an important parameter which has often been used in many crop growth models to estimate total biomass and yield. Studies of the relationships between above-ground biomass and accumulative absorbed photosynthetically active radiation (PARa, MJ/square m) of rice were examined both on-farms and on-station in Phatthalung. Planting methods were wet-sown and transplanted rice for Suphanburi 90 in the 1993 dry season and Chieng in the 1993-94 wet season. Solar radiation of the two growing seasons were calculated from climatic data. The objectives of this experiment were (1) to know the pattern of relationship between above-ground biomass and accumulative absorbed PAR of rice cultivars grown in South Thailand, (2) to compare the radiation use efficiency of rice cultivars under different planting methods and (3) to obtain the primary data for rice growth modelling in the southern climate. Results presented that only the duration of first growing period up to stem elongation in both cultivars, above-ground biomass and leaf area index were higher in wet-sown than in transplanted rice. Relationship between above-ground biomass accumulation through growing period and accumulative absorbed PAR was in positive linear regression with R*[2)0.85. Erect leaf of Suphanburi 90 had a radiation use efficiency (RUE, g/MJ) higher than non-erect leaf of Chieng. A problem of weed infestation in wet-sown rice in both cultivars had an effect on the RUE which were highly significant lower than transplanted rice. The Rue of wet-sown and transplanted rice were 2.77 and 3.20 g/MJ, respectively for Suphanburi 90, 2.13 and 2.67 g/MJ for Chieng. These results suggest that when dealing with radiation use efficiency in the rice growth modelling the differences of cultivars and planting methods should be taken into consideration

  15. Metabolic regulation of carotenoid-enriched Golden rice line

    Directory of Open Access Journals (Sweden)

    Dipak Gayen

    2016-10-01

    Full Text Available Vitamin A deficiency (VAD is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy and phytoene desaturase (crtI. In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase and glucose-1-phosphate adenylyl transferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 µg/g was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244 after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  16. Influence of rice straw-based polyols on the morphology, thermal ...

    African Journals Online (AJOL)

    replacement of rice straw-based polyols produced closed cell structures suitable for insulation material as revealed in Scanning electron microscope images. Higher percentage of rice straw-based polyols replacement will trigger cell wall structure rapturing that will deteriorate the properties of polyurethane foam.

  17. Persistence of lindane in rice and maize ecosystems in Nigeria

    International Nuclear Information System (INIS)

    Okereke, G.U.; Onochie, C.C.; Dje, Y.

    1997-01-01

    A three year field study was undertaken to examine the fate of residues of lindane in soil and crops after repeated seasonal applications of lindane to soil in which maize and rice crops were grown. In the 1993 rice study, the lindane residues in the treated soil were 0.6 mgkg -1 (1day) and 0.04 mgkg -1 (2 months) after application respectively. In the soil from the maize plots, lindane residues were 0.19 mg kg -1 (1 day) and 0.16 mg kg -1 (1 month) after application and not detectable after 6 months. In the 1994 maize study, the lindane residues in the soil were 0.12 (1 day), 0.10 (1 month) and 0.033 mg kg -1 (2 months) after application respectively while in the crop they were 0.19 (1 day), 0.105 (2 weeks) and 0.05 (4 weeks) mg kg -1 , respectively. In general, lindane residues were not detected in the soil one year after application indicating that there was no accumulation of lindane in the soil during the period 1992-1994 and therefore unlikely to be any long term effects on soil fauna. Lindane residues in rice and maize crops continued to decrease during the period up to harvest. (author). 6 refs, 2 tabs

  18. An automatic approach for rice mapping in temperate region using time series of MODIS imagery: first results for Mediterranean environment

    Science.gov (United States)

    Boschetti, M.; Nelson, A.; Manfrom, G.; Brivio, P. A.

    2012-04-01

    Timely and accurate information on crop typology and status are required to support suitable action to better manage agriculture production and reduce food insecurity. More specifically, regional crop masking and phenological information are important inputs for spatialized crop growth models for yield forecasting systems. Digital cartographic data available at global/regional scale, such as GLC2000, GLOBCOVER or MODIS land cover products (MOD12), are often not adequate for this crop modeling application. For this reason, there is a need to develop and test methods that can provide such information for specific cropsusing automated classification techniques.. In this framework we focused our analysis on the rice cultivation area detection due to the importance of this crop. Rice is a staple food for half of the world's population (FAO 2004). Over 90% of the world's rice is produced and consumed in Asia and the region is home to 70% of the world's poor, most of whom depend on rice for their livelihoods andor food security. Several initiatives are being promoted at the international level to provide maps of rice cultivated areas in South and South East Asia using different approaches available in literature for rice mapping in tropical regions. We contribute to these efforts by proposing an automatic method to detect rice cultivated areas in temperate regions exploiting MODIS 8-Day composite of Surface Reflectance at 500m spatial resolution (MOD09A1product). Temperate rice is cultivated worldwide in more than 20 countries covering around 16M ha for a total production of about 65M tons of paddy per year. The proposed method is based on a common approach available in literature that first identifies flood condition that can be related to rice agronomic practice and then checks for vegetation growth. The method presents innovative aspects related both to the flood detection, exploiting Short Wave Infrared spectral information, and to the crop grow monitoring analyzing

  19. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inê s S.; Negrã o, Só nia; Oliveira, M. Margarida; Purugganan, Michael D.

    2015-01-01

    affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use

  20. Statistical analysis of fallout radionuclides transfer to paddy-field rice

    International Nuclear Information System (INIS)

    Takahashi, T.; Morisawa, S.; Inoue, Y.

    1996-01-01

    Radionuclides released from nuclear facilities to atmosphere are transported through various pathways in biosphere and cause human exposure. Among these radionuclides transfer pathways, an ingestion of crops containing radionuclides is one of the dominant pathway for human exposure. For the safety assessment of nuclear facilities, it is important to understand the behavior of radionuclides in agricultural environment and to describe them in a mathematical model. In this paper, a statistical model is proposed for estimating the concentration of fallout radionuclides in paddy-field rice, the staple food for Japanese people. For describing behavior of fallout radionuclides in a paddy-field, a dynamic model and a statistical model have been proposed respectively. The model used in this study has been developed assuming that the amount of radionuclides transfer to brown rice (hulled rice) or polished rice through direct deposition of airborne radionuclides (the direct deposition pathway) and root uptake from a paddy soil (the root uptake pathway) are proportional to the deposition flux of radionuclides and concentration of radionuclides in paddy soil respectively. That is, the model has two independent variables; the deposition flux of radionuclides and the concentration of radionuclides in the paddy soil, and has single dependent variable; the concentration of radionuclides in brown rice or polished rice. The regression analysis is applied by using environmental monitoring data. Then the distribution of radionuclides between rice-bran (skin part of rice crop) and polished rice (core part) through both the direct deposition pathway and the root uptake pathway are evaluated by the model. (author)

  1. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Science.gov (United States)

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  2. Influence of intercrops on pests' populations in upland rice ( Oriza ...

    African Journals Online (AJOL)

    Rice and groundnut (100,000 - 200,000 plants/ha) intercrop is recommended for reduced incidence of C. zacconius and N. viridula. This result demonstrates that a careful selection of crop combination and plant population could lead to reduced insect pests' incidence in upland rice. Key words: intercrops, plant populations, ...

  3. Development of Gene-Based SSR Markers in Rice Bean (Vigna umbellata L. Based on Transcriptome Data.

    Directory of Open Access Journals (Sweden)

    Honglin Chen

    Full Text Available Rice bean (Vigna umbellata (Thunb. Ohwi & Ohashi is a warm season annual legume mainly grown in East Asia. Only scarce genomic resources are currently available for this legume crop species and no simple sequence repeat (SSR markers have been specifically developed for rice bean yet. In this study, approximately 26 million high quality cDNA sequence reads were obtained from rice bean using Illumina paired-end sequencing technology and assembled into 71,929 unigenes with an average length of 986 bp. Of these unigenes, 38,840 (33.2% showed significant similarity to proteins in the NCBI non-redundant protein and nucleotide sequence databases. Furthermore, 30,170 (76.3% could be classified into gene ontology categories, 25,451 (64.4% into Swiss-Prot categories and 21,982 (55.6% into KOG database categories (E-value < 1.0E-5. A total of 9,301 (23.5% were mapped onto 118 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG pathway database. A total of 3,011 genic SSRs were identified as potential molecular markers. AG/CT (30.3%, AAG/CTT (8.1% and AGAA/TTCT (20.0% are the three main repeat motifs. A total of 300 SSR loci were randomly selected for validation by using PCR amplification. Of these loci, 23 primer pairs were polymorphic among 32 rice bean accessions. A UPGMA dendrogram revealed three major clusters among 32 rice bean accessions. The large number of SSR-containing sequences and genic SSRs in this study will be valuable for the construction of high-resolution genetic linkage maps, association or comparative mapping and genetic analyses of various Vigna species.

  4. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.

    Science.gov (United States)

    Tao, Fulu; Zhang, Zhao; Shi, Wenjiao; Liu, Yujie; Xiao, Dengpan; Zhang, Shuai; Zhu, Zhu; Wang, Meng; Liu, Fengshan

    2013-10-01

    Based on the crop trial data during 1981-2009 at 57 agricultural experimental stations across the North Eastern China Plain (NECP) and the middle and lower reaches of Yangtze River (MLRYR), we investigated how major climate variables had changed and how the climate change had affected crop growth and yield in a setting in which agronomic management practices were taken based on actual weather. We found a significant warming trend during rice growing season, and a general decreasing trend in solar radiation (SRD) in the MLRYR during 1981-2009. Rice transplanting, heading, and maturity dates were generally advanced, but the heading and maturity dates of single rice in the MLRYR (YZ_SR) and NECP (NE_SR) were delayed. Climate warming had a negative impact on growth period lengths at about 80% of the investigated stations. Nevertheless, the actual growth period lengths of YZ_SR and NE_SR, as well as the actual length of reproductive growth period (RGP) of early rice in the MLRYR (YZ_ER), were generally prolonged due to adoption of cultivars with longer growth period to obtain higher yield. In contrast, the actual growth period length of late rice in the MLRYR (YZ_LR) was shortened by both climate warming and adoption of early mature cultivars to prevent cold damage and obtain higher yield. During 1981-2009, climate warming and decrease in SRD changed the yield of YZ_ER by -0.59 to 2.4%; climate warming during RGP increased the yield of YZ_LR by 8.38-9.56%; climate warming and decrease in SRD jointly reduced yield of YZ_SR by 7.14-9.68%; climate warming and increase in SRD jointly increased the yield of NE_SR by 1.01-3.29%. Our study suggests that rice production in China has been affected by climate change, yet at the same time changes in varieties continue to be the major factor driving yield and growing period trends. © 2013 John Wiley & Sons Ltd.

  5. Optimizing hill seeding density for high-yielding hybrid rice in a single rice cropping system in South China.

    Directory of Open Access Journals (Sweden)

    Danying Wang

    Full Text Available Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2. In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice.

  6. Cutaneous Mycoses among Rice Farmers in Anambra State, Nigeria

    OpenAIRE

    Ekwealor, Chito Clare; Oyeka, Christie Amechi

    2013-01-01

    Rice grain is one of the world's most important food crops, and its cultivation is a major occupation in Anambra State, Nigeria. These rice farmers are exposed to various agents that predispose them to cutaneous mycoses. The aim of this work was to screen rice farmers for lesions suggestive of cutaneous mycoses and to isolate and identify fungal agents associated with the infection. This survey was carried out between November 2009 and June 2011 in Anambra State, Nigeria. Clinical samples col...

  7. Status of Agricultural Production and Crop Variety Improvement in Thailand

    Institute of Scientific and Technical Information of China (English)

    JIAO Chun-hai; GUO Ying; YAO Ming-hua; WAN Zheng-huang

    2012-01-01

    We introduced basic conditions of agricultural production in Thailand, and variety improvement of major crops, including rice, cassava, rubber, and vegetable, in the hope of providing reference for agricultural production and crop variety improvement in Hubei Province and even in the whole country.

  8. Simulation of rice yield under different irrigation and nitrogen application managements by CropSyst model

    Directory of Open Access Journals (Sweden)

    Narjes ZARE

    2015-12-01

    Full Text Available The aim of this study was the calibration and validation of CropSyst model for rice in the city of Rasht. The necessary data were extracted from a field experiment which was carried out during 2005-2007 in a split-plot design. The main plots were irrigation regimes including continuous flooding irrigation and 5-day irrigation intervals. The subplots consisted of four nitrogen levels: zero N application, 45, 60 and 75 kg N ha-1. Normalized Root Mean Squared Error (nRMSE and Residual Mass Coefficient (Crm in calibration years were 9.3 % and 0.06, respectively. In validation year, nRMSE and Crm were 9.7 % and 0.11, respectively. According to other indices to assess irrigation regimes and fertilizer levels, the most suitable treatments regarding environmental aspect were 5-day irrigation regime and 45 kg N ha-1.

  9. [Carbon efficiency of double-rice production system in Hunan Province, China].

    Science.gov (United States)

    Chen, Zhong-du; Wu, Yao; Ti, Jin-song; Chen, Fu; Li, Yong

    2015-01-01

    Improving the carbon efficiency of crop production systems is one of the important ways to realize low-carbon agriculture. A life cycle assessment approach and input-output calculation method was applied for a double-rice production system in the Hunan Province. Based on statistical data of crop yield and investment in the production system in the period from 2004 to 2012, carbon emission, carbon absorption, carbon efficiency and their dynamic changes of the double rice production systems were estimated. The results showed that the average of annual carbon emission from 2004 to 2012 was 656.4 x 10(7) kg CE. Carbon emissions from production and transport of fertilizer and pesticide accounted for a majority of agricultural input carbon emissions, approximately 70.0% and 15.9%, respectively. The carbon emission showed a decreasing trend from 2004 to 2012 in the Hunan Province, with an annual reduction rate of 2.4%, but the carbon emission intensity was in a trend of increase. The average of annual carbon absorption was 1547.0 x 10(7) kg C. The annual carbon absorption also showed a decreasing trend from 2004 to 2012 in Hunan Province, with an average annual reduction rate of 1.2%, and the carbon absorption intensity showed a trend of increase. Furthermore, production efficiency of carbon showed a slow upward trend. The economic efficiency of carbon showed a larger increasing rate with time, with an average annual growth rate of 9.9%. Ecological efficiency of carbon was stable and low, maintained at about 2.4 kg C . kg-1 CE. It indicated that the integrated carbon efficiency of Hunan double rice crop production system improved slowly with time and the key to improve the carbon efficiency of double rice production systems lies in reducing the rates of nitrogen fertilizer and pesticide, and improving their use efficiencies.

  10. Distribution patterns of segetal weeds of cereal crops in tajikistan

    International Nuclear Information System (INIS)

    Nowak, A.; Nowak, S.

    2015-01-01

    Using the literature data and field research conducted in 2009-2013 the distribution patterns, habitat conditions, phytogeographical characterisation and endangerment of weeds occurring in cereal crops in Tajikistan were analysed. We found out that Tajik weed flora of cereal crops counts 686 taxa. The most species rich families include Asteraceae, Poaceae and Fabaceae. The highest number of cereal weeds were noted in large river valleys of Syr-Daria, Amu-Daria and their tributaries in south-western and northern Tajikistan. This subregions have the warmest climate conditions and extensive arable lands. The greatest weed species richness was observed in submontane and montane elevations between approx. 700 and 1,900 m a.s. Cereal weeds occur frequently outside segetal communities in Tajikistan. They were noted usually in screes, wastelands, xerothermophilous grasslands, river gravel beds and in steppes habitats. The assessment of threat status reveals that ca. 33% of total cereal weed flora in Tajikistan are disappearing or occur very rarely. According to the chorological data we find that in the cereals of Tajikistan, 35 endemic and 14 subendemic species occur. The most numerous chorological elements of threatened weed flora of Tajikistan are Irano-Turanian (55%), pluriregional (16%), cosmopolitan (14,5%), Mediterranean (9%) and Eurosiberian (5%) species. Further research is suggested to explore the distribution patterns of all weed species in Tajikistan as it should be useful for economy and effectiveness of crop production as well as conservation of most valuable species. (author)

  11. Adubarroz: a brazilian experience for fertilization and liming recommendation of irrigated rice via computational system

    Directory of Open Access Journals (Sweden)

    Felipe de Campos Carmona

    Full Text Available ABSTRACT: Recommendations for fertilizing irrigated rice in southern Brazil have been constantly evolving over years. In this process, the influence of factors such as the development cycle of varieties and sowing period increased. Thus, computational tools that take these and others important aspects into account can potentiate the fertilization response of rice. This study describes the computer program "ADUBARROZ". The software provides recommendations of fertilizer rates and liming requirements of irrigated rice, based on information entered by the user. The system takes various factors that regulate the crop response to fertilization into account. A final report is established with the graphical representation of input management over time.

  12. Contribution of Food Crops to Household Food Security Among ...

    African Journals Online (AJOL)

    acer

    Department of Agricultural Economics And Extension, Usmanu Danfodiyo ... farmers to household food security in Patigi Local Government Area, Kwara ... They earn more revenue from rice (87%), sorghum (35%), melon (14.2%), ... the type of crops they grow on their farm .... help farmers achieve high crop yield, ability to.

  13. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).

    Science.gov (United States)

    Yang, Zhongzhou; Chen, Jing; Dou, Runzhi; Gao, Xiang; Mao, Chuanbin; Wang, Li

    2015-11-30

    In this study, the phytotoxicity of seven metal oxide nanoparticles(NPs)-titanium dioxide (nTiO₂), silicon dioxide (nSiO₂), cerium dioxide (nCeO₂), magnetite (nFe₃O₄), aluminum oxide (nAl₂O₃), zinc oxide (nZnO) and copper oxide (nCuO)-was assessed on two agriculturally significant crop plants (maize and rice). The results showed that seed germination was not affected by any of the seven metal oxide NPs. However, at the concentration of 2000 mg·L(-1), the root elongation was significantly inhibited by nCuO (95.73% for maize and 97.28% for rice), nZnO (50.45% for maize and 66.75% for rice). On the contrary, minor phytotoxicity of nAl₂O₃ was only observed in maize, and no obvious toxic effects were found in the other four metal oxide NPs. By further study we found that the phytotoxic effects of nZnO, nAl₂O₃ and nCuO (25 to 2000 mg·L(-)¹) were concentration dependent, and were not caused by the corresponding Cu(2+), Zn(2+) and Al(3+) ions (0.11 mg·L(-)¹, 1.27 mg·L(-)¹ and 0.74 mg·L(-)¹, respectively). Furthermore, ZnO NPs (<50 nm) showed greater toxicity than ZnO microparticles(MPs)(<5 μm) to root elongation of both maize and rice. Overall, this study provided valuable information for the application of engineered NPs in agriculture and the assessment of the potential environmental risks.

  14. Authenticity of rice (Oryza sativa L.) geographical origin based on analysis of C, N, O and S stable isotope ratios: a preliminary case report in Korea, China and Philippine.

    Science.gov (United States)

    Chung, Ill-Min; Kim, Jae-Kwang; Prabakaran, Mayakrishnan; Yang, Jin-Hee; Kim, Seung-Hyun

    2016-05-01

    Although rice (Oryza sativa L.) is the third largest food crop, relatively fewer studies have been reported on rice geographical origin based on light element isotope ratios in comparison with other foods such as wine, beef, juice, oil and milk. Therefore this study tries to discriminate the geographical origin of the same rice cultivars grown in different Asian countries using the analysis of C, N, O and S stable isotope ratios and chemometrics. The δ(15) NAIR , δ(18) OVSMOW and δ(34) SVCDT values of brown rice were more markedly influenced by geographical origin than was the δ(13) CVPDB value. In particular, the combination of δ(18) OVSMOW and δ(34) SVCDT more efficiently discriminated rice geographical origin than did the remaining combinations. Principal component analysis (PCA) revealed a clear discrimination between different rice geographical origins but not between rice genotypes. In particular, the first components of PCA discriminated rice cultivated in the Philippines from rice cultivated in China and Korea. The present findings suggest that analysis of the light element isotope composition combined with chemometrics can be potentially applicable to discriminate rice geographical origin and also may provide a valuable insight into the control of improper or fraudulent labeling regarding the geographical origin of rice worldwide. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Development of a real-time hydrological cycle - rice growth coupled simulation system as a tool for farmers' decision making in an ungauged basin in Cambodia for the better agricultural water resources management

    Science.gov (United States)

    Tsujimoto, K.; Ohta, T.; Yasukawa, M.; Koike, T.; Kitsuregawa, M.; Homma, K.

    2013-12-01

    The entire country of Cambodia depends on agriculture for its economy. Rice is the staple food, making it the major agricultural product (roughly 80% of total national production). The target area of this study is western Cambodia, where rice production is the greatest in the country and most land is rainfed. Since most farmers rely only on their (non-science-based) experience, they would not adjust to changing rainfall and degraded water resources under climate change, so food security in the region would be seriously threatened (Monichoth et al., 2013). Under this condition, irrigation master plans are being considered by several ODA projects. This study aims to contribute to the design of such irrigation plans through the development of a real-time hydrological cycle - rice growth coupled simulation system. The purpose of the development of this system is to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. Rice growing condition as affected by water stress due to the water shortage is supposed to be shown for both of the cases with and without irrigation for several rainfall patterns. A dynamically coupled model of a distributed hydrological model (WEB-DHM., Wang et al., 2009) and a rice growth model (SIMRIW-rainfed, Homma et al., 2009) has been developed with a simple irrigation model. The target basin, a small basin in western Cambodia, is basically an ungauged basin and the model was validated by soil moisture, LAI, dry matter production of the rice crop, and rice yield, using both intensive field observation and satellite observations. Calibrating hourly satellite precipitation dataset (GSMaP/NRT) using ground rain gauges, hydrological cycle (soil moisture at three layers, river discharge, irrigatable water amount, water level of each paddy field, water demand of each paddy field, etc.) and rice growth (LAI, developmental index of the rice crop, dry matter

  16. Mutation breeding in crop improvement - achievements and prospects

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    2004-01-01

    Crop improvement programmes through induced mutations were initiated about seven decades ago. Majority of the mutant varieties have been released during the last two decades. In terms of the development and release of mutant varieties, China (605), India (309), Russia (204), the Netherlands (176), USA (125) and Japan (120) are the leading countries. Radiation, especially gamma radiation was the most frequently used mutagen for inducing mutations in crop plants. Out of 1072 mutant varieties of cereals, rice alone accounts for 434 varieties followed by barley (269). Mutation breeding has made significant contribution in increasing the production of rice, ground nut, castor, chickpea, mungbean and urd bean in the Indian subcontinent. The future mutation breeding programmes should be aimed at improving the root characters, nodulation in legumes, alteration of fatty acid composition in oil seeds, host pathogen interactions, photo- insensitivity and apomixix in crop plants

  17. Cointegration analysis for rice production in the states of Perlis and Johor, Malaysia

    Science.gov (United States)

    Shitan, Mahendran; Ng, Yung Lerd; Karmokar, Provash Kumar

    2015-02-01

    Rice is ranked the third most important crop in Malaysia after rubber and palm oil in terms of production. Unlike the industrial crops, although its contribution to Malaysia's economy is minimal, it plays a pivotal role in the country's food security as rice is consumed by almost everyone in Malaysia. Rice production is influenced by factors such as geographical location, temperature, rainfall, soil fertility, farming practices, etc. and hence the productivity of rice may differ in different state. In this study, our particular interest is to investigate the interrelationship between the rice production of Perlis and Johor. Data collected from Department of Agriculture, Government of Malaysia are tested for unit roots by Augmented Dickey-Fuller (ADF) unit root test while Engle-Granger (EG) procedure is used in the cointegration analysis. Our study shows that cointegrating relationship exists among the rice production in both states. The speed of adjustment coefficient of the error correction model (ECM) of Perlis is 0.611 indicating that approximately 61.1% of any deviation from the long-run path is corrected within a year by the production of rice in Johor.

  18. Radiation technology for the development of improved crop varieties

    International Nuclear Information System (INIS)

    D'Souza, Stanislaus F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane. The desirable traits which have been bred through induced mutations include higher yield, grain quality, early maturity, disease and pest resistance, improved plant type and abiotic stress resistance

  19. Economic and Environmental Impacts of Adoption of Genetically Modified Rice in California

    OpenAIRE

    Bond, Craig A.; Carter, Colin A.; Farzin, Y. Hossein

    2005-01-01

    Rice production in California is intensive in input usage. Weed resistance has led to growing chemical usage and has raised costs for many rice producers in California. In recent years, widespread adoption of genetically modified (GM) soybeans, corn, canola, and cotton has provided growers of those crops with new production alternatives that reduce chemical usage. But GM rice has not yet been approved for commercial production in California or elsewhere. One reason that GM rice production has...

  20. Parameter values for the estimation of radionuclide transfer to major food crops in Korea

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Lee, Chang-Woo

    2008-01-01

    This paper summarizes the results of the radiotracer experiments and field studies performed in Korea for the past 20 years to obtain parameter values for estimating the environmental transfer of radionuclides to food crops. With regards to direct plant contamination, the interception fractions, weathering half-lives and translocation factors of Cs, Sr, Mn, Co and Ru were measured for depositions at different growth stages of selected food crops. In order to investigate an indirect contamination pathway, the soil-to-plant transfer factors (TF m , dimensionless) of Cs, Sr, Mn, Co and/or Zn were measured for rice, Chinese cabbage, radish, soybean, barley, lettuce and so on in one or more soils. In addition, the transfer factors (TF a , m 2 kg -1 ) based on a deposition density were also measured following depositions at different times during the growth periods of several food crops. Particularly for rice and Chinese cabbage, tritium experiments were also carried out for the TF a . The obtained parameter values varied considerably with the soils, crops, radionuclides and deposition times. These data would be applicable to both normal and acute releases not only in Korea but also in many other countries. (author)

  1. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  2. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  3. Effect of Biochar on Relieving Cadmium Stress and Reducing Accumulation in Super japonica Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-yu; MENG Jun; DANG Shu; CHEN Wen-fu

    2014-01-01

    It is of great importance to solve the threats induced by cadmium pollution on crops. This paper examined the effect of biochar on cadmium accumulation in japonica rice and revealed the mechanism underlying the response of protective enzyme system to cadmium stress. Biochar derived from rice straw was applied at two application rates under three cadmium concentrations. Shennong 265, super japonica rice variety, was selected as the test crop. The results indicated that cadmium content in above-ground biomass of rice increased with increasing soil cadmium concentrations, but the biochar application could suppress the accumulation of cadmium to some extent. Under high concentrations of cadmium, content of free proline and MDA (malondialdehyde) were high, so did the SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase) activity in the lfag leaf of rice. However, the protective enzyme activities remained at low level when biochar was added.

  4. Little white lies: pericarp color provides insights into the origins and evolution of Southeast Asian weedy rice

    Science.gov (United States)

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy ...

  5. The green, blue and grey water footprint of crops and derived crop products

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2011-05-01

    3 GJ−1 than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ−1, while this is 121 m3 GJ−1 for maize.

    The global water footprint related to crop production in the period 1996–2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey. A large total water footprint was calculated for wheat (1087 Gm3 yr−1, rice (992 Gm3 yr−1 and maize (770 Gm3 yr−1. Wheat and rice have the largest blue water footprints, together accounting for 45 % of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr−1, China (967 Gm3 yr−1 and the USA (826 Gm3 yr−1. A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm3 yr−1 and the Ganges river basin (108 Gm3 yr−1. The two basins together account for 25 % of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr−1 (91 % green, 9 % grey; irrigated agriculture has a water footprint of 2230 Gm3 yr−1 (48 % green, 40 % blue, 12 % grey.

  6. Diversity and activity of nitrogen fixing archaea and bacteria associated with micro-environments of wetland rice

    Science.gov (United States)

    Schmidt, Hannes; Woebken, Dagmar

    2017-04-01

    Wetland rice is one of the world's most important crop plants. The cultivation on waterlogged paddy soils is strongly limited by nitrogen (N), which is typically supplied by industrial fertilizers that are not only costly but also exhibit hazardous effects on the environment. It has been reported that "Biological Nitrogen Fixation" through N2-fixing bacteria and archaea (diazotrophs) can alleviate the N-shortage in rice cultivation, thus carrying out an important ecosystem function. However, our understanding of the diversity and in situ N2 fixation activity of diazotrophs in flooded rice fields is still rudimentary. Moreover, knowledge on the impact of biochemical gradients established by root activity (i.e. exudation, radial oxygen loss) on the functioning of N-fixing microorganisms in paddy soil ecosystems is limited. We aimed at studying underlying processes on biologically relevant scales. Greenhouse studies were performed to identify key factors that control rice-diazotroph association and related N2 fixation activities. Paddy soils of different geographical origin were cultivated with two commercially used genotypes of wetland rice. Samples were separated into bulk soil, rhizosphere soil, rhizoplane, and roots at flowering stage of rice plant development. These samples were subjected to functional assays and various molecular biological techniques in order to analyze the associated diazotroph communities. Based on Illumina amplicon sequencing of nifH genes and transcripts, we show that the diversity and potential activity of diazotroph communities varies according to micro-environments. We will comparatively discuss the influence of (a) the soil microbial "seed bank" and (b) plant genotype in shaping the respective microbiomes and selecting for potentially active diazotrophs. Actual N2 fixation activities of soil-genotype combinations and micro-environments will be shown on the basis of incubation assays using 15N2-containing atmospheres. Areas of potential

  7. Performance of super hybrid rice cultivars grown under no-tillage and direct seeding

    Directory of Open Access Journals (Sweden)

    Min Huang

    2012-04-01

    Full Text Available Good progress has been made in the super hybrid rice (Oryza sativa L. breeding in China. However, rice yield not only depends on the genetic characteristics but also on the agronomic practices. No-tillage and direct seeding (NTDS is a simplified cultivation technology that greatly simplifies both land preparation and crop establishment. Aiming to determine the grain yield performance of super hybrid rice under NTDS and to identify critical factors that determine grain yield, field experiments were conducted in Nanxian, Hunan Province, China in 2009 and 2010. Two super hybrid cultivars, Liangyoupeijiu and Y-liangyou 1, were grown under conventional tillage and transplanting (CTTP and NTDS. Grain yield, yield components, biomass production, crop growth rate and biomass accumulation during sowing to heading (HD and HD to maturity were measured for each cultivar. There was no difference in grain yield under NTDS and CTTP. However, grain yield differed with cultivar and year. Y-liangyou 1 produced 4 % higher grain yield than Liangyoupeijiu in 2009, whereas in 2010 both cultivars yielded similarly. Grain yields of both cultivars were higher in 2009 than in 2010. Higher grain yield of Y-liangyou 1 in 2009 was associated with higher spikelet filling (spikelet filling percentage and grain weight, which resulted from higher biomass production. Crop growth rate after HD was critical for biomass production by the super hybrid rice. We suggest that increasing the crop growth rate after HD is an effective approach to increase grain yield of super hybrid rice under NTDS.

  8. Effect of climate change on crop production patterns with implications to transport flows and inland waterways.

    Science.gov (United States)

    2011-12-01

    This project analyzed the demand for transportation capacity and changes in transportation flows on : inland waterways due to shifts in crop production patterns induced by climate change. Shifts in the crop : production mix have been observed in rece...

  9. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses.

    Science.gov (United States)

    Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H

    2013-06-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop-wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar-wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability.

  10. Phosphorus critical levels and availability in lowland soils cultivated with flooded rice

    Directory of Open Access Journals (Sweden)

    Mariano Isabela Orlando dos Santos

    2002-01-01

    Full Text Available Lowland soils present a great potential for the flooded rice crop. This work aimed to estimate critical levels of P in waterlogged soils cultivated with rice using Mehlich 1 and anion exchange resin as soil-P extractors, compare the performance of these extractors as for the evaluation of the P availability, and study the soil-P fractions involved in the P nutrition of the rice crop. Studied soils consisted of four Histosols: Low Humic Gley (GP, Aluvial (A, Humic Gley (GH and Bog Soil (O which were previously cultivated with beans. The experimental design was completely randomized, in a factorial scheme, using four soils, five P rates (75, 150, 300, 500 and 800 mg dm-3 and two liming treatments (with and without liming, with three replicates. After 60 days of flooding, soil samples were submitted to P extraction by Mehlich 1 and resin, and phosphorous fractionation. Two rice plants were cultivated in pots containing 3 dm³ of waterlogged soils. The labile P and the moderately labile P of the soils contributed for rice nutrition. The two tested extractors presented efficiency in the evaluation of P availability for the rice cultivated in lowland waterlogged soils.

  11. The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (Chilo suppressalis).

    Science.gov (United States)

    Jiang, Shan; Wu, Hao; Liu, Haoju; Zheng, Jie; Lin, Yongjun; Chen, Hao

    2017-07-01

    The striped stem borer (SSB), Chilo suppressalis Walker, is a major rice insect pest worldwide. RNA interference (RNAi) has become a promising strategy for developing insect-resistant crops. In a previous study, five double-stranded RNAs (dsRNAs) targeting important SSB housekeeping genes were overexpressed in rice, but none of the acquired dsRNA-transgenic rice plants showed significant effects on SSB. Thirteen selected SSB endogenous small RNAs, predicted as SSB novel microRNAs (miRNAs), were overexpressed in rice using artificial miRNA (amiRNA) expression technology. Feeding tests showed that two out of 13 selected SSB novel miRNAs caused significant growth inhibition for feeding SSB larvae based on transgenic rice expression. Pupation was delayed 4 days when SSB larvae consecutively fed on transgenic rice expressing the SSB novel miRNA candidate csu-novel-miR15 (csu-15 rice). Gene expression analysis confirmed that the expression levels of at least six SSB unigenes significantly changed (i.e., were up- or down-regulated) after feeding on csu-15 rice. Our research demonstrated a novel RNAi strategy using SSB endogenous small RNAs to develop RNAi crops for pest management; this strategy is different from the common RNAi resulting from transgenic dsRNAs or amiRNAs targeting certain insect endogenous genes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Methane emissions and microbial communities as influenced by dual cropping of Azolla along with early Rice

    DEFF Research Database (Denmark)

    Liu, Jingna; Xu, Heshui; Jiang, Ying

    2017-01-01

    Azolla caroliniana Willd. is widely used as a green manure accompanying rice, but its ecological importance remains unclear, except for its ability to fix nitrogen in association with cyanobacteria. To investigate the impacts of Azolla cultivation on methane emissions and environmental variables...... in paddy fields, we performed this study on the plain of Dongting Lake, China, in 2014. The results showed that the dual cropping of Azolla significantly suppressed the methane emissions from paddies, likely due to the increase in redox potential in the root region and dissolved oxygen concentration...... at the soil-water interface. Furthermore, the floodwater pH decreased in association with Azolla cultivation, which is also a factor significantly correlated with the decrease in methane emissions. An increase in methanotrophic bacteria population (pmoA gene copies) and a reduction in methanogenic archaea (16...

  13. Utilization of wastewater on seed germination and physioogical parameters of rice (Oryza sativa L.)

    Science.gov (United States)

    Huy, V.; Iwai, C. B.

    2018-03-01

    Due to increasing world population and demand, fresh water availability is becoming a limited resource. Reusing wastewater for agriculture has received attention since it contains nutrients, which are beneficial for growing crops. Even though wastewater can be used as the nutrient source for the plant, the toxicity of wastewater can still be a cause for concern and investigation. The main objective of this paper was to assess the effect of different sources of wastewater on the germination of Jasmine rice (KDML105), White rice (Phatum Thani 1), and Sticky rice (RD6) under laboratory conditions. Petri dish cultures were used with various concentrations (0, 50, and 100%) of wastewater collected from swine farm, aquaculture activity, and domestic. Seed germination, root length, shoot length, seed vigor index, fresh weight and dry weight were measured after each experiment. The results have shown that domestic wastewater and aquaculture activity wastewater did not decrease performance of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) while the germination of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) decreased when irrigated with swine farm wastewater. Therefore, using domestic and aquaculture activity wastewater for irrigation are suitable for growth of these crop.

  14. Solophos fertilizer improved rice plant growth in aerobic soil

    OpenAIRE

    NIE, Lixiao; PENG, Shaobing; BOUMAN, Bas A.M.; HUANG, Jianliang; CUI, Kehui; VISPERAS, Romeo M.; PARK, Hong-Kyu

    2007-01-01

    Yield decline of continuous monocropping of aerobic rice is the major constraint to the wide adoption of aerobic rice technology. This study was conducted to determine if solophos fertilizer could be used to reverse the yield decline of this cropping system using pot and micro-plot experiments. The soil for the pot experiment was collected from a field where aerobic rice has been grown continuously for 11 seasons at the IRRI farm. Four rates (4, 6, 8, and 10gpot^) of solophos application were...

  15. Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses

    OpenAIRE

    Hartman, Y.; Uwimana, B.; Hooftman, D.A.P.; Schranz, M.E.; Wiel, van de, C.C.M.; Smulders, M.J.M.; Visser, R.G.F.; Tienderen, van, P.H.

    2013-01-01

    Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop?wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selectiv...

  16. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  17. Food crop production, nutrient availability, and nutrient intakes in Bangladesh: exploring the agriculture-nutrition nexus with the 2010 Household Income and Expenditure Survey.

    Science.gov (United States)

    Fiedler, John L

    2014-12-01

    Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.

  18. Effect of rainfall on cropping pattern in mid Himalayan region ...

    African Journals Online (AJOL)

    The analysis of effect of rainfall during the last 20 years is needed to evaluate cropping pattern in the rain-fed region. In this study, trends in annual, seasonal and monthly rainfall of district of Himachal Pradesh in India over the past 20 years were examined. The annual rainfall varies from 863.3 to 1470.0 mm. During the ...

  19. Problems and prospects of mechanical rice-transplanting in Pakistan

    International Nuclear Information System (INIS)

    Majid, A.; Rehman, A.; Akram, M.; Zafar, A.W.; Ahmed, M.

    2003-01-01

    Among the many factors, low plant-population is the fundamental reason for poor rice-yield, despite advancements in rice-culture technology. The contracted manual transplanting of paddy seedlings is considered to be one of the key factors responsible for poor stand-establishment of rice in the field. The labourers transplant rice-seedlings at considerably wider distance than the recommended one, resulting in poor establishment of crop-stand and, ultimately, lower yield. The mechanized rice-culture is thought to be a viable substitute for manual rice-culture in Pakistan. Over the years, a lot of effort has been made in this regard, but could not popularize mechanical transplantation of paddy, for a number of reasons. The popularization of mechanical rice-culture in the country needs significant reforms in nursery raising, water management, improvement of soil organic-matter and land-preparation, along with emphasis on local manufacturing of the cost-effective simple mechanical rice transplanter. (author)

  20. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.

    Science.gov (United States)

    Li, Hongying; Qin, Lijie; He, Hongshi

    2018-06-01

    Rice is a special crop, and its production differs from that of other crops because it requires a thin layer of water coverage for a long period. The calculation of the water footprint of rice production should differ from that of other crops owing to the rice growing process. This study improved the calculation of blue and grey water footprints of rice production and analyzed the variations in the water footprints for rice production under different rainfall years in Jilin Province. In the drought year, the green water footprint was the lowest and the blue water footprint was the highest among the three years, while in the humid year, the green water footprint was the highest and the blue water footprint was not the lowest. The areas with higher water footprints were found in the east and west regions of Jilin Province, while the areas with lower water footprints were found in the middle east and middle regions of Jilin Province. Blue water was the primary water resource for rice production, although more precipitation provided the highest green water in the humid year; also, the spatial distributions of water footprints were not the same under different rainfall years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.