WorldWideScience

Sample records for rice yield prediction

  1. Rice yield prediction from yield components and limiting factors

    NARCIS (Netherlands)

    Casanova, D.; Goudriaan, J.; Catala Former, M.M.; Withagen, J.C.M.

    2002-01-01

    This article aims to quantify growth at field level in relation to crop status and soil properties in irrigated direct-seeded rice. Forty fields were selected in the Ebro Delta (Spain). Rice growth was monitored and soil properties measured. Yield was related to soil properties by a deductive

  2. Integrated model for predicting rice yield with climate change

    Science.gov (United States)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2018-04-01

    Rice is the chief agricultural product and one of the primary food source. For this reason, it is of pivotal importance for worldwide economy and development. Therefore, in a decision-support-system both for the farmers and in the planning and management of the country's economy, forecasting yield is vital. However, crop yield, which is a dependent of the soil-bio-atmospheric system, is difficult to represent in statistical language. This paper describes a novel approach for predicting rice yield using artificial neural network, spatial interpolation, remote sensing and GIS methods. Herein, the variation in the yield is attributed to climatic parameters and crop health, and the normalized difference vegetation index from MODIS is used as an indicator of plant health and growth. Due importance was given to scaling up the input parameters using spatial interpolation and GIS and minimising the sources of error in every step of the modelling. The low percentage error (2.91) and high correlation (0.76) signifies the robust performance of the proposed model. This simple but effective approach is then used to estimate the influence of climate change on South Korean rice production. As proposed in the RCP8.5 scenario, an upswing in temperature may increase the rice yield throughout South Korea.

  3. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR.

    Science.gov (United States)

    Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun

    2013-01-01

    Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha(-1). Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly.

  4. Using artificial neural network and satellite data to predict rice yield in Bangladesh

    Science.gov (United States)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-09-01

    Rice production in Bangladesh is a crucial part of the national economy and providing about 70 percent of an average citizen's total calorie intake. The demand for rice is constantly rising as the new populations are added in every year in Bangladesh. Due to the increase in population, the cultivation land decreases. In addition, Bangladesh is faced with production constraints such as drought, flooding, salinity, lack of irrigation facilities and lack of modern technology. To maintain self sufficiency in rice, Bangladesh will have to continue to expand rice production by increasing yield at a rate that is at least equal to the population growth until the demand of rice has stabilized. Accurate rice yield prediction is one of the most important challenges in managing supply and demand of rice as well as decision making processes. Artificial Neural Network (ANN) is used to construct a model to predict Aus rice yield in Bangladesh. Advanced Very High Resolution Radiometer (AVHRR)-based remote sensing satellite data vegetation health (VH) indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used as input variables and official statistics of Aus rice yield is used as target variable for ANN prediction model. The result obtained with ANN method is encouraging and the error of prediction is less than 10%. Therefore, prediction can play an important role in planning and storing of sufficient rice to face in any future uncertainty.

  5. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We

  6. Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts

    Science.gov (United States)

    Dhekale, B. S.; Nageswararao, M. M.; Nair, Archana; Mohanty, U. C.; Swain, D. K.; Singh, K. K.; Arunbabu, T.

    2017-08-01

    The Extended Range Forecasts System (ERFS) has been generating monthly and seasonal forecasts on real-time basis throughout the year over India since 2009. India is one of the major rice producer and consumer in South Asia; more than 50% of the Indian population depends on rice as staple food. Rice is mainly grown in kharif season, which contributed 84% of the total annual rice production of the country. Rice cultivation in India is rainfed, which depends largely on rains, so reliability of the rainfall forecast plays a crucial role for planning the kharif rice crop. In the present study, an attempt has been made to test the reliability of seasonal and sub-seasonal ERFS summer monsoon rainfall forecasts for kharif rice yield predictions at Kharagpur, West Bengal by using CERES-Rice (DSSATv4.5) model. These ERFS forecasts are produced as monthly and seasonal mean values and are converted into daily sequences with stochastic weather generators for use with crop growth models. The daily sequences are generated from ERFS seasonal (June-September) and sub-seasonal (July-September, August-September, and September) summer monsoon (June to September) rainfall forecasts which are considered as input in CERES-rice crop simulation model for the crop yield prediction for hindcast (1985-2008) and real-time mode (2009-2015). The yield simulated using India Meteorological Department (IMD) observed daily rainfall data is considered as baseline yield for evaluating the performance of predicted yields using the ERFS forecasts. The findings revealed that the stochastic disaggregation can be used to disaggregate the monthly/seasonal ERFS forecasts into daily sequences. The year to year variability in rice yield at Kharagpur is efficiently predicted by using the ERFS forecast products in hindcast as well as real time, and significant enhancement in the prediction skill is noticed with advancement in the season due to incorporation of observed weather data which reduces uncertainty of

  7. Development of predictive weather scenarios for early prediction of rice yield in South Korea

    Science.gov (United States)

    Shin, Y.; Cho, J.; Jung, I.

    2017-12-01

    International grain prices are becoming unstable due to frequent occurrence of abnormal weather phenomena caused by climate change. Early prediction of grain yield using weather forecast data is important for stabilization of international grain prices. The APEC Climate Center (APCC) is providing seasonal forecast data based on monthly climate prediction models for global seasonal forecasting services. The 3-month and 6-month seasonal forecast data using the multi-model ensemble (MME) technique are provided in their own website, ADSS (APCC Data Service System, http://adss.apcc21.org/). The spatial resolution of seasonal forecast data for each individual model is 2.5°×2.5°(about 250km) and the time scale is created as monthly. In this study, we developed customized weather forecast scenarios that are combined seasonal forecast data and observational data apply to early rice yield prediction model. Statistical downscale method was applied to produce meteorological input data of crop model because field scale crop model (ORYZA2000) requires daily weather data. In order to determine whether the forecasting data is suitable for the crop model, we produced spatio-temporal downscaled weather scenarios and evaluated the predictability by comparison with observed weather data at 57 ASOS stations in South Korea. The customized weather forecast scenarios can be applied to various application fields not only early rice yield prediction. Acknowledgement This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No: PJ012855022017)" Rural Development Administration, Republic of Korea.

  8. A simple model for yield prediction of rice based on vegetation index derived from satellite and AMeDAS data during ripening period

    International Nuclear Information System (INIS)

    Wakiyama, Y.; Inoue, K.; Nakazono, K.

    2003-01-01

    The present study was conducted to show a simple model for rice yield predicting by using a vegetation index (NDVI) derived from satellite and meteorological data. In a field experiment, the relationship between the vegetation index and radiation absorbed by the rice canopy was investigated from transplanting to maturity. Their correlation held. This result revealed that the vegetation index could be used as a measure of absorptance of solar radiation by rice canopy. NDVI multiplied by solar radiation (SR) every day was accumulated (Σ(SR·NDVI)) from the field experiment. Σ(SR·NDVI) was plotted against above ground dry matter. It was obvious that they had a strong relationship. Rice yield largely depends on solar radiation and air temperature during the ripening period. Air temperature affects dry matter production. Relationships between Y SR -1 (Y: rice yield, SR: solar radiation) and mean air temperature were investigated from meteorological data and statistical data on rice yield. There was an optimum air temperature, 21.3°C, for ripening. When it was near 21.3°C in the ripening period, the rice yield was higher. We proposed a simple model for yield prediction of rice based on these results. The model is composed with SR·NDVI and the optimum air temperature. Vegetation index was derived from 3 years, LANDSAT TM data in Toyama, Ishikawa, Fukui and Nagano prefectures at heading. The meteorological data was used from AMeDAS data. The model was described as follows: Y = 0.728 SR·NDVI−2.04(T−21.3) 2 + 282 (r 2 = 0.65, n = 43) where Y is rice yield (kg 10a -1 ), SR is solar radiation (MJ m -2 ) during the ripening period (from 10 days before heading to 30 days after heading), T is mean air temperature (°C) during the ripening period. RMSE was 33.7kg 10a -1 . The model revealed good precision. (author)

  9. significance of rice sheath photosynthesis: yield determination by c ...

    African Journals Online (AJOL)

    ACSS

    1State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China. 2School of ... for contribution rates of sheath photosynthesis to economical yield. ..... related processes during ripening in rice plants.

  10. N-acetylcysteine increased rice yield

    OpenAIRE

    NOZULAIDI, MOHD; JAHAN, MD SARWAR; KHAIRI, MOHD; KHANDAKER, MOHAMMAD MONERUZZAMAN; NASHRIYAH, MAT; KHANIF, YUSOP MOHD

    2015-01-01

    N-acetylcysteine (NAC) biosynthesized reduced glutathione (GSH), which maintains redox homeostasis in plants under normal and stressful conditions. To justify the effects of NAC on rice production, we measured yield parameters, chlorophyll (Chl) content, minimum Chl fluorescence (Fo), maximum Chl fluorescence (Fm), quantum yield (Fv/Fm), net photosynthesis rate (Pn), photosynthetically active radiation (PAR), and relative water content (RWC). Four treatments, N1G0 (nitrogen (N) with no NAC), ...

  11. simulating rice yields under climate change scenarios using

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The effects of climate change on rice production and yield cannot be overlooked in finding measures to increase production and yield. The CERES-Rice (Ver. 4.0) model was calibrated and evaluated for use in simulating rice yields under different climate change scenarios in Ghana using data from the Anum Valley ...

  12. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    Science.gov (United States)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2

  13. Significance of rice sheath photosynthesis: Yield determination by ...

    African Journals Online (AJOL)

    Using high-yielding hybrid rice Liangyopeijiu (LYP9), its male parent 9311 and hybrid rice Shanyou 63 (SY63) as the experimental materials, the photosynthesis of rice sheath was studied by 14C radio-autography. The results showed that rice sheath could trap sunlight and produce photosynthates, and these ...

  14. Estimation of rice yield affected by drought and relation between rice yield and TVDI

    Science.gov (United States)

    Hongo, C.; Tamura, E.; Sigit, G.

    2016-12-01

    Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.

  15. Assessing the impacts of climate change on rice yields in the main rice areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fengmei [College of Earth Sciences, The Graduate University of the Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100049 (China); Xu, Yinglong; Lin, Erda [Agricultural Environment and Sustainable Development Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 (China); Yokozawa, Masayuki [National Institute for Agro-environmental Sciences, Tsukuba 305-8604 (Japan); Zhang, Jiahua [Chinese Academy of Meteorological Sciences, Beijing, 100081 (China)

    2007-02-15

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within {+-} 10% of observed flowering duration and {+-} 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations.

  16. Assessing the impacts of climate change on rice yields in the main rice areas of China

    International Nuclear Information System (INIS)

    Yao, Fengmei; Xu, Yinglong; Lin, Erda; Yokozawa, Masayuki; Zhang, Jiahua

    2007-01-01

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within ± 10% of observed flowering duration and ± 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations

  17. Upland rice yield as affected by Brachiaria coverage management

    Directory of Open Access Journals (Sweden)

    Adriano S. Nascente

    2015-01-01

    Full Text Available An important point in no-tillage system is the time between cover crop glyphosate desiccation and rice sowing. This study aimed to verify the effect of Brachiaria ruziziensis management time before rice sowing on rice yield and its components. The experiment was conducted under greenhouse conditions and consisted of four types of B. ruziziensis management: with Brachiaria and with herbicide (WBWH, without Brachiaria shoots and with herbicide (NBWH, without Brachiaria shoots and without herbicide (NBNH, and with Brachiaria and without herbicide (WBNH, at four times: 30, 20, 10, and 0 days, preceding the rice sowing. The amount of B. ruziziensis dry matter increased as the management was done closer to the rice sowing date. The WBWH and WBNH managements (this one causes the lowest rice grain yield must be done 30 days before rice sowing; while NBWH management must be done ten or more days before rice sowing. On the other hand, NBNH management (this one favors the best rice grain yield can be done until rice sowing day. Despite some reduction in rice yield caused by the B. ruziziensis management, when it was done at the proper time the rice grain yield was similar to the control (without Brachiaria sowing and without herbicide application.

  18. Rice yield estimation with multi-temporal Radarsat-2 data

    Science.gov (United States)

    Chen, Chi-Farn; Son, Nguyen-Thanh; Chen, Cheng-Ru

    2015-04-01

    Rice is the most important food crop in Taiwan. Monitoring rice crop yield is thus crucial for agronomic planners to formulate successful strategies to address national food security and rice grain export issues. However, there is a real challenge for this monitoring purpose because the size of rice fields in Taiwan was generally small and fragmented, and the cropping calendar was also different from region to region. Thus, satellite-based estimation of rice crop yield requires the data that have sufficient spatial and temporal resolutions. This study aimed to develop models to estimate rice crop yield from multi-temporal Radarsat-2 data (5 m resolution). Data processing were carried out for the first rice cropping season from February to July in 2014 in the western part of Taiwan, consisting of four main steps: (1) constructing time-series backscattering coefficient data, (2) spatiotemporal noise filtering of the time-series data, (3) establishment of crop yield models using the time-series backscattering coefficients and in-situ measured yield data, and (4) model validation using field data and government's yield statistics. The results indicated that backscattering behavior varied from region to region due to changes in cultural practices and cropping calendars. The highest correlation coefficient (R2 > 0.8) was obtained at the ripening period. The robustness of the established models was evaluated by comparisons between the estimated yields and in-situ measured yield data showed satisfactory results, with the root mean squared error (RMSE) smaller than 10%. Such results were reaffirmed by the correlation analysis between the estimated yields and government's rice yield statistics (R2 > 0.8). This study demonstrates advantages of using multi-temporal Radarsat-2 backscattering data for estimating rice crop yields in Taiwan prior to the harvesting period, and thus the methods were proposed for rice yield monitoring in other regions.

  19. Yield constraint analysis of rainfed lowland rice in Souteast Asia

    NARCIS (Netherlands)

    Boling, A.A.

    2007-01-01

    Keywords: Fertilizer application, field hydrology, plant nutrient uptake, toposequence, weed control, yield loss. Rainfed lowland rice yields are low and unstable due to uncertain water supply, low soil fertility, and pest infestation. To design management interventions aimed at increasing

  20. Influence of Climate Factors on Rice Yields in Cambodia

    Directory of Open Access Journals (Sweden)

    Dek Vimean Pheakdey

    2017-12-01

    Full Text Available Temperature and precipitation have been known as the key determinant factors to affect rice production in climate change. In this study, the relationship between climate variables and rice yields during 1993–2012 in Cambodia was analyzed and evaluated. The Ordinary Least Squares analysis was applied to examine the relationship of three climate variables (TCV including maximum temperature, minimum temperature and rainfall against seasonal rice yields. By this period, a remarkable increasing trend of annual temperature was observed whilst rainfall was not significantly changed. The TCV explains approximately 63% and 56% of the variability of rice yields in wet and dry seasons, respectively. It is found that in Cambodia, non-climate factors such as fertilizers, water, cultivars, and soil fertility cause 40% variation to rice yields, whereas the remaining 60% can be influenced by climate variability. The levels of temperature difference (LTD between maximum and minimum temperatures of the wet season (WS and dry season (DS were 7.0 and 8.6 oC, respectively. The lower value of LTD may cause the reduction of rice in WS (2.2 tons/ha as compared to that of DS (3.0 tons/ha. Rice yield has increased 50.5% and 33.8% in DS and WS, respectively, may due to the improvement of rice cultivation practices in Cambodia such as the better use of fertilizers, pest and weed control, and irrigation, and more effective rice cultivated protocol, as the increased trend of temperature may detrimentally affect rice yield. The breeding of heat and drought tolerance rice varieties and development of irrigation system are effective to reduce the negative influence from climate change to rice production in Cambodia.

  1. Estimating the effect of urease inhibitor on rice yield based on NDVI at key growth stages

    Directory of Open Access Journals (Sweden)

    Kailou LIU,Yazhen LI,Huiwen HU

    2014-06-01

    Full Text Available The effect of the urease inhibitor, N-(n-butyl thiophosphoric triamide (NBPT at a range of application rates on rice production was examined in a field experiment at Jinxian County, Jiangxi Province, China. The normalized difference vegetation index (NDVI was measured at key growth stages in both early and late rice. The results showed that the grain yield increased significantly when urea was applied with NBPT, with the highest yield observed at 1.00% NBPT (wt/wt. NDVI differed with the growth stage of rice; it remained steady from the heading to the filling stage. Rice yield could be predicted from the NDVI taken at key rice growing stages, with R2 ranging from 0.34 to 0.69 in early rice and 0.49 to 0.70 in late rice. The validation test showed that RMSE (t·hm-2 values were 0.77 and 0.87 in early and late rice, respectively. Therefore, it was feasible to estimate rice yield for different amounts of urease inhibitor using NDVI.

  2. Use of vegetation health data for estimation of aus rice yield in bangladesh.

    Science.gov (United States)

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991-2005). A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March-April (weeks 8-13 of the year), several months in advance of the rice harvest. Stepwise principal component regression (PCR) was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.

  3. Use of Vegetation Health Data for Estimation of Aus Rice Yield in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Nizamuddin

    2009-04-01

    Full Text Available Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH Indices [Vegetation Condition Index (VCI, Temperature Condition Index (TCI and Vegetation Health Index (VHI] computed from Advanced Very High Resolution Radiometer (AVHRR data covering a period of 15 years (1991–2005. A strong correlation was found between aus rice yield and VCI and VHI during the critical period of aus rice development that occurs during March-April (weeks 8–13 of the year, several months in advance of the rice harvest. Stepwise principal component regression (PCR was used to construct a model to predict yield as a function of critical-period VHI. The model reduced the yield prediction error variance by 62% compared with a prediction of average yield for each year. Remote sensing is a valuable tool for estimating rice yields well in advance of harvest and at a low cost.

  4. Effect of saline irrigation water on yield and yield components of rice ...

    African Journals Online (AJOL)

    vaio

    2013-05-29

    May 29, 2013 ... levels at different growth stages of rice on yield and its components. Treatments included ... Therefore, irrigation with saline water at the early growth stages has more negative effect on ...... diversification. Land Degrad. Dev.

  5. Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand

    NARCIS (Netherlands)

    Prabnakom, S.; Maskey, S.; Suryadi, F.X.; Fraiture, de C.M.S.

    2018-01-01

    Rice yields in Thailand are among the lowest in Asia. In northeast Thailand where about 90% of rice cultivation is rain-fed, climate variability and change affect rice yields. Understanding climate characteristics and their impacts on the rice yield is important for establishing proper adaptation

  6. Evaluation of weather-based rice yield models in India

    Science.gov (United States)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  7. Rice yield as a function of transplanting data using historic weather data from the Philippines

    International Nuclear Information System (INIS)

    Centeno, H.A.; Aclan, A.P.; Kropff, M.J.; Cassman, K.G.

    1993-01-01

    Crop yield potential differs among environments in different years, and between seasons in the same year. Under good farm management with ample supply of water and nutrients, and without any pests and diseases, cultivar characteristics, temperature and solar radiation determine the potential yield of a crop. In 1992, 12-day old seedlings of rice (Oryza sativa L.) cv IR72 were transplanted at IRRI [International Rice Research Inst., Los Banos, Laguna, Philippines] farm under irrigated conditions. Highest nitrogen input was 110 kg N/ha during the wet season (WS) and 225 kg N/ha in the dry season (DS). Nitrogen inputs in the wet season were lower to avoid lodging and to match crop N requirements. In both seasons, detailed measurements were obtained for a quantitative understanding of the determinants of rice yield potential. The eco-physiological growth model (ORYZA1) accurately simulated observed yields in the wet and dry seasons (6 and 9.5 t/ha, respectively). The model was used to simulate yields with different planting dates, using historic weather data from selected sites in the Philippines. Rice yield was simulated using leaf nitrogen levels measured in WS and DS experiments. In Los Banos, the highest yields were obtained when the crop was transplanted in December. When the leaf nitrogen measurements from the 1992 dry season experiment were incorporated in the model, predicted yield was higher throughout the year, with the effect more pronounced during the dry season

  8. Photoperiod shift effects on yield characteristics of rice

    Science.gov (United States)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  9. High yielding rice mutants for West Bengal

    International Nuclear Information System (INIS)

    Debnath, A.R.; Sen, S.

    1980-01-01

    Four high yielding mutants with specific genetic corrections of the simply inherited characters were developed from IR-8 through X-irradiation. Recurrent selections of the promising isolates were made under diverse agro-climatic conditions in Winter and Summer seasons of West Bengal. The isolates CNM 6 and CNM 25 belonging to early maturity group and CNM 20 and CNM 31, to mid-early maturity group were finally selected at X 5 generation on the basis of their resistance qualities, maturity period and grain yield. They were evaluated upto X 10 qeneration at multi-locations as Pre-release and Minikit Varieties at State level. They were also placed at the National Screening Nursery (NSN) for screening against multiple diseases and pests at the National level. CNM 6 is reported to be promising in IRTP nurseries. It is reported that CNM 25 (IET 5646) ranked 2nd on the basis of average grain yield, CNM 20 (IET 5937) and CNM 31 (IET 5936) were resistant to diseases and with yield comparable to Jaya. These four productive mutants of superior types are widely accepted. CNM 6 is recommended for cultivation in Bankura and Birbhum districts and CNM 25 and CNM 31 in the different agro-climatic zones of West Bengal. (author)

  10. Rice Research to Break Yield Barriers

    Science.gov (United States)

    Verma, Vivek; Ramamoorthy, Rengasamy; Kohli, Ajay; Kumar, Prakash P.

    2015-10-01

    The world’s population continues to expand and it is expected to cross 9 billion by 2050. This would significantly amplify the demand for food, which will pose serious threats to global food security. Additional challenges are being imposed due to a gradual decrease in the total arable land and global environmental changes. Hence, it is of utmost importance to review and revise the existing food production strategies by incorporating novel biotechnological approaches that can help to break the crop yield barriers in the near future. In this review, we highlight some of the concerns hampering crop yield enhancements. The review also focuses on modern breeding techniques based on genomics as well as proven biotechnological approaches that enable identification and utilization of candidate genes. Another aspect of discussion is the important area of research, namely hormonal regulation of plant development, which is likely to yield valuable regulatory genes for such crop improvement efforts in the future. These strategies can serve as potential tools for developing elite crop varieties for feeding the growing billions.

  11. Harvest season and head rice yield of upland rice cultivars submitted to parboiling

    Directory of Open Access Journals (Sweden)

    Diva Mendonça Garcia

    2012-11-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE This work aimed to evaluate the effects of parboiling on the yield of upland rice cultivars harvested at different times. The cultivars were BRS Primavera and BRS Sertaneja, harvested at 30 and 47 days after flowering (DAF. For parboiling, samples were soaked in water bath at 65 °C in grain: water ratio of 1:1.6 in order to reach 25% and 30% moisture, and then were autoclaved for 10 minutes at 120 °C and 1.1 kg/cm2 of pressure. After drying up to 13% moisture in a greenhouse with forced air at 40 °C, samples were benefited, followed by separation using the trieur equipment and weighing to obtain the head rice yield. The results showed a higher yield for head rice harvested at 30 DAF than at 47 DAF (BRS Primavera 63.2 and 38.7%; BRS Sertaneja 68.5 and 55.7%, respectively. Parboiling increased the head rice yield, regardless of harvest season, but partly reflected the potential of the cultivar origin: BRS Primavera 70.06%, BRS Sertaneja 74.94%. It is concluded that the harvest season is one of the factors that most influence the quality of industrial rice and the effect of parboiling also depends on the potential of the material source.

  12. Optimizing rice yields while minimizing yield-scaled global warming potential.

    Science.gov (United States)

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  13. High yielding small grain mutant of rice variety Pankaj

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    Full text: By treatment with EMS a mutant has been produced from the variety Pankaj which has better tillering, longer panicle and more grains per panicle. In multilocation trials at Burdwan, Suri and Rampurhat in West Bengal it yielded significantly more than Pankaj and Mahsuri at all locations, with a mean 5.2t. The mutant named BU 79 would be a suitable substitute for Pankaj and similar long-duration rices. (author)

  14. YIELD STABILITY OF NEW HYBRID RICE ACROSS LOCATIONS

    Directory of Open Access Journals (Sweden)

    Satoto

    2016-02-01

    Full Text Available The adaptation of hybrid rice varieties mostly are in specific location and season, but there are some of the varieties have a wide adaptation then adopted by the farmer in the large area. Replicated yield trials were conducted to study the stability of hybrid rice yield and identify the best location to optimize their yield per ha. The trials were conducted in three location such as Sukamandi, Salatiga and Malang during two seasons in 2011. Data across location and season were analazed by using AMMI and Eberhart Russel methods. The AMMI analysis showed that the IR79156A/PK88 was adaptable to favorable environments but unstable. This hybrid is always performing well and produce the higher yield compare to check variety. Some of other hybrids were good only in specific location, i.e. IR62829A/BP2280-1E-12-22 and IR58029A/BP2280-1E-12-22. Those hybrids produced higher yield in Salatiga and Malang, respectively. Seem to AMMI analysis, the result of Eberhart and Russell method also showed that IR79156A/PK81 was the best hybrid with regression slope (b around 1 with the yield average higher than average of all hybrids. It indicated that this hybrid has a wide adaptation and probably can be cultivated in the wider ecosystem.

  15. Effects of Position of Rainfed Rice Field in a Toposequence on Water Availability and Rice Yield in Central Java, Indonesia

    OpenAIRE

    SUGANDA, HUSEIN; PANINGBATAN, E.P; GUERRA, L.C; TUONG, T.P

    2003-01-01

    The productivity of rainfed rice needs to be increased in order to support the Indonesian Food Security programs, especially rice. Rainfall is one of the main sources of the water availability on the rainfed rice field. This research was conducted from October 2000 to February 2001 at four sites in Central Java Province. The objectives of this research were to study thevariability of water availability that influenced by toposequen's position and to analyze the rice yields due to treatments o...

  16. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.

    Science.gov (United States)

    Thalapati, Sudhakar; Batchu, Anil K; Neelamraju, Sarla; Ramanan, Rajeshwari

    2012-06-01

    Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.

  17. Variation in Yield and Physicochemical Quality Traits among Mutants of Japonica Rice Cultivar Wuyujing 3

    OpenAIRE

    Abacar, Jose Daniel; Zhao-miao, Lin; Xin-cheng, Zhang; Cheng-qiang, Ding; She, Tang; Zheng-hui, Liu; Shao-hua, Wang; Yan-feng, Ding

    2016-01-01

    To select elite germplasms, 112 mutants derived from japonica rice cultivar Wuyujing 3 were evaluated. The yield components such as panicle number per square meter, grain number per panicle, and grain weight were measured. The quality traits such as percentage of chalky grains (PCG), brown rice yield (BRY), milled rice yield (MRY), degree of milling (DM), amylose content (AC), protein content (PC), and relationships among traits were inverstigated. Results showed that grain yield ranged from ...

  18. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    Science.gov (United States)

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Leaf gas exchange and yield of three upland rice cultivars

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2015-03-01

    Full Text Available Studies of physiological parameters associated with crop performance and growth in different groups of upland rice (Oryza sativa L. may support plant breeding programs. We evaluated the role of gas exchange rates and dry matter accumulation (DMA as traits responsible for yields in a traditional (cv. ‘Caiapó’, intermediate (cv. ‘Primavera’ and modern (cv. ‘Maravilha’ upland rice cultivars. Leaf gas exchange rates, DMA, leaf area index (LAI, harvest indexes (HI and yield components were measured on these genotypes in the field, under sprinkler irrigation. Panicles per m2 and DMA at flowering (FL and heading, as well as CO2 assimilation rates (A were similar across these cultivars. The highest yield was found in ‘Primavera’, which may be explained by (i a two-fold higher HI compared to the other cultivars, (ii greater rates of DMA during spikelet formation and grain-filling, as well as (iii a slow natural decrease of A in this cultivar, at the end of the season (between FL and maturation.

  20. Quantitative Genetic Analysis for Yield and Yield Components in Boro Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-03-01

    Full Text Available Twenty-nine genotypes of boro rice (Oryza sativa L. were grown in a randomized block design with three replications in plots of 4m x 1m with a crop geometry of 20 cm x 20 cm between November-April, in Regional Agricultural Research Station, Nagaon, India. Quantitative data were collected on five randomly selected plants of each genotype per replication for yield/plant, and six other yield components, namely plant height, panicles/plant, panicle length, effective grains/panicle, 100 grain weight and harvest index. Mean values of the characters for each genotype were used for analysis of variance and covariance to obtain information on genotypic and phenotypic correlation along with coheritability between two characters. Path analyses were carried out to estimate the direct and indirect effects of boro rice�s yield components. The objective of the study was to identify the characters that mostly influence the yield for increasing boro rice productivity through breeding program. Correlation analysis revealed significant positive genotypic correlation of yield/plant with plant height (0.21, panicles/plant (0.53, panicle length (0.53, effective grains/panicle (0.57 and harvest index (0.86. Path analysis based on genotypic correlation coefficients elucidated high positive direct effect of harvest index (0.8631, panicle length (0.2560 and 100 grain weight (0.1632 on yield/plant with a residual effect of 0.33. Plant height and panicles/plant recorded high positive indirect effect on yield/plant via harvest index whereas effective grains/panicle on yield/plant via harvest index and panicle length. Results of the present study suggested that five component characters, namely harvest index, effective grains/plant, panicle length, panicles/plant and plant height influenced the yield of boro rice. A genotype with higher magnitude of these component characters could be either selected from the existing genotypes or evolved by breeding program for genetic

  1. Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Directory of Open Access Journals (Sweden)

    Nabin Rawal

    2015-12-01

    Full Text Available A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM @10 t ha-1 gave significantly (P≤0.05 higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N and Potassium oxide (K2O @ 50 kg ha-1 produced significantly (P≤0.05 the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P, Potassium (K treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05 effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8, soil organic matter (4.1%, total N content (0.16%, available P (503.5 kg P2O5 ha-1 and exchangeable K (137.5 kg K2O ha-1 in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.

  2. Mutation induction and evaluation of high yield rice mutants

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Sobri Husein; Rusli Ibrahim

    2006-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation has been used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. Rice is security food crop in Malaysia. Efforts were undertaken to enhance rice yield from 4.0 tones per hectare in 1995 to 5.5 tones per hectare in 2010. Proper management and good varieties are two factors that require for enhancing yield of rice. In this research, purified seeds of MR211 and MR219 were gamma irradiated at 100 to 400 Gray and sown for planting as M1 generation at MARDI experimental plot. The M2 population was sown in bulk with population size around 15,000 to 20,000 plants. Individual plant selection was carried out at maturity and each selected plant became a mutant line of M3 generation. Agronomic trial of M3 mutants lines were conducted in Mardi, Tanjung Karang, Selangor. About 115 of selected mutant lines were evaluated. Each row of those mutant lines were planted in two rows at planting distance of 25cm within and between rows. These mutant lines were visually observed and data were recorded in each of every mutant line. (Author)

  3. Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria

    Institute of Scientific and Technical Information of China (English)

    Md Mohibul Alam KHAN; Effi HAQUE; Narayan Chandra PAUL; Md Abdul KHALEQUE; Saleh M. S. AL-GARNI; Mahfuzur RAHMAN; Md Tofazzal ISLAM

    2017-01-01

    Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. In this study, rice associated bacteria were isolated and assessed for mineral phosphate solubilization and indole-3-acetic acid (IAA) production activity in vitro. Six promising strains, which were tentatively identified as phylotaxon Pseudochrobactrum sp. (BRRh-1), Burkholderia sp. (BRRh-2), Burkholderia sp. (BRRh-3), Burkholderia sp. (BRRh-4), Pseudomonas aeruginosa (BRRh-5 and BRRh-6) based on their 16S rRNA gene phylogeny, exhibited significant phosphate solubilizing activity in National Botanical Research Institute phosphate growth medium, and BRRh-4 displayed the highest phosphate solubilizing activity, followed by BRRh-5. The pH of the culture broth declined, resulting in increase of growth rate of bacteria at pH 7, which might be due to organic acid secretion by the strains. In presence of L-tryptophan, five isolates synthesized IAA and the maximum IAA was produced by BRRh-2, followed by BRRh-1. Application of two most efficient phosphate solubilizing isolates BRRh-4 and BRRh-5 by root dipping (colonization) of seedling and spraying at the flowering stage significantly enhanced the growth and grain yield of rice variety BRRI dhan-29. Interestingly, application of both strains with 50% of recommended nitrogen, phosphorus and potassium fertilizers produced equivalent or higher grain yield of rice compared to the control grown with full recommended fertilizer doses, which suggests that these strains may have the potential to be used as bioinoculants for sustainable rice production.

  4. Impacts of different rice-fish-prawn culture systems on yield of rice, fish and prawn and limnological conditions

    OpenAIRE

    Nahar, Ashfaqun

    2010-01-01

    An experiment was conducted to determine the impact of fish and prawn culture on some physicochemical parameters of water, weeds, benthos, and rice yield under simultaneous method for a period of 5 months from July to November 2007. The experiment was comprised of five individual treatments having three replicates for each. The treatments were: rice combined with fish and regular urea fertilization (treatment І, T1), rice combined with prawn and regular urea fertilization (treatment ІI, T2), ...

  5. Genetic basis of yield and some yield related traits in basmati rice

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Haq, M.A.; Mirza, J.I.

    2010-01-01

    Additive, dominance and epistasis components of genetic variation for yield and some yield related traits were assessed through modified triple test cross technique in Basmati rice. Epistasis was found an important part of genetic variation for plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant except primary branches per panicle and panicle length. Bifurcation of epistasis showed that additive x additive (i) type and additive x dominance + dominance x dominance (j + l) types of non-allelic interactions were involved in the expression of these traits. Additive and dominance type of gene action influenced the expression of primary branches per panicle and panicle length. No evidence of directional dominance was observed for these two traits. For plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant, recurrent selection or bi parental mating may be exercised in F2 and following generations however, selection of desired plants may be postponed till F5 or F6 generations to permit maximum obsession of epistatic effects to develop desired cultivar(s) in Basmati rice.(author)

  6. CORRELATION ANALYSIS OF AGRONOMIC CHARACTERS AND GRAIN YIELD OF RICE FOR TIDAL SWAMP AREAS

    Directory of Open Access Journals (Sweden)

    Aris Hairmansis

    2013-05-01

    Full Text Available Development of rice varieties for tidal swamp areas is emphasized on the improvement of rice yield potential in specific environment. However, grain yield is a complex trait and highly dependent on the other agronomic characters; while information related to the relationship between agronomic characters and grain yield in the breeding program particularly for tidal swamp areas is very limited. The objective of this study was to investigate relationship between agronomic characters and grain yield of rice as a basis for selection of high yielding rice varieties for tidal swamp areas. Agronomic characters and grain yield of nine advanced rice breeding lines and two rice varieties were evaluated in a series of experiments in tidal swamp areas, Karang Agung Ulu Village, Banyuasin, South Sumatra, for four cropping seasons in dry season (DS 2005, wet season (WS 2005/2006, DS 2006, and DS 2007. Result from path analysis revealed that the following characters had positive direct effect on grain yield, i.e. number of productive tillers per hill (p = 0.356, number of filled grains per panicle (p = 0.544, and spikelet fertility (p = 0.215. Plant height had negative direct effect (p = -0.332 on grain yield, while maturity, number of spikelets per panicle, and 1000-grain weight showed negligible effect on rice grain yield. Present study suggests that indirect selection of high yielding tidal swamp rice can be done by selecting breeding lines which have many product tive tillers, dense filled grains, and high spikelet fertility.

  7. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Directory of Open Access Journals (Sweden)

    Nathaniel B Lyman

    Full Text Available Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  8. Improving Yield of Transplanted Aman and Boro Rice Through Tegra Package of Cultivation

    Directory of Open Access Journals (Sweden)

    MA Kader, MSR Mia, MA Kafi, MS Hossain, N Islam

    2015-12-01

    Full Text Available The study investigated the yield performance of transplant aman rice cv. BRRI dhan49 and boro rice cv. BRRI dhan29 under improved package of cultivation (TEGRA as compared to farmers’ practice. TEGRA is a rice farming practice which includes use of quality seeds and healthy seedlings, transplanting with rice transplanter, use of herbicide, use of balanced fertilization and micronutrients, and preventive plant protection measures. The study during transplant aman season included two treatments on rice cultivation method viz. TEGRA package and farmers’ practice while in boro rice four treatments viz. TEGRA package, farmers’ practice with high inputs, farmers’ practice with medium inputs and farmers’ practice with low inputs. The yield and plant characters of both transplant aman and boro rice were significantly influenced by the TEGRA package of cultivation as compared to farmers’ practice. TEGRA package of cultivation as compared to farmers’ practice increased the grain yield by 18.3% in transplant aman rice and by 80% in boro rice with less cost of production as compared to farmers’ practice, which eventually resulted 23% increase in gross return and 400% in net return. As a result, the benefit cost ratio of TEGRA package was much higher (1.35 and 2.20 during transplant aman rice and boro rice, respectively compared to that of farmers’ practice (1.07 and 1.30.

  9. Enhanced Soil Chemical Properties and Rice Yield in Acid Sulphate Soil by Application of Rice Straw

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2012-01-01

    Full Text Available Swampland development such as acid sulphate soil for agricultural cultivation has various problem, including highsoil acidity, fluctuated and unpredictable water flooding and the presence of toxic elements such as Fe whichresulting in low crop yields. The research was conducted at the experimental station Belandean, Barito Kualaregency in dry season 2007. The objective of research was to study the effect of rice straw on the dynamic of soilpH, the concentration of iron and sulphate and yield on tidal land acid sulphate soil at two different water inletchannel. This research was designed in RCBD (Randomized Completely Block Design with five treatments (0, 2.5,5.0, 7.5 and 10 Mg ha-1 and four replications. Dolomite as much as 1 Mg ha-1 was also applied. This research wasdivided into two sub-units experiment i.e. two conditions of different water inlet channel. The first water channelswere placed with limestone and the second inlet was planted with Eleocharis dulcis. The results showed that (i ricestraw application did not affect the dynamic of soil pH, concentration of iron and sulphate, and (ii the highest yieldwas obtained with 7.5 Mg ha-1 of rice straw.

  10. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    Science.gov (United States)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  11. Effects of Low Light on Agronomic and Physiological Characteristics of Rice Including Grain Yield and Quality

    Directory of Open Access Journals (Sweden)

    Qi-hua LIU

    2014-09-01

    Full Text Available Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling stage, induces a significant loss in yield and results in poor grain quality. Stress caused by low light often creates severe meteorological disasters in some rice-growing regions worldwide. This review was based on our previous research and related research regarding the effects of low light on rice growth, yield and quality as well as the formation of grain, and mainly reviewed the physiological metabolism of rice plants, including characteristics of photosynthesis, activities of antioxidant enzymes in rice leaves and key enzymes involved in starch synthesis in grains, as well as the translocations of carbohydrate and nitrogen. These characteristics include various grain yield and rice quality components (milling and appearance as well as cooking, eating and nutritional qualities under different rates of shading imposed at the vegetative or reproductive stages of rice plants. Furthermore, we discussed why grain yield and quality are reduced under the low light environment. Next, we summarized the need for future research that emphasizes methods can effectively improve rice grain yield and quality under low light stress. These research findings can provide a beneficial reference for rice cultivation management and breeding program in low light environments.

  12. Yield gap analysis in long-term experiments with intensive rice cultivation

    International Nuclear Information System (INIS)

    Laureles, E.V.; Correa, T. Jr.; Buresh, R.J.

    2007-01-01

    The long-term continuous cropping experiment at IRRI is cultivated with three rice crops in a year, making it the world's most intensively cropped long-term rice experiment. The availability of comprehensive rice production records, compiled weather data, and tested crop models provides a means to evaluate long-term trends in measured and potential yields and yield gaps in this rice production system. Yield trends were assessed using the highest yielding cultivar in each cropping season from 1979 to 2005. Potential yield of the highest yielding cultivar in each season was determined using three rice models (ORYZA, TERM, and CERES) run with the actual transplanting and harvest dates for the cultivar. The yield gap was determined from the difference between the simulated potential grain yield and the measured grain yield. Measured and potential yields and the yield gap varied across seasons and years. Measured yields were higher in the dry season than in the early and late wet seasons. The yield gap tended to be higher in the wet season than in the dry season. Climatic parameters, particularly solar radiation, influenced the performance of rice cultivars. The relatively larger yield gaps in the late wet season than in the dry season were associated with increased spikelet sterility. The cumulative measured yield for the three annual rice crop was near 80 percent of the annual yield potential in years with best practices for fertilizer N and crop management. The long term trends suggest that effective timing and rates of N fertilization and effective control of diseases were critical in achieving 80 percent of the annual yield potential

  13. Grain, milling, and head rice yields as affected by nitrogen rate and bio-fertilizer application

    Directory of Open Access Journals (Sweden)

    Saeed FIROUZI

    2015-11-01

    Full Text Available To evaluate the effects of nitrogen rate and bio-fertilizer application on grain, milling, and head rice yields, a field experiment was conducted at Rice Research Station of Tonekabon, Iran, in 2013. The experimental design was a factorial treatment arrangement in a randomized complete block with three replicates. Factors were three N rates (0, 75, and 150 kg ha-1 and two bio-fertilizer applications (inoculation and uninoculation with Nitroxin, a liquid bio-fertilizer containing Azospirillum spp. and Azotobacter spp. bacteria. Analysis of variance showed that rice grain yield, panicle number per m2, grain number per panicle, flag leaves area, biological yield, grains N concentration and uptake, grain protein concentration, and head rice yield were significantly affected by N rate, while bio-fertilizer application had significant effect on rice grain yield, grain number per panicle, flag leaves area, biological yield, harvest index, grains N concentration and uptake, and grain protein concentration. Results showed that regardless of bio-fertilizer application, rice grain and biological yields were significantly increased as N application rate increased from 0 to 75 kg ha-1, but did not significantly increase at the higher N rate (150 kg ha-1. Grain yield was significantly increased following bio-fertilizer application when averaged across N rates. Grains N concentration and uptake were significantly increased as N rate increased up to 75 kg ha-1, but further increases in N rate had no significant effect on these traits. Bio-fertilizer application increased significantly grains N concentration and uptake, when averaged across N rates. Regardless of bio-fertilizer application, head rice yield was significantly increased from 56 % to 60 % when N rate increased from 0 to 150 kg ha-1. Therefore, this experiment illustrated that rice grain and head yields increased with increasing N rate, while bio-fertilizer application increased only rice grain

  14. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  15. Optimizing hill seeding density for high-yielding hybrid rice in a single rice cropping system in South China.

    Directory of Open Access Journals (Sweden)

    Danying Wang

    Full Text Available Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2. In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice.

  16. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia

    NARCIS (Netherlands)

    Jing, Q.; Bouman, B.A.M.; Keulen, van H.; Hengsdijk, H.; Cao, W.; Dai, T.

    2008-01-01

    Rice yield is the result of the interaction between genotype (cultivar characteristics), environment (climate and soil conditions), and management. Few studies have attempted to isolate the contribution of each of these factors. Here the rice growth model ORYZA2000 was used to analyse the variation

  17. Rice yield estimation based on weather conditions and on technological level of production systems in Brazil

    Directory of Open Access Journals (Sweden)

    José Eduardo Boffino de Almeida Monteiro

    2013-02-01

    Full Text Available The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1' ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.

  18. Possible contribution of induced mutations on breaking the rice yield barrier

    International Nuclear Information System (INIS)

    Sobrizal and Moch Ismachin

    2006-01-01

    At The World Rice Research Conference in Tsukuba, Japan, on 4 — 7 November 2004, there was an active discussion on how to increase the world rice yield production. Breeders agreed that after IR8, the yield potential of rice varieties could not increase drastically. From the breeding point of view, there were two approaches that already started in three to one decade ago, but it is still unfinished yet. These two approaches were to do breeding for hybrid rice varieties or breeding for new plant idiotype varieties. The idea to produce hybrid rice was stimulated by the success of hybrid corn, onion, and sorghum on commercial basis. Among the countries that are working for producing hybrid rice varieties, China was the leading one. China produced hybrid rice varieties and which are planted already in very large area. This success influenced other countries to do the same, including Indonesia. Now Indonesia has already released 11 hybrid rice varieties. Knowing so many characters that are already present in the rice collection, the idea to produce new plant idiotype appears. It seems not difficult to unite selected characters to become a new plant idiotype. In fact, however, up to now there are still a lot of obstacles that make those two approaches could not reach the real goal. This paper will discuss the possible contribution of induced mutations toward the success of these two approaches. (author)

  19. Microbial Species and Functional Diversity in Rice Rhizosphere of High-yield Special Ecological Areas

    Directory of Open Access Journals (Sweden)

    PAN Li-yuan

    2016-11-01

    Full Text Available Taoyuan, Yunnan Province is a special eco-site which keeps the highest yield records of rice cultivation in small planting areas. Soil microbial species and functional diversity were evaluated using cultivation method and BIOLOG ecoplates. The results showed that the microbial community of the high yield region was more abundant, and the total microbial population was 2 times of the control, furthermore, the areas belonged to the healthy "bacteria" soil, which was showed as bacteria > actinomycetes > fungi. Bacteria were the dominant populations in the rhizosphere of high yielding rice field, and the yield formation of rice was not correlated with the depth of soil layers. In order to obtain more species diversity information, Shannon diversity index H, Shannon evenness index E and Simpson index D were analyzed, and the results showed that microbial community diversity and evenness were not the main differences between the high and general yield areas. Then, the functional diversity of soil microbial community was investigated through the average well color development(AWCD and diversity index analyses. The results of AWCD analysis indicated that the metabolic activity of soil microbial community in high yield paddy soils were stronger than the control. Moreover, the difference range from large to small showed as tillering stage > harvest period > seedling period > rotation period, the stronger the rice growth, the greater the difference between the high yield region and the control. At tillering stage and harvest stage, due to the vigorous plant growth, the root exudates were rich, and the microbial communities of high yield paddy soils showed a strong metabolic activity and strong ability to use carbon sources. The results of Shannon, Simpson and McIntosh indices analysis indicated that common microbial species was not a key factor affecting the yield of rice. Tillering stage was a key period for the growth of high yield rice, and many

  20. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza sativa L. Genotypes

    Directory of Open Access Journals (Sweden)

    Sharifunnessa Moonmoon

    2017-12-01

    Full Text Available Drought stress affects plant growth and development and ultimately, reduced grain yield of rice. But stress at different growth stages may respond differently which is still unclear. Therefore, a pot experiment was carried out with six rice genotypes to determine the critical growth stage where drought stress effect on yield reduction and to find stress tolerance mechanism in rice genotypes. Drought stress (control i.e. no stress and 40% field capacity, FC was imposed on Binadhan-13, Kalizira, BRRI dhan34, Ukunimodhu, RM-100-16 and NERICA mutant rice genotypes at maximum tillering, panicle initiation and grain filling stages and discontinued when the specific stage was over. The experiment was laid out in a complete randomized design with three replications. Drought stress affected number of effective tiller hill-1, number of spikelets panicle-1, filled grains hill-1, 1000-grain weight and grain yield. Binadhan-13 produced the highest grain yield and the lowest sterility under drought stress at grain filling stage. Percentage of spikelet sterility increased under drought stress (40% FC especially at the panicle initiation stage resulting low grain yield. Among the tested genotypes Binadhan-13 performed well by reducing spikelet sterility under drought stress condition. For 1000-grain weight and grain yield, grain filling stage was found more crucial. From the current research, drought tolerance mechanism was found in genotypes Binadhan-13 and NERICA mutant. [Fundam Appl Agric 2017; 2(3.000: 285-289

  1. Use of Vegetation Health Data for Estimation of Aus Rice Yield in Bangladesh

    OpenAIRE

    Rahman, Atiqur; Roytman, Leonid; Krakauer, Nir Y.; Nizamuddin, Mohammad; Goldberg, Mitch

    2009-01-01

    Rice is a vital staple crop for Bangladesh and surrounding countries, with interannual variation in yields depending on climatic conditions. We compared Bangladesh yield of aus rice, one of the main varieties grown, from official agricultural statistics with Vegetation Health (VH) Indices [Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI)] computed from Advanced Very High Resolution Radiometer (AVHRR) data covering a period of 15 years (1991...

  2. Impacts of climate change on rice production in Africa and causes of simulated yield changes.

    Science.gov (United States)

    van Oort, Pepijn A J; Zwart, Sander J

    2018-03-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  3. Super Rice Cropping Will Enhance Rice Yield and Reduce CH4 Emission: A Case Study in Nanjing, China

    Directory of Open Access Journals (Sweden)

    Yu JIANG

    2013-11-01

    Full Text Available A pot experiment was performed to learn the differences in plant productivity and CH4 emission between two rice cultivars, super rice variety Ningjing 1 and traditional variety Zhendao 11, which were currently commercially applied in Nanjing, China. Similar seasonal changes of CH4 emission fluxes and soil solution CH4 contents were found between the tested cultivars. Although there was no significant difference in plant biomass production between the cultivars, the grain yield of Ningjing 1 was significantly higher by 35.0% (P < 0.05 than that of Zhendao 11, whereas the total CH4 emission from Ningjing 1 was 35.2% lower (P < 0.05. The main difference in the amounts of CH4 emission between the cultivars occurred in the period from the tillering stage to the heading stage. The biomass-scaled and yield-scaled CH4 emissions were respectively 3.8 and 5.2 mg/g for Ningjing 1, significantly lower than those for Zhendao 11 (7.4 and 12.8 mg/g, respectively. According to the relationships between the plant growth characteristics and the CH4 emission, a stronger root system contributed mainly to the lower CH4 emission of Ningjing 1, as compared with Zhendao 11. Our results demonstrated that super rice has advantages not only in grain productivity but also in CH4 emission mitigation. Further expansion of super rice cropping will enhance rice yield and reduce greenhouse gas emission in China.

  4. Effect of enhanced UV-B radiation on yield and quality of rice

    International Nuclear Information System (INIS)

    Yin Hong; Guo Wei; Mao Xiaoyan

    2009-01-01

    The effects of enhanced UV-B radiation on yield and quality of two rice cuhivars(ShenNong 6014 and ShenNong 265) are studied in potted method. There were three treatments including natural light (TCK), enhanced 5% UV-B radiation (T) and enhanced 10% (T). The results showed that enhanced UV-B radiation decreases yield components, the percentage of brown rice (0.66%-7.06%), head rice rate (5.65%-18.88%), the rate of white rice (22.17%-40.16%), grain area (2.61%-6.25%), fatty acid contents (1.23%-54.19%) and eating quality (1.07%-16.78%) but increasea protein content (4.65%-10.71%) and amylose content of rice (0.56%-4.81%). The effects of T2 was stronger than T1

  5. Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm

    Science.gov (United States)

    Zhang, Yuan; Yang, Bin; Liu, Xiaohui; Wang, Cuizhen

    2017-05-01

    Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations. Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA's parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.

  6. Yield gap of rainfed rice in farmers’ fields in Central Java, Indonesia

    NARCIS (Netherlands)

    Boling, A.A.; Tuong, T.P.; Keulen, van H.; Bouman, B.A.M.; Suganda, H.; Spiertz, J.H.J.

    2010-01-01

    Yield constraint analysis for rainfed rice at a research station gives insight into the relative role of occurring yield-limiting factors. However, soil nutrient status and water conditions along toposequences in rainfed farmers’ fields may differ from those at the research station. Therefore, yield

  7. Rice and wheat yield improvement by the application of boron in salt affected soils

    International Nuclear Information System (INIS)

    Mehdi, S.M.; Sarfraz, M.; Hassan, N.M.; Hassan, W.

    2007-01-01

    In recent past studies on wheat, rice and fruit plant showed that fairly large percentage of soils and crops are deficient in boron. Several times a question rose to study the boron responses in a cropping system to see the residual effect of boron. With the objective in mind, a field experiment was conducted at two sites in saline sodic soils to see the rice and wheat crops response to boron. Boron was applied to rice at the rate of 0.25, 0.50, 1.0, 1.5, and 2.0 Kg ha/sub -1/ as sodium tetra borate. The results showed that both paddy and straw yields increased with the increasing rates of boron and highest yield was obtained from 2 Kg ha/sub -l/. After harvesting of rice crop wheat was sown in the same layout. The treatments were divided into two equal portions. Boron was applied to one portion at the same rates as to rice while remaining half remained as such to study the residual effect of B on wheat. The results showed that grain anti straw yields increased with increasing rates of boron. In case of untreated plots to see the residual effect grain and straw yield increased with increasing rates of boron applied to rice. It was concluded that B applied to rice did show residual effect to the following wheat crop. Therefore, there is no need to apply B to following crop when B is applied to the previous crop. (author)

  8. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This study demonstrates advantages of using EVI2-based phenology metrics (derived from Landsat-MODIS fusion data) for rice yield estimation in Taiwan prior to the harvest period.

  9. Effect of increased plant density and fertilizer dose on the yield of rice variety IR-6

    International Nuclear Information System (INIS)

    Amin, M.; Khan, M.A.; Khan, E.A.; Ramazan, M.

    2004-01-01

    An experiment to evaluate the effect of increased plant density and fertilizer dose on yield of rice variety IR-6 was conducted at the farm of Faculty of Agriculture, Gomal University Dera Ismail Khan. Increase plant density significantly increase number of panicles per square meter, sterility and straw yield while increased fertilizer dose of NPK increase plant height, sterility, normal kernels, and 1000 grain weight. Interaction of increased plant density and fertilizer dose was found to be non significant except sterility percentage and straw yield. However efforts are required for increasing yield per unit area of rice. (author)

  10. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management

    Directory of Open Access Journals (Sweden)

    Asa Gholizadeh

    2017-12-01

    Full Text Available The optimum rate and application timing of Nitrogen (N fertilizer are crucial in achieving a high yield in rice cultivation; however, conventional laboratory testing of plant nutrients is time-consuming and expensive. To develop a site-specific spatial variable rate application method to overcome the limitations of traditional techniques, especially in fields under a double-cropping system, this study focused on the relationship between Soil Plant Analysis Development (SPAD chlorophyll meter readings and N content in leaves during different growth stages to introduce the most suitable stage for assessment of crop N and prediction of rice yield. The SPAD readings and leaf N content were measured on the uppermost fully expanded leaf at panicle formation and booting stages. Grain yield was also measured at the end of the season. The analysis of variance, variogram, and kriging were calculated to determine the variability of attributes and their relationship, and finally, variability maps were created. Significant linear relationships were observed between attributes, with the same trends in different sampling dates; however, accuracy of semivariance estimation reduces with the growth stage. Results of the study also implied that there was a better relationship between rice leaf N content (R2 = 0.93, as well as yield (R2 = 0.81, with SPAD readings at the panicle formation stage. Therefore, the SPAD-based evaluation of N status and prediction of rice yield is more reliable on this stage rather than at the booting stage. This study proved that the application of SPAD chlorophyll meter paves the way for real-time paddy N management and grain yield estimation. It can be reliably exploited in precision agriculture of paddy fields under double-cropping cultivation to understand and control spatial variations. Keywords: Spatial variability, Non-invasive measurement, Precision farming, Decision support

  11. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Fu, Qiang; Zhang, Peijiang; Tan, Lubin; Zhu, Zuofeng; Ma, Dan; Fu, Yongcai; Zhan, Xinchun; Cai, Hongwei; Sun, Chuanqing

    2010-02-01

    Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two generations (BC(4)F(2) and BC(4)F(4)), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both generations. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  12. Effect of inoculating blue-green algae and Azolla on rice yield

    International Nuclear Information System (INIS)

    Kulasooriya, S.A.

    1985-01-01

    Nitrogen fixing blue-green algae (BGA) and the Azolla-Anaebaena symbiosis are potential alternative sources of nitrogen for lowland rice production. A survey of the literature shows that on the average, when BGA inoculation is effective, a rice yield increase of 14% (450 kg grain ha -1 ) has been observed. However, in Sri Lanka no significant increases in grain yield have been observed due to BGA inoculation. Azolla inoculation in broadcast, transplanted, and avenue transplanted rice gave yield increases of 12, 22 and 48%, and was equivalent to 55 to 80 kg N ha -1 as urea. Azolla was observed to reduce weed growth by 53%. Azolla is easier to establish in rice fields since it can be easily recognized with the naked eye, however, BGA are better able to withstand periods of desiccation which occur in rain-fed rice production. Most algalization experiments have been performed on a ''black box'' basis where only the final grain yield has been measured. Isotope experiments can play a vital role in understanding the processes by which BGA and Azolla increase rice yields. (author)

  13. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Science.gov (United States)

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  14. Yield and Quality Traits of some Rice Mutant Lines as Affected by Different Nitrogen Levels

    International Nuclear Information System (INIS)

    Sobieh, S.El-S.S.

    2007-01-01

    Two field experiments were carried out during two growing seasons (2004 and 2005) at a farm located in Sahafa village, Sharkia Governorate, to evaluate newly rice mutants comparing with the local cultivar Sakha 104 for yield and quality characteristics as affected by nitrogen fertilizer levels. The obtained results showed that: 1- Rice grain yield and yield attributes were significantly increased with increasing N levels from 23 to 69 kg N fed '. 2- Both mutant MG 16 and MS 6 exhibited highly significant increases in mean values for yield attributes except for number of panicles/m2, as compared with the local cultivar Sakha 104. 3- Percentage of yield increases were 26.85 and 16.21 % for mutant MG16 and MS6 comparing with the local variety Sakha 104, respectively. Mutant MG 16 showed the highest mean values for plant height, panicle length, number of grains per panicle, panicle weight, 1000-grain weight, grain yield/fed, and straw yield/fed, as compared with the mutant MS 6 and Sakha 104. 4- Hulling and milling % were significantly increased as increasing of nitrogen levels from 23 to 69 kg N fed 1 , whereas head rice, gel consistency and amylose content were not significantly affect. 5- Significant differences were obtained between the three rice genotypes for hulling %, milling %, head rice %, amylose content and gel consistency

  15. Residual, direct and cumulative effect of zinc application on wheat and rice yield under rice-wheat syst

    Directory of Open Access Journals (Sweden)

    R. Khan

    2009-05-01

    Full Text Available Zinc (Zn deficiency is prevalent particularly on calcareous soils of arid and semiarid region. A field experiment was conducted to investigate the direct, residual and cumulative effect of zinc on the yield of wheat and rice in permanent layout for two consecutive years, 2004-05 and 2005-06 at Arid Zone Research Institute D.I. Khan. Soil under study was deficient in Zn (0.8 mg kg-1. Effect of Zn on yield, Zn concentrations in leaf and soils were assessed using wheat variety Naseer-2000 and rice variety IRRI-6. Three rates of Zn, ranging from 0 to 10 kg ha-1 in soil, were applied as zinc sulphate (ZnSO4. 7H2O along with basal dose fertilization of nitrogen, phosphorus and potassium. Mature leaf and soil samples were collected at panicle initiation stage. The results showed that grain yield of wheat and rice was significantly increased by the direct application of 5 and 10 kg Zn ha-1. Highest grain yield of wheat (5467 kg ha-1 was recorded with the direct application of 10 kg Zn ha-1 while 4994 kg ha-1 was recorded with the cumulative application of 10 kg Zn ha-1 but the yield increase due to residual effect of Zn was statistically lower than the cumulative effect of Zn. Maximum paddy yield was recorded with the cumulative application ofZn followed by residual and direct applied 10 and 5 kg Zn kg ha-1, respectively. Zn concentration in soils ranged from 0.3 to 1.5 mg kg-1 in wheat and 0.24 to 2.40 mg kg-1 in rice, while in leaves it ranged from 18-48 mg kg-1 in wheat and 15-52 mg kg-1 in rice. The concentration of Zn in soil and leaves increased due to the treatments in the order; cumulative > residual > direct effect > control (without Zn. The yield attributes like 1000- grain weight, number of spikes, spike length and plant height were increased by the residual, direct and cumulative effect of Zn levels; however, the magnitude of increase was higher in cumulative effect than residual and direct effect of Zn, respectively. Under Zn-deficient soil

  16. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2012-09-01

    Full Text Available In 1996, China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types. Today, approximately 80 super rice varieties have been released and some of them show high grain yields of 12–21 t/hm2 in field experiments. The main reasons for the high yields of super rice varieties, compared with those of conventional varieties, can be summarized as follows: more spikelets per panicle and larger sink size (number of spikelets per square meter; larger leaf area index, longer duration of green leaf, greater photosynthetic rate, higher lodging resistance, greater dry matter accumulation before the heading stage, greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity. However, there are two main problems in super rice production: poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets, and low and unstable seed-setting rate. Here, we review recent research advances in the crop physiology of super rice, focusing on biological features, formation of yield components, and population quality. Finally, we suggest further research on crop physiology of super rice.

  17. Weed competitiveness and yielding ability of aerobic rice genotypes

    NARCIS (Netherlands)

    Zhao, D.L.

    2006-01-01

    Keywords:    Broad-sense heritability; Crop vigour; Genetic correlation; Indirect selection index; Plant erectness; Rice germplasm; Seeding rate; Vegetative growth; Weed-suppressive ability.

  18. Variation in Yield and Physicochemical Quality Traits among Mutants of Japonica Rice Cultivar Wuyujing 3

    Directory of Open Access Journals (Sweden)

    Jose Daniel Abacar

    2016-01-01

    Full Text Available To select elite germplasms, 112 mutants derived from japonica rice cultivar Wuyujing 3 were evaluated. The yield components such as panicle number per square meter, grain number per panicle, and grain weight were measured. The quality traits such as percentage of chalky grains (PCG, brown rice yield (BRY, milled rice yield (MRY, degree of milling (DM, amylose content (AC, protein content (PC, and relationships among traits were inverstigated. Results showed that grain yield ranged from 2.15 to 12.49 t/hm2 with a mean of 6.4 t/hm2 and number of grains per square meter contributed for 94.64% in grain yield variation. For quality traits, all rice mutants had short size (grain length ≤ 5.5 mm and bold shape (grain length to width ratio = 1.10–2.00. Most of rice mutants (87.5% had PCG values below 20%. All mutants had MRY values above 50%, AC values below 20%, and PC values below 10%. Percentage of chalky grains was significantly negatively correlated with MRY and positively correlated with DM. BRY and MRY were significantly negatively correlated with DM. PC was significantly and positively correlated with MRY and negatively correlated with DM, while AC had no significant correlation with these quality traits. It was concluded that there were 25 rice mutants which fulfilled the major requirements of Jiangsu standard japonica rice such as low percentage of chalky grains, low amylose content, optimal protein content, and which could be used as elite germplasms. Thus the mutants identified may lead to significant progress in improvement of rice quality.

  19. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Pedro Júnior, M.J.; Sentelhas, P.C.; Moraes, A.V.C.; Villela, O.V.

    1995-01-01

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm -2 , day -1 . The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author) [pt

  20. Effect of Azolla Based - Organic Fertilizer, Rock Phosphate and Rice Hull Ash on Rice Yield and Chemical Properties of Alfisols

    Directory of Open Access Journals (Sweden)

    Sudadi

    2014-07-01

    Full Text Available The application of chemical fertilizer for long time may adverse soil environment. Organic agriculture, for example combination use of azolla based-organic fertilizer, phosphate rock and rice hull ash, was one of ways that able to recover it. Research was conducted in Sukosari, Jumantono, Karanganyar while soi chemical properties analysis was analysed in Soil Chemistry and Fertility Laboratory, Fac. of Agriculture, Sebelas Maret University April to November 2013. Research design used was RAKL with 5 treatments, each repeated 5 times. The treatments applied were P0 (control, P1 ( azola inoculum dosage 250 g/m2 + phosphate rock + rice hull ash equal to 150 kg/ha KCl, P2 (azola inoculum dosage 500 g/m2 + phosphate rock equal to 150kg/ha, SP-36 + rice hull ash equal to 100 kg/ha KCl, P3 (manure dosage of 5 ton/ha,P4 (Urea 250 kg/ha + SP-36 150 kg/ha + KCl 100 kg/ha. Data analysed statistically by F test (Fisher test with level of confident 95% followed by DMRT (Duncan Multiple Range Test if any significant differences. The result showed that the treatment combination of azolla, phosphate rock and rice hull ash increase soil organic matter content, cation exchange capacity, available-P and exchangeable-K as well as rice yield ( (at harvest-dry grain weight and milled-dry grain weight.

  1. Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China

    Science.gov (United States)

    Huang, Jin; Islam, A. R. M. Towfiqul; Zhang, Fangmin; Hu, Zhenghua

    2017-10-01

    With the increasing risk of meteorological disasters, it is of great importance to analyze the spatiotemporal changes of precipitation extremes and its possible impact on rice productivity, especially in Jiangsu province, southeast China. In this study, we explored the relationships between rice yield and extreme precipitation indices using Mann-Kendall trend test, Pettitt's test, and K-means clustering methods. This study used 10 extreme precipitation indices of the rice growing season (May to October) based on the daily precipitation records and rice yield data at 52 meteorological stations during 1961-2012 in Jiangsu province. The main findings were as follows: (1) correlation results indicated that precipitation extremes occurred in the months of July, August, and October, which had noticeable adverse effects on rice yield; (2) the maximum 7-day precipitation of July and the number of rainy days of August and October should be considered as three key indicators for the precipitation-induced rice meteorological disasters; and (3) most of the stations showed an increasing trends for the maximum 7-day precipitation of July and the number of rainy days of August, while the number of rainy days of October in all the stations demonstrated a decreasing trend. Moreover, Jiangsu province could be divided into two major sub-regions such as north and south areas with different temporal variations in the three key indicators.

  2. EFFECT OF NITROGEN-FIXING BACTERIA ON GRAIN YIELD AND DEVELOPMENT OF FLOODED IRRIGATED RICE

    Directory of Open Access Journals (Sweden)

    AMAURI NELSON BEUTLER

    2016-01-01

    Full Text Available This study aimed at evaluating the effect of Azospirillum brasilense , a nitrogen - fixing bacterium, on flooded irrigated rice yield. Evaluations were carried out in a shaded nursery, with seedlings grown on an Alfisol. Were performed two sets of experiments. In the first, were carried out four experiments using the flooded rice cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424; these trials were set up as completely randomized design in a 5x4 factorial scheme, with four replications. Treatments consisted of five nitrogen rates (0, 40, 80, 120 and 160 kg ha - 1 and four levels of liquid inoculant Ab - V5 and Ab - V6 - A. brasilense (0, 1, 2 and 4 times the manufacturer's recommendation without seed treatment. In second set, were performed two experiments using the cultivars Puitá Inta - CL and Br Irga 409, arranged in the same design, but using a 4x2 factorial. In this set, treatments were composed of four levels of Ab - V5 and Ab - V6 - A. brasilense liquid inoculant (0, 1, 2 and 4 times the recommendation of 100 mL ha - 1 , using rice seeds with and without insecticide and fungicide treatment. Shoot dry matter, number of panicles, and rice grain yield per pot were the assessed variables. The results showed that rice seed inoculation with A. brasilense had no effects on rice grain yield of the cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424.

  3. Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China.

    Science.gov (United States)

    Huang, Jin; Islam, A R M Towfiqul; Zhang, Fangmin; Hu, Zhenghua

    2017-10-01

    With the increasing risk of meteorological disasters, it is of great importance to analyze the spatiotemporal changes of precipitation extremes and its possible impact on rice productivity, especially in Jiangsu province, southeast China. In this study, we explored the relationships between rice yield and extreme precipitation indices using Mann-Kendall trend test, Pettitt's test, and K-means clustering methods. This study used 10 extreme precipitation indices of the rice growing season (May to October) based on the daily precipitation records and rice yield data at 52 meteorological stations during 1961-2012 in Jiangsu province. The main findings were as follows: (1) correlation results indicated that precipitation extremes occurred in the months of July, August, and October, which had noticeable adverse effects on rice yield; (2) the maximum 7-day precipitation of July and the number of rainy days of August and October should be considered as three key indicators for the precipitation-induced rice meteorological disasters; and (3) most of the stations showed an increasing trends for the maximum 7-day precipitation of July and the number of rainy days of August, while the number of rainy days of October in all the stations demonstrated a decreasing trend. Moreover, Jiangsu province could be divided into two major sub-regions such as north and south areas with different temporal variations in the three key indicators.

  4. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    Science.gov (United States)

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.

  5. Supporting Crop Loss Insurance Policy of Indonesia through Rice Yield Modelling and Forecasting

    Science.gov (United States)

    van Verseveld, Willem; Weerts, Albrecht; Trambauer, Patricia; de Vries, Sander; Conijn, Sjaak; van Valkengoed, Eric; Hoekman, Dirk; Grondard, Nicolas; Hengsdijk, Huib; Schrevel, Aart; Vlasbloem, Pieter; Klauser, Dominik

    2017-04-01

    The Government of Indonesia has decided on a crop insurance policy to assist Indonesia's farmers and to boost food security. To support the Indonesian government, the G4INDO project (www.g4indo.org) is developing/constructing an integrated platform implemented in the Delft-FEWS forecasting system (Werner et al., 2013). The integrated platform brings together remote sensed data (both visible and radar) and hydrologic, crop and reservoir modelling and forecasting to improve the modelling and forecasting of rice yield. The hydrological model (wflow_sbm), crop model (wflow_lintul) and reservoir models (RTC-Tools) are coupled on time stepping basis in the OpenStreams framework (see https://github.com/openstreams/wflow) and deployed in the integrated platform to support seasonal forecasting of water availability and crop yield. First we will show the general idea about the G4INDO project, the integrated platform (including Sentinel 1 & 2 data) followed by first (reforecast) results of the coupled models for predicting water availability and crop yield in the Brantas catchment in Java, Indonesia. Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O. and Heynert K, 2013. The Delft-FEWS flow forecasting system, Environmental Modelling & Software; 40:65-77. DOI: 10.1016/j.envsoft.2012.07.010.

  6. Boron Application Improves Growth, Yield and Net Economic Return of Rice

    Directory of Open Access Journals (Sweden)

    Mubshar HUSSAIN

    2012-09-01

    Full Text Available A field trial was conducted to evaluate the role of boron (B application at different growth stages in improving the growth, yield and net economic return of rice at farmer's fields during summer season, 2009. Boron was soil applied (1.5 kg/hm2 at the transplanting, tillering, flowering and grain formation stages of rice; foliar applied (1.5% B solution at the tillering, flowering and grain formation stages of rice, and dipped seedling roots in 1.5% B solution before transplanting; while control plots did not apply any B. Boron application (except dipping of seedling roots in B solution, which caused toxicity and reduced the number of tillers and straw yield than control substantially improved the rice growth and yield. However, soil application was better in improving the number of grains per panicle, 1000-grain weight, grain yield, harvest index, net economic income and ratio of benefit to cost compared with the rest of treatments. Overall, for improving rice performance and maximizing the net economic returns, B might be applied as soil application at flowering.

  7. [Effects of mechanical transplanting of rice with controlled release bulk blending fertilizer on rice yield and soil fertility].

    Science.gov (United States)

    Zhang, Xuan; Ding, Jun-Shan; Liu, Yan-Ling; Gu, Yan; Han, Ke-Feng; Wu, Liang-Huan

    2014-03-01

    Abstract: A 2-year field experiment with a yellow-clay paddy soil in Zhejiang Province was conducted to study the effects of different planting measures combined with different fertilization practices on rice yield, soil nutrients, microbial biomass C and N and activities of urease, phosphatase, sucrase and hydrogen peroxidase at the maturity stage. Results showed that mechanical transplanting of rice with controlled release bulk blending (BB) fertilizer (BBMT) could achieve a significantly higher mean yield than traditional manual transplanting with traditional fertilizer (TFTM) and direct seeding with controlled release BB fertilizer (BBDS) by 16.3% and 27.0%, respectively. The yield by BBMT was similar to that by traditional manual transplanting with controlled release BB fertilizer (BBTM). Compared with TFTM, BBMT increased the contents of soil total-N, available N, available P and microbial biomass C, and the activities of urease, sucrase and hydrogen peroxidase by 21.5%, 13.6%, 41.2%, 27.1%, 50.0%, 22.5% and 46.2%, respectively. Therefore, BBMT, a simple high-efficiency rice cultivation method with use of a light-weighted mechanical transplanter, should be widely promoted and adopted.

  8. Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Victoriano Joseph Pascual

    2016-12-01

    Full Text Available The system of rice intensification (SRI uses less water and enhances rice yield through synergy among several agronomic management practices. This claim was investigated to determine the effects of crop growth, yield and irrigation water use, using two thirds of the recommended SRI practices and two rice varieties, namely Tainan11 (TN11 and Tidung30 (TD30. Irrigation regimes were (a intermittent irrigation with three-day intervals (TD303 and TN113; (b intermittent irrigation with seven-day intervals (TD307 and TN117 and (c continuous flooding (TD30F and TN11F. Results showed that intermittent irrigation of three- and seven-day intervals produced water savings of 55% and 74% compared with continuous flooding. Total water productivity was greater with intermittent irrigation at seven-day intervals producing 0.35 kg·grain/m3 (TN117 and 0.46 kg·grain/m3 (TD307. Average daily headed panicle reduced by 166% and 196% for TN113 and TN117 compared with TN11F, with similar reduction recorded for TD303 (150% and TD307 (156% compared with TD30F. Grain yield of TD30 was comparable among irrigation regimes; however, it reduced by 30.29% in TN117 compared to TN11F. Plant height and leaf area were greater in plants exposed to intermittent irrigation of three-day intervals.

  9. Response of yield and yield components of rice (Oryza sativa L. cv. Tarom Hashemi in rice, duck and Azolla (Azolla sp. farming

    Directory of Open Access Journals (Sweden)

    M Gharavi Baigi

    2016-05-01

    Full Text Available In order to evaluate the yield and yield components of rice (Oryza sativa L. cv. Tarom Hashemi in integrated rice, duck and Azolla, an experiment was conducted at the Research Farm of Sari University of Agricultural Sciences and Natural Resources during 2012. Experiment was arranged in split plot based on a randomized complete block design with three replications. The number of ducks as main plots at four levels (0, 400, 800 and 1200 ducks.ha-1 and Nitrogen source as sub plots at four levels (without Azolla and nitrogen, Azolla, Azolla+nitrogen and nitrogen were the treatments. Analysis of variance showed highly significant differences for the number of ducks, Azolla+nitrogen and their interaction effects of plant height, number of tillers.plant-1, number of panicle.plant-1, number of grains.panicle-1, panicle weight, panicle dry weight and grain yield. The results revealed that the highest values of plant height (133 cm, number of tillers (38 tillers.plant-1, number of panicle (24 numbers.plant-1, number of grains (171 numbers.panicle-1, panicle weight (23 g, panicle dry weight (13 g and grain yield (4 t.ha-1 were recorded in 1200 duck pieces per hectare while treated with Azolla (500 g.m-2 and nitrogen (50 kg.ha-1. In conclusion, results of the current experiment showed that increasing of duck number from 400 to 1200 pieces.ha-1 along with Azolla and nitrogen could enhance the yield and yield components of rice (Tarom Hashemi cultivar.

  10. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    Science.gov (United States)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  11. [Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades].

    Science.gov (United States)

    Hou, Wen-jia; Geng, Ting; Chen, Qun; Chen, Chang-qing

    2015-01-01

    By using rice growth period, yield and climate observation data during the recent two decades, the impact of climate warming on rice in Northeast China was investigated by mathematical statistics methods. The results indicated that in the three provinces of Northeast China, the average, maximum and minimum temperatures in rice growing season were on the. rise, and the rainfall presented a downward trend during 1989-2009. Compared to 1990s, the rice whole growth periods of Heilongjiang, Jilin and Liaoning provinces in 2000s were prolonged 14 d, 4.5 d and 5.1 d, respectively. The increase of temperature in May, June and September could extend the rice growth period, while that in July would shorten the growth duration. The rice growth duration of registered varieties and experiment sites had a similar increasing trend in Northeast China except for the Heilongjiang Province, and the extension of registered varieties growth period was the main factor causing the prolonged growth period of rice at experiment sites. The change in daily average, minimum and maximum temperatures all could affect the rice yield in Northeast China. The increasing temperature significantly increased the rice yield in Heilongjiang Province, especially in the west region of Sanjiang Plain. Except for the south of Liaoning Province, rice yields in other regions of Northeast China were promoted by increasing temperature. Proper measures for breeding, cultivation and farming, could be adopted to fully improve the adaptation of rice to climate warming in Northeast China.

  12. Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.; Singh, U.P.; Ray, K.; Das, A.

    2016-11-01

    In direct seeded rice (DSR) cultivation, weed is the major constraint mainly due to absence of puddling in field. The yield loss due to weed interference is huge, may be up to 100%. In this perspective, the present experiment was conducted to study the efficacy of selected herbicides, and to predict the rice yield using artificial neural network (ANN) models. The dry weight and density of weeds were recorded at different growth stages and consequently herbicidal efficacy was evaluated. Experimental results revealed that pre-emergence (PRE) herbicide effectively controlled the germination of grassy weeds. Application bispyribac-sodium as post-emergence (POST) following PRE herbicides (clomazone or pendimethalin) or as tank-mixture with clomazone effectively reduced the density and biomass accumulation of diverse weed flora in DSR. Herbicidal treatments improved the plant height, yield attributes and grain yield (2.7 to 5.5 times) over weedy check. The sensitivity of the best ANN model clearly depicts that the weed control index (WCI) of herbicides was most important than their weed control efficiency (WCE). Besides, the early control of weeds is a better prescription to improve rice yield. Differences in sensitivity values of WCI and WCE across the crop growth stages also suggest that at 15, 30 and 60 days after sowing, herbicides most effectively controlled sedges, broad leaves and grasses, respectively. Based on the grain yield and herbicidal WCE, it can be concluded that the combined application of pendimethalin or clomazone as PRE followed by bispyribac-sodium as POST or tank-mixture of clomazone + bispyribac sodium can effectively control different weed flushes throughout the crop growth period in DSR. (Author)

  13. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  14. Foliar application effects of beet vinasse on rice yield and chemical composition

    International Nuclear Information System (INIS)

    Tejada, M.; Garcia-Martinez, A. M.; Benitez, C.; Gonzalez, J. L.; Bautista, J.; Parrado, J.

    2009-01-01

    This study presents an account of rice (oriza sativa cv. Puntal) yield quality parameters as influenced by the foliar application of an industrial byproduct (beet vinasse). Beet (Beta vulgaris L. Subsp.vurgaris) vinasse is a product of great agricultural interest, because of its organic matter content, N and K concentrations. (Author)

  15. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    In order to find resistant varieties and study the reaction of some newly released high yielding varieties to different levels of salinity of irrigation water an experiment was conducted at the Rice Research Institute of Iran-Amol station in a greenhouse. Eight varieties, cultivated in pots, were tested with three levels of salinity (2, ...

  16. Rice grain yield as affected by subsoiling, compaction on sowing furrow and seed treatment

    Directory of Open Access Journals (Sweden)

    Veneraldo Pinheiro

    2016-05-01

    Full Text Available ABSTRACT This study aimed to determine the effects of subsoiling, compaction on sowing furrow and seed treatments with insecticides on the grain yield of upland rice cultivated under no-tillage. Two experiments were carried out, one in an area with and the other in an area without subsoiling, in which five seed treatments combined with five compaction pressures on the sowing furrow were compared in a randomized block design, in a factorial scheme, with three replicates. The seed treatments were: T0 - without treatment, T1 - imidacloprid + thiodicarb, T2 - thiamethoxam, T3 - carbofuran, and T4 - fipronil + pyraclostrobin + thiophanate methyl. The compaction pressures were: 25, 42, 126, 268 and 366 kPa. Subsoiling positively affected rice yield in the presence of higher compaction pressures on the sowing furrow. Seed treatment was effective at increasing rice grain yield only at the lowest compaction pressures. Rice yield showed quadratic response to compaction on the sowing furrow, with maximum values obtained at pressures ranging from 238.5 to 280.3 kPa.

  17. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  18. Effects of Different Biochar Application Patterns on Rice Growth and Yield

    Directory of Open Access Journals (Sweden)

    WANG Yue-man

    2017-12-01

    Full Text Available Biochar has positive effect on carbon sequestration and soil improvement, consequently biochar application has been attracted more and more attention in recent years. However, so far, few investigations about the effects of biochar application patterns on crop growth, which may have a direct impact on biochar's application and comprehensive environmental effects have been reported. Herein, soil column study was conducted using four biochars, i.e., wheat straw(WBC and wood sawdust(SBC that pyrolyzed at 500℃ and 700℃, respectively, to study the effects of two different biochar application patterns on rice growth. These two typical biochar application patterns were:generally mixed application(mixed treatment and surface application(surface treatment. The results showed that:(1In comparison with CK, all biochar application treatments promoted the growth of rice in terms of plant height and SPAD(Soil Plant Analysis Development value. Plant height of surface treatment was higher than that of mixed treatments at the heading, filling and maturation stages. SPAD and NDVI(Normalized Different Vegetation Index value of surface treatments were slightly lower than mixed treatment.(2Biochar significantly increased rice seeding setting rate by 4.88%~8.39%, moreover, surface treatments were observed higher rice seeding setting rate than mixed treatments. However, no significant difference was observed in the number of effective panicles, grains per spike and 1 000-grain weight between surface and mixed treatment. (3Application of biochar promoted rice yield, and surface treatments were more likely to increase rice yield compared with the conventional mixed treatments. (4All biochar treatments increased rice harvest index by 2.58%~10.56%, and no significant difference was found between surface and mixed treatment.(5All applications of biochar promoted nitrogen, phosphorus and potassium partial productivity, which was 9.81%~36.25% higher than that of CK.

  19. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China).

    Science.gov (United States)

    Liu, Xiaojun; Ferguson, Richard B; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-03-24

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = ( 1 + e - 15.2829 × ( R A G D D i - 0.1944 ) ) - 1 - ( 1 + e - 11.6517 × ( R A G D D i - 1.0267 ) ) - 1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status.

  20. Impacts of climate change on paddy rice yield in a temperate climate.

    Science.gov (United States)

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  1. Combined use of Azolla and loach suppressed paddy weeds and increased organic rice yield: second season results

    Directory of Open Access Journals (Sweden)

    Weiguo Cheng

    2015-01-01

    Full Text Available Organic farming uses alternatives to agricultural chemicals such as synthetic fertilizers and pesticides. The primary challenge in organic rice farming is controlling weeds without using herbicides and improving rice yield without chemical fertilizers. In our previous paper entitled as combined use of Azolla and loach suppressed weed Monochoria vaginalis and increased rice yield without agrochemicals, we reported the first year rice growth season results from an in situ container experiment. The experiment was designed with 4 treatments—control (with neither Azolla nor loach, Azolla (Azolla alone, loach (loach alone, and Az+Lo (combined Azolla and loach—with 3 replications each. The first year results showed that combined use of Azolla and loach was successful in weed suppression and increase in rice yield in 2012. In this paper, we report the second year results from the continuous container experiment in 2013. M.vaginalis emergences were very low in second year rice growth season on all treatments. Compared first year, the rice yields decreased in second year on all treatments due to different weather condition and with or without organic soybean oil cake application between two rice growth seasons. The second year results also showed the raising loach had a stronger effect to increase tiller and panicle numbers, and spikelet number per panicle, then improve rice yields to 2.3 times than control. The Azolla residues left from first year have weaker effect on rice growth and yield, but increase soil organic matter accumulation at second year. The two years study indicated that combined use of Azolla and loach can meet two of the greatest challenges in organic rice production: providing effective weed control and improving rice nutrition without agrochemicals.

  2. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice.

    Science.gov (United States)

    Lo, Shuen-Fang; Ho, Tuan-Hua David; Liu, Yi-Lun; Jiang, Mirng-Jier; Hsieh, Kun-Ting; Chen, Ku-Ting; Yu, Lin-Chih; Lee, Miin-Huey; Chen, Chi-Yu; Huang, Tzu-Pi; Kojima, Mikiko; Sakakibara, Hitoshi; Chen, Liang-Jwu; Yu, Su-May

    2017-07-01

    A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C 20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. PREDICTION MODELS OF GRAIN YIELD AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Narciso Ysac Avila Serrano

    2009-06-01

    Full Text Available With the objective to characterize the grain yield of five cowpea cultivars and to find linear regression models to predict it, a study was developed in La Paz, Baja California Sur, Mexico. A complete randomized blocks design was used. Simple and multivariate analyses of variance were carried out using the canonical variables to characterize the cultivars. The variables cluster per plant, pods per plant, pods per cluster, seeds weight per plant, seeds hectoliter weight, 100-seed weight, seeds length, seeds wide, seeds thickness, pods length, pods wide, pods weight, seeds per pods, and seeds weight per pods, showed significant differences (P≤ 0.05 among cultivars. Paceño and IT90K-277-2 cultivars showed the higher seeds weight per plant. The linear regression models showed correlation coefficients ≥0.92. In these models, the seeds weight per plant, pods per cluster, pods per plant, cluster per plant and pods length showed significant correlations (P≤ 0.05. In conclusion, the results showed that grain yield differ among cultivars and for its estimation, the prediction models showed determination coefficients highly dependable.

  4. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice.

    Science.gov (United States)

    Wang, Qing; Nian, Jinqiang; Xie, Xianzhi; Yu, Hong; Zhang, Jian; Bai, Jiaoteng; Dong, Guojun; Hu, Jiang; Bai, Bo; Chen, Lichao; Xie, Qingjun; Feng, Jian; Yang, Xiaolu; Peng, Juli; Chen, Fan; Qian, Qian; Li, Jiayang; Zuo, Jianru

    2018-02-21

    In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.

  5. Development of a remote sensing-based rice yield forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H.

    2016-11-01

    This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh. (Author)

  6. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  7. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    Science.gov (United States)

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Using ORYZA2000 to model cold rice yield response to climate change in the Heilongjiang province, China

    Directory of Open Access Journals (Sweden)

    Jingting Zhang

    2015-08-01

    Full Text Available Rice (Oryza sativa L. is one of the most important staple crops in China. Increasing atmospheric greenhouse gas concentrations and associated climate change may greatly affect rice production. We assessed the potential impacts of climate change on cold rice production in the Heilongjiang province, one of China's most important rice production regions. Data for a baseline period (1961–1990 and the period 2010–2050 in A2 and B2 scenarios were used as input to drive the rice model ORYZA2000 with and without accounting for the effects of increasing atmospheric CO2 concentration. The results indicate that mean, maximum, and minimum temperature during the rice growing season, in the future period considered, would increase by 1.8 °C under the A2 scenario and by 2.2 °C under the B2 scenario compared with those in the baseline. The rate of change in average maximum and minimum temperatures would increase by 0.6 °C per 10-year period under the A2 scenario and by 0.4 °C per 10-year period under the B2 scenario. Precipitation would increase slightly in the rice growing season over the next 40 years. The rice growing season would be shortened and the yield would increase in most areas in the Heilongjiang province. Without accounting for CO2 effect, the rice growing season in the period 2010–2050 would be shortened by 4.7 and 5.8 days, and rice yields would increase by 11.9% and 7.9%, under the A2 and B2 scenarios, respectively. Areas with simulated rice yield increases greater than 30.0% were in the Xiaoxing'an Mountain region. The simulation indicated a decrease in yield of less than 15% in the southwestern Songnen Plain. The rate of change in simulated rice yield was 5.0% and 2.5% per 10 years under the A2 and B2 scenarios, respectively. When CO2 effect was accounted for, rice yield increased by 44.5% and 31.3% under the A2 and B2 scenarios, respectively. The areas of increasing yield were sharply expanded. The area of decreasing yield in the

  9. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    Science.gov (United States)

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Silicon fertilization and soil water tensions on rice development and yield

    Directory of Open Access Journals (Sweden)

    Jakeline R. de Oliveira

    2016-02-01

    Full Text Available ABSTRACT The cultivation of upland rice (Oryza sativa in Brazil occurs mainly in the Cerrado, a region with adverse weather conditions. The use of silicon in its cultivation becomes important, since this nutrient provides higher rigidity, lower transpiration and higher resistance to dry spells in rice plants. The objective of the present study was to evaluate the effect of silicon fertilization and soil water tensions on upland rice development and yield in a Cerrado Oxisol. A 5 x 5 fractionated factorial with five soil water tensions (0, 15, 30, 45 and 60 kPa and five silicon doses (0, 120, 240, 480 and 960 mg dm-3 was used, which were distributed in a randomized block design, with four replicates. Plant height, number of tillers, number of panicles, number of grains per panicle, numbers of full and empty grains and percentage of empty grains were evaluated. Silicon fertilization promotes increased tillering in rice plants at the dose of 960 mg dm-3. The numbers of tillers and panicles decreased with the application of silicon up to the doses of 460 and 490 mg dm-3, respectively. The increase in soil water tensions reduced plant height and the number of full grains, and increased the percentage of empty grains of upland rice.

  11. Effect of algal biofertilizer on yield and protein content of rice

    Energy Technology Data Exchange (ETDEWEB)

    Antarikanonda, P.; Amarit, P.; Chetsumon; Tancharoenrat, P.

    Four strains of nitrogen fixing blue-green algae, namely Anabaena siamensis, Anabaena lutea, Nostoc sp. 46 and Nostoc sp. 79. Mixed cultures were applied as biofertilizers to four paddy soil samples, taken from Rangsit, Khok Sumrong, Sakhon Nakorn and Surin areas. Pots which were arranged in completely randomized design consisted of 3 replications and 2 treatment in each replication. These treatments comprise an unbiofertilizer and a biofertilizer which biofertilizer rate was applied equally at 4 grams of blue green algae per 10 kilograms of soil sample. The results showed that algal biofertilizer enhanced the growth and yield of the rice significantly, which was noticeable in the dry weight of the straw and grain of rice, for all sources of soil. Grain yield of rice in these soils increased form the check of 32.07, 34.87, 8.86 and 21.49 to 53.14, 49.53, 20.02, and 49.60 grams per pot, respectively. The responsiveness of rice which received algal biofertilizer was different. The percentage increase in yield ranged from 42% in Khok Sumrong soil and 66% in Rangsit soil, to 126 and 131% in Sakhon Nakorn and Surin soil, respectively. Significant increase in protein content of rice with the application of algal biofertilizer was from the check of 5.03, 5.14, 6.75 and 5.25 to 6.45, 6.53, 7.80 and 7.11 percent respectively. The difference in plant N-uptake level, after the application algal biofertilizer gave 383.50, 310.00, 222.20 and 480.70 milligrams per pot, respectively.

  12. Effect of gamma-irradiation on rice seed DNA. Pt. 1. Yield and molecular size of DNA extracted from irradiated rice seeds

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Konishi, Akihiro; Yamada, Takashi; Saito, Yukio

    1995-01-01

    The effect of gamma-irradiation on the DNA of hulled rice seeds was investigated. The cetyltrimethylammonium bromide (CTAB) method was preferred for the extraction of DNA from rice seeds because of its high quality and good yield. The yield of DNA that was determined by gel electrophoresis, decreased as the irradiation dose increased from 1 kGy. DNA extracted from rice seeds irradiated with a 30 kGy dose showed a molecular size of less than 20 kb, while that from unirradiated rice showed more than 100 kb in electrophoretic profiles. It can be assumed that the decrease in yield was mainly induced by the crosslinking between protein and DNA, and the reduction in molecular size was induced by double-strand breaks. (J.P.N.)

  13. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Directory of Open Access Journals (Sweden)

    Guan-fu FU

    2008-09-01

    Full Text Available By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05 respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  14. Quantitative trait loci for rice yield-related traits using recombinant ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... lated by map-based cloning strategy (Ashikari et al. 2005). ... 2000; Kojima et al. 2002; Doi et al. 2004). ... and PH but also on rice yield (Xue et al. 2008; Yan et al. ..... Cho Y. C., Suh J. P., Choi I. S., Hong H. C., Baek M. K., Kang K. H. et al. .... Yan C. J., Liang G. H., Chen F., Li X., Tang S. Z., Yi C. D. et al.

  15. Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

    Directory of Open Access Journals (Sweden)

    Margaret Catolos

    2017-10-01

    Full Text Available Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant and IR64-21 (drought susceptible was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3, and qDTY8.1 under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number. The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0–22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3+qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1+qDTY8.1 and qDTY1.1+qDTY8.1+qDTY1.3, across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.

  16. Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Luo, Xiaojin; Wu, Shuang; Tian, Feng; Xin, Xiaoyun; Zha, Xiaojun; Dong, Xianxin; Fu, Yongcai; Wang, Xiangkun; Yang, Jinshui; Sun, Chuanqing

    2011-07-01

    Many rice breeding programs have currently reached yield plateaus as a result of limited genetic variability in parental strains. Dongxiang common wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.) and serves as an important gene pool for the genetic improvement of rice cultivars. In this study, heterotic loci (HLs) associated with six yield-related traits were identified in wild and cultivated rice and investigated using a set of 265 introgression lines (ILs) of O. rufipogon Griff. in the background of the Indica high-yielding cultivar Guichao 2 (O. sativa L.). Forty-two HLs were detected by a single point analysis of mid-parent heterosis values from test cross F(1) offspring, and 30 (71.5%) of these HLs showed significantly positive effects, consistent with the superiority shown by the F(1) test cross population in the six yield-related traits under study. Genetic mapping of hsp11, a locus responsible for the number of spikelets per panicle, confirmed the utility of these HLs. The results indicate that favorable HLs capable of improving agronomic traits are available. The identification of HLs between wild rice and cultivated rice could lead to a new strategy for the application of heterosis in rice breeding. Copyright © 2011. Published by Elsevier Ireland Ltd.

  17. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    Science.gov (United States)

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    Science.gov (United States)

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  19. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars.

    Science.gov (United States)

    Fujita, Daisuke; Trijatmiko, Kurniawan Rudi; Tagle, Analiza Grubanzo; Sapasap, Maria Veronica; Koide, Yohei; Sasaki, Kazuhiro; Tsakirpaloglou, Nikolaos; Gannaban, Ritchel Bueno; Nishimura, Takeshi; Yanagihara, Seiji; Fukuta, Yoshimichi; Koshiba, Tomokazu; Slamet-Loedin, Inez Hortense; Ishimaru, Tsutomu; Kobayashi, Nobuya

    2013-12-17

    Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13-36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia.

  20. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments.

    Science.gov (United States)

    Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo

    2017-11-01

    The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.

  1. SOIL N, P AND K CONCENTRATIONS AND RICE YIELD INCREASED DUE TO THE APPLICATION OF Azolla pinnata

    Directory of Open Access Journals (Sweden)

    A. Arivin Rivaie*

    2014-01-01

    Full Text Available Many studies showed that application of Azolla pinnata as biofertilizer improved soil fertility some agricultural crops, including rice, whereas farmers in Lampung consider that A. pinnata suppresses growth of rice seedlings, so they throw it field by raising irrigation water surface. Information on effects A. pinnata application on changes in nutrient availability and rice yield obtained from paddy fields of regions still rare. A study was carried out to investigate effects of different rates of A. pinnata on changes in N, P, K concentrations in paddy soils, N uptake, and rice yield. A well-irrigated paddy field was incorporated with A. pinnata, and then rice seedlings of Ciherang variety had been grown from June up to December 2009. Results: application of A. pinnata at dose of five t per ha increased concentration of N, P and K as well as rice yield. A. pinnata had a relatively high N content, ie 2.43 percent. Application of A. pinnata of 7.5 t per ha increased significantly available soil P, indicated that A. pinnata requires a fairly high P to grow optimally. Application of A. pinnata of 7.5 t per ha gave highest dry grain yield, suggests that application A. pinnata did not suppress rice yield, even use of A. pinnata as organic matter source will help to conserve fossil fuels and foreign exchange as well as will allow more paddy fields that can be fertilized by N.

  2. Feature Selection for Wheat Yield Prediction

    Science.gov (United States)

    Ruß, Georg; Kruse, Rudolf

    Carrying out effective and sustainable agriculture has become an important issue in recent years. Agricultural production has to keep up with an everincreasing population by taking advantage of a field’s heterogeneity. Nowadays, modern technology such as the global positioning system (GPS) and a multitude of developed sensors enable farmers to better measure their fields’ heterogeneities. For this small-scale, precise treatment the term precision agriculture has been coined. However, the large amounts of data that are (literally) harvested during the growing season have to be analysed. In particular, the farmer is interested in knowing whether a newly developed heterogeneity sensor is potentially advantageous or not. Since the sensor data are readily available, this issue should be seen from an artificial intelligence perspective. There it can be treated as a feature selection problem. The additional task of yield prediction can be treated as a multi-dimensional regression problem. This article aims to present an approach towards solving these two practically important problems using artificial intelligence and data mining ideas and methodologies.

  3. Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model.

    Science.gov (United States)

    Muslim, Mohammad; Romshoo, Shakil Ahmad; Rather, A Q

    2015-06-01

    The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h(-1)). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha(-1)). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha(-1)). The observed and simulated yield showed a good match with R (2) = 0.95, RMSE = 132.24 kg/ha, respectively.

  4. Carbon isotope discrimination and yield of upland rice as affected by drought at flowering

    Directory of Open Access Journals (Sweden)

    PINHEIRO BEATRIZ DA SILVEIRA

    2000-01-01

    Full Text Available Field experiments involving upland rice genotypes, sown in various dates in late season, were carried out to assess the relationship of carbon isotope discrimination with grain yield and drought resistance. In each one of the three years, one trial was kept under good water availability, while other suffered water shortage for a period of 18-23 days, encompassing panicle emergence and flowering. Drought stress reduced carbon isotope discrimination measured on soluble sugars (deltas extracted from stem uppermost internode at the end of the imposition period, but had relatively less effect on bulk dry matter of leaves, sampled at the same period, or that of uppermost internodes and grains, sampled at harvest. The drought-induced reduction in deltas was accompanied of reduced spikelet fertility and grain yield. In the three trials subjected to drought, genotypes with the highest yield and spikelet fertility had the lowest deltas. However, this relationship was weak and it was concluded that deltas is not a sufficiently reliable indicator of rice drought resistance to be useful as a screening test in breeding programs. On the other hand, grain yield and spikelet fertility of genotypes which were the soonest to reach 50% flowering within the drought imposition period, were the least adversely affected by drought. Then, timing of drought in relation to panicle emergence and to flowering appeared to be a more important cause of yield variation among genotypes than variation in deltas.

  5. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  6. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  7. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.

    Science.gov (United States)

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-07-01

    A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.

  8. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Increasing yield and nitrogen use efficiency of rice through multiple-split fertilizer application

    International Nuclear Information System (INIS)

    Rallos, R.V.; Rivera, F.G.; Samar, E.D.; Rojales, J.S.; Anida, A.H.

    2015-01-01

    The low availability of nitrogen (N) is one of the most important limiting factors impeding the increase in rice yield among the various factors. Split N fertilizer applications can play an important role in nutrient management strategy that is productive, profitable and environmentally responsible. In this study, the recoveries and efficiencies of a multiple-split N fertilizer application of were determined using 15N labeled fertilizer, in order to provide science-based foundation for the nitrogen management in sustainable rice production. A lysimeter experiment with five treatments in four replications was set-up T0 (control). T1 (45 kg N ha“- “1), T2 (90 kg N ha“- “1), T3 (135 kg N ha“- “1) and T4 (180 kg N ha“- “1). 15N tracer analysis showed that, on average, only 30% of applied N is recovered by the crop following one time basal application. In contrast, higher fertilizer nitrogen use efficiencies (FNUE) (>50%) were observed following multiple-split N application. The result of FNUE also corroborates with the significant increase in rice grain yield. Many crops, however, have different nutrient requirements, therefore as in all fertilization strategies, it is highly recommended that source, rate, time and place of application should be considered in making split fertilization decisions. (author)

  10. Photoprotection as a Trait for Rice Yield Improvement: Status and Prospects.

    Science.gov (United States)

    Murchie, Erik H; Ali, Asgar; Herman, Tiara

    2015-12-01

    Solar radiation is essential for photosynthesis and global crop productivity but it is also variable in space and time, frequently being limiting or in excess of plant requirements depending on season, environment and microclimate. Photoprotective mechanisms at the chloroplast level help to avoid oxidative stress and photoinhibition, which is a light-induced reduction in photosynthetic quantum efficiency often caused by damage to photosystem II. There is convincing evidence that photoinhibition has a large impact on biomass production in crops and this may be especially high in rice, which is typically exposed to high tropical light levels. Thus far there has been little attention to photoinhibition as a target for improvement of crop yield. However, we now have sufficient evidence to examine avenues for alleviation of this particular stress and the physiological and genetic basis for improvement in rice and other crops. Here we examine this evidence and identify new areas for attention. In particular we discuss how photoprotective mechanisms must be optimised at both the molecular and the canopy level in order to coordinate with efficient photosynthetic regulation and realise an increased biomass and yield in rice.

  11. Breeding for earliness, high yield and disease resistance in rice by means of induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Haq, M S; Ali, S M; Maniruzzaman, A F.M.; Mansur, A; Islam, R [Atomic Energy Centre, Dacca (Pakistan)

    1970-03-01

    Ten varieties of Boro, Aus and Aman rice were treated with 30 kR of gamma rays from the 500-Ci {sup 60}Co source of the Atomic Energy Centre of Dacca. In addition, two rice varieties were treated with EMS and dES. To suppress tillering, the seeds were sown late and at a high seed rate. 300 normal-looking fertile M{sub 1} plants from each variety were harvested at random. The M{sub 2} progenies were sown on a plant-to-row basis to select for high yield, earliness, blast resistance and response to large doses of nitrogen fertilizer. Characters like plant height, number of tillers, fertile tillers, length of panicle and time from sowing to maturity were checked. As the results showed great variability in the mutagen-treated material the chances for successful selection are promising. (author)

  12. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    Science.gov (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  13. The interactive effects of elevated CO2, temperature and N supply on rice yield

    International Nuclear Information System (INIS)

    Baysa, Marieta C.; Tremmel, David C.; Reynolds, James F.; Rivero, Gilda C.; Tabbada, Reynaldo A.

    2001-01-01

    Rice (Oryza sativa L. cv. IR 72)was grown in growth chambers under combinations of two CO 2 (375 and 750 μL L -1 ), temperature(29/21 and 34/26 degrees centigrade day/night) and N (40 and 80 mg L -1 ) regimes from sowing until grain maturity. Panicle production was significantly enhanced by elevated CO 2 with more pronounced effects at high temperature and N. CO 2 -enriched plants grown at high temperatures had lower harvest indices due to reductions in the number of grains per panicle and grain mass. Any potential benefit of increased atmospheric CO 2 on rice grain yield and grain N content under optimal N supply may therefore be dampened by higher temperatures associated with possible future global warming conditions. (Author)

  14. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide

    Science.gov (United States)

    Abzar, A.; Ahmad, Wan Juliana Wan; Said, Mohd Nizam Mohd; Doni, Febri; Zaidan, Mohd Waznul Adly Mohd; Fathurahman, Zain, Che Radziah Che Mohd

    2018-04-01

    Carbon dioxide (CO2) is rapidly increasing in the atmosphere. It is an essential element for photosynthesis which attracts attention among scientists on how plants will perform in the rising CO2 level. Rice as one of the most important staple food in the world has been studied on the growth responses under elevated CO2. The present research was carried out to determine the growth and physiology of rice in elevated CO2 condition. This research was carried out using complete randomized design with elevated (800 ppm) and ambient CO2. Results showed that growth parameters such as plant height, tillers and number of leaves per plant were increased by elevated CO2. The positive changes in plant physiology when exposed to high CO2 concentration includes significant change (p<0.05) in yield parameters such as panicle number, grain number per panicle, biomass and 1000 grain weight under the elevated CO2 of 800 ppm.

  15. Investigation of Flooding Water Depth Management on Yield and Quality Indices of Rice Production

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salemi

    2017-03-01

    Full Text Available Introduction: Water crisis as a majorlimitation factor for agriculture, like other arid and semiarid regions exists in Isfahan province which is located in the central part of the Zayandehrud River Basin (ZRB. Rice appears to be the far-most profitable crop but at the same time it has a major impact on basin scale water resources, especially affecting downstream farmers. In the study area (ShahidFozveh Research Station, the water resources for agricultural production face heightened competition from other sectors like industry and domestic use. This necessitates considering different crops, altered agricultural systems and innovative methods that can reduce the water requirements for the irrigation of rice. The Alternative Wetting and Drying (AWD seems to be an effective method reducing water use for rice crops and possibly save the water for downstream users. There have been no qualitative evaluations of rice production under deficit irrigation practices in Isfahan area. This study sought to determine, under study area conditions, the quantities of water irrigation used with AWD practices, the resulting water productivity (WP and the effects of alternative irrigation management on yield, quality indices and rice production performance. Materials and Methods: The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Qahderijan region of Isfahan province, which is located in the central part of the ZRB. The ShahidFozveh Agricultural Research Station (32°, 36’ N, 51°, 36’ E is located at the altitude of 1612 m above the sea level. In order to improve WP and illustration of the impact of various levels of flooding depth on grain yield and quality indices at rice production, a field experiment (3000 m2 was conducted at ShahidFozveh Research Station for 2 years arranged in a split plot design with three replications. It will be necessary to use different scenario of water flooding depth management to

  16. Application of perennial legume green manures to improve growth and yield of organic lowland rice

    Directory of Open Access Journals (Sweden)

    M Winarni

    2016-10-01

    Full Text Available A pot experiment in green house was done to study the effect of the dosage and speciesof perennial legume green manures to the physiological traits, growth and yield of organic lowland rice (Oryza sativaL., and to obtain the optimal dosage as well.  The research was arranged in a factorial randomized block design consistedof two factors with three replications.The first factor was the species of perennial legume thatconsisted of threespecies: Turi (Sesbaniagrandiflora, Glirisidia (Gliricidiasepium, and Lamtoro (Leucaenaleucocephala and cow manure as control treatment. The second factor was the dosage of green manure thatconsisted of four levels: 5, 10, 20 and 40 t/ha.  The results showed that application ofperennial legumesinto the soil significantly improved the growth and yield of rice.  The application of  20 t Glirisidia leaves/haproduced the highest grain yield, followed by 20 t Lamtoro leaves/ha and 20 t Turi leaves/ha.  The optimal dosages of S. grandiflora, G. sepium and L. leucochepala leaves that could yield 58.03 g/hill (equivalent to14.51 t/ha, 53.67 g/hill (equivalent to 13.42 t/ha, and 49.67 g/hill (equivalent to 12.42 t/ha were 28.05, 25.46 and 26.41 t/ha, respectively.

  17. Effects of fish and prawn culture on physico-chemical parameters of water and rice yield in rice fields

    OpenAIRE

    Razzak, M.A.; Nahar, A.; Mirhaj, M.; Becker, K.; Dewan, S.

    2009-01-01

    An experiment was conducted with five treatments i.e. rice combined with fish having regular urea fertilization (T1), rice combined with prawn having regular urea fertilization (T2), rice combined with fish with supplementary feeding (T3), rice combined with prawn with supplementary feeding (T4) and without fish and prawn (T5) was kept as control. The dissolved oxygen values obtained in treatments with fish both in morning and afternoon were lower than the values of prawn containing treatment...

  18. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zhang Qianqian; Zheng Feixiang; Zheng Qiwei; Yao Fangfang; Chen Zhan; Zhang Weiwei; Hou Peiqiang; Feng Zhaozhong; Song Wenzhi; Feng Zongwei; Lu Fei

    2012-01-01

    The effects of a continuing rise of ambient ozone on crop yield will seriously threaten food security in China. In the Yangtze River Delta, a rapidly developing and seriously air polluted region in China, innovative open-top chambers have been established to fumigate winter wheat and rice in situ with elevated O 3 . Five years of study have shown that the yields of wheat and rice decreased with increasing O 3 concentration. There were significant relationships between the relative yield and AOT40 (accumulated hourly O 3 concentration over 40 ppb) for both winter wheat and rice. Winter wheat was more sensitive to O 3 than rice. O 3 -induced yield declines were attributed primarily to 1000-grain weight and harvest index for winter wheat, and attributed primarily to grain number per panicle and harvest index for rice. Control of ambient O 3 pollution and breeding of O 3 tolerant crops are urgent to guarantee food security in China. - Highlights: ► The wheat and rice response to ozone had been investigated for five years in China. ► There were significant relationships between relative crop yields and AOT40 dose. ► O 3 -induced wheat yield loss was primarily due to 1000-grain weight and harvest index. ► O 3 -induced rice yield loss was primarily due to grains per panicle and harvest index. ► Wheat and rice in this study are more sensitive to O 3 than previous investigations. - The dose–response relationships derived from field fumigation experiments over 5 years can be used to accurately estimate crop losses in China.

  19. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Danh, Ngo Thanh; Huy, Lai Nguyen; Oanh, Nguyen Thi Kim, E-mail: kimoanh@ait.ac.th

    2016-10-01

    The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O{sub 3}) induced rice production loss in the domain for 2010 using simulated hourly surface O{sub 3} concentrations (WRF/CAMx; 4 km resolution). Simulated O{sub 3} was higher in January–February (largely overlaps the first crop) and September–December (third crop), and lower in March–June (second crop). Spatially, O{sub 3} was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105 days) using three metrics: AOT40, M7 and flux-based O{sub 3} dose of POD{sub 10}. Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O{sub 3} exposure in the study domain in 2010 was the highest for the first crop (up to 25,800 metric tons), the second highest for the third crop (up to 21,500 tons) and the least for the second crop (up to 6800 tons). The low RYL obtained for the second crop by POD{sub 10} may be due to the use of a high threshold value (Y = 10 nmol m{sup −2} s{sup −1}). Linear regression between non-null radiation POD{sub 0} and POD{sub 10} had similar slopes for the first and third crop when POD{sub 0} was higher and very low slope for the second crop when POD{sub 0} was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O{sub 3} exposure. - Highlights: • Simulated O{sub 3} was used to assess rice yield loss in a domain of Southern Vietnam. • Exposure metrics of AOT40, M7, POD{sub 0} and POD{sub 10} were considered. • POD{sub 10} gave the highest rice production loss. • Higher production loss was found downwind of Ho Chi Minh City.

  20. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam

    International Nuclear Information System (INIS)

    Danh, Ngo Thanh; Huy, Lai Nguyen; Oanh, Nguyen Thi Kim

    2016-01-01

    The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O 3 ) induced rice production loss in the domain for 2010 using simulated hourly surface O 3 concentrations (WRF/CAMx; 4 km resolution). Simulated O 3 was higher in January–February (largely overlaps the first crop) and September–December (third crop), and lower in March–June (second crop). Spatially, O 3 was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105 days) using three metrics: AOT40, M7 and flux-based O 3 dose of POD 10 . Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O 3 exposure in the study domain in 2010 was the highest for the first crop (up to 25,800 metric tons), the second highest for the third crop (up to 21,500 tons) and the least for the second crop (up to 6800 tons). The low RYL obtained for the second crop by POD 10 may be due to the use of a high threshold value (Y = 10 nmol m −2 s −1 ). Linear regression between non-null radiation POD 0 and POD 10 had similar slopes for the first and third crop when POD 0 was higher and very low slope for the second crop when POD 0 was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O 3 exposure. - Highlights: • Simulated O 3 was used to assess rice yield loss in a domain of Southern Vietnam. • Exposure metrics of AOT40, M7, POD 0 and POD 10 were considered. • POD 10 gave the highest rice production loss. • Higher production loss was found downwind of Ho Chi Minh City.

  1. Productivity, Profitability and Resource Use Efficiency: A Comparative Analysis between Conventional and High Yielding Rice in Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Yahia Bapari

    2016-10-01

    Full Text Available The study was analyzed the determinants, costs and benefits and resources allocation of both conventional and high yielding rice cultivation over the Rajbari district of Bangladesh. Data were accumulated from 300 regular rice growers of conventional and high yielding varieties and random sampling technique was applied for selecting the respondents from the study area from which information was collected through pre-tested questionnaire. Cobb – Douglas production function and gross margin were mainly used to determine the productivities and profits of both rice and the marginal value of the product was highly recommended to derive the optimal use of the resources. Results obtained by applying ordinary least square method showed that the most important factors of production in the study area were irrigation, labor, fertilizer and insecticide costs whose elasticities were 0.904, 0.048, 0.045 and 0.044 respectively and insignificant factors were seed and ploughing costs whose elasticities were – 0.009 and 0.030 respectively for high yielding rice. On the other hand, irrigation, insecticide, seed and ploughing costs of elasticities 0.880, 0.589, 0.116 and – 0.127 respectively were the important factors and minor role playing factors were labor and fertilizer costs whose elasticities were 0.098 and 0.077 respectively for conventional yielding rice. The core message from productivity analysis was that the irrigation was key variable which played a positive and vital role in producing rice of both varieties. All variables (resources were economically misallocated in the production activities of both varieties along the study area but high yielding rice was more profitable than conventional one. Results also showed that the farmers of the study area produced rice of both varieties in the inefficient range of production. Continuous supply of electricity, flexible credit and improving the existing resources were the prime policy recommendations of

  2. A Multidisciplinary Phenotyping and Genotyping Analysis of a Mapping Population Enables Quality to Be Combined with Yield in Rice

    Directory of Open Access Journals (Sweden)

    Mariafe Calingacion

    2017-05-01

    Full Text Available In this study a mapping population (F8 of ca 200 progeny from a cross between the commercial rice varieties Apo and IR64 has been both genotyped and phenotyped. A genotyping-by-sequencing approach was first used to identify 2,681 polymorphic SNP markers which gave dense coverage of the genome with a good distribution across all 12 chromosomes. The coefficient of parentage was also low, at 0.13, confirming that the parents are genetically distant from each other. The progeny, together with both parents, were grown under irrigated and water restricted conditions in a randomised block design. All grain was harvested to determine variation in yield across the population. The grains were then polished following standard procedures prior to performing the phenotyping analyses. A Gas Chromatography—Mass Spectrometry approach was used to determine the volatile biochemical profiles of each line and after data curation and processing, discriminatory metabolites were putatively identified based on in-house and commercial spectral libraries. These data were used to predict the potential role of these metabolites in determining differences in aroma between genotypes. A number of QTLs for yield and for individual metabolites have been identified. Following these combined multi-disciplinary analyses, it proved possible to identify a number of lines which appeared to combine the favourable aroma attributes of IR64 with the favourable (higher yield potential of Apo. As such, these lines are excellent candidates to assess further as potential genotypes to work up into a new variety of rice which has both good yield and good quality, thus meeting the needs of both farmer and consumer alike.

  3. Predicting Great Lakes fish yields: tools and constraints

    Science.gov (United States)

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  4. Impact assessment of recent climate change on rice yields in the Heilongjiang Reclamation Area of north-east China.

    Science.gov (United States)

    Zhou, Yang; Li, Ning; Dong, Guanpeng; Wu, Wenxiang

    2013-08-30

    Investigating the degree to which climate change may have impacted on rice yields can provide an insight into how to adapt to climate change in the future. Meteorological and rice yield data over the period 1960-2009 from the Heilongjiang Reclamation Area of north-east China (HRANC) were used to explore the possible impacts of climate change on rice yields at sub-regional scale. Results showed that a warming trend was obvious in the HRANC and discernible climate fluctuations and yield variations on inter-annual scale were detected to have occurred in the 1980s and 1990s, respectively. Statistically positive correlation was observed between growing season temperature and rice yields, with an increase rate by approximately 3.60% for each 1°C rise in the minimum temperature during growing season. Such findings are consistent with the current mainstream view that warming climate may exert positive impacts on crop yields in the middle and higher latitude regions. Our study indicated that the growing season minimum temperature was a major driver of all the climatic factors to the recent increase trends in rice yield in HRANC over the last five decades. © 2013 Society of Chemical Industry.

  5. Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Fukami, Motohiro; Funada, Ryo; Izuta, Takeshi

    2010-01-01

    To assess the effects of tropospheric O 3 on rice cultivated in Bangladesh, four Bangladeshi cultivars (BR11, BR14, BR28 and BR29) of rice (Oryza sativa L.) were exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 1 July to 28 November 2008. The whole-plant dry mass and grain yield per plant of the four cultivars were significantly reduced by the exposure to O 3 . The exposure to O 3 significantly reduced net photosynthetic rate of the 12th and flag leaves of the four cultivars. The sensitivity to O 3 of growth, yield and leaf gas exchange rates was not significantly different among the four cultivars. The present study suggests that the sensitivity to O 3 of yield of the four Bangladeshi rice cultivars is greater than that of American rice cultivars and is similar to that of Japanese rice cultivars and that O 3 may detrimentally affect rice production in Bangladesh. - Bangladeshi cultivars of rice are sensitive to O 3 below 100 ppb.

  6. Spatially distinct response of rice yield to autonomous adaptation under the CMIP5 multi-model projections

    Science.gov (United States)

    Shin, Yonghee; Lee, Eun-Jeong; Im, Eun-Soon; Jung, Il-Won

    2017-02-01

    Rice ( Oryza sativa L.) is a very important staple crop, as it feeds more than half of the world's population. Numerous studies have focused on the negative impacts of climate change on rice production. However, there is little debate on which region of the world is more vulnerable to climate change and how adaptation to this change can mitigate the negative impacts on rice production. We investigated the impacts of climate change on rice yield, based on simulations combining a global crop model, M-GAZE, and Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model projections. Our focus was the impact of mitigating emission forcings (representative concentration pathway RCP 4.5 vs. RCP 8.5) and autonomous adaptation (i.e., changing crop variety and planting date) on rice yield. In general, our results showed that climate change due to anthropogenic warming leads to a significant reduction in rice yield. However, autonomous adaptation provides the potential to reduce the negative impact of global warming on rice yields in a spatially distinct manner. The adaptation was less beneficial for countries located at a low latitude (e.g., Cambodia, Thailand, Brazil) compared to mid-latitude countries (e.g., USA, China, Pakistan), as regional climates at the lower latitudes are already near the upper temperature thresholds for acceptable rice growth. These findings suggest that the socioeconomic effects from rice production in lowlatitude countries can be highly vulnerable to anthropogenic global warming. Therefore, these countries need to be accountable to develop transformative adaptation strategies, such as adopting (or developing) heat-tolerant varieties, and/or improve irrigation systems and fertilizer use efficiency.

  7. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L.

    Science.gov (United States)

    Gaikwad, Kiran B; Singh, Naveen; Bhatia, Dharminder; Kaur, Rupinder; Bains, Navtej S; Bharaj, Tajinder S; Singh, Kuldeep

    2014-01-01

    Utilization of "hidden genes" from wild species has emerged as a novel option for enrichment of genetic diversity for productivity traits. In rice we have generated more than 2000 lines having introgression from 'A' genome-donor wild species of rice in the genetic background of popular varieties PR114 and Pusa44 were developed. Out of these, based on agronomic acceptability, 318 lines were used for developing rice hybrids to assess the effect of introgressions in heterozygous state. These introgression lines and their recurrent parents, possessing fertility restoration ability for wild abortive (WA) cytoplasm, were crossed with cytoplasmic male sterile (CMS) line PMS17A to develop hybrids. Hybrids developed from recurrent parents were used as checks to compare the performance of 318 hybrids developed by hybridizing alien introgression lines with PMS17A. Seventeen hybrids expressed a significant increase in yield and its component traits over check hybrids. These 17 hybrids were re-evaluated in large-size replicated plots. Of these, four hybrids, viz., ILH299, ILH326, ILH867 and ILH901, having introgressions from O. rufipogon and two hybrids (ILH921 and ILH951) having introgressions from O. nivara showed significant heterosis over parental introgression line, recurrent parents and check hybrids for grain yield-related traits. Alien introgressions were detected in the lines taken as male parents for developing six superior hybrids, using a set of 100 polymorphic simple sequence repeat (SSR) markers. Percent introgression showed a range of 2.24 from in O. nivara to 7.66 from O. rufipogon. The introgressed regions and their putative association with yield components in hybrids is reported and discussed.

  8. Evaluating non-aromatic rice varieties for growth and yield different rates of soil applied boron

    International Nuclear Information System (INIS)

    Shah, J.A.; Abbas, M.; Memon, M.Y.; Raid, N.

    2016-01-01

    Balanced boron (B) fertilization has prime importance to obtain maximum paddy yield. The range between B deficiency and toxicity is smaller than most plant nutrients, though B requirement among different crops varies widely. The adequate dose of B for one genotype can either be insufficient or toxic to other. Hence, without knowing the actual requirements of crop varieties, B application can be risky due to the toxicity hazards. A field experiment was undertaken at experimental farm of Nuclear Institute of Agriculture (NIA), Tandojam during 2013, to evaluate the B requirement of two non-aromatic rice varieties.The experiment was arranged in split plot design with three repeats. Two rice varieties Sarshar and Shandar were grown in main plots with four rates of B: 0.5, 1.0, 1.5 and 2.0 kg ha/sup -1/ and control (0 kg ha/sup -1/) in sub plots. Both the varieties responded differently to B rates. Sarshar produced the highest paddy yield (5691 kg ha/sup -1/) at a rate of 1.5 kg B ha/sup -1/ and was 18% greater than control, Shandar produced the highest yield (6075 kg ha/sup -1/) at a rate of 1.0 kg B ha/sup -1/ and was 5% greater than control. B accumulation in paddy and straw of both varieties increased with the increasing B rates. Both varieties were also significantly (p<0.05) varied in B accumulations. Comparatively, rice variety Sarshar accumulated 9% and 22% more B in straw and paddy than the Shandar. Thus, the B requirement of Sarshar was relatively higher than the Shandar. Shandar can be grown without the additional B application, whereas, Sarshar requires additional B for its maximum harvest in B deficient soils. (author)

  9. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  10. Estimation of genetic divergence in rice (oryza sativa l) germplasms on the basis of paddy yield and rice stem borer's (pyralidae: lepidoptera) resistance

    International Nuclear Information System (INIS)

    Sarwar, M.

    2013-01-01

    Field trials were carried out to estimate resistance along with paddy yield in 55 rice germplasm lines (35 aromatic and 20 non-aromatic genotypes) for rice stem borers (Pyralidae: Lepidoptera) to expose their potential in pest management approach. The results expressed significant differences for pest damage build-up and paddy yield among the rice germplasm lines. The findings clearly portrayed that based upon the percentage of pest invasions (dead hearts and white heads damage), no genotype was exclusively resistant to stem borers damage under field conditions. Two aromatic genotypes, Jajai-15A/97 and Basmati-Cr-34, exhibited least borers prevalence and amplified paddy yield while Sonehri Sugdasi (P) and Sada Gulab (P) pointed out a peak pest invasion and declined paddy yield. The estimation of pest incidence build-up and paddy productivity within non-aromatic genotypes confirmed that IR8 (P), IR6-15-2 and IR6 (P) were mainly proficient for bearing condensed pest invasion and augmented paddy yield. IR8-2.5-4, IR6-15-10 and IR6-20-9 demonstrated elevated pest susceptibility and gave poor yield. Rest of the germplasms appeared to be least tolerant or vulnerable to pest build-up and reduced paddy production. The tolerant and high yielding genotypes should be popularised in rice borers endemic areas and can be used in varietals resistance breeding strategy. The outcome of current studies necessitates the integration of existing host plant tolerance along with other management strategies to accomplish a suitable control of rice stem borers and enhance paddy yield. (author)

  11. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties

    Science.gov (United States)

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  12. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  13. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    Science.gov (United States)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  14. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis.

    Science.gov (United States)

    Oguntunde, Philip G; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease (P  1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  15. Effect of P nature phosphate dosage and embedding time of Azolla mycrophylla Kaulfuss on Yield of Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Mahmudah Hamawi

    2016-12-01

    Full Text Available The effort of growing azolla in intercroping rice will be hoped to supply a green manure for rice plants. Additing P of the phosphat rock in the field can be expected to increase the result of rice yield.The research was conducted on December 2, 2006 to April 5, 2007 at Tegalgondo Karangploso of Malang. onsidering those problems, the researcher employs the factorial group randome desigh that compose two factor by controlling as comparison tool (inorganic treatment. The first factor is P in the phosphat rock contained 4 stages. As followed Po (without P, P1 (25 kg P ha-1, P2 (50 kg P ha-1, P3 (25 kg P ha-1. The second factor is time of incorporated Azolla microphylla Kaulfuss (W, which consist 4 stage. As followed W1 (incorporated 1 day before transplanting rice, W2 (50 % the azolla biomass in the field was incorporated during 14, 28, and 42 days after transplanting rice, W3 (50 % the azolla biomass in the field was incorporated during 21, and 49 days after transplanting rice, W4 (50 % the azolla biomass in the field was incorporated during 35 days after transplanting rice. The research was replicated 3 replications. The research finding showed that phosphat rock with 25 kg of P ha-1 doses combinationed with time of incorporating the azolla biomass at 14, 28 and 42 days after transplanting rice, the result of rice would be increasing in 31,4 % and R/C value resulted 1,47. Giving phosphat rock with 25 – 75 kg P ha-1 doses increased the azolla biomass at 146,4 % until 153 % and increased the yield of rice at 21,1% until 43,8 %.

  16. Genotypic differences in phosphorus use efficiency and yield of wetland rice of southern Viet Nam

    International Nuclear Information System (INIS)

    Bui Thi Hong Thanh; Le Dac Lieu; Luong Thu Tra; Mai Thanh Son; Nguyen Dang Nghia; Do Trung Binh

    1996-01-01

    This study was conducted during 1992 to 1994 with the objective of assessing genotypic differences in phosphorus use efficiency of wetland rice (Oriza sativa L.) and to select genotypes which grow well on soils low in available P or requiring only small amounts of added phosphorus fertilizer. In the first experiment, 24 genotypes of rice were screened under field conditions at low P (0 P added) and high P (90 kg P 2 O 5 /ha) on a gray soil of South Viet Nam. Significant genotypic differences were found in straw and grain yield, total P uptake, plant height and phosphorus use efficiency. Grain yield was highly correlated with phosphorus use efficiency. The effect of P supply was generally small. On average P supply decreased straw yield and increased grain yield. In the second experiment, four genotypes selected from the first experiment were grown under greenhouse conditions for four weeks supplied with 0, 30 and 90 ppm. Dry weight of shoots did not respond to P fertilization, but dry weight of roots increased with increasing P supply. The two efficient genotypes, G6 and G22, showed a higher root/shoot ratio than the two inefficient genotypes, G11 and G19. This indicates a higher potential for P acquisition of G6 and G22. In the third experiment, the same contrasting genotypes, and G18 with intermediate efficiency, were grown under field conditions at 0, 30, 60, 90 and 120 kg P 2 O 5 /ha. Of the two inefficient genotypes, G11 gave the highest grain yield at 60 and G19 at 90 kg P 2 O 5 /ha; G18 gave a clear response up to 60 kg P 2 O 5 /ha. Based on the information obtained in this study we conclude that G6 and G22 are efficiently and well adapted rice genotypes to gray soils of South Viet Nam, low in available P. At low P supply G6 may be slightly better than G22. Further, the 15 N tracer study showed that for G6, a small P supply (30 kg P 2 O 5 /ha) can increase the % N recover from urea applied at 120 kg N/ha. (author). 12 refs, 6 figs, 3 tabs

  17. Genotypic differences in phosphorus use efficiency and yield of wetland rice of southern Viet Nam

    Energy Technology Data Exchange (ETDEWEB)

    Hong Thanh, Bui Thi; Lieu, Le Dac; Tra, Luong Thu; Son, Mai Thanh [Center of Nuclear Techniques, Ho Chi Minh City (Viet Nam); Nghia, Nguyen Dang; Binh, Do Trung [Agricultural Science Inst., Ho Chi Minh City (Viet Nam)

    1996-07-01

    This study was conducted during 1992 to 1994 with the objective of assessing genotypic differences in phosphorus use efficiency of wetland rice (Oriza sativa L.) and to select genotypes which grow well on soils low in available P or requiring only small amounts of added phosphorus fertilizer. In the first experiment, 24 genotypes of rice were screened under field conditions at low P (0 P added) and high P (90 kg P{sub 2}O{sub 5}/ha) on a gray soil of South Viet Nam. Significant genotypic differences were found in straw and grain yield, total P uptake, plant height and phosphorus use efficiency. Grain yield was highly correlated with phosphorus use efficiency. The effect of P supply was generally small. On average P supply decreased straw yield and increased grain yield. In the second experiment, four genotypes selected from the first experiment were grown under greenhouse conditions for four weeks supplied with 0, 30 and 90 ppm. Dry weight of shoots did not respond to P fertilization, but dry weight of roots increased with increasing P supply. The two efficient genotypes, G6 and G22, showed a higher root/shoot ratio than the two inefficient genotypes, G11 and G19. This indicates a higher potential for P acquisition of G6 and G22. In the third experiment, the same contrasting genotypes, and G18 with intermediate efficiency, were grown under field conditions at 0, 30, 60, 90 and 120 kg P{sub 2}O{sub 5}/ha. Of the two inefficient genotypes, G11 gave the highest grain yield at 60 and G19 at 90 kg P{sub 2}O{sub 5}/ha; G18 gave a clear response up to 60 kg P{sub 2}O{sub 5}/ha. Based on the information obtained in this study we conclude that G6 and G22 are efficiently and well adapted rice genotypes to gray soils of South Viet Nam, low in available P. At low P supply G6 may be slightly better than G22. Further, the {sup 15}N tracer study showed that for G6, a small P supply (30 kg P{sub 2}O{sub 5}/ha) can increase the % N recover from urea applied at 120 kg N/ha.

  18. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Ye, Z.H. [State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Chan, W.F.; Chen, X.W.; Wu, F.Y. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Wu, S.C. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China)

    2011-10-15

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg{sup -1}. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: > Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. > Rice colonized with suitable AMF can increase grain yield. > The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  19. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Chan, W.F.; Chen, X.W.; Wu, F.Y.; Wu, S.C.; Wong, M.H.

    2011-01-01

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg -1 . In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: → Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. → Rice colonized with suitable AMF can increase grain yield. → The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  20. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    Science.gov (United States)

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.

  1. Study on the breeding of japonical gelatinous rice mutant variety Zhenuo 36 with high yield and good grain quality

    International Nuclear Information System (INIS)

    Bao Genliang; Zhang Xiaoming; Ye Shenghai; Zuo Xiaoxu; Feng Zuocheng; Lu Wenwu; Katsura Toomita; Asako Kobayasi

    2004-01-01

    The dry seeds of F 2 , which came from the crossing of japonical rice Bing 92-124 x japonical gelatinous rice Shaonuoxuan (SNX), was induced by 200 Gy 60 Co γ-irradiation. A japonical gelatinous rice mutant ZH206 with high yield, large grain size and good grain quality was obtained through several generation selections. It was demonstrated that the average yield was 9.4% higher than controls in two regional tests in successive two years. Its grain size was obviously large as compared with its original parents, 1000-grain weight was above 30 g, 4.1 g and 3.6 g higher than Bing 92-124 and SNX, respectively. Gelatinous characteristic of its rice was better than control Xianghu 84 and also much better than SNX. In 2003, the mutant was denominated as 'Zhenuo 36' by Crop Variety Identification Committee of Zhejiang Province. As an excellent japonical gelatinous variety, Zhenuo 36 had both the largest rate of increasing yield and the highest grain weight in Zhejiang provincial regional tests of japonical rice during last 20 years. The successful breeding of the variety showed that irradiation induction is an effective method to simultaneously improve some characteristics in rice. (authors)

  2. Invited review: A commentary on predictive cheese yield formulas.

    Science.gov (United States)

    Emmons, D B; Modler, H W

    2010-12-01

    Predictive cheese yield formulas have evolved from one based only on casein and fat in 1895. Refinements have included moisture and salt in cheese and whey solids as separate factors, paracasein instead of casein, and exclusion of whey solids from moisture associated with cheese protein. The General, Barbano, and Van Slyke formulas were tested critically using yield and composition of milk, whey, and cheese from 22 vats of Cheddar cheese. The General formula is based on the sum of cheese components: fat, protein, moisture, salt, whey solids free of fat and protein, as well as milk salts associated with paracasein. The testing yielded unexpected revelations. It was startling that the sum of components in cheese was SofC) in cheese. The apparent low estimation of SofC led to the idea of adjusting upwards, for each vat, the 5 measured components in the formula by the observed SofC, as a fraction. The mean of the adjusted predicted yields as percentages of actual yields was 99.99%. The adjusted forms of the General, Barbano, and Van Slyke formulas gave predicted yields equal to the actual yields. It was apparent that unadjusted yield formulas did not accurately predict yield; however, unadjusted PY%AY can be useful as a control tool for analyses of cheese and milk. It was unexpected that total milk protein in the adjusted General formula gave the same predicted yields as casein and paracasein, indicating that casein or paracasein may not always be necessary for successful yield prediction. The use of constants for recovery of fat and protein in the adjusted General formula gave adjusted predicted yields equal to actual yields, indicating that analyses of cheese for protein and fat may not always be necessary for yield prediction. Composition of cheese was estimated using a predictive formula; actual yield was needed for estimation of composition. Adjusted formulas are recommended for estimating target yields and cheese yield efficiency. Constants for solute exclusion

  3. Influence of ethyl-trinexapac on 15N accumulation and distribution and on highland rice yield

    International Nuclear Information System (INIS)

    Alvarez, Rita de Cassia Felix; Crusciol, Carlos Alexandre Costa; Alvarez, Angela Cristina Camarim; Trivelin, Paulo Cesar Ocheuze; Rodrigues, Joao Domingos

    2007-01-01

    The high rice grain yields ensured by sprinkler irrigation have encouraged the use of higher fertilizer doses, mainly the nitrogen fertilizers. However, an improper management of nitrogen fertilization may result in plant lodging. Application of plant regulators may redirect assimilates to grain production while limiting the vegetative growth. This study aimed to: evaluate the influence of the growth regulator Ethyl-trinexapac on plant growth parameters and on 15 N accumulation and distribution in the whole plant and plant components, and determine the contribution of nitrogen taken up in different developmental stages in panicle formation, yield components and rice yield. The experiment was carried out under controlled greenhouse conditions. The treatments consisted of application or not of a plant growth regulator (0 and 200 g active ingredient ha-1 of ethyl-trinexapac) at four plant development stages (beginning to end of tillering; end of tillering and flower differentiation; flower differentiation to flowering; flowering until physiological maturation). The experimental design was arranged in random blocks, in a 2 x 4 factorial scheme, with three replications. The plants were placed in a group of 48 pots. In a group of 24 pots with nutrient solution containing 15 NH 4 SO 4 , plants were collected and separated in parts in the beginning of each pre-established plant development stage and at the end of each stage. In a second group (24 pots), pre-labeled plants were left to grow in nutrient solution with 14 NH 4 SO 4 and harvested at the end of each cycle in order to access 15 N redistribution.. The growth regulator reduced plant height and 15 N accumulation in the panicle and promoted redistribution of the absorbed 15 N, and increased accumulated 15 N in root, stem+sheats and leaves. The contribution of absorbed 15 N to panicle formation in each stage increased with the plant development, though in a lower proportion in the presence of the growth regulator

  4. Yield loss and economic thresholds of yellow nutsedge in irrigated rice as a function of the onset of flood irrigation

    Directory of Open Access Journals (Sweden)

    Nixon da Rosa Westendorff

    2014-03-01

    Full Text Available Yellow nutsedge (Cyperus esculentus is adapted to flooding and reduces yield in irrigated rice. Information on the competitive ability of this weed with the crop and the size of the economic damage caused is lacking. Mathematical models quantify the damage to crops and support control decision-making. This study aimed to determine yield losses and economic thresholds (ET of this weed in the culture according to weed population and time of onset of irrigation of the crop. The field study was conducted in the agricultural year of 2010/2011 in Pelotas/RS to evaluate the competitive ability of BRS Querência in competition with different population levels of yellow nutsedge and two periods of onset of flood irrigation (14 and 21 days after emergence. The hyperbolic model satisfactorily estimated yield losses caused by yellow nutsedge. Population of yellow nutsedge was the variable most fitted to the model. The delay of seven days for the beginning of rice irrigation causes decrease in competitive ability of BRS Querência, and based on the ET calculated to the price paid for rice, it is necessary between two and thirteen plants m-2 weed to justify the control in the first and second period of irrigation, respectively. Increases in yield, price paid for rice and control efficiency of the herbicide, besides reduction of costs of controlling promote reduction of ET of yellow nutsedge in rice crops, justifying the adoption of control measures even at smaller weed population.

  5. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.

    Science.gov (United States)

    Tao, Fulu; Zhang, Zhao; Shi, Wenjiao; Liu, Yujie; Xiao, Dengpan; Zhang, Shuai; Zhu, Zhu; Wang, Meng; Liu, Fengshan

    2013-10-01

    Based on the crop trial data during 1981-2009 at 57 agricultural experimental stations across the North Eastern China Plain (NECP) and the middle and lower reaches of Yangtze River (MLRYR), we investigated how major climate variables had changed and how the climate change had affected crop growth and yield in a setting in which agronomic management practices were taken based on actual weather. We found a significant warming trend during rice growing season, and a general decreasing trend in solar radiation (SRD) in the MLRYR during 1981-2009. Rice transplanting, heading, and maturity dates were generally advanced, but the heading and maturity dates of single rice in the MLRYR (YZ_SR) and NECP (NE_SR) were delayed. Climate warming had a negative impact on growth period lengths at about 80% of the investigated stations. Nevertheless, the actual growth period lengths of YZ_SR and NE_SR, as well as the actual length of reproductive growth period (RGP) of early rice in the MLRYR (YZ_ER), were generally prolonged due to adoption of cultivars with longer growth period to obtain higher yield. In contrast, the actual growth period length of late rice in the MLRYR (YZ_LR) was shortened by both climate warming and adoption of early mature cultivars to prevent cold damage and obtain higher yield. During 1981-2009, climate warming and decrease in SRD changed the yield of YZ_ER by -0.59 to 2.4%; climate warming during RGP increased the yield of YZ_LR by 8.38-9.56%; climate warming and decrease in SRD jointly reduced yield of YZ_SR by 7.14-9.68%; climate warming and increase in SRD jointly increased the yield of NE_SR by 1.01-3.29%. Our study suggests that rice production in China has been affected by climate change, yet at the same time changes in varieties continue to be the major factor driving yield and growing period trends. © 2013 John Wiley & Sons Ltd.

  6. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice.

    Directory of Open Access Journals (Sweden)

    Xianbo Liu

    Full Text Available Polycomb group (PcG proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2 protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice.

  7. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  8. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model

    Directory of Open Access Journals (Sweden)

    Tri D. Setiyono

    2018-02-01

    Full Text Available Crop insurance is a viable solution to reduce the vulnerability of smallholder farmers to risks from pest and disease outbreaks, extreme weather events, and market shocks that threaten their household food and income security. In developing and emerging countries, the implementation of area yield-based insurance, the form of crop insurance preferred by clients and industry, is constrained by the limited availability of detailed historical yield records. Remote-sensing technology can help to fill this gap by providing an unbiased and replicable source of the needed data. This study is dedicated to demonstrating and validating the methodology of remote sensing and crop growth model-based rice yield estimation with the intention of historical yield data generation for application in crop insurance. The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. MODIS reflectance data were used to generate multitemporal LAI maps using the inverted Radiative Transfer Model (RTM. SAR data were used to generate rice area maps using MAPScape-RICE to mask LAI map products for further processing, including smoothing with logistic function and running yield simulation using the ORYZA crop growth model facilitated by the Rice Yield Estimation System (Rice-YES. Results from this study indicate that the approach of assimilating MODIS and SAR data into a crop growth model can generate well-adjusted yield estimates that adequately describe spatial yield distribution in the study area while reliably replicating official yield data with root mean square error, RMSE, of 0.30 and 0.46 t ha−1 (normalized root mean square error, NRMSE of 5% and 8% for the 2016 spring and summer seasons, respectively, in the Red River Delta of Vietnam, as evaluated at district level aggregation. The information from remote-sensing technology was also useful for identifying geographic locations with

  9. Estimation of effects of photosynthesis response functions on rice yields and seasonal variation of CO2 fixation using a photosynthesis-sterility type of crop yield model

    International Nuclear Information System (INIS)

    Kaneko, D.; Moriwaki, Y.

    2008-01-01

    This study presents a crop production model improvement: the previously adopted Michaelis-Menten (MM) type photosynthesis response function (fsub(rad-MM)) was replaced with a Prioul-Chartier (PC) type function (fsub(rad-PC)). The authors' analysis reflects concerns regarding the background effect of global warming, under simultaneous conditions of high air temperature and strong solar radiation. The MM type function fsub(rad-MM) can give excessive values leading to an overestimate of photosynthesis rate (PSN) and grain yield for paddy-rice. The MM model is applicable to many plants whose (PSN) increases concomitant with increased insolation: wheat, maize, soybean, etc. For paddy rice, the PSN apparently shows a maximum PSN. This paper proves that the MM model overestimated the PSN for paddy rice for sufficient solar radiation: the PSN using the PC model yields 10% lower values. However, the unit crop production index (CPIsub(U)) is almost independent of the MM and PC models because of respective standardization of both PSN and crop production index using average PSNsub(0) and CPIsub(0). The authors improved the estimation method using a photosynthesis-and-sterility based crop situation index (CSIsub(E)) to produce a crop yield index (CYIsub(E)), which is used to estimate rice yields in place of the crop situation index (CSI); the CSI gives a percentage of rice yields compared to normal annual production. The model calculates PSN including biomass effects, low-temperature sterility, and high-temperature injury by incorporating insolation, effective air temperature, the normalized difference vegetation index (NDVI), and effects of temperature on photosynthesis. Based on routine observation data, the method enables automated crop-production monitoring in remote regions without special observations. This method can quantify grain production early to raise an alarm in Southeast Asian countries, which must confront climate fluctuation through this era of global

  10. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  11. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice

    Directory of Open Access Journals (Sweden)

    Yi-Chien Wu

    2016-01-01

    Full Text Available Typical japonica type rice is sensitive to high temperature. Pon-Lai rice is a special japonica type with adaptation to the subtropical climate in Taiwan. Facing climate change, rising temperatures would damage the yield and quality of rice production. This research was conducted using Pon-Lai rice in the field of a subtropical climate. We conducted 2 experiments, including a year-round experiment and collection of samples from different districts for building different temperature conditions. We analyzed the correlation between rising temperature and rice yield or quality. In our results, the critical period of temperature effect is 0–15 days after heading (H15. The threshold of high temperature damage in yield and appearance quality was 25–27 °C. Grain weight decreased about 2–6%, while the temperature of H15 was raised 1 °C above the thresholds. Perfect grain ratio and chalky grain ratio decreased and increased, respectively, while the temperature of H15 was raised above the thresholds. However, the high temperature in H15 affected the physicochemical characteristics. In addition, we found positive correlation between grain length to width ratio and perfect grain ratio. Grain length to width ratio could be an index of temperature effects for grain quality. In our study, when the temperature was below 30 °C, a rising temperature of H15 could damage rice yield and appearance quality, and change grain shape. Our results could provide reference for dealing with the warming future in other temperate rice-cultivated countries.

  12. Effects of Mineral N and P Fertilizers on Yield and Yield Components of Flooded Lowland Rice on Vertisols of Fogera Plain, Ethiopia

    Directory of Open Access Journals (Sweden)

    Heluf Gebrekidan

    2006-10-01

    Full Text Available Despite its very recent history of cultivation in Ethiopia, rice is one of the potential grain crops that could contribute to the efforts for the realization of food security in the country. However, the scientific information available with regards to the response of flooded rice to N and P fertilizers for its optimum production on Vertisols of Fogera Plain is very limited. Therefore, a field experiment was conducted on Vertisols of Fogera plain, northern Ethiopia to study the yield and yield components response of rice and to establish the optimum N and P fertilizer levels required for improved grain yield of flooded rice. Six levels of N (0, 30, 60, 90, 120 and 150 kg ha−1 and five levels of P (0, 13.2, 26.4, 39.6 and 52.8 kg ha−1 laid down in a randomized complete block design with four replications were used as treatments. Nitrogen was applied in two equal splits (50% basal and 50% at maximum tillering as urea and the entire dose of P was applied basal as triple super phosphate at sowing. The main effects of N and P fertilizer levels showed significant differences (P ≤ 0.01 for all yield and yield components studied. The effects of N by P interaction were significant only for grain yield (P ≤ 0.05, number of panicles per m2 (P ≤ 0.01, number of spikelets per panicle (P ≤ 0.05 and plant height (P ≤ 0.01 among the different yield and yield components studied. Application of N and P significantly (P ≤ 0.01 increased grain yield of rice up to the levels of 60 kg N and 13.2 kg P ha−1. However, maximum grain yield (4282 kg ha−1 was obtained with the combined application of 60 kg N and 13.2 kg P ha−1, and the yield advantage over the control was 38.49% (1190 kg ha−1. Moreover, application of both N and P fertilizers have increased the magnitudes of the important yield attributes including number of panicles per m2, number of spikelets per panicle, panicle length, dry matter accumulation, straw yield and plant height

  13. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    Science.gov (United States)

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p rice production when growing in As-contaminated soils.

  14. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping, E-mail: jpyang@zju.edu.cn; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375 kg N/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH{sub 4} mainly appeared at the vegetative phase, and emission peaks of CO{sub 2}, and N{sub 2}O mainly appeared at reproductive phase of rice growth. The CO{sub 2} flux was significantly correlated with soil temperature, while the CH{sub 4} flux was influenced by logging water remaining period and N{sub 2}O flux was significantly associated with nitrogen application rates. This study showed that 225 kg N/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO{sub 2}-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89 t/ha in paddy fields. - Highlights: • Exploiting co-benefits of rice yield and reduction of greenhouse gas emission. • Global warming potential and rice yield increased with nitrogen fertilizer rate up. • Emission peaks of CH{sub 4,} CO{sub 2} and N{sub 2}O appeared at vegetative and reproductive phase. • 225 kg N/ha rate benefits both rice yields and GWP reduction.

  15. GROWTH AND YIELD OF ORGANIC RICE WITH COW MANURE APPLICATION IN THE FIRST CROPPING SEASON

    Directory of Open Access Journals (Sweden)

    Wahyu Arif Sudarsono

    2014-02-01

    Full Text Available The study was addressed to investigating the effect of cow manure application rate on organic rice growth and yield in the first cropping season. The study was conducted from January to April 2012 in Blora, Central Java, Indonesia. The experiment was arranged in Randomized Complete Block Design, consisting of four treatments and four replications. There were two types of control treatments i.e. organic fertilizer treatments (statistically analyzed and conventional fertilizer (not statistically analyzed. The treatments were corn biomass, corn biomass+cow manure (7.5 tons ha-1, corn biomass+cow manure (10 tons ha-1 and cow manure (10 tons ha-1 with square spacing of 20 cm x 20 cm. The organic control treatments were corn biomass+sheep manure (7.5 tons ha-1 with spacing of 20 cm x 20 cm and corn biomass+cow manure (7.5 tons ha-1 with double-row spacing of 40 cm x 25 cm x 15 cm. For every treatment, the rate of corn biomass was 3 tons ha-1. All organic treatments were also added with 3 tons rice hull ash ha-1. The application of cow manure (10 tons ha-1 with square spacing or corn biomass+cow manure (7.5 tons ha-1 with double-row spacing resulted in better performance than those of other treatments.

  16. Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    Science.gov (United States)

    2010-01-01

    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm. PMID:21637426

  17. Distribution of assimilates derived from canopy leaves at different milky stage of intergeneric high-yielding hybrid rice

    International Nuclear Information System (INIS)

    Tang Jianjun

    1997-01-01

    Distribution characteristics of assimilates derived from 14 C-glucose fed on different canopy leaves of the high-yielding intergeneric hybrid rice Yuanyou 1 and GER-1, intra-varietal 3-line hybrid rice Shanyou 63, maternal and paternal parents of intergeneric hybrid rice at various ripening stage from flowering stage to late milky stage were studied with pot experiments under greenhouse in 1993 and 1994 in Guangzhou. The results indicates that there exists a significant difference in exportation of radioactivity from the leaf fed, partitioning of radioactivity exported into different organs and importation accumulation percent of total radioactivity in the rice panicle Yuanyou 1 has a high average exportation percent, importation accumulation percent and a stable and sustainable grain-filling process, which results in a high seed-setting rate with large spikelet population

  18. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while less damage in Basmati-385 might be related to strong anti-oxidative defense system and lower proportions of Pb contents in

  19. Effect of different transplanting leaf age on rice yield, nitrogen utilization efficiency and fate of 15N-fertilizer

    International Nuclear Information System (INIS)

    Fan Hongzhu; Lu Shihua; Zeng Xiangzhong

    2010-01-01

    Field experiments were conducted to study rice yield, N uptake and fate by using 15 N-urea at transplanting leaf age of 2-, 4-and 6-leaf, respectively. The results showed that rice yield significantly decreased with delay of transplanting leaf age, and 15 N-fertilizer uptake by grain and straw of rice, nitrogen utilization and residue also decreased, but loss of 15 N-fertilizer increased. Under different transplanting leaf age, N absorption by rice mainly came from the soil. Almost 1/3 of total N was supplied by fertilizer, and 2/3 came from soil. The efficiency of fertilizer was 20.8% ∼ 25.7%, 15 N-fertilizer residue ratio was 17.9% ∼ 32.2%, and 15 N-fertilizer loss was 42.1% ∼ 61.3%. 15 N-fertilizer residue mainly distributed in 0 ∼ 20 cm top soil under different treatments. The results indicated that transplanting young leaf age could increase rice yield and nitrogen utilization efficiency, and decrease loss of nitrogen fertilizer and pollution level on environment. (authors)

  20. Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China

    Directory of Open Access Journals (Sweden)

    Mingzhi Yang

    2018-01-01

    Full Text Available The Nanliujiang catchment is one of major rice production bases of South China. Irrigation districts play an important role in rice production which requires a large quantity of water. There are potential risks on future climate change in response to rice production, agricultural irrigation water use and pollution control locally. The SWAT model was used to quantify the yield and water footprint (WF of rice in this catchment. A combined method of automatic and manual sub-basin delineation was used for the model setup in this work to reflect the differences between irrigation districts in yield and water use of rice. We validated our simulations against observed leaf area index, biomass and yield of rice, evapotranspiration and runoff. The outputs of three GCMs (GFDL-ESM2M, IPSL-CM5A-LR and HadGEM2-ES under three RCPs (RCP2.6, 4.5, 8.5 were fed to the SWAT model. The results showed that: (a the SWAT model is an ideal tool to simulate rice development as well as hydrology; (b there would be increases in rice yield ranged from +1.4 to +10.6% under climate projections of GFDL-ESM2M and IPSL-CM5A-LR but slight decreases ranged from −3.5 to −0.8% under that of HadGEM2-ES; (c the yield and WFs of rice displayed clear differences in the catchment, with a characteristic that high in the south and low in the north, mainly due to the differences in climatic conditions, soil quality and fertilization amount; (d there would be a decrease by 45.5% in blue WF with an increase by 88.1% in green WF, which could provide favorable conditions to enlarge irrigated areas and take technical measures for improving green water use efficiency of irrigation districts; (e a clear rise in future grey WF would present enormous challenges for the protection of water resources and environmental pollution control in this catchment. So it should be to improved nutrient management strategies for the agricultural non-point source pollution control in irrigation districts

  1. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods

    Directory of Open Access Journals (Sweden)

    M.A. Badshah

    2014-02-01

    Full Text Available Tillering is an important agronomic trait for rice grain production. To evaluate yield and tillering response, Liangyoupeijiu (super hybrid rice was grown in Hunan, China during 2011–2012 under different methods of tillage (conventional and no-tillage system and crop establishment methods (transplanting at a spacing of 20 cm × 20 cm with one seedling per hill and direct seeding at a seeding rate of 22.5 kg ha− 1. Our results revealed that, at maximum tillering (Max. and at maturity (MA stages, direct seeding (DS resulted in 22% more tillers than transplanting (TP irrespective of tillage system. Tiller mortality reached a peak between panicle initiation (PI and booting (BT stages, and was 16% higher under conventional tillage (CT than under no-tillage (NT. Transplanting required 29% more time for the completion of tillering and less for DS. Tillering rate was 43% higher in DS than TP under either CT or NT. There was a positive correlation between panicle number per m2 and maximum tiller number per m2, but not panicle-bearing tiller rate. The panicle bearing tiller rate was higher under DS than TP and higher under NT than CT. Tiller dry weight gradually increased up to heading (HD stage, and was 14% higher under TP than DS. Leaf area (cm2 tiller− 1 gradually increased from Max. to HD stage and then decreased by 34% in conventional tillage transplanting (CTTP and 45% in no-tillage transplanting (NTTP from 12DAH–24DAH (days after heading, but was similar (35% under DS under either CT or NT. Grain yield was higher under CTTP owing to the larger sink size (heavier panicle, more spikelets in per cm length of panicle than under DS.

  2. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    Science.gov (United States)

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  3. Improvement in grain quality characteristics and yield in rice by induced mutation

    International Nuclear Information System (INIS)

    Govindaswami, S.; Ghosh, A.K.; Misra, S.N.

    1975-01-01

    Improvement in grain quality has been obtained in two rice cultures CR.75-83 and CR-75-93 (Rexore X Chianan-8) after gamma irradiation. The culture CR.75-83 and R.75-93 have good field resistance for bacterial leaf blight, but have comparatively low yield potential (4-5 tonns/ha) and have defects in grain quality such as low gelatinization temperature of starch and relatively low amylose content with inferior cooking quality since one of their parents was a 'Ponlai' type (Taiwan japonica). Improvement in fineness of the kernel and cooking quality by mutation of genes especially for higher amylose content and intermediate gelatinization temperature have been achieved in CR.75-83 mutants No.1,4,6,7,8,9,11 and 13 under 15Kr., in CR.75-93 in mutant No.2,4 and 10 under 25 Kr. Yield atributes have also improved with a shortening in the total duration by 10 to 20 days. The feasibility of improving the cooking quality especially the geletinization temperature and amylose content in the high yielding varieties by mutagenesis is discussed. (author)

  4. Combining ability analysis for yield and related traits in basmati rice (oryza sativa L.)

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Haq, M.A.; Mirza, J.I.

    2010-01-01

    Line X tester experiment was conducted to evaluate the performance of 27 F1 hybrids along with 12 parents in Basmati rice. Analysis of variance revealed highly significant differences among treatments, parents, parents vs. crosses and crosses for number of tillers per plant, panicle length, number of grains per panicle, fertility percentage, 1000-grain weight and yield per plant. Lines were significant for number of tillers per plant, number of grains per panicle and 1000-grain weight while testers and lines X testers were significant for all the traits. The estimates of variance of specific combining ability effects, ratio of variance of general combining ability to specific combining ability and degree of dominance indicated preponderance of non-additive gene effects for each trait. On over all basis, role of testers in the expression of most of the yield components was more than lines and line X tester interaction. However, line X tester interaction contributed more than lines and testers for yield per plant. Three lines viz., Basmati 2000, Super Basmati and Kashmir Basmati and one tester Basmati-385 were identified as good general combiners based on their mean performance and GCA effects for yield and its various traits. Hybrids like Basmati Pak X Basmati-385, Super Basmati X Basmati-385, DM-107-4 X Basmati-385, Basmati 2000 X EL-30- 2-1, Basmati 2000 X DM-25, DM-16-5-1 X Basmati-385 and Kashmir Basmati X DM-25 showed high mean performance, SCA effects and heterobeltiosis for grain yield and are proposed for heterosis breeding. (author)

  5. Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance

    NARCIS (Netherlands)

    Senthilkumar, K.; Bindraban, P.S.; Thiyagarajan, T.M.; Ridder, de N.; Giller, K.E.

    2008-01-01

    The looming water crisis and water-intensive nature of rice cultivation are driving the search for alternative management methods to increase water productivity in rice cultivation. Experiments were conducted under on-station and on-farm conditions to compare rice production using modified methods

  6. Impacts of climate change on rice production in Africa and causes of simulated yield changes

    NARCIS (Netherlands)

    Oort, Van Pepijn A.J.; Zwart, Sander J.

    2018-01-01

    This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature

  7. Accuracy of predicting milk yield from alternative recording schemes

    NARCIS (Netherlands)

    Berry, D.P.; Olori, V.E.; Cromie, A.R.; Rath, M.; Veerkamp, R.F.; Dilon, P.

    2005-01-01

    The effect of reducing the frequency of official milk recording and the number of recorded samples per test-day on the accuracy of predicting daily yield and cumulative 305-day yield was investigated. A control data set consisting of 58 210 primiparous cows with milk test-day records every 4 weeks

  8. Comparative Evaluation of Some Crop Yield Prediction Models ...

    African Journals Online (AJOL)

    A computer program was adopted from the work of Hill et al. (1982) to calibrate and test three of the existing yield prediction models using tropical cowpea yieldÐweather data. The models tested were Hanks Model (first and second versions). Stewart Model (first and second versions) and HallÐButcher Model. Three sets of ...

  9. Large-area dry bean yield prediction modeling in Mexico

    Science.gov (United States)

    Given the importance of dry bean in Mexico, crop yield predictions before harvest are valuable for authorities of the agricultural sector, in order to define support for producers. The aim of this study was to develop an empirical model to estimate the yield of dry bean at the regional level prior t...

  10. Biochar improves fertility of a clay soil in the Brazilian Savannah: short term effects and impact on rice yield

    NARCIS (Netherlands)

    Melo Carvalho, de M.T.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Heinemann, A.B.; Silva, da M.A.S.; Maia, A.H.N.; Meinke, H.B.

    2013-01-01

    The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH,

  11. Genetic Variation and Association Analysis of the SSR Markers Linked to the Major Drought-Yield QTLs of Rice.

    Science.gov (United States)

    Tabkhkar, Narjes; Rabiei, Babak; Samizadeh Lahiji, Habibollah; Hosseini Chaleshtori, Maryam

    2018-02-24

    Drought is one of the major abiotic stresses, which hampers the production of rice worldwide. Informative molecular markers are valuable tools for improving the drought tolerance in various varieties of rice. The present study was conducted to evaluate the informative simple sequence repeat (SSR) markers in a diverse set of rice genotypes. The genetic diversity analyses of the 83 studied rice genotypes were performed using 34 SSR markers closely linked to the major quantitative trait loci (QTLs) of grain yield under drought stress (qDTYs). In general, our results indicated high levels of polymorphism. In addition, we screened these rice genotypes at the reproductive stage under both drought stress and nonstressful conditions. The results of the regression analysis demonstrated a significant relationship between 11 SSR marker alleles and the plant paddy weight under stressful conditions. Under the nonstressful conditions, 16 SSR marker alleles showed a significant correlation with the plant paddy weight. Finally, four markers (RM279, RM231, RM166, and RM231) demonstrated a significant association with the plant paddy weight under both stressful and nonstressful conditions. These informative-associated alleles may be useful for improving the crop yield under both drought stress and nonstressful conditions in breeding programs.

  12. Genotypic Variability of the Components and their Effects on the Rice Yield: Correlation and Path Analysis Study

    Directory of Open Access Journals (Sweden)

    Sharkhawat Hossain

    2008-06-01

    Full Text Available Twenty modern Boro rice varieties were evaluated with a view to find variability and genetic association for grain yield and yield components characters. Genotypic and Phenotypic correlation among these characters were computed. Both genotypic and phenotypic correlation coefficients were significant between plant height and number of effective tillers per plant followed by panicle length. There was a positive significant correlation between yield and number of effective tillers per plant followed by percent filled grain per panicle. Path coefficient showed that number of effective tiller per plant and plant height are the characters that contribute largely to grain yield.

  13. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  14. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes.

    Science.gov (United States)

    Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ismail, Mohd Razi; Selamat, Ahmad; Rafii, M Y; Latif, M A

    2014-01-01

    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.

  15. Duplication of an upstream silencer of FZP increases grain yield in rice.

    Science.gov (United States)

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  16. Biochemical and Anatomical Changes and Yield Reduction in Rice (Oryza sativa L. under Varied Salinity Regimes

    Directory of Open Access Journals (Sweden)

    M. A. Hakim

    2014-01-01

    Full Text Available Five Malaysian rice (Oryza sativa L. varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m−1, were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m−1 and decreased up to 12 dS m−1. Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m−1 salinity levels compared to susceptible checks (IR20 and BRRI dhan29. Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.

  17. Low Carbon Rice Farming Practices in the Mekong Delta Yield Significantly Higher Profits and Lower Greenhouse Gas Emissions

    Science.gov (United States)

    Rudek, J.; Van Sanh, N.; Tinh, T. K.; Tin, H. Q.; Thu Ha, T.; Pha, D. N.; Cui, T. Q.; Tin, N. H.; Son, N. N.; Thanh, H. H.; Kien, H. T.; Kritee, K.; Ahuja, R.

    2014-12-01

    The Vietnam Low-Carbon Rice Project (VLCRP) seeks to significantly reduce GHG emissions from rice cultivation, an activity responsible for more than 30% of Vietnam's overall GHG emissions, while improving livelihoods for the rice farmer community by decreasing costs and enhancing yield as well as providing supplemental farmer income through the sale of carbon credits. The Mekong Delta makes up 12% of Vietnam's land area, but produces more than 50% of the country's rice, including more than 90% of the rice for export. Rice cultivation is the main source of income for 80% of farmers in the Mekong Delta. VLCRP was launched in late 2012 in the Mekong Delta in two major rice production provinces, Kien Giang and An Giang. To date, VLCRP has completed 11 crop seasons (in Kien Giang and An Giang combined), training over 400 farmer households in applying VLCRP's package of practices (known as 1 Must - 6 Reductions) and building technical capacity to its key stakeholders and rice farmer community leaders. By adopting the 1 Must- 6 Reductions practices (including reduced seeding density, reduced fertilizer and pesticide application, and alternative wetting and drying water management), rice farmers reduce their input costs while maintaining or improving yields, and decreasing greenhouse gas emissions. The VLCRP package of practices also deliver other environmental and social co-benefits, such as reduced water pollution, improved habitat for fishery resources and reduced health risks for farmers through the reduction of agri-chemicals. VLCRP farmers use significantly less inputs (50% reduction in seed, 30% reduction in fertilizer, 40-50% reduction in water) while improving yields 5-10%, leading to an increase in profit from 10% to as high as 60% per hectare. Preliminary results indicate that the 1 Must- 6 Reductions practices have led to approximately 40-65% reductions in greenhouse gas emissions, equivalent to 4 tons of CO2e/ha/yr in An Giang and 35 tons of CO2e/ha/yr in Kien

  18. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  19. ISOL yield predictions from holdup-time measurements

    International Nuclear Information System (INIS)

    Spejewski, Eugene H.; Carter, H Kennon; Mervin, Brenden T.; Prettyman, Emily S.; Kronenberg, Andreas; Stracener, Daniel W

    2008-01-01

    A formalism based on a simple model is derived to predict ISOL yields for all isotopes of a given element based on a holdup-time measurement of a single isotope of that element. Model predictions, based on parameters obtained from holdup-time measurements, are compared to independently-measured experimental values

  20. Effects of Water Management, Arsenic and Phosphorus Levels on Rice Yield in High-Arsenic Soil-Water System

    Institute of Scientific and Technical Information of China (English)

    A. S. M. H. M. TALUKDER; C. A. MEISNER; M. A. R. SARKAR; M. S. ISLAM; K. D. SAYRE

    2014-01-01

    Aerobic rice (Oryza sativa L.) cultivation is considered an alternative production system to combat increased water scarcity and arsenic (As) contamination in the food chain. Pot experiments were conducted at the Wheat Research Centre, Dinajpur, Bangladesh to examine the role of water management (WM), As and phosphorus (P) on yield and yield attributes of boro (variety BRRI dhan 29) and aman (variety BRRI dhan 32) rice. A total of 18 treatment combinations of the three levels of As (0, 20 and 40 mg/kg) and P (0, 12.5 and 25.0 mg/kg) and two WM strategies (aerobic and anaerobic) were investigated. Yield attributes were significantly affected by increasing As levels. Grain yields of BRRI dhan 29 and BRRI dhan 32 were reduced from 63.0 to 7.7 and 35.0 to 16.5 g/pot with increasing As application, respectively, indicating a greater sensitivity of BRRI dhan 29 than BRRI dhan 32. Moreover, As toxicity was reduced with aerobic compared to anaerobic WM for all P levels. During early growth stages, phytotoxic symptoms appeared on BRRI dhan 29 and BRRI dhan 32 rice stems with increasing As levels without applying P under anaerobic WM. Under anaerobic and As-contaminated conditions, BRRI dhan 29 was highly susceptible to straighthead, which dramatically reduced grain yields. There were significant relationships between the number of effective tillers per pot and root dry weight, grain yield, and number of fertile and unfertile grains per pot for both BRRI dhan 29 and BRRI dhan 32 (P<0.001). Our findings indicate that rice could be grown aerobically in As-contaminated areas with a reduced risk of As toxicity and yield loss.

  1. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.

    Science.gov (United States)

    Wang, Shaokui; Li, Shan; Liu, Qian; Wu, Kun; Zhang, Jianqing; Wang, Shuansuo; Wang, Yi; Chen, Xiangbin; Zhang, Yi; Gao, Caixia; Wang, Feng; Huang, Haixiang; Fu, Xiangdong

    2015-08-01

    The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7(TFA) allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.

  2. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.

    Directory of Open Access Journals (Sweden)

    Sylvain Delerce

    Full Text Available Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of

  3. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.

    Science.gov (United States)

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for

  4. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    Science.gov (United States)

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  5. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in auto tetraploid rice

    International Nuclear Information System (INIS)

    Shahid, M.Q.; Xiong, C.Z.; Juan, L.Y.; Ming, X.H.

    2011-01-01

    Genetic analysis and genotype-by-environment interaction for important traits of auto tetraploid rice were evaluated by additive, dominance and additive X additive model. It was show n that genetic effects had more influence on grain yield and other quantitative traits of auto tetraploid rice than genotypic environment interaction. Plant height, panicle length, seed set , grain yield, dry matter production and 1000-grain weight we re mainly regulated by dominance variance. Additive and additive X additive gene action constructed the main proportion of genetic variance for heading date (flowering), number of panicles, grains per panicle, grain length, however grain width was supposed to be affected by additive X additive and dominance variance. Flag leaf length and width, fresh weight, peduncle length, unfilled grains and awn length were greatly influenced by genotypic environment interaction. Heading date produced highly negative heterosis over mid parent (H pm) and better parent ( H pb), whereas H pm and H pb were detected to be highly positive and significant for grain yield, seed set, peduncle length, filled grains and 1000-grain weight in F/sub 1/ and F/sub 2/ generations. The results indicated that auto tetraploid hybrids 96025 X Jackson (indica/japonica), 96025 X Linglun (indica/indica) and Linglun X Jackson (indica/japonica) showed highly significant hybrid vigor with improved seed set percentage and grain yield. These results suggest that intra-specific auto tetraploid rice hybrids have more hybrid vigor as compared to intra-sub specific auto tetraploid rice hybrids and auto tetraploid rice has the potential to be used for further studies and commercial application. (author)

  6. Nitrogen Fertilizer Deep Placement for Increased Grain Yield and Nitrogen Recovery Efficiency in Rice Grown in Subtropical China

    Directory of Open Access Journals (Sweden)

    Meng Wu

    2017-07-01

    Full Text Available Field plot experiments were conducted over 3 years (from April 2014 to November 2016 in a double-rice (Oryza sativa L. cropping system in subtropical China to evaluate the effects of N fertilizer placement on grain yield and N recovery efficiency (NRE. Different N application methods included: no N application (CK; N broadcast application (NBP; N and NPK deep placement (NDP and NPKDP, respectively. Results showed that grain yield and apparent NRE significantly increased for NDP and NPKDP as compared to NBP. The main reason was that N deep placement (NDP increased the number of productive panicle per m-2. To further evaluate the increase, a pot experiment was conducted to understand the N supply in different soil layers in NDP during the whole rice growing stage and a 15N tracing technique was used in a field experiment to investigate the fate of urea-15N in the rice–soil system during rice growth and at maturity. The pot experiment indicated that NDP could maintain a higher N supply in deep soil layers than N broadcast for 52 days during rice growth. The 15N tracing study showed that NDP could maintain much higher fertilizer N in the 5–20 cm soil layer during rice growth and could induce plant to absorb more N from fertilizer and soil than NBP, which led to higher NRE. One important finding was that NDP and NPKDP significantly increased fertilizer NRE but did not lead to N declined in soil compared to NBP. Compared to NPK, NPKDP induced rice plants to absorb more fertilizer N rather than soil N.

  7. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates

    Directory of Open Access Journals (Sweden)

    Flavia B. Agostinho

    2017-08-01

    Full Text Available A series of pot experiments were conducted to: (1 evaluate the effects of different Si sources (soil- and foliar-applied on grain yield and Si accumulation of rice supplied with varying P rates, and (2 evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1 combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1 and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01, but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001. While there was an improvement in biomass (42% and tiller production (25% for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  8. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates.

    Science.gov (United States)

    Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E

    2017-08-29

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  9. modelling relationship between rainfall variability and yields

    African Journals Online (AJOL)

    , S. and ... factors to rice yield. Adebayo and Adebayo (1997) developed double log multiple regression model to predict rice yield in Adamawa State, Nigeria. The general form of .... the second are the crop yield/values for millet and sorghum ...

  10. Allelopathy of weed extracts on yield and its components in four cultivars of rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Ali MOHADESI

    2011-07-01

    Full Text Available Weeds are enemies to the crop plants and have harmful effects on agricultural crops due to several factors such as competition for space, light and nutrients. Allelopathic effects of weed extracts were studied on grain yield and yield components of rice. The experiment was carried out in the Rice Research Institute of Chaparsar, in 2006- 2007, in Tonekabon, Iran (latitude 36°54’ N, longitude 50° 40’E, level -20 m altitude, split plot on basis of randomized completely block design (RCBD with 4 replications. Results showed highly significant differences suggesting substantial to moderate phenotypic variability in most parameters evaluated except number of empty grain and 1000 -grain weight. Also, most yield of single plant obtained from umbrella sedge extract (28.5 g. It seems that umbrella sedge had least minerals in water; it could be affected positively on important factors such as yield of single plant compared to other treatments. Correlation coefficient analysis revealed significant and negative correlation between number of empty grain and yield of single plant (r=-0.42***. It’s implies that grain yield magnitude of Nemat cultivar exhibiting the least number of empty grain. Although yield of single plant was not affected neither by plant height nor number of tiller. In addition, irrigation water due to existence of high mineral and chemical pesticides in upstream of station farms severely was reduced yield. Also, results of this research showed that weed extracts haven’t very allelopathic effect on rice and in end of growing season, that’s better, plant leftover return and remain in field.

  11. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Directory of Open Access Journals (Sweden)

    Ayako Okuno

    Full Text Available Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA, and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  12. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Science.gov (United States)

    Okuno, Ayako; Hirano, Ko; Asano, Kenji; Takase, Wakana; Masuda, Reiko; Morinaka, Yoichi; Ueguchi-Tanaka, Miyako; Kitano, Hidemi; Matsuoka, Makoto

    2014-01-01

    Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  13. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    Science.gov (United States)

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  15. [Characteristics of phosphorus uptake and use efficiency of rice with high yield and high phosphorus use efficiency].

    Science.gov (United States)

    Li, Li; Zhang, Xi-Zhou; Li, Tinx-Xuan; Yu, Hai-Ying; Ji, Lin; Chen, Guang-Deng

    2014-07-01

    A total of twenty seven middle maturing rice varieties as parent materials were divided into four types based on P use efficiency for grain yield in 2011 by field experiment with normal phosphorus (P) application. The rice variety with high yield and high P efficiency was identified by pot experiment with normal and low P applications, and the contribution rates of various P efficiencies to yield were investigated in 2012. There were significant genotype differences in yield and P efficiency of the test materials. GRLu17/AiTTP//Lu17_2 (QR20) was identified as a variety with high yield and high P efficiency, and its yields at the low and normal rates of P application were 1.96 and 1.92 times of that of Yuxiang B, respectively. The contribution rate of P accumulation to yield was greater than that of P grain production efficiency and P harvest index across field and pot experiments. The contribution rates of P accumulation and P grain production efficiency to yield were not significantly different under the normal P condition, whereas obvious differences were observed under the low P condition (66.5% and 26.6%). The minimal contribution to yield was P harvest index (11.8%). Under the normal P condition, the contribution rates of P accumulation to yield and P harvest index were the highest at the jointing-heading stage, which were 93.4% and 85.7%, respectively. In addition, the contribution rate of P accumulation to grain production efficiency was 41.8%. Under the low P condition, the maximal contribution rates of P accumulation to yield and grain production efficiency were observed at the tillering-jointing stage, which were 56.9% and 20.1% respectively. Furthermore, the contribution rate of P accumulation to P harvest index was 16.0%. The yield, P accumulation, and P harvest index of QR20 significantly increased under the normal P condition by 20.6%, 18.1% and 18.2% respectively compared with that in the low P condition. The rank of the contribution rates of P

  16. Combining Ability and Heterosis for Grain Yield and its Component Traits in Rice(Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Srikrishna LATHA

    2013-02-01

    Full Text Available The nature and magnitude of heterosis and combining ability was studied in 18 F1 hybrids involving three CMS lines and six testers using line × tester analysis. The analysis of variance for combining ability of all the traits showed that variances due to treatments, parents, hybrids were highly significant. The line ‘CRMS 32A’ and testers viz. ‘Super rice-8’, ‘R 1099-2569-1-1’ and ‘Jitpiti’ were identified as good general combiners. The significant differences between lines x testers interaction indicates that SCA attributed heavily in the expression of these traits and demonstrates the importance of dominance or non additive variances for all the traits. The hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’ and ‘APMS 6A’/‘Super rice-8’ were promising for grain yield. The magnitude of relative heterosis, heterobeltiosis and standard heterosis were also estimated for different characters. A high degree of relative heterosis was observed for grain yield (20.45- 82.37% in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘APMS 6A’/‘Super rice-8’, ‘APMS 6A’/‘Jitpiti’ and ‘CRMS 32A’/‘R 1099-2569-1-1’. While, a higher degree of: heterobeltiosis (13.60 -68.37% was observed for grain yield in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘CRMS 32A’/‘R 1099-2569-1-1’, ‘APMS 6A’/’Super rice-8’ and ‘APMS 6A’/’Jitpiti’. A high degree of standard heterosis was observed for grain yield in the hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’. The hybrid ‘CRMS 32A’/ ‘R 1099-2569-1-1’ recorded a high degree of relative heterosis (62.01%, heterobeltiosis (57.35% and standard heterosis (15.05 and 25.51% over check hybrids, ‘Mahamaya’ and ‘Indirasona’, respectively that can be tested on yield trials for its further testing over locations.

  17. Influence of Crop Nutrition on Grain Yield, Seed Quality and Water Productivity under Two Rice Cultivation Systems

    Directory of Open Access Journals (Sweden)

    Y.V. SINGH

    2013-03-01

    Full Text Available The system of rice intensification (SRI is reported to have advantages like lower seed requirement, less pest attack, shorter crop duration, higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation. With this background, SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute, New Delhi, India during two wet seasons (2009–2011. In the experiment laid out in a factorial randomized block design, two methods of rice cultivation [conventional transplanting (CT and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44 were used under seven crop nutrition treatments, viz. T1, 120 kg/hm2 N, 26.2 kg/hm2 P and 33 kg/hm2 K; T2, 20 t/hm2 farmyard manure (FYM; T3, 10 t/hm2 FYM + 60 kg/hm2 N; T4, 5 t/hm2 FYM + 90 kg/hm2 N; T5, 5 t/hm2 FYM + 60 kg/hm2 N + 1.5 kg/hm2 blue green algae (BGA; T6, 5 t/hm2 FYM + 60 kg/hm2 N + 1.0 t/hm2 Azolla, and T7, N0P0K0 (control, no NPK application to study the effect on seed quality, yield and water use. In SRI, soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2–3 cm was maintained during the reproductive phase of rice, however, in CT, standing water was maintained in crop growing season. Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI. Seed quality was superior in SRI as compared to CT. Integrated nutrient management (INM resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties. Grain yield attributes such as number of effective tillers per hill, panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone. Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer. The grain yield

  18. Shelf life prediction of canned fried-rice using accelerated shelf life testing (ASLT) arrhenius method

    Science.gov (United States)

    Kurniadi, M.; Bintang, R.; Kusumaningrum, A.; Nursiwi, A.; Nurhikmat, A.; Susanto, A.; Angwar, M.; Triwiyono; Frediansyah, A.

    2017-12-01

    Research on shelf-life prediction of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius model has been conducted. The aim of this research to predict shelf life of canned-fried rice products. Lethality value of 121°C for 15 and 20 minutes and Total Plate count methods are used to determine time and temperatures of sterilization process.Various storage temperatures of ASLT Arrhenius method were 35, 45 and 55°C during 35days. Rancidity is one of the derivation quality of canned fried rice. In this research, sample of canned fried rice is tested using rancidity value (TBA). TBA value was used as parameter which be measured once a week periodically. The use of can for fried rice without any chemical preservative is one of the advantage of the product, additionaly the use of physicalproperties such as temperature and pressure during its process can extend the shelf life and reduce the microbial contamination. The same research has never done before for fried rice as ready to eat meal. The result showed that the optimum conditions of sterilization process were 121°C,15 minutes with total plate count number of 9,3 × 101 CFU/ml. Lethality value of canned fried rice at 121°C,15 minutes was 3.63 minutes. The calculated Shelf-life of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius method was 10.3 months.

  19. Predicting carcass cut yield by carcass weight and visual ...

    African Journals Online (AJOL)

    Strydom

    Predicting yields of high priced trimmed beef cuts by means of carcass weight and visual assessments ... E-mail: pstrydom@arc.agric.za ... The lack of consensus in the scientific literature about the effect of conformation or shape of the carcass ...

  20. Neural prediction of cows' milk yield according to environment ...

    African Journals Online (AJOL)

    Medium and maximum air temperatures around the milk cowsheds were measured and these empirical data were used to create a neural prediction model evaluating the cows' milk yield under varying thermal conditions. We found out that artificial neural networks were an effective tool supporting the process of short-term ...

  1. Comparing predicted yield and yield stability of willow and Miscanthus across Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Jaiswal, Deepak; Bentsen, Niclas Scott

    2016-01-01

    was 12.1 Mg DM ha−1 yr−1 for willow and 10.2 Mg DM ha−1 yr−1 for Miscanthus. Coefficent of variation as a measure for yield stability was poorest on the sandy soils of northern and western Jutland and the year-to-year variation in yield was greatest on these soils. Willow was predicted to outyield...... Miscanthus on poor, sandy soils whereas Miscanthus was higher yielding on clay-rich soils. The major driver of yield in both crops was variation in soil moisture, with radiation and precipitation exerting less influence. This is the first time these two major feedstocks for northern Europe have been compared....... The semi-mechanistic crop model BioCro was used to simulate the production of both short rotation coppice (SRC) willow and Miscanthus across Denmark. Predictions were made from high spatial resolution soil data and weather records across this area for 1990-2010. The potential average, rain-fed mean yield...

  2. A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-10-01

    Full Text Available Biochar, a green way to deal with burning and burying biomass, has attracted more attention in recent years. To fill the gap of the effects of different biochar on crop yield in Northern China, the first field experiment was conducted in farmland located in Hebei Province. Biochars derived from two kinds of feedstocks (rice straw and corn stalk were added into an Inceptisols area with different dosages (1 ton/ha, 2 ton/ha or 4 ton/ha in April 2014. The crop yields were collected for corn, peanut, and sweet potato during one crop season from spring to autumn 2014, and the wheat from winter 2014 to summer 2015, respectively. The results showed biochar amendment could enhance yields, and biochar from rice straw showed a more positive effect on the yield of corn, peanut, and winter wheat than corn stalk biochar. The dosage of biochar of 2 ton/ha or 1 ton/ha could enhance the yield by 5%–15% and biochar of 4 ton/ha could increase the yield by about 20%. The properties of N/P/K, CEC, and pH of soils amended with biochar were not changed, while biochar effects could be related to improvement of soil water content.

  3. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    Science.gov (United States)

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  4. Indices to screen for grain yield and grain-zinc mass concentrations in aerobic rice at different soil-Zn levels

    NARCIS (Netherlands)

    Jiang, W.; Struik, P.C.; Zhao, M.; Keulen, van H.; Fan, T.Q.; Stomph, T.J.

    2008-01-01

    Zinc is an important micronutrient for both crop growth and human nutrition. In rice production, yields are often reduced and Zn mass concentrations in the grains are often low when Zn is in short supply to the crop. This may result in malnutrition of people dependent on a rice-based diet. Plant

  5. Genetic Variability Studies on Twelve Genotypes of Rice (Oryza sativa L. for Growth and Yield Performance in South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Vincent N. ONYIA

    2017-03-01

    Full Text Available Twelve genotypes of rice collected from the National Cereals Research Institute (NCRI, Badeggi, Bida, Niger State, Nigeria were evaluated to estimate the magnitude of genetic variability and relationship of some agronomic traits of rice and their contributions to yield. The results obtained showed a significant difference (p ≤ 0.05 among the genotypes in all the traits studied. Genotype ‘WAB 35-1-FX2’ produced a significantly higher grain yield of 3.40 t/ha compared with all the other genotypes in the two years combined. Genotypes ‘WAB 33-25’, ‘WAB 56-1-FX2’, ‘WAB 56-39’, ‘WAB 56-125’, ‘ITA 150’ and ‘FAROX 16 (LC’ were the most stable grain yielding genotypes across the two years of the experiment. High broad sense heritability (h2bs was associated with grain yield (h2bs = 98.63%, number of spikelets/panicle (98.78%, plant height (98.34% for the first year planting, whereas in the second year planting, days to 50% flowering (96.72%, days to maturity (94.14% and grain yield (83.33% were among the traits that showed high broad sense heritability. The two years combined correlation analysis showed that grain yield correlated significantly and positively with number of spikelets/panicle (r = 0.2358*, number of panicles/m2 (r = 0.1895*, number of fertile spikelets/panicle (r = 0.1672* and 1,000 grain weight (r = 0.1247*, indicating that these traits can be phenotypic basis for improving grain yield of rice. Conversely, grain yield exhibited negative correlation with days to 50% flowering (-0.3009 and days to maturity (-0.2650, though not significant. This suggests that rice grain yield can be improved by selecting early flowering and maturing genotypes especially under heat and drought prone conditions.

  6. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  7. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    Science.gov (United States)

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  8. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    Science.gov (United States)

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  9. Increasing Growth and Yield of Upland Rice by Application of Vesicular Arbuscular Mycorrhizae and Potassium Fertilizer

    Directory of Open Access Journals (Sweden)

    Dedi Natawijaya

    2012-01-01

    Full Text Available Field experiment with a split plot design has been carried out in order to assess the growth characteristics andyields, and effectiveness of MVA upland rice which were given potassium fertilizer in two growing seasons. MVAinoculation consisted of three treatments (without MVA, Glomus sp. and Gigaspora sp. while potassium fertilizerconsisted of five levels (0, 12.5, 25, 37.5, and 50 kg ha-1 K. The results showed that plant growth variable which wasinoculated by MVA at any levels of K fertilizer was higher in the dry season than that in the wet season, whereas theopposite occurred for net assimilation rate. Potassium content of leaf tissue, shoot/root ratio, and grain weight perhill was determined and mutually dependent on genus MVA, dosages of K fertilizer, and growing season. Harvestindex and grain dry weight per hill were influenced by the growing season and the genus MVA but the effect did notdepend on each other. At all dosages of K fertilizer and any MVA genera, Gigaspora sp. inoculation was better thanthat of Glomus sp. Dry weight of grains per hill was affected by the contribution of grain content per hill, weight of1000 grains and number of productive seedlings per hill. The optimum dosage of K fertilizer in the dry season was32.4 kg ha-1 K with grain yield 3.12 Mg ha-1 for inoculation of Gigaspora sp., whereas the optimum dosage in the wetseason was 34.2 kg ha-1 K for the treatment Glomus sp. inoculation with Gigaspora sp. in the wet season did notreach dosages of optimum K fertilizer.

  10. The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field

    Directory of Open Access Journals (Sweden)

    Linlin Si

    2018-02-01

    Full Text Available Crop productivity in cold waterlogged paddy fields can be constrained by chronic flooding stress and low temperature. Farmers typically use chemical fertilizer to improve crop production, but this conventional fertilization is not very effective in a cold waterlogged paddy field. Biochar amendment has been proposed as a promising management approach to eliminating these obstacles. However, little is known about the performance of biochar when combined with N fertilizer and P fertilizer in cold waterlogged soils. The aim of this study was, therefore, to assess the main effects and interactive effects of rice straw biochar, N and P fertilizer on rice growth and soil properties in a cold waterlogged paddy field. The field treatments consisted of a factorial combination of two biochar levels (0 and 2.25 t ha−1, two N fertilizer levels (120.0 and 180.0 kg ha−1 and two P fertilizer levels (37.5 and 67.5 kg ha−1 which were arranged in a randomized block design, with three replicates. Results confirmed that biochar application caused a significant increase in the soil pH due to its liming effect, while this application resulted in a significant decrease in soil exchangeable cations, such as exchangeable Ca, Mg, Al and base cations. The interactive effect of N fertilizer, P fertilizer and biochar was significant for soil total N. Moreover, a negative effect of biochar on the internal K use efficiency suggested that K uptake into rice may benefit from biochar application. According to the partial Eta squared values, the combined application of N fertilizer and biochar was as effective as pure P fertilization at increasing straw P uptake. The addition of biochar to farmers’ fertilization practice treatment (180.0 kg N ha−1, 67.5 kg P2O5 ha−1 and 67.5 kg K2O ha−1 significantly increased rice yield, mainly owing to improvements in grains per panicle. However, notable effects of biochar on rice yield and biomass production were not detected

  11. Using MODIS Data to Predict Regional Corn Yields

    Directory of Open Access Journals (Sweden)

    Ho-Young Ban

    2016-12-01

    Full Text Available A simple approach was developed to predict corn yields using the MoDerate Resolution Imaging Spectroradiometer (MODIS data product from two geographically separate major corn crop production regions: Illinois, USA and Heilongjiang, China. The MOD09A1 data, which are eight-day interval surface reflectance data, were obtained from day of the year (DOY 89 to 337 to calculate the leaf area index (LAI. The sum of the LAI from early in the season to a given date in the season (end of DOY (EOD was well fitted to a logistic function and represented seasonal changes in leaf area duration (LAD. A simple phenology model was derived to estimate the dates of emergence and maturity using the LAD-logistic function parameters b1 and b2, which represented the rate of increase in LAI and the date of maximum LAI, respectively. The phenology model predicted emergence and maturity dates fairly well, with root mean square error (RMSE values of 6.3 and 4.9 days for the validation dataset, respectively. Two simple linear regression models (YP and YF were established using LAD as the variable to predict corn yield. The yield model YP used LAD from predicted emergence to maturity, and the yield model YF used LAD for a predetermined period from DOY 89 to a particular EOD. When state/province corn yields for the validation dataset were predicted at DOY 321, near completion of the corn harvest, the YP model, including the predicted phenology, performed much better than the YF model, with RMSE values of 0.68 t/ha and 0.66 t/ha for Illinois and Heilongjiang, respectively. The YP model showed similar or better performance, even for the much earlier pre-harvest yield prediction at DOY 257. In addition, the model performance showed no difference between the two study regions with very different climates and cultivation methods, including cultivar and irrigation management. These results suggested that the approach described in this paper has potential for application to

  12. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes

    DEFF Research Database (Denmark)

    Xu, Xun; Liu, Xin; Ge, Song

    2012-01-01

    Rice is a staple crop that has undergone substantial phenotypic and physiological changes during domestication. Here we resequenced the genomes of 40 cultivated accessions selected from the major groups of rice and 10 accessions of their wild progenitors (Oryza rufipogon and Oryza nivara) to >15 x...... diversity in cultivated but not wild rice, which represent candidate regions selected during domestication. Some of these variants are associated with important biological features, whereas others have yet to be functionally characterized. The molecular markers we have identified should be valuable...... raw data coverage. We investigated genome-wide variation patterns in rice and obtained 6.5 million high-quality single nucleotide polymorphisms (SNPs) after excluding sites with missing data in any accession. Using these population SNP data, we identified thousands of genes with significantly lower...

  13. The yield and quality of black rice varieties in different altitude

    Science.gov (United States)

    Purwanto, E.; Hidayati, W.; Nandariyah

    2018-03-01

    This study aims to determine the optimal environmental conditions and corresponding black rice varieties in order to produce high production and optimum quality rice. The study using nested design, first was location (2 levels: the highlands and lowland), second was varieties (3 levels: Cempo Ireng, IPB, and Gagak) the study was conducted from November 2015 until May 2016 in Karanglo and Gutanon village, Karanganyar. Anthocyanin analysis conducted in laboratory of Nutrition and Food, Faculty of Agriculture, Sebelas Maret University. Data were analyzed using analysis of variance and significant difference continued with DMRT (Duncan Multiple Range Test) level of 5%. Results showed that cultivation in highlands and use of diverse varieties showed different quantity of rice that can be seen on panicle length, and weight of grain crops. Improved quality of results showed same things, anthocyanin content and iron increased on black rice which cultivated in highlands.

  14. Evaluation of Image Processing Technique for Measuring of Nitrogen and Yield in Paddy Rice and Comparing it with Standard Methods

    Directory of Open Access Journals (Sweden)

    M.R Larijani

    2011-09-01

    Full Text Available In order to use new and low cost methods in precision agriculture, nitrogen should be supplied for plants on time and precisely. For determining the required nitrogen of paddy rice in the clustering stage, a series of experiments were conducted using three different methods of: image processing, kjeldahl and chlorophyll meter set (SPAD-502, in a randomized complete block design with three replications during 2010 at Rice Research Center of Tonekabon, Iran. Four experimental treatments were different level of fertilizer (Urea with 46% nitrogen. In the clustering stage, some images from rice plants were taken vertically by a digital camera and were analyzed using image processing technique. Simultaneously the chlorophyll index of plants was measured by SPAD-502 chlorophyll meter set and the percentage amount of nitrogen was measured using of the so called kjeldahl laboratory method. The results showed that the three methods of determining nitrogen of rice plant were highly correlated. Moreover, the correlation among the three methods and crop yield were almost the same. In general, the method of image processing could have a high potential for nitrogen management in the field, while this method was low-cost, faster and also nondestructive in comparison to the other methods.

  15. Effects of Mulching Mode on Canopy Physiological, Ecological Characteristics and Yield of Upland Rice

    OpenAIRE

    Yu-zhu ZHANG; Yang LIU; Xiang ZENG; Kai-lin CHEN; Ze-hui HUANG; Hong-ke XIE

    2011-01-01

    The effects of mulching mode on population physiology and ecology of rice were studied using a combination P88S/1128 as the material under three mulching cultivation modes including plastic film mulching, straw mulching and liquid film mulching, as well as bare cultivation (control). The results indicated that mulching mode had significant effects on micro-meteorological factors and individual growth of rice, as shown by an increase of relative humidity, a better internal micro-meteorological...

  16. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  17. Long-term effects of lowland properties system on soil physicochemical properties and rice yield in Ashanti Region of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Obalum, S. E.; Oppong, J.; Nwite, J. C.; Watanabe, Y.; Buri, M. M.; Igwe, C. A.; Wakatsuki, T.

    2012-11-01

    Lowland sawah is viewed as a sustainable alternative to traditional rice culture in West Africa. Sawah (a bund-demarcated, puddled, leveled, and water-regulated rice field) has received growing research attention lately, but no data exist yet on the systems long-term agronomic impact. In a clayey inland-valley soil in southern Ghana, 10-year-old sawah plots (OSP), fresh sawah plots (FSP), and non-sawah plots (NSP) were maintained under both ponded and nonponded conditions in 2007. The OSP enhanced soil status of exchangeable nutrients compared to NSP. There were relative improvements in soil bulk density, total porosity, and field moisture content (OSP = FSP > NSP), with clear benefits of ponding over non-ponding in OSP. The NSP was so unsustainable that it showed less favourable values of these variables than an adjacent fallowed plot. These soil variables deteriorated with time, with significant differences in FSP. Soil moisture retention data for tension range of 0-300 kPa depicted the importance of puddling and ponding. During 2001-2009, OSP consistently out-yielded NSP by five times on average. During 2007-2009 when all three plots co-existed, grain yields averaged 5.80, 4.80 and 1.10 Mg ha-1 in OSP, FSP and NSP, respectively. In 2007 yields, OSP minus FSP was higher than NSP; in 2008/2009, the opposite prevailed. These results highlight the agronomic benefits of continuous sawah-based rice production. Although the positive effects of puddling on the soil hydrophysical properties were largely responsible for the wide margin in yield between sawah and traditional systems, other yield-enhancing factors, particularly bunds for water control, were also lacking in the latter. (Author) 37 refs.

  18. Kill ratio calculation for in-line yield prediction

    Science.gov (United States)

    Lorenzo, Alfonso; Oter, David; Cruceta, Sergio; Valtuena, Juan F.; Gonzalez, Gerardo; Mata, Carlos

    1999-04-01

    The search for better yields in IC manufacturing calls for a smarter use of the vast amount of data that can be generated by a world class production line.In this scenario, in-line inspection processes produce thousands of wafer maps, number of defects, defect type and pictures every day. A step forward is to correlate these with the other big data- generator area: test. In this paper, we present how these data can be put together and correlated to obtain a very useful yield predicting tool. This correlation will first allow us to calculate the kill ratio, i.e. the probability for a defect of a certain size in a certain layer to kill the die. Then we will use that number to estimate the cosmetic yield that a wafer will have.

  19. Predicted Exoplanet Yields for the HabEx Mission Concept

    Science.gov (United States)

    Stark, Christopher; Mennesson, Bertrand; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.

  20. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    Science.gov (United States)

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  1. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    Science.gov (United States)

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-06

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  2. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  3. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    Science.gov (United States)

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  4. Radiation utilization efficiency, nitrogen uptake and modeling crop growth and yield of rainfed rice under different nitrogen rates

    International Nuclear Information System (INIS)

    Gouranga, Kar; Ashwani Kumar; Mohapatra, Sucharita

    2014-01-01

    Optimum utilization of photosynthetically active radiation (PAR) along with proper nitrogen (N) management for sustainable rice production is still a promising management recommendation for sustainable rainfed rice cultivation in eastern India. The objective of this investigation was to study radiation utilization efficiency (RUE), N uptake and modeling growth and productivity of wet/rainy season rice (cv. Lalat and Gayatri) under 0, 50, 90, 120 and 150 kg ha -1 N application. Results showed that N rates significantly affected plant biomass, leaf area index (LAI), biological yield (straw and grain yield) and N uptake for both the varieties. The intercepted photosynthetically active radiation (IPAR) and spectral reflectance based vegetation indices (IR/R, NDVI) were also different between two varieties and among N rates. Higher rate of N increased the RUE significantly; averaged over years and varieties, mean values of RUE were 1.35, 1.70, 2.01, 2.15 and 2.17 g MJ -1 under 0, 50, 90, 120 and 150 kg N ha -1 , respectively. Though crop growth, yield, N uptake and RUE were higher at 150 kg N ha -1 but the results were at par with 120 kg N ha -1 . Agronomic N use efficiency (ANUE) was also low at 150 kg N ha -1 . The DSSAT v 4.5 model was applied to simulate crop growth, yield and phenology of the crop under different N rates. Model performance was found to be poor at low N rates (0, 50 kg N ha -1 ), but the model performed fairly well at higher N rates (90 kg ha -1 and above). (author)

  5. Modelling and Forecasting of Rice Yield in support of Crop Insurance

    Science.gov (United States)

    Weerts, A.; van Verseveld, W.; Trambauer, P.; de Vries, S.; Conijn, S.; van Valkengoed, E.; Hoekman, D.; Hengsdijk, H.; Schrevel, A.

    2016-12-01

    The Government of Indonesia has embarked on a policy to bring crop insurance to all of Indonesia's farmers. To support the Indonesian government, the G4INDO project (www.g4indo.org) is developing/constructing an integrated platform for judging and handling insurance claims. The platform consists of bringing together remote sensed data (both visible and radar) and hydrologic and crop modelling and forecasting to improve predictions in one forecasting platform (i.e. Delft-FEWS, Werner et al., 2013). The hydrological model and crop model (LINTUL) are coupled on time stepping basis in the OpenStreams framework (see https://github.com/openstreams/wflow) and deployed in a Delft-FEWS forecasting platform to support seasonal forecasting of water availability and crop yield. First we will show the general idea about the project, the integrated platform (including Sentinel 1 & 2 data) followed by first (reforecast) results of the coupled models for predicting water availability and crop yield in the Brantas catchment in Java, Indonesia. Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O. and Heynert K, 2013. The Delft-FEWS flow forecasting system, Environmental Modelling & Software; 40:65-77. DOI: 10.1016/j.envsoft.2012.07.010 .

  6. Lowland Rice Yield And Fertilizer Nitrogen Contribution Affected By Zeolite And Sesbania Green Manure Application

    International Nuclear Information System (INIS)

    Haryanto; Idawati and Las, Tamsil

    2000-01-01

    A pot experiment has been conducted in P3TIR greenhouse, pasar jumat, south jakarta to study nitrogen uptake and contribution of fertilizer for lowland rice affected by zeolite and sesbania green manure application. To study the N contribution of fertilizer, 15N isotope was used. The zeorea fertilizer was made from the mixture of zeolite and 15N labelled urea having 4.0% atom. Ten treatments of N fertilization were tried : zeorea I was applied once at transplanting (ZI IX), zeorea I was applied twice I.e at transplanting and at 30 days after transplanting - DAT (ZI 2X), zeorea I was applied at transplanting and at 30 DAT (ZI + ZII), zeorea II was applied once at transplanting (ZII IX), zeorea II was applied twice I.e at transplanting and at 30 DAT (ZII 2X), zeolit was applied twice I.e at transplanting and at 30 DAT (ZO 2X), half rate of urea was applied at transplanting and another half rate at 30 DAT ( U 1/2+1/2), sesbania green manure was applied at 30 DAT and zeorea II applied at transplanting (sesbania + ZII), one tate of urea was applied at transplanting (U IX), and half rate of urea was applied at transplanting and sesbania was applied at 30 DAT (sesbania + U 1/2). Result obtained from this experiment showed that the application of zeorea I at tran planting followed by zeorea II at 30 DAT resulted the highest yield of dry grain even though it contained nitrogen only 60% of the nitrogen content of the recommended rate. The highest nitrogen contribution of zeorea I.e 75.22 mg/pot was obtained by applying zeorea II at transplanting and at 30 DAT. Urea half dose (U 1/2) combined with sesbania green manure could be effectuated if given in zeorea from even more effective than urea full dose given at transplanting time (U IX). Impact of sesbania green manure seemed to be more positive if combined with zeolite

  7. Information system of rice planting calendar based on ten-day (Dasarian) rainfall prediction

    International Nuclear Information System (INIS)

    Susandi, Armi; Tamamadin, Mamad; Djamal, Erizal; Las, Irsal

    2015-01-01

    This paper describes information system of rice planting calendar to help farmers in determining the time for rice planting. The information includes rainfall prediction in ten days (dasarian) scale overlaid to map of rice field to produce map of rice planting in village level. The rainfall prediction was produced by stochastic modeling using Fast Fourier Transform (FFT) and Non-Linier Least Squares methods to fit the curve of function to the rainfall data. In this research, the Fourier series has been modified become non-linear function to follow the recent characteristics of rainfall that is non stationary. The results have been also validated in 4 steps, including R-Square, RMSE, R-Skill, and comparison with field data. The development of information system (cyber extension) provides information such as rainfall prediction, prediction of the planting time, and interactive space for farmers to respond to the information submitted. Interfaces for interactive response will be critical to the improvement of prediction accuracy of information, both rainfall and planting time. The method used to get this information system includes mapping on rice planting prediction, converting the format file, developing database system, developing website, and posting website. Because of this map was overlaid with the Google map, the map files must be converted to the .kml file format

  8. Information system of rice planting calendar based on ten-day (Dasarian) rainfall prediction

    Energy Technology Data Exchange (ETDEWEB)

    Susandi, Armi, E-mail: armi@meteo.itb.ac.id [Department of Meteorology, Institut Teknologi Bandung, Labtek XI Building floor 1, Jalan Ganesa 10 Bandung 40132 (Indonesia); Tamamadin, Mamad, E-mail: mamadtama@meteo.itb.ac.id [Laboratory of Applied Meteorology, Institut Teknologi Bandung Ged. Labtek XI lt. 1, Jalan Ganesa 10 Bandung 40132 (Indonesia); Djamal, Erizal, E-mail: erizal-jamal@yahoo.com [Center for Agricultural Technology Transfer Management, Ministry of Agriculture Jl. Salak No. 22 Bogor (Indonesia); Las, Irsal, E-mail: irsallas@yahoo.com [Indonesian Agroclimate and Hydrology Research Institute, Ministry of Agriculture Jl. Tentara Pelajar 1a Bogor 16111 (Indonesia)

    2015-09-30

    This paper describes information system of rice planting calendar to help farmers in determining the time for rice planting. The information includes rainfall prediction in ten days (dasarian) scale overlaid to map of rice field to produce map of rice planting in village level. The rainfall prediction was produced by stochastic modeling using Fast Fourier Transform (FFT) and Non-Linier Least Squares methods to fit the curve of function to the rainfall data. In this research, the Fourier series has been modified become non-linear function to follow the recent characteristics of rainfall that is non stationary. The results have been also validated in 4 steps, including R-Square, RMSE, R-Skill, and comparison with field data. The development of information system (cyber extension) provides information such as rainfall prediction, prediction of the planting time, and interactive space for farmers to respond to the information submitted. Interfaces for interactive response will be critical to the improvement of prediction accuracy of information, both rainfall and planting time. The method used to get this information system includes mapping on rice planting prediction, converting the format file, developing database system, developing website, and posting website. Because of this map was overlaid with the Google map, the map files must be converted to the .kml file format.

  9. Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh

    Science.gov (United States)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix

    2016-09-01

    Potato is one of the staple foods and cash crops in Bangladesh. It is widely cultivated in all of the districts and ranks second after rice in production. Bangladesh is the fourth largest potato producer in Asia and is among the world's top 15 potato producing countries. The weather condition for potato cultivation is favorable during the sowing, growing and harvesting period. It is a winter crop and is cultivated during the period of November to March. Bangladesh is mainly an agricultural based country with respect to agriculture's contribution to GDP, employment and consumption. Potato is a prominent crop in consideration of production, its internal demand and economic value. Bangladesh has a big economic activities related to potato cultivation and marketing, especially the economic relations among farmers, traders, stockers and cold storage owners. Potato yield prediction before harvest is an important issue for the Government and the stakeholders in managing and controlling the potato market. Advanced very high resolution radiometer (AVHRR) based satellite data product vegetation health indices VCI (vegetation condition index) and TCI (temperature condition index) are used as predictors for early prediction. Artificial neural network (ANN) is used to develop a prediction model. The simulated result from this model is encouraging and the error of prediction is less than 10%.

  10. Predicted strains in austenitic stainless steels at stresses above yield

    International Nuclear Information System (INIS)

    Hammond, J.P.; Sikka, V.K.

    1977-01-01

    Tensile results on austenitic stainless steels were analyzed to develop means for predicting strains at stresses above yield for reactor regulatory applications. Eight heats each of types 316 and 304 were tested at 24, 93, 204, and 316 0 C as mill-annealed and at 24 0 C after reannealing. The effects of heat-to-heat variations on total strain (to 5%) at discrete stress levels were portrayed by a rational polynomial incorporating three constants that relate to the basic features of the true-stress-true-strain diagram. Because these constants usually are interrelated, a single parameter, yield strength (YS), proved adequate to predict results. For predictions analytical expressions of yield strength, an average value (YSa), and a lower bound value [YSa - 1.65SEE (standard error of estimate)] were used. Using the rational polynomial with these parameters we determined (1) limits of total maximum strain and (2) ratios of strain of material of lower bound YS to that of average YS. These are recorded at regular increments of stress [34 MPa (5 ksi)] and at ASME Code-related stresses (S/sub y), S/sub m/, 1.2S/sub m/ and 1.5S/sub m/). At intermediate stresses, strain penalties for using material of lower bound strength were large, generally larger for type 316 than type 304. For mill-annealed type 316 at 24, 93, 204, and 316 0 C, the maximum ratios of strain were 8.8, 13.0, 14.1, and 14.9, respectively, whereas for type 304 they were 3.5, 3.4, 5.6, and 4.6. At 1.5S/sub m/ and 316 0 C, a maximum strain of 2.08% was predicted for type 316 and 1.66% for type 304, as contrasted to values of 0.14 and 0.39% for average strain

  11. Climate Based Predictability of Oil Palm Tree Yield in Malaysia.

    Science.gov (United States)

    Oettli, Pascal; Behera, Swadhin K; Yamagata, Toshio

    2018-02-02

    The influence of local conditions and remote climate modes on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based on these findings, a linear model is constructed and its ability to reproduce the interannual signal is assessed. This model has shown some skills in predicting the total FFB yield.

  12. Evaluating Non-Aromatic Rice Varieties for Growth and Yield under Different Rates of Soil Applied Boron

    Directory of Open Access Journals (Sweden)

    Javaid Ahmed Shah

    2016-05-01

    Full Text Available Balanced boron (B fertilization has prime importance to obtain maximum paddy yield. The range between B deficiency and toxicity is smaller than most plant nutrients, though B requirement among different crops varies widely. The adequate dose of B for one genotype can either be insufficient or toxic to other. Hence, without knowing the actual requirements of crop varieties, B application can be risky due to the toxicity hazards. A field experiment was undertaken at experimental farm of Nuclear Institute of Agriculture (NIA Tandojam during 2013, to evaluate the B requirement of two non-aromatic rice varieties. The experiment was arranged in split plot design with three repeats. Two rice varieties Sarshar and Shandar were grown in main plots with four rates of B: 0.5, 1.0, 1.5 and 2.0 kg ha-1 and control (0 kg ha-1 in sub plots. Both the varieties responded differently to B rates. Sarshar produced the highest paddy yield (5691 kg ha-1 at a rate of 1.5 kg B ha-1 and was 18% greater than control, Shandar produced the highest yield (6075 kg ha-1 at a rate of 1.0 kg B ha-1and was 5% greater than control. B accumulation in paddy and straw of both varieties increased with the increasing B rates. Both varieties were also significantly (p<0.05 varied in B accumulations. Comparatively, rice variety Sarshar accumulated 9% and 22% more B in straw and paddy than the Shandar. Thus, the B requirement of Sarshar was relatively higher than the Shandar. Shandar can be grown without the additional B application, whereas, Sarshar requires additional B for its maximum harvest in B deficient soils.

  13. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage.

    Science.gov (United States)

    Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann; Sander, Bjoern Ole; de Neergaard, Andreas

    2018-01-15

    Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation in rice production. Whereas several studies have focused on mid-season drainage (MD) to mitigate GHG emissions, early-season drainage (ED) varying in timing and duration has not been extensively studied. However, such ED periods could potentially be very effective since initial available C levels (and thereby the potential for methanogenesis) can be very high in paddy systems with rice straw incorporation. This study tested the effectiveness of seven drainage regimes varying in their timing and duration (combinations of ED and MD) to mitigate CH 4 and N 2 O emissions in a 101-day growth chamber experiment. Emissions were considerably reduced by early-season drainage compared to both conventional continuous flooding (CF) and the MD drainage regime. The results suggest that ED+MD drainage may have the potential to reduce CH 4 emissions and yield-scaled GWP by 85-90% compared to CF and by 75-77% compared to MD only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH 4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (pemissions were small and not significantly affected by ED. It is concluded that ED+MD drainage might be an effective low-tech option for small-scale farmers to reduce GHG emissions and save water while maintaining yield. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage

    Directory of Open Access Journals (Sweden)

    Thaura Ghneim-Herrera

    2017-06-01

    Full Text Available We evaluated the yields of Oryza sativa L. ‘Nipponbare’ rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT and wild-type (WT controls, providing 50–90% increases in grain yield (GY. Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

  15. Enhancing water and fertilizer saving without compromising rice yield through integrated crop management

    NARCIS (Netherlands)

    Wardana, I.P.; Gani, A.; Abdulrachmann, S.; Bindraban, P.S.; Keulen, van H.

    2010-01-01

    Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use

  16. YIELD PERFORMANCE AND ADAPTATION OF PROMISING AMPHIBIOUS RED RICE LINES ON SIX GROWING ENVIRONMENTS IN LOMBOK, INDONESIA

    Directory of Open Access Journals (Sweden)

    I.G.P. Muliarta Aryana

    2016-02-01

    Full Text Available The objectives of this study were to examine yield performance of promising amphibious red rice lines, and to evaluate their adaptability to six growing environments in Lombok, Indonesia. Ten promising amphibious red rice lines were tested together with their three parents and one national cultivar (Aek Sibundong, during the rainy extended to dry season 2014 (JanuaryJune 2014. The ten promising lines were obtained from two population sources, while the three parents were AKBC52, AKBC86, and a local cultivar, i.e. Kala Isi Tolo (KIT. The testing environments were lowland in Mambalan village (West Lombok, medium highland in Mantang village (Central Lombok, and highland in East Sembalun village (East Lombok, and each location consisted of two systems, i.e. flooded and dry (upland systems. The experiment in each environment was designed according to Randomized Complete Block Design, with three replications and 14 genotypes as the treatments. Adaptation analysis was based on ANOVA using AMMI and Biplot. The results indicated that among the 14 genotypes, G10(F2BC4A52-42 showed the highest yield, with an average of 7.8 t ha-1 dry seeds. There was a significant Genotype x Environment interaction on the dry seed yield. Biplot analysis indicated that G2(F2BC4A52-44 and G8(F2BC4A52-37 were stable genotypes across locations.

  17. Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans

    Directory of Open Access Journals (Sweden)

    Nunung Sondari

    2012-05-01

    Full Text Available Greenhouse experiment was conducted at Agricultural Faculty of Winaya Mukti University Tanjungsari SumedangRegency, from May to October 2009. The objective of this experiment was to study the effect of bokashi bottom ashon the growth, yield, and Pb content of upland rice. The experiment used a Randomized completely Block Design(RBD which consisted of five treatments and five replications. The treatments were level of bokashi bottom ash i.e.0, 5, 10, 15, and 20 Mg ha-1. The results showed that the application of bokashi bottom ash increased the growth andyield of upland rice of Situbagendit variety except plant height at age of 21 days after seedling (DAS. Application15 Mg ha -1 of bokashi bottom ash gave the best effect to the plant height, number of leaves, number of tillers andshoot/root ratio, while applications of 10, 15 and 20 Mg ha -1 increased number of productive tillers, amount of filledgrains, and weight of grains. Bokashi bottom ash did not affect the heavy metal content of upland rice grain ofSitubagendit variety.

  18. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage

    DEFF Research Database (Denmark)

    Islam, Syed Faiz-Ul; van Groenigen, Jan Willem; Jensen, Lars Stoumann

    2018-01-01

    Global rice production systems face two opposing challenges: the need to increase production to accommodate the world's growing population while simultaneously reducing greenhouse gas (GHG) emissions. Adaptations to drainage regimes are one of the most promising options for methane mitigation...... only. A combination of (short or long) ED drainage and one MD drainage episode was found to be the most effective in mitigating CH4 emissions without negatively affecting yield. In particular, compared with CF, the long early-season drainage treatments LE+SM and LE+LM significantly (p

  19. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Oscar Rojas

    2013-04-01

    Full Text Available Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.

  20. PREDICTION OF DROUGHT IMPACT ON RICE PADDIES IN WEST JAVA USING ANALOGUE DOWNSCALING METHOD

    Directory of Open Access Journals (Sweden)

    Elza Surmaini

    2015-09-01

    Full Text Available Indonesia consistently experiences dry climatic conditions and droughts during El Niño, with significant consequences for rice production. To mitigate the impacts of such droughts, robust, simple and timely rainfall forecast is critically important for predicting drought prior to planting time over rice growing areas in Indonesia. The main objective of this study was to predict drought in rice growing areas using ensemble seasonal prediction. The skill of National Oceanic and Atmospheric Administration’s (NOAA’s seasonal prediction model Climate Forecast System version 2 (CFSv2 for predicting rice drought in West Java was investigated in a series of hindcast experiments in 1989-2010. The Constructed Analogue (CA method was employed to produce downscaled local rainfall prediction with stream function (y and velocity potential (c at 850 hPa as predictors and observed rainfall as predictant. We used forty two rain gauges in northern part of West Java in Indramayu, Cirebon, Sumedang and Majalengka Districts. To be able to quantify the uncertainties, a multi-window scheme for predictors was applied to obtain ensemble rainfall prediction. Drought events in dry season planting were predicted by rainfall thresholds. The skill of downscaled rainfall prediction was assessed using Relative Operating Characteristics (ROC method. Results of the study showed that the skills of the probabilistic seasonal prediction for early detection of rice area drought were found to range from 62% to 82% with an improved lead time of 2-4 months. The lead time of 2-4 months provided sufficient time for practical policy makers, extension workers and farmers to cope with drought by preparing suitable farming practices and equipments.

  1. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System.

    Science.gov (United States)

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing

    2017-11-01

    A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.

  2. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice.

    Science.gov (United States)

    Govindarajan, Munusamy; Balandreau, Jacques; Kwon, Soon-Wo; Weon, Hang-Yeon; Lakshminarasimhan, Cunthipuram

    2008-01-01

    During a survey of endophytic diazotrophic bacteria associated with different rice varieties in Tamilnadu, some "endophytes" were obtained. Thirteen bacterial isolates from surface-sterilized roots and shoots were obtained in pure culture, which produced indole acetic acid (IAA) and reduced acetylene to ethylene. Polymerase chain reaction (PCR) amplification confirmed the presence of nif-H gene in all the isolates. Morphological, biochemical, and molecular characteristics indicated that all of them belonged to the genus Burkholderia One of them, MGK3, was consistently more active in reducing acetylene, and 16S rDNA sequences of isolate MGK3 confirmed its identification as Burkholderia vietnamiensis. Colonization of rice root was confirmed by strain MGK3 marked with gusA gene. The inoculated roots showed a blue color, which was most intense at the points of lateral root emergence and at the root tip. Transverse sections of roots, 15 days after inoculation, revealed beta-glucuronidase (GUS) activity within many of the cortical intercellular spaces next to the stele and within the aerenchyma. Nitrogen fixation was quantified by using (15)N isotope dilution method with two different cultivars grown in pot and field experiments. Higher nitrogen fixation was observed in variety Ponni than in ADT-43, where nearly 42% (field) and 40% (pot) of the nitrogen was derived from the atmosphere (% Ndfa). Isolate MGK3 was used to inoculate rice seedlings in a comparison with four other diazotrophs, viz., Gluconacetobacter diazotrophicus LMG7603, Herbaspirillum seropedicae LMG6513, Azospirillum lipoferum 4B LMG4348, and B. vietnamiensis LMG10929. They were used to conduct two pot and four field inoculation experiments. MGK3 alone, and combined with other diazotrophs, performed best under both pot and field conditions: combined inoculation produced yield increases between 9.5 and 23.6%, while MGK3 alone increased yield by 5.6 to 12.16% over the uninoculated control treatment.

  3. Growth, Metabolism and Yield of Rice Cultivated in Soils Amended with Fly Ash and Cyanobacteria and Metal Loads in Plant Parts

    OpenAIRE

    Rabindra N. Padhy; Nabakishore Nayak; Rajesh R. Dash-Mohini; Shakti Rath; Rajani K. Sahu

    2016-01-01

    Soil amendment with fly ash (FA) and combined supplementation with N2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grow...

  4. Prediction of tritium behavior in rice plant after a short-term exposure of HTO

    International Nuclear Information System (INIS)

    Yook, Dae Sik; Lee, Kun Jai; Choi, Heui Joo; Lee, Chang Min

    2001-01-01

    In many Asian countries including Korea, rice is a very important food crop. Its grain is consumed by humans and its straw is used to feed animals. Because four CANDU reactors are in operation in Korea, relatively large amounts of tritium are released into the environment and the dose by these tritium in the rice plant must be estimated. Since 1997, KAERI (Korea Atomic Energy Research Institute) has carried out experimental studies to obtain domestic data on various parameters related to the direct tritium contamination of plant. But the analysis of the tritium behavior in the rice plant has been insufficient. In this study, the behavior of the tritium in the rice plant is predicted and compared with the measurement performed at KAERI. Using the conceptual model of the soil-plant-atmosphere tritiated water transport system which was suggested by Charles E. Murphy, transient tritium concentrations in soil and leaves were predicted. If the effect of tritium concentration in the soil is taken into account, the tritium concentration in leaves can be described by a double exponential model, however if the tritium concentration in the soil is disregarded, the tritium concentration in leaves can be described by a single exponential term like other relevant models e.g. UFOTRI or STAR-H3 model. The results can be used to predict the tritium concentration in the rice plant near the plant site and to estimate the ingestion dose after the release of tritium to the environment

  5. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    Science.gov (United States)

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  6. Growth and Yield of Rice Plant by the Applications of River Sand, Coconut and Banana Coir in Ustic Endoaquert

    Directory of Open Access Journals (Sweden)

    Nurdin

    2013-03-01

    Full Text Available The research aimed to study effect the application of river sand (RS, coconut coir (CC, and banana coir (BC on growth and yield of rice (Oryza sativa L. in Ustic Endoaquert. The research was carried out in a green house using 3 × 3 × 3 factorial design. The RS factor consists of three treatment levels which were 0% RS, 25% RS, and 50% RS. Meanwhile, the CC and BC consist of three treatment levels, where each level were 0 Mg ha-1, 10 Mg ha-1 and 20 Mg ha-1. The results showed that RS, CC and BC applications did not have significant effect on plant height. On the other hand, all ameliorant applications had significantly increase leaf length and the highest percentage increasing was in BC (13.49%. The leaf numbers and tiller numbers had relatively similar pattern, except BC that had significantly increased leaf numbers by 77.69% and amount of tiller numbers by 49.45%. Furthermore, for yield components, RS, CC and BC applications had significant increased panicle numbers by 37.76%. It was only RS and BC that increased panicle lenght and the best increasing of 26.82% on RS. Meanwhile, the BC application only increased the rice grain numbers.

  7. Effect of gamma-irradiated sludge on the growth and yield of rice (Oryza sativa L. var. GR-3)

    International Nuclear Information System (INIS)

    Pandya, G.A.; Prakash, L.; Devasia, Preston; Modi, V.V.

    1988-01-01

    The effects of gamma-irradiated sludge on the growth and yield of rice (Oryza sativa L. var. GR-3) in pot cultures have been studied. Compared to plants grown only in soil, shoot length, root length, fresh weight, dry weight, total proteins, total soluble sugars, starch and chlorophyll content of plants grown in soil supplemented with unirradiated or gamma-irradiated sludge were found to be significantly increased. Irradiation of sludge significantly stimulated the linear growth of shoot and root systems as well as fresh and dry weights of plants, compared to those grown in soil containing unirradiated sludge. There was also an improvement in the grain yield (weight of seed) when plants were grown in soil supplemented with irradiated sludge. The results obtained suggest that the gamma-irradiated sewage sludge can be beneficially recycled for agricultural uses. (author)

  8. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress

    International Nuclear Information System (INIS)

    Jalloh, Mohamed Alpha; Chen Jinghong; Zhen Fanrong; Zhang Guoping

    2009-01-01

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg -1 soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH 4 + -N treatments having significantly higher grain yields, and Cd addition reducing yield. NO 3 - -N and NH 4 + -N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH 4 + -N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO 3 - -N treatment, with urea-N and NH 4 + -N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form

  9. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress.

    Science.gov (United States)

    Jalloh, Mohamed Alpha; Chen, Jinghong; Zhen, Fanrong; Zhang, Guoping

    2009-03-15

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg(-1)soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH(4)(+)-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO(3)(-)-N and NH(4)(+)-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH(4)(+)-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO(3)(-)-N treatment, with urea-N and NH(4)(+)-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.

  10. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress

    Energy Technology Data Exchange (ETDEWEB)

    Jalloh, Mohamed Alpha; Chen Jinghong; Zhen Fanrong [Department of Agronomy, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Zhang Guoping [Department of Agronomy, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China)], E-mail: zhanggp@zju.edu.cn

    2009-03-15

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg{sup -1} soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH{sub 4}{sup +}-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO{sub 3}{sup -}-N and NH{sub 4}{sup +}-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH{sub 4}{sup +}-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO{sub 3}{sup -}-N treatment, with urea-N and NH{sub 4}{sup +}-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.

  11. Silicon treatment to rice (oryza sativa l. cv 'gopumbyeo') plants during different growth periods and its effects on growth and grain yield

    International Nuclear Information System (INIS)

    Kim, Y.H.; Waqas, M.; Kamran, M.

    2012-01-01

    Silicon (Si) has been considered a beneficial element for plant growth. We have assessed the effects of Si application on rice (Oryza sativa L.) growth and its grain yield at field level. For this, we performed two experiments. In experiment 1, we applied Si of three different concentrations (liquid Si-10, 25 and 36%) to the seedbed of rice before transplantation into paddy field. The results of this experiment showed that Si application to rice seedbeds did not affected the rice plant height and shoot fresh weight but its application significantly increased the pushing resistance of rice plants from 12.2-16.7% as compared with water applied control plants. The lodging index of Si treated rice plants significantly decreased (13.7% on LS-25) as compared with control. Similarly, Si treated plants had significantly higher yield. Upon Si treatment (LS-36), the grain yield per 10 acre and panicles per plant were 15.1% and 6. 3% higher than the water treated control plants respectively. The best concentration (LS-36%) revealed in the first experiment was foliar applied at 10 days before heading stage, initial tilling stage and panicle initiation stage to the rice leaves and we observed that shoot biomass was not significantly different between control and Si treated plants. However, significantly higher pushing resistance (10.5%-13.8%) and plant height (12.2%-16.7%) were observed while lower lodging index (7.6-7.8%) was recorded for Si treated plants as compared to control plants. Similarly, Si application increased the number of panicles per plant as well as the grain yield per 10 acre as compared to control. In conclusion, the Si application can significantly regulate plant growth and yield if applied at proper time with feasible concentration. (author)

  12. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment.

    Science.gov (United States)

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot-1 (equivalent to the recommended field rate of 150 kg ha-1) to 0.44 g pot-1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk.

  13. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment.

    Directory of Open Access Journals (Sweden)

    Min Huang

    Full Text Available The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w (EC1 produced 39% higher grain yield than soil only (EC0. EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot-1 (equivalent to the recommended field rate of 150 kg ha-1 to 0.44 g pot-1 (equivalent to 60% of the recommended rate. Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1 improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2 increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk.

  14. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  15. Development of dynamic compartment models for prediction of radionuclide behaviors in rice paddy fields

    International Nuclear Information System (INIS)

    Takahashi, Tomoyuki; Tomita, Ken'ichi; Yamamoto, Kazuhide; Uchida, Shigeo

    2007-01-01

    We are developing dynamic compartment models for prediction of behaviors of some important radionuclides in rice paddy fields for safety assessment of nuclear facilities. For a verification of these models, we report calculations for several different deposition patterns of radionuclides. (author)

  16. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    Science.gov (United States)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  17. Prediction of Digestible and Metabolizable Energy Content of Rice Bran Fed to Growing Pigs

    Directory of Open Access Journals (Sweden)

    C. X. Shi

    2015-05-01

    Full Text Available Two experiments were conducted to determine the digestible energy (DE and metabolizable energy (ME content of 19 rice bran samples and to develop prediction equations for DE and ME based on their chemical composition. The 19 rice bran samples came from different rice varieties, processing methods and regions. The basal diet was formulated using corn and soybean meal (74.43% corn and 22.91% soybean meal and 2.66% vitamins and minerals. The 19 experimental diets based on a mixture of corn, soybean meal and 29.2% of each source of rice bran, respectively. In Exp. 1, 108 growing barrows (32.1±4.2 kg were allotted to 1 of 18 treatments according to a completely randomized design with 6 pigs per treatment. The treatment 1 was the control group which was fed with basal diet. The treatments 2 to 18 were fed with experimental diets. In Exp. 2, two additional rice bran samples were measured to verify the prediction equations developed in Exp. 1. A control diet and two rice bran diets were fed to 18 growing barrows (34.6±3.5 kg. The control and experimental diets formulations were the same as diets in Exp. 1. The results showed that the DE ranged from 14.48 to 16.85 (mean 15.84 MJ/kg of dry matter while the ME ranged from 12.49 to 15.84 (mean 14.31 MJ/kg of dry matter. The predicted values of DE and ME of the two additional samples in Exp. 2 were very close to the measured values.

  18. Foliar application of molybdenum reduces yield loss and pre-harvest sprouting in japonica rice seed subjected to simulated flooding during seed development and maturation

    OpenAIRE

    Tejakhod, Sujittra; Hammond, John P.; Ellis, Richard H.

    2018-01-01

    Flooding damages rice crops and its incidence is increasing. Foliar spray applications of molybdenum (100, 600 or 3000 mg Mo L-1), abscisic acid (ABA, 50 μM), or deionised water (control) were made to pot-grown plants of the Japonica rice cv. Gleva at flag leaf appearance to determine their effects on seed yield and pre-harvest sprouting after flooding. Plants were submerged , to simulate flooding, for four days from 20 or 30 days after anthesis (DAA). Seed yield per plant, seed weight, and p...

  19. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    Directory of Open Access Journals (Sweden)

    Lizeth Núñez-López

    2015-03-01

    Full Text Available Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0, mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1, juvenile transition (SPL3-5 and meristematic identity (FUL, SOC1 but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production.

  20. Prediction of methylmercury accumulation in rice grains by chemical extraction methods

    International Nuclear Information System (INIS)

    Zhu, Dai-Wen; Zhong, Huan; Zeng, Qi-Long; Yin, Ying

    2015-01-01

    To explore the possibility of using chemical extraction methods to predict phytoavailability/bioaccumulation of soil-bound MeHg, MeHg extractions by three widely-used extractants (CaCl 2 , DTPA, and (NH 4 ) 2 S 2 O 3 ) were compared with MeHg accumulation in rice grains. Despite of variations in characteristics of different soils, MeHg extracted by (NH 4 ) 2 S 2 O 3 (highly affinitive to MeHg) correlated well with grain MeHg levels. Thus (NH 4 ) 2 S 2 O 3 extraction, solubilizing not only weakly-bound and but also strongly-bound MeHg, may provide a measure of ‘phytoavailable MeHg pool’ for rice plants. Besides, a better prediction of grain MeHg levels was obtained when growing condition of rice plants was also considered. However, MeHg extracted by CaCl 2 or DTPA, possibly quantifying ‘exchangeable MeHg pool’ or ‘weakly-complexed MeHg pool’ in soils, may not indicate phytoavailable MeHg or predict grain MeHg levels. Our results provided the possibility of predicting MeHg phytoavailability/bioaccumulation by (NH 4 ) 2 S 2 O 3 extraction, which could be useful in screening soils for rice cultivation in contaminated areas. - Highlights: • MeHg extraction by (NH 4 ) 2 S 2 O 3 correlates well with its accumulation in rice grains. • MeHg extraction by (NH 4 ) 2 S 2 O 3 provides a measure of phytoavailable MeHg in soils. • Some strongly-bound MeHg could be desorbed from soils and available to rice plants. • MeHg extraction by CaCl 2 or DTPA could not predict grain MeHg levels. - Methylmercury extraction from soils by (NH 4 ) 2 S 2 O 3 could possibly be used for predicting methylmercury phytoavailability and its bioaccumulation in rice grains

  1. Simulation of rice yield under different irrigation and nitrogen application managements by CropSyst model

    Directory of Open Access Journals (Sweden)

    Narjes ZARE

    2015-12-01

    Full Text Available The aim of this study was the calibration and validation of CropSyst model for rice in the city of Rasht. The necessary data were extracted from a field experiment which was carried out during 2005-2007 in a split-plot design. The main plots were irrigation regimes including continuous flooding irrigation and 5-day irrigation intervals. The subplots consisted of four nitrogen levels: zero N application, 45, 60 and 75 kg N ha-1. Normalized Root Mean Squared Error (nRMSE and Residual Mass Coefficient (Crm in calibration years were 9.3 % and 0.06, respectively. In validation year, nRMSE and Crm were 9.7 % and 0.11, respectively. According to other indices to assess irrigation regimes and fertilizer levels, the most suitable treatments regarding environmental aspect were 5-day irrigation regime and 45 kg N ha-1.

  2. Comparison of quantitative trait loci for rice yield, panicle length and ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... and spikelet density across three connected populations ... 2College of Biosafety Science and Technology Hunan Agricultural University, Changsha 410128, People's .... 6, 7 and 11; the Teqing allele has an increase in yield.

  3. Prediction of Cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Guo, H.Y.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F.

    2009-01-01

    Cadmium (Cd) levels in paddy fields across Taiwan have increased due to emission from industry. To ensure the production of rice that meets food quality standards, predictive models or suitable soil tests are needed to evaluate the quality of soils to be used for rice cropping. Levels of Cd in soil

  4. Regulating N application for rice yield and sustainable eco-agro development in the upper reaches of Yellow River basin, China.

    Science.gov (United States)

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region.

  5. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  6. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    Science.gov (United States)

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  7. Predictive ability of machine learning methods for massive crop yield prediction

    Directory of Open Access Journals (Sweden)

    Alberto Gonzalez-Sanchez

    2014-04-01

    Full Text Available An important issue for agricultural planning purposes is the accurate yield estimation for the numerous crops involved in the planning. Machine learning (ML is an essential approach for achieving practical and effective solutions for this problem. Many comparisons of ML methods for yield prediction have been made, seeking for the most accurate technique. Generally, the number of evaluated crops and techniques is too low and does not provide enough information for agricultural planning purposes. This paper compares the predictive accuracy of ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support vector regression and k-nearest neighbor methods were ranked. Four accuracy metrics were used to validate the models: the root mean square error (RMS, root relative square error (RRSE, normalized mean absolute error (MAE, and correlation factor (R. Real data of an irrigation zone of Mexico were used for building the models. Models were tested with samples of two consecutive years. The results show that M5-Prime and k-nearest neighbor techniques obtain the lowest average RMSE errors (5.14 and 4.91, the lowest RRSE errors (79.46% and 79.78%, the lowest average MAE errors (18.12% and 19.42%, and the highest average correlation factors (0.41 and 0.42. Since M5-Prime achieves the largest number of crop yield models with the lowest errors, it is a very suitable tool for massive crop yield prediction in agricultural planning.

  8. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield

    NARCIS (Netherlands)

    Carvalho, M.T.M.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Leal, W.G.O.; Heinemann, A.B.; Silva, da M.A.S.; Maia, A.H.N.; Parsons, D.; Meinke, H.

    2016-01-01

    We assessed the impact of a single application of wood biochar on soil chemical and physical properties and aerobic rice grain yield on an irrigated kaolinitic clay Ferralsol in a tropical Savannah. We used linear mixed models to analyse the response of soil and plant variables to application

  9. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China.

    Science.gov (United States)

    Ye, Jing; Niu, Xiaojun; Yang, Yaolong; Wang, Shan; Xu, Qun; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wang, Shu; Feng, Yue; Wei, Xinghua

    2018-01-01

    The heading date is a vital factor in achieving a full rice yield. Cultivars with particular flowering behaviors have been artificially selected to survive in the long-day and low-temperature conditions of Northeast China. To dissect the genetic mechanism responsible for heading date in rice populations from Northeast China, association mapping was performed to identify major controlling loci. A genome-wide association study (GWAS) identified three genetic loci, Hd1 , Ghd7 , and DTH7 , using general and mixed linear models. The three genes were sequenced to analyze natural variations and identify their functions. Loss-of-function alleles of these genes contributed to early rice heading dates in the northern regions of Northeast China, while functional alleles promoted late rice heading dates in the southern regions of Northeast China. Selecting environmentally appropriate allele combinations in new varieties is recommended during breeding. Introducing the early indica rice's genetic background into Northeast japonica rice is a reasonable strategy for improving genetic diversity.

  11. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... the percentage of fertility, stem weight and white grain weight (Kavousi, 1995). ... yield falling in accordance with rising salinity or electrical conduction of ... Due to the effect of salinity on height reduction and its significant effect ..... leaf elongation in maize Is not Mediated by changes in cell wall. Acidification ...

  12. Regulatory role of OsMADS34 in the determination of glumes fate, grain yield and quality in rice

    Directory of Open Access Journals (Sweden)

    Deyong Ren

    2016-12-01

    Full Text Available Grasses produce seeds on spikelets, a unique type of inflorescence. Despite the importance of grass crops for food, the genetic mechanisms that control spikelet development remain poorly understood. In this study, we used m34-z, a new mutant allele of the rice (Oryza sativa E-class gene OsMADS34, to examine OsMADS34 function in determining the identities of glumes (rudimentary glume and sterile lemma and grain size. In the m34-z mutant, both the rudimentary glume and sterile lemma were homeotically converted to the lemma-like organs and acquired the lemma identity, suggesting that OsMADS34 plays important roles in the development of glumes. In the m34-z mutant, most of the grains from the secondary panicle branches were decreased in size, compared with grains from wild type, but no differences were observed in the grains from the primary panicle branches. The amylose content and gel consistency, and a seed-setting rate from the secondary panicle branches were reduced in the m34-z mutant. Interesting, transcriptional activity analysis revealed that OsMADS34 protein was a transcription repressor and it may influence grain yield by suppressing the expressions of BG1, GW8, GW2 and GL7 in the m34-z mutant. These findings revealed that OsMADS34 largely affects grain yield by affecting the size of grains from the secondary branches.

  13. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua

    2018-03-01

    A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

  14. Effect of seed treatment with static magnetic field (SMF) and low dose gamma radiation (GR) on grain yield of aerobic rice

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Anand, Anjali; Singh, Bhupinder

    2014-01-01

    Aerobic rice cultivation is gaining popularity as it demands less water. However, poor germination of rice is an important issue in this situation. Seed pretreatment with static magnetic field (SMF) and gamma radiation (GR) at prescribed dose is known to influence the germination, seedling vigour and and yield of many crops. There is a possibility to improve the crop establishment under aerobic situation by physical seed treatment with static-magnetic field (SMF) and gamma radiation (GR) prior to sowing. Hence, a field experiment was conducted at the Indian Agricultural Research Institute, New Delhi during kharif 2012 and 2013 to study the effect of SMF and GR-treated seeds on growth and yield of aerobic rice. The five seed treatments were: SMF 50 mT for 2 hrs, SMF 100 mT for 2 hrs, GR 0.0025 kGy, GR 0.10 kGy and an untreated control. The experiment was laid out in a Randomized Block Design with four replications. Crop (variety 'Pusa Basmati-1121') was direct seeded on 25 th and 24 th June during 2012 and 2013, respectively at a spacing of 25 cm. Treatments GR 0.0025 kGy, SMF (50 mT) and SMF (100 mT) resulted in a significant improvement in grain yield of rice over control and GR dose (0.10 kGy) during both the years. Averaged across two years the grain yield increase by treating the rice seeds with GR 0.0025 kGy, SMF (50 mT) and SMF (100 mT) was 20.1, 17.6 and 14.5%, respectively over the control. Increase in GR dose (0.10 kGy ) was not effective in improving the yield, and was found to be similar to control. It is therefore concluded that treatment of rice seeds either with GR (0.0025 kGy) or SMF (50 mT) holds a great promise in increasing the grain yield of aerobic rice. (author)

  15. Studies on 75Se accumulation in rice plants and its effect on yield

    International Nuclear Information System (INIS)

    Prasad, T.; Arora, S.P.

    1980-01-01

    Radioactive selenium ( 75 Se) as sodium selenosulphate was applied to 8 kg soil per pot so as to get selenium concentration of 0, 0.270, 0.515, 0.764, 1.032 and 1.588 ppm in treatment groups I to VI, respectively. Pusa 2.21 paddy seedlings were transplanted and grown in the pots by conventional procedure. Both grain and straw yields decreased with increase in selenium dose upto 0.764 ppm. Mean dry grain yields per plant at harvest were 6.96, 5.31, 4.30, 3.33, 3.13 and 3.13 g and straw yields were 4.96, 4.05, 3.69, 3.19, 3.56 and 3.72 g, respectively, in treatments I to VI. Maximum plant height per plant also showed a decreasing trend with progressive increase in selenium upto a level of 0.764 ppm. At harvest, the selenium content in treatments I to VI was 0, 2.34, 4.29, 8.01, 10.99 and 12.80 ppm in straw and 0, 1.31, 2.81, 5.92, 9.92 and 10.76 ppm in grains, respectively. Selenium accumulation varied from 5.24 to 9.78 times in grains and 8.06 to 11.66 times in straw as per the dose applied to the soil. (author)

  16. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    Science.gov (United States)

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  17. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    Science.gov (United States)

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  18. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    International Nuclear Information System (INIS)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L.D.; Anuntalabhochai, S.

    2013-01-01

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10 16 –2 × 10 17 ions/cm 2 . The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10 6 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  19. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [School of Agriculture and Natural Resources, University of Phayao, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Phayao 56000 (Thailand); Phanchaisri, B. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@frnf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S., E-mail: burinka@hotmail.com [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10{sup 16}–2 × 10{sup 17} ions/cm{sup 2}. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10{sup 6} spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  20. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    Science.gov (United States)

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy

    Science.gov (United States)

    Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao

    2006-10-01

    To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.

  2. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    The fit was found to be better than those relating mean annual specific suspended sediment yield to basin area or runoff only. Since many stream gauging stations in the country have no records on fluvial sediment, the empirical equation can be used to obtain preliminary estimates of expected sediment load of streams for ...

  3. Predicting milk yield and composition in lactating sows

    DEFF Research Database (Denmark)

    Hansen, A V; Strathe, A B; Kebreab, E

    2012-01-01

    The objective of this study was to develop a framework describing the milk production curve in sows as affected by parity, method of milk yield (MY) determination, litter size (LS), and litter gain (LG). A database containing data on LS, LG, dietary protein and fat content, MY, and composition...

  4. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran.

    Science.gov (United States)

    Bakhshandeh, E; Rahimian, H; Pirdashti, H; Nematzadeh, G A

    2015-11-01

    This study aimed to evaluate the efficiency of four phosphate-solubilizing bacteria (PSB) on the growth and yield of rice under different soil conditions. Bacterial strains were Rahnella aquatillis (KM977991), Enterobacter sp. (KM977992), Pseudomonas fluorescens and Pseudomonas putida. These studies were conducted on different rice cultivars ('Shiroodi', 'Tarom' and 'Tarom Hashemi') in both pot and field experiments. Measurements started from transplanting and continued throughout the growing season in field experiments. Single PSB inoculations in field trials increased grain yield, biological yield, total number of stems hill(-1) , number of panicles hill(-1) and plant height by 8·50-26·9%, 12·4-30·9%, 20·3-38·7%, 22·1-36·1% and 0·85-3·35% in experiment 1, by 7·74-14·7%, 4·22-12·6%, 6·67-16·7%, 4·0-15·4% and 3·15-4·20% in experiment 2 and by 23·4-37%, 16·1-36·4%, 30·2-39·1%, 28·8-34% and 2·11-4·55% in experiment 3, respectively, compared to the control. Our results indicate that the application of triple super phosphate together with PSB inoculations resulted in reducing the use of chemical fertilizers (about 67%) and increasing fertilizer use efficiency. This study clearly indicates that these PSBs can be used as biofertilizers in ecological rice agricultural systems. To the best of our knowledge, this is first report on the association of Rahnella aquatilis with rice and also the application of a mathematical model to evaluate the effect of PSBs on rice growth. © 2015 The Society for Applied Microbiology.

  5. Response Of Lowland Rice To Soil Compaction

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2000-01-01

    Soil compaction, as a new tillage practice for paddy soil, is to substitute pudding in order to reduce land preparation cost. To study response of lowland rice to soil compaction, a pot experiment has been conducted which took place in the greenhouse of P3TIR-BATAN. Soil for experiment was taken from pusakanegara. Two factors (degree of soil compaction and rice variety) were combined. Degree of compaction was split into 3 levels (DI = normal; D215% more compact than normal; 30 % more compact than normal), and rice variety into 2 levels (IR64 and Atomita IV). KH 2 32 PO 4 solution was injected into the soil surrounding rice clump to test the root activity at blooming stage of rice plant. Data resulted from this experiment is presented together with additional data from some other experiments of fertilization in the research s erie to study soil compaction. Some information's from experiment results are as following. Both rice varieties tested gave the same response to soil compaction. Root activity, according to data of 32 P absorbed by plant, was not harmed by soil compaction at the degree tested in the experiment. This prediction is supported by the growth by rice observed at generative growth stage, in pot experiment as well as in field experiment, which showed that soil compaction tested did not decrease rice yield but in opposite in tended to increase the yield. In practising soil compaction in land preparation, fertilizers should be applied by deep placement to have higher increasing is rice yield

  6. The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield

    Science.gov (United States)

    Suciaty, T.; Purnomo, D.; Sakya, A. T.; Supriyadi

    2018-03-01

    Agriculture is facing a number of challenges included limited water supply, low nutrient use efficiency, etc affected by climate change. Nano-silica is a product of nanotechnology, the frontier technologies to enhance crop productivity under climate change threats. The purpose of the research was to investigate the effects of nano silica concentration and rice hull ash on growth and yield of soybean. The experiment was conducted at Gagasari village, Cirebon, West Java from March until June 2017. The treatments were arranged by using factorial completely randomized block design with two factors. The first factor was a concentration of nano silica fertilizer consisted of four levels i.e., 0, 1.75, 2.5, and 3.75 ml.l‑1. The second factor was doses of rice hull ash consisted of four levels i.e., 0, 1, 2, and 3 ton.ha‑1. Each treatment combinations was repeated three times. The result showed that concentration of nano silica individually affected the number of leaves and number of branches, NAR and RGR, productive branches at 21, 30-45, and 35 daps, respectively. It also affected the seed dry weight plant‑1 and plot‑1. Meanwhile, doses of rice hull ash affected LAI, NAR, and RGR, 15-30, and 30-45 dap, respectively. Dry seed weight plot‑1 was also affected by doses of rice hull ash. There was an interaction effect between nano-silica concentration and doses of rice hull ash on number pods.plant‑1. Combinations of 2.5 ml.l‑1 nano-silica and 3 ton.ha‑1 of rice hull ash gave the highest number pods.plant‑1.

  7. Geographical information system based model of land suitability for good yield of rice in prachuap khiri khan province, thailand

    International Nuclear Information System (INIS)

    Hussain, W.; Sohaib, O.

    2012-01-01

    Correct assessment of land is a major issue in agricultural sector to use possible capability of any land, to raise cultivation and production of rice. Geographical Information System (GIS) provides broad techniques for suitable land classifications. This study is GIS based on land suitability analysis for rice farming in Prachuap Khiri Khan Province, Thailand, where the main livelihood of people is rice farming. This analysis was conducted considering the relationship of rice production with various data layers of elevation, slope, soil pH, rainfall, fertilizer use and land use. ArcView GIS 3.2 software is used to consider each layer according to related data to weight every coefficient, ranking techniques are used. It was based on determining correlation of rice production and these variables. This analysis showed a positive correlation with these variables in varying degrees depending on the magnitude and quality of these factors. By combining both data layers of GIS and weighted linear combination, various suitable lands have been developed for cultivation of rice. Integrated suitable assessment map and current land were compared to find suitable land in Prachuap Khiri Khan Province of Thailand. As a result of this comparison, we get a land which is suitable for optimum utilization for rice production in Prachuap Khiri Khan Province. (author)

  8. The effect of mixed liming and NPK fertilizer to yield of some rice varieties on new openings of acid sulfate tidal swamp land

    Science.gov (United States)

    Akhmad, A.; Dewi, W. S.; Sagiman, S.; Suntoro

    2018-03-01

    The strategies to meet the staple food needs in Indonesia is to open new paddy fields in the sub-optimal land. The research aims to get adaptive rice varieties with the highest yield on new openings of the acid sulfate tidal swamp applying mixed liming and NPK fertilizer. The experiment was conducted in a greenhouse at the Faculty of Agriculture, Tanjungpura University, Pontianak. The trials used a factorial completely randomized block design consisting of two factors. The first factor is a mixture of dolomite with NPK fertilizer, consisting of 3 levels (1 ton/ha dolomite and 60 kg/ha NPK; 2 ton/ha dolomite and 90 kg/ha of NPK, and 3 ton/ha dolomite and 120 kg/ha NPK). The second factor is rice varieties, consisting of 6 levels (Ciherang, Situ Bagendit, Inpara, Mira, Si Randah and Ringkak Janggut). Each treatment replicated four times. The results showed that the application of a mixture of 3 ton/ha dolomite and 120 kg/ha of NPK fertilizer showed the best results to improve rice yield on new opening of the acid sulfate tidal swap. Local rice varieties, Ringkak Janggut, applied 3 ton/ha dolomite and 120 kg/ha NPK fertilizer showed the best result of 1000 seed weight, i.e., 28.19 g, and total grain amount per panicle is 110.75 grains, with the lowest number of empty grains. Local rice varieties Ringkak Janggut potential to be developed as superior varieties on new opening acid sulfate tidal swamps by applying liming and fertilizer.

  9. Statistical timing for parametric yield prediction of digital integrated circuits

    NARCIS (Netherlands)

    Jess, J.A.G.; Kalafala, K.; Naidu, S.R.; Otten, R.H.J.M.; Visweswariah, C.

    2006-01-01

    Uncertainty in circuit performance due to manufacturing and environmental variations is increasing with each new generation of technology. It is therefore important to predict the performance of a chip as a probabilistic quantity. This paper proposes three novel path-based algorithms for statistical

  10. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China.

    Science.gov (United States)

    Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang

    2018-01-01

    Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH 3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH 3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH 3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH 3 volatilization from basal fertilizer by 10-14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH 3 emissions and improving grain yield and NUE in paddy fields of central China.

  11. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China

    Directory of Open Access Journals (Sweden)

    Tianqi Liu

    2018-03-01

    Full Text Available Tillage practices and nitrogen (N sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE, and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer and tillage practices (no-tillage [NT] and conventional intensive tillage [CT] on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China.

  12. In-Season Yield Prediction of Cabbage with a Hand-Held Active Canopy Sensor.

    Science.gov (United States)

    Ji, Rongting; Min, Ju; Wang, Yuan; Cheng, Hu; Zhang, Hailin; Shi, Weiming

    2017-10-08

    Efficient and precise yield prediction is critical to optimize cabbage yields and guide fertilizer application. A two-year field experiment was conducted to establish a yield prediction model for cabbage by using the Greenseeker hand-held optical sensor. Two cabbage cultivars (Jianbao and Pingbao) were used and Jianbao cultivar was grown for 2 consecutive seasons but Pingbao was only grown in the second season. Four chemical nitrogen application rates were implemented: 0, 80, 140, and 200 kg·N·ha -1 . Normalized difference vegetation index (NDVI) was collected 20, 50, 70, 80, 90, 100, 110, 120, 130, and 140 days after transplanting (DAT). Pearson correlation analysis and regression analysis were performed to identify the relationship between the NDVI measurements and harvested yields of cabbage. NDVI measurements obtained at 110 DAT were significantly correlated to yield and explained 87-89% and 75-82% of the cabbage yield variation of Jianbao cultivar over the two-year experiment and 77-81% of the yield variability of Pingbao cultivar. Adjusting the yield prediction models with CGDD (cumulative growing degree days) could make remarkable improvement to the accuracy of the prediction model and increase the determination coefficient to 0.82, while the modification with DFP (days from transplanting when GDD > 0) values did not. The integrated exponential yield prediction equation was better than linear or quadratic functions and could accurately make in-season estimation of cabbage yields with different cultivars between years.

  13. Using NDVI and guided sampling to develop yield prediction maps of processing tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, A.; Henar Prieto, M. del; García-Martín, A.; Córdoba, A.; Martínez, L.; Campillo, C.

    2015-07-01

    The use of yield prediction maps is an important tool for the delineation of within-field management zones. Vegetation indices based on crop reflectance are of potential use in the attainment of this objective. There are different types of vegetation indices based on crop reflectance, the most commonly used of which is the NDVI (normalized difference vegetation index). NDVI values are reported to have good correlation with several vegetation parameters including the ability to predict yield. The field research was conducted in two commercial farms of processing tomato crop, Cantillana and Enviciados. An NDVI prediction map developed through ordinary kriging technique was used for guided sampling of processing tomato yield. Yield was studied and related with NDVI, and finally a prediction map of crop yield for the entire plot was generated using two geostatistical methodologies (ordinary and regression kriging). Finally, a comparison was made between the yield obtained at validation points and the yield values according to the prediction maps. The most precise yield maps were obtained with the regression kriging methodology with RRMSE values of 14% and 17% in Cantillana and Enviciados, respectively, using the NDVI as predictor. The coefficient of correlation between NDVI and yield was correlated in the point samples taken in the two locations, with values of 0.71 and 0.67 in Cantillana and Enviciados, respectively. The results suggest that the use of a massive sampling parameter such as NDVI is a good indicator of the distribution of within-field yield variation. (Author)

  14. Effect of gypsum, pressmud, fulvic acid and zinc sources on yield and zinc uptake by rice crop in a saline-sodic soil

    International Nuclear Information System (INIS)

    Chand, M.

    1980-01-01

    The application of fulvic acid to a saline-sodic soil augmented the solubility of zinc by thousands fold. Zinc fulvate when applied at levels equivalent to that of zinc sulphate was more effective in enhancing diffusion of zinc in the soil. Application of gypsum, zinc sulphate and fulvic acid significantly increased dry matter yield and uptake of zinc by rice crop in a saline-sodic soil. Application of gypsum with pressmud or with fulvic acid and zinc sulphate resulted in significantly higher yield and zinc uptake than in other treatments. (orig.)

  15. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems.

    Directory of Open Access Journals (Sweden)

    Len J Wade

    Full Text Available The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb and on chromosome 8 (20.3-21.9 Mb. Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.

  16. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  17. The use of near-infrared scanning for the prediction of pulp yield and ...

    African Journals Online (AJOL)

    Calibration models to predict pulp yield, cellulose and lignin content were developed by applying chemometrics and partial least squares regression. Validation and determination of prediction accuracy of the models were performed using independent data. The prediction of cellulose and lignin were acceptable with ...

  18. Effect of plant extracts and an essential oil on the control of brown spot disease, tillering, number of panicles and yield increase in rice

    DEFF Research Database (Denmark)

    Nguefack, Julienne; Wulff, Ednar Gadelha; Dongmo, J. Blaise Lekagne

    2013-01-01

    disease, the tillering, the number of panicles and the yield increase in rice were evaluated under laboratory and field conditions. In vitro, the growth of both fungi was completely inhibited by the EO of C. citrinus and C. citratus at 4,520 mu g/ml and 452 mu g/ml, respectively. For solvent extracts...... in the non-treated and treated samples with a low incidence (0-4 of B. oryzae. Under field conditions, the combined use of the essential oil of C. citrinus as a seed treatment and spraying the plants with 2 % ethanol followed by 2 % (w/v) aqueous extracts of C. citrinus or C. citratus increased the emergence......, we concluded that the EO and solvent extracts of C. citrinus and C. citratus have potential as control agents against brown spot and other seed-borne fungal diseases in rice under both conventional and organic farming....

  19. Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L. Varieties as Affected by Salt-Alkali and Phosphorus

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2017-08-01

    Full Text Available Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any effect on rice (Oryza sativa L. yield, dry matter and P accumulation and translocation in salt-alkaline soils. Plant dry weight and P content at heading and harvest stages of two contrasting saline-alkaline tolerant (Dongdao-4 and sensitive (Tongyu-315 rice varieties were examined under two saline-alkaline (light versus severe soils and five P supplements (P0, P50, P100, P150 and P200 kg ha−1. The results were: in light saline-alkaline soil, the optimal P levels were found for P150 for Dongdao-4 and for P100 for Tongyu-315 with the greatest grain dry weight and P content. Two rice varieties obtained relatively higher dry weight and P accumulation and translocation in P0. In severe saline-alkaline soil, however, dry weight and P accumulation and translocation, 1000-grain weight, seed-setting rate and grain yield significantly decreased, but effectively increased with P application for Dongdao-4. Tongyu-315 showed lower sensitivity to P nutrition. Thus, a more tolerant variety could have a stronger capacity to absorb and translocate P for grain filling, especially in severe salt-alkaline soils. This should be helpful for consideration in rice breeding and deciding a reasonable P application in saline-alkaline soil.

  20. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions.

    Science.gov (United States)

    Ranathunge, Kosala; El-Kereamy, Ashraf; Gidda, Satinder; Bi, Yong-Mei; Rothstein, Steven J

    2014-03-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.

  1. AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions

    Science.gov (United States)

    Rothstein, Steven J.

    2014-01-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4 +). The NH4 + uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4 + transport in rice plants. However, little is known about its involvement in NH4 + uptake in rice roots and subsequent effects on NH4 + assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4 + permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4 + content in the shoots and roots than the WT. Direct NH4 + fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4 + contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4 + levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions. PMID:24420570

  2. Growth and yield predictions for upland oak stands. 10 years after initial thinning

    Science.gov (United States)

    Martin E. Dale; Martin E. Dale

    1972-01-01

    The purpose of this paper is to furnish part of the needed information, that is, quantitative estimates of growth and yield 10 years after initial thinning of upland oak stands. All estimates are computed from a system of equations. These predictions are presented here in tabular form for convenient visual inspection of growth and yield trends. The tables show growth...

  3. Yield loss prediction models based on early estimation of weed pressure

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Andreasen, Christian

    2013-01-01

    thresholds are more relevant for site-specific weed management, because weeds are unevenly distributed in fields. Precision of prediction of yield loss is influenced by various factors such as locations, yield potential at the site, variation in competitive ability of mix stands of weed species and emergence...

  4. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    International Nuclear Information System (INIS)

    Law, M.; Bowie, G.

    2007-01-01

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted

  5. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  6. The effect of toposequence position on soil properties, hydrology, and yield of rainfed lowland rice in Southeast Asia

    NARCIS (Netherlands)

    Boling, A.A.; Tuong, T.P.; Suganda, H.; Konboon, Y.; Harnpichitvitaya, D.; Bouman, B.A.M.; Franco, D.T.

    2008-01-01

    large proportion of rainfed lowland rice in Southeast Asia is grown in gently sloping areas along toposequences with differences in elevation of a few meters. These small differences in elevation can lead to differentiation in soil properties and hydrological conditions, which in turn may affect

  7. Evolving of mutant lines resistant to lodging, blast, and high yield in rice by induce mutation using gamma ray (physical mutagen)

    International Nuclear Information System (INIS)

    Majd, F.; Rahimi, M.; Rezazadeh, M.

    2003-01-01

    Induction of mutation for the purpose of producing variations in the gene pool has been used in recent years. In this experiment the locally adapted rice C V Moosa-Tarom was used as a high quality, tall and very lodging susceptible mutation material. The main purpose of this project was to evolve lodging resistant mutants of high yielding. The elite seeds of Moosa-Tarom variety after moisture regulation were exposed to 100, 200 and 300 Gy from Cobalt 60 source at the Nuclear Research Center. The irradiated seeds were sown in the field along with a comparable number of unirradiated seeds taken as control. All the first panicles of M1 plants were individually harvested and classified according to the dose rate as M2 material . Among M2 plant populations 203 plants that appeared from the agronomic point of view, along with a number of on unirradiated seeds, were selected and moved to the next generations. During subsequent screening for three generations (M 3-M 5) and due to lodging resistant, height and efficient factors of yield potential some mutant lines were harvested. From these lines in a preliminary and advanced randomized complete design agronomic traits, 13 promising lines were selected. From the experiment, line 43-3 were confirmed, which is characterized by lodging resistant and high yield. This line showed relative superiority and introduced to Rice Research Institute

  8. Growth, Metabolism and Yield of Rice Cultivated in Soils Amended with Fly Ash and Cyanobacteria and Metal Loads in Plant Parts

    Directory of Open Access Journals (Sweden)

    Rabindra N. Padhy

    2016-01-01

    Full Text Available Soil amendment with fly ash (FA and combined supplementation with N2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, pH value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts (root and seed were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients (Mn, Ni, Co, Zn and Cu and toxic elements (Pb, Cr and Cd increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N2-fixation.

  9. Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU)

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zheng Qiwei; Yao Fangfang; Chen Zhan; Feng Zhaozhong; Manning, W.J.

    2007-01-01

    Foliar applications of ethylenediurea (abbreviated as EDU) were made at 0, 150, 300 or 450 ppm to field-grown rice and wheat in the Yangtze Delta in China. Rice and wheat responded differently to ambient ozone and EDU applications. For wheat, some growth characteristics, such as yield, seed number per plant, seed set rate and harvest index, increased significantly at 300 ppm EDU treatment, while for rice no parameters measured were statistically different regarding EDU application. The reason may be that the wheat cultivar used may be more sensitive to ozone than the rice cultivar. EDU was effective in demonstrating ozone effects on the wheat cultivar, but not on the rice cultivar. Cultivar sensitivity might be an important consideration when assessing the effects of ambient ozone on plants. - Cultivar sensitivity should be considered when using protective chemical to assess the effects of ambient ozone on plants

  10. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils

    International Nuclear Information System (INIS)

    Ali, Muhammad Aslam; Kim, P.J.; Inubushi, K.

    2015-01-01

    Effects of different soil amendments were investigated on methane (CH 4 ) and nitrous oxide (N 2 O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK + fly ash, NPK + silicate slag, NPK + phosphogypsum(PG), NPK + blast furnace slag (BFS), NPK + revolving furnace slag (RFS), NPK + silicate slag (50%) + RFS (50%), NPK + biochar, NPK + biochar + Azolla-cyanobacteria, NPK + silicate slag + Azolla-cyanobacteria, NPK + phosphogypsum (PG) + Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH 4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N 2 O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH 4 emissions were significantly increased by 9.5–14.0% with biochar amendments, however, global warming potentials were decreased by 8.0–12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0–30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43–50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. - Highlights: • Azolla-cyanobacteria with organic and inorganic amendments

  11. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muhammad Aslam, E-mail: litonaslam@yahoo.com [Dept. of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Dept. of Agricultural Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Division of Environmental Horticulture, Chiba University, Matsudo, Chiba 271-8510 (Japan); Kim, P.J., E-mail: pjkim@nongae.gsnu.ac.kr [Dept. of Agricultural Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Inubushi, K. [Division of Environmental Horticulture, Chiba University, Matsudo, Chiba 271-8510 (Japan)

    2015-10-01

    Effects of different soil amendments were investigated on methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK + fly ash, NPK + silicate slag, NPK + phosphogypsum(PG), NPK + blast furnace slag (BFS), NPK + revolving furnace slag (RFS), NPK + silicate slag (50%) + RFS (50%), NPK + biochar, NPK + biochar + Azolla-cyanobacteria, NPK + silicate slag + Azolla-cyanobacteria, NPK + phosphogypsum (PG) + Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH{sub 4} emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N{sub 2}O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH{sub 4} emissions were significantly increased by 9.5–14.0% with biochar amendments, however, global warming potentials were decreased by 8.0–12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0–30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43–50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. - Highlights: • Azolla-cyanobacteria with organic and

  12. Path Loss Prediction Over the Lunar Surface Utilizing a Modified Longley-Rice Irregular Terrain Model

    Science.gov (United States)

    Foore, Larry; Ida, Nathan

    2007-01-01

    This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.

  13. Prediction of 305 d milk yield in Jersey Cattle Using ANN Modelling

    African Journals Online (AJOL)

    ozcan_eren

    Prediction of 305-day milk yield in Brown Swiss cattle using artificial ... cattle, based on a few test-day records, and some environmental factors such ... interval, as well as increase the intensity of selection, and thus create greater genetic progress. ... influential variables in predicting the incidence of clinical mastitis in dairy ...

  14. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems.

    Science.gov (United States)

    Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan

    2016-10-01

    Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

  15. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  16. Simple, spatial and predictive approach for cereal yield prediction in the semi-arid areas

    Science.gov (United States)

    Toumi, Jihad; Khabba, Said; Er-Raki, Salah; Le page, Michel; Chahbi Bellakanji, Aicha; Lili Chabaane, Zohra; Ezzahar, Jamal; Zribi, Mehrez; Jarlan, Lionel

    2016-04-01

    The objective is to develop a simple, spatial and predictive approach of dry matter (DM) and grain yield (GY) of cereal in the semi-arid areas. The proposed method is based on the three efficiencies model of Monteith (1972). This approach summarizes the transformation of solar radiation to the dry matter (DM) by the climate (ɛc), interception (ɛi) and conversion (ɛconv) efficiencies. The method combines the maximum of ɛi and ɛconv (noted ɛimax and ɛconvmax) into a single parameter denoted ɛmax, calculating as a function of cumulating growing degree day (CGDD). Also, the stress coefficient ks, which affects the conversion of solar radiation to the biomass was calculated by the surface temperature or the water balance at the root zone. In addition, the expression of ks has been improved by the consideration of the results achieved by deficit irrigation (AquaCrop and STICS models) which showed that the value of ks from 0.7 to 1 didn't affect significantly the cereal production. For the partitioning of the dry matter developed, between straw and grain, the method proposed calculates a variable Harvest Index coefficient (HI). HI is deducted from CGDD and HI0max (maximal final harvest Index in the region of study). Finally, the approach calculates DM depending Satellite Information (NDVI and surface temperature Ts) and climatic data (solar radiation and air temperature). In the case of no availability of Ts, the amount of irrigation is required to calculate ks. Until now, the developed model has been calibrated and validated on the irrigated area R3, located 40 Km east of Marrakech. The evolutions of DM and GY were reproduced satisfactorily. R2 and RMSE are respectively 0.98 and 0.35 t/ha and 0.98 and 0.19 t/ha, respectively. Currently, additional tests are in progress on data relating to the Kairouan plain of Tunisia.

  17. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  18. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.

    Science.gov (United States)

    Centritto, Mauro; Lauteri, Marco; Monteverdi, Maria Cristina; Serraj, Rachid

    2009-01-01

    Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).

  19. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils.

    Science.gov (United States)

    Ali, Muhammad Aslam; Kim, P J; Inubushi, K

    2015-10-01

    Effects of different soil amendments were investigated on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK+fly ash, NPK+silicate slag, NPK+phosphogypsum(PG), NPK+blast furnace slag (BFS), NPK+revolving furnace slag (RFS), NPK+silicate slag (50%)+RFS (50%), NPK+biochar, NPK+biochar+Azolla-cyanobacteria, NPK+silicate slag+Azolla-cyanobacteria, NPK+phosphogypsum (PG)+Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N2O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH4 emissions were significantly increased by 9.5-14.0% with biochar amendments, however, global warming potentials were decreased by 8.0-12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0-30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43-50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Use of optical sensor for in-season nitrogen management and grain yield prediction in maize

    Directory of Open Access Journals (Sweden)

    Bandhu Raj Baral

    2015-12-01

    Full Text Available Precision agriculture technologies have developed optical sensors which can determine plant’s normalized difference vegetation index (NDVI.To evaluate the relationship between maize grain yield and early season NDVI readings, an experiment was conducted at farm land of National Maize Research Program, Rampur, Chitwan during winter season of 2012. Eight different levels of N 0, 30, 60, 90, 120, 150, 180 and 210 kg N/ha were applied for hybrid maize RML 32 × RML 17 to study grain yield response and NDVI measurement. Periodic NDVI was measured at 10 days interval from 55 days after sowing (DAS to 115 DAS by using Green seeker hand held crop sensor. Periodic NDVI measurement taken at a range of growing degree days (GDD was critical for predicting grain yield potential. Poor exponential relationship existed between NDVI from early reading measured before 208 GDD (55 DAS and grain yield. At the 261GDD (65DAS a strong relationship (R2 = 0.70 was achieved between NDVI and grain yield. Later sensor measurements after 571 GDD (95DAS failed to distinguish variation in green biomass as a result of canopy closure. N level had significantly influenced on NDVI reading, measured grain yield, calculated in season estimated yield (INSEY, predicted yield with added N (YPN, response index (RI and grain N demand. Measuring NDVI reading by GDD (261–571 GDD allow a practical window of opportunity for side dress N applications. This study showed that yield potential in maize could be accurately predicted in season with NDVI measured with the Green Seeker crop sensor.

  1. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    Science.gov (United States)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  2. A New High Yielding and Lodging-Tolerant Rice Cultivar, 'Woncheongbyeo' Mutated from Chucheongbyeo

    International Nuclear Information System (INIS)

    Kang, S.Y.; Shin, I.C.; Lee, Y.I.; Song, H.S.; Lee, S.J.; Kim, D.S.; Lee, G.J.; Cho, Y.C.

    2006-01-01

    'Woncheongbyeo' is a new japonica rice (Oryza sativa L.) cultivar developed by mutation techniques from Chucheongbyeo. Chucheongbyeo seeds were irradiated with 300 Gy gamma ray (83.3 rad/min) emitted from ∨60Co at a radiation facility of the Korea Atomic Energy Research Institute (KAERI) in 1992. Compared to Chucheongbyeo, 'Woncheongbyeo' has a short stature as 64 cm in culm length, resistance to lodging and 3-days-earlier heading date. It has considerably erect pubescent leaf blades and a tough culm with a good canopy architecture

  3. Comparison of the effects of semi-refined rice oil and soybean oil on meat oxidative stability, carcass yield, metabolism, and performance of broilers

    Directory of Open Access Journals (Sweden)

    ML de Moraes

    2009-09-01

    Full Text Available Two experiments (EXP 1 and EXP 2 were conducted to compare soybean oil (SO and semi-refined rice oil (RBO added to broilers diets. In EXP 1, 400 male Ross x Ross 308 broilers were reared in battery cages, and their performance was evaluated. A metabolism assay was performed. In EXP 2, 1344 broilers from the same strain were reared in floor pens with rice husks litter. In addition to performance, carcass yield and meat oxidative stability were evaluated. In both EXP, birds were distributed in a 2x4 factorial arrangement, with two types of oils (SO or RBO and four oil inclusion levels (1%, 2.5%, 4%, or 5.5%. Two periods were considered: starter (1 to 21 days of age and grower (22 to 42 days. In both EXP, oil type had no influence on starter performance. Although treatments promoted similar in weight gain (WG and feed intake (FI, grower birds fed RBO had better feed conversion (FCR in EXP 2, but not in EXP1. In both trials, increasing dietary oil levels negatively influenced FI and positively FCR. Weight gain was similar among all treatments in EXP 1, whereas in EXP 2, WG was higher when 4 and 5.5% oil was included in the feed. RBO presented 94% fat metabolizability, and crude energy and metabolizable energy levels of 9.260 and 8.714 kcal/kg, respectively. Carcass yield was not influenced by oil type; however, oil inclusion level negatively affected breast yield. The experimental treatments had no effect on meat oxidative stability. RBO can be used as an alternative to soybean oil in broilers diets.

  4. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach.

    Science.gov (United States)

    Cao, Hongliang; Xin, Ya; Yuan, Qiaoxia

    2016-02-01

    To predict conveniently the biochar yield from cattle manure pyrolysis, intelligent modeling approach was introduced in this research. A traditional artificial neural networks (ANN) model and a novel least squares support vector machine (LS-SVM) model were developed. For the identification and prediction evaluation of the models, a data set with 33 experimental data was used, which were obtained using a laboratory-scale fixed bed reaction system. The results demonstrated that the intelligent modeling approach is greatly convenient and effective for the prediction of the biochar yield. In particular, the novel LS-SVM model has a more satisfying predicting performance and its robustness is better than the traditional ANN model. The introduction and application of the LS-SVM modeling method gives a successful example, which is a good reference for the modeling study of cattle manure pyrolysis process, even other similar processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A correlation study of proximate composition, physical and cooking properties of new high yielding and disease resistant rice varieties

    Directory of Open Access Journals (Sweden)

    Nuzhat Rasool

    2015-12-01

    Full Text Available The present study was aimed to compare proximate composition, physical, and cooking properties of locally cultivated rice varieties of Kashmir division viz.; SR-1, K-448, and K-39. Various physiochemical properties were studied. The relationship between physical, proximate composition, and cooking properties was determined using Pearson’s correlation. Length–breadth (L/B ratio showed a significant positive correlation with kernel length and negative correlation with thousand kernel weight, with a correlation coefficient (r of 0.893 and −0.855, respectively, (p  0.05. Solid loss in gruel was observed to have a negative correlation with L/B ratio (r = −0.432, p > 0.05, water uptake ratio (r = −0.742, p < 0.05, and cooking time (r = −0.678, p < 0.05. The rice cultivars with higher cooking time showed lower gruel solid loss and vice versa. Water uptake was observed to be positively correlated with L/B ratio (r = 0.768, p < 0.05. Among all the cultivars studied, K-448 variety has potential for consumers’ preference and it could be used for breeding programs for the improvement of valuable grain quality traits.

  6. Correlation between temperature and phenology prediction error in rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Oort, van P.A.J.; Zhang, T.; Vries, de M.E.; Heinemann, A.B.; Meinke, H.B.

    2011-01-01

    For rice (Oryza sativa L.), simulation models like ORYZA2000 and CERES-Rice have been used to explore adaptation options to climate change and weather-related stresses (drought, heat). Output of these models is very sensitive to accurate modelling of crop development, i.e. phenology. What has to

  7. Machine learning techniques in disease forecasting: a case study on rice blast prediction

    Directory of Open Access Journals (Sweden)

    Kapoor Amar S

    2006-11-01

    developed a SVM-based web server for rice blast prediction, a first of its kind worldwide, which can help the plant science community and farmers in their decision making process. The server is freely available at http://www.imtech.res.in/raghava/rbpred/.

  8. Effect Application of Sea Sand, Coconut and Banana Coir on the Growth and Yield of Rice Planted at Ustic Endoaquert Soil

    Directory of Open Access Journals (Sweden)

    Nurdin

    2014-06-01

    Full Text Available The research was aimed to study effect application of sea sand (SS, coconut coir (CC and banana coir (BC on the growth and yield of rice (Oryza sativa L. planted at Ustic Endoaquert soil. The pot experiment was carried out using a factorial design with 3 factors. The first factor was SS consisted of three levels i.e.: 0%, 25%, and 50%. The second and third factors were CC and BC, each consisted of three levels i.e.: 0, 10, and 20 Mg ha-1. Application of SS and BC significantly increased leaf length where the highest increasing percentage was 16.47% which was achieved at 25% SS application. Their effect on leaf numbers and tiller numbers were relatively not similar pattern where leaf number only increased about 65.52% by BC application, while tiller numbers only increased about 10.77% by SS application. Furthermore, the application of CC and BC significantly increased panicle numbers to 29.53% and 29.05%, respectively compared to control. All ameliorants significantly increased panicle numbers, but the best was CC with the increasing up to 46.49% at 20 Mg ha-1 CC compared to SS or BC application. However, only coconut coir significantly increased the rice grain numbers.

  9. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty.

    Science.gov (United States)

    Chen, Yi-Shih; Lo, Shuen-Fang; Sun, Peng-Kai; Lu, Chung-An; Ho, Tuan-Hua D; Yu, Su-May

    2015-01-01

    Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold. HVA1 was highly accumulated in root apical meristem (RAM) and lateral root primordia (LRP) after ABA/stress treatments, leading to enhanced root system expansion. Water-use efficiency (WUE) and biomass also increased in transgenic rice, likely due to the maintenance of normal cell functions and metabolic activities conferred by HVA1 which is capable of stabilizing proteins, under osmotic stress. HVA1 promotes lateral root (LR) initiation, elongation and emergence and primary root (PR) elongation via an auxin-dependent process, particularly by intensifying asymmetrical accumulation of auxin in LRP founder cells and RAM, even under ABA/stress-suppressive conditions. We demonstrate a successful application of an inducible promoter in regulating the spatial and temporal expression of HVA1 for improving root architecture and multiple stress tolerance without yield penalty. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.-S. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Vojinovic, V. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Patino, R. [Cinvestav-Merida, Departamento de Fisica Aplicada, Km. 6 carretera antigua a Progreso, AP 73 Cordemex, 97310 Merida, Yucatan (Mexico); Maskow, Th. [UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, D-04318 Leipzig (Germany); Stockar, U. von [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)]. E-mail: urs.vonStockar@epfl.ch

    2007-06-25

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol{sup -1} of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure.

  11. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    International Nuclear Information System (INIS)

    Liu, J.-S.; Vojinovic, V.; Patino, R.; Maskow, Th.; Stockar, U. von

    2007-01-01

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol -1 of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure

  12. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database

    DEFF Research Database (Denmark)

    Niu, Mutian; Kebreab, Ermias; Hristov, Alexander N

    2018-01-01

    data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4production (g/day per cow), yield...

  13. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.

    Science.gov (United States)

    Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J

    2018-01-22

    Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.

  14. [Climate change impacts on yield of Cordyceps sinensis and research on yield prediction model of C. sinensis].

    Science.gov (United States)

    Zhu, Shou-Dong; Huang, Lu-Qi; Guo, Lan-Ping; Ma, Xing-Tian; Hao, Qing-Xiu; Le, Zhi-Yong; Zhang, Xiao-Bo; Yang, Guang; Zhang, Yan; Chen, Mei-Lan

    2017-04-01

    Cordyceps sinensis is a Chinese unique precious herbal material, its genuine producing areas covering Naqu, Changdu in Qinghai Tibet Plateau, Yushu in Qinghai province and other regions. In recent 10 years, C. sinensis resources is decreasing as a result of the blindly and excessively perennial dug. How to rationally protect, develop and utilize of the valuable resources of C. sinensis has been referred to an important field of research on C. sinensis. The ecological environment and climate change trend of Qinghai Tibet plateau happens prior to other regions, which means that the distribution and evolution of C. sinensis are more obvious and intense than those of the other populations. Based on RS (remote sensing)/GIS(geographic information system) technology, this paper utilized the relationship between the snowline elevation, the average temperature, precipitation and sunshine hours in harvest period (April and may) of C. sinensis and the actual production of C. sinensis to establish a weighted geometric mean model. The model's prediction accuracy can reach 82.16% at least in forecasting C. sinensis year yield in Naqu area in every early June. This study can provide basic datum and information for supporting the C. sinensis industry healthful, sustainable development. Copyright© by the Chinese Pharmaceutical Association.

  15. Predicting spring barley yield from variety-specific yield potential, disease resistance and straw length, and from environment-specific disease loads and weed pressure

    DEFF Research Database (Denmark)

    Østergård, Hanne; Kristensen, Kristian; Pinnschmidt, Hans O.

    2008-01-01

    For low-input crop production, well-characterised varieties increase the possibilities of managing diseases and weeds. This analysis aims at developing a framework for analyzing grain yield using external varietal information about disease resistance, weed competitiveness and yield potential and ...... growth habit. Higher grain yield was thus predicted for taller plants under weed pressure. The results are discussed in relation to the model framework, impact of the considered traits and use of information from conventional variety testing in organic cropping systems....

  16. Performance evaluation of various classifiers for color prediction of rice paddy plant leaf

    Science.gov (United States)

    Singh, Amandeep; Singh, Maninder Lal

    2016-11-01

    The food industry is one of the industries that uses machine vision for a nondestructive quality evaluation of the produce. These quality measuring systems and softwares are precalculated on the basis of various image-processing algorithms which generally use a particular type of classifier. These classifiers play a vital role in making the algorithms so intelligent that it can contribute its best while performing the said quality evaluations by translating the human perception into machine vision and hence machine learning. The crop of interest is rice, and the color of this crop indicates the health status of the plant. An enormous number of classifiers are available to solve the purpose of color prediction, but choosing the best among them is the focus of this paper. Performance of a total of 60 classifiers has been analyzed from the application point of view, and the results have been discussed. The motivation comes from the idea of providing a set of classifiers with excellent performance and implementing them on a single algorithm for the improvement of machine vision learning and, hence, associated applications.

  17. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa).

    Science.gov (United States)

    Begum, Hasina; Spindel, Jennifer E; Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R

    2015-01-01

    Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models.

  18. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    Science.gov (United States)

    Chen, Jingguang; Fan, Xiaoru; Qian, Kaiyun; Zhang, Yong; Song, Miaoquan; Liu, Yu; Xu, Guohua; Fan, Xiaorong

    2017-10-01

    The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15 N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm 15 NH 4 15 NO 3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO 3 - uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks

    Directory of Open Access Journals (Sweden)

    Hong Cheng

    2017-01-01

    Full Text Available (1 Background: Since early yield prediction is relevant for resource requirements of harvesting and marketing in the whole fruit industry, this paper presents a new approach of using image analysis and tree canopy features to predict early yield with artificial neural networks (ANN; (2 Methods: Two back propagation neural network (BPNN models were developed for the early period after natural fruit drop in June and the ripening period, respectively. Within the same periods, images of apple cv. “Gala” trees were captured from an orchard near Bonn, Germany. Two sample sets were developed to train and test models; each set included 150 samples from the 2009 and 2010 growing season. For each sample (each canopy image, pixels were segmented into fruit, foliage, and background using image segmentation. The four features extracted from the data set for the canopy were: total cross-sectional area of fruits, fruit number, total cross-section area of small fruits, and cross-sectional area of foliage, and were used as inputs. With the actual weighted yield per tree as a target, BPNN was employed to learn their mutual relationship as a prerequisite to develop the prediction; (3 Results: For the developed BPNN model of the early period after June drop, correlation coefficients (R2 between the estimated and the actual weighted yield, mean forecast error (MFE, mean absolute percentage error (MAPE, and root mean square error (RMSE were 0.81, −0.05, 10.7%, 2.34 kg/tree, respectively. For the model of the ripening period, these measures were 0.83, −0.03, 8.9%, 2.3 kg/tree, respectively. In 2011, the two previously developed models were used to predict apple yield. The RMSE and R2 values between the estimated and harvested apple yield were 2.6 kg/tree and 0.62 for the early period (small, green fruit and improved near harvest (red, large fruit to 2.5 kg/tree and 0.75 for a tree with ca. 18 kg yield per tree. For further method verification, the cv.

  20. Computational prediction and experimental verification of HVA1-like abscisic acid responsive promoters in rice (Oryza sativa).

    Science.gov (United States)

    Ross, Christian; Shen, Qingxi J

    2006-09-01

    Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.

  1. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality.

    Science.gov (United States)

    Thitisaksakul, Maysaya; Tananuwong, Kanitha; Shoemaker, Charles F; Chun, Areum; Tanadul, Orn-u-ma; Labavitch, John M; Beckles, Diane M

    2015-03-04

    The aim of this work was to examine agronomic, compositional, and functional changes in rice (Oryza sativa L. cv. Nipponbare) grains from plants grown under low-to-moderate salinity stress in the greenhouse. Plants were grown in sodium chloride-containing soil (2 or 4 dS/m(2) electrical conductivity), which was imposed 4-weeks after transplant (called Seedling EC2 and EC4) or after the appearance of the anthers (called Anthesis EC2 and EC4). The former simulates field conditions while the latter permits observation of the isolated effect of salt on grain filling processes. Key findings of this study are the following: (i) Plants showed adaptive responses to prolonged salt treatment with no negative effects on grain weight or fertility. Seedling EC2 plants had more panicles and enhanced caryopsis dimensions, while surprisingly, Seedling EC4 plants did not differ from the control group in the agronomic parameters measured. (ii) Grain starch increased in Seedling EC4 (32.6%) and Anthesis EC2 (39%), respectively, suggesting a stimulatory effect of salt on starch accumulation. (iii) The salinity treatment of 2 dS/m(2) was better tolerated at anthesis than the 4 dS/m(2) treatment as the latter led to reduced grain weight (28.8%) and seed fertility (19.4%) and compensatory increases in protein (20.1%) and nitrogen (19.8%) contents. (iv) Although some salinity treatments led to changes in starch content, these did not alter starch fine structure, morphology, or composition. We observed no differences in reducing sugar and amylose content or starch granule size distribution among any of the treatments. The only alterations in starch were limited to small changes in thermal properties and glucan chain distribution, which were only seen in the Anthesis EC4 treatment. This similarity of compositional and functional features was supported by multivariate analysis of all variables measured, which suggested that differences due to treatments were minimal. Overall, this study

  2. Studies on the physiological and ecological characteristics of high yielding rice variety with high fertilizer response, (3)

    International Nuclear Information System (INIS)

    Hayami, Kazuhiko

    1983-01-01

    As the characteristics of this rice variety, in order to heighten the efficiency of receiving and supplying systems and to maintain balance between them, it is necessary to increase the nitrogen-absorbing ability in the latter period of growth. For the purpose, it is important to clarify the relation among the distribution of root population, respiration activity and nutrient absorption, and the distribution and movement in the plants. As the results of investigation made from this viewpoit, clear difference was observed about the distribution of root population and activity among the varieties. It was confirmed that these facts were based on the amount of root development and extending angle in close relation to the nutrition of nitrogen and carbon hydrate in the parts above ground. The distribution of root population of lower layer distribution and activity type in improved varieties, the control of the respiration activity of root population by the photosynthesis ability of plant population through the supply of assimilated products and so on were clarified. The improvement of plants has been advanced so as to increase the distribution of root population and activity. (Kako, I.)

  3. Evolution of new rice varieties by induced mutations to increase yield and resistance to diseases and to improve seed quality

    International Nuclear Information System (INIS)

    Miah, A.J.; Bhatti, I.M.

    1968-01-01

    Seeds of two indica rice varieties namely, Kangni-27 (a coarse variety) and Dokri Basmati (a fine variety) were irradiated with 20, 25, 30, 35, 40, 45 and 50 kR of gamma rays from a 13,000-Ci 60 Co source. In the M 1 generation (1964), germination percentage, seedling height and seed fertility were studied. The data indicated that Kangni-27 is more radioresistant than Dokri Basmati. In the M 2 generation (1965) two polygenic traits, i.e. leaf size and grains per unit length were studied. From the analysis of the data it was found that variability was greater in the irradiated populations than in the non-irradiated controls. Apart from the study of the polygenic traits, several mutants which appeared to be useful to the breeder (e.g. dwarf, short-culm and early flowering) were isolated form the irradiated populations of Kangni-27. In the M 3 generation (1966) several agronomically important characters were studied in all the mutants isolated in the M 2 generation. It was noticed that the mean values of most of the characters of all the mutants deviated from the mean values of the respective controls. These deviations were both negative and positive. Further analysis is in progress. Three more experiments were started, two in the year 1965 on the effects of gamma rays and one in 1966 to compare the effects of EMS and gamma rays. (author). 31 refs, 3 figs, 6 tabs

  4. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  5. Analysis of the production of salmon fillet - Prediction of production yield

    DEFF Research Database (Denmark)

    Johansson, Gine Ørnholt; Guðjónsdóttir, María; Nielsen, Michael Engelbrecht

    2017-01-01

    The aim was to investigate the influence of raw material variation in Atlantic salmon from aquaculture on filleting yield, and to develop a decision tool for choosing the appropriate raw material for optimized yield. This was achieved by tracking salmon on an individual level (n = 60) through...... a primary production site. The majority of the salmon exhibited a heavier right fillet compared to the left fillet after filleting. No explicit explanation was found for this observation although the heading procedure was shown to have a large impact. A Partial Least Square model was built to predict....... This may facilitate optimal planning of the production of salmon fillets by ordering and assigning the right batch to the right product category to obtain an optimal yield and quality....

  6. Remotely sensed vegetation indices for seasonal crop yields predictions in the Czech Republic

    Science.gov (United States)

    Hlavinka, Petr; Semerádová, Daniela; Balek, Jan; Bohovic, Roman; Žalud, Zdeněk; Trnka, Miroslav

    2015-04-01

    Remotely sensed vegetation indices by satellites are valuable tool for vegetation conditions assessment also in the case of field crops. This study is based on the use of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard Terra satellite. Data available from the year 2000 were analyzed and tested for seasonal yields predictions within selected districts of the Czech Republic (Central Europe). Namely the yields of spring barley, winter wheat and oilseed winter rape during the period from 2000 to 2014 were assessed. Observed yields from 14 districts (NUTS 4) were collected and thus 210 seasons were included. Selected districts differ considerably in their soil fertility and terrain configuration and represent transect across various agroclimatic conditions (from warm and dry to relative cool and wet regions). Two approaches were tested: 1) using of composite remotely sensed data (available in 16 day time step) provided by the USGS (https://lpdaac.usgs.gov/); 2) using daily remotely sensed data in combination with originally developed smoothing method. The yields were successfully predicted based on established regression models (remotely sensed data used as independent parameter). Besides others the impact of severe drought episodes within vegetation were identified and yield reductions at district level predicted (even before harvest). As a result the periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above normal yields of field crops could be predicted by proposed method within study region up to 30 days prior to the harvest. It could be concluded that remotely sensed vegetation conditions assessment should be important part of early warning systems focused on drought. Such information should be widely available for various users (decision makers, farmers, etc.) in

  7. Development and validation of equations utilizing lamb vision system output to predict lamb carcass fabrication yields.

    Science.gov (United States)

    Cunha, B C N; Belk, K E; Scanga, J A; LeValley, S B; Tatum, J D; Smith, G C

    2004-07-01

    This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value

  8. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  9. A Modified Spatiotemporal Fusion Algorithm Using Phenological Information for Predicting Reflectance of Paddy Rice in Southern China

    Directory of Open Access Journals (Sweden)

    Mengxue Liu

    2018-05-01

    Full Text Available Satellite data for studying surface dynamics in heterogeneous landscapes are missing due to frequent cloud contamination, low temporal resolution, and technological difficulties in developing satellites. A modified spatiotemporal fusion algorithm for predicting the reflectance of paddy rice is presented in this paper. The algorithm uses phenological information extracted from a moderate-resolution imaging spectroradiometer enhanced vegetation index time series to improve the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM. The algorithm is tested with satellite data on Yueyang City, China. The main contribution of the modified algorithm is the selection of similar neighborhood pixels by using phenological information to improve accuracy. Results show that the modified algorithm performs better than ESTARFM in visual inspection and quantitative metrics, especially for paddy rice. This modified algorithm provides not only new ideas for the improvement of spatiotemporal data fusion method, but also technical support for the generation of remote sensing data with high spatial and temporal resolution.

  10. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization

    DEFF Research Database (Denmark)

    Salo, T J; Palosuo, T; Kersebaum, K C

    2016-01-01

    Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen......, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area...... ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi...

  11. Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

    DEFF Research Database (Denmark)

    Baum, Andreas; Dominiak, Malgorzata Maria; Vidal-Melgosa, Silvia

    2017-01-01

    and carbohydrate microarray analysis were performed directly on the crude lime peel extracts during the time course of the extractions. Multivariate analysis of the data was carried out to predict final pectin yields. Fourier transform infrared spectroscopy (FTIR) was found applicable for determining the optimal...... extraction time for the enzymatic and acidic extraction processes, respectively. The combined results of FTIR and carbohydrate microarray analysis suggested major differences in the crude pectin extracts obtained by enzymatic and acid extraction, respectively. Enzymatically extracted pectin, thus, showed......, and that FTIR and carbohydrate microarray analysis have potential to be developed into online process analysis tools for prediction of pectin extraction yields and pectin features from measurements on crude pectin extracts....

  12. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, Geoffrey S., E-mail: Geoffrey.kinsey@ee.doe.gov [U.S. Department of Energy, 950 L’Enfant Plaza, Washington, DC 20024 (United States)

    2015-09-28

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  13. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2016-12-01

    Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha -1 ) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5-91.2 % and the concentrations of Cd and Pb in brown rice by 20.9-50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha -1 ) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.

  14. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China.

    Science.gov (United States)

    Qin, Xiaobo; Li, Yu'e; Wang, Hong; Liu, Chong; Li, Jianling; Wan, Yunfan; Gao, Qingzhu; Fan, Fenliang; Liao, Yulin

    2016-11-01

    To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5tha(-1) biochar (BC1), application of 10tha(-1) biochar (BC2), application of 10tha(-1) biochar (BC3), rice straw return at 2400kgha(-1)(RS) and inoculated rice straw return at 2400kgha(-1)(RI). The results indicated that biochar amendment significantly decreased methane (CH4) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH4 flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p<0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20tha(-1)) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Tensile properties and temperature-dependent yield strength prediction of GH4033 wrought superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jianzuo [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Li, Weiguo, E-mail: wgli@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xianhe; Kou, Haibo; Shao, Jiaxing; Geng, Peiji; Deng, Yong [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Fang, Daining [LTCS and College of Engineering, Peking University, Beijing 100871 (China)

    2016-10-31

    The tensile properties of superalloy GH4033 have been evaluated at temperatures ranging from room temperature to 1000 °C. Fracture surfaces and precipitation were observed using a field-emission scanning electron microscope (FE-SEM). The alloy mainly consisted of γ’ precipitate particles homogeneously dispersed in the γ matrix interior. The effects of dynamic strain aging and precipitation on the strength were verified. A temperature-dependent yield strength model was developed to describe the temperature and precipitation effects on the alloy's yield behaviour. The model is able to consider the effect of precipitation strengthening on the yield strength. The yield behaviour of the precipitation-strengthened superalloy was demonstrated to be adequately predictable over a wide range of temperatures. Note that this model reflects the quantitative relationship between the yield strength of the precipitation-strengthened superalloy and the temperature, the elastic modulus, the specific heat capacity at constant pressure, Poisson's ratio, the precipitate particle size and the volume fraction of the particles.

  16. Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction

    Science.gov (United States)

    Wagstaff, Kiri L.; Lane, Terran

    2010-01-01

    An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration.

  17. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaobo [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, The Key Laboratory for Agro-Environment, Ministry of Agriculture, No.12 Zhongguancun South Street, Haidian district, Beijing 100081 (China); Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, Swift Current, Saskatchewan S9H 3X2 (Canada); Li, Yu' e, E-mail: liyue@caas.cn [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, The Key Laboratory for Agro-Environment, Ministry of Agriculture, No.12 Zhongguancun South Street, Haidian district, Beijing 100081 (China); Wang, Hong [Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, P.O. Box 1030, Swift Current, Saskatchewan S9H 3X2 (Canada); Liu, Chong; Li, Jianling; Wan, Yunfan; Gao, Qingzhu [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, The Key Laboratory for Agro-Environment, Ministry of Agriculture, No.12 Zhongguancun South Street, Haidian district, Beijing 100081 (China); Fan, Fenliang [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liao, Yulin [Soils and Fertilizer Institute of Hunan Province, Changsha 410125 (China)

    2016-11-01

    To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5 t ha{sup −} {sup 1} biochar (BC1), application of 10 t ha{sup −} {sup 1} biochar (BC2), application of 10 t ha{sup −} {sup 1} biochar (BC3), rice straw return at 2400 kg ha{sup −} {sup 1}(RS) and inoculated rice straw return at 2400 kg ha{sup −} {sup 1}(RI). The results indicated that biochar amendment significantly decreased methane (CH{sub 4}) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH{sub 4} flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p < 0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20 t ha{sup −} {sup 1}) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system. - Graphical abstract: Relative change ratio of different biochar amendments and rice straw residues to CK treatment during the

  18. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China

    International Nuclear Information System (INIS)

    Qin, Xiaobo; Li, Yu'e; Wang, Hong; Liu, Chong; Li, Jianling; Wan, Yunfan; Gao, Qingzhu; Fan, Fenliang; Liao, Yulin

    2016-01-01

    To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5 t ha"− "1 biochar (BC1), application of 10 t ha"− "1 biochar (BC2), application of 10 t ha"− "1 biochar (BC3), rice straw return at 2400 kg ha"− "1(RS) and inoculated rice straw return at 2400 kg ha"− "1(RI). The results indicated that biochar amendment significantly decreased methane (CH_4) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH_4 flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p < 0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20 t ha"− "1) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system. - Graphical abstract: Relative change ratio of different biochar amendments and rice straw residues to CK treatment during the rice growing seasons from 2012 to 2015. * and *** stand for

  19. Identification of a Rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines

    Directory of Open Access Journals (Sweden)

    Prado Gustavo

    2010-01-01

    Full Text Available Abstract Background Developing new population types based on interspecific introgressions has been suggested by several authors to facilitate the discovery of novel allelic sources for traits of agronomic importance. Chromosome segment substitution lines from interspecific crosses represent a powerful and useful genetic resource for QTL detection and breeding programs. Results We built a set of 64 chromosome segment substitution lines carrying contiguous chromosomal segments of African rice Oryza glaberrima MG12 (acc. IRGC103544 in the genetic background of Oryza sativa ssp. tropical japonica (cv. Caiapó. Well-distributed simple-sequence repeats markers were used to characterize the introgression events. Average size of the substituted chromosomal segments in the substitution lines was about 10 cM and covered the whole donor genome, except for small regions on chromosome 2 and 4. Proportions of recurrent and donor genome in the substitution lines were 87.59% and 7.64%, respectively. The remaining 4.78% corresponded to heterozygotes and missing data. Strong segregation distortion was found on chromosomes 3 and 6, indicating the presence of interspecific sterility genes. To illustrate the advantages and the power of quantitative trait loci (QTL detection using substitution lines, a QTL detection was performed for scored traits. Transgressive segregation was observed for several traits measured in the population. Fourteen QTLs for plant height, tiller number per plant, panicle length, sterility percentage, 1000-grain weight and grain yield were located on chromosomes 1, 3, 4, 6 and 9. Furthermore, a highly significant QTL controlling resistance to the Rice stripe necrosis virus was located between SSR markers RM202-RM26406 (44.5-44.8 cM on chromosome 11. Conclusions Development and phenotyping of CSSL libraries with entire genome coverage represents a useful strategy for QTL discovery. Mapping of the RSNV locus represents the first identification

  20. Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment.

    Science.gov (United States)

    Chen, Charles P; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-02-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].

  1. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  2. Manufactering of par-fried french-fries. Part 3: a blueprint to predict the maximum production yield

    NARCIS (Netherlands)

    Somsen, D.J.; Capelle, A.; Tramper, J.

    2004-01-01

    Very little research on the production yield of par-fried French-fries has been reported in the literature. This paper bridges the knowledge gap and outlines the development of a model to predict the maximum production yield of par-fried French-fries. This yield model can be used to calculate the

  3. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.

    Science.gov (United States)

    Onogi, Akio; Watanabe, Maya; Mochizuki, Toshihiro; Hayashi, Takeshi; Nakagawa, Hiroshi; Hasegawa, Toshihiro; Iwata, Hiroyoshi

    2016-04-01

    It is suggested that accuracy in predicting plant phenotypes can be improved by integrating genomic prediction with crop modelling in a single hierarchical model. Accurate prediction of phenotypes is important for plant breeding and management. Although genomic prediction/selection aims to predict phenotypes on the basis of whole-genome marker information, it is often difficult to predict phenotypes of complex traits in diverse environments, because plant phenotypes are often influenced by genotype-environment interaction. A possible remedy is to integrate genomic prediction with crop/ecophysiological modelling, which enables us to predict plant phenotypes using environmental and management information. To this end, in the present study, we developed a novel method for integrating genomic prediction with phenological modelling of Asian rice (Oryza sativa, L.), allowing the heading date of untested genotypes in untested environments to be predicted. The method simultaneously infers the phenological model parameters and whole-genome marker effects on the parameters in a Bayesian framework. By cultivating backcross inbred lines of Koshihikari × Kasalath in nine environments, we evaluated the potential of the proposed method in comparison with conventional genomic prediction, phenological modelling, and two-step methods that applied genomic prediction to phenological model parameters inferred from Nelder-Mead or Markov chain Monte Carlo algorithms. In predicting heading dates of untested lines in untested environments, the proposed and two-step methods tended to provide more accurate predictions than the conventional genomic prediction methods, particularly in environments where phenotypes from environments similar to the target environment were unavailable for training genomic prediction. The proposed method showed greater accuracy in prediction than the two-step methods in all cross-validation schemes tested, suggesting the potential of the integrated approach in

  4. Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves

    Science.gov (United States)

    Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian

    2017-10-01

    The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.

  5. (PGMS) rice

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... tics, led us to predict that pollen cell abortion in this type of rice when ... averages of natural day-light-lengths and temperatures were used. A natural long ... blocks were allowed to grow under natural growth conditions (which.

  6. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Edilberto Guevara-Pérez

    2007-01-01

    Full Text Available Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km2, 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment yield models: Langbein- Schumm, Universal Soil Loss Equation-USLE and Poesen, are compared with observed data from five sub basins with records of twenty to thirty years. Men values of sediment yield for low, middle and upper Caroní are of 27, 76, 17 t/km2-year, respectively; and 46 and 78 t/km2-year for low and upper Paragua sub basins are. Standard errors of estimates vary between 13 and 29 for Langbein-Schumm model; between 8 and 32 for USLE procedure; and between 9 and 79, for Poesen model. Sediment yield predictions by Langbein-Schumm model seem to the best in Caroní basin.

  7. Rice Crop Monitoring and Yield Estimation Through Cosmo Skymed and TerraSAR-X: A SAR-Based Experience in India

    OpenAIRE

    Pazhanivelan, S.; Kannan, P.; Christy Nirmala Mary, P.; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M.

    2015-01-01

    Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used...

  8. (18)F-FDG uptake predicts diagnostic yield of transbronchial biopsy in peripheral lung cancer.

    Science.gov (United States)

    Umeda, Yukihiro; Demura, Yoshiki; Anzai, Masaki; Matsuoka, Hiroki; Araya, Tomoyuki; Nishitsuji, Masaru; Nishi, Koichi; Tsuchida, Tatsuro; Sumida, Yasuyuki; Morikawa, Miwa; Ameshima, Shingo; Ishizaki, Takeshi; Kasahara, Kazuo; Ishizuka, Tamotsu

    2014-07-01

    Recent advances in endobronchial ultrasonography with a guide sheath (EBUS-GS) have enabled better visualization of distal airways, while virtual bronchoscopic navigation (VBN) has been shown useful as a guide to navigate the bronchoscope. However, indications for utilizing VBN and EBUS-GS are not always clear. To clarify indications for a bronchoscopic examination using VBN and EBUS-GS, we evaluated factors that predict the diagnostic yield of a transbronchial biopsy (TBB) procedure for peripheral lung cancer (PLC) lesions. We retrospectively reviewed the charts of 194 patients with 201 PLC lesions (≤3cm mean diameter), and analyzed the association of diagnostic yield of TBB with [(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG) positron emission tomography and chest computed tomography (CT) findings. The diagnostic yield of TBB using VBN and EBUS-GS was 66.7%. High maximum standardized uptake value (SUVmax), positive bronchus sign, and ground-glass opacity component shown on CT were all significant predictors of diagnostic yield, while multivariate analysis showed only high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign as significant predictors. Diagnostic yield was higher for PLC lesions with high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign (84.6%) than for those with SUVmax PLC lesions. (18)F-FDG uptake and bronchus sign may indicate for the accurate application of bronchoscopy with those modalities for diagnosing PLC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Gaudi, B. Scott; Skowron, Jan; Penny, Matthew T.; Gould, Andrew P.; Han, Cheongho; Nataf, David

    2014-01-01

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg 2 field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t exp = 120 s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ M p /M ⊕ ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ M p /M ⊕ ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ M p /M ⊕ < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  10. Simulating and Predicting Cereal Crop Yields in Ethiopia: Model Calibration and Verification

    Science.gov (United States)

    Yang, M.; Wang, G.; Ahmed, K. F.; Eggen, M.; Adugna, B.; Anagnostou, E. N.

    2017-12-01

    Agriculture in developing countries are extremely vulnerable to climate variability and changes. In East Africa, most people live in the rural areas with outdated agriculture techniques and infrastructure. Smallholder agriculture continues to play a key role in this area, and the rate of irrigation is among the lowest of the world. As a result, seasonal and inter-annual weather patterns play an important role in the spatiotemporal variability of crop yields. This study investigates how various climate variables (e.g., temperature, precipitation, sunshine) and agricultural practice (e.g., fertilization, irrigation, planting date) influence cereal crop yields using a process-based model (DSSAT) and statistical analysis, and focuses on the Blue Nile Basin of Ethiopia. The DSSAT model is driven with meteorological forcing from the ECMWF's latest reanalysis product that cover the past 35 years; the statistical model will be developed by linking the same meteorological reanalysis data with harvest data at the woreda level from the Ethiopian national dataset. Results from this study will set the stage for the development of a seasonal prediction system for weather and crop yields in Ethiopia, which will serve multiple sectors in coping with the agricultural impact of climate variability.

  11. Relevance of the Lin's and Host hydropedological models to predict grape yield and wine quality

    Directory of Open Access Journals (Sweden)

    E. A. C. Costantini

    2009-09-01

    Full Text Available The adoption of precision agriculture in viticulture could be greatly enhanced by the diffusion of straightforward and easy to be applied hydropedological models, able to predict the spatial variability of available soil water. The Lin's and Host hydropedological models were applied to standard soil series descriptions and hillslope position, to predict the distribution of hydrological functional units in two vineyard and their relevance for grape yield and wine quality. A three-years trial was carried out in Chianti (Central Italy on Sangiovese. The soils of the vineyards differentiated in structure, porosity and related hydropedological characteristics, as well as in salinity. Soil spatial variability was deeply affected by earth movement carried out before vine plantation. Six plots were selected in the different hydrological functional units of the two vineyards, that is, at summit, backslope and footslope morphological positions, to monitor soil hydrology, grape production and wine quality. Plot selection was based upon a cluster analysis of local slope, topographic wetness index (TWI, and cumulative moisture up to the root limiting layer, appreciated by means of a detailed combined geophysical survey. Water content, redox processes and temperature were monitored, as well as yield, phenological phases, and chemical analysis of grapes. The isotopic ratio δ13C was measured in the wine ethanol upon harvesting to evaluate the degree of stress suffered by vines. The grapes in each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.

    The results demonstrated that the combined application of the two hydropedological models can be used for the prevision of the moisture status of soils cultivated with grape during summertime in Mediterranean climate. As correctly foreseen by the models, the amount of mean daily transpirable soil water (TSW during

  12. Earing Prediction in Cup Drawing using the BBC2008 Yield Criterion

    Science.gov (United States)

    Vrh, Marko; Halilovič, Miroslav; Starman, Bojan; Štok, Boris; Comsa, Dan-Sorin; Banabic, Dorel

    2011-08-01

    The paper deals with constitutive modelling of highly anisotropic sheet metals. It presents FEM based earing predictions in cup drawing simulation of highly anisotropic aluminium alloys where more than four ears occur. For that purpose the BBC2008 yield criterion, which is a plane-stress yield criterion formulated in the form of a finite series, is used. Thus defined criterion can be expanded to retain more or less terms, depending on the amount of given experimental data. In order to use the model in sheet metal forming simulations we have implemented it in a general purpose finite element code ABAQUS/Explicit via VUMAT subroutine, considering alternatively eight or sixteen parameters (8p and 16p version). For the integration of the constitutive model the explicit NICE (Next Increment Corrects Error) integration scheme has been used. Due to the scheme effectiveness the CPU time consumption for a simulation is comparable to the time consumption of built-in constitutive models. Two aluminium alloys, namely AA5042-H2 and AA2090-T3, have been used for a validation of the model. For both alloys the parameters of the BBC2008 model have been identified with a developed numerical procedure, based on a minimization of the developed cost function. For both materials, the predictions of the BBC2008 model prove to be in very good agreement with the experimental results. The flexibility and the accuracy of the model together with the identification and integration procedure guarantee the applicability of the BBC2008 yield criterion in industrial applications.

  13. From field to region yield predictions in response to pedo-climatic variations in Eastern Canada

    Science.gov (United States)

    JÉGO, G.; Pattey, E.; Liu, J.

    2013-12-01

    The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%prediction to climate variations. Using RS data to re-initialize input parameters that are not readily available (e.g. seeding date) is considered an effective way

  14. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    International Nuclear Information System (INIS)

    Potgieter A B; Rodriguez D; Power B; Mclean J; Davis P

    2014-01-01

    and 90m for thermal) satellite platforms. Results showed that spatial variations in crop yield were related to a satellite derived canopy stress index (CSIsat) and a moisture stress index (MSIsat). A weather station level canopy stress index (CSIws) calculated at midday was correlated to the CSIsat at late morning. In addition, a strong linear relationship was observed between EVI and LST at point scale throughout the crop growth period. Differences were smallest at anthesis when the canopy closure was highest. This suggests that LST imagery data around flowering could be used to calculate crop stress over large areas of the crop. The harvested yield was related (R 2 = 0.67) to CSIsat using a fix date across all fields. This relationship improved (R 2 = 0.92) using both indices from all five dates across all fields during the crop growth period. Here we successfully showed that satellite derived crop attributes (CSIsat and MSIsat) can account for most of the variability in final crop yield and that they can be used to predict crop yield at field scales. Applications of these results could enhance the ability of producers to hedge their financial on -farm crop production losses due to in-season water stress by taking crop insurance. This is likely to further improve their adaptive capacity and thus strengthening the long-term viability of the industry domestically and elsewhere

  15. Comparison of first quadrant yield loci for Ti--6Al--4V with those predicted by Knoop hardness measurements

    International Nuclear Information System (INIS)

    Amateau, M.F.; Hanna, W.D.

    1975-01-01

    Knoop hardness impressions were used to construct biaxial yield loci in Ti--6A l--4V for a variety of textures. These results were compared with partial yield loci in the first quadrant, determined from flow stress measurements at three stress ratios. In each case, the Knoop hardness technique was not sufficiently sensitive to predict the shape of the yield locus, the largest discrepancy occurring for the most anisotropic sample. (U.S.)

  16. Prediction of biogas yield and its kinetics in reed canary grass using near infrared reflectance spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Gislum, René; Jørgensen, Uffe

    2013-01-01

    A rapid method is needed to assess biogas and methane yield potential of various kinds of substrate prior to anaerobic digestion. This study reports near infrared reflectance spectroscopy (NIRS) as a rapid alternative method to the conventional batch methods for prediction of specific biogas yield...

  17. Comparison of Regression Techniques to Predict Response of Oilseed Rape Yield to Variation in Climatic Conditions in Denmark

    DEFF Research Database (Denmark)

    Sharif, Behzad; Makowski, David; Plauborg, Finn

    2017-01-01

    Statistical regression models represent alternatives to process-based dynamic models for predicting the response of crop yields to variation in climatic conditions. Regression models can be used to quantify the effect of change in temperature and precipitation on yields. However, it is difficult ...

  18. Consumo e eficiência do uso da água e componentes do rendimento do arroz irrigado Water use ifficiency, water consumiption and rice yield components

    Directory of Open Access Journals (Sweden)

    Marcos Gregório Ramos Hernandez

    1997-08-01

    Full Text Available Este trabalho teve como objetivo avaliar o efeito de dois níveis de manejo da água, preparo do solo e de herbicidas no rendimento de grãos, consumo de água, eficiência do uso da água e nos componentes do rendimento do arroz irrigado. O experimento foi conduzido no ano agrícola 1993/1994 em área da Universidade Federal de Santa Maria, Santa Maria, RS. A cultivar de arroz BR-IRGA-414 foi semeada em linhas, em 22 de dezembro de 1993. O delineamento experimental foi de blocos ao acaso, trifatorial (2³, constituído de duas épocas do início da irrigação (15 e 30 dias após a emergência - DAE, dois sistemas de preparo do solo (preparo convencional e cultivo mínimo e controle de plantas invasoras (com e sem uso de herbicidas. Os resultados demonstraram que o consumo de água não diferiu significativamente entre os tratamentos. A associação entre o início da irrigação aos 30 DAE e o cultivo mínimo promoveu menor eficiência do uso da água. O inicio da irrigação aos 15 DAE proporcionou maior índice de colheita com maior número de panículas por metro quadrado e também menor esterilidade de espiguetas em relação à irrigação com início aos 30 DAE.The objective of this experiment was to study the effect oftwo water managments, tiliage systems and weed contral on rice yield, water use and water use efficiency and crop yield components. The experiment was conducted in 1993/94 crop growing season in the experimental field ofthe Federal University of Santa Maria, Santa Maria - RS. Rice cultivar BR-IRGA-414 was sowed in rows in December 22, 1993. A factorial (23 experiment in a completely randomized block design was used wiih two irrigation dates (15 and 30 days after emergency - DAE, two soil tillage system (minimum and conventional and two weed control leveis (with and withoul herbicide appiication. The results indicate that the water consumption was similar among ali treatments. The interaction between irrigation at 30 DAE

  19. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras

    Science.gov (United States)

    Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji

    2017-03-01

    Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.

  20. Choosing algorithms for TB screening: a modelling study to compare yield, predictive value and diagnostic burden.

    Science.gov (United States)

    Van't Hoog, Anna H; Onozaki, Ikushi; Lonnroth, Knut

    2014-10-19

    To inform the choice of an appropriate screening and diagnostic algorithm for tuberculosis (TB) screening initiatives in different epidemiological settings, we compare algorithms composed of currently available methods. Of twelve algorithms composed of screening for symptoms (prolonged cough or any TB symptom) and/or chest radiography abnormalities, and either sputum-smear microscopy (SSM) or Xpert MTB/RIF (XP) as confirmatory test we model algorithm outcomes and summarize the yield, number needed to screen (NNS) and positive predictive value (PPV) for different levels of TB prevalence. Screening for prolonged cough has low yield, 22% if confirmatory testing is by SSM and 32% if XP, and a high NNS, exceeding 1000 if TB prevalence is ≤0.5%. Due to low specificity the PPV of screening for any TB symptom followed by SSM is less than 50%, even if TB prevalence is 2%. CXR screening for TB abnormalities followed by XP has the highest case detection (87%) and lowest NNS, but is resource intensive. CXR as a second screen for symptom screen positives improves efficiency. The ideal algorithm does not exist. The choice will be setting specific, for which this study provides guidance. Generally an algorithm composed of CXR screening followed by confirmatory testing with XP can achieve the lowest NNS and highest PPV, and is the least amenable to setting-specific variation. However resource requirements for tests and equipment may be prohibitive in some settings and a reason to opt for symptom screening and SSM. To better inform disease control programs we need empirical data to confirm the modeled yield, cost-effectiveness studies, transmission models and a better screening test.

  1. Predicting seed yield in perennial ryegrass using repeated canopy reflectance measurements and PLSR

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Boelt, Birte

    2009-01-01

    with first year seed crops using three sowing rates and three spring nitrogen (N) application rates. PLSR models were developed for each year and showed correlation coefficients of 0.71, 0.76, and 0.92, respectively. Regression coefficients showed in these experiments that the optimum time for canopy...... reflectance measurements was from approximately 600 cumulative growing degree-days (CGDD) to approximately 900 CGDD. This is the period just before and at heading of the seed crop. Furthermore, regression coefficients showed that information about N and water is important. The results support the development......Repeated canopy reflectance measurements together with partial least-squares regression (PLSR) were used to predict seed yield in perennial ryegrass (Lolium perenne L.). The measurements were performed during the spring and summer growing seasons of 2001 to 2003 in three field experiments...

  2. Influence of Different Yield Loci on Failure Prediction with Damage Models

    Science.gov (United States)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2017-09-01

    Advanced high strength steels are widely used in the automotive industry to simultaneously improve crash performance and reduce the car body weight. A drawback of these multiphase steels is their sensitivity to damage effects and thus the reduction of ductility. For that reason the Forming Limit Curve is only partially suitable for this class of steels. An improvement in failure prediction can be obtained by using damage mechanics. The objective of this paper is to comparatively review the phenomenological damage model GISSMO and the Enhanced Lemaitre Damage Model. GISSMO is combined with three different yield loci, namely von Mises, Hill48 and Barlat2000 to investigate the influence of the choice of the plasticity description on damage modelling. The Enhanced Lemaitre Model is used with Hill48. An inverse parameter identification strategy for a DP1000 based on stress-strain curves and optical strain measurements of shear, uniaxial, notch and (equi-)biaxial tension tests is applied to calibrate the models. A strong dependency of fracture strains on the choice of yield locus can be observed. The identified models are validated on a cross-die cup showing ductile fracture with slight necking.

  3. Microscopic predictions of fission yields based on the time dependent GCM formalism

    International Nuclear Information System (INIS)

    Regnier, D.; Dubray, N.; Verriere, M.; Schunck, N.

    2016-01-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we have developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+ 239 Pu low energy induced fission. FELIX-1.0 gives full control on the numerical precision of fission product yields in neutron-induced fission, and its scalability also enables series of dynamical calculations on several potential energy surfaces. Preliminary results suggest an important sensitivity of our two-dimensional approach to the input potential energy surface

  4. Prediction of fission mass-yield distributions based on cross section calculations

    International Nuclear Information System (INIS)

    Hambsch, F.-J.; G.Vladuca; Tudora, Anabella; Oberstedt, S.; Ruskov, I.

    2005-01-01

    For the first time, fission mass-yield distributions have been predicted based on an extended statistical model for fission cross section calculations. In this model, the concept of the multi-modality of the fission process has been incorporated. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode are taken into account. De-convoluted fission cross sections for S1, S2 and SL modes for 235,238 U(n, f) and 237 Np(n, f), based on experimental branching ratios, were calculated for the first time in the incident neutron energy range from 0.01 to 5.5 MeV providing good agreement with the experimental fission cross section data. The branching ratios obtained from the modal fission cross section calculations have been used to deduce the corresponding fission yield distributions, including mean values also for incident neutron energies hitherto not accessible to experiment

  5. Comparison of Four Weighting Methods in Fuzzy-based Land Suitability to Predict Wheat Yield

    Directory of Open Access Journals (Sweden)

    Fatemeh Rahmati

    2017-06-01

    Full Text Available Introduction: Land suitability evaluation is a process to examine the degree of land fitness for specific utilization and also makes it possible to estimate land productivity potential. In 1976, FAO provided a general framework for land suitability classification. It has not been proposed a specific method to perform this classification in the framework. In later years, a collection of methods was presented based on the FAO framework. In parametric method, different land suitability aspects are defined as completely discrete groups and are separated from each other by distinguished and consistent ranges. Therefore, land units that have moderate suitability can only choose one of the characteristics of predefined classes of land suitability. Fuzzy logic is an extension of Boolean logic by LotfiZadeh in 1965 based on the mathematical theory of fuzzy sets, which is a generalization of the classical set theory. By introducing the notion of degree in the verification of a condition, fuzzy method enables a condition to be in a state other than true or false, as well as provides a very valuable flexibility for reasoning, which makes it possible to take into account inaccuracies and uncertainties. One advantage of fuzzy logic in order to formalize human reasoning is that the rules are set in natural language. In evaluation method based on fuzzy logic, the weights are used for land characteristics. The objective of this study was to compare four methods of weight calculation in the fuzzy logic to predict the yield of wheat in the study area covering 1500 ha in Kian town in Shahrekord (Chahrmahal and Bakhtiari province, Iran. Materials and Methods: In such investigations, climatic factors, and soil physical and chemical characteristics are studied. This investigation involves several studies including a lab study, and qualitative and quantitative land suitability evaluation with fuzzy logic for wheat. Factors affecting the wheat production consist of

  6. A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice.

    Science.gov (United States)

    Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah

    2016-01-01

    One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

  7. Evaluation of different gridded rainfall datasets for rainfed wheat yield prediction in an arid environment

    Science.gov (United States)

    Lashkari, A.; Salehnia, N.; Asadi, S.; Paymard, P.; Zare, H.; Bannayan, M.

    2018-05-01

    The accuracy of daily output of satellite and reanalysis data is quite crucial for crop yield prediction. This study has evaluated the performance of APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation), PERSIANN (Rainfall Estimation from Remotely Sensed Information using Artificial Neural Networks), TRMM (Tropical Rainfall Measuring Mission), and AgMERRA (The Modern-Era Retrospective Analysis for Research and Applications) precipitation products to apply as input data for CSM-CERES-Wheat crop growth simulation model to predict rainfed wheat yield. Daily precipitation output from various sources for 7 years (2000-2007) was obtained and compared with corresponding ground-observed precipitation data for 16 ground stations across the northeast of Iran. Comparisons of ground-observed daily precipitation with corresponding data recorded by different sources of datasets showed a root mean square error (RMSE) of less than 3.5 for all data. AgMERRA and APHRODITE showed the highest correlation (0.68 and 0.87) and index of agreement (d) values (0.79 and 0.89) with ground-observed data. When daily precipitation data were aggregated over periods of 10 days, the RMSE values, r, and d values increased (30, 0.8, and 0.7) for AgMERRA, APHRODITE, PERSIANN, and TRMM precipitation data sources. The simulations of rainfed wheat leaf area index (LAI) and dry matter using various precipitation data, coupled with solar radiation and temperature data from observed ones, illustrated typical LAI and dry matter shape across all stations. The average values of LAImax were 0.78, 0.77, 0.74, 0.70, and 0.69 using PERSIANN, AgMERRA, ground-observed precipitation data, APHRODITE, and TRMM. Rainfed wheat grain yield simulated by using AgMERRA and APHRODITE daily precipitation data was highly correlated (r 2 ≥ 70) with those simulated using observed precipitation data. Therefore, gridded data have high potential to be used to supply lack of data and

  8. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    Science.gov (United States)

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  9. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Science.gov (United States)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L. D.; Anuntalabhochai, S.

    2013-07-01

    Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60-80 keV to a beam fluence range of 2 × 1016-2 × 1017 ions/cm2. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 106 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11).

  10. [Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay].

    Science.gov (United States)

    Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi

    2014-10-01

    In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

  11. New market opportunities for rice grains

    Science.gov (United States)

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  12. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    Science.gov (United States)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  13. Genomic prediction accounting for genotype by environment interaction offers an effective framework for breeding simultaneously for adaptation to an abiotic stress and performance under normal cropping conditions in rice

    OpenAIRE

    Ahmadi, Nourollah; Cao, Tuong-Vi; Valé, Giampiero; Bartholomé, Jérôme; Hassen, Manel

    2018-01-01

    Developing rice varieties adapted to alternate wetting and drying water management is crucial for the sustainability of irrigated rice cropping systems. Here we report the first study exploring the feasibility of breeding rice for adaptation to alternate wetting and drying using genomic prediction methods that account for genotype by environment interactions. Two breeding populations (a reference panel of 284 accessions and a progeny population of 97 advanced lines) were evaluated under alter...

  14. Application of Molecular Topology for the Prediction of Reaction Yields and Anti-Inflammatory Activity of Heterocyclic Amidine Derivatives

    Directory of Open Access Journals (Sweden)

    Ramón García-Domenech

    2011-02-01

    Full Text Available Topological-mathematical models based on multiple linear regression analyses have been built to predict the reaction yields and the anti-inflammatory activity of a set of heterocylic amidine derivatives, synthesized under environmental friendly conditions, using microwave irradiation. Two models with three variables each were selected. The models were validated by cross-validation and randomization tests. The final outcome demonstrates a good agreement between the predicted and experimental results, confirming the robustness of the method. These models also enabled the screening of virtual libraries for new amidine derivatives predicted to show higher values of reaction yields and anti-inflammatory activity.

  15. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 1 - Concepts and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Freund, H.; Walters, C.C.; Kelemen, S.R.; Siskin, M.; Gorbaty, M.L.; Curry, D.J.; Bence, A.E. [ExxonMobil Research & Engineering Co., Annandale, NJ (United States)

    2007-07-01

    We have developed a method to calculate the amounts and composition of products resulting from the thermal decomposition of a solid complex carbonaceous material. This procedure provides a means of using laboratory measurements of complex carbonaceous solids to construct a representative model of its chemical structure (CS) that is then coupled with elementary reaction pathways to predict the chemical yield (CY) upon thermal decomposition. Data from elemental analysis, H, N, O, S, solid state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS), sulfur X-ray absorption structure spectroscopy (XANES), and pyrolysis-gas chromatography (GC) are used to constrain the construction of core molecular structures representative of the complex carbonaceous material. These core structures are expanded stochastically to describe large macromolecules ({gt} 10{sup 6} cores with similar to 10{sup 6} atoms) with bulk properties that match the experimental results. Gas, liquid and solid product yields, resulting from thermal decomposition, are calculated by identifying reactive functional groups within the CS stochastic ensemble and imposing a reaction network constrained by fundamental thermodynamics and kinetics. An expulsion model is added to the decomposition model to calculate the chemical products in open and closed systems. Product yields may then be predicted under a wide range of time-temperature conditions used in rapid laboratory pyrolysis experiments, refinery processes, or geologic maturation.

  16. Extraction of rice bran oil from local rice husk

    International Nuclear Information System (INIS)

    Anwar, J.; Zaman, W.; Salman, M.; Jabeen, N.

    2006-01-01

    Rice Bran Oil is widely used in pharmaceutical, food and chemical industries due to its unique properties and high medicinal value. In the present work, extraction of rice bran oil from different samples of rice husk collected from local rice shellers by solvent extraction method has been studied. Experiments were conducted using a soxhelt apparatus, to extract rice bran oil using hexane, petroleum ether, ethanol and methanol as the solvents and the yields obtained under different conditions were compared. Batch extraction tests showed that the rate of extraction decreases with time and the solution approaches saturation at an exponential rate. (author)

  17. Prediction of foal carcass composition and wholesale cut yields by using video image analysis.

    Science.gov (United States)

    Lorenzo, J M; Guedes, C M; Agregán, R; Sarriés, M V; Franco, D; Silva, S R

    2018-01-01

    This work represents the first contribution for the application of the video image analysis (VIA) technology in predicting lean meat and fat composition in the equine species. Images of left sides of the carcass (n=42) were captured from the dorsal, lateral and medial views using a high-resolution digital camera. A total of 41 measurements (angles, lengths, widths and areas) were obtained by VIA. The variation of percentage of lean meat obtained from the forequarter (FQ) and hindquarter (HQ) carcass ranged between 5.86% and 7.83%. However, the percentage of fat (FAT) obtained from the FQ and HQ carcass presented a higher variation (CV between 41.34% and 44.58%). By combining different measurements and using prediction models with cold carcass weight (CCW) and VIA measurement the coefficient of determination (k-fold-R 2) were 0.458 and 0.532 for FQ and HQ, respectively. On the other hand, employing the most comprehensive model (CCW plus all VIA measurements), the k-fold-R 2 increased from 0.494 to 0.887 and 0.513 to 0.878 with respect to the simplest model (only with CCW), while precision increased with the reduction in the root mean square error (2.958 to 0.947 and 1.841 to 0.787) for the hindquarter fat and lean percentage, respectively. With CCW plus VIA measurements is possible to explain the wholesale value cuts yield variation (k-fold-R 2 between 0.533 and 0.889). Overall, the VIA technology performed in the present study could be considered as an accurate method to assess the horse carcass composition which could have a role in breeding programmes and research studies to assist in the development of a value-based marketing system for horse carcass.

  18. Prediction of yield and long-term failure of oriented polypropylene: kinetics and anisotropy

    NARCIS (Netherlands)

    van Erp, T.B.; Reynolds, C.T.; Peijs, T.; van Dommelen, J.A.W.; Govaert, L.E.

    2009-01-01

    The time-dependent yield and failure behavior of off-axis loaded uniaxially oriented polypropy-lene tape is investigated. The yield and failure behavior is described with an anisotropic vis-coplastic model. A viscoplastic flow rule is used with an equivalent stress, based on Hill’sanisotropic yield

  19. Microscopic predictions of fission yields based on the time dependent GCM formalism

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-03-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  20. Linear correlation between components production and yield of rice upland in no-tillage Correlação linear entre componentes da produção e produtividade do arroz de terras altas em sistema plantio direto

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira da Silva

    2012-10-01

    Full Text Available The rice is one of the main sources of the humanity’s feeding. During the agricultural year 2009/2010, in Selvíria County, Mato Grosso do Sul State, in the Brazilian Savannah, an experiment was installed with rice upland in a Dystropherric Red Latosol (Typic Acrustox under no-tillage, irrigated by central pivot, with the purpose of selecting the best components production to explain the variability the irrigated rice yield upland. The geostatistical grid was installed, to collect the data, with 120 sampling points, in an area of 3.0 ha and and homogeneous slope of 0.055 m m-1. The medium rice yield was of the 5980 kg ha-1. For the simple lineal regressions, the number of spikelets grenades for panicle presented the best direct potential correlation with the yield rice, given for: PGO = 115,5.NEG0,770. However, for the multiple lineal regressions, the equation equação PGO = 2754,30-411,55.NEG-461,07.NEC+436,59. NET it was the one that better she came to esteem the yield rice. However, spatial, it was not possible to establish correlation between the yield rice and the components production, once none of those it presented spatial dependence in their data.O arroz é uma das principais fontes de alimentação da humanidade. Durante o ano agrícola 2009/2010, no município de Selvíria (MS, no Cerrado Brasileiro, foi instalado um experimento com arroz de terras altas em um Latossolo Vermelho distroférrico sob sistema plantio direto, irrigado por pivô central, com o objetivo de selecionar os melhores componentes da produção para explicar a variabilidade da produtividade do arroz de terras altas irrigado. Foi instalada a malha geoestatística, para a coleta de dados, com 120 pontos amostrais, numa área de 3,0 ha e declive homogêneo de 0,055 m m-1. A produtividade média de grãos de arroz foi de 5980 kg ha-1. Para as regressões lineares simples, o número de espiguetas granadas por panícula apresentou a melhor correlação potencial

  1. A Case Study of Improving Yield Prediction and Sulfur Deficiency Detection Using Optical Sensors and Relationship of Historical Potato Yield with Weather Data in Maine

    Science.gov (United States)

    Sharma, Lakesh K.; Bali, Sukhwinder K.; Dwyer, James D.; Plant, Andrew B.; Bhowmik, Arnab

    2017-01-01

    In Maine, potato yield is consistent, 38 t·ha−1, for last 10 years except 2016 (44 t·ha−1) which confirms that increasing the yield and quality of potatoes with current fertilization practices is difficult; hence, new or improvised agronomic methods are needed to meet with producers and industry requirements. Normalized difference vegetative index (NDVI) sensors have shown promise in regulating N as an in season application; however, using late N may stretch out the maturation stage. The purpose of the research was to test Trimble GreenSeeker® (TGS) and Holland Scientific Crop Circle™ ACS-430 (HCCACS-430) wavebands to predict potato yield, before the second hilling (6–8 leaf stage). Ammonium sulfate, S containing N fertilizer, is not advised to be applied on acidic soils but accounts for 60–70% fertilizer in Maine’s acidic soils; therefore, sensors are used on sulfur deficient site to produce sensor-bound S application guidelines before recommending non-S-bearing N sources. Two study sites investigated for this research include an S deficient site and a regular spot with two kinds of soils. Six N treatments, with both calcium ammonium nitrate and ammonium nitrate, under a randomized complete block design with four replications, were applied at planting. NDVI readings from both sensors were obtained at V8 leaf stages (8 leaf per plant) before the second hilling. Both sensors predict N and S deficiencies with a strong interaction with an average coefficient of correlation (r2) ~45. However, HCCACS-430 was observed to be more virtuous than TGS. The correlation between NDVI (from both sensors) and the potato yield improved using proprietor-proxy leaf area index (PPLAI) from HCCACS-430, e.g., r2 value of TGS at Easton site improve from 48 to 60. Weather data affected marketable potato yield (MPY) significantly from south to north in Maine, especially precipitation variations that could be employed in the N recommendations at planting and in season

  2. What is the Best Model Specification and Earth Observation Product for Predicting Regional Grain Yields in Food Insecure Countries?

    Science.gov (United States)

    Davenport, F., IV; Harrison, L.; Shukla, S.; Husak, G. J.; Funk, C. C.

    2017-12-01

    We evaluate the predictive accuracy of an ensemble of empirical model specifications that use earth observation data to predict sub-national grain yields in Mexico and East Africa. Products that are actively used for seasonal drought monitoring are tested as yield predictors. Our research is driven by the fact that East Africa is a region where decisions regarding agricultural production are critical to preventing the loss of economic livelihoods and human life. Regional grain yield forecasts can be used to anticipate availability and prices of key staples, which can turn can inform decisions about targeting humanitarian response such as food aid. Our objective is to identify-for a given region, grain, and time year- what type of model and/or earth observation can most accurately predict end of season yields. We fit a set of models to county level panel data from Mexico, Kenya, Sudan, South Sudan, and Somalia. We then examine out of sample predicative accuracy using various linear and non-linear models that incorporate spatial and time varying coefficients. We compare accuracy within and across models that use predictor variables from remotely sensed measures of precipitation, temperature, soil moisture, and other land surface processes. We also examine at what point in the season a given model or product is most useful for determining predictive accuracy. Finally we compare predictive accuracy across a variety of agricultural regimes including high intensity irrigated commercial agricultural and rain fed subsistence level farms.

  3. Plateletpheresis efficiency and mathematical correction of software-derived platelet yield prediction: A linear regression and ROC modeling approach.

    Science.gov (United States)

    Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David

    2017-10-01

    Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.

  4. Mammography performance in Oman: Review of factors influencing cancer yield and positive predictive value.

    Science.gov (United States)

    Taif, Sawsan; Tufail, Fatma; Alnuaimi, Ahmed Sameer

    2016-06-01

    The aim of this study is to assess mammography performance in Oman by estimating the breast cancer rate and the positive predictive value (PPV) with the influence of some variables. This cross-sectional study was conducted on mammograms done in one of the three main breast imaging centers in Oman between January 2008 and July 2012. Diagnostic and screening groups were identified and assessed separately. Rate of abnormal mammograms, rate of breast cancer and the PPV were estimated according to Breast Imaging Reporting and Data System (BIRADS) score, presence of breast lump and patient's age. Total of 653 mammograms were included, 254 diagnostic and 399 screening. Abnormal mammograms (BIRADS 4 and 5) form 31.9% of the diagnostic examinations compared with 6.8% of screening examinations. Breast cancer was present in 17.9% of the diagnostic compared with 1.0% of the screening group. The PPV of BIRADS 5 was 94.1%, and for BIRADS 4 was 37.1 and 26.7% for diagnostic and screening studies. Overall PPV for abnormal mammograms was 65.2% in the diagnostic and 26.7% in the screening group. Mammography PPV shows positive association with age (P = 0.039) while presence of breast lump has no significant effect on the PPV (P = 0.38). BIRADS 5 score was found to have a high cancer yield making it a strong predictor of cancer. Different results were obtained in the diagnostic compared with screening mammography with higher rates of abnormal mammograms and breast cancer. Mammography performance should be better in the older women. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Predicted harvest time effects on switchgrass moisture content, nutrient concentration, yield, and profitability

    Science.gov (United States)

    Production costs change with harvest date of switchgrass (Panicum virgatum L.) as a result of nutrient recycling and changes in yield of this perennial crop. This study examines the range of cost of production from an early, yield-maximizing harvest date to a late winter harvest date at low moisture...

  6. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex.

    Science.gov (United States)

    Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.

  7. Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds.

    Science.gov (United States)

    Sheng, Lili; Wang, Xin; Yang, Xiaoyi

    2018-01-01

    The model of biocrude yield and the nitrogen heterocyclic compounds in biocrude of microalgae hydrothermal liquefaction are two of the most concerned issues in this field at present. This study explored a hydrothermal liquefaction biocrude yield model involved in the interaction among biochemical compounds in microalgae and analysed nitrogen heterocyclic compounds in biocrude. The model compound (castor oil, soya protein and glucose) and Nanochloropsis were liquefied at 280°C for 1h. The products were analyzed by GC-MS, element analysis and FTIR. The results suggested that interactions among different components in microalgae enhanced biocrude yield. The biocrude yield prediction model involved cross-interactions performed more accurate than previous models.When the ratio of protein and carbohydrate around 3, the cross-interaction and nitrogen heterocyclic compounds in biocrude would both reach the highest extent. Copyright © 2017. Published by Elsevier Ltd.

  8. A unified and comprehensible view of parametric and kernel methods for genomic prediction with application to rice

    Directory of Open Access Journals (Sweden)

    Laval Jacquin

    2016-08-01

    Full Text Available One objective of this study was to provide readers with a clear and unified understanding ofparametric statistical and kernel methods, used for genomic prediction, and to compare some ofthese in the context of rice breeding for quantitative traits. Furthermore, another objective wasto provide a simple and user-friendly R package, named KRMM, which allows users to performRKHS regression with several kernels. After introducing the concept of regularized empiricalrisk minimization, the connections between well-known parametric and kernel methods suchas Ridge regression (i.e. genomic best linear unbiased predictor (GBLUP and reproducingkernel Hilbert space (RKHS regression were reviewed. Ridge regression was then reformulatedso as to show and emphasize the advantage of the kernel trick concept, exploited by kernelmethods in the context of epistatic genetic architectures, over parametric frameworks used byconventional methods. Some parametric and kernel methods; least absolute shrinkage andselection operator (LASSO, GBLUP, support vector machine regression (SVR and RKHSregression were thereupon compared for their genomic predictive ability in the context of ricebreeding using three real data sets. Among the compared methods, RKHS regression and SVRwere often the most accurate methods for prediction followed by GBLUP and LASSO. An Rfunction which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression,with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time hasbeen developed. Moreover, a modified version of this function, which allows users to tune kernelsfor RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

  9. Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters

    Science.gov (United States)

    Selyutina, N. S.; Petrov, Yu. V.

    2018-02-01

    The behavior of the yield strength of steel and a number of aluminum alloys is investigated in a wide range of strain rates, based on the incubation time criterion of yield and the empirical models of Johnson-Cook and Cowper-Symonds. In this paper, expressions for the parameters of the empirical models are derived through the characteristics of the incubation time criterion; a satisfactory agreement of these data and experimental results is obtained. The parameters of the empirical models can depend on some strain rate. The independence of the characteristics of the incubation time criterion of yield from the loading history and their connection with the structural and temporal features of the plastic deformation process give advantage of the approach based on the concept of incubation time with respect to empirical models and an effective and convenient equation for determining the yield strength in a wider range of strain rates.

  10. Predicting the yield and quality of winter wheat grown on calcareous chernozem in the lower Don Region

    Directory of Open Access Journals (Sweden)

    Olga Biryukova

    2015-07-01

    Full Text Available Long-term studies have revealed a system of indicators for predicting the yield of winter wheat grown on a calcareous chernozem. It has been established that the prediction and integrated assessment of the yield and quality of grain should be performed with consideration for the balance of macro- and micronutrients in the grain and the above-ground biomass of plants. It has been shown that the contents of protein and gluten in winter wheat grain are mainly determined by the supply of plants with nitrogen and its balance with Mn, Р, Fe, Zn, and K. Possibility of predicting the contents of macro- and micronutrients in wheat grain from the chemical composition of plants at the shooting stage has been revealed.

  11. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    Science.gov (United States)

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  12. Land Titles and Rice Production in Vietnam

    DEFF Research Database (Denmark)

    Van Den Broeck, Katleen; Newman, Carol; Tarp, Finn

    analysis of plot level rice yields that land titles are indeed important. Only exclusively held titles have the expected positive effects, and the positive effect on yields is found in male headed households. Furthermore, a household level rice yield function reveals that exclusive user rights...

  13. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement

    Science.gov (United States)

    Spindel, J E; Begum, H; Akdemir, D; Collard, B; Redoña, E; Jannink, J-L; McCouch, S

    2016-01-01

    To address the multiple challenges to food security posed by global climate change, population growth and rising incomes, plant breeders are developing new crop varieties that can enhance both agricultural productivity and environmental sustainability. Current breeding practices, however, are unable to keep pace with demand. Genomic selection (GS) is a new technique that helps accelerate the rate of genetic gain in breeding by using whole-genome data to predict the breeding value of offspring. Here, we describe a new GS model that combines RR-BLUP with markers fit as fixed effects selected from the results of a genome-wide-association study (GWAS) on the RR-BLUP training data. We term this model GS + de novo GWAS. In a breeding population of tropical rice, GS + de novo GWAS outperformed six other models for a variety of traits and in multiple environments. On the basis of these results, we propose an extended, two-part breeding design that can be used to efficiently integrate novel variation into elite breeding populations, thus expanding genetic diversity and enhancing the potential for sustainable productivity gains. PMID:26860200

  14. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow

    International Nuclear Information System (INIS)

    Mook, W M; Niederberger, C; Bechelany, M; Philippe, L; Michler, J

    2010-01-01

    Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 μN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m -2 , which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.

  15. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction.

    Science.gov (United States)

    Im, Sangjun; Brannan, Kevin M; Mostaghimi, Saied; Kim, Sang Min

    2007-09-01

    A watershed model can be used to better understand the relationship between land use activities and hydrologic/water quality processes that occur within a watershed. The physically based, distributed parameter model (SWAT) and a conceptual, lumped parameter model (HSPF), were selected and their performance were compared in simulating runoff and sediment yields from the Polecat Creek watershed in Virginia, which is 12,048 ha in size. A monitoring project was conducted in Polecat Creek watershed during the period of October 1994 to June 2000. The observed data (stream flow and sediment yield) from the monitoring project was used in the calibration/validations of the models. The period of September 1996 to June 2000 was used for the calibration and October 1994 to December 1995 was used for the validation of the models. The outputs from the models were compared to the observed data at several sub-watershed outlets and at the watershed outlet of the Polecat Creek watershed. The results indicated that both models were generally able to simulate stream flow and sediment yields well during both the calibration/validation periods. For annual and monthly loads, HSPF simulated hydrologic and sediment yield more accurately than SWAT at all monitoring sites within the watershed. The results of this study indicate that both the SWAT and HSPF watershed models performed sufficiently well in the simulation of stream flow and sediment yield with HSPF performing moderately better than SWAT for simulation time-steps greater than a month.

  16. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    Science.gov (United States)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  17. [Predicting the impact of climate change in the next 40 years on the yield of maize in China].

    Science.gov (United States)

    Ma, Yu-ping; Sun, Lin-li; E, You-hao; Wu, Wei

    2015-01-01

    Climate change will significantly affect agricultural production in China. The combination of the integral regression model and the latest climate projection may well assess the impact of future climate change on crop yield. In this paper, the correlation model of maize yield and meteorological factors was firstly established for different provinces in China by using the integral regression method, then the impact of climate change in the next 40 years on China's maize production was evaluated combined the latest climate prediction with the reason be ing analyzed. The results showed that if the current speeds of maize variety improvement and science and technology development were constant, maize yield in China would be mainly in an increasing trend of reduction with time in the next 40 years in a range generally within 5%. Under A2 climate change scenario, the region with the most reduction of maize yield would be the Northeast except during 2021-2030, and the reduction would be generally in the range of 2.3%-4.2%. Maize yield reduction would be also high in the Northwest, Southwest and middle and lower reaches of Yangtze River after 2031. Under B2 scenario, the reduction of 5.3% in the Northeast in 2031-2040 would be the greatest across all regions. Other regions with considerable maize yield reduction would be mainly in the Northwest and the Southwest. Reduction in maize yield in North China would be small, generally within 2%, under any scenarios, and that in South China would be almost unchanged. The reduction of maize yield in most regions would be greater under A2 scenario than under B2 scenario except for the period of 2021-2030. The effect of the ten day precipitation on maize yield in northern China would be almost positive. However, the effect of ten day average temperature on yield of maize in all regions would be generally negative. The main reason of maize yield reduction was temperature increase in most provinces but precipitation decrease in a few

  18. Predicting temporal shifts in the spring occurrence of overwintered Scotinophara lurida (Hemiptera: Pentatomidae) and rice phenology in Korea with climate change

    Science.gov (United States)

    Lee, Hyoseok; Kang, Wee Soo; Ahn, Mun Il; Cho, Kijong; Lee, Joon-Ho

    2016-01-01

    Climate change could shift the phenology of insects and plants and alter their linkage in space and time. We examined the synchrony of rice and its insect pest, Scotinophara lurida (Burmeister), under the representative concentration pathways (RCP) 8.5 climate change scenario by comparing the mean spring immigration time of overwintered S. lurida with the mean rice transplanting times in Korea. The immigration time of S. lurida was estimated using an overwintered adult flight model. The rice transplanting time of three cultivars (early, medium, and medium-late maturing) was estimated by forecasting the optimal cultivation period using leaf appearance and final leaf number models. A temperature increase significantly advanced the 99 % immigration time of S. lurida from Julian day 192.1 in the 2000s to 178.4 in the 2050s and 163.1 in the 2090s. In contrast, rice transplanting time was significantly delayed in the early-maturing cultivar from day 141.2 in the 2000s to 166.7 in the 2050s and 190.6 in the 2090s, in the medium-maturing cultivar from day 130.6 in the 2000s to 156.6 in the 2050s and 184.7 in the 2090s, and in the medium-late maturing cultivar from day 128.5 in 2000s to 152.9 in the 2050s and 182.3 in the 2090s. These simulation results predict a significant future phenological asynchrony between S. lurida and rice in Korea.

  19. Prediction of sediment yield in runoff from agricultural land in the ...

    African Journals Online (AJOL)

    Records on 111 natural rainfall events covering 2 years (2001 and 2003) were used to estimate the sediment yield in runoff from a bare surface Alfisol, and a similar soil under straw mulch and natural grass in the southern Guinea savanna zone of Nigeria. Measurements of runoff amount and sediment load were made for ...

  20. The predictive power of dividend yields for future inflation: Money illusion or rational causes?

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard

    slope coefficients that increase numerically with the horizon in regressions of future inflation onto the dividend yield, in accordance with the data. A purely rational version of the model with no money illusion, but with a link from expected inflation to real consumption growth, also generates...

  1. Developing a Coffee Yield Prediction and Integrated Soil Fertility Management Recommendation Model for Northern Tanzania

    NARCIS (Netherlands)

    Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Janssen, B.H.; Teri, J.M.

    2014-01-01

    The aim of this study was to develop a simple and quantitative system for coffee yield estimation and nutrient input advice, so as to address the problem of declining annual coffee production in Tanzania (particularly in its Northern coffee zone), which is related to declining soil fertility. The

  2. Predicting yields of high priced trimmed beef cuts by means of ...

    African Journals Online (AJOL)

    The linear models included carcass weight and visual assessment of fatness and conformation by means of seven fat and five conformation classes. Amount of variation accounted for (R2) was the most favourable for total yield (87.3%) and the least favourable for the rib-eye cut (43.5%). Carcass weight contributed to most ...

  3. Video image analysis in the Australian meat industry - precision and accuracy of predicting lean meat yield in lamb carcasses.

    Science.gov (United States)

    Hopkins, D L; Safari, E; Thompson, J M; Smith, C R

    2004-06-01

    A wide selection of lamb types of mixed sex (ewes and wethers) were slaughtered at a commercial abattoir and during this process images of 360 carcasses were obtained online using the VIAScan® system developed by Meat and Livestock Australia. Soft tissue depth at the GR site (thickness of tissue over the 12th rib 110 mm from the midline) was measured by an abattoir employee using the AUS-MEAT sheep probe (PGR). Another measure of this thickness was taken in the chiller using a GR knife (NGR). Each carcass was subsequently broken down to a range of trimmed boneless retail cuts and the lean meat yield determined. The current industry model for predicting meat yield uses hot carcass weight (HCW) and tissue depth at the GR site. A low level of accuracy and precision was found when HCW and PGR were used to predict lean meat yield (R(2)=0.19, r.s.d.=2.80%), which could be improved markedly when PGR was replaced by NGR (R(2)=0.41, r.s.d.=2.39%). If the GR measures were replaced by 8 VIAScan® measures then greater prediction accuracy could be achieved (R(2)=0.52, r.s.d.=2.17%). A similar result was achieved when the model was based on principal components (PCs) computed from the 8 VIAScan® measures (R(2)=0.52, r.s.d.=2.17%). The use of PCs also improved the stability of the model compared to a regression model based on HCW and NGR. The transportability of the models was tested by randomly dividing the data set and comparing coefficients and the level of accuracy and precision. Those models based on PCs were superior to those based on regression. It is demonstrated that with the appropriate modeling the VIAScan® system offers a workable method for predicting lean meat yield automatically.

  4. Prediction of spur overlap time, radical yield profiles, and decomposition of trichloroethylene induced by various pulse types of electron beam

    International Nuclear Information System (INIS)

    Kim, D.-W.; Han, K.-C.; Lee, W.-K.; Ihm, S.-K.

    1996-01-01

    A kinetic model was suggested to compute the yield profiles of primary radicals generated from water radiolysis. For various cases including pulse radiolysis and steady irradiation time of spur overlap was computed in order to ensure homogeneity over the entire system. As a result, consistency to roughly first order kinetics was resulted for decomposition of 1 ppm trichloroethylene (TCE) and slight deviation from the linear model was predicted for 10 ppm TCE. (author)

  5. Prediction of yield losses in wheat (triticum aestivum l.) caused by yellow rust in relation to epidemiological factors in Faisalabad

    International Nuclear Information System (INIS)

    Ahmad, S.; Afzal, M.; Noorka, I.R.; Iqbal, Z.; Akhtar, N.; Iiftikhar, Y.; Kamran, M.

    2010-01-01

    Thirty six genotypes were screened against yellow rust to check their level of susceptibility or resistance. Among 36 genotypes screened against yellow rust, 18 were susceptible, 6 were moderately susceptible to susceptible, 7 were moderately resistant to moderately susceptible and 5 genotypes remained resistant. Yield losses were predicted in wheat on the basis of varying level of yellow rust severities. It was observed that susceptible genotypes showed higher yield losses as compared to resistant genotypes. Maximum severity of 90% of yellow rust resulted in 54% to 55% calculated and predicted losses, respectively. While 40, 50, 60 and 70% disease severity of yellow rust caused 35-34%, 38-37%, 42-40% and 46-47% calculated and predicted losses, respectively. However, the decline in losses was observed as the genotypes changed their reaction from susceptible to moderate susceptible. Similarly, losses were diminished as the varieties/lines showed moderate resistant reaction from moderate susceptible. Minimum temperature and relative humidity remained positively correlated while the maximum temperature showed negative correlation with stripe rust severity. With the increase of minimum temperature and relative humidity a rise up in stripe rust infection was seen while as the maximum temperature increased stripe rust infection decreased on different genotypes. It may be concluded from the study that environmental factors played major role in the spread of the disease which result in yield losses. (author)

  6. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.

    Science.gov (United States)

    Vigiak, Olga; Malagó, Anna; Bouraoui, Fayçal; Vanmaercke, Matthias; Poesen, Jean

    2015-12-15

    The Soil and Water Assessment Tool (SWAT) is used worldwide for water quality assessment and planning. This paper aimed to assess and adapt SWAT hillslope sediment yield model (Modified Universal Soil Loss Equation, MUSLE) for applications in large basins, i.e. when spatial data is coarse and model units are large; and to develop a robust sediment calibration method for large regions. The Upper Danube Basin (132,000km(2)) was used as case study representative of large European Basins. The MUSLE was modified to reduce sensitivity of sediment yields to the Hydrologic Response Unit (HRU) size, and to identify appropriate algorithms for estimating hillslope length (L) and slope-length factor (LS). HRUs gross erosion was broadly calibrated against plot data and soil erosion map estimates. Next, mean annual SWAT suspended sediment concentrations (SSC, mg/L) were calibrated and validated against SSC data at 55 gauging stations (622 station-years). SWAT annual specific sediment yields in subbasin reaches (RSSY, t/km(2)/year) were compared to yields measured at 33 gauging stations (87station-years). The best SWAT configuration combined a MUSLE equation modified by the introduction of a threshold area of 0.01km(2) where L and LS were estimated with flow accumulation algorithms. For this configuration, the SSC residual interquartile was less than +/-15mg/L both for the calibration (1995-2004) and the validation (2005-2009) periods. The mean SSC percent bias for 1995-2009 was 24%. RSSY residual interquartile was within +/-10t/km(2)/year, with a mean RSSY percent bias of 12%. Residuals showed no bias with respect to drainage area, slope, or spatial distribution. The use of multiple data types at multiple sites enabled robust simulation of sediment concentrations and yields of the region. The MUSLE modifications are recommended for use in large basins. Based on SWAT simulations, we present a sediment budget for the Upper Danube Basin. Copyright © 2015. Published by Elsevier B.V.

  7. Failure of the component additivity rule to predict gas yields of biomass in flash pyrolysis at 950 deg. C

    International Nuclear Information System (INIS)

    Couhert, Carole; Commandre, Jean-Michel; Salvador, Sylvain

    2009-01-01

    Ligno-cellulosic biomass from different sources presents variable composition. The main aim of this work was to develop a method to predict the gas yields after flash pyrolysis (and tar cracking) at 950 deg. C in an Entrained Flow Reactor of any biomass from its composition in the three main components - cellulose, hemicellulose and lignin. For this approach to be successful, three conditions need to be met: (C 1 )Pyrolytic behaviour of celluloses from different biomasses is similar, as is hemicellulose and lignin behaviour. (C 2 )There is no interaction between the components. (C 3 )Extractives and ashes have no impact on the pyrolysis process. Two approaches were chosen to investigate the condition C 1 : (i)Celluloses, hemicelluloses and lignins of various sources were pyrolysed. Results show that hemicelluloses and lignins from different sources do not form the same quantities of gases. (ii)An attempt was made to identify the gas yields of 'theoretical components' that are able to predict flash pyrolytic behaviour of any biomass. Results tend to show that this is not possible. The condition C 2 is investigated by comparing the gas yields of the components taken separately and the gas yields of mixes of the components. Two types of mixing were carried out: simple mixing and intimate mixing. Results show that interactions occur between the components during flash pyrolysis. The condition C 3 was not investigated here; it can nevertheless be concluded that the behaviour of a biomass during flash pyrolysis at high temperature cannot be predicted from its composition in cellulose, hemicellulose and lignin

  8. Predicting yield-stress anomalies in L12 alloys: Ni3Ge-Fe3Ge pseudo-binaries

    International Nuclear Information System (INIS)

    Liu, J.B.; Johnson, D.D.; Smirnov, A.V.

    2005-01-01

    The L1 2 -based pseudo-binary (Ni 1-c Fe c ) 3 Ge is an ideal system to study yield-strength anomaly and its origin as it has a solid-solution phase vs. c and Ni 3 Ge exhibits an anomaly while Fe 3 Ge does not. Using two ab initio electronic-structure techniques, we calculate the planar-fault energies on the γ-surface, i.e., antiphase boundaries (APB) and stacking faults, both complex and superlattice intrinsic (SISF), for (Ni 1-c Fe c ) 3 Ge as a function of c. Generally, we use the fault energies combined with elasticity theory to predict occurrence/loss of the yield-strength anomaly and show that the loss of anomaly occurs due to APB(1 1 1)-to-SISF(1 1 1) instability. Assessing the stability of APB(1 1 1) on the γ-surface within linear elasticity theory, we predict the transition from anomalous to normal temperature dependence of yield strength for c ∼≥ 0.35 (or 26 at.% Fe), as is observed, after which type-II, rather than type-I, dissociation is energetically favorable. Hence, first-principles calculations can predict reliably the existence/loss of anomalous yield-strength. Finally, we show that (0 0 1) and (1 1 1) APB energies of the binaries and pseudo-binaries agree quantitatively with measured values when chemical antisite disorder, intrinsic to the samples characterized, is included, whereas they are too large by a factor of two in perfect L1 2 . We investigate three types of disorder: thermal and off-stoichiometric antisites, as well as chemical disorder vs. Fe-content in pseudo-binaries

  9. [Effects of fish on field resource utilization and rice growth in rice-fish coculture].

    Science.gov (United States)

    Zhang, Jian; Hu, Liang Liang; Ren, Wei Zheng; Guo, Liang; Wu, Min Fang; Tang, Jian Jun; Chen, Xin

    2017-01-01

    Rice field can provide habitat for fish and other aquatic animals. Rice-fish coculture can increase rice yield and simultaneously reduce the use of chemicals through reducing rice pest occurrence and nutrient complementary use. However, how fish uses food sources (e.g. phytoplankton, weeds, duckweed, macro-algal and snail) from rice field, and whether the nutrients releasing from those food sources due to fish transforming can improve rice growth are still unknown. Here, we conducted two field experiments to address these questions. One was to investigate the pattern of fish activity in the field using the method of video recording. The other was to examine the utilization of field resources by fish using stable isotope technology. Rice growth and rice yield were also exa-mined. Results showed that fish tended to be more active and significantly expanded the activity range in the rice-fish coculture compared to fish monoculture (fish not living together with rice plants). The contributions of 3 potential aquatic organisms (duckweed, phytoplankton and snail) to fish dietary were 22.7%, 34.8% and 30.0% respectively under rice-fish coculture without feed. Under the treatment with feed, however, the contributions of these 3 aquatic organisms to the fish die-tary were 8.9%, 5.9% and 1.6% respectively. The feed contribution was 71.0%. Rice-fish coculture significantly increased the nitrogen concentration in rice leaves, prolonged tillering stage by 10-12 days and increased rice spike rate and yield. The results suggested that raising fish in paddy field may transform the nutrients contained in field resources to bioavailable for rice plants through fish feeding activity, which can improve rice growth and rice yield.

  10. Rice microstructure

    Science.gov (United States)

    An understanding of plant structure is desirable to obtain a clear idea of the overall impact of a crop. A mature rice plant consists of leafy components (left in the field post-harvest) and paddy rice (collected). The