WorldWideScience

Sample records for rice seedlings germinated

  1. Effects of salt stress on germination and early seedling growth of rice ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... the relationship between speed of germination and seed vigor, salt stress decreased seed vigor of rice cultivars LD a superior ... Key words: Salinity, seed germination, seedling property, seed vigor. INTRODUCTION ... The salt solutions were prepared based on the methods by. (Rhoades et al., 1992) with ...

  2. Ammonia Volatilization from Urea-Application Influenced Germination and Early Seedling Growth of Dry Direct-Seeded Rice

    Directory of Open Access Journals (Sweden)

    Xiaoli Qi

    2012-01-01

    Full Text Available Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding.

  3. Effect of salt stress on germination and early seedling growth of rice ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... planting in saline soil or in areas inundated by sea water or irrigated with brackish ... Nutritional imbalance caused by such ions leads to reduction in ... rice varieties showed a great variation in germination due to salinity effect.

  4. Effects of Cadmium Stress on Seed Germination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Jun-yu HE

    2008-12-01

    Full Text Available Two rice varieties, Xiushui 110 with high cadmium (Cd tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.

  5. Effects of Salt Stress on Germination and Early Seedling Growth of Some Kenyan Rice Cultivars

    International Nuclear Information System (INIS)

    Ochieng, C.A.; Onkware, A.O.

    1999-01-01

    Four rice cultivars (Basmati-217, BW-196, Sindano and Ita-310) were subjected to increasing substrate salinity (0-1.5 Sm -1 ECe), under both laboratory and soil experiments. The salt stress significantly (P -1 ECe) completely inhibited germination in potted soil, but not petri dish tests in the laboratory.It was concluded that the three rice cultivars are susceptible to even mild substrate salinity, and cannot be relied upon for cultivation in saline soils. There is a need to assess the response many of the rice cvv for resistance to salt stress, and, if possible isolate and develop high yielding, resistant cultivars

  6. Allelopathic Effect of Echinochloa colona L. and Cyperus iria L. Weed Extracts on the Seed Germination and Seedling Growth of Rice and Soyabean

    Directory of Open Access Journals (Sweden)

    Neha Chopra

    2017-01-01

    Full Text Available The present study was undertaken to assess the allelopathic effect of Echinochloa colona L. and Cyperus iria L. in relation to the germination and primary growth of Oryza sativa L. (rice and Glycine max L. (soyabean. Effects of dichloromethane (DCM and double distilled water soluble (DDW fractions of E. colona L. and C. iria L. root and aerial part extracts reduced germination and suppressed early seedling growth of rice and soyabean. With increase in extract concentration from 1 to 100 mg/mL, a gradual decrease in seed germination and seedling length occurred. The highest growth of G. max seedling was recorded in DDW fraction of E. colona aerial part extract at 1 mg/mL concentration with 94% germination and the lowest length was found in DCM fraction of C. iria root extract at 100 mg/mL concentration with 65% germination. In O. sativa, the highest length was noted at 1 mg/mL concentration in DDW fraction of E. colona aerial part extract with 82% germination and the lowest length was found in DCM fraction of C. iria and E. colona root extracts with germination 57% and 62%, respectively, at 100 mg/mL concentration. The results suggested that these weeds had good allelopathic potential which reduces germination and plant growth.

  7. The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice

    Directory of Open Access Journals (Sweden)

    Dongli He

    2014-07-01

    Full Text Available B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1. OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding.

  8. Changes in germination characteristics and seedling growth ...

    African Journals Online (AJOL)

    Changes in germination characteristics and seedling growth between storage ... for up to 1 year and the second group was used for un-stored germination test. ... seed germination performance without loss of longevity of tall fescue species, ...

  9. Proteomics of Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Dongli eHe

    2013-07-01

    Full Text Available Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.

  10. Germination and seedlings performance of cashew ( Anacardium ...

    African Journals Online (AJOL)

    The effects of nut-sowing orientations on the germination of cashew nuts and the responses of the resultant seedlings to cotyledon removed were studied in the nursery. While cashew nuts sown flat and those with stylar-end up had highest mean germination of 91.67 % and 92.50 % respectively the nuts sown with ...

  11. seed germination and seedlings growth

    African Journals Online (AJOL)

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... The role of 20E in plant physiology including seed germination is not studied. ..... GA3, ABA and CKs on lettuce Lactuca sativa seed germination are ..... Practical uses for ecdysteroids in mammals and humans: an update. J.

  12. Effect of chromium toxicity on germination and early seedling growth ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... germination and early seedling growth of melon (Cucumis melo L.). Chromium ... chromium on seed germination and seedling growth- biomass in early ..... such critical regulatory mechanisms are likely to operate in seeds at ...

  13. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings.

    Science.gov (United States)

    Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan

    2014-01-01

    Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely.

  14. Allelopathic Responses of Rice Seedlings under Some Different Stresses

    Directory of Open Access Journals (Sweden)

    Tran Dang Khanh

    2018-05-01

    Full Text Available The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °C. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32 at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 μg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.

  15. Biochemical Changes Associated with Germinating Rice Grains and Germination Improvement

    Directory of Open Access Journals (Sweden)

    Subajiny VELUPPILLAI

    2009-09-01

    Full Text Available To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp. indica var. Mottaikaruppan and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfate (SDS (1.0 g/L and Triton-X−100 (1.0 mL/L], whole rice grains soaked in distilled water for 12 h at 30°C were germinated in the dark at 30°C for five days. The highest germination rate (77.1% was obtained on the 5th day. An increase in the content of reducing sugars from 7.3 to 58.1 mg/g DM (dry matter was observed from the 1st day of germination. Free amino acids and soluble protein contents increased to 3.69 and 5.29 mg/g DM, respectively on the 5th day of germination. Total protein content decreased from 100.5 to 91.0 g/kg DM during germination. Increases in amylolytic (1.1 to 190.0 U/g DM and proteolytic (0 to 0.12 U/g DM activities were observed during germination. Effects of different concentrations of gibberellic acid on the germination of rice grains were evaluated and 0.1 g/L was found to promote germination. When effects of gibberellic acid (0.1 g/L and surfactants were evaluated individually and together, higher germination rate was observed in the control experiment (grains germinated in distilled water, whereas giberellic acid and surfactants decreased the germination rate. Therefore, the flour obtained from the grains germinated for four days using distilled water to obtain high content of soluble materials and enzyme activities can be used in preparation of bakery items.

  16. Effects of graphene on seed germination and seedling growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Gao, Bin, E-mail: bg55@ufl.edu [University of Florida, Department of Agricultural and Biological Engineering (United States); Chen, Jianjun [University of Florida, Department of Environmental Horticulture and Mid-Florida Research & Education Center (United States); Li, Yuncong [University of Florida, Soil and Water Science Department Tropical Research & Education Center (United States)

    2015-02-15

    The environmental impact of graphene has recently attracted great attention. In this work, we show that graphene at a low concentration affected tomato seed germination and seedling growth. Graphene-treated seeds germinated much faster than control seeds. Analytical results indicated that graphene penetrated seed husks. The penetration might break the husks to facilitate water uptake, resulting in faster germination and higher germination rates. At the stage of seedling growth, graphene was also able to penetrate root tip cells. Seedlings germinated from graphene-treated seeds had slightly lower biomass accumulation than the control, but exhibited significantly longer stems and roots than the control, which suggests that graphene, in contrast with other nanoparticles, had different effects on seedling growth. Taken together, our results imply that graphene played complicated roles in affecting the initial stage of seed germination and subsequent seedling growth.

  17. Rice Seedling Substrate Produced by Coal Gangue

    Directory of Open Access Journals (Sweden)

    SHAO Yu-fei

    2017-10-01

    Full Text Available Peats are the mostly used material in making rice seedling substrate. However, mining peats could cause environmental problems. In order to reduce or replace peats in rice seedling substrate industry, this paper studied suitable way to configure rice seedling. The coal gangue was used to experiment cultivating rice. Four rice seeding experiments were carried out based on physical and chemical properties of materials attributes. The results showed:(1 Coal gangue was feasible for rice seedling; (2 The maximum adding amount of coal gangue was 80%(volume ratio though the coal gangue need to be activated; (3 In the case of no activated treatment only 38%(volume ratio of coal gangue could be added to the substrate.

  18. Effects of hydropriming on seed germination and seedling growth in ...

    African Journals Online (AJOL)

    The germination of Salvia officinalis L. (sage) seeds is a problem of great concern that may be overcome by employing seed priming techniques. Seed priming is an efficient technique for improvement of seed vigor, increasing germination and seedling growth. Little information has been reported on seedling development ...

  19. Labelling of rice seedlings and rice plants with 32P

    International Nuclear Information System (INIS)

    Achmad Nasroh, K.

    1989-01-01

    Labelling of rice seedlings and rice plants with 32 P. Labelled rice seedlings can be used to tag insect pests that feed on. Radioactivity counting of 32 P in the endosperm and in the shoot of rice seeds that soaked for 72 hours in KH 2 32 PO 4 solution of 1 μCi/ml were 29,300 and 9,500 cpm respectively. When these labelled seedlings were grown in unlabelled medium the radioactivity in the shoot increased. It was due to the 32 P that was translocated to the shoot from the endosperm. The 32 P translocation reached maximum about one week after the seedling were grown in the unlabelled medium. Labelled seedlings could also be produced by growing 5, 10 and 15 days old seedlings hydroponically in Kimura B solution containing 32 P. Ten days after growing, the radioactivity concentration of the seedlings stem reached about 115,000; 85,000 and 170,000 cpm/mg dry weight for the 5, 10 and 15 days old seedlings respectively. For the implementation of this method, 20 ml labelled Kimura B was needed for labelling of one seedling. The seedlings should be prepared in tap water. During the growth the 32 P in the labelled seedlings was distributed throughout the plant, so that new leaves and tillers became also radioactive. (author). 5 refs

  20. Germination conditions affect physicochemical properties of germinated brown rice flour.

    Science.gov (United States)

    Charoenthaikij, Phantipha; Jangchud, Kamolwan; Jangchud, Anuvat; Piyachomkwan, Kuakoon; Tungtrakul, Patcharee; Prinyawiwatkul, Witoon

    2009-01-01

    Germinated brown rice has been reported to be nutritious due to increased free gamma-aminobutyric acid (GABA). The physicochemical properties of brown rice (BR) and glutinous brown rice (GNBR) after germination as affected by different steeping times (24, 36, 48, and 72 h depending on the rice variety) and pHs of steeping water (3, 5, 7, and as-is) were determined and compared to those of the nongerminated one (control). As the steeping time increased or pH of steeping water decreased, germinated brown rice flours (GBRF) from both BR and GNBR had greater reducing sugar, free GABA and alpha-amylase activity; while the total starch and viscosity were lower than their respective controls. GBRFs from both BR and GNBR prepared after 24-h steeping time at pH 3 contained a high content of free GABA at 32.70 and 30.69 mg/100 g flour, respectively. The peak viscosity of GBRF obtained from both BR and GNBR (7.42 to 228.22 and 4.42 to 58.67 RVU, respectively) was significantly lower than that of their controls (255.46 and 190.17 RVU, respectively). The principal component analysis indicated that the important variables for discriminating among GBRFs, explained by the first 2 components at 89.82% of total explained variance, were the pasting profiles, alpha-amylase activity, and free GABA.

  1. Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings

    OpenAIRE

    Mondal, Subinoy; Kumar, Mousumi; Haque, Smaranya; Kundu, Debajyoti

    2017-01-01

    The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds a...

  2. The effect of osmopriming on germination, seedling growth and ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... affecting the oxidative metabolism such as increasing superoxide dismutase ... the adverse effect of salinity by improving germination and seedling growth .... osmoregulation by the accumulation of proline. A positive effect of ...

  3. Effect of exogenous gibberellic acid on germination, seedling growth ...

    African Journals Online (AJOL)

    The effect of gibberellic acid on germination and seedling growth of lettuce variety, Vista, under salinity conditions was studied. A reduction in germination percentage, roots and shoots length and fresh weight were observed under salt stress. At the same time, acid phosphatase and phytase activities in roots were reduced ...

  4. Salt tolerance of physalis during germination and seedling growth

    International Nuclear Information System (INIS)

    Yildirim, E.; Karlidag, H.

    2011-01-01

    The study was conducted to evaluate the effect of NaCl salinity on germination and emergence of Physalis ixocarpa and Physalis peruviana. Seeds of P. ixocarpa and P. peruviana were germinated by the use of 0, 30, 60, 90, 120 and 180 mM NaCl solutions in petri dishes. Final germination percentage (FGP) decreased with the increase in NaCl concentration. Both species germinated at the ranges of salinity. P. peruviana gave the greater germination percentages under salt stress than P. ixocarpa. NaCl salinity at different concentrations adversely affected germination rates. For seedling growth, seeds of both species were sown at 10 mm depth in plastic trays filled with peat to determine final emergence percentage (FEP). The trays were irrigated manually to saturation every day with 0, 30, 60, 90, 120, 150 or 180 mM NaCl solutions to maintain the level of salinity. Salinity affected seed emergence and seedlings growth more than seed germination. The study showed that no emergence of Physalis was observed at 90, 120 and 180 mM NaCl salinity. Fresh and dry weights of normal seedlings were also evaluated. Salt stress significantly decreased the plant fresh and dry weight of both species. Based on the results of the experiment, it can be concluded that seedling emergence and growth is more sensitive to salt stress than seed germination in Physalis. (author)

  5. Germination and seedling establishment in orchids: a complex of requirements.

    Science.gov (United States)

    Rasmussen, Hanne N; Dixon, Kingsley W; Jersáková, Jana; Těšitelová, Tamara

    2015-09-01

    Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several

  6. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  7. Germination and initial development of aroeira (Myracrodruon urundeuva seedlings

    Directory of Open Access Journals (Sweden)

    Silvana de Paula Quintão Scalon

    2012-12-01

    Full Text Available Aroeira has great economic importance due to its wood useful, tannins extraction and use in the pharmacology. The aim of this work was to evaluate the germination aspects and initial seedlings development of aroeira, under gibberellins, substrata and shading effects, and for that two experiments were led out. In the first one, seeds were previously soaked for 24 hours in water and in 100 mg.L-1 gibberellin solution and were sowed directly in cells trays in the following substrata: land and sand (1:1 and 1:2 and Plantmax . In the second experiment, 15 cm length seedlings were transplanted to polyethylene sacks filled out land+sand+poultry manure (1:1:1 partly decomposed and they were maintained at greenhouse for 15 days. Soon after, seedlings were transferred for the following conditions: shading (50% and full sun and they were 50 mg.L-1 and 150 mg.L-1 gibberellins solutions pulverized, as control seedlings water pulverized. Aroeira seeds should not be previously water or gibberellins imbibed before being sowed. The best substrata for aroeira seeds germination was Plantmax without germinative treatments to reach higher than 80% of seedlings survival. The seedlings developed better at full sun light and the gibberellin. It was observed increment in height, diameter, foliar area and fresh and dry mass from aerial and root part when compared to shading situation. The gibberellins applications did not influence the aroeira seedlings initial growth characteristics.

  8. Phytotoxicity of glyphosate in the germination of and its effect on germinated seedlings

    Directory of Open Access Journals (Sweden)

    Subinoy Mondal

    2017-08-01

    Full Text Available The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v. But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings.

  9. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2013-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of "1"3"7Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of "1"3"7Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm"3) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of "1"3"7Cs in the rice seedlings ranged from 150 to 1900 Bq kg"-"1, and that in brown rice and sunflower ranged from 2 to 880 Bq kg"-"1 and from 580 to 3900 Bq kg"-"1, respectively. The Spearman's rank correlation coefficient between the measured concentration of "1"3"7Cs in rice seedlings and the measured concentration of "1"3"7Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of "1"3"7Cs from soil to plants over a longer period of time. (author)

  10. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2012-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of 137 Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of 137 Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm 3 ) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of 137 Cs in the rice seedlings ranged from 150 to 1900 Bq kg -1 , and that in brown rice and sunflower ranged from 2 to 880 Bq kg -1 and from 580 to 3900 Bq kg -1 , respectively. The Spearman's rank correlation coefficient between the measured concentration of 137 Cs in rice seedlings and the measured concentration of 137 Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of 137 Cs from soil to plants over a longer period of time. (author)

  11. Seed Germination Behaviors Of Some Aerobic Rice Cultivars Oryza Sativa L After Priming With Polyethylene Glycol-8000 Peg-8000

    Directory of Open Access Journals (Sweden)

    Elkheir H.A

    2015-08-01

    Full Text Available Seed Priming Is Famous Technique To Accelerate Seed Germination Behaviors. This Experiment Was Conducted To Study The Effect Of Polyethylene Glycol-8000 Peg-8000 As Priming Agent On Seed Germination Behavior Of Some Aerobic Rice Cultivars Oryza Sativa L. Experiment Was Carried Out By Using Two-Factor Three Aerobic Rice Cultivars And Peg With Four Replications Which Arranged In Factorial System Design And Conducted With Completely Randomized Design. The Factor Was Varieties Which Were Inpago 8 V1 Ir64 V2 And Situbagendit V3 Combine With 4 Levels Of Peg Concentrations 0100 And 200 Gl-1 And Control With No Treatment. Experiment Was Repeated 4 Times So Total Number Of Experimental Units Were 48. Germination Parameters Measured Were Germination Percentage Germination Index Days Of 50 Germination Seedling Fresh Weight Mg Seedling Shoot Fresh Weight And Root Fresh Weight Mg Seedling Dry Weigh Mg Seedling Shoot Dry Weight And Root Dry Weight Mg ShootRoot Ratio Seedling Length Cm Seedling Root Length Cm And Shoot Length Cm And Seed Vigor Index. The Results Indicated That Seed Priming Significantly Affected Germination Behaviors Compared With Control Depending Upon Varieties. The Highest Germination Was Obtained Under Laboratory And Greenhouse Condition By The Treatment Of Peg 200 G L-1 On The Situbagendit And Ir-64 Variety 90.25 And 93.33 Respectively Compared To Control In Inpago-8 In Both Laboratory 75.75 And Greenhouse 80 . As Implementation To Increase Seed And Seedling Vigor Of Rice It Is A Best Practice To Use Peg Priming With 200 Gl-1 Solutions Depend Upon Varietal Response And We Suggest That More Research About The Effect Of Peg As Seed Priming Techniques On Seed Germination Behavior Of Many Grain Crops Is Needed To Confirm The Methodology.

  12. Germination and development of pecan cultivar seedlings by seed stratification

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate the effect of seed stratification on germination rate, germination speed, and initial development of seedlings of six pecan (Carya illinoinensis cultivars under subtropical climatic conditions in southern Brazil. For stratification, the seeds were placed in boxes with moist sand, in a cold chamber at 4°C, for 90 days. In the fourteenth week after sowing, the emergence speed index, total emergence, plant height, stem diameter, and number of leaves were evaluated. Seed stratification significantly improves the germination potential and morphological traits of the evaluated cultivars.

  13. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Wen-Yan Li

    2017-01-01

    Full Text Available Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI, a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−, hydrogen peroxide (H2O2 and hydroxyl radicals (•OH accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the

  14. Seed germination and seedling emergence of Scotch broom (Cytisus scoparius)

    Science.gov (United States)

    Timothy B. Harrington

    2009-01-01

    Scotch broom is a large, leguminous shrub that has invaded 27 U.S. states. The species produces seeds with a hard coat that remain viable in the soil for years. Growth-chamber studies were conducted to determine effects of temperature regime and cold-stratification period on seed germination. Seedling emergence, mortality, and biomass also were studied in response to...

  15. Germination and early seedling growth of Pinus densata Mast. provenances

    Science.gov (United States)

    Yulan Xu; Nianhui Cai; Bin He; Ruili Zhang; Wei Zhao; Jianfeng Mao; Anan Duan; Yue Li; Keith Woeste

    2016-01-01

    We studied seed germination and early seedling growth of Pinus densata to explore the range of variability within the species and to inform afforestation practices. Phenotypes were evaluated at a forest tree nursery under conditions that support Pinus yunnanensis, one of the presumed parental species of P. densata...

  16. Sugar signalling during germination and early seedling establishment in Arabidopsis

    NARCIS (Netherlands)

    Dekkers, S.J.W.

    2006-01-01

    Sugars have pronounced effects on many plant processes like gene expression, germination and early seedling development. Several screens for sugar insensitive mutants were performed to identify genes involved in sugar response pathways using the model plant Arabidopsis. These include sun, gin and

  17. Evaluation of Oxygen Deficit Stress on Germination Indicators and Seedling

    Directory of Open Access Journals (Sweden)

    F Hoseini

    2012-06-01

    Full Text Available To investigate the relationship oxygen deficit stress on germination indicators and seedling growth of five wheat cultivars in laboratory condition, an experiment with Randomized Complete Block design in factorial arrangement with three replications was conducted in 2008. The treatments consisted of five wheat cultivars (Chamran, Flat, Roshan, Stare and Shole as A factor, and two oxygen level (normal seed and seed under oxygen deficit stress conditions as B factor in each of these figures was done. Results showed that oxygen deficit stress caused to decrease for various cultivars germination percentage, germination rate, allometric coefficient, seed vigor index and other germination indicators. Therefore, this test as a suitable method for determining the quality of various seed lot can be used in the water logging condition. In addition, among different cultivars characterized that Roshan cultivar was more resistant to oxygen deficit stress than Chamran, Flat and Star cultivars. Although Chamran cultivar is common cultivar in Khouzestan, but of look most germination indicators arranged as weak seed class. The highest correlation coefficients among the tested cultivars have been related to seed vigor with seedling length and dry weight of radicle with seedling with 0.92 and 0.90, respectively.

  18. Effect of irradiation on physiological and biochemical properties of Bt rice seedlings

    International Nuclear Information System (INIS)

    Wang Zhonghua; Chen Xiaojian; Bao Xusheng; Chen Yuling; Gu Qinqin

    2011-01-01

    The seeds of two varieties of Bt rice were treated by 60 Co γ-rays at the doses of 50, 100, 150, 250 and 350 Gy, respectively, their original parent was used as control material. The seedlings cultured from above seeds were used to detect the root activity, seedling growth, chlorophyll content,activities of phenylalanine ammonialyase (PAL), polyphenol oxidase (PPO), catalase(CAT), superoxide dismutase (SOD) and amylase to investigate the effect of irradiation treatment on the physiological and biochemical properties of Bt rice. The results showed that root activity, chlorophyll content, activities of PAL, PPO, CAT, SOD of Bt rice seedlings and amylase of germinating seeds were lower than those of the control group after irradiation treatment of < 250 Gy, but the differences were not significant, which was similar to those of original parent. Meanwhile, it was found that with dose increasing, the seedling height was increased, suggesting that irradiation treatment could stimulate the seedling growth. Therefore, Bt transgene can not change the irradiation sensitivity of rice and the conventional method of rice can be used in Bt rice irradiation mutation breeding. (authors)

  19. Changes in germination characteristics and seedling growth ...

    African Journals Online (AJOL)

    Yomi

    2012-03-06

    Mar 6, 2012 ... Priming provides controlled hydration of seeds to a level ... water but drying them before complete germination. .... compared with the control, although, this difference was ... membrane damage, and restores germ inability to aged .... lipid per oxidation in bitter gourd seeds and effects of priming and hot.

  20. Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions

    OpenAIRE

    DRAGANIC, Ivana; LEKIC, Slavoljub

    2012-01-01

    The results of studying the effects of sunflower seed priming with an aqueous solution of ascorbic acid (A), tocopherol (T), and glutathione (G) performed prior to accelerated ageing and a cold test are presented in this paper. Germination, the percentage of abnormal seedlings, and the lengths of both roots and shoots were monitored. The results showed that the cold test caused a drastic drop in germination, an adverse effect on the shoot length, an increase in the percentage of abnormal seed...

  1. Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2011-04-01

    Full Text Available Salinity stress is an important environmental constraint limiting the productivity of many crops worldwide. In this report, experiments were conducted to investigate the effects of seed presoaking by bovine hemoglobin, an inducer of heme oxygenase-1 (HO-1, on salinity tolerance in rice (Oryza sativa plants. The results showed that different concentrations of the hemoglobin (0.01, 0.05, 0.2, 1.0, and 5.0 g/L differentially alleviated the inhibition of rice seed germination and thereafter seedling shoot growth caused by 100 mM NaCl stress, and the responses of 1.0 g/L hemoglobin was the most obvious. Further analyses showed that application of hemoglobin not only increased the HO-1 gene expression, but also differentially induced catalase (CAT, ascorbate peroxidase (APX, and superoxide dismutase (SOD activities or transcripts, thus decreasing the lipid peroxidation in germinating rice seeds subjected to salt stress. Compared with non-hemoglobin treatment, hemoglobin presoaking also increased the potassium (K to sodium (Na ratio both in the root and shoot parts after salinity stress. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX blocked the positive actions of hemoglobin on seed germination and seedling shoot growth. Overall, these results suggested that hemoglobin performs an advantageous role in enhancement of salinity tolerance during rice seed germination.

  2. Germination and seedling morphology of four South American Smilax (Smilacaceae

    Directory of Open Access Journals (Sweden)

    Aline Redondo Martins

    2012-03-01

    Full Text Available Species of Smilax, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30ºC and 20-30ºC and light (presence/ absence, and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30ºC in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%, independently of treatment. However, S. polyantha had low germination rates (19-24%. After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovateelliptic, coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics.

  3. Germination and seedling morphology of four South American Smilax (Smilacaceae).

    Science.gov (United States)

    Martins, Aline Redondo; Soares, Anielca Nascimento; Bombo, Aline Bertolosi; Fidelis, Alessandra; Novembre, Ana Dionisia da Luz Coelho; da Glória, Beatriz Appezzato

    2012-03-01

    Species of Smilax, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30 degrees C and 20-30 degrees C) and light (presence/ absence), and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30 degrees C in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%), independently of treatment. However, S. polyantha had low germination rates (19-24%). After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovate-elliptic, coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics.

  4. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    Science.gov (United States)

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  5. Germination Response of MR 219 Rice Variety to Different Exposure Times and Periods of 2450 MHz Microwave Frequency

    Directory of Open Access Journals (Sweden)

    Daryush Talei

    2013-01-01

    Full Text Available Germination is a key process in plants' phenological cycles. Accelerating this process could lead to improvment of the seedling growth as well as the cultivation efficiency. To achieve this, the effect of microwave frequency on the germination of rice seeds was examined. The physiological feedbacks of the MR 219 rice variety in terms of seed germination rate (GR, germination percentage (GP, and mean germination time (MGT were analyzed by exposing its seeds to 2450 MHz of microwave frequency for one, four, seven, and ten hours. It was revealed that exposing the seeds to the microwave frequency for 10 hours resulted in the highest GP. This treatment led to 100% of germination after three days with a mean germination time of 2.1 days. Although the other exposure times of microwave frequency caused the moderate effects on germination with a GPa3 ranged from 93% to 98%, they failed to reduce the MGTa3. The results showed that ten-hour exposure times of microwave frequency for six days significantly facilitated and improved the germination indices (primary shoot and root length. Therefore, the technique is expected to benefit the improvement of rice seed germination considering its simplicity and efficacy in increasing the germination percentage and rate as well as the primary shoot and root length without causing any environmental toxicity.

  6. In vitro germination and acclimatization of cambui tree type seedlings

    Directory of Open Access Journals (Sweden)

    Ana da Silva Lédo

    2014-01-01

    Full Text Available There are few reports in literature on the in vitro behavior of cambui tree (Myrciaria tenella O. Berg and acclimatization conditions. The aim of this study was to evaluate the effect of culture media on in vitro germination and the effect of different substrates on the acclimatization of two Myrciaria tenella types. The study was carried out at the Embrapa Tabuleiros Costeiros Laboratory of Plant Tissue Culture, Aracaju, SE. Seeds were extracted from fruits of two Myrciaria tenella types: Orange and Purple Types. The seeds were inoculated in the following culture media: T1 - MS medium + 30g L -1 sucrose, T2 - 1/2 MS medium + 15g L -1 sucrose and T3 - control without MS salts. To study the effect of substrates on acclimatization, seedlings were transferred to plastic containers with capacity of 300cm 3 containing the following sterilized substrates: S1 - soil and powdered coconut husk - SPC (1:1 by volume; S2 - soil, washed sand and powdered coconut husk - SAPC (1:1:1 by volume and S3 - Biomix (r commercial substrate - SC. The medium without MS salts promoted 100% in vitro germination and 1/2 MS medium greater development of seedlings. All substrates studied are suitable for acclimatization of seedlings germinated in vitro. Myrciaria tenella of yellow type showed greater vigor during acclimatization.

  7. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  8. Responses of endogenous proline in rice seedlings under chromium exposure

    Directory of Open Access Journals (Sweden)

    X.Z. Yu

    2016-12-01

    Full Text Available Hydroponic experiments were performed to exam the dynamic change of endogenous proline in rice seedlings exposed to potassium chromate chromium (VI or chromium nitrate chromium (III. Although accumulation of both chromium species in rice seedlings was obvious, more chromium was detected in plant tissues of rice seedlings exposed to chromium (III than those in chromium (VI, majority being in roots rather than shoots. Results also showed that the accumulation capacity of chromium by rice seedlings was positively correlated to chromium concentrations supplied in both chromium variants and the accumulation curve depicted an exponential trend in both chromium treatments over the entire period of exposure. Proline assays showed that both chromium variants induced the change of endogenous proline in shoots and roots of rice seedlings. Chromium (VI of 12.8 mg/L increased proline content significantly (p

  9. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    Science.gov (United States)

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  10. Seedling vigor and genetic variability for rice seed, seedling emergence and seedling traits

    International Nuclear Information System (INIS)

    Ali, S.S.; Jafri, S.J.H.; Jamil, M.; Ijaz, M.

    1994-01-01

    Eleven local rice cultivars including Basmati 370 were evaluated for seedling vigor. Three groups of traits were evaluated viz; seed traits (Seed density, seed volume see weight, paddy length and grain length), seed emergence traits (emergence %, emergence index and emergence rate index), and seedling traits (fresh root length, dry root weight, emergence percentage, root length, dry root weight, seed weight and relative root weight were observed significant, respectively. Seed density, relative root weight, emergence rate index and root to shoot ratio were relatively more amenable to improvement. Relative expected genetic advance was the function of heritability and coefficient of phenotypic variability, latter being more important. (author)

  11. Mapping QTLs for submergence tolerance during germination in rice

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... Key words: Oryza sativa L, anaerobic germination, QTL analysis. INTRODUCTION. Two main ... The study was conducted at NG-01 greenhouse, Genome and. Mapping (GML), the .... ABC transporter family protein ..... differences of germination habits in rice seeds with special reference to plant breeding (in ...

  12. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  13. Analysis on Factors Affecting Seedling Establishment in Rice

    Directory of Open Access Journals (Sweden)

    Ju LUO

    2007-03-01

    Full Text Available Elongations of coleoptile and mesocotyl are related directly to rice seedling establishment in soil and height of plant is related to lodging in rice production. Twelve typical rice cultivars with different lengths of coleoptile and mesocotyl (long, medium and short were selected by screening the lengths of coleoptile and mesocotyl in 1500 accessions. The seedling establishments of these typical cultivars were compared under the combinations of different sowing depths and flooding durations, and two semi-dwarf varieties (G140, Zhong 96–21 with good seedling establishments and optimum mesocotyl lengths were found. The length of mesocotyl was completely fitted negative binomial distribution and the length of coleoptile was nearly fitted lognormal distribution. Analysis of the relationships among mesocotyl, coleoptile, seeding depth, flooding duration, and their interactions to seedling establishment percentage showed that there existed significant relations among mesocotyl, coleoptile, mesocotyl × coleoptile, seeding depth, flooding duration and mesocotyl × sowing depth in the experiment for seedling establishment.

  14. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice

    Science.gov (United States)

    García-Morales, Soledad; Pérez-Sato, Juan Antonio

    2018-01-01

    Cerium (Ce) belongs to the rare earth elements (REEs), and although it is not essential for plants, it can stimulate growth and other physiological processes. The objective of this research was to evaluate the effect of Ce on seed germination, initial seedling growth, and vegetative growth in rice (Oryza sativa L.) cv. Morelos A-98. During the germination process, the seeds were treated with Ce concentrations of 0, 4, 8, and 12 μM; after 5 d, germination percentage was recorded and after 10 d seedling growth was measured. For vegetative growth, a hydroponic system was established where 14-d-old plants without previous Ce treatment were transferred into nutrient solution. After two weeks of acclimatizing, 0, 25, 50, and 100 μM Ce were added to the nutrient solution for 28 d. Ce significantly increased germination and the initial growth variables of the seedlings. During vegetative growth, Ce increased plant height, number of tillers, root volume, and shoot fresh and dry biomass, without affecting root biomass weight. With low Ce concentrations (25 and 50 μM), the concentrations of chlorophylls and amino acids in the shoots were similar to those in the control, like amino acid concentration in the roots at a concentration of 25 μM Ce. Conversely, the concentration of total sugars increased in the shoot with the application of 25, 50, and 100 μM Ce, and in the roots with the application of 50 μM Ce. Also, Ce did not affect the concentration of macro or micronutrients in the shoots. However, in the roots, the high Ce concentration decreased the concentrations of Ca, Fe, Mn, and Zn, while the Mg concentration increased. Our results indicate that Ce, at the right concentrations, can function as a biostimulant in rice germination and growth. PMID:29579100

  15. Comparative study of drought and salt stress effects on germination and seedling growth of pea

    Directory of Open Access Journals (Sweden)

    Petrović Gordana

    2016-01-01

    Full Text Available Seed germination is first critical and the most sensitive stage in the life cycle of plants compromise the seedlings establishment. Salt and drought tolerance testing in initial stages of plant development is of vital importance, because the seed with more rapid germination under salt or water deficit conditions may be expected to achieve a rapid seedling establishment, resulting in higher yields. The aim of this study was to determine whether the pea seed germination and seedling growth were inhibited by the salt toxicity and osmotic effect during the seedling development, and also identification of the sensitive seedling growth parameters in response to those stresses. Based on the obtained results, pea has been presented to be more tolerant to salt than water stress during germination and early embryo growth. Investigated cultivars showed greater susceptibility to both abiotic stresses when it comes growth parameters compared to seed germination. [Projekat Ministarstva nauke Republike Srbije, br. TR-31024 i br. TR-31022

  16. Contribution of seedling vigour and anoxia/hypoxia-responsive genes to submergence tolerance in Vietnamese lowland rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Hien Thi Thu Vu

    2016-09-01

    Full Text Available A direct-seeded rice cultivation system has been widely adopted in Asian countries. Optimum germination and vigorous seedling growth under submergence are key traits for the practice of direct seeding. We studied the post-germination seedling vigour in Vietnamese lowland rice accessions based on three bio-parameters, shoot elongation growth under five-day submergence in water-filled test-tubes, seedling recovery rate five days after transferring submerged seedlings to pots with soil and seedling survival rate 21 days after sowing seeds in nursery beds and immediate incubation under submergence. A large diversity was found in seedling vigour thus estimated among the accessions. Significantly high correlations were observed among all three bio-parameters, verifying the contribution of seedling vigour to the manifestation of submergence tolerance at this critical stage of rice development. To examine the roles of anoxia/hypoxia-responsive genes, the expression of 17 candidate genes was studied by reverse transcription polymerase chain reaction (RT-PCR and compared between selected vigorous and non-vigorous groups of accessions. Transcripts of all but two genes showed marked accumulation in submerged seedlings. No differences, however, were found between the two contrasting groups. The observed common and coordinate expression of anoxia/hypoxia-induced genes suggests that they might assume roles in attaining baseline tolerance against submergence stress. It was also suggested that some unknown genetic factors are operating in determining cultivar/genotype-specific levels of submergence tolerance as assessed by post-germination seedling vigour.

  17. Effects of sand burial and seed size on seed germination, seedling emergence and seedling biomass of anabasis aphylla

    International Nuclear Information System (INIS)

    Wang, T.T.; Chu, G.M.; Jiang, P.; Wang, M.

    2017-01-01

    Two greenhouse experiments were conducted to test the effects of sand burial (0-2 cm) and seed size (small, medium and large) on seed germination and seedling growth of Anabasis aphylla, which is typically used as a windbreak and for the fixation of sand in the Gurbantunggut desert of Xinjiang, region of northwest China. The results showed that sand burial significantly affected seed germination, seedling emergence, survival and biomass of A. aphylla. The seed germination rate, seedling emergence rate, seedling survival rate and biomass were highest at the 0.2 and 0.5 cm sand burial depths. At different burial depths, different sizes of A. aphylla seed showed a significant difference in the germination and emergence rate. At the same sand burial depth, the seedling emergence rate of the large seeds was significantly higher than that of medium and small seeds. At sand burial depth of 0.2-2 cm, germination of large seeds and seedling survival rates were significantly higher than those at the same sand burial depth for medium seed germination, and the latter was significantly higher than for small seed. We speculate that tolerance to sand burial and diversity of seed size increased the adaption of A. aphylla to this environment, contributing to its dominance in the windy and sandy area of Gurbantunggut desert. (author)

  18. Toxicity Effect of Cr Stress on Seed Germination and Seedling Growth in Lactuca Sativa

    Science.gov (United States)

    Ma, Wan Zheng; Ma, Wan Min; Du, Ying Ying; Dan, Qiong Peng; Yin, Bing; Dai, Shan Shan; Hao, Xiang

    2018-03-01

    The impact of Cr6+ on the growth of lactuca sativa in Greenhouse Cucumber was investigated. The seeds of lacuna sativa Italian bolting resistance lettuce were treated by different Cr6+ concentration to study the effects on its seed germination and seedling growth. The results showed that the seed germination rate, vigor index of seedlings decreased with increment of Cr6+ concentration to varying degrees, and vigor germination, vigor index, raw weight, root length significantly lower. The absorption of lettuce seedlings on different nutrient elements is impacted by the concentration of Cr6+.

  19. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Science.gov (United States)

    Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi

    2015-01-01

    CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  20. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Directory of Open Access Journals (Sweden)

    Xiaoding Ma

    Full Text Available CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483 exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  1. Germination and seedling frost tolerance differ between the native and invasive range in common ragweed.

    Science.gov (United States)

    Leiblein-Wild, Marion Carmen; Kaviani, Rana; Tackenberg, Oliver

    2014-03-01

    Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation--due to a longer growing period--and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.

  2. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    OpenAIRE

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations inst...

  3. Germination and Seedling Development of Seeds from Different Parkia biglobosa (Jacq G. Don Trees

    Directory of Open Access Journals (Sweden)

    Christiana O. ADEYEMI

    2013-02-01

    Full Text Available The effect of daylight, continuous illumination and acid scarification on the seed germination and seedling vegetative growth (epicotyl and hypocotyl lengths, and number of secondary roots of different Parkia biglobosawere investigated in the Plant Physiology Laboratory University of Ilorin, Ilorin Kwara State Nigeria. Seeds from two out of the twenty six Parkia tree samples (trees B and T germinated within 24 hours of planting in the daylight germination study while seeds from another tree (Q did not germinate until the third week after planting (3WAP. Some seeds have higher germination percentage both in the daylight (preliminary germination study and in the continuous light (illuminated study. The treatment with concentrated Sulphric acid (conc. H2SO4was effective in breaking the seed dormancy as seeds from eight (8 trees produced one hundred percent (100% germination. At p= 0.05 the length of epicotyl and hypocoty1 lengths were significantly different as seedling vegetative growth were long in the seedlings from the daylight experiment than the continuous light experiment. The vegetative growths of the seedlings from the scarified seed were longer at 15min of scarification in all except in trees F and Z. It was observed that the time of scarification affect the both seed germination and seedling development.

  4. Changes in Endogenous Cytokinins During Germination and Seedling Establishment of Tagetes minuta L.

    Czech Academy of Sciences Publication Activity Database

    Stirk, W.A.; Gold, J.D.; Novák, Ondřej; Strnad, Miroslav; van Staden, J.

    2005-01-01

    Roč. 47, č. 1 (2005), s. 1-7 ISSN 0167-6903 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinins * Germination * Seedling establishment Subject RIV: EF - Botanics Impact factor: 0.841, year: 2005

  5. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria.

    Science.gov (United States)

    Chinma, Chiemela Enyinnaya; Anuonye, Julian Chukwuemeka; Simon, Omotade Comfort; Ohiare, Raliat Ozavize; Danbaba, Nahemiah

    2015-10-15

    This study determined the effect of germination (48 h) on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Local rice varieties (Jamila, Jeep and Kwandala) were evaluated and compared to an improved variety (MR 219). Physicochemical and antioxidant properties of flours were determined using standard methods. Protein, magnesium, phosphorus, potassium and antioxidant properties of rice flours increased after germination while phytic acid and total starch contents decreased. Foaming capacity and stability of rice flours increased after germination. Germination resulted to changes in pasting and thermal characteristics of rice flours. Germinated rice flours had better physicochemical and antioxidant properties with reduced phytic acid and starch contents compared to MR 219, which can be utilized as functional ingredients in the preparation of rice-based products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  7. Asymbiotic germination, seedling development and plantlet propagation of Encyclia aff. oncidioides - an endangered orchid

    Directory of Open Access Journals (Sweden)

    Ewa Łojkowska

    2011-01-01

    Full Text Available In order to estimate the best germination conditions of Encyclia aff. oncidioides seeds, five different media (Fast, Knudson C modified by Vajrabhaya, Murashige and Skoog, PB2 and modified Vacin and Went with different concentrations of plant growth regulators such as benzyladenine (BA, naphthaleneacetic acid (NAA and gibberellic acid (GA3 were tested. No beneficial effect was observed when BA and NAA were applied to the germination medium and GA3 inhibited germination. The effect of light, activated charcoal, coconut water and casein hydrolysate on seed germination was also studied. The growth rate of seedlings on three different media supplemented with activated charcoal and plant growth regulators was checked. The applied plant growth regulators had no beneficial effect on the further growth of seedlings. Fast and PB2 media with 0.2% activated charcoal proved to be the best for E. aff. oncidioides seed germination, seedling development and plantlet propagation.

  8. Some aspects of the Seed Germination and Seedling Growth of two Savanna tree Species

    OpenAIRE

    D.A. Agboola; A.A. Ajiboye; O.O. Fawibe; M.O. Atayese

    2014-01-01

    Studies were made on some aspects of the seed germination and seedling growth of two multipurpose trees. These include the effect of pre sowing treatments, seed sizes and gibberellic acid on the germination of seeds and seedling growth. The tree species include Prosopis africana (Guil & Perr) Taub and Dialium guineense (wild). Two seed sizes designated small- size (Ss) and Big-size (Bs) were identified in the seed. The effect of gibberellic acid (GA3) had a greater significance effect (P < 0....

  9. Genome-wide association study of salt tolerance at the seed germination stage in rice.

    Science.gov (United States)

    Shi, Yingyao; Gao, Lingling; Wu, Zhichao; Zhang, Xiaojing; Wang, Mingming; Zhang, Congshun; Zhang, Fan; Zhou, Yongli; Li, Zhikang

    2017-05-30

    Improving the salt tolerance of direct-seeding rice at the seed germination stage is a major breeding goal in many Asian rice-growing countries, where seedlings must often establish in soils with a high salt content. Thus, it is important to understand the genetic mechanisms of salt tolerance in rice and to screen for germplasm with salt tolerance at the seed germination stage. Here, we investigated seven seed germination-related traits under control and salt-stress conditions and conducted a genome-wide association study based on the re-sequencing of 478 diverse rice accessions. The analysis used a mixed linear model and was based on 6,361,920 single nucleotide polymorphisms in 478 rice accessions grouped into whole, indica, and non-indica panels. Eleven loci containing 22 significant salt tolerance-associated single nucleotide polymorphisms were identified based on the stress-susceptibility indices (SSIs) of vigor index (VI) and mean germination time (MGT). From the SSI of VI, six major loci were identified, explaining 20.2% of the phenotypic variation. From the SSI of MGT, five major loci were detected, explaining 26.4% of the phenotypic variation. Of these, seven loci on chromosomes 1, 5, 6, 11, and 12 were close to six previously identified quantitative gene loci/genes related to tolerance to salinity or other abiotic stresses. The strongest association region for the SSI of MGT was identified in a ~ 13.3 kb interval (15450039-15,463,330) on chromosome 1, near salt-tolerance quantitative trait loci controlling the Na + : K + ratio, total Na + uptake, and total K + concentration. The strongest association region for the SSI of VI was detected in a ~ 164.2 kb interval (526662-690,854) on chromosome 2 harboring two nitrate transporter family genes (OsNRT2.1 and OsNRT2.2), which affect gene expression under salt stress. The haplotype analysis indicated that OsNRT2.2 was associated with subpopulation differentiation and its minor/rare tolerant haplotype was

  10. Germination conditions affect selected quality of composite wheat-germinated brown rice flour and bread formulations.

    Science.gov (United States)

    Charoenthaikij, Phantipha; Jangchud, Kamolwan; Jangchud, Anuvat; Prinyawiwatkul, Witoon; Tungtrakul, Patcharee

    2010-08-01

    Brown rice has been reported to be more nutritious after germination. Germinated brown rice flours (GBRFs) from different steeping conditions (in distilled water [DI, pH 6.8] or in a buffer solution [pH 3] for either 24 or 48 h at 35 degrees C) were evaluated in this study. GBRF obtained from brown rice steeped at pH 3 for 48 h contained the highest amount of free gamma aminobutyric acid (GABA; 67 mg/100 g flour). The composite flour (wheat-GBRF) at a ratio of 70 : 30 exhibited significantly lower peak viscosity (PV) (56.99 - 132.45 RVU) with higher alpha-amylase activity (SN = 696 - 1826) compared with those of wheat flour (control) (PV = 136.46 RVU and SN = 1976). Bread formulations, containing 30% GBRF, had lower loaf volume and greater hardness (P rice flour (BRF). Acceptability scores for aroma, taste, and flavor of breads prepared with or without GBRFs (30% substitution) were not significantly different, with the mean score ranging from 6.1 (like slightly) to 7 (like moderately). Among the bread formulations containing GBRF, the one with GBRF prepared after 24 h steeping at pH 3 had a slightly higher (though not significant) overall liking score (6.8). This study demonstrated that it is feasible to substitute wheat flour with up to 30% GBRF in bread formulation without negatively affecting sensory acceptance. Practical Application: Our previous study revealed that flours from germinated brown rice have better nutritional properties, particularly gamma-aminobutyric acid (GABA), than the nongerminated one. This study demonstrated feasibility of incorporating up to 30% germinated brown rice flour in a wheat bread formulation without negatively affecting sensory acceptance. In the current United States market, this type of bread may be sold as frozen bread which would have a longer shelf life. Further study is thus needed.

  11. Microorganisms control during processing of germinated brown rice

    International Nuclear Information System (INIS)

    Suzuki, K.; Maekawa, T.

    1999-01-01

    In order to limit the growth of microorganisms during processing of germinated brown rice (GBR), three kinds of operations for sanitation control were investigated. For a surface-disinfection treatment of brown rice, soaking in 1% of sodium hypochlorite for 10min. and 0.1% of calcium preparation solutions for 10min. at 30°C, resulted in 2log decrease by aerobic plate count in culture water after 1h of the germination processing. Soaking in 10% of sodium hypochlorite for 10min. and 1% of calcium preparation solutions for 10min at 30°C were found to inhibit germination, respectively. During the germination processing, including aeration stage and non-aeration stage, continuous ultraviolet irradiation on the culture water in the water tank resulted in limited bacterial growth in culture water below 102CFU/ml by aerobic plate count. Moreover, the turbidity of the culture water was improved by filtration of the stored water using activated carbon-hollow fiber filter. The filtration by activated carbon-hollow fiber filter during the germination processing was an effective method to eliminate microorganisms and contamination factor during GBR production. It also improved the efficiency of ultraviolet irradiation effect on the culture water

  12. Effect of Salinity on Germination and Seedling Growth of Four Medicinal Plants

    Directory of Open Access Journals (Sweden)

    A Dadkhah

    2012-07-01

    Full Text Available This experiment was conducted in germinator in order to study the effects of water potential on seed germination, rate of germination and seedlings growth of four medicinal plants (Coriandrum sativum, Plantago psyllium, Discorinia sophia and Portulaca oleracea. Four water potential inclouding distilled water as control (0, -0.37, -0.59 and –0.81 Mpa which made by different salts (NaCl, CaCl2 and NaCl+CaCl2 in 5 to 1 molar ratio. The experiment was carried out based on completly randomized design with six replications. Results showed that the effects of water potential, type of salt on germination percentage, rate of germination, root and shoot length were significant. With decreasing water potential, germination percentage and rate of germination declined but the response of plant were differ. Germination of Portulaca oleracea was not affected by decreasing water potential where as other significantly decreased. The effect of salt composition was significant on rate and percentage germination. The percentage of germination at lower water potential (–0.37 MPa which made by NaCl + CaCl2 significantly was higher than the same water potential made by only NaCl and CaCl2. Although, percentage and rate germination of Portulaca oleracea were not affected by different water potential, seedling growth of Portulaca oleracea significantly decreased.

  13. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings

    Science.gov (United States)

    Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.

    2018-01-01

    Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.

  14. Factors Affecting Planting Depth and Standing of Rice Seedling in Parachute Rice Transplanting

    Science.gov (United States)

    Astika, I. W.; Subrata, I. D. M.; Pramuhadi, G.

    2018-05-01

    Parachute rice transplanting is a simple and practical rice transplanting method. It can be done manually or mechanically, with various possible designs of machines or tools. This research aimed at quantitatively formulating related factors to the planting depth and standing of rice seedling. Parachute seedlings of rice were grown at several sizes of parachute soil bulb sizes. The trays were specially designed with a 3D printer having bulb sizes 7, 8, 9, 10 mm in square sides and 15 mm depth. At seedling ages of 8-12 days after sowing the seedling bulbs were drops into puddled soil. Soil hardness was set at 3 levels of hardness, measured in hardness index using golf ball test. Angle of dropping was set at 3 levels: 0°, 30°and 45° from the vertical axis. The height of droppings was set at 100 cm, 75 cm, and 50 cm. The relationship between bulb size, height of dropping, soil hardness, dropping angle and planting depth was formulated with ANN. Most of input variables did not significantly affect the planting depth, except that hard soil significantly differs from mild soil and soft soil. The dropping also resulted in various positions of the planted seedlings: vertical standing, sloped, and falling. However, at any position of the planted seedlings, the seedlings would recover themselves into normally vertical position. With this result, the design of planting machinery, as well as the manual planting operation, can be made easier.

  15. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion

    Directory of Open Access Journals (Sweden)

    R. Gholamalizadeh

    2017-08-01

    Full Text Available ABSTRACT The application of beneficial bacteria has recently been used for sustainable agriculture. In current research, 71 bacterial isolates were obtained from rice plant and the rhizosphere soil of different paddy fields in Guilan province, Iran. After primitive investigation, 40 bacteria with typical predominant characteristics were selected. By PCR-RFLP of their 16S r-DNA gene, 8 Operational Taxonomic Units (OTUs totally consisted of 33 isolates were obtained. From all of them, 8 isolates were selected for rice seed germination experiment, then, effective isolates were used for pot experiment to evaluate their ability for promoting rice growth. All of them were able to increase rice growth and yield, but in different potential. These tested isolates were identified as Alcaligenes faecalis (DEp8, O1R4, Pantoea ananatis (AEn1, Bacillus vietnamensis (MR5, Bacillus idriensis (MR2 and Stenotrophomonas maltophilia by partial sequencing of their 16S r-DNA gene. Among them, AEn1 and MR5 produced indole-3- acetic acid (IAA in larger amounts than the other isolates and the isolates AEn1 and O1R4 were able to solubilize phosphate in higher amounts. According to the results obtained, it can be concluded that AEn1, O1R4 and MR5 can be considered as bacterial inoculants to use as alternatives for chemical fertilizers.

  16. SEED, SEEDLINGS AND GERMINATION MORPHOLOGY OF Copaifera langsdorfii Desf. (Leguminosae-Caesalpinioideae

    Directory of Open Access Journals (Sweden)

    Maria Elane de Carvalho Guerra

    2006-12-01

    Full Text Available The knowledge of seed and seedling morphology are extremely important to the identification and preservation of plant species. In order to studying seed and seedling morphology and seed germination of copaiba (Copaifera langsdorfii Desf seeds, experiments were conducted at the Laboratory of Seed Analysis and Laboratory of Botany of the Federal University of Ceará. In copaíba seeds the characteristics studied were shape, size (length, width, thickness and morphology. The kind of germination, the root systems, hypocotyls, epicotyls and first leaves were the characteristics evaluated in copaiba seedlings. Ruler and pachimeter were used to make the measurements, as well as optical microscope and magnifying glass. The seeds are exalbumin kind, have neuter photoblastism and epigeous germination. Seed coat shows a palisade cell layer with a conspicuous light line. The seedlings have compound first leaves and axial root system.

  17. Effects of 60Co γ-rays irradiation on germination and seedling growth of Hibiscus syriacus

    International Nuclear Information System (INIS)

    Li Xiufen; Wu Fulan; Zhang Deshun; Meng Zhennong; Cao Jiyun

    2009-01-01

    The seeds of Hibiscus syria cus were irradiated by 60 Co γ-rays at dose rate of 50 ∼ 500Gy/h for 0.5 and 1h, the seed germination rate and the seedling growth characters were surveyed. The results indicated that the seed germination was promoted when the absorbed dose was below 200Gy, and the seedling survival rate was increased when the dose was below 100Gy. The germination was inhibited, leaves and secondary roots were difficult to form, and the seedlings blasting occurred when the dose was over 200Gy. The dose rate affects the irradiation results. Absorbed dosed of 50 ∼ 100Gy were suggested for increasing seedling growth rate and 100 ∼ 200Gy were recommend for mutagenesis. (authors)

  18. Agroforestry wastes used for germination and development of sweet angelim seedlings

    Directory of Open Access Journals (Sweden)

    João Ricardo Avelino Leão

    2013-03-01

    Full Text Available This paper aimed to define the ideal type of agroforestry substrate and the adequate depth of sweet angelim sowing, providing information on the development of seedlings, as well as on low-cost substrates which are easy to be obtained. An experiment in a greenhouse was carried out, in a completely randomized design with treatments distributed in a factorial scheme (5x3, with the factors agroforestry substrates and depths being replicated seven times with a seed in each container. The following parameters were analyzed: germination percentage, germination speed index, total dry weight, number of leaves, seedlings height and coll diameter, and Dickson’s seedling quality index. The results showed that the most suitable substrate for germination and development of this native species was that containing Brazil nut shell, peanut hull, or açai seed, and the ideal depth for sowing and managing seedlings was on the surface.

  19. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    You-Tung Lin

    2015-01-01

    Full Text Available This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR and germinated brown rice (GBR. We used two rice cultivars (Oryza sativa L., Taiwan Japonica 9 (TJ-9 and Taichung Indica 10 (TCI-10, as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C, long soaking time (72 h, darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR. We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol. Higher temperature (36°C is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.

  20. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice

    NARCIS (Netherlands)

    Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.B.; Werf, van der W.; Duan, L.

    2014-01-01

    Germinated brown rice is a well-known functional food due to its high content of gamma-aminobutyric acid (GABA). This study was designed to test the difference of producing GABA in two domesticated rice genotypes (indica and japonica rice), and the effects of adding exogenous glutamic acid or

  1. The Effect of Salinity on Seed Germination and Seedling Growth of Four Medicinal Plant Species

    Directory of Open Access Journals (Sweden)

    H Javadi

    2014-07-01

    Full Text Available To study the effect of salinity stress on seed germination and seedling growth of four medicinal plants, Nigella sativa L., Cannabis sativa L., Trigonella foenum graecum and Cynara scolymus L. an experiment was conducted in the botany laboratory of Islamic Azad University, Birjand branch. A completely randomized design (CRD with 3 replications was used as separately for each species. Treatments were consisted of six salinity (NaCl concentrations (0, 4, 8, 12, 16 and 20 dS m-1. The measured traits were root, shoot and seedling length, dry and fresh weight of seedling, germination rate and percent, seed vigor index, seedling water content and root/ shoot ratio. Salinity stress reduced significantly shoot, root and seedling length of the species. Increasing of salinity stress declined dry and fresh weight of Trigonella foenum and Nigella sativa L. and dry weight of Cannabis sativa L.. Seedling water content and root/ shoot ratio of Nigella sativa L. increased in salinity treatments. Increasing of salinity stress declined germination rate and percent in Nigella sativa L., but in other species (Cannabis sativa L., Trigonella foenum graecum and Cynara scolymus only germination rate decreased. Trigonella foenum graecum germinated completely (%100 in all salinity treatments. Increasing of salinity until 16 dS m-1 reduced seed germination of Nigella sativa. Seed germination of Nigella sativa did not occurred in the highest salinity stress (20 dS m-1. Totally the results showed that in the germination stage, Trigonella foenum graecum and Cannabis sativa were relatively tolerate to salinity stress but Nigella sativa L. was the most sensitive one

  2. Some aspects of the Seed Germination and Seedling Growth of two Savanna tree Species

    Directory of Open Access Journals (Sweden)

    D.A. Agboola

    2014-10-01

    Full Text Available Studies were made on some aspects of the seed germination and seedling growth of two multipurpose trees. These include the effect of pre sowing treatments, seed sizes and gibberellic acid on the germination of seeds and seedling growth. The tree species include Prosopis africana (Guil & Perr Taub and Dialium guineense (wild. Two seed sizes designated small- size (Ss and Big-size (Bs were identified in the seed. The effect of gibberellic acid (GA3 had a greater significance effect (P < 0.05 on seed germination of both D. guineense and P. africana seeds. The big size seeds had a significant effect (P < 0.05 on the seed germination when compared to the small size seeds. The hydration/dehydration, pre sowing treatments on the seeds did not have any significant effects on germination.

  3. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping.

    Directory of Open Access Journals (Sweden)

    Yinghua Pan

    Full Text Available Low temperature affects the rice plants at all stages of growth. It can cause severe seedling injury and male sterility resulting in severe yield losses. Using a mini core collection of 174 Chinese rice accessions and 273 SSR markers we investigated cold tolerance at the germination and booting stages, as well as the underlying genetic bases, by association mapping. Two distinct populations, corresponding to subspecies indica and japonica showed evident differences in cold tolerance and its genetic basis. Both subspecies were sensitive to cold stress at both growth stages. However, japonica was more tolerant than indica at all stages as measured by seedling survival and seed setting. There was a low correlation in cold tolerance between the germination and booting stages. Fifty one quantitative trait loci (QTLs for cold tolerance were dispersed across all 12 chromosomes; 22 detected at the germination stage and 33 at the booting stage. Eight QTLs were identified by at least two of four measures. About 46% of the QTLs represented new loci. The only QTL shared between indica and japonica for the same measure was qLTSSvR6-2 for SSvR. This implied a complicated mechanism of old tolerance between the two subspecies. According to the relative genotypic effect (RGE of each genotype for each QTL, we detected 18 positive genotypes and 21 negative genotypes in indica, and 19 positive genotypes and 24 negative genotypes in japonica. In general, the negative effects were much stronger than the positive effects in both subspecies. Markers for QTL with positive effects in one subspecies were shown to be effective for selection of cold tolerance in that subspecies, but not in the other subspecies. QTL with strong negative effects on cold tolerance should be avoided during MAS breeding so as to not cancel the effect of favorable QTL at other loci.

  4. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice.

    Science.gov (United States)

    Zia, Zahida; Bakhat, Hafiz Faiq; Saqib, Zulfiqar Ahmad; Shah, Ghulam Mustafa; Fahad, Shah; Ashraf, Muhammad Rizwan; Hammad, Hafiz Mohkum; Naseem, Wajid; Shahid, Muhammad

    2017-10-01

    Silicon (Si) is the 2nd most abundant element in soil which is known to enhance stress tolerance in wide variety of crops. Arsenic (As), a toxic metalloid enters into the human food chain through contaminated water and food or feed. To alleviate the deleterious effect of As on human health, it is a need of time to find out an effective strategy to reduce the As accumulation in the food chain. The experiments were conducted during September-December 2014, and 2016 to optimize Si concentration for rice (Oryza sativa L.) exposed to As stress. Further experiment were carried out to evaluate the effect of optimum Si on rice seed germination, seedling growth, phosphorus and As uptake in rice plant. During laboratory experiment, rice seeds were exposed to 150 and 300µM As with and without 3mM Si supplementation. Results revealed that As application, decreased the germination up to 40-50% as compared to control treatment. Arsenic stress also significantly (P management, significantly (P˂0.05) affected the plant growth, Si and As concentrations in the plant. Arsenic uptake was relatively less under aerobic conditions. The maximum As concentration (9.34 and 27.70mgkg DW -1 in shoot and root, respectively) was found in plant treated with 300µM As in absence of Si under anaerobic condition. Similarly, anaerobic condition resulted in higher As uptake in the plants. The study demonstrated that aerobic cultivation is suitable to decrease the As uptake and in rice exogenous Si supply is beneficial to decrease As uptake under both anaerobic and aerobic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Seed Priming with Melatonin Effects on Seed Germination and Seedling Growth in Maize under Salinity Stress

    International Nuclear Information System (INIS)

    Jiang, X.; Li, H.; Song, X.

    2016-01-01

    The effects on seed germination and seedling growth in maize under salinity stress by seed priming with melatonin were investigated. Seeds of maize cultivar Nonghua101 were soaked in 0.4, 0.8 and 1.6 mM aerated solution of melatonin for 24 h, and primed seeds were germinated under the condition of 150 mM NaCl with paper media. The results showed seed priming with 0.8 mM melatonin was the best performance of all the treatments to seed germination and seedling growth in maize under salinity stress. Then primed with 0.8 mM melatonin or water for 24 h and unprimed seeds were germination under the condition of 150 mM NaCl with sand media. The results showed seed priming with 0.8 mM melatonin significantly improved germination energy, germination percentage, seedling vigor index, shoot and root lengths, seedling fresh and dry weights, K/sup +/ content, relative water content, proline and total phenolic contents, superoxide dismutase, catalase and phenylalanin ammonia lyase activities; and significantly decreased mean emergence time, Na/sup +/ content, electrolyte leakage and malondialdehyde content compared with untreated seeds under salinity stress. These results suggest that seed priming with melatonin alleviates the salinity damage to maize and seed priming with melatonin may be an important alternative approach to decrease the impact of salinity stress in maize. (author)

  6. Imaging analysis of direct alanine uptake by rice seedlings

    International Nuclear Information System (INIS)

    Nihei, Naoto; Masuda, Sayaka; Rai, Hiroki; Nakanishi, Tomoko M.

    2008-01-01

    We presented alanine, a kind of amino acids, uptake by a rice seedling to study the basic mechanism of the organic fertilizer effectiveness in organic farming. The rice grown in the culture solution containing alanine as a nitrogen source absorbed alanine approximately two times faster than that grown with NH 4 + from analysis of 14 C-alanine images by Imaging Plate method. It was suggested that the active transport ability of the rice seeding was induced in roots by existence of alanine in the rhizosphere. The alanine uptake images of the rice roots were acquired every 5 minutes successively by the real-time autoradiography system we developed. The analysis of the successive images showed that alanine uptake was not uniform throughout the root but especially active at the root tip. (author)

  7. Secondary metabolites profiles and antioxidant activities of germinated brown and red rice

    Science.gov (United States)

    Nurnaistia, Y.; Aisyah, S.; Munawaroh, H. S. H.; Zackiyah

    2018-05-01

    The research aims to investigate the effect of germination on the secondary metabolite profiles and antioxidant activity of brown and red rice. The germination was performed by using a simple laboratory-scale machine that was designed and optimized to provide conditions that support the germination process. The germination was carried out for 2 days in dark conditions at 26°C and 99% humidity. Analysis of the secondary metabolite profile of ungerminated and germinated rice was performed using LC-MS. The antioxidant activities of ungerminated and germinated rice were done by using DPPH method. The results showed that the profiles of secondary metabolites of brown and red rice changed after germination. Some peaks were found to be induced in the germinated rice. However, some peaks were also loss during germination. The antioxidant activity of brown rice was slightly increased due to the germination, from 11.2% to 22.5%. Meanwhile the antioxidant activity of red rice was decreased after germination, from 73.8% to 60.0%.

  8. Enhancement in seed germinability of rice (oryza sativa L.) by pre-sowing seed treatment with nitric oxide (NO) under salt stress

    International Nuclear Information System (INIS)

    Habib, N.; Ashraf, M.; Ahmad, M.S.

    2010-01-01

    The seeds of two fine-rice (Shaheen and PB-95) and two coarse rice (IRRI-6 and KS-282) cultivars were soaked in varying levels of nitric oxide (NO) (0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 mM) and then exposed to 80 mM NaCl in sand culture. Application of salt stress significantly reduced seed germinability parameters of all four rice cultivars in terms of percent seed germinated, germination index and seedling fresh and dry weights. The toxic effects of salt stress in reducing seed germinability were greater in fine rice cultivars (Shaheen and PB-95) as compared to those in coarse ones (IRRI-6 and KS-282). Although, the application of lower levels of nitric oxide (0.05, 0.1 and 0.2 mM) as pre-sowing seed treatment showed a significant improvement, 0.1 and 0.2 mM NO were found to be the most effective in improving seed germinability under salt stress. With a further increase in NO concentration (0.3 mM) as pre-sowing seed treatment, the seed germinability parameters differed non-significantly from those of control plants, while the highest levels (0.4 and 0.5 mM) showed significant inhibitory effects on seed germination and early seedling growth. It was concluded that lower levels of NO (0.1 and 0.2 mM) could be used to effectively enhance seed germination of rice plants under salt stress. (author)

  9. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  10. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest.

    Science.gov (United States)

    Winkler, Manuela; Hülber, Karl; Hietz, Peter

    2005-05-01

    Seeds of epiphytes must land on branches with suitable substrates and microclimates to germinate and for the resulting seedlings to survive. It is important to understand the fate of seeds and seedlings in order to model populations, but this is often neglected when only established plants are included in analyses. The seeds of five bromeliad species were exposed to different canopy positions in a Mexican montane forest, and germination and early seedling survival were recorded. Additionally, the survival of naturally dispersed seedlings was monitored in a census over 2.5 years. Survival analysis, a procedure rarely used in plant ecology, was used to study the influence of branch characteristics and light on germination and seedling survival in natural and experimental populations. Experimental germination percentages ranged from 7.2 % in Tillandsia deppeana to 33.7 % in T. juncea, but the seeds of T. multicaulis largely failed to germinate. Twenty months after exposure between 3.5 and 9.4 % of the seedlings were still alive. There was no evidence that canopy position affected the probability of germination, but time to germination was shorter in less exposed canopy positions indicating that higher humidity accelerates germination. More experimental seedlings survived when canopy openness was high, whereas survival in census-seedlings was influenced by moss cover. While mortality decreased steadily with age in juveniles of the atmospheric Tillandsia, in the more mesomorphic Catopsis sessiliflora mortality increased dramatically in the dry season. Seedling mortality, rather than the failure to germinate, accounts for the differential distribution of epiphytes within the canopy studied. With few safe sites to germinate and high seedling mortality, changes of local climate may affect epiphyte populations primarily through their seedling stage.

  11. Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development.

    Science.gov (United States)

    Johansson, V A; Bahram, M; Tedersoo, L; Kõljalg, U; Eriksson, O

    2017-05-01

    Mycoheterotrophic plants obtain organic carbon from associated mycorrhizal fungi, fully or partially. Angiosperms with this form of nutrition possess exceptionally small 'dust seeds' which after germination develop 'seedlings' that remain subterranean for several years, fully dependent on fungi for supply of carbon. Mycoheterotrophs which as adults have photosynthesis thus develop from full to partial mycoheterotrophy, or autotrophy, during ontogeny. Mycoheterotrophic plants may represent a gradient of variation in a parasitism-mutualism continuum, both among and within species. Previous studies on plant-fungal associations in mycoheterotrophs have focused on either germination or the adult life stages of the plant. Much less is known about the fungal associations during development of the subterranean seedlings. We investigated germination and seedling development and the diversity of fungi associated with germinating seeds and subterranean seedlings (juveniles) in five Monotropoideae (Ericaceae) species, the full mycoheterotroph Monotropa hypopitys and the putatively partial mycoheterotrophs Pyrola chlorantha, P. rotundifolia, Moneses uniflora and Chimaphila umbellata. Seedlings retrieved from seed sowing experiments in the field were used to examine diversity of fungal associates, using pyrosequencing analysis of ITS2 region for fungal identification. The investigated species varied with regard to germination, seedling development and diversity of associated fungi during juvenile ontogeny. Results suggest that fungal host specificity increases during juvenile ontogeny, most pronounced in the fully mycoheterotrophic species, but a narrowing of fungal associates was found also in two partially mycoheterotrophic species. We suggest that variation in specificity of associated fungi during seedling ontogeny in mycoheterotrophs represents ongoing evolution along a parasitism-mutualism continuum. © 2017 John Wiley & Sons Ltd.

  12. Effect of gamma radiations on seed germination and seedling growth of some cucurbits

    International Nuclear Information System (INIS)

    Narang, Kamlesh; Prakash, G.

    1983-01-01

    Increase in dose of gamma irradiation caused a progressive decrease in seed germination and seedling length in all the seven taxa. Percentage germination varied from species to species. A positive correlation was observed between lengths of primary root and hypocotyl (r = 1.00), root and cotyledon (r = + 0.97), hypocotyl and cotyledon (r = + 0.96), root and lateral root (r = + 0.96), hypocotyl and lateral root (r = + 0.97), cotyledon and lateral root (r = 0.91) but a negative correlation was between fresh and dry weight (r = -0.97) of seedlings. (author)

  13. 60Co γ-ray irradiation effect on germination and seedling growth of dry Buchloe dactyloides seeds

    International Nuclear Information System (INIS)

    Wang Wen'en; Zhang Junwei; Bao Manzhu

    2005-01-01

    The dry seeds of Buchloe dactyloides were irradiated by γ-ray at dose of 25-300 Gy. Seed germination and seedling characters were surveyed in laboratory and field. The results indicated that radiation could promote seed germination, and the optimum dose was 100 Gy. The dose of 150 Gy was the up limit to germination rate, root length and seedling height in field. When the radiation dose was bellow 100 Gy, the fresh weight of stems, leaves and roots of seedlings were increased. From this study, the recommended radiation does for Buchloe dactyloides dry seeds treatment was between 100-150 Gy for the purpose of promoting germination. (authors)

  14. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    Within two weeks of culture, spherules emerged out due to cracking of the seed coat. The spherules developed into protocorms with a leaf primordium at apical portion after 3 to 4 weeks and gradually produced complete seedlings. Strong and stout root system was induced in in vitro seedlings on transferring in half strength ...

  15. Phytotoxic Activity of Ocimum tenuiflorum Extracts on Germination and Seedling Growth of Different Plant Species

    Directory of Open Access Journals (Sweden)

    A. K. M. Mominul Islam

    2014-01-01

    Full Text Available Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum, lettuce (Lactuca sativa, alfalfa (Medicago sativa, Italian ryegrass (Lolium multiflorum, barnyard grass (Echinochloa crus-galli, and timothy (Phleum pratense at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP, germination index (GI, germination energy (GE, speed of emergence (SE, seedling vigour index (SVI, and coefficient of the rate of germination (CRG of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T50 and mean germination time (MGT were increased at the same or higher than this concentration. The increasing trend of T50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds.

  16. Germination, seedling growth and relative water content of shoot in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (mg), root : shoot length (R:S) ratio, and relative water content of shoot (RWC, %) were investigated in this study. The results ... seedlings may provide an advantage by allowing access ... Residual chlorine was eliminated by.

  17. Antidiabetic Properties of Germinated Brown Rice: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Mustapha Umar Imam

    2012-01-01

    Full Text Available Diet is an important variable in the course of type 2 diabetes, which has generated interest in dietary options like germinated brown rice (GBR for effective management of the disease among rice-consuming populations. In vitro data and animal experiments show that GBR has potentials as a functional diet for managing this disease, and short-term clinical studies indicate encouraging results. Mechanisms for antidiabetic effects of GBR due to bioactive compounds like γ-aminobutyric acid (GABA, γ-oryzanol, dietary fibre, phenolics, vitamins, acylated steryl β-glucoside, and minerals include antihyperglycemia, low insulin index, antioxidative effect, antithrombosis, antihypertensive effect, hypocholesterolemia, and neuroprotective effects. The evidence so far suggests that there may be enormous benefits for diabetics in rice-consuming populations if white rice is replaced with GBR. However, long-term clinical studies are still needed to verify these findings on antidiabetic effects of GBR. Thus, we present a review on the antidiabetic properties of GBR from relevant preclinical and clinical studies, in order to provide detailed information on this subject for researchers to review the potential of GBR in combating this disease.

  18. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages

    Science.gov (United States)

    Cowpea is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The l...

  19. Germination and seedling establishment of spiny hopsage in response to planting date and seedbed environment

    Science.gov (United States)

    Nancy L. Shaw; Marshall R. Haferkamp; Emerenciana G. Hurd

    1994-01-01

    Reestablishment of spiny hopsrge (Grayia spinosa [Hook.] Moq.) in the shrub steppe requires development of appropriate seeding technology. We examined the effect of planting date and seedbed environment on germination and seedling establishment of 2 seed sources at 2 southwestern Idaho sites. Seedbeds were prepared by rototilling. In 1987-88, seeds...

  20. Effects of NaCl stress on seed germination, early seedling growth ...

    African Journals Online (AJOL)

    Effects of salt stress on seed germination, early seedling growth and some physiological characteristics were evaluated for four cauliflower species in seven treatments of salinity including 0 (control), 34, 68, 102, 136, 170 and 204 mM NaCl in a three replicated randomized completely block design (RCBD). This result shows ...

  1. The effects of sowing time and depth on germination and seedling ...

    African Journals Online (AJOL)

    The aim of this study is to determine the appropriate sowing time and depth in spring for Taurus Cedar (Cedrus libani A. Rich) in Turkey. The effects of sowing time and depth were determined with regard to the germination rate of seedlings' quality. The seeds were collected from Kapidag-Isparta, in Turkey, in 2003 and ...

  2. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes.

    Science.gov (United States)

    Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar

    2017-05-01

    Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The impact of germination on the characteristics of brown rice flour and starch.

    Science.gov (United States)

    Xu, Jie; Zhang, Hui; Guo, Xiaona; Qian, Haifeng

    2012-01-30

    In recent years, germinated brown rice as a functional food has received great attention with its improved sensory and nutritional properties. Particularly of interest are the high levels of γ-amino butyric acid (GABA) which can be obtained during germination. However, more studies are needed to fully understand the effect of germination on the physicochemical properties of brown rice. Germination altered the chemical composition of brown rice, resulting in an increase in reducing sugar and ash content, and a reduction in amylose. Solubility, paste viscosity, transition temperatures (T(o) , T(p) and T(c) ) and percentage of retrogradation (%Retrogradation) were decreased, while swelling power and turbidity were significantly increased. Scanning electron micrographs indicated that starch granules from germinated brown rice became smaller and less homogeneous. Moreover, germination shortened the chain length of amylopectin and amylose molecules. This investigation provides information on changes in the characteristics of rice flour and rice starch during germination, leading to a better understanding on the chemistry of brown rice germination. Copyright © 2011 Society of Chemical Industry.

  4. Effect of Salinity and Seed Size on Lentil (Lens culinaris Medik Germination and Seedling Growth Properties

    Directory of Open Access Journals (Sweden)

    Y Alizadeh

    2012-02-01

    Full Text Available Both soil and water salinity is one of the main reasons in decreasing germination, seedling growth and establishment in many arid and semiarid parts of world especially in our country. For this reason in order to evaluate the effect of lentil seed size on germination and seedling growth properties that was under effect of salinity stress, a completely randomized design with factorial arrangement and 3 replications conducted using two lentils genotypes (Robatt and Gachsaran, two small and large seed sizes (34.8 and 59 mg in Robatt and 41.5 and 69 mg in Gachsaran per seed, respectively and five drought levels (0, 0.5, 0.8, 1.2 and 1.7 percent of NaCl in 2008s. Results showed that Robatt genotype had higher germination rate and salinity tolerance than Gachsaran. In addition seed size had significant different (P

  5. Study Some Ecological Characteristics on Germination and Seedling Growth of Milky Thistle (Silybum marianum (L. Gaertn

    Directory of Open Access Journals (Sweden)

    E. Zeidali

    2017-12-01

    Full Text Available Introduction: Milky thistle (Silybum marianum is an annual or biennial plant of the Asteraceae family. Possibly native near the coast of southeast England, it has been widely introduced outside its natural range, for example into North America, Iran, Australia and New Zealand where it is considered an invasive weed. Seed is an important stage of plant life history. Most invasive plants primarily rely on seedling recruitment for population establishment and persistence. The rapid spread of many invasive plants is frequently correlated with special seed traits. Seed trait variations exist not only among species but also within species. Seed traits variations within a species are essential for the seedling establishment at different habitats. Environmental factors, such as temperature, soil solution osmotic potential, solution pH, light quality, management practices and seed location in the soil seedbank, affect weed seed germination and emergence. Fluctuations in temperature can influence seed germination differently than those under constant temperatures; however, such information is not available on Milky thistle. A light requirement for germination is the principal means by which germination can be restricted to an area close to the soil surface, and species requiring light for germination are potentially more likely to be prevalent in no-till and pasture systems. Soil pH affects the development and competitiveness of crops and weeds by affecting the availability of essential minerals, nutrients, the solubility of toxic elements, and soil microflora. Seed burial depth (buried by tillage or other means also affects germination and seedling emergence of several weed species. Better knowledge of the factors that influence seed germination and seedling emergence of Milky thistle could contribute to the development of control measures and help determine its potential for invasion into new areas. The objectives of this study, therefore, were to

  6. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes.

    Science.gov (United States)

    Ma, Qian; Hedden, Peter; Zhang, Qifa

    2011-08-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.

  7. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... (M) and Knudson 'C' (KC) were evaluated for seed germination and early ... running tap water and Teepol. ... blade. The powdery seeds were inoculated on the surface of agar ... an interval of one week to trace different stages of development of .... round in shape and radially symmetrical that turned to.

  8. Seed germination and seedling establishment of some wild almond ...

    African Journals Online (AJOL)

    In the last experiment, the establishment and vigor of 14 accessions from eight almond species have been evaluated in plastic bags in outdoor conditions. Two ecotypes of Prunus spp. had the highest stem diameter and length at all growing stages. Keywords: Amygdalus, germination percentage, index vigor, root initiation, ...

  9. Salinity induced metabolic changes in rice (oryza sativa l.) seeds during germination

    International Nuclear Information System (INIS)

    Shereen, A.; Ansari, R.; Raza, A.; Mumtaz, S.; Khan, M.A.; Khan, M.A.

    2011-01-01

    Six inbred lines of rice exhibiting differential tolerance to salinity were exposed to 0, 50, 75, 100 and 200 mM NaCl for 24, 48, 72 and 96 h. The salinity induced metabolic changes (solute leakage, K efflux and a-amylase activity) were studied during germination. Germination of rice seeds was not affected by NaCl concentration less than 100 mM. At higher salinity levels (100 and 200 mM NaCl), a delay of 3-6 days in germination was observed. In the present study, comparatively higher values of solute leakage were observed in those lines in which germination was comparatively affected more adversely (sensitive). Sodium chloride reduced alpha-amylase activity in germinating rice seeds to varying degree even at low NaCl concentrations (50 and 75 mM), where germination was not affected greatly. The tolerant lines exhibited higher enzymatic activity than the sensitive ones. (author)

  10. Effects of GA3 Pregerminative Treatment on Gentiana lutea L. var. aurantiaca Germination and Seedlings Morphology

    Directory of Open Access Journals (Sweden)

    Óscar González-López

    2014-01-01

    Full Text Available Gentiana lutea L. is widely used in bitter beverages and in medicine; Gentianae Radix is the pharmaceutical name of the root of G. lutea. These uses have generated a high demand. The wild populations of Gentiana lutea var. aurantiaca (M. Laínz M. Laínz have been decimated; it is necessary to establish guidelines for its cultivation. Gentian as most alpine species has dormant seeds. Dormancy can be removed by cold and by means of a gibberellic acid (GA3 treatment. However, cold treatments produce low germination percentages and GA3 treatments may produce off-type seedlings. So, the objective was to determine, for the first time, the presowing treatments that allow high germination rate and good seedling morphology. The best pregerminative doses of GA3 to break seed dormancy were 100, 500, and 1000 ppm, while the best doses to optimize the seedling habit were 50 and 100 ppm. This study provides, for the first time, a 100 ppm GA3 dose that led to a high germination rate and good seedling morphology, as the starting point for gentian regular cultivation.

  11. Effects of GA3 pregerminative treatment on Gentiana lutea L. var. aurantiaca germination and seedlings morphology.

    Science.gov (United States)

    González-López, Óscar; Casquero, Pedro A

    2014-01-01

    Gentiana lutea L. is widely used in bitter beverages and in medicine; Gentianae Radix is the pharmaceutical name of the root of G. lutea. These uses have generated a high demand. The wild populations of Gentiana lutea var. aurantiaca (M. Laínz) M. Laínz have been decimated; it is necessary to establish guidelines for its cultivation. Gentian as most alpine species has dormant seeds. Dormancy can be removed by cold and by means of a gibberellic acid (GA3) treatment. However, cold treatments produce low germination percentages and GA3 treatments may produce off-type seedlings. So, the objective was to determine, for the first time, the presowing treatments that allow high germination rate and good seedling morphology. The best pregerminative doses of GA3 to break seed dormancy were 100, 500, and 1000 ppm, while the best doses to optimize the seedling habit were 50 and 100 ppm. This study provides, for the first time, a 100 ppm GA3 dose that led to a high germination rate and good seedling morphology, as the starting point for gentian regular cultivation.

  12. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling.

    Science.gov (United States)

    Kummerová, Marie; Kmentová, Eva

    2004-07-01

    The influence of light on phytotoxicity of increased concentration (2, 5, 10 mg/l) of intact fluoranthene (FLT) and photomodified fluoranthene (phFLT) diluted in experimental solutions was investigated. The germination rate of lettuce (Lactuca sativa L.), onion (Allium cepa L.) and tomato (Lycopersicum esculentum L.) seeds and some parameters of seedlings primary growth of these plant species were used as laboratory indicators of phytotoxicity. Among them a length of root and shoot, their dry weight and a content of photosynthetic pigments in shoot were measured. The results demonstrated that the higher concentration (5 and 10 mg/l) of FLT and especially of phFLT significantly inhibited the germination rate of seeds and the length of root and shoot seedlings of all plant species. Decreased production of biomass expressed by dry weight of root and shoot was found in lettuce seedlings under the inhibitory effect of FLT and phFLT. An increased concentration of FLT and phFLT did not exhibit an unambiguous effect on the content of photosynthetic pigments in shoot of experimental plants. Only the highest concentration (10 mg/l) of FLT significantly increased content of chlorophylls a and b in lettuce, onion and tomato plants and content of carotenoids in lettuce and onion. Light intensified a significant inhibitory effect of phFLT in the most testified parameters of germination and seedling growth.

  13. Lipolytic activity in high temperature germinating Almond seedlings

    African Journals Online (AJOL)

    bahri

    2012-09-20

    Sep 20, 2012 ... Felipe A (1981). Germination accelérée d'amandes au moyen de l'acide gibbérellique. Cahier Options Méditerranéennes I:139-140. Hirayama O, Matsuda H (1972). An improved method for determining lipolytic acylhydrolases activity. Agric. Biol. Chem. 36(10):1831-. 1833. Garcia-Olmedo R, Marca-Garcia ...

  14. Proteomic dissection of seed germination and seedling establishment in Brassica napus

    Directory of Open Access Journals (Sweden)

    Jianwei Gu

    2016-10-01

    Full Text Available The success of seed germination and the establishment of a normal seedling are key determinants of plant species propagation. At present, only few studies have focused on the genetic control of the seed germination by proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis (2-D DIGE in B. napus. One hundred thirteen differentially expressed proteins (DEPs, which were mainly involved in storage proteins (23.4%, energy metabolism (18.9%, protein metabolism (16.2%, defense/disease (12.6%, seed maturation (11.7%, carbohydrate metabolism (4.5%, lipid metabolism (4.5%, amino acids metabolism (3.6%, cell growth/division (3.6%, and some unclear proteins (2.7% were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed the heterotrophic metabolism could be activated in the process of seed germination and the onset of defense system might start during seed germination. These findings will help us more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of germination process in B. napus.

  15. Germination and growth of Magonia pubescens A. ST.-HIL seedlings

    Directory of Open Access Journals (Sweden)

    Ani Cátia Giotto

    2009-03-01

    Full Text Available This study aimed to analyze the germination, growth and development of Magonia pubescens A. St.-Hil. (tinguí ortimbó, a typical species of the deciduous forest. The germination of seeds of four matrices was evaluated at different treatments: directsowing in greenhouse (50% of shade, direct sowing under full sunlight and moistened paper at laboratory condition and underfluorescent light with photoperiod of 12 hours in ambient temperature. The germinated seeds under laboratory conditions weretransplanted to polyethylene bags with soil under full sunlight and 50% of shade. The variables evaluated were: time of the first andlast germination, germinability; average time and the rates of speed of germination index. In addition there were evaluated the seedlingheight, stem base diameter, number of leaf and leaflets were monitored at 30, 60, 90 and 120 days. The species presented highgerminability at laboratory conditions (G> 90% and under full sunlight (96%>G>56%, however, the germinability in 50% shadepresented inferior result (G0.05. The leaf and leaflets number varied among treatments, with highest average for seedling under full sunlight. Suggesting thatMagonia pubescens A. St.-Hil. is a useful species for rehabilitation of degraded areas.

  16. Effect of Seed Priming on Germination Properties and Seedling Establishment of Cowpea (Vigna sinensis

    Directory of Open Access Journals (Sweden)

    Hamdollah ESKANDARI

    2011-11-01

    Full Text Available Early emergence and stand establishment of cowpea are considered to be the most important yield-contributing factors in rainfed areas. Laboratory tests and afield experiment were conducted in RCB design in 2011 at a research farm in Ramhormoz, Iran, to evaluate the effects of hydropriming (8, 12 and 16 hours duration and halo priming (solutions of 1.5% KNO3 and 0.8% NaCl on seedling vigor and field establishment of cowpea. Analysis of variance of laboratory data showed that hydropriming significantly improved germination rate, seed vigor index, and seedling dry weights. However, germination percentage for seeds primed with KNO3 and non-primed seeds were statistically similar, but higher than those for NaCl priming. Overall, hydropriming treatment was comparatively superior in the laboratory tests. Invigoration of cowpea seeds by hydropriming and NaCl priming resulted in higher seedling emergence and establishment in the field, compared to control and seed priming with KNO3. Seedling emergence rate was also enhanced by priming seeds with water, suggesting that hydropriming is a simple, low cost and environmentally friendly technique for improving seed and seedling vigor of cowpea.

  17. The effect of green synthesized gold nanoparticles on rice germination and roots

    Science.gov (United States)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  18. Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice.

    Science.gov (United States)

    Chen, Defu; Li, Yanlan; Fang, Tao; Shi, Xiaoli; Chen, Xiwen

    2016-03-01

    Tocopherols and tocotrienols are lipophilic antioxidants that are abundant in plant seeds. Although their roles have been extensively studied, our understanding of their functions in rice seeds is still limited. In this study, on the basis of available RNAi rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC), we developed transgenic plants that silenced homogentisate geranylgeranyl transferase (HGGT). All the RNAi plants showed significantly reduced germination percentages and a higher proportion of abnormal seedlings than the control plants, with HGGT transgenics showing the most severe phenotype. The accelerated aging phenotype corresponded well with the amount of H2O2 accumulated in the embryo, glucose level, and ion leakage, but not with the amount of O(2-) accumulated in the embryo and lipid hydroperoxides levels in these genotypes. Under abiotic stress conditions, HPT and TC transgenics showed lower germination percentage and seedling growth than HGGT transgenics, while HGGT transgenics showed almost the same status as the wild type. Therefore, we proposed that tocopherols in the germ may protect the embryo from reactive oxygen species under both accelerated aging and stress conditions, whereas tocotrienols in the pericarp may exclusively help in reducing the metabolic activity of the seed during accelerated aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Histones and their phosphorylation during germination of rice seeds

    International Nuclear Information System (INIS)

    Iqbal Ahmed, C.M.; Padayatti, J.D.

    1980-01-01

    Histones from nuclei of rice embryos were identified by their mobilities on 15% acid-urea polyacrylamide gel electrophoreogram, incorporation of ( 3 H)lysine and ( 14 C) arginine and lack of incorporation of ( 3 H)tryptophan. The ratio of histone to DNA in ungerminated embryos was 2.7 which decreased during germination reaching unity by 48 hr. There was preferential phosphorylation of lysine-rich histones, which paralleled the synthesis of DNA. In the presence of cytosine arabinoside and mitomycin-C, which inhibited the synthesis of DNA to the extend of 75-80% the phosphorylation of lysine-rich histone was reduced by 50-60% suggesting the dependence of phosphorylation on the ongoing synthesis of DNA. (auth.)

  20. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight

    DEFF Research Database (Denmark)

    Yang, Fen; Svensson, Birte; Finnie, Christine

    2011-01-01

    involved in primary metabolism and detoxification whereas the majority of down-regulated proteins were plant protease inhibitors. The results suggest that there is a link between increased energy metabolism and oxidative stress in the germinating barley seeds in response to F. graminearum infection, which......Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first...

  1. GARDEN CRESS GERMINABILITY AND SEEDLING VIGOUR AFTER TREATMENT WITH PLANT EXTRACTS

    Directory of Open Access Journals (Sweden)

    Miroslav Lisjak

    2015-12-01

    Full Text Available The usage of biologically active and environmentally friendly compounds has increasingly important role in the primary food production. This study was conducted in order to examine the impact of five commercial plant extracts on the seed vigour of garden cress (Lepidium sativum L.. The applied plant extracts significantly increased the germination. The highest fresh weight of seedlings, and also the lowest dry matter accumulation were observed in the treatment KE-plantasalva® without the sea salt addition. Equisetum extract inhibited the root elongation and resulted in the highest percentage of dry matter accumulated in seedlings, but also the lowest fresh weight.

  2. Effect of gamma radiation on seed germination and seedling vigour in cowpea [Vigna unguiculata (L.) Walp.

    International Nuclear Information System (INIS)

    Thimmaiah, S.K.; Mahadevu, P; Srinivasappa, K.N.; Shankara, A.N.

    1998-01-01

    Cowpea [Vigna unguiculata (L.) Walp.) is regarded as hardy and one of the important tropical legumes. The plants respond differently to mutagenic treatments. Ionizing radiations affect a wide range of physiological and biochemical activities of plants. The purpose of this paper is to report the effect of gamma radiation on seed germination and seedling vigour of two important cowpea varieties viz., KBC-1 and TVX-994-02E in M 1 generation under laboratory conditions. (author)

  3. Seed germination, seedling traits, and seed bank of the tree Moringa peregrina (Moringaceae) in a hyper-arid environment.

    Science.gov (United States)

    Gomaa, Nasr H; Picó, F Xavier

    2011-06-01

    Water-limited hot environments are good examples of hyper-aridity. Trees are scarce in these environments but some manage to survive, such as the tree Moringa peregrina. Understanding how trees maintain viable populations in extremely arid environments may provide insight into the adaptive mechanisms by which trees cope with extremely arid weather conditions. This understanding is relevant to the current increasing aridity in several regions of the world. Seed germination experiments were conducted to assess variation in seed mass, seed germination, and seedling traits of Moringa peregrina plants and the correlations among these traits. A seed burial experiment was also designed to study the fate of M. peregrina seeds buried at two depths in the soil for two time periods. On average, seeds germinated in three days and seedling shoots grew 0.7 cm per day over three weeks. Larger seeds decreased germination time and increased seedling growth rates relative to smaller seeds. Seeds remained quiescent in the soil and germination was very high at both depths and burial times. The after-ripening time of Moringa peregrina seeds is short and seeds germinate quickly after imbibition. Plants of M. peregrina may increase in hyper-arid environments from seeds with larger mass, shorter germination times, and faster seedling growth rates. The results also illustrate the adjustment in allocation to seed biomass and correlations among seed and seedling traits that allows M. peregrina to be successful in coping with aridity in its environment.

  4. GERMINATION AND DEVELOPMENT OF BRACHIARIA SEEDLING IN TEXTURES OF SOIL AND SOWING DEPTH

    Directory of Open Access Journals (Sweden)

    J. H. Castaldo

    2016-09-01

    Full Text Available The agriculture expansion at Brazil is turning to lower clay index soils and consequently, less organic matter content and cation exchange capacity. To overcome those deficiencies, an intense organic matter addition in these soils may be a solution, and this solution is positive when using a crop-livestock integration with corn-pasture dual crop planted on winter. However, to establish this dual-crop system, there is a need to study the behavior of seeds and seedlings of Brachiaria ruziziensis sown in greater depths than normally recommended. Thus, this work aimed to determine the best depth of sowing B. ruziziensis in sandy and loamy soils of Umuarama region, studying the germination and early development of seedlings. The work was held in pots of 12 cm diameter x 12 cm deep, filled with 2 types of soil, a sandy and clay ones with 30 B. ruziziensis seeds sown each pot in five sowing depths: 0, 2, 4, 6 and 8 cm. After 16 days, the number of emerged seedlings was evaluated to set up the germination rate of each treatment, after that, the plants where leveled to 4 each pot, those were cultivated for another 45 days to evaluate the fresh and dried masses of plants and roots, the height of the plants and average length of roots. The sowing depth with higher percentage of germination estimated was 2.65 cm to sandy and 3.02 cm to clay soil. At seedlings development, there was a standard, with better development seedling at lower sowing depths on clay soil and better developments at higher sowing depths in sandy soil.

  5. PARENTAL EFFECTS IN LYCHNIS-FLOS-CUCULI .1. SEED SIZE, GERMINATION AND SEEDLING PERFORMANCE IN A CONTROLLED ENVIRONMENT

    NARCIS (Netherlands)

    BIERE, A

    1991-01-01

    Selection responses in natural plant populations depend on how the phenotypic variation of traits is composed. The contributions of nuclear genetic, maternal, paternal, environmental and inbreeding effects to variation in time to germination, germination percentage, and seed- and seedling size were

  6. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  7. Effect of vanadium on germination and seedling growth of lettuce (Lactuca sativa L. C. V. salad bowl)

    Energy Technology Data Exchange (ETDEWEB)

    Lepp, N.W.

    1977-01-01

    The effect of vanadium, applied as VOSO/sub 4/, on germination and subsequent seedling growth of Lettuce has been studied. No differences in germination were observed at any of the applied vanadium concentrations, when compared to a vanadium-free control. Subsequent seedling growth, however, was significantly inhibited by all vanadium treatments. Reductions in shoot growth, root growth and fresh weight were apparent. Similar, but less dramatic effects were observed when 3 day old seedlings were transferred to vanadium enriched media. 13 references, 2 tables.

  8. Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth

    Science.gov (United States)

    Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith

    2018-01-01

    Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.

  9. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  10. Factors affecting acorn production and germination and early growth of seedlings and seedling sprouts

    Science.gov (United States)

    David F. Olson; Stephen G. Boyce

    1971-01-01

    Acorn production is extremely variable and unpredictable. Flowering is copious, but many climatic factors influence acorn development from initiation of flowers to acorn maturity. Acorns are consumed by birds, animals, insects, and microorganisms. The establishment of seedlings is more closely related to favorable site factors than to size of crops. A majority of oaks...

  11. Proteomic identification of rhythmic proteins in rice seedlings.

    Science.gov (United States)

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  12. Red fox ( Vulpes vulpes L.) favour seed dispersal, germination and seedling survival of Mediterranean Hackberry ( Celtis australis L.)

    Science.gov (United States)

    Juan, Traba; Sagrario, Arrieta; Jesús, Herranz; Cristina, Clamagirand M.

    2006-07-01

    Seeds of the Mediterranean Hackberry Celtis australis are often encountered in fox faeces. In order to evaluate the effect of gut transit on the size of seeds selected, the rates and speed of germination and on the survival of the seedlings, Mediterranean Hackberry seeds from fox faeces were germinated in a greenhouse. The results were compared with those of seeds taken from ripe, uneaten fruits. Fox-dispersed seeds were smaller and lighter than the control ones and had higher (74% vs. 57%) and more rapid germination (74.5 days vs. 99.2 days). Seedlings from fox-dispersed seeds showed significantly greater survival by the end of the study period (74.1% vs. 43.6%) than the control ones. Survival in seedlings from fox-dispersed seeds was related to germination date, late seedlings showing poorer survival. This relationship was not observed away in the control seedlings. Seed mass did not affect seedling survival. Seedling arising from fox-dispersed seeds grew faster than control ones. These results suggest that fox can play a relevant role as seed disperser of Mediterranean Hackberry.

  13. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Watanabe, Mutsumi; Hoefgen, Rainer; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2014-02-01

    Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.

  14. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages.

    Science.gov (United States)

    Ravelombola, Waltram; Shi, Ainong; Weng, Yuejin; Mou, Beiquan; Motes, Dennis; Clark, John; Chen, Pengyin; Srivastava, Vibha; Qin, Jun; Dong, Lingdi; Yang, Wei; Bhattarai, Gehendra; Sugihara, Yuichi

    2018-01-01

    This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and

  15. Effects of the decomposing liquid of Cladophora oligoclona on Hydrilla verticillata turion germination and seedling growth.

    Science.gov (United States)

    Zhang, Lu; Peng, Xue; Liu, Biyun; Zhang, Yi; Zhou, Qiaohong; Wu, Zhenbin

    2018-08-15

    Excessive proliferation of filamentous green algae (FGA) has been considered an important factor resulting in the poor growth or even decline of submerged macrophytes. However, there is a lack of detailed information regarding the effect of decaying FGA on submerged macrophytes. This study aimed to investigate whether the decomposing liquid from Cladophora oligoclona negatively affects Hydrilla verticillata turion germination and seedling growth. The results showed that the highest concentrations of decomposing liquid treatments inhibited the turion germination rate, which was the lowest than other treatments, at only 84%. The chlorophyll a fluorescence (JIP test) and physiological indicators (chlorophyll a content, soluble sugars, Ca 2+ /Mg 2+ -ATPase and PAL activity) were also measured. The chlorophyll a content in the highest concentration (40% of original decomposing liquid) treatment group decreased by 43.53% than that of the control; however, soluble sugars, Ca 2+ /Mg 2+ -ATPase, and PAL activity increased by 172.46%, 271.19%, and 26.43% respectively. The overall results indicated that FGA decay has a considerable effect on submerged macrophyte turion germination and seedling growth, which could inhibit their expansion and reproduction. This study emphasized the need to focus on effects of FGA decomposition on the early growth stages of submerged macrophytes and offered technological guidance for submerged vegetation restoration in lakes and shallow waters. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology.

    Science.gov (United States)

    Yasur, Jyothsna; Rani, Pathipati Usha

    2013-12-01

    Increasing use of nanoparticles in daily products is of great concern today, especially when their positive and negative impact on environment is not known. Hence, in current research, we have studied the impact of silver nanoparticle (AgNPs) and silver nitrate (AgNO3) application on seed germination, root, and shoot length of castor bean, Ricinus communis L. plant. Silver nanoparticles had no significant effects on seedling growth even at higher concentration of 4,000 mg L(-1), while the silver in bulk form as AgNO3 applied on the castor bean seeds inhibited the seed germination. Silver uptake in seedlings of the castor seeds on treatment with both the forms of silver was confirmed through atomic absorption spectroscopy studies. The silver nanoparticle and silver nitrate application to castor seeds also caused an enhanced enzymatic activity of ROS enzymes and phenolic content in castor seedlings. High-performance liquid chromatography analysis of individual phenols indicated enhanced content of parahydroxy benzoic acid. These kinds of studies are of great interest in order to unveil the movement and accumulation of nanoparticles in plant tissues for assessing future applications in the field or laboratory.

  17. Utilization of wastewater on seed germination and physioogical parameters of rice (Oryza sativa L.)

    Science.gov (United States)

    Huy, V.; Iwai, C. B.

    2018-03-01

    Due to increasing world population and demand, fresh water availability is becoming a limited resource. Reusing wastewater for agriculture has received attention since it contains nutrients, which are beneficial for growing crops. Even though wastewater can be used as the nutrient source for the plant, the toxicity of wastewater can still be a cause for concern and investigation. The main objective of this paper was to assess the effect of different sources of wastewater on the germination of Jasmine rice (KDML105), White rice (Phatum Thani 1), and Sticky rice (RD6) under laboratory conditions. Petri dish cultures were used with various concentrations (0, 50, and 100%) of wastewater collected from swine farm, aquaculture activity, and domestic. Seed germination, root length, shoot length, seed vigor index, fresh weight and dry weight were measured after each experiment. The results have shown that domestic wastewater and aquaculture activity wastewater did not decrease performance of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) while the germination of Jasmine rice (KDML105), White rice (Phatum thani 1), and Sticky rice (RD6) decreased when irrigated with swine farm wastewater. Therefore, using domestic and aquaculture activity wastewater for irrigation are suitable for growth of these crop.

  18. Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: An orchid with an extremely small population in China

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-01-01

    Full Text Available Paphiopedilum spicerianum  is listed as one of the country’s Wild Plants with Extremely Small Populations (PSESP. Procedures were developed for asymbiotic seed germination and seedling development aimed at producing seedlings for reintroduction. The highest germination was achieved in RECW with a 24 h dark cycle after pretreatment with 1% NaOCl for 40 min after 30 days from germination. However, these protocorms remained white and did not develop further. Although germination was lower under the same conditions in MSCW, it resulted in healthier and greener protocorms. Of four suitable media tested to promote seedling formation, Hyponex No 1 medium with 1.0mgl−1α-naphthalene acetic acid, 0.5gl−1 activated charcoal and 10% banana homogenate was the most effective. Advanced seedling development was seen in all six tested media during a 4 month growing period, with the highest leaf growth rate seen in the same media used for seedling formation, supplemented with 1.0mgl−16-benzyladenine added to promote leaf growth. Fluorescein diacetate (FDA tests on seeds showed that higher salt concentrations in the medium and longer duration of exposure to NaOCl reduce germination because of damaging effects on the testa and the embryo cells.

  19. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Yu Tian

    2014-01-01

    Full Text Available A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.. Results indicated that the seeds primed by gibberellins (GA, NaCl, and polyethylene glycol (PEG reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P<0.05. The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM, or PEG (15% significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  20. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    Science.gov (United States)

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  1. Germination and growth of purple passion fruit seedlings under pre-germination treatments and mycorrhizal inoculation

    Directory of Open Access Journals (Sweden)

    Joaquín Guillermo Ramírez Gil

    2015-09-01

    Full Text Available The cultivation of purple passion fruit plants has increased in Colombia, as a direct result of its well-accepted consumption. Therefore, there is a need for technological solutions aimed at the sustainable growth of its fruit, such as improving seed germination and decreasing phosphorus (P deficiencies, given its low availability in tropical soils. This study aimed to evaluate pre-germination treatments (control, apical and basal seed cuts, alternation of temperature, photoperiod, application of gibberellic acid and immersion in 96 % of H2SO4 and mycorrhizal dependency of purple passion fruit plants, using three levels of P in the soil solution (0.002 mg L-1, 0.02 mg L-1 and 0.2 mg L-1, in 35 combinations with or without the inoculation of the Glomus fasciculatum mycorrhizal fungus. A completely randomized design with five replications per treatment was used. The treatment with the most significant effect for reducing the dormancy of the purple passion fruit seeds is the immersion in 96 % of H2SO4 for 20 minutes. This species shows a high mycorrhizal dependency, when coupled with 0.02 mg L-1 of P in the soil solution.

  2. The Effect of Priming Treatments on Germination and Seedling Performance of Purslane (Portulaca oleracea Seed Lots

    Directory of Open Access Journals (Sweden)

    Eren OZDEN

    2017-11-01

    Full Text Available This study was conducted to test the effect of a priming combination on the seed germination percentage and seedling emergence performance of purslane under climate chamber and field conditions. Four purslane seed lots were treated according five different methods, which were T1: Seeds kept at a hundred percent relative humidity for four hours at 20 °C; T2: Seeds kept at a hundred percent relative humidity for four hours at 20 °C, and then soaked in distilled water for 8 hours at 5 °C; T3: Seeds kept at a hundred percent relative humidity for four hours at 20 °C, and then soaked in distilled water for 8 hours at 20 °C; T4: Seeds soaked in distilled water for 8 hours at 5 °C; T5: Seeds soaked in distilled water for 8 hours at 20 °C; and C: Control (untreated. Seed germination was calculated for 14 days at 20 °C, seedling emergence percentages were calculated in the climatically-controlled chamber for 21 days at 22 °C, and in the field for 35 days at 15-25 °C. The highest seed germination (94% and seedling emergence in the climatically-controlled chamber (87% and field (82% were obtained from seeds that had been kept at a hundred percent relative humidity for four hours at 20 °C, then soaked in distilled water for eight hours at 5 °C. Results indicated that farm-priming, can be an efficient priming method in purslane seeds.

  3. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    Science.gov (United States)

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  4. Allelopathy in two species of Chenopodium -inhibition of germination and seedling growth of certain weeds

    Directory of Open Access Journals (Sweden)

    Subhash C. Datta

    2014-01-01

    Full Text Available The activity of washed leaf and inflorescence material of Chenopodium ambrosioides and C. murale, decaying leaves and inflorescences, and field soils collected beneath Chenopodium plants were examined in terms of the inhibition of seed germination and seedling growth of five weeds, viz. Abutilon indicum, Cassia sophera var. purpurea, C. tora, Evolvulus numularius and Tephrosia hamiltonii. The allelopathic pattern varied in each of the two test species and this depended on the type of test matter. However, the germination as well as the root and hypocotyl growth of A. indicum and E. nummularius were more hampered by phytotoxins or inhibitors from Chenopodium than were the other weeds. Since the leaf and inflorescence of Chenopodium formed the source of inhibitors, the respective plant-parts from the two species were chemically analysed and the presence of three terpenes (p-cymene, ascaridole and aritazone from C. ambrosioides and an organic acid (oxalic acid from C. murale were implicated in the allelopathic effect.

  5. QTL Analysis of Anoxic Tolerance at Seedling Stage in Rice

    Directory of Open Access Journals (Sweden)

    Yang WANG

    2010-09-01

    Full Text Available Coleoptile lengths of 7-day-old seedlings under anoxic stress and normal conditions were investigated in two permanently segregated populations and their parents in rice (Oryza sativa L.. Using anoxic response index, a ratio of coleoptile length under anoxic stress to coleoptile length under normal conditions, as an indicator of seedling anoxic tolerance (SAT, QTLs for SAT were detected. Two loci controlling SAT, designated as qSAT-2-R and qSAT-7-R, were detected in a recombinant inbred line (RIL population (247 lines derived from a cross between Xiushui 79 (japonica variety and C Bao (japonica restorer line. qSAT-2-R, explaining 8.7% of the phenotype variation, was tightly linked with the SSR marker RM525. qSAT-7-R, explaining 9.8% of the phenotype variation, was tightly linked with the marker RM418. The positive alleles of the two loci came from C Bao. Six loci controlling SAT, designated as qSAT-2-B, qSAT-3-B, qSAT-5-B, qSAT-8-B, qSAT-9-B and qSAT-12-B, were detected in a backcross inbred line (BIL population (98 lines derived from a backcross of Nipponbare (japonica/Kasalath (indica//Nipponbare (japonica. The positive alleles of qSAT-2-B, qSAT-3-B and qSAT-9-B, which explained 16.2%, 11.4% and 9.5% of the phenotype variation, respectively, came from Nipponbare. Besides, the positive alleles of qSAT-5-B, qSAT-8-B and qSAT-12-B, which explained 7.3%, 5.8% and 14.0% of the phenotype variation, respectively, were from Kasalath.

  6. Effect of saline water irrigation on seed germination and early seedling growth of the halophyte quinoa

    DEFF Research Database (Denmark)

    Panuccio, M.R.; Jacobsen, Sven-Erik; Saleem Akhtar, Saqib

    2014-01-01

    with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects...... been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its develop- ment. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds...... of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germi- nated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which...

  7. Allelopathic effects of barley straw on germination and seedling growth of corn, sugar beet and sunflower

    Directory of Open Access Journals (Sweden)

    mohamad taghi naseri poor yazdi

    2009-06-01

    Full Text Available Allelopathic effects of barley straw and root on germination and growth of maize, sugar beet, and sunflower were investigated under glasshouse and laboratory experiments in Faculty of Agriculture, Ferdowsi University of Mashhad in 2006. The glasshouse experiment was designed based on randomized complete block design with three replications, treatments included: 0, 200, 400, 600 g/m² of grounded barley straw and also 0 and 50 g/m2 barley root. A laboratory experiment was carried out in order to study the effect of different concentrations of barley water extracts on germination and seedling characteristics of corn, sugar beet and sunflower. Treatments in laboratory trial included 0, 33, 50 and 100 percent of barley extracts. Results showed that leaf area of corn was significantly affected by barley straw treatments. Shoot dry matter and seed weight per plant in corn , leaf and tuber weight in sugar beet and leaf , stem weights , plant per plant in corn , leaf and tuber weight in sugar beet and leaf, stem weights, plant height, head diameter, head weight and seed weight in sunflower were significantly higher in treatment of 50g/m² barley roots. Crop seed germination decreased with increasing the amount of barley straw. The best germination response to barley extract was observed in corn. Maize radicle weight was significantly decreased with increasing concentration of barley water extract.

  8. Effect of plant growth promoting rhizobia on seed germination and seedling traits in Acacia senegal

    Directory of Open Access Journals (Sweden)

    S.K. Singh

    2011-11-01

    Full Text Available Among arid zone tree species, Acacia senegal and Prosopis cineraria are the most important dryland resources of Western Rajasthan desert ecosystem. Due to ecological, biological and molecular similarities, they are often studied together. The climatic conditions in this region restrict the build-up of soil organic matter and soils are generally deficient in nitrogen. Studies were carried out to isolate and molecularly characterize the diverse group of plant growth promoting rhizobacteria from root nodules of native A. senegal and P. cineraria and their effect on seed germination and seedling traits in two genotypes of A. senegal. The direct sequencing of 16S rDNA region resulted in molecular identification of plant growth promoting rhizobacteria as Bacillus licheniformis, Sinorhizobium saheli isolated from root nodules of A. senegal and S. kostiense and S. saheli isolated from root nodules of P. cineraria. The partial sequences of 16S rDNA were assigned Gen accession numbers HQ738496, HQ738499, HQ738506 and HQ738508. Scarification treatment with sulphuric acid (98% for 15 minutes was able to break the exogenous seed dormancy and enhanced germination percentage in control treatment to 90% and 92.5% in A. senegal in genotypes CAZRI 113AS and CAZRI 35AS, respectively. The treatments with Bacillus licheniformis or S. kostiense, either inoculated individually or as coinoculants, had positive effect on phenotypic traits of germination. Two A. senegal genotypes exhibited significant differences with regard to all the phenotypic traits. On the other hand, treatments with S. saheli isolated from either A. senegal or P. cineraria had negative effects on germination and related phenotypic traits. Values of the coeffivient of determination (R2 over 80% for root length versus shoot length, root/shoot ratio and seedling weight respectively validate that the observed attributes are inter-dependable and linear progression trend can be predicted.

  9. Localization of cells containing sedimented amyloplasts in the shoots of normal and lazy rice seedlings.

    Science.gov (United States)

    Abe, K; Takahashi, H; Suge, H

    1994-12-01

    We have examined the localization of the cells containing sedimented amyloplasts (putative statocytes) and its relation to the graviresponding sites in the shoots of normal and lazy rice seedlings. All graviresponsive organs of the shoots of normal rice seedlings, the mesocotyl, the coleoptile and the leaf-sheath base, were found to possess the statocytes. This is the first indication that mesocotyl senses gravity by its own cells in inducing gravitropic bending in rice seedlings. In lazy-Kamenoo, although the shoots lost their gravitropic response with the advance of age, sedimentation of amyloplasts itself might not be attributable to the agravitropic growth of the shoots, because, including those of the leaf-sheath bases that had lost their response to gravity, sedimented amyloplasts appeared to be identical to those of normal Kamenoo and of younger seedlings of lazy-Kamenoo whose gravitropism is still apparent.

  10. Fate of 14C-labelled diazinon in rice seedling and paddy soil

    International Nuclear Information System (INIS)

    Lee, Seong Kye; Kim, Kyoon; Park, Chang Kyu; Hwang, Eul Chul

    1985-01-01

    The fate of diazinon in the intact rice plants and submerged paddy soil has been investigated with (2- 14 C pyrimidine) diazinon. The labelled diazinon solution was applied to paddy water and distribution of radioactivities in the rice seedlings, paddy soil, volatile fraction and carbon dioxide has been ascertained at end the of incubation times of 0.5,1,4,6 and 9 days respectively. In addition, extract of plants and paddy soils were subjected to TLC separation for examination of possible transformation products of diazinon. The results may be summarized as follow; 1. Total recoveries of radiactivities were between 57.2∼73.6 per cent. 2. Radioactivity in rice seedlings increased with incubation periods reaching one tenth of treated radioactivity at the end of 9 day incubation. 3. Non-extractable radioactivity in paddy soil increased with incubation periods. 4. Radioactive volatile fraction increased in the presence of the rice seedlings. 5. Pyrimidinol was unique conversion product of diazinon in rice seedlings and paddy soils. 6. Pyrimidinol applied to paddy soil is readily absorbed by rice seedlings. (Author)

  11. Studies on the impact of fluoride toxicity on germination and seedling growth of gram seed (Cicer arietinum L. cv. Anuradha

    Directory of Open Access Journals (Sweden)

    Mondal N.K.

    2012-04-01

    Full Text Available The influence of 0, 0.1 mM, 0.5 mM, 1.0 mM, 4.0 mM, 8.0 mM fluoride (F concentration on seed germination, seedling growth of gram seeds (cv. Anuradha was studied under laboratory condition. At the end of 15 days of treatment, significant reduction in root length, shoot length, dry weight, fresh weight, % of germination, protein content, catalase activity, tolerance index, vigour index, germination rate, germination relative index, mean daily germination were observed at increasing fluoride concentration. Total soluble sugar content, proline content, peroxidase activity, ascorbic acid oxidase activity, % DFC, % phytotoxicity of root and shoot increased along with gradual increment of F concentration. 4.0 mM F concentration was found to be most sensitive for gram seeds. At 8.0 mM F concentration germination occurred but plants were totally dried after completion of treatment period.

  12. Effects of white rice, brown rice and germinated brown rice on antioxidant status of type 2 diabetic rats.

    Science.gov (United States)

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-10-10

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.

  13. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2012-10-01

    Full Text Available Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR. Though brown rice (BR and germinated brown rice (GBR have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.

  14. Allelopathic effects of Sonchus oleraceus L. on the germination and seedling growth of crop and weed species

    Directory of Open Access Journals (Sweden)

    Nasr Hassan Gomaa

    2014-09-01

    Full Text Available We assessed the allelopathic effects of the aqueous extract of Sonchus oleraceus dry shoots on the germination and seedling growth of Trifolium alexandrinum, three weed species (Brassica nigra, Chenopodium murale and Melilotus indicus and S. oleraceus itself. We assayed four different concentrations of the aqueous extract (w v-1: 1%, 2%, 3% and 4%. To determine whether the effects of the extract were attributable to the presence of allelopathic compounds, its osmotic potential or both, we prepared concentrations of polyethylene glycol (PEG with osmotic potentials equivalent to those of the aqueous extract. All concentrations of the plant extract completely inhibited the germination and seedling growth of C. murale. The lowest concentration of the plant extract partially inhibited germination and seedling growth of B. nigra, M. indicus and S. oleraceus, whereas the higher concentrations inhibited those parameters completely. The germination of T. alexandrinum was not affected by the aqueous extract at 1% or 2%. In general, the aqueous extracts were more effective in inhibiting seed germination and seedling growth than were the PEG solutions. Phytochemical analyses revealed that phenols and alkaloids were the most abundant compounds in S. oleraceus dry matter. Our results suggest that the aqueous extract of S. oleraceus has an allelopathic effect on some weeds, and its usefulness as a bioherbicide therefore merits further study.

  15. DNA synthesis time in germinating rice and pattern of diethylsulphate induced mutations in pre-soaked seeds

    International Nuclear Information System (INIS)

    Narahari, P.

    1978-01-01

    DNA synthesis pattern in germinating rice seeds, pre-soaked in water for varying periods upto 48 hr, was determined by following the pulse incorporation of 3 H-thymidine into the TCA-insoluble nucleoprotein. Synthesis of DNA commenced at 24 hr, progressively increased to a first peak at about 38 hr, thereafter showed a 1/3rd drop and subsequently increased to a 2nd and still higher peak at 46 to 48 hr of pre-soaking. Treatments of diethylsulphate (dES) at a low concentration (0.2%-2hr) administered at various progressing stages of DNA synthesis resulted in decrease in seedling height and survival, and increase in mutation frequency at 45 hr. pre-soaking, maximum mutation frequencies of 20, 10 and 2% on M 1 plants, M 1 spikes and M 2 seedling bases, respectively were observed. Higher dES concentration (0.3%-2hr) given at later periods of pre-soaking showed near lethal effects and consequently decreased mutation frequencies. Treatments of sodium fluoride given singly or in combination with dES did not show any substantially different results as compared to those of the respective controls. Mutation spectra observed after dES treatments to germinating seeds, at different pre-soaking periods, were quite dissimilar. Specific mutations of economic importance like semi-dwarf mutants were isolated from the treatment of germinating seeds pre-soaked for 37.5 hr or more when shoot apex cells were undergoing DNA synthesis. (author)

  16. Seedling survival of Handroanthus impetiginosus (Mart ex DC Mattos in a semi-arid environment through modified germination speed and post-germination desiccation tolerance

    Directory of Open Access Journals (Sweden)

    J. R. Martins

    Full Text Available Abstract Uniform rapid seed germination generally forms a great risk for the plant population if subsequent intermittent precipitation causes desiccation and seedling death. Handroanthus impetiginosus can be found commonly in a wide range of biomes within Brazil including those that are semi-arid. Germination and early growth was studied to understand how germinated seeds survive under these stringent conditions. Accessions were sampled from four seasonally dry biomes in Brazil. Precipitation at the start of the rainy season in the Caatinga, a semi-arid biome, is less predictable and the number of successive dry days per dry interval in the first four months of the rainy season was higher than in the other studied biomes. Plants from the Caatinga produced thicker seeds and this trait concurred with slow germination and stronger osmotic inhibition of germination across the accessions, forming a stress avoidance mechanism in the Caatinga. Post-germination desiccation tolerance was high in the Caatinga accession, could be re-induced in accessions from biomes with more regular precipitation (Cerrado and transition zone, but remained poor in the Cerradão accession; thus forming a stress tolerance mechanism. Production of adventitious roots ascertained survival of all tested individuals from all four locations, even if protruded radicles did not survive desiccation, forming an additional stress tolerance mechanism. A sequence of stress avoidance and stress tolerance mechanisms in seeds and germinated seeds was associated with precipitation patterns in different biomes. These mechanisms purportedly allow rapid seedling establishment when conditions are suitable and enable survival of the young seedling when conditions are adverse.

  17. Effect of combined treatments of neutron radiation and plant growth regulator (GA) on seed germination and growth of rice

    International Nuclear Information System (INIS)

    Xie Chonghua; Wang Dan; Chen Yongjun; Wang Ying; Luo Jie; Liao Wei; Zheng Chun

    2007-01-01

    Rice seeds were irradiated with fast-neutron impulse pile and then were treated with different concentration of GA 3 . The effect of combined treatments on seeds germination and seedling growth were studied. The results showed that lethal pouring dose of neutron radiation on Hongai B and CB was 486 x 10 10 /cm 2 , Mianhui 2009 was 900 x 10 10 /cm 2 and Mianhui 2095 and Minghui 63 were 1350 x 10 10 /cm 2 . Semi-lethal pouring dose (LD 50 ) of neutron radiation on Hongai Band CB was 198-486 x 10 10 /cm 2 , Mianhui 2009 was about 486 x 10 10 /cm 2 , Minghui 63 was 629.49 x 10 10 /cm 2 and Mianhui 2095 is 774.69 x 10 10 /cm 2 . Radiation sensitivity of rice is Hongai B, CB>Mianhui 2009>Minghui 63>Mianhui 2095. GA 3 is a kind of efficient chemical radiation protection. 40 and 80 mg/L are the proper GA 3 concentrations of neutron irradiated rice seeds. (authors)

  18. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    Directory of Open Access Journals (Sweden)

    Tadashi Matusmoto

    2016-01-01

    Full Text Available Brassinosteroid (BR and gibberellin (GA are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to investigate the roles of BR and GA in growth of rice seedlings. Yucaizol, a specific inhibitor of BR biosynthesis, and Trinexapac-ethyl, a commercially available inhibitor of GA biosynthesis, were used. The effect of Yucaizol on rice seedlings indicated that Yucaizol significantly retarded stem elongation. The IC50 value was found to be approximately 0.8 μmol/L. Yucaizol also induced small leaf angle phenocopy in rice seedlings, similarly to BR-deficient rice, while Trinexapac-ethyl did not. When Yucaizol combined with Trinexapac-ethyl was applied to the rice plants, the mixture of these two inhibitors retarded stem elongation of rice at lower doses. Our results suggest that the use of a BR biosynthesis inhibitor combined with a GA biosynthesis inhibitor may be useful in the development of new technologies for controlling rice plant height.

  19. Effects of incorporating germinated brown rice on the antioxidant properties of wheat flour chapatti.

    Science.gov (United States)

    Gujral, H Singh; Sharma, P; Bajaj, R; Solah, V

    2012-02-01

    Brown rice after germinating for 24 and 48 h was milled into flour and incorporated in whole wheat flour at a level of 10% to prepare chapattis. The objective was to use chapatti as a delivery vehicle for germinated brown rice. The flour blends and chapattis made from the flour blends were evaluated for their antioxidant properties. Incorporating germinated brown rice flour increased the total phenolic content of the flour blend from 1897 to 2144 µg FAE/g. The total flavonoids content increased significantly from 632.3 to1770.9 µg CAE/g and metal chelating activity significantly increased by 71.62%. Antioxidant activity increased significantly by the addition of brown rice flour and addition of 24- and 48-h germinated brown rice flour further increased the antioxidant activity significantly. The total phenolic content and total flavonoids content decrease significantly in all the blends after baking the flour into chapatti. A decrease of 3% to 29% was observed in the total phenolic content and a decrease of 25% to 42% was observed in the total flavonoids content. However, baking of the flour blends into chapatti increased the reducing power, metal chelating activity by three folds and antioxidant activity from 64% to 104%.

  20. Germination and seedling growth of Indian mustard exposed to cadmium and chromium

    Directory of Open Access Journals (Sweden)

    Luca Marchiol

    2006-03-01

    Full Text Available To make phytoremediation a technically viable option for large-scale applications we need plants that are able to guarantee high biomass yield as well as high accumulation of heavy metals in their aerial parts. The aim of this investigation was to study the performance of aquacultured plants of Indian mustard in the presence of different concentrations of cadmium and chromium since seed germination. The effects on germination and growth of seedlings of Indian mustard (Brassica juncea L. Czern cv. WNFP, Varuna and Barton, were investigated in/under hydroponic conditions during a 4-week experiment. Cadmium and chromium were provided since germination as cadmium nitrate Cd(NO32 and chromium bichromate K2Cr2O7 (0.5, 1 and 1.5 M. Plant biomass growth measured at the end of the experiments varied with the different metal concentrations in the nutrient solution and the accumulation of the elements in the plant fractions differed significantly among/between cultivars. Ability in the uptake of metals and their mobilization and storage in the aerial plant biomass, expressed by the bioconcentration factor (BCF and translocation factor (TF, respectively, are the most important traits of plants with phytoextraction potential. Brassica juncea was confirmed as being a highly tolerant species, but poor metal translocation values were registered, therefore the high amount of Cd and Cr concentrated in the root systems did not migrate to the aerial, harvestable, part of the plant.

  1. Germination potential index of Sindh rice cultivars on biochemical ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Alpha amylase activities were found to be directly correlated with germination percentage. Gradual increase in reducing sugars along with α-amylase activity was observed, while total ... seed vigor and alpha amylase activity along with germination period. .... strates for energy generation for fast and uniform.

  2. Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds

    Directory of Open Access Journals (Sweden)

    Bing-Xian Chen

    2016-08-01

    Full Text Available Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO produces hydrogen peroxide (H2O2, which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1–11 in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III. The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1–7 encode PAOs, whereas those in subfamily III (OsPAO8–11 encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1–7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals.

  3. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Quantitative Trait Locus Analysis of seed germination and seedling vigour in Brassica rapa reveals QTL hotspots and epistatic interactions

    NARCIS (Netherlands)

    Basnet, R.K.; Duwal, A.; Tiwari, D.N.; Xiao, D.; Monakhos, S.; Bucher, J.; Visser, R.G.F.; Groot, S.P.C.; Bonnema, A.B.; Maliepaard, C.A.

    2015-01-01

    The genetic basis of seed germination and seedling vigour is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded

  5. The Effect of Sonic Bloom Fertilizing Technology on The Seed Germination and Growth of Acacia mangium Willd Seedling

    Directory of Open Access Journals (Sweden)

    Mulyadi A T

    2012-11-01

    Full Text Available Acacia mangium Willd is one of the promising wood species, it is a fast growing species and can be used as raw materials for pulp, furniture and wood working. Musi Hutan Persada Company has planted Acacia mangium Willd in large scale for pulp processing raw materials and for wood working industry. The faculty of forestry of the Nusa Bangsa University in collaboration with the Musi Hutan Persada have examined  the effect of “Sonic Bloom” to the Acacia mangium Willd germination and seedling growth. The results of the research are the following : (1 The seed germination with “Sonic Bloom” provided percented of germination of 82%, better than those without “Sonic Bloom”, i.e. only 34%; (2 With Sonic Bloom,  the height of 80-days old seedling is 129.6 cm higher than those without “Sonic Bloom”of only 90.7 cm  ; (3 the diameter of 80-days old seedling with “Sonic Bloom” is 0,24 cm higher than those without “Sonic Bloom” harving diameters of only 0.19 cm.The study concludes that sonic bloom treatment is very useful for the seed germination and the growth of Acacia mangium Willd seedling Key Words : Sonic Bloom, persemaian, Acacia mangium, perkecambahan, bibit   Normal 0 false false false IN X-NONE X-NONE

  6. [Effects of simulated acid rain on seed germination and seedling growth of different type corn Zea mays].

    Science.gov (United States)

    Zhang, Hai-Yan

    2013-06-01

    Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area.

  7. Heterosis in Rice Seedlings: Its Relationship to Gibberellin Content and Expression of Gibberellin Metabolism and Signaling Genes1[W][OA

    Science.gov (United States)

    Ma (马谦), Qian; Hedden, Peter; Zhang (张启发), Qifa

    2011-01-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA29 but negatively correlated with that of GA19. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development. PMID:21693671

  8. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    International Nuclear Information System (INIS)

    Rupiasih, N. Nyoman; Vidyasagar, Pandit B.

    2016-01-01

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  9. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Rupiasih, N. Nyoman, E-mail: rupiasih@gmail.com [Department of Physics, Udayana University, Bali (Indonesia); Vidyasagar, Pandit B., E-mail: prof-pbv@yahoo.com [Biophysics Laboratory, Department of Physics, University of Pune, Pune-411007 (India)

    2016-03-11

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  10. Impact of storage conditions on seed germination and seedling growth of wild oat (Avena fatua L. at different temperatures

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2015-12-01

    Full Text Available The influence of seed storage conditions and different temperatures (5˚C, 10˚C, 15˚C, 20˚C, 25˚C, 30˚C and 26˚C/21˚C during germination and seedling development on seed germination, shoot length and germination rate of wild oat (Avena fatua L. was examined. Germinated seeds were counted daily over a period of ten days and shoot length was measured on the last day, while germination rates were calculated from those measurements. The results showed that seed storage under controlled conditions (T1: temperature 24±1°C, humidity 40-50%; T2: temperature 26±1°C, humidity 70-80% and T3: temperature 4˚C for periods of 3 (t1 and 12 (t2 months had a significant influence on germination of wild oat seeds. The percentage of germinated seeds under all examined temperatures was higher when they were stored for 12 months under controlled temperature and humidity. The results also showed that temperature had a significant effect on the percentage of germination and germination rate of A. fatua seeds. The highest total germination occurred at 15˚C temperature (T1: t1 - 41.25%, t2 - 44.37%; T2: t1 - 28.13%, t2 - 34.37%; T3: t1 - 10.63%, t2 - 12.50%. Germination percentage under an alternating day /night photoperiod at 26˚C/21˚C temperature was higher in all treatment variants (T1: t1 - 8.13%, t2 - 10.00%; T2: t1 - 11.87%, t2 - 13.13%; T3: t1 - 2.42%, t2 - 2.70% than germination in the dark at 25˚C, 30˚C and 5˚C.

  11. Effect of NaCl salinity on the germination and seedling growth of some medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Z; Hussain, F [University of Peshawar (Pakistan). Dept. of Botany

    2010-04-15

    Seeds of Lepidium sativum L., Linum usitatissimum L., Plantago ovata Forssk., and Trigonella foenum-graecum L. were tested in 0.05 (Control), 2.5, 5.0, 7.5, 10.0, 12.5, or 15.0 dS/m concentration of NaCl. ANOVA revealed highly significant differences for plumule growth while germination percentage, radicle growth, seedling fresh and dry weight and moisture contents showed non-significant variation under various salt concentrations. However, the differences among the species for all the parameters studied were highly significant. The findings suggest that these medicinal species might tolerate moderate levels of salinity and can be tried for cultivation on marginal salted soils. (author)

  12. Effect of NaCl salinity on the germination and seedling growth of some medicinal plants

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.

    2010-01-01

    Seeds of Lepidium sativum L., Linum usitatissimum L., Plantago ovata Forssk., and Trigonella foenum-graecum L. were tested in 0.05 (Control), 2.5, 5.0, 7.5, 10.0, 12.5, or 15.0 dS/m concentration of NaCl. ANOVA revealed highly significant differences for plumule growth while germination percentage, radicle growth, seedling fresh and dry weight and moisture contents showed non-significant variation under various salt concentrations. However, the differences among the species for all the parameters studied were highly significant. The findings suggest that these medicinal species might tolerate moderate levels of salinity and can be tried for cultivation on marginal salted soils. (author)

  13. Cold tolerance evaluation in Chilean rice genotypes at the germination stage

    Directory of Open Access Journals (Sweden)

    Gabriel Donoso Ñanculao

    2013-03-01

    Full Text Available Low temperature is the most important abiotic stress affecting rice (Oryza sativa L. yield in Chile. Rice in Chile is usually planted when the minimum air temperatures are below 12 °C. This temperature is lower than the optimum needed for normal rice germination. Therefore, the aim of this study was to evaluate cold tolerance in 20 experimental lines from the Rice Breeding Program of the Instituto de Investigaciones Agropecuarias (INIA, Chile, at the germination stage. Coleoptile length reduction (CRED, coleoptile length after cold treatment (CLEN, coleoptile length recovery (CREC, and coleoptile regrowth (CREG were evaluated at 13 °C for 4 d using 'Diamante-INIA' as the cold-tolerant control. To find genotypes with cold tolerance (low CRED value and high CLEN, CREC, and CREG values, genotypes were ranked, a biplot of principal components, and cluster analysis were performed. No differences were found among genotypes in the ranking based on CREC value so this trait was not considered. Analysis showed that only three experimental lines had cold tolerance similar to that of 'Diamante-INIA'; all other experimental lines exhibited intermediate to low cold tolerance. These results showed low cold tolerance of some Chilean genotypes at the germination stage, thus confirming the need to evaluate the rest of the germplasm from the Rice Breeding Program.

  14. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress

    Directory of Open Access Journals (Sweden)

    Sujoy SEN

    2016-09-01

    Full Text Available The objective of present study was to evaluate the response of the mung bean seeds of ‘Sonali B1’ variety primed with chitosan in four different concentrations (0, 0.1%, 0.2% and 0.5% under salinity stress of five different concentrations (i.e., 0, 4, 6, 8 and 12 dS*mm-1 and halotolerance pattern by applying Celite as matrix at three different moisture levels (5%, 10% and 20%. Improved germination percentage, germination index, mean germination time, coefficient of velocity of germination along with root and shoot length was observed comparing with control. Germination stress tolerance index (GSI, plant height stress tolerance index (PHSI and root length stress tolerance index (RLSI were used to evaluate the tolerance of the mung bean seeds against salinity stress induced by chitosan. Results of GSI, PHSI, RLSI showing noteworthy inhibitory effect of salinity stress in control set was significantly less pronounced in chitosan treated seedlings. Chitosan can remarkably alleviate the detrimental effect of salinity up to the level of 6 dS*m-1, beyond which no improvement was noticed. In conclusion present investigation revealed that chitosan is an ideal elicitor for enhancing the speed of germination and seedling invigoration that synchronize with emergence of radicle and salinity stress tolerance.

  15. Effect of Salicylic Acid and Ethephon on Seed Germination and Seedling Growth of Wheat under Salt Stress

    Directory of Open Access Journals (Sweden)

    Soheyla Shakeri

    2016-10-01

    Full Text Available Water or soil salinities are the most important factors that reduce the seed germination of plants. Ethephon can break seed dormancy in a variety of plants, such as cereals and speeds up germination. In some plants pretreatment of seeds with salicylic acid has increased the germination percentage. To study effect of salicylic acid and ethephon on seed germination of wheat (Seivand cultivar under salinity condition a factorial experiment in a completely randomized design with three replications was conducted at the Plant Research Laboratory of Neyshabur Branch of Islamic Azad University in 2011. Four salinity levels (0, 50, 100, 150 mM, three salicylic acid levels (0, 0.5, 1 mM and four ethephon levels (0, 0.5, 1, 2 mM were used. The results showed that at salinity condition seed germination rate and percentage, shoot and root length, their dry weight and α-amylase activity decreased and proline content increased. Pretreatment of seeds by salicylic acid increased seed germination percentage, some growth parameters, α-amylase activity and proline content under salinity condition. Moreover, pretreatment of seeds by ethephon decreased some growth parameters and increased proline content but its effect on germination and α-amylase activity were not significant. It seems that Salicylic acid as a plant growth regulator under salinity condition and ethephon convertion to ethylene, activated plant tolerance mechanisms to salinity condition and decrease damaging effect of salinity on seed germination and seedling growth of wheat.

  16. Dietary supplementation of germinated pigmented rice (Oryza sativa L. lowers dyslipidemia risk in ovariectomized Sprague–Dawley rats

    Directory of Open Access Journals (Sweden)

    Lara Marie Pangan Lo

    2016-03-01

    Full Text Available Background: In the recent years, cases of elderly women suffering from metabolic diseases such as dyslipidemias brought about by hormonal imbalance after menopause are continuously increasing. In this regard, a continuous and escalating demand to develop a more functional and highly nutritional food product as an adjunct supplement that can help alleviate these diseases is still being sought. Objective: This study investigated the effects of germinated blackish-purple rice cultivars Keunnunjami, Superjami, and reddish-brown cultivar Superhongmi in the lipid metabolism of ovariectomized Sprague–Dawley rats. Method: The animals were randomly divided into nine groups (n=5 and were supplemented with either non-germinated or germinated rice for 9 weeks. Then the plasma, liver, and fat samples were collected for the lipid metabolism effects analyses. Results: Animals fed with germinated rice cultivars had improved lipid profile levels relative to the groups supplemented with non-germinated rice cultivars. The germinated rice groups, Keununjami and Superjami in particular, showed a low total cholesterol levels, high levels of high-density lipoproteins-cholesterol, high fecal lipid output, low hepatic lipid values, and low hepatic adipocyte accumulation. There was also an increase in the rate of lipolysis and decrease in lipogenesis based on the lipid-regulating enzyme activity profiles obtained for the groups that fed on germinated rice. Also, results revealed that pigmented rice cultivars had superior effects in improving the lipid metabolism relative to the non-pigmented normal brown rice variety. Conclusion: Based on the results, this study suggests that germinated pigmented rice consumption can confer better lipid metabolism than ordinary white rice and constitutes as an effective functional food in alleviating the risk of having dyslipidemias like those suffering from menopausal co-morbidities.

  17. Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    Teresa Cabra Cendales

    2017-01-01

    Full Text Available The capacity to solubilize phosphate and to produce indole compounds Indole Acetic Acid type, was evaluated in 15 strains isolated from castor bean lignocellulosic residues (Ricinus communis. To determine the solubilizing activity of phosphates a qualitative test by using Pikovskaya culture medium was employed and for the evaluation of the production of indole compounds (IAA a Salkowsky colorimetric analysis technique was applied. Among the microorganisms tested, the Bacillus pumilus GIBI 206 demonstrated capacity to solubilize phosphates and Bacillus subtilis GIBI 200 showed of capacity to solubilize phosphates and to produce Indoleacetic Acid (IAA. To determine the effect of the Bacillus subtilis strain on germination and growth promotion, tomato seeds (Solanum lycopersicum ‘Santa Clara’ were inoculated; the inoculation of the seeds along with the microorganism revealed statistically significant differences, during the germination stage compared to the control treatment. Nevertheless, it revealed a positive influence on the development of tomato plants, originating a significant increase on the mass and length of its stem and root. The results of this research offer the possibility of using the Bacillus subtilis as a growth promoter in tomato seedlings and in the formulation of bio-products.

  18. Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum.

    Science.gov (United States)

    Parveen, Asra; Mazhari, Bi Bi Zainab; Rao, Srinath

    2016-12-01

    Nanotechnology is leading towards the development of low cost applications to improve the cultivation and growth of plants. The use of nanotechnology in agriculture will leads to a significant effect on food industry along with opening a new area of research in agroecosystem. In this paper gold nanoparticles were biosynthesized with Cassia auriculata leaf extract at room temperature and characterized by UV-vis spectroscopy, X-ray diffraction and transmission electron microscopy. The objective of this study was to investigate effect of synthesized bio-nanogold on an important food and biofuel producing plant Pennisetum glaucum. Positive effects were observed on percentage of seed germination and growth of seedlings. Improved germination and increased plant biomass have high economic importance in production of biofuel or raw materials, agriculture and horticulture. Although the impact of nanoparticles on plants depends on concentration, size and shape. The biological synthesized AuNPs can replace the chemically synthesized AuNPs used in gene transfer method. The study gives brief insight on nanoparticles effects on plants, brings attention on both positive and negative side of nanomaterial which can resolve phytopathological infections by stimulating nutrition and growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.)

    Science.gov (United States)

    Penado, Keith Nealson M.; Mahinay, Christian Lorenz S.; Culaba, Ivan B.

    2018-01-01

    Multiple methods of improving plant development have been utilized over the past decades. Despite these improvements, there still exists a need for better planting methods due to the increasing population of a global community. Studies have reported that plasma treatment affects the growth and germination of a variety of plant species, including a multitude of grains which often takes the bulk in the diet of the average human being. This study explores the effect of atmospheric air plasma jet treatment on the seed germination of rice (Oryza sativa L.). The seeds were treated using an atmospheric air plasma jet for 1, 2, and 3 s. The effect of plasma exposure shows a reduction of trichomes on the surface of the seed. This caused a possible increase in wettability which significantly affected the seed germ length but did not affect the seed germination count after the germination period of 72 h.

  20. Effect of cooking on functional properties of germinated black glutinous rice (KKU-ULR012

    Directory of Open Access Journals (Sweden)

    Thapanan Konwatchara

    2014-06-01

    Full Text Available The aim of this research was to investigate the changes in functional properties of germinated black glutinous rice (KKU-ULR012 after cooking. Black glutinous rice grains were obtained from Faculty of Agriculture, Khon Kaen University, Thailand. The rough grains were soaked for 12 hrs, then germinated for 30 hrs at 35±2°C (95%RH, dried at 45±2°C for 8 hrs, dehusked and cooked either using a microwave oven or a pressure cooker. The cooked grains were dehydrated in two stages, 85±2°C for 1 hr and 45±2°C for 12 hrs until the final moisture content was 10±2%wb. The antioxidant activity, anthocyanins, GABA and -oryzanol contents, and the microstructure of the dehydrated grains were then characterized. Germination process induced a 2.55 fold increase in GABA content compared to non-germinated KKU-ULR012. The germinated KKU-ULR012 gave DPPH value, anthocyanins and -oryzanol contents of 33.74±0.15 mgTrolox/100gdb, 182.89±0.48 mg/100gdb and 37.72±0.16 mg/100gdb, respectively. Anthocyanins in cooked germinated KKU-ULR012 diminished almost 88-89% after cooking. The cooking methods employed strongly influenced the antioxidant activity and anthocyanins content that the pressure cooking tended to prevent loss of anthocyanin content and antioxidant activity. The GABA, -oryzanol and antho-cyanins contents and antioxidant activity of germinated grains cooked in the pressure cooker were higher than the samples cooked in the microwave oven (p<0.05. For pressure cooking, the cooked grains gave DPPH, ABTS, anthocyanins and -oryzanol contents of 9.89±0.35 mgTrolox/100gdb, 1.79±0.04 mgTrolox/100gdb, 21.60±0.14 mg/100gdb and 37.16±0.70 mg/100gdb, respectively. The rice grains cooked by pressure cooking were more moist and sticky than the grains cooked by microwave cooking. The microstructure examined by SEM showed that the center of the dehydrated cooked rice grain was smooth indicating starch gelatinization whereas the surface revealed

  1. Effects of eco-friendly carbohydrate-based superabsorbent polymers on seed germination and seedling growth of maize

    Science.gov (United States)

    Tao, Jinghe; Zhang, Wenxu; Liang, Li; Lei, Ziqiang

    2018-02-01

    Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates.

  2. Effects of eco-friendly carbohydrate-based superabsorbent polymers on seed germination and seedling growth of maize

    Science.gov (United States)

    Tao, Jinghe; Liang, Li; Lei, Ziqiang

    2018-01-01

    Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates. PMID:29515838

  3. Allelopathic activity of Leonurus siribicus L. on seed germination and seedling growth of wheat and identification of 4- hydroxy benzoic acid as an allelochemical by chromatography

    International Nuclear Information System (INIS)

    Sayed, M. A.; Imam, R.; Siddiqui, M.N.

    2016-01-01

    The aim of this study was to investigate the allelopathic effects of L. siribicus extract on seed germination and seedlings growth of wheat as well as to identify potential allelochemical. The different concentration (5, 10 and 15%) of aqueous extract were applied during the time of sowing and at 5 days after sowing of wheat seed. L. siribicus extract showed concentration and time - depending activity. Different concentration of aqueous extract inhibited seed germination, seedlings growth, when extracts were applied during the time of seed sowing. The stimulatory effect of seedlings growth were found for 5 % aqueous extract, in contrast 10 and 15% extract inhibited seedlings growth, when extracts were applied at 5 days after sowing. Apart from, 4-hydroxy benzoic acids affected seedlings growth irrespective of application time. The weight of dry matter of wheat seedlings were increased for 5% than 10 and 15% extracts. Thin layer chromatography suggested that the presence of 4-hydroxy benzoic acid including other allelopathic and growth regulatory compounds inhibited germination and seedlings growth. Mineral composition was determined and its might have some stimulatory effect on seedlings growth. It was interesting that 5% extract inhibited germination and seedlings growth, when it was applied during the time of seed sowing, but stimulated seedling growth, when it was applied at 5 days after sowing. The extract of this plants can be used either for bioherbicide as well as growth stimulatory agents for the organic farming system. To find out molecular mechanism behind it, further research is to be done. (author)

  4. Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method.

    Science.gov (United States)

    Cao, Yinping; Jia, Fuguo; Han, Yanlong; Liu, Yang; Zhang, Qiang

    2015-10-01

    The aim of this study was to find out the optimal moisture adding rate of brown rice during the process of germination. The process of water addition in brown rice could be divided into three stages according to different water absorption speeds in soaking process. Water was added with three different speeds in three stages to get the optimal water adding rate in the whole process of germination. Thus, the technology of segmented moisture conditioning which is a method of adding water gradually was put forward. Germinated brown rice was produced by using segmented moisture conditioning method to reduce the loss of water-soluble nutrients and was beneficial to the accumulation of gamma aminobutyric acid. The effects of once moisture adding amount in three stages on the gamma aminobutyric acid content in germinated brown rice and germination rate of brown rice were investigated by using response surface methodology. The optimum process parameters were obtained as follows: once moisture adding amount of stage I with 1.06 %/h, once moisture adding amount of stage II with 1.42 %/h and once moisture adding amount of stage III with 1.31 %/h. The germination rate under the optimum parameters was 91.33 %, which was 7.45 % higher than that of germinated brown rice produced by soaking method (84.97 %). The content of gamma aminobutyric acid in germinated brown rice under the optimum parameters was 29.03 mg/100 g, which was more than two times higher than that of germinated brown rice produced by soaking method (12.81 mg/100 g). The technology of segmented moisture conditioning has potential applications for studying many other cereals.

  5. Study of allelopathic effects of Eucalyptus erythrocorys L. crude extracts against germination and seedling growth of weeds and wheat.

    Science.gov (United States)

    Ben Ghnaya, Asma; Hamrouni, Lamia; Amri, Ismail; Ahoues, Haifa; Hanana, Mohsen; Romane, Abderrahmane

    2016-09-01

    Allelopathic materials inside a tree can produce positive or negative change in the survival, growth, reproduction and behaviour of other organisms if they escape into the environment. To assess these effects, this work was carried out to evaluate the allelopathic impact of Eucalyptus erythrocorys L. on seed germination and seedling growth of two weeds: Sinapis arvensis L. and Phalaris canariensis L.; on one cultivated crop: Triticum durum L. Aqueous; and on ethanolic leaf extracts of E. erythrocorys L. The study was effected using four concentrations (10, 20, 25 and 30 μL/mL) while distilled water was used as a control. The results showed that the E. erythrocorys L. crude extracts had an inhibitory effect on seed germination and seedling growth of both studied weeds and wheat. The inhibition rate was increased by the increase in extract concentration. Only ethanolic extracts of E. erythrocorys L. induced a significant inhibition of seed germination of durum wheat. The effect of E. erythrocorys L. crude extracts was more severe on weeds than on durum wheat. These results indicate that the seedling growth, especially radicle elongation, was the more sensitive indicator to evaluate the effects of extracts than was the seed germination.

  6. Effect of low dose irradiation of 60Co γ-rays on seed germination, seedling growth and enzymes activity of Lactuca sativa

    International Nuclear Information System (INIS)

    Liu Xiuqing; Zhang Tie

    2012-01-01

    The seeds of Lactuca sativa were irradiated by different doses (10, 20, 30, 40, 50 Gy) of 60 Co γ-rays. The effects of low dose irradiation on seed germination, seedling growth and enzymes activity were investigated. The results indicated that low dose irradiation could promote germination rate, germinating viability, germination rate in the field, root length and height of seedling. The suitable dosage for low dose irradiation for Lactuca sativa was 30 Gy. POD activity after irradiation treatment in the range of 10 to 50 Gy and CAT activity after irradiation treatment in the range of 20 Gy to 40 Gy was lower than that of control. (authors)

  7. Ectopic expression of soybean gmsbh1 confers aba sensitivity during seed germination and early seedling establishment in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Shu, Y.; Zhou, Y.; Huang, S.; Chen, M.; Huang, L.; Ma, H.

    2017-01-01

    The class I KNOX homeobox transcription factors are known to play an important role in maintenance of plant phenotype, especially leaves and flowers. In this study, a soybean KNOX I homeobox transcription factor, GmSBH1, was analyzed and confirmed to play important roles in the process of seed germination and developing. Real time quantitative PCR assay showed that the transcript level of GmSBH1 in soybean seedlings was modulated by plant hormones, such as IAA, GA, MeJA and ABA.Yeast one-hybrid assay showed that GmSBH1 could bind to the ABRE cis-element. Overexpression of GmSBH1 in Arabidopsis resulted in the abnormal phenotype of flowers and siliques. In GmSBH1 transgenic lines, both seed germination and seedlings growth showed hypersensitive to ABA. Moreover, the expression of ABA-responsive genes, such as ABI3 and ABI5, were increased in the transgenic line seedlings. Taken together, ectopic expression of GmSBH1 could alter the morphology and confer ABA sensitivity during seed germination and early seedling growth in transgenic Arabidopsis. (author)

  8. Radiobiological response of fast neutrons on seedling growth of rice varieties with different amylose content

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.; Sugiyanto, T.; Rahayu, S.

    1978-01-01

    Many studies are reported on radiation effects and on factors modifying the biological response of radiation in rice. However, little attention was directed towards studying effects of fast neutrons on seedling growth response of rice as a function of chemical constituents (e.g. amylose content). Experiments were conducted to investigate the dependency of amylose content in 4 rice cultivars on radiosensitivity to fast neutrons. From the results obtained a clear relationship between amylose content and sensitivity to fast neutrons could be shown. (author)

  9. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes.

    Science.gov (United States)

    Bae, Jichul; Benoit, Diane L; Watson, Alan K

    2016-06-01

    In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Microsite and elevation zone effects on seed pilferage, germination, and seedling survival during early whitebark pine recruitment.

    Science.gov (United States)

    Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C

    2017-11-01

    Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by

  11. Effects of gamma-rays and neutrons on the seedling and callus growth in rice seeds

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.; Fujii, Taro; Amano, Etsuo

    1976-01-01

    Seeds of rice c.v. Norin-8 and two radiation induced dwarf mutants MGS-46 and -96 were used to investigate the effects of gamma- and 14 MeV neutron-radiations in different culture systems. Seedling growth of irradiated seeds in soil, and in two types of synthetic media, modified White's (M-W) or modified Eriksson's (M-E), as well as the callus growth on 2.4-D supplemented media were measured as an index of radiation damage. Comparing the seedling height about two types of media, the M-E promoted the plant growth than the M-W in irradiated as well as non-irradiated lots of the three strains studied. The callus growth on M-E surpassed by more 10 times that obrained on the M-W in all the lots. The M-E medium seem to be appropriate for both the seedling and callus growth of rice. (auth.)

  12. The Effects of Temperature and Salinity on Germination and Seedling Growth Characteristics of Sesame (Sesamum indicum Landraces

    Directory of Open Access Journals (Sweden)

    E Izadi-Darbandi

    2012-10-01

    Full Text Available Seed germination is a crucial stage in the plant life cycle and salt tolerance during germination stage is vital for the establishment of plants in saline soils. In order to evaluation of sesame (Sesamum indicum landraces germination to salinity stress at different temperature, an experiment was conducted at Ferdowsi University of Mashhad, Collage of Agriculture during 2009. Experimental type was complete randomized design in factorial arrangement with 4 replications. Factors included salinity at 7 levels (0, -2, -3, -4, -6, -8, -10 and -12 bar, temperature at 3 levels (15°c, 20°c, 25°c and 3 sesame landraces (Sabzevar, Kalat and Oltan. Results showed that germination parameters (germination percentage, germination rate, root length, shoot length, dry weight of roots and dry weight of shoots in all landraces were significantly (p≤0.01 affected by salinity and temperature. Increasing salinity reduced all above parameters in sesame cultivars, so that highest tolerated dose of salt was obtained in 25°c and increasing of temperature reduced effects of salinity. The highest germination percent was observed in salinity between 0 to -4 bar at 25°c. Sabzevar and Oltan landraces exhibited the highest and the lowest indicators at different temperatures respectively. According to these results, it seems that in saline condition and temperature variation, Sabzevar is the appropriate sesame landraces for optimal seedling establishment.

  13. Seed reserve composition and mobilization during germination and early seedling establishment of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae).

    Science.gov (United States)

    Alencar, Nara L M; Innecco, Renato; Gomes-Filho, Enéas; Gallão, Maria Izabel; Alvarez-Pizarro, Juan C; Prisco, José T; Oliveira, Alexandre B De

    2012-09-01

    Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth. For this, C. jamacaru seeds were germinated in a growth chamber and collected at 0, 2, 4, 5, 6, 8 and 12 days after imbibition for morphological and biochemical analyses. Dry seeds had wrinkled seed coats and large, curved embryos. Lipids were the most abundant reserve, comprising approximately 55% and 65% of the dry mass for cotyledons and the hypocotylradicle axis, respectively. Soluble sugars and starch were the minor reserves, corresponding to approximately 2.2% of the cotyledons' dry mass, although their levels showed significant changes during germination. Soluble proteins corresponded to 40% of the cotyledons' dry mass, which was reduced by 81% at the final period of germination compared to dry seeds. C. jamacaru seed can be classified as an oil seed due to its high lipid content. Moreover, lipids were the main reserve mobilized during germination because their levels were strongly reduced after seed germination, while proteins were the second most utilized reserve in this process.

  14. Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Chun-hua ZHANG

    2008-03-01

    Full Text Available A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH and glutathione S-transferase (GST, EC 2.5.1.18 activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments. Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.

  15. Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings

    Directory of Open Access Journals (Sweden)

    Nimisha Amist

    2014-08-01

    Full Text Available In the present study effects of rice residue with and without water stress were studied on Triticum aestivum L. cv. Shatabadi. The mixture of residue and garden soil in 1:1 ratio was considered as 50% (R1 and only decomposed residue as 100% (R2. Garden soil was taken as control. Twenty five seeds were sown in each experimental trays filled with soil mixture according to the treatments. Trays were arranged in two groups. After 15 days one set was subjected to water stress (WS by withholding water supply for 3 days. Morphological and biochemical parameters of 18 days old seedlings were recorded. Seedling height decreased in all treatments. A gradual decrease in relative water content, pigment and protein contents of wheat seedlings were observed. Sugar and proline contents increased in treatments. An increase in malondialdehyde (MDA content and antioxidative enzyme activities was recorded. Elevation in catalase activity was observed in all treatments except in plants with water deficit. Ascorbate peroxidase (APX and guaiacol peroxidase (GPX activities increased when residue mixed with soil but decreased in seedlings under the combined influence of the residue and water stress. Higher amount of MDA and lower activities of APX and GPX reflected the oxidative damage in seedlings under combined treatments. Rice residue inhibited growth of wheat seedlings. Water stress intensified the effects of residue.

  16. Effect of Salt Stress (NaCl on Germination and Early Seedling Parameters of Three Pepper Cultivars (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Aloui Hassen

    2014-03-01

    Full Text Available Salinity is one of the major environmental problem that lead to a deterioration of agricultural land and, as a result, to a reduction in crop productivity worldwide. This research tested the effect of different salinity levels on germination and early seedling growth of three pepper (Capsicum annuum L. cultivars which were "Beldi", "Baklouti" and "Anaheim Chili". Experimental treatment included 7 concentrations of NaCl (0, 2, 4, 6, 8, 10 and 12 g/l. Results indicated that all investigate traits were affected by salt stress. Salt stress affected on germination parameters and radicle and plumule length. Fresh weight and dry weight of evaluated seedlings was also affected. "Anaheim Chili" cultivar was shown to be the most restraint cultivar to salt stress in comparison to "Beldi" and "Baklouti" cultivars.

  17. Effect of crude seaweed extracts on seed germination, seedling growth and some metabolic processes of Vicia faba L.

    Science.gov (United States)

    el-Sheekh, M M; el-Saied A el-D

    2000-01-01

    Crude extracts from three green seaweeds (Cladophora dalmatica, Enteromorpha intestinalis, Ulva lactuca) and the three red algae (Corallina mediterranea, Jania rubens, Pterocladia pinnate) were prepared. Their effects on germination, growth of seedlings, chlorophyll content and other metabolic activities of Vicia faba were investigated. The crude extract of C. dalmatica showed maximal activity, and it increased seed germination, length of main root and shoot systems and the number of lateral roots. All the crude extracts of seaweed increased protein content in both root and shoot systems, total soluble sugars and chlorophyll content in leaves. The cytokinin content of the green algae was higher than that in red algae. Growth of seedlings of V. faba was stimulated but to different degrees.

  18. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress.

    Science.gov (United States)

    Masondo, Nqobile A; Kulkarni, Manoj G; Finnie, Jeffrey F; Van Staden, Johannes

    2018-01-01

    Extreme temperatures, drought and salinity stress adversely affect seed germination and seedling growth in crop species. Seed priming has been recognized as an indispensable technique in the production of stress-tolerant plants. Seed priming increases seed water content, improves protein synthesis using mRNA and DNA and repair mitochondria in seeds prior to germination. The current study aimed to determine the role of biostimulants-seed-priming during germination and seedling growth of Ceratotheca triloba (Bernh.) Hook.f. (an indigenous African leafy vegetable) under low temperature, low osmotic potential and salinity stress conditions. Ceratotheca triloba seeds were primed with biostimulants [smoke-water (SW), synthesized smoke-compound karrikinolide (KAR 1 ), Kelpak ® (commercial seaweed extract), phloroglucinol (PG) and distilled water (control)] for 48h at 25°C. Thereafter, primed seeds were germinated at low temperatures, low osmotic potential and high NaCl concentrations. Low temperature (10°C) completely inhibited seed germination. However, temperature shift to 15°C improved germination. Smoke-water and KAR 1 enhanced seed germination with SW improving seedling growth under different stress conditions. Furthermore, priming seeds with Kelpak ® stimulated percentage germination, while PG and the control treatment improved seedling growth at different PEG and NaCl concentrations. Generally, high concentrations of PEG and NaCl brought about detrimental effects on seed germination and seedling growth. Findings from this study show the potential role of seed priming with biostimulants in the alleviation of abiotic stress conditions during seed germination and seedling growth in C. triloba plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Preliminary Study of Lonicera hypoglauca on Germination Conditions of Sand Culture Seeds and Sterilization Method of Sand Culture Seedling Sterilization].

    Science.gov (United States)

    Tan, Mu-xiu; Zeng, Wen-wen; Wei, Peng-xiao; Mo, Qiao-cheng; Pu, Zu-ning; Cen, Xiu-fen; Shi, Feng-hua

    2015-05-01

    To explore the germination conditions of Lonicera hypoglauca sand culture seeds and the effects of sand culture seedlings sterilization. 0.1% HgCl2 with different sterilization time, different illumination time and temperature culture condition were adopted to study the germination conditions of sand culture seeds. Different sterilization treatments and different hardening-seedling days were used to test the sterilization effect of sand culture seedlings. The sterilization effect of the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min on Lonicera hypoglauca seeds was the optimum,with the average pollution rate of 15.56%, and the average germination rate reached 51.11%. The combination of varied temperature-room temperature under light for 12 h/d was the best, with the average germination rate peaked at 75.49%, and the average germination potential reached 68.36%. The treatment of detergent liquor scrub-tap water wash on the part above the hypocotyl, which was sand cultured under the opening condition and had no root, showed the best sterilization effect, with the average pollution rate was zero, and the average survival rate peaked at 100.00%. The sterilization effect of sand culture seedlings, which was disinfected after cleaning by detergent liquor scrub-tap water wash after hardening-seeding for 30 days, was the best, with the average pollution rate of 50.00%, and the average survival rate of 100.00%. The best sterilization effect is the combination of 75% ethanol 30 s + 0.1% HgCl2 5 min; Lighting for 12 h/d of varied temperature-room temperature is regarded as the optimum culture condition. The treatment of detergent liquor scrub-tap water wash treatment on the part above the hypocotyl,which is sand cultured under the opening condition and had no root, shows the best sterilization effect. For the sand culture seedlings, before inoculated in subculture medium, should be hardening-seedling for some days and sterilized after detergent liquor scrub-tap water wash.

  20. Factors controlling seedling germination after fire in Mediterranean gorse shrublands. Implications for fire prescription.

    Science.gov (United States)

    De Luis, M; Raventós, J; González-Hidalgo, J C

    2005-07-01

    In Western Mediterranean areas, fires are frequent in forests established on old croplands where woody resprouting species are scarce and post-fire regeneration is limited to obligate-seeder species, such as Mediterranean gorse (Ulex parviflorus), that accumulate a great deal of fine dry fuel, increasing the risk of other severe fires. Under these conditions, fuel control techniques are required in order to prevent fires of high intensity and severity and the subsequent economic and ecological damage. Prescribed fires present an alternative to fuel control, and recent studies demonstrate that, under optimum climatic conditions, fire-line intensity values fall within the limits of those recommended for fire prescription. However, a better understanding of the consequences of fire on the regeneration of vegetation is needed in order to evaluate the suitability of prescribed fires as a technique for fuel reduction in Mediterranean gorse ecosystems. This paper analyses the factors controlling seedling germination after fire to make an evaluation from an ecological perspective of whether fire prescription is a suitable technique for fuel control in mature Mediterranean gorse shrublands. The results show that small differences in the composition of vegetation play a decisive role in fire behaviour, and have a decisive influence on the system's capacity for regeneration. Fire severity is low in mixed Mediterranean gorse communities with a low continuity of dead fine fuel (including Cistus sp., Rosmarinus sp., etc.) and fire creates a wide range of microhabitats where seedling emergence is high. In contrast, where U. parviflorus is more dominant, fire severity is higher and the regeneration of vegetation could be hindered. Our conclusions suggest that detailed studies of the composition of plant communities are required in order to decide whether prescribed burning should be applied.

  1. Allelopathic effects of Sonchus oleraceus L. on the germination and seedling growth of crop and weed species

    OpenAIRE

    Gomaa,Nasr Hassan; Hassan,Mahmoud Omar; Fahmy,Gamal Mohammad; González,Luís; Hammouda,Ola; Atteya,Atteya Mostafa

    2014-01-01

    We assessed the allelopathic effects of the aqueous extract of Sonchus oleraceus dry shoots on the germination and seedling growth of Trifolium alexandrinum, three weed species (Brassica nigra, Chenopodium murale and Melilotus indicus) and S. oleraceus itself. We assayed four different concentrations of the aqueous extract (w v-1): 1%, 2%, 3% and 4%. To determine whether the effects of the extract were attributable to the presence of allelopathic compounds, its osmotic potential or both, we p...

  2. Salt stress and temperatures on the germination and initial growth of ‘jurema-de-embira’ (Mimosa ophthalmocentra seedlings

    Directory of Open Access Journals (Sweden)

    Narjara W. Nogueira

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of salinity on the germination and initial growth of ‘jurema-de-embira’ (Mimosa ophthalmocentra seedlings at different temperatures. The experiment was installed in a completely randomized design, in a factorial scheme of eight salt concentrations (0; 4.0; 8.0; 12.0; 16.0; 20.0; 24.0 and 28.0 dS m-1 and four temperatures (25, 30, 35 and 20-30 °C in four replicates of 25 seeds under an 8-h photoperiod in Biochemical Oxygen Demand germinators. The variables analyzed were: germination, germination speed index, shoot and root lengths, and shoot, root and total dry matter. Temperature variation influences the response of ‘jurema-de-embira’ seeds to salinity, and the salt stress is intensified by the increase in temperature. ‘Jurema-de-embira’ is tolerant to salt stress in the germination stage, showing satisfactory germination up to the salinity level 20 dS m-1, at temperatures below 30 °C. The initial growth of ‘jurema-de-embira’ plants is satisfactory up to salinity of 12 dS m-1, at temperatures below 30 °C.

  3. Dynamics of seed germination, seedling growth and physiological responses of sweet corn under peg-induced water stress

    International Nuclear Information System (INIS)

    Li, W.; Zhang, X.; Li, G.; Suo, H.; Ashraf, U.; Mo, Z.

    2017-01-01

    Stress induced variations in seed germination of various crops has been well reported but germination potential of sweet corn seeds under osmotic stress with relation to time dynamics is still elusive. Present study explored the water absorption, germination potential and physiological indices and of sweet corn seeds exposed to five different levels of PEG-induced water stress i.e., 0, -0.3, -0.6, -0.9 and -1.2 M Pa water potential (Psi /sub w/) with respect to time dynamics. Results showed that enhanced water stress for prolonged time period (96 h) led to substantial reduction in water absorption and seed moisture contents, seed germination and vigor index as well as seedlings growth and fresh and dry biomass. Osmotic stress triggered antioxidant defense system like super-oxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and accumulation of soluble sugars, proline and protein contents considerably. Initially, activities of SOD and CAT were higher but then reduced as stress persisted, however, POD showed a linear increase with respect to stress exposure time. Water stress also increased MDA contents up to 36 h then declined. Further, alpha-amylase activity and soluble protein showed significant correlations with maize seed germination. Overall, germination potential decreased with increase in osmotic stress in sweet corn seeds. (author)

  4. Relationships Between Seed Weight, Germination Potential and Biochemical Reserves of Maritime Pine in Morocco: Elements for Tree Seedlings Improvement

    Science.gov (United States)

    Wahid, Nadya; Bounoua, Lahouari

    2011-01-01

    Selection of quality seeds in breeding programs can significantly improve seedling productivity. Germination and biochemical analyses on seeds from ten natural populations of maritime pine (Pinus pinaster Ait.) in Morocco reveals significant differences among populations in seed weight, germination characters and protein content in both dry seeds and megagametophytes. During germination, the mobilization of protein content in megagametophyte is significantly different among populations than sugar content. A strong positive correlation between the germination capacity and the protein content in both dry seeds and megagametophytes indicates that the best populations in term of germination capacity may also be the richest in protein content. The present study finds that seed weight is not a good indicator for quality seed selection, nor is it recommended to increase the degree of germinability. Our results suggest that the pine population in southern Morocco might have adapted to drought conditions as it is characterized by heavy seed weight and lower speed of protein content mobilization in megagametophyte compared to northern populations growing in temperate climate.

  5. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    Science.gov (United States)

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  6. Chemical investigation of Cyperus distans L. and inhibitory activity of scabequinone in seed germination and seedling growth bioassays.

    Science.gov (United States)

    Vilhena, Karyme S S; Guilhon, Giselle Maria Skelding Pinheiro; Zoghbi, Maria das Graças B; Santos, Lourivaldo Silva; Souza Filho, Antonio Pedro Silva

    2014-01-01

    Chemical investigation of the rhizomes of Cyperus distans (Cyperaceae) led to the identification of α-ciperone, cyperotundone and scabequinone, besides other common constituents. Complete assignment of the (13)C NMR data of scabequinone is being published for the first time. The inhibitory effects of C. distans extracts and scabequinone on the seed germination and seedling growth of Mimosa pudica, Senna obtusifolia and Pueraria phaseoloides were evaluated. Seed germination inhibition bioassay revealed that S. obtusifolia (52-53%) was more sensitive to the hexane and the methanol extracts at 1% than M. pudica (0-10%). Scabequinone at 250 mg L⁻¹ displayed seed germination inhibitions more than 50% and radicle growth reduction of more than 35% of the test species S. obtusifolia and P. phaseoloides, while the hypocotyl growth of M. pudica was significantly affected (>50%) by the quinone at the same concentration. These results demonstrate that scabequinone contributes to the overall inhibitory activities of C. distans.

  7. Studies of 12C6+ heavy ions irradiation on seed germination and young seedling growth of four crops

    International Nuclear Information System (INIS)

    Sun Landi; Zhang Yingcong; Wu Dali; Liang Kai; Zhang Yanping; Jia Ruiling; Qin Qianqian; Cheng Xi; Qian Pingping; Li Wenjian; Hou Suiwen

    2008-01-01

    Crops of Brassica napus L., Linum usitatissmum L., Allium f istulosum L. and Lens culinaris Medic. were irradiated by 80 MeV/u 12 C 6+ ion beams with doses of 30, 90 and 180 Gy. The germination rates and heights of seedlings of M 1 and M 2 generation of these four plants were studied. The results indicated that germination rates and average heights of the B. napus and L. usitatissmum were improved by appropriate dose treatment, while great suppression was found in the irradiated groups of the A. fistulosum. As far as the L. Culinaris was concerned, little differences was observed on M 1 germination rate, but the 90 Gy irradiation was favorable to growth of plant. The treatments with 30, 90 and 180 Gy were inferior to contrast one on M 2 germination rate of the four species. Seedlings of M 2 generation of the B. napus, L. sitatissmum and L. culinaris under 30 Gy grew better than the other groups, while the best performance of the A. fistulosum was shown by the control group. (authors)

  8. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  9. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    Science.gov (United States)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  11. Involvement of Antioxidative Defense System in Rice Seedlings Exposed to Aluminum Toxicity and Phosphorus Deficiency

    Directory of Open Access Journals (Sweden)

    Tian-rong GUO

    2012-09-01

    Full Text Available Plants growing in acid soils may suffer both phosphorus (P deficiency and aluminum (Al toxicity. Hydroponic experiments were undertaken to assess the single and combination effects of Al toxicity and low P stress on seedling growth, chlorophyll and proline contents, antioxidative response and lipid peroxidation of two rice genotypes (Yongyou 8 and Xiushui 132 differing in Al tolerance. Al toxicity and P deficiency both inhibited rice seedling growth. The development of toxic symptoms was characterized by reduced chlorophyll content, increased proline and malondialdehyde contents in both roots and leaves, and increased peroxidase and superoxide dismutase activities in roots, but decreased in leaves. The stress condition induced more severe growth inhibition and oxidative stress in Yongyou 8, and Xiushui 132 showed higher tolerance to both Al toxicity and P deficiency. P deficiency aggravated Al toxicity to plant growth and induced more severe lipid peroxidation.

  12. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  13. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    Science.gov (United States)

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Study the effect of salinity levels and seed priming on germination and seedling properties of two medicinal plant species from Asteraceae family

    Directory of Open Access Journals (Sweden)

    M. Kafi

    2016-04-01

    Full Text Available Soil and water sources salinity are important constrains which threat the sustainable agriculture production in Iran. In order to evaluate the effect of different antioxidants and salinity levels on germination and seedling properties of two medicinal species (Cnicus benedictus L., and (Cichorium intybus L., an experiment was conducted using a factorial based on completely randomized design with four replications at Special Crops Laboratory of Ferdowsi University of Mashhad. The studied factor for each plant included: seed priming at 4 levels including control (distilled water, ascorbic acid (40 mM, gibberlic acid (75 mg.lit-1 and salicylic acid (1.5 mM, and five salinity levels according to electrical conductivity by adding NaCl to distilled water (control, 5,10,15 and 20 ds.m-1. According to results, pretreatment with salicylic acid improved all of the germination and seedling properties in Cnicus benedictus L. but gibberlic acid could to improved germination and seedling properties in Cichorium intybus L. species. There were strong correlation between germination rate and radical and caulicle length especially on Cichorium intybus species. Generally, seed priming with gibberlic acid and salicylic acid could improve germination and seedling properties of these two species. Both species showed a reliable tolerance to NaCl salinity at germination stage, and germination was 60% compared with control at 20 ds.m-1 treatment.

  15. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings

    International Nuclear Information System (INIS)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-01-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10–26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. - Highlights: • Sb(V) caused lipid peroxidation and increased iron plaque formation at root surface. • The iron plaque may suppress uptake of Sb by rice. • Cultivars

  16. Mapping of QTLs for Germination Characteristics under Non-stress and Drought Stress in Rice

    Directory of Open Access Journals (Sweden)

    Zahra MARDANI

    2013-11-01

    Full Text Available Identification of genetic factors controlling traits associated with seed germination under drought stress conditions, leads to identification and development of drought tolerant varieties. Present study by using a population of F2:4 derived from a cross between a drought tolerant variety, Gharib (indica and a drought sensitive variety, Sepidroud (indica, is to identify and compare QTLs associated with germination traits under drought stress and non-stress conditions. Through QTL analysis, using composite interval mapping, regarding traits such as germination rate (GR, germination percentage (GP, radicle length (RL, plumule length (PL, coleorhiza length (COL and coleoptile length (CL, totally 13 QTLs were detected under pole drought stress (−8 MPa poly ethylene glycol 6000 and 9 QTLs under non-stress conditions. Of the QTLs identified under non-stress conditions, QTLs associated with COL (qCOL-5 and GR (qGR-1 explained 21.28% and 19.73% of the total phenotypic variations, respectively. Under drought stress conditions, QTLs associated with COL (qCOL-3 and PL (qPL-5 explained 18.34% and 18.22% of the total phenotypic variations, respectively. A few drought-tolerance-related QTLs identified in previous studies are near the QTLs detected in this study, and several QTLs in this study are novel alleles. The major QTLs like qGR-1, qGP-4, qRL-12 and qCL-4 identified in both conditions for traits GR, GP, RL and CL, respectively, should be considered as the important and stable trait-controlling QTLs in rice seed germination. Those major or minor QTLs could be used to significantly improve drought tolerance by marker-assisted selection in rice.

  17. The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates

    Directory of Open Access Journals (Sweden)

    Alhadi Fatima A.

    2012-04-01

    Full Text Available Plant seeds used rely on a wide range of internal mechanisms and physio-chemical factors to ensure their germination under favorable environmental conditions. Most plant seeds have complex process of germination, including water, oxygen, temperature availability, genome-wide gene expression, signal transduction, hormones stimulations, inhibitors removal and catalytic protein synthesis. In addition, influences of seeds nutrient values such as, protein, lipids, sugars and free amino acids have a special importance. Regarding, seeds free amino acids. Discussion of these individual factors needs to be put in context of their role in germination processes. Regarding, free amino acids seed storage, there is limited information about their relevant functions in activation and/or deactivation of required metabolic mechanisms and interactive compounds involved in this process in commercial plant cultivars. Therefore, current study was aimed to determine the probable influence of free amino acid compositions of seeds on germination process of two different (Punica granatum L. pomegranate cultivars including wild type Automi cultivar and edible Khazemi cultivar. In particular, we focused on the impact of amino acids contents variations on germination process and associated AAs compositional changes during various stages of germination and seedlings establishment. Amino acid analysis using HPLC detected all the essential and non-essential amino acids in the raw seeds of the studied cultivars, Automi and Khazemi along with AAs compositional changes occurred during different stages of seed germination. These AAs have been extensively analyzed in the context of their role in dormancy breaking capacities in plants species. Automi raw seeds are rich in Phe, that, is strongly related to ABA synthesis and hence might be responsible for the dormancy of Automi seeds, Khazemi raw seeds have sufficient levels of Arg, Glu and Met that have been reported to enhance

  18. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation.

    Science.gov (United States)

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-09-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.

  19. Mapping QTL for Seed Germinability under Low Temperature Using a New High-Density Genetic Map of Rice

    Directory of Open Access Journals (Sweden)

    Ningfei Jiang

    2017-07-01

    Full Text Available Mapping major quantitative trait loci (QTL responsible for rice seed germinability under low temperature (GULT can provide valuable genetic source for improving cold tolerance in rice breeding. In this study, 124 rice backcross recombinant inbred lines (BRILs derived from a cross indica cv. Changhui 891 and japonica cv. 02428 were genotyped through re-sequencing technology. A bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. On the basis of newly constructed high-density genetic map, six QTL were detected ranging from 40 to 140 kb on Nipponbare genome. Among these, two QTL qCGR8 and qGRR11 alleles shared by 02428 could increase GULT and seed germination recovery rate after cold stress, respectively. However, qNGR1 and qNGR4 may be two major QTL affecting indica Changhui 891germination under normal condition. QTL qGRR1 and qGRR8 affected the seed germination recovery rate after cold stress and the alleles with increasing effects were shared by the Changhui 891 could improve seed germination rate after cold stress dramatically. These QTL could be a highly valuable genetic factors for cold tolerance improvement in rice lines. Moreover, the BRILs developed in this study will serve as an appropriate choice for mapping and studying genetic basis of rice complex traits.

  20. A simple and reliable method to detect gamma irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test

    International Nuclear Information System (INIS)

    Chaudhuri, Sadhan K.

    2002-01-01

    Germination efficiency and root/shoot length of germinated seedling is proposed to identify irradiated lentil seeds. Germination percentage was reduced above 0.2 kGy and lentil seeds were unable to germinate above 1.0 kGy dose. The critical dose that prevented the root elongation varied from 0.1 to 0.5 kGy. The sensitivity of lentil seeds to gamma irradiation was inversely proportional to moisture content of the seeds. Radiation effects could be detected in seeds even 12 months storage after gamma irradiation

  1. Effect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: a comparative study.

    Science.gov (United States)

    Sibian, Mandeep S; Saxena, Dharmesh C; Riar, Charanjit S

    2017-10-01

    Germination is accompanied by various metabolic reactions in the seed, which lead to alteration of its chemical composition as compared to raw seed. Among the micromolecules, amino acids play an important role in various growth and metabolic activities in seeds. Results indicated that germination altered seeds' chemical composition, which improved/changed the functional properties investigated such as bulk density, foaming capacity, water holding capacity, oil binding capacity and emulsification properties. Essential amino acids were increased during germination, which contributed in enhancing the nutritional quality of protein in seeds. Germination also improved protein-based quality parameters such as essential amino acid index, biological value, protein efficiency ratio and nutritional index in seeds of brown rice, wheat and triticale. Among the grains, the essential amino acid index of brown rice was reported to be highest after germination. Indispensable/essential amino acids such as lysine, methionine, leucine, isoleucine, threonine, phenylalanine and valine showed a significant increase during germination. As a result, amino acid scoring based on the reference pattern of an FAO Expert Consultation Report (2013) for infants and adults was appreciably improved after germination along with an increase in the essential amino acid indices for brown rice (78.78), wheat (76.55) and triticale (73.99). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Quantitative Trait Loci for Mercury Tolerance in Rice Seedlings

    Directory of Open Access Journals (Sweden)

    Chong-qing WANG

    2013-05-01

    Full Text Available Mercury (Hg is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under excess Hg2+ stress. To map quantitative trait loci (QTLs in rice for Hg2+ tolerance, a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCl2 solution. Relative root length (RRL, percentage of the seminal root length in +HgCl2 to –HgCl2, was used for assessing Hg2+ tolerance. In a dose-response experiment, Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 μmol/L. Three putative QTLs for RRL were detected on chromosomes 1, 2 and 5, and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance. The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.

  3. Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds.

    Science.gov (United States)

    Nanjo, Yohei; Asatsuma, Satoru; Itoh, Kimiko; Hori, Hidetaka; Mitsui, Toshiaki; Fujisawa, Yukiko

    2004-06-01

    Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.

  4. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  5. Effect of Vermicompost Extract and Vermicompost-Derived Humic Acids on Seed Germination and Seedling Growth of Hemp

    Directory of Open Access Journals (Sweden)

    Ievinsh Gederts

    2017-08-01

    Full Text Available Hemp (Cannabis sativa L. cultivars grown for industrial use have recently emerged as a sustainable alternative source of industrial fibre and bioenergy, and is a highly valuable food and animal feed resource. The aim of the present study was to evaluate the effect of vermicompost extract, vermicompost mineral nutrient composition, and vermicompost-derived humic and fulvic acids on seed germination and growth of hemp seedlings. In general, separate application of all vermicompost components stimulated seed germination and hypocotyl and radicle growth, as well as increased chlorophyll concentration in cotyledons. Effective concentration range and the degree of stimulation varied significantly between the treatments. For practical purposes, application of vermicompost and vermicompost-derived extracts for stimulation of hemp growth could be useful at concentrations 5%, 0.05 mg·mL−1 and 1%, for vermicompost extract, humic acids and fulvic acids, respectively.

  6. Effect of physical and chemical mutagens on seed germination and survival of seedling in Lycopersicon esculentum Mill

    International Nuclear Information System (INIS)

    Jayabalan, N.; Rao, G.R.

    1987-01-01

    Dry and healthy seeds of Lycopersicon esculentum Mill. var. Co-2 were irradiated with gamma rays at 10 KR, 20 KR, 30 KR, 40 KR and 50 KR. The percentage of seed germination was directly proportional to the dose given. The survival percentage decreased with higher doses. Concentration of EMS and NMU applied, ranged from 10 mM to 50 mM and 1 mM to 5 mM, respectively. The duration of soaking of seed was 4 hours in distilled water and 4 hours in mutagenic agents. In treated seeds, the percentage of germination and survival of seedlings decreased with an increase in concentration of these chemical mutagens. These observations are discussed in detail. (author). 11 refs

  7. Effect of biologically treated petroleum sludge on seed germination and seedling growth of Vigna unguiculata (L. Walp. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Jeyabalan Sangeetha

    2014-06-01

    Full Text Available The present investigation was carried out to study the response of different concentrations of treated petroleum sludge on seed germination, root and shoot length and tolerance of Vigna unguiculata (L. Walp. The biologically treated petroleum sludge with bacterial consortium showed 54.8% reduction in total petroleum hydrocarbons. Treated sludge was utilized with agricultural soil in known concentration for the assessment of growth of V. unguiculata. A remarkable absence of seed germination was observed at higher sludge concentration. The different concentrations of treated petroleum sludge showed severe decline on the length, weight and vigour index of the tested seedlings with increasing sludge concentrations. The results showed that the difference in rate of seed germination was significant among various concentrations. Under environmental stress condition, germination is the most critical phase of life cycle in crop plants. In this present study, the high oil content found to alter the osmotic relation between seed and water and thus reduce the amount of water absorbed. It was concluded that the concentration of nutrients and oil present in the treated sludge were toxic to the plant.

  8. Toxic effect of barium on germination and early growth of maize seedling and its reversal by nutrition and gibberellic acid

    International Nuclear Information System (INIS)

    Iqbal, J.; Ijaz, F.

    2002-01-01

    Maize seeds were soaked in 0-100 mM BaCl/sub 2/ for 24h followed by soaking of one batch of seeds in 100 mM GA/sub 3/ (Gibberellic acid) for 8h. Subsequently seeds were germinated and grown in four batches: Ba-treated in distilled water; Ba-treated in half strength Hoagland nutrient solution; Ba-GA/sub 3/ treated in distilled water; Ba-treated in half-strength Hoagland nutrient solution; Ba-GA/sub 3/ treated in distilled water and Ba-GA/sub 3/ treated in half strength Hoagland nutrient solution. There was a general decline in germination and inhibition of growth in seedlings raised from Ba-treated seeds, at all doses except at 0.1 mM, where a significant improvement in all growth parameters were observed. Both nutrient solution and GA/sub 3/ treatment reduced the toxic effects of Ba on germination and growth. The effects of GA/sub 3/ + nutrient solution were synergistic as maximum restoration to the effects of Ba were observed when GA/sub 3/ treated seeds were grown in nutrient medium. It is concluded that both nutrition solution and GA/sub 3/ were effective in reversing the Ba induced suppression of germination and inhibition in root-shoot length, and dry weights.(author)

  9. Allelopathic effects of leaf extracts of three agroforestry trees on germination and early seedling growth of wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Abdul Majeed

    2017-06-01

    Full Text Available Understanding of the growth promotory or inhibitory allelopathic effects of agroforestry trees on other plants is necessary for selection of suitable crops to be cultivated in their vicinity. In this experiment, aqueous leaf extracts of three agroforestry trees (Populus deltoides, Melia azedarach and Morus alba were evaluated on germination and seedling growth of wheat applied at concentration 1, 1.5, 2.0 and 2.5 g L-1 while distilled water was used as control treatment. Lower concentration of extracts (1 and 1.5 g L-1 of P. deltoides stimulated percent germination, root and stem height and dry biomass while higher concentration (2 and 2.5 g L-1 had no effect on these parameters. Mean germination time (MGT was not affected by the extract and its concentration. Aqueous extracts of M. azedarach and M. alba at concentration > 1 g L-1 significantly lowered the studied parameters except MGT which was significantly prolonged. Negative allelopathy was more evident at the highest aqueous extract concentration (2.5 g L-1 of the two trees. Extracts of M. alba were found more growth inhibitory than those of M. azedarach. The study suggests that lower concentration of leaf extracts of P. deltoides imparts stimulatory while M. azedarch and M. alba have negative allelopathic effects on wheat germination.

  10. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings.

    Science.gov (United States)

    Srivastava, Rajneesh Kumar; Pandey, Poonam; Rajpoot, Ritika; Rani, Anjana; Dubey, R S

    2014-09-01

    Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8-16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙- and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25-40%. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.

  11. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.

    Science.gov (United States)

    Ye, Nenghui; Zhang, Jianhua

    2012-05-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.

  12. Pengaruh pemberian abu sekam padi sebagai bahan desikan pada penyimpanan benih terhadap daya tumbuh dan pertumbuhan bibit kakao (The effects of rice husk ash as desiccation material of seed storage on viability and cocoa seedling growth.

    Directory of Open Access Journals (Sweden)

    Pudji Rahardjo

    2012-08-01

    Full Text Available Rice husk ash as desiccation material can be used to maintain seed viability in storage through its ability to absorb humidity during its storage. High relative humidity caused seed moisture content to increase so the respiration rate of seed increases and uses faster food stock. Finally the viability of seed is lost. A research on use of rice husk ash as desiccation material of cocoa seed storage was conducted in Agronomy Laboratory and Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute. Completely Randomized Design was used in this research with treatment of rice husk ash application on cocoa seed as follows: 0 g/100 seeds (A, 5 g/100 seeds (B, 10 g/100 seeds (C, 15 g/100 seeds (D, and 20 g/100 seeds (E. This experiment used four replications. Cocoa seeds were stored in plastic bag within carton box in ambient temperature. The storage periods were 1, 2, and 3 weeks, and parameters of observation consisted of electrical conductivity of dipped water of cocoa seeds, percentage of seed germination, percentage of seed emergence, early growth parameters at one month old including seedlings height of seedling, diameter, leaf number, root length, and dry weight. The result of the experiment showed that the use of rice husk ash at 5-10 g/100 seeds could maintain electrical conductivity of dipped water at low level, percentage of seed germination at 99-100 % and percentage of seed emergence at 79-91% after two weeks storage. The use of rice husk ash at 5-10 g/100 seeds after two weeks storage affected height of cacao seedling, but did not affected stem diameters, leaf numbers, root lengths, and dry weights

  13. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru

    Science.gov (United States)

    Foster, Mercedes S.

    2008-01-01

    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  14. Phospholipid fatty acids in mitochondria and microsomes of wheat and rice seedling roots during aeration and anaerobiosis

    International Nuclear Information System (INIS)

    Chirkova, T.V.; Sinyutina, N.F.; Blyudzin, Yu.A.; Barskii, I.E.; Smetannikova, S.V.

    1989-01-01

    Mitochondrial and microsomal fractions were isolated from the roots after residence of wheat and rice seedlings under conditions of aeration or anaerobiosis and used to determine the percentage ratio of phospholipid fatty acids (PFA), their content, and the rate of incorporation of [2- 14 C]-acetate into them. In rice mitochondria under anaerobic influence, the ratio of unsaturated to saturated PFA was higher than the level that occurred in the control plants and PFA content remained close to the control level throughout the entire course of exposure. On the other hand, these indices declined in wheat mitochondria and microsomes of both plants. Anoxia also powerfully inhibited incorporation of labelled acetate into PFA of both membrane fractions in wheat and rice seedlings alike. Probably indicating adaptive reorganizations in composition of the main groups of PFA and inhibition of their decomposition in rice mitochondria, the obtained data are discussed in relation to greater resistance to temporary anaerobiosis in rice as compared with wheat

  15. Influence of lead on atrazine uptake by rice (Oryza sativa L.) seedlings from nutrient solution.

    Science.gov (United States)

    Su, Yu-Hong; Zhu, Yong-Guan

    2005-01-01

    Atrazine is a widely used herbicide, and its persistence in soil and water causes environmental concerns. In the past, plant uptake processes are mainly investigated for single contaminants. However, in many cases, contaminants co-exist in environmental matrix, such as soil, and plant uptake of one contaminant may be influenced by its co-existing ones. The uptake of atrazine by rice seedlings (Oryza sativa L.) from nutrient solution through the roots was investigated in a solution culture, over an exposure period of 4 weeks. Atrazine accumulation in plant tissues was determined by gas chromatography, and lead was determined using atomic absorption spectrometry. With different ratios of atrazine and Pb2+ concentrations in solution, the observed atrazine concentrations in shoots and roots varied significantly. In atrazine-Pb2+ mixture systems, the added Pb2+ either increased or decreased the concentrations or BCFs of atrazine in seedlings (relative to those without Pb2+), depending on the atrazine-Pb2+ ratio in nutrient solution. The enhanced atrazine uptake results presumably from atrazine-Pb2+ complex formation. The reduced atrazine uptake, which occurred mainly at high atrazine concentrations, is attributed to atrazine toxicity that inhibited seedling growth and transpiration. The formation of atrazine-Pb2+ complex both in the solution and within plant tissues may affect the accumulation of both contaminants by rice plants.

  16. Effect of Cyanobacteria Isolates on Rice Seeds Germination in Saline Soil

    Directory of Open Access Journals (Sweden)

    Mostafa M. El -Sheekh

    2018-03-01

    Full Text Available Cyanobacteria are prokaryotic photosynthetic communities which are used in biofertilization of many plants especially rice plant. Cyanobacteria play a vital role to increase the plant's ability for salinity tolerance. Salinity is a worldwide problem which affects the growth and productivity of crops. In this work three cyanobacteria strains (Nostoc calcicola, Anabaena variabilis, and Nostoc linkia were isolated from saline soil at Kafr El-Sheikh Governorate; North Egypt. The propagated cyanobacteria strains were used to withstand salinity of the soil and increase rice plant growth (Giza 178. The length of roots and shoot seedlings was measured for seven and forty days of cultivation, respectively. The results of this investigation showed that the inoculation with Nostoc calcicola, Anabaena variabilis, and Nostoc linkia increased root length by 27.0, 4.0, 3.0 % and 39, 20, 19 % in EC5 and 10 (ds/m, respectively. Similarly, they increased shoot length by 121, 70, 55 %, 116, 88, 82 % in EC5 and 10 (ds/m, respectively. In EC15and more concentrations, control rice plants could not grow while those to which cyanobacteria were inoculated could withstand only EC15 but not other elevated concentrations. These results encourage using Nostoc calcicola,Anabaena variabilis, and Nostoc linkia as biofertilizer for rice plant in the saline soil for increasing growth and decrease soil electrical conductivity.

  17. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    2017-10-01

    Full Text Available Submergence stress is a limiting factor for rice growing in rainfed lowland areas of the world. It is known that the phytohormone gibberellin (GA has negative effects on submergence tolerance in rice, while its inhibitor paclobutrazol (PB does the opposite. However, the physiological and molecular basis underlying the GA- and PB-regulated submergence response remains largely unknown. In this study, we reveal that PB could significantly enhance rice seedling survival by retaining a higher level of chlorophyll content and alcohol dehydrogenase activity, and decelerating the consumption of non-structure carbohydrate when compared with the control and GA-treated samples. Further transcriptomic analysis identified 3936 differentially expressed genes (DEGs among the GA- and PB-treated samples and control, which are extensively involved in the submergence and other abiotic stress responses, phytohormone biosynthesis and signaling, photosynthesis, and nutrient metabolism. The results suggested that PB enhances rice survival under submergence through maintaining the photosynthesis capacity and reducing nutrient metabolism. Taken together, the current study provided new insight into the mechanism of phytohormone-regulated submergence response in rice.

  18. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus

  19. Toxic action of zinc on growth and enzyme activities of rice Oryza sativa L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Nag, P.; Nag, P.; Paul, A.K.; Mukherji, S.

    1984-01-01

    This paper provides information on the effects of toxic concentrations of zinc sulfate (ZnSO/sub 4/.7H/sub 2/O) on the growth and metabolism of rice Oryza sativa L. seedlings. Root growth inhibition was always more pronounced than was shoot growth inhibition. Root growth was completely inhibited at 40 m M concentration, whereas the magnitude of reduction of shoot length was only 56% at this concentration. Gibberellic acid (GA/sub 3/) was partially capable of relieving zinc inhibition. The activities of peroxidase, IAA oxidase and ascorbic acid oxidase of seedlings increased in response to zinc addition, whereas catalase and IAA synthetase decreased. All the hydrolyzing enzymes, viz., ..cap alpha..-amylase and phytase of endosperm together with RNase and ATPase of the embryo, showed distinct inhibition from the control, the exception being endosperm RNase which was stimulated under zinc treatment. 50 references, 6 figures.

  20. Effect of pre-sowing treatments on seed germination and seedling ...

    African Journals Online (AJOL)

    Pre-sowing treatments were evaluated for Tetracarpidium conophorum. Mechanically scarified T. conophorum seeds soaked in indole acetic acid for 24 h yielded 90% seed germination. Smoked- and sun-dried seeds for 14 days yielded 73 and 33.3% seed germination, respectively. Poorest values were obtained from acid ...

  1. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings.

    Directory of Open Access Journals (Sweden)

    Aobo Huang

    Full Text Available The internal C:N balance must be tightly controlled for the normal growth and development of plants. However, the underlying mechanisms, by which plants sense and balance the intracellular C:N status correspondingly to exogenous C:N availabilities remain elusive. In this study, we use comparative gene expression analysis to identify genes that are responsive to imbalanced C:N treatments in the aerial parts of rice seedlings. Transcripts of rice seedlings treated with four C:N availabilities (1:1, 1:60, 60:1 and 60:60 were compared and two groups of genes were classified: high C:low N responsive genes and low C:high N responsive genes. Our analysis identified several functional correlated genes including chalcone synthase (CHS, chlorophyll a-b binding protein (CAB and other genes that are implicated in C:N balancing mechanism, such as alternative oxidase 1B (OsAOX1B, malate dehydrogenase (OsMDH and lysine and histidine specific transporter 1 (OsLHT1. Additionally, six jasmonate synthetic genes and key regulatory genes involved in abiotic and biotic stresses, such as OsMYB4, autoinhibited calcium ATPase 3 (OsACA3 and pleiotropic drug resistance 9 (OsPDR9, were differentially expressed under high C:low N treatment. Gene ontology analysis showed that high C:low N up-regulated genes were primarily enriched in fatty acid biosynthesis and defense responses. Coexpression network analysis of these genes identified eight jasmonate ZIM domain protein (OsJAZ genes and several defense response related regulators, suggesting that high C:low N status may act as a stress condition, which induces defense responses mediated by jasmonate signaling pathway. Our transcriptome analysis shed new light on the C:N balancing mechanisms and revealed several important regulators of C:N status in rice seedlings.

  2. EFFECTS OF SOME PLANT GROWTH REGULATORS ON JASMONIC ACID INDUCED INHIBITION OF SEED GERMINATION AND SEEDLING GROWTH OF BARLEY

    Directory of Open Access Journals (Sweden)

    Kürşat ÇAVUŞOĞLU

    2009-02-01

    Full Text Available Abstract: The effects of gibberellic acid, kinetin, benzyladenine, ethylene, 24-epibrassinolide and polyamines (spermine, spermidine, putrescine, cadaverine on jasmonic acid inhibition of seed germination and seedling growth of barley were studied. All of the plant growth regulators studied were determined to have a succesful performance in reversing of the inhibitory effects of jasmonic acid on the seed germination and seedling growth. Moreover, the above mentioned growth regulators overcame the inhibitory effect of JA on the percentages of germination and coleoptile emergence in the same ratio, while GA3 was the most successful hormone on the fresh weight and radicle and coleoptile elongation in comparison with the other growth regulators. Key words: Barley, jasmonic acid, plant growth regulator, seed germination, seedling growth ARPANIN TOHUM ÇİMLENMESİ VE FİDE BÜYÜMESİNİN JASMONİK ASİT TEŞVİKLİ İNHİBİSYONU ÜZERİNE BAZI BİTKİ BÜYÜME DÜZENLEYİCİLERİNİN ETKİLERİ Özet: Arpanın tohum çimlenmesi ve fide büyümesinin jasmonik asit inhibisyonu üzerine gibberellik asit, kinetin, benziladenin, etilen, 24-epibrassinolit ve poliaminlerin (spermin, spermidin, putressin, kadaverin etkileri araştırılmıştır. Çalışılan bitki büyüme düzenleyicilerinin tümünün tohum çimlenmesi ve fide büyümesi üzerinde jasmonik asitin engelleyici etkisini tersine çevirmede başarılı bir performansa sahip oldukları belirlenmiştir. Dahası, yukarıda sözü edilen büyüme düzenleyicileri çimlenme ve koleoptil çıkış yüzdeleri üzerinde aynı oranda etkili olurken, taze ağırlık ve radikula ve koleoptil uzaması üzerinde diğer büyüme düzenleyicileri ile karşılaştırıldığında en başarılı hormon GA3 olmuştur. Anahtar kelimeler: Arpa, jasmonik asit, bitki büyüme düzenleyicisi, tohum çimlenmesi, fide büyümesi

  3. Long-distance dispersal helps germinating mahogany seedlings escape defoliation by a specialist caterpillar

    Science.gov (United States)

    Julian M. Norghauer; James Grogan; Jay R. Malcolm; Jeanine M. Felfili

    2010-01-01

    Herbivores and pathogens with acute host specificity may promote high tree diversity in tropical forests by causing distance- and density-dependent mortality of seedlings, but evidence is scarce. Although Lepidoptera larvae are the most abundant and host-specific guild of herbivores in these forests, their impact upon seedling distributions remains largely unknown. A...

  4. Natural Homologous Triploidization and DNA Methylation in SARII-628, a Twin-seedling Line of Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Hai PENG

    2007-12-01

    Full Text Available A total of five pairs of diploid-triploid twin-seedlings (a diploid seedling and a triploid seedling emerged from a grain were selected out from 4500 pairs of seedlings from SARII-628, a twin-seedling rice line. SSR analysis indicated that no difference between the diploid seedling and corresponding triploid seedling in a twin-seedling was found at the 310 loci, indicating that there was no obvious change in DNA primary structure. A modified AFLP technique ‘MSAP (methylation-sensitive AFLP’ was used to analyze methylation mutation. Although no methylation mutation was noted among the five diploids, 29 methylation mutation loci were found from the corresponding triploids. This suggested that methylation mutation happened rapidly on M0 generation after natural homologous triploidization. The mutations were classified into 10 types, including 3 increased types, 3 decreased types and 4 undecided types of methylation-degrees. The bands of 22 loci were sequenced and then those sequences were searched through website. The result showed that the methylation mutation involved into the whole rice genome and the 12 pairs of chromosomes. The mutation trend was site-related and there were different mutation loci for different triploids, which foretold that SARII-628 would have different evolution fates after natural homologous triploidization.

  5. Cryptochrome and Phytochrome Cooperatively but Independently Reduce Active Gibberellin Content in Rice Seedlings under Light Irradiation

    OpenAIRE

    Hirose, Fumiaki; Inagaki, Noritoshi; Hanada, Atsushi; Yamaguchi, Shinjiro; Kamiya, Yuji; Miyao, Akio; Hirochika, Hirohiko; Takano, Makoto

    2012-01-01

    In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4–OsGA2ox7). For further examination of the regulation of these genes, we establishe...

  6. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.

    Science.gov (United States)

    Ding, Junzhou; Ulanov, Alexander V; Dong, Mengyi; Yang, Tewu; Nemzer, Boris V; Xiong, Shanbai; Zhao, Siming; Feng, Hao

    2018-01-01

    Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical stimulation, has been documented as a novel approach to improve the nutritional quality of plant-based food. This study was undertaken to test the use of ultrasound to enhance the nutritional value of red rice. Ultrasonication (5min, 16W/L) was applied to rice during soaking or after 66h germination. Changes of metabolites (amino acids, sugars, and organic acids) in red rice treated by ultrasonication were determined using a GC/MS plant primary metabolomics analysis platform. Differential expressed metabolites were identified through multivariate statistical analysis. Results showed that γ-aminobutyric acid (GABA) and riboflavin (vitamin B 2 ) in red rice significantly increased after germination for 72h, and then experienced a further increase after treatment by ultrasound at different stages during germination. The metabolomics analysis showed that some plant metabolites, i.e. GABA, O-phosphoethanolamine, and glucose-6-phosphate were significantly increased after the ultrasonic treatment (VIP>1.5) in comparison with the untreated germinated rice. The findings of this study showed that controlled germination with ultrasonic stress is an effective method to enhance GABA and other health-promoted components in de-hulled rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effects of sodium azide on seed germination and seedling growth of chili pepper (Capsicum annum L. cv. Landung)

    Science.gov (United States)

    Yafizham; Herwibawa, B.

    2018-01-01

    This study was aimed to determine the effects of sodium azide on the performance of chili pepper. Dry seeds from pure lines of chili pepper cv. Landung were used in this experiment. Each set containing 50 seeds was placed in nylon fishner bags, washed in flowing water and soaked in distilled water for four hours. After soaking, four sets of seeds were dabbed dry with tissue paper and were treated for two hours at 30 0C in appropriate solution of 0, 0.10, 0.20, 0.40, 0.80, 1.60 mM sodium azide with phosphate buffer at pH 3. After treatment, the seeds were germinated in plastic boxes containing sterilized sand and kept under laboratory condition by supplied with water everyday. The seeds for M1 germination percentage, seedling height, plant height and number of leaves were recorded 30 days and 60 days after treatment, respectively. Seeds which radicle emerged were considered germinated, the seedling and plant height were measured from the tip of primary root to the base of the first leaf pair, and the number of leaves were counted for only fully expanded leaves. A completely randomized block design in four replicates was used throughout the experiment. Data obtained were analysed for range, mean, standard of deviation, and percent of control using Microsoft Office Excel 2007 software. It was concluded that different doses of sodium azide influenced the performances of chili pepper cv. Landung. Very low doses of sodium azide (0-1.60 mM) might be used to study the improvement of chili pepper diversity.

  8. Germination and Seedling Growth of Water Primroses: A Cross Experiment between Two Invaded Ranges with Contrasting Climates

    Directory of Open Access Journals (Sweden)

    Morgane Gillard

    2017-09-01

    Full Text Available Aquatic ecosystems are vulnerable to biological invasions, and will also be strongly impacted by climate change, including temperature increase. Understanding the colonization dynamics of aquatic invasive plant species is of high importance for preservation of native biodiversity. Many aquatic invasive plants rely on clonal reproduction to spread, but mixed reproductive modes are common. Under future climate changes, these species may favor a sexual reproductive mode. The aim of this study was to test the germination capacity and the seedling growth of two water primrose species, Ludwigia hexapetala and Ludwigia peploides, both invasive in Europe and in the United States. We performed a reciprocal transplant of seeds of L. hexapetala and L. peploides from two invasive ranges into experimental gardens characterized by Oceanic and Mediterranean-type climates. Our results showed that higher temperatures increased or maintained germination percentages and velocity, decreased survivorship of germinants, but increased their production of biomass. The origin of the seeds had low impact on L. hexapetala responses to temperature, but greatly influenced those of L. peploides. The invasiveness of water primroses in ranges with Oceanic climates might increase with temperature. The recruitment from seed banks by these species should be considered by managers to improve the conservation of native aquatic and wetland plant species.

  9. Reduced triacylglycerol mobilization during seed germination and early seedling growth in Arabidopsis containing nutritionally important polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Pushkar Shrestha

    2016-09-01

    Full Text Available There are now several examples of plant species engineered to synthesise and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG. The utilization of such TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain an elevated level of the engineered polyunsaturated fatty acids (PUFA. LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilised engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

  10. Cashew nut shell liquid and formulation: toxicity during the germination of lettuce, tomato seeds and coffee senna and seedling formation

    Directory of Open Access Journals (Sweden)

    Rosemary Matias

    2017-08-01

    Full Text Available Cashew (Anacardium occidentale nut shell liquid (CNSL has been successfully used in trials as an Aedes aegypti larvicide, but little is known about its environmental effects. In this study, the potential effects of CNSL and a CNSL-based phyto-product formulation on the germination and growth of Lactuca sativa (lettuce, Lycopersicon esculentum (tomato and Senna obtusifolia (coffee senna were assessed. The pH of CNSL and the formulation were 6.4 and 6.8, respectively; the electrical conductivities were 2.89 μS cm-1 (CNSL and 2.21 μS cm-1 (formulation, respectively, and both contained anacardic acid (53.2% and degradation products. In bioassays for germination and growth, CNSL (25, 50, 100, 150, and 200 mg mL-1, the formulation (100 mg mL-1 and the control were used in a completely randomized design. The results demonstrated the chemical effects of CNSL, which negatively affected the germination and vigor of lettuce and tomato and the vigor of coffee senna; for growth, it negatively influenced both the root and aerial parts of lettuce and tomato, but only the roots of coffee senna. The formulation had negative effects on the vigor of coffee senna and the growth of tomato and lettuce seedlings (roots and aerial parts. The results indicate the phytotoxicity of CNSL and the formulation for the plant species tested.

  11. Increasing rice plant growth by Trichoderma sp.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  12. Evaluation and Selection for Drought Tolerance in Iranian Fenugreek (Trigonella foenum-graecum Landraces at Germination and Seedling Growth Stages

    Directory of Open Access Journals (Sweden)

    D. Sadeghzadeh Ahari

    2016-07-01

    Full Text Available Introduction: Fenugreek (Trigonella foneum-graecum L. has been cultivated in vegetable farms at the most parts of Iran. It is an annual crop belonging to the Leguminosae family. It originated from west Asia and Iran and cultivated at mostly in European, Asian and African countries, presently. With distinguished of feeding and medicinal values, low needs to soil conditions and its width adaptability to cultivation in different regions, the range of fenugreek cultivation areas have been extended from America to India. In most parts of Iran there is limiting possibilities for cultivation of horticultural and agricultural crops for the reason of limiting water harvesting and unsuitable rainfall distributions. There is no doubt that introduction of new crops for such conditions could increase variation of crops production and stability of farming systems. Plants landraces have been created in thousands of cultivation years under different climatologically and local cropping systems. They are evolved by natural and artificial selection under environmental conditions where they were grown and there have accumulative adaptive genes for tolerance to biotic and abiotic stresses and are the most precious materials in starting of breeding programs. Germination phase is the most important period that guaranties the growth and establishments of crops. One of the basic activators of germination starters is water and limiting of it (drought is the most important retardant of seed growth during germination period under field condition. Fast germination and emergence of seedling from soil and high preliminary growth rate has been known for one of the drought escape mechanisms for most crops such as chickpea, lentil and bean. In breeding programs of crops, using in vitro method is one of the most used methods in germplasm selection for drought tolerance. This study carried out under laboratory condition in order to evaluate some Iranian fenugreek landraces

  13. Comparative toxic effects of some xenobiotics on the germination and early seedling growth of jack pine (Pinus banksiana Lamb. ) and white birch (Betula papyrifera Marsh. )

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, P; Vladut, R

    1981-12-01

    Seeds of jack pine (Pinus banksiana Lamb.) and white birch (Betula papyrifera Marsh.) were germinated in homogeneous emulsions or aqueous tank-mix solutions of fenitrothion or Matacil and their respective adjuvants: Atlox and Aerotex, or diluent oil No. 585 and nonylphenol. Percentage and peak germination values, water uptake, sprout length, ATP content, and morphological modifications were recorded from 0 to 14 or 21 days. Apart from 100 ppm fenitrothion which stimulated germination values, germination in jack pine was only marginally affected by any of the treatments; in contrast, white birch was negatively affected by all treatments. The most sensitive parameters of toxicity were the sprout length and ATP content after 14 days growth. Aberrant hypocotyl/root length ratios were evidenced in pine seeds after exposure to xenobiotic treatments which did not affect the germinative capacity of seeds. ATP content in the 14-day-old pine and birch seedlings was consistently higher than controls in all treatment sets. (Refs. 29).

  14. Lunisolar tidal synchronism with biophoton emission during intercontinental wheat-seedling germination tests

    Czech Academy of Sciences Publication Activity Database

    Gallep, C.M.; Moraes, T.A.; Červinková, Kateřina; Cifra, Michal; Katsumata, M.; Barlow, P. W.

    2014-01-01

    Roč. 9, č. 3 (2014), e28671 ISSN 1559-2324 Institutional support: RVO:67985882 Keywords : Biophoton emission * Chronobiology * Germination Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Allelopathic relations of selected cereal and vegetable species during seed germination and seedling growth

    Directory of Open Access Journals (Sweden)

    Bojović Biljana M.

    2015-01-01

    Full Text Available Allelopathy is the direct or indirect harmful effect which one plant produces on another through the production of chemical compounds that escape into the environment. In the presence paper allelopathic relationships were determined in three cereals - wheat (Triticum aestivum L., barley (Hordeum vulgare L., oat (Avena sativa L. and vegetable crops - spinach (Spinacia oleracea L., radish (Raphanus sativus L., pepper (Capsicum annum L.. In addition to the percentage of germination, allelopathic potential was tested measuring root and stem length of tested plant species germinated either alone or in combination with others. The obtained results showed that seed germination and plant growth of cereals and vegetables are depended on the presence of other plants in all tested combinations. In this study has proven largely inhibitory allelopathic effect on germination and plant growth.

  16. Optimization of conditions to achieve high content of gamma amino butyric acid in germinated black rice, and changes in bioactivities

    Directory of Open Access Journals (Sweden)

    Chaiyavat CHAIYASUT

    Full Text Available Abstract The present study estimated the optimum germination conditions to achieve high content of Gamma-amino butyric acid (GABA and other phytochemicals in Thai black rice cultivar Kum Payao (BR. The Box–Behnken design of response surface methodology was employed to optimize the germination conditions. The changes in the GABA, phytochemical content, impact of salt, and temperature stress variation on phytochemical content, and stability of GABA were studied. The results showed that 12 h of soaking at pH 7, followed by 36 h of germination was the optimum condition to achieve maximum GABA content (0.2029 mg/g of germinated BR (GBR. The temperature (8 and 30 °C, and salt (50-200 mM NaCl content affected the phytochemicals of GBR, especially GABA, and anthocyanins. Obviously, the antioxidant capability, and enzyme (α-amylase and α-glucosidase inhibiting nature of BR was significantly (P < 0.001 increased after germination. The storage of GBR at 4 °C significantly, preserved the GABA content (∼80% for 45 days. Primarily, the current study revealed the changes in phytochemical content, and bioactivity of Thai black rice cr. Kum Payao during germination. More studies should be carried out on pharmacological benefits of GABA-rich GBR.

  17. Effect of microwave irradiation on germination and seedling growth physiological characteristics of alfalfa seeds after storage

    International Nuclear Information System (INIS)

    Chen Liyu; Zhang Shuqing; Li Jianfeng; Shi Shangli; Huo Pinghui

    2012-01-01

    In order to study the effect of microwave irradiation on germination and growth physiological characteristics of seeds that stored for years, the irradiated alfalfa seeds that stored at room temperature for 2 years were used to conduct the germination and pot culture tests, and the germination rate, radical elongation, growth height, individual nodule, nitrogenase activity, chlorophyll content and chlorophyll fluorescence parameters were measured. On the 15th day of germination, the germination rates of all the treatments are higher than that of the control, which decrease with the elongation of time. On the llst day of germination, the radical length of all the treatments is lower than that of the control. Growth height, individual nodule, fresh weight and dry weight for the 40 s irradiation treatment are higher than that of the control. Nitrogenase activity of all the treatments is lower than that of the control (P < O.05). The chlorophyll content reaches its maximum when being irradiated for 10 s, and the variation for F 0 and F v /F m of all treatments indicates that the light conversion efficiency of the leaves derived from the irradiated alfalfa seeds that stored for 2 a at room temperature is still relatively stressed. (authors)

  18. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    Science.gov (United States)

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-05-04

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings

    International Nuclear Information System (INIS)

    Su Yuhong; Zhu Yongguan

    2006-01-01

    Accumulation of o-chlorophenol (CP), 2,4-dichlorophenol (DCP), and atrazine (ATR), as single and mixed contaminants, from hydroponic solutions into roots and shoots of rice seedlings was studied following 48-h exposure of the plant roots. As single contaminants at low levels, the observed bioconcentration factors (BCFs) of CP and DCP with roots approximated the equilibrium values according to the partition-limited model. The BCF of atrazine with roots was about half the partition limit for unknown reasons. The BCFs of CP and ATR with shoots also approximated the partition limits, while the BCF for more lipophilic DCP with shoots was about half the estimated limit, due to insufficient water transport into plants for DCP. As mixed contaminants at low levels, the BCFs with both roots and shoots were comparable with those for the single contaminants; at high levels, the BCFs generally decreased because of the enhanced mixed-contaminant phytotoxicity, as manifested by the greatly reduced plant transpiration rate. - Uptakes of o-chlorophenol, 2,4-dichlorophenol, and atrazine at various levels from nutrient solution by roots and shoots of rice seedlings were investigated using a partition-limited model

  20. Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis

    Science.gov (United States)

    Verma, Satish K.; Kingsley, Kathryn L.; Bergen, Marshall S.; Kowalski, Kurt P.; White, James F.

    2018-01-01

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusariumblights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonassp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production

  1. Germination and Seedling Emergence of Scirpus-Lacustris L and Scirpus-Maritimus L with Special Reference to the Restoration of Wetlands

    NARCIS (Netherlands)

    Clevering, O.A.

    1995-01-01

    Germination and seedling emergence of Scirpus lacustris L. ssp. lacustris (S.l. lacustris), S. lacustris L. ssp. tabernaemontani (C.C. Gmelin) Syme (S.l. tabernaemontani) and Scirpus maritimus L. were investigated in order to assess their ability to establish from seed in former tidal waters, where

  2. Effects of ionizing-radiation and post-radiation action of some plant growth regulators on the seed germination and seedling growth of Scotch pine

    Directory of Open Access Journals (Sweden)

    Leszek Michalski

    2015-01-01

    Full Text Available The effects of small doses of gamma irradiation on the seed germination and seedling growth of Scotch pine and post-radiation action of water solutions of IAA, GA3 and kinetin have been investigated. Changes in the destructive action of ionizing-radiation toy gibberellic acid and its intensifying by IAA and kinetin has been found.

  3. Allelopathic Effects of Aqueous Extract of Leaf Stem and Root of Sorghum bicolor on Seed Germination and Seedling Growth of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Amir MOOSAVI

    2011-05-01

    Full Text Available Seed germination under field conditions is highly influenced by the presence of other plants. Allelopathy is an important mechanism of plant competition, by producing phytotoxins to the plant environment in order to decline other plants growth. Soil sickness problem in farm lands is also known as an allelopathic effect or even autotoxicity. The toxicity of released allelochemicals by a plant in the environment is attributed to its function of concentration, age and metabolic stage. In this study we investigate the effect (5, 20, 35 and 50 g l-1 of leaf, stem and root water extract of sorghum on seed germination and seedling growth of mung bean. The results of the experiment showed that allelopathic effect of different concentrations was not significant for germination percentage, but germination rate and mean germination time decreased significantly by increasing the concentration of allelopathic extracts; also, there was a clear allelopathic effect of sorghum extract on seedling growth of mung bean. 50 g l-1 sorghum stem extract exhibited the highest inhibitory effect on root and shoot growth of mung bean. Among all parts of sorghum, stem extracts showed the highest allelopatic effect on seedling growth. Root extract showed higher inhibitory effect than leaf extracts.

  4. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth

    Science.gov (United States)

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-09-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.

  5. Allelopathic Effects of Aqueous Extract of Leaf Stem and Root of Sorghum bicolor on Seed Germination and Seedling Growth of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Amir MOOSAVI

    2011-05-01

    Full Text Available Seed germination under field conditions is highly influenced by the presence of other plants. Allelopathy is an important mechanism of plant competition, by producing phytotoxins to the plant environment in order to decline other plants� growth. Soil sickness problem in farm lands is also known as an allelopathic effect or even autotoxicity. The toxicity of released allelochemicals by a plant in the environment is attributed to its function of concentration, age and metabolic stage. In this study we investigate the effect (5, 20, 35 and 50 g l-1 of leaf, stem and root water extract of sorghum on seed germination and seedling growth of mung bean. The results of the experiment showed that allelopathic effect of different concentrations was not significant for germination percentage, but germination rate and mean germination time decreased significantly by increasing the concentration of allelopathic extracts; also, there was a clear allelopathic effect of sorghum extract on seedling growth of mung bean. 50 g l-1 sorghum stem extract exhibited the highest inhibitory effect on root and shoot growth of mung bean. Among all parts of sorghum, stem extracts showed the highest allelopatic effect on seedling growth. Root extract showed higher inhibitory effect than leaf extracts.

  6. Evaluation of the tolerance to Finale® in the germination and regeneration of Cuban rice varieties (IACuba-17 and IACuba-19

    Directory of Open Access Journals (Sweden)

    Daymí Abreu

    2005-01-01

    Full Text Available Selection agent used during the shoot selection has an important role on the transgenic plant generation efficiency. In this work, the tolerance to the herbicide Finale® in two Cuban rice cultivars, IACuba17 and IACuba-19 was evaluated, and determined that 10 days exposure to 5 and 10 mg.l-1 of Finale® were enough to avoid seedlings of IAC-17 and IAC-19, respectively. Cultivated calluses (0, 2, 4 and 6 days in the absence of Finale®in the regeneration medium were used to evaluate the minimal concentration of Finale®that totally inhibits shoot regeneration. Pre-induced calluses cultured during two days and 3 mg.l-1 of Finale® in the regeneration medium was the most efficient combination to select shoots during the generation of transgenic plants resistant to the herbicide. Our shoot selection procedure reduces to 3 weeks the time to obtain shoots during the generation of transgenic rice plants. Key words: germination, mature seeds, Oryza, phosphinothricin, regeneration, selection markers

  7. Germination and seedling characteristics of drought-stressed corn seed as influenced by seed priming with potassium nano-chelate and sulfate fertilizers

    Directory of Open Access Journals (Sweden)

    Maryam ZAHEDIFAR

    2016-04-01

    Full Text Available Effect of seed-priming with potassium (K sources (K-nano-chelate, KNC, and sulfate (0, 2 and 4 % under drought stress (DS conditions (0, -0.3, -0.6, -0.9, -1.2 and -1.5 MPa water potential on the corn seedling traits was studied. Drought stress decreased the germination indices and seedling vigor. The highest germination, seminal root fresh and dry mass (RFM and RDM was obtained in KNC primed seeds at -0.3 MPa DS. Mean germination time increased under DS conditions mainly in non-primed seeds. Increasing DS to -1.2 MPa led to decrease in RFM and RDM. Influence of DS on the fresh mass of shoots was more severe than on seminal roots. The highest shoots and seminal roots length was observed in 4 % KNC without any DS. Proper priming can be suggested to increase the plant tolerance under DS.

  8. Evaluation of rice germplasm under salt stress at the seedling stage through SSR markers

    Directory of Open Access Journals (Sweden)

    M. Al-Amin

    2013-06-01

    Full Text Available Twenty eight rice germplasms were used for identification of salt tolerant rice genotypes at the seedling stage at the experimental farm and Biotechnology laboratory of the Bangladesh Institute of Nuclear Agriculture (BINA, Mymensingh during February 2009 to October 2009. Phenotyping for salinity screening of the rice genotypes was done using salinized (EC level 12 dS m-1 nutrient solution in hydroponic system. Genotypes were evaluated for salinity tolerance on 1-9 scale based on seedling growth parameters following modified Standard Evaluation Scoring (SES of IRRI. Phenotypically, on the basis of SES and % total dry matter (TDM reduction of the genotypes viz. PBSAL-614, PBSAL-613, PBSAL-730, Horkuch, S-478/3 Pokkali and PBSAL (STL-15 were found to be salt tolerant; on the other hand Iratom-24, S-653/32, S-612/32, S-604/32, S-633/32, Charnock (DA6, BINA Dhan-6 and S-608/32 were identified as salt susceptible. For genotyping, ten SSR markers were used for polymorphism, where 3 primers (RM127, RM443 and RM140 were selected for evaluation of salt tolerance. In respect of Primer RM127, 7 lines were found salt tolerant and 11 lines were moderately tolerant and 10 lines were susceptible. Nine tolerant, 9 moderately tolerant and 10 susceptible lines were found when the primer RM140 was used and primer RM443 identified 8 lines as tolerant, 9 lines as moderately tolerant and 11 lines as susceptible. Thus, the salt tolerant lines can be used in further evaluation for salinity tolerance and the SSR markers used in this study are proving valuable for identifying salt tolerant genes in marker assisted breeding.

  9. Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2017-08-01

    A pot experiment was conducted to investigate the effects of selenium (Se) and hydrated lime (Lime), applied alone or simultaneously (Se+Lime), on growth and cadmium (Cd) uptake and translocation in rice seedlings grown in an acid soil with three levels of Cd (slight, mild, and moderate contamination). In the soil with 0.41 mg kg -1 Cd (slight Cd contamination), Se addition alone significantly decreased Cd accumulation in the root and shoot by 35.3 and 40.1%, respectively, but this tendency weakened when Cd level in the soil increased. However, Se+Lime treatment effectively reduced Cd accumulation in rice seedlings in the soil with higher Cd levels. The results also showed that Se application alone strongly increased Cd concentration in the iron plaque under slight Cd contamination, which was suggested as the main reason underlying the inhibition of Cd accumulation in rice seedlings. Se+Lime treatment also increased the ability of the iron plaques to restrict Cd uptake by rice seedlings across all Cd levels and dramatically decreased the available Cd concentration in the soil. These results suggest that Se application alone would be useful in the soil with low levels of Cd, and the effect would be enhanced when Se application is combined with hydrated lime at higher Cd levels.

  10. Impacts of different salt source and concentrations on germination and seedling growth of many pumpkin seeds used as rootstoch in Iran

    Directory of Open Access Journals (Sweden)

    Dadashpour Ahmad

    2012-01-01

    Full Text Available The effects of different salt sources (C Cl2, NaCl, and KCl and concentrations, as measured by electrical conductivity, (0, "control", 1, 3, 5, 7 and 9 dS m-1 on seed germination and seedling growth of “Ferro”, “Obez”, “RS 841” and “Strong Tosa F1” pumpkin varieties used as rootstock were investigated in this study. The results showed that germination rate, root length, shoot length, fresh root weight, dry root weight, fresh shoot weight and dry shoot weights tend to decrease when the electrical conductivity of the solution is higher than 5 dS m-1, independent of salt sources and in all of the varieties. Three days after seeding, a germination ratio of 5 % was obtained from RS 841 variety in all salt source and concentrations, while a germination ratio over 50 % was obtained in “Strong Tosa” variety for the same conditions except CaCl2 salt source. Nevertheless, seeds germinated in medium having high concentrations of CaCl2 had lower germination rate and poor seedling growth, compared to media having the same concentrations of NaCl and KCl. It was concluded that all of the varieties studied were more sensitive to the concentrations prepared using CaCl2 than that of the KCl, and NaCl.

  11. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  12. Evaluation of rice genotypes under salt stress at the seedling and reproductive stages using phenotypic and molecular markers

    International Nuclear Information System (INIS)

    Rubel, M.H.; Hassan, L.

    2014-01-01

    Salinity screening for 27 rice genotypes was performed at the seedling and reproductive stages respectively, in the hydroponic system and in sustained water bath. Three selected SSR markers were used to determine salinity tolerance in rice genotypes. Phenotyping of the germplasm was done at EC 12dS/m and 6dS/m at seedling and reproductive stages, respectively. Based on modified standard evaluation score for visual salt injury at seedling stage, eight genotypes were salt tolerant, four were moderately tolerant and the rest fifteen were susceptible. At the reproductive stage, six genotypes were tolerant to EC 6dS/m whereas eleven of them were susceptible. SSR based marker identified seven genotypes as tolerant but ten of them were susceptible for all three markers compared to two checks. Six genotypes were tolerant in both phenotypic and SSR screening. The indentified salt tolerant genotypes can be potential germplasm sources for future breeding program. (author)

  13. Sites of infection by pythium species in rice seedlings and effects of plant age and water depth on disease development.

    Science.gov (United States)

    Chun, S C; Schneider, R W

    1998-12-01

    ABSTRACT Seedling disease, caused primarily by several species of Pythium, is one of the major constraints to water-seeded rice production in Louisiana. The disease, also known as water-mold disease, seed rot, and seedling damping-off, causes stand reductions and growth abnormalities. In severe cases, fields must be replanted, which may result in delayed harvests and reduced yields. To develop more effective disease management tactics including biological control, this study was conducted primarily to determine sites of infection in seeds and seedlings; effect of plant age on susceptibility to P. arrhenomanes, P. myriotylum, and P. dissotocum; and minimum exposure times required for infection and seedling death. In addition, the effect of water depth on seedling disease was investigated. Infection rates of seed embryos were significantly higher than those of endosperms for all three Pythium spp. The development of roots from dry-seeded seedlings was significantly reduced by P. arrhenomanes and P. myriotylum at 5 days after planting compared with that of roots from noninoculated controls. Susceptibility of rice to all three species was sharply reduced within 2 to 6 days after planting, and seedlings were completely resistant at 8 days after planting. There was a steep reduction in emergence through the flood water, relative to the noninoculated control, following 2 to 3 days of exposure to inoculum of P. arrhenomanes and P. myriotylum. In contrast, P. dissotocum was much less virulent and required longer exposure times to cause irreversible seedling damage. Disease incidence was higher when seeds were planted into deeper water, implying that seedlings become resistant after they emerge through the flood water. These results suggest that disease control tactics including flood water management need to be employed for a very short period of time after planting. Also, given that the embryo is the primary site of infection and it is susceptible for only a few days, the

  14. SEED GERMINATION AND SEEDLING EMERGENCE OF Anadenanthera colubrina (Vell. Brenan var. cebil (Griseb. Altschut, FABACEAE, ESTABLISHED IN FOREST FRAGMENTS OF CERRADO, MINAS GERAIS STATE

    Directory of Open Access Journals (Sweden)

    Marieta Caixeta Dorneles

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810541 The seed germination strategy is important for the survival of species, allowing their maintenance and regeneration in the environment. Seed germination and seedling emergence of Anadenanthera colubrina were studied to examine the reproductive efficiency of this species, typical of Cerrado biome. The fruits were collected in ‘Vale do Rio Araguari’, in MG state. The water content at 105 °C, the germination in controlled laboratory conditions and seedling emergence in semi-open greenhouse were analyzed. The seeds had low water content between 6.7 to 10.7%. The germinating ability and the emergence percentage were high for almost all studied individuals, being registered 68 for seeds of individual number 2 and 85 - 94% for the others; 38% (individual number 2 and 78 - 91% (for the others, respectively. The speed of the processes was high, with the end of germination within 12.8 days and emergence within 18.8 days. The processes were heterogeneous, with values of coefficient of variation of the germination or emergence time above 28.5%; asynchronous, with values of uncertainty above 1.5 bits and synchrony below 0.3812. The seeds of this species were efficient in both processes and the heterogeneity and asynchrony may indicate the effects of environmental fluctuations during the seed formation, besides the genetic variability, intrinsic to each individual of the population. The speed and the high potential of seed germination of this species may also facilitate the programs of reforestation with the production of large numbers of seedlings in short time.  

  15. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    Science.gov (United States)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  16. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings.

    Directory of Open Access Journals (Sweden)

    Chunchao Wang

    Full Text Available Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s and Pi-signaling pathway related genes (e.g. OsPHO2 were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.

  17. Chemical modification of a phenoxyfuranone-type strigolactone mimic for selective effects on rice tillering or Striga hermonthica seed germination.

    Science.gov (United States)

    Takahashi, Ikuo; Fukui, Kosuke; Asami, Tadao

    2016-11-01

    We previously reported that a series of phenoxyfuranone compounds, designated 'debranones', mimic strigolactone (SL) activity. 4-Bromodebranone (4BD) is a functionally selective SL mimic that reduces the number of shoot branches on rice more potently than GR24, a typical synthetic SL analogue, but does not induce seed germination in the root-parasitic plant Striga hermonthica. To enhance the selective activity of debranones in stimulating the seed germination of root-parasitic plants, we prepared several analogues of 4BD in which the chlorine atom was substituted with an H atom at the o-, m- or p-position on the phenyl ring (designated 2-, 3-, or 4-chlorodebranone, respectively) or had a bicyclic group instead of the phenyl ring. We evaluated the biological activities of the compounds with rice tillering assays and S. hermonthica seed germination assays. Both assays showed that the substituent position affected debranone efficiency, and among the monochlorodebranones, 2-chlorodebranone was more effective than the other two isomers in both assays. When the activities of the bicyclic debranones were compared in the same two assays, one was more active than GR24 in the rice tillering assay. This debranone also stimulated the germination of S. hermonthica seeds. Thus, some debranone derivatives induced the germination of S. hermonthica seeds, although their activities were still ∼1/20 that of GR24. These results strongly suggest that further and rigorous structure-activity relationship studies of the debranones will identify derivatives that more potently stimulate the suicidal germination of S. hermonthica seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. A Novel Phytase with Sequence Similarity to Purple Acid Phosphatases Is Expressed in Cotyledons of Germinating Soybean Seedlings 1

    Science.gov (United States)

    Hegeman, Carla E.; Grabau, Elizabeth A.

    2001-01-01

    Phytic acid (myo-inositol hexakisphosphate) is the major storage form of phosphorus in plant seeds. During germination, stored reserves are used as a source of nutrients by the plant seedling. Phytic acid is degraded by the activity of phytases to yield inositol and free phosphate. Due to the lack of phytases in the non-ruminant digestive tract, monogastric animals cannot utilize dietary phytic acid and it is excreted into manure. High phytic acid content in manure results in elevated phosphorus levels in soil and water and accompanying environmental concerns. The use of phytases to degrade seed phytic acid has potential for reducing the negative environmental impact of livestock production. A phytase was purified to electrophoretic homogeneity from cotyledons of germinated soybeans (Glycine max L. Merr.). Peptide sequence data generated from the purified enzyme facilitated the cloning of the phytase sequence (GmPhy) employing a polymerase chain reaction strategy. The introduction of GmPhy into soybean tissue culture resulted in increased phytase activity in transformed cells, which confirmed the identity of the phytase gene. It is surprising that the soybean phytase was unrelated to previously characterized microbial or maize (Zea mays) phytases, which were classified as histidine acid phosphatases. The soybean phytase sequence exhibited a high degree of similarity to purple acid phosphatases, a class of metallophosphoesterases. PMID:11500558

  19. Effects of lanthanum and acid rain stress on the bio-sequestration of lanthanum in phytoliths in germinated rice seeds

    Science.gov (United States)

    Si, Yong; Wang, Lihong; Huang, Xiaohua

    2018-01-01

    REEs in the environment can be absorbed by plants and sequestered by plant phytoliths. Acid rain can directly or indirectly affect plant physiological functions. Currently, the effects of REEs and acid rain on phytolith-REEs complex in plants are not yet fully understood. In this study, a high-silicon accumulation crop, rice (Oryza sativa L.), was selected as a representative of plants, and orthogonal experiments were conducted under various levels of lanthanum [La(III)] and pH. The results showed that various La(III) concentrations could significantly improve the efficiency and sequestration of phytolith La(III) in germinated rice seeds. A pH of 4.5 promoted phytolith La(III) sequestration, while a pH of 3.5 inhibited sequestration. Compared with the single treatment with La(III), the combination of La(III) and acid rain inhibited the efficiency and sequestration of phytolith La(III). Correlation analysis showed that the efficiency of phytolith La(III) sequestration had no correlation with the production of phytolith but was closely correlated with the sequestration of phytolith La(III) and the physiological changes of germinated rice seeds. Phytolith morphology was an important factor affecting phytolith La(III) sequestration in germinated rice seeds, and the effect of tubes on sequestration was more significant than that of dumbbells. This study demonstrated that the formation of the phytolith and La(III) complex could be affected by exogenous La(III) and acid rain in germinated rice seeds. PMID:29763463

  20. Effect of seed coat on the seed germination and seedling development of Calophyllum brasiliense Cambess. (Clusiaceae

    Directory of Open Access Journals (Sweden)

    Valquíria Aparecida Mendes de Jesus

    2014-10-01

    Full Text Available This work aimed to study the effect of the Calophyllum brasiliense seed coat on the seed germination process. To this end, three experiments were conducted in laboratory, greenhouse and screenhouse. From a total of six treatments, five are related to the seed coat (mechanical scarification; mechanical scarification followed by 2 hours in water, chemical scarification, hot water immersion and complete seed coat removal and one control. Laboratory and greenhouse experiments were conducted in a completely randomized design (CRD. Screenhouse experiment was conducted in a completely randomized block design (RBD. We evaluated the total percentage, the speed index and the average time of germination or emergence. Data were subjected to analysis of variance and means compared by LSD test, at 5%. Under the conditions of this work, it was possible to infer that, in laboratory, mechanical scarification followed by 2 hours in water increases the proportion and germination speed index (GSI, in the greenhouse, the complete seed coat removal increases the percentage and emergence speed index (ESI, and in the screenhouse, mechanical scarification followed by 2 hours in water and chemical scarification presented the best results. The average germination time was not significantly different in the three experiments evaluated.

  1. In Vitro Seeds Germination and Seedling Growth of Bambara Groundnut (Vigna subterranea (L.) Verdc. (Fabaceae)).

    Science.gov (United States)

    Koné, Mongomaké; Koné, Tchoa; Silué, Nakpalo; Soumahoro, André Brahima; Kouakou, Tanoh Hilaire

    2015-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA) followed by seeds without coat (SWtC) germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA.

  2. Kenaf (Hibiscus cannabinus L.) impact on post-germination seedling growth

    Science.gov (United States)

    The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the post-germination growth of five plant species...

  3. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; VandeKerckhove, J.; Job, D.

    2002-01-01

    Proteomics of Arabidopsis seeds revealed the differential accumulation during germination of two housekeeping enzymes. The first corresponded to methionine synthase that catalyses the last step in the plant methionine biosynthetic pathway. This protein was present at low level in dry mature seeds,

  4. Effect of lead on nucleic acid and protein contents of rice (Oryza sativa L. ) seedlings and its interaction with IAA and GA/sub 3/ in different plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, P.; Mukherh, S.

    1979-09-01

    Activity of lead acetate, (CH/sub 3/COO)/sub 2/Pb, 3 H/sub 2/O, was studied in germinating rice seedlings with respect to RNA, DNA and alkali soluble protein contents. RNA, DNA and protein contents greatly reduced both in embryo and endosperm with increasing concentrations of lead and with concomitant increase in amino acid content in embryo. When IAA was supplied in combination with lead acetate, variable amounts of relief of elongation inhibition of wheat coleoptile sections were noticed. With GA/sub 3/, however, lead-induced inhibition of either lettuce (Lactuca sativa L.) hypocotyl elongation or ..cap alpha..-amylase production in rice half seeds was largely overcome.

  5. MORPHO-MOLECULAR SCREENING OF RICE (ORYZA SATIVA L. GENOTYPES AT SEEDLING STAGE FOR SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Ali Julfiker Md. Masud

    2014-10-01

    Full Text Available Providing adequate food to meet an escalating population is one of the gravest problems the humankind is now facing. To resolve this crisis identification of salt tolerant rice variety is very vital. So, in this research, ten rice genotypes were used to screen salinity tolerance at the seedling stage in hydroponic system using SSR markers. Salinity screening was done at glasshouse following IRRI standard protocol using two setups of salinized and non-salinized conditions. Genotypes under controlled condition had longer root and shoot length then salt stress genotypes. Parental polymorphism survey was done with ten SSR markers viz., RM336, RM510, RM7075, RM407, RM3201b, RM10748, AP3206f, RM3412, RM585, RM11504 and all were selected to evaluate salt tolerance in rice genotypes. The number of alleles per locus ranged from 3 (AP3206f to 9 (RM336, with an average of 6.1 alleles across 10 loci obtained in the study. The polymorphic information content values ranged from of 0.54 (AP3206f to a high of 0.86 (RM336 with an average of 0.74. The pair-wise comparisons of Nei’s (1973 genetic distance (D between varieties were computed from combined data for the 10 primers, ranged from 0.30 to 0.90 with an average of 0.86, while the similarity index based analysis ranged from 0.00 to 0.70. Finally, the FL-478, FL-378, Binadhan-8 and Binadhan-10 were selected as salt tolerant because they showed tolerance in phenotypic analysis. These phenotypically selected tolerant genotypes could be used for the selection of suitable parents and development of salt tolerant rice varieties.

  6. Effects of Ge-132 and GeO2 on seed germination and seedling growth of Oenothera biennis L. under NaCl stress.

    Science.gov (United States)

    Liu, Yan; Hou, Long-Yu; Li, Qing-Mei; Jiang, Ze-Ping; Gao, Wei-Dong; Zhu, Yan; Zhang, Hai-Bo

    2017-01-01

    To investigate the effects of β-carboxyethyl germanium sequioxide (Ge-132) and germanium dioxide (GeO 2 ) on improving salt tolerance of evening primrose (Oenothera biennis L.), seed germination, seedling growth, antioxidase and malondialdehyde (MDA) were observed under treatments of various concentrations (0, 5, 10, 20, 30 μM) of Ge in normal condition and in 50 mM NaCl solution. The results showed that both Ge-132 and GeO 2 treatments significantly increased seed germination percentage and shoot length in dose-dependent concentrations but inhibited early root elongation growth. 5-30 μM Ge-132 and 10, 20 μM GeO 2 treatments could significantly mitigate even eliminate harmful influence of salt, representing increased percentage of seed germination, root length, ratio between length of root and shoot, and decreased shoot length. These treatments also significantly decreased peroxidase (POD) and catalase (CAT) activities and MDA content. The mechanism is likely that Ge scavenges reactive oxygen species - especially hydrogen peroxide (H 2 O 2 ) - by its electron configuration 4S 2 4P 2 so as to reduce lipid peroxidation. This is the first report about the comparison of bioactivity effect of Ge-132 and GeO 2 on seed germination and seedling growth under salt stress. We conclude that Ge-132 is better than GeO 2 on promoting salt tolerance of seed and seedling.

  7. Effect of exogenous IAA on radiation-induced seedling growth in rice

    International Nuclear Information System (INIS)

    Bhattacharya, Shakuntala; Shama Rao, H.K.

    1978-01-01

    Rice seeds of var. D-6-2-2 were used to ascertain the interaction between exogenous IAA and low and high dose of γ-rays on seedling growth. Low doses of radiation (1,2 kR) and low concentrations of IAA(5,10 ppm) stimulated growth when applied independently. However, they proved inhibitory in combination, indicating the possibility of native IAA involvement at optimum level in radiation-induced stimulation. At a higher dose (5 kR), higher concentrations of exogenous IAA (50,100 ppm) resulted in a significant growth recovery over control. These results suggest that low doses of ionizing radiations probably accelerate the IAA synthesizing system leading to stimulation. (author)

  8. Effect of magnetic field on seed germination and seedling growth of sunflower

    Science.gov (United States)

    Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S.

    2012-07-01

    The impact of a variable magnetic field, magnetically treated water and a combination of both these factors on the germination of seeds and the final mass at the initial stage of growth sunflower plants was presented. Investigations were carried out in pots filled with sand, tin an air-conditioned plant house with no access to daylight using fluorescent light as illumination. A statistical significance positive impact was achieved for the samples subjected to the interaction of both stimulating factors simultaneously, the magnetic field and the impact of treated water several times on the speed of seed germination and final plant mass. Negative impacts were obtained for the majority of the test cases, for the magnetically treated water, the short duration of activity of the magnetic field and for the connection of the magnetic field and low-flow times.

  9. Effects of untreated and treated oilfield-produced water on seed germination, seedling development, and biomass production of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    da Costa Marques, Mônica Regina; de Souza, Paulo Sérgio Alves; Rigo, Michelle Machado; Cerqueira, Alexandre Andrade; de Paiva, Julieta L; Merçon, Fábio; Perez, Daniel Vidal

    2015-10-01

    This study aims to evaluate possible toxic effects of oil and other contaminants from oilfield-produced water from oil exploration and production, on seed germination, and seedling development of sunflower (Helianthus annuus L.). In comparison, as treated by electroflocculation, oilfield-produced water, with lower oil and organic matter content, was also used. Electroflocculation treatment of oilfield-produced water achieved significant removals of chemical oxygen demand (COD) (94 %), oil and grease (O&G) (96 %), color (97 %), and turbidity (99 %). Different O&G, COD, and salt levels of untreated and treated oilfield-produced water did not influence germination process and seedling biomass production. Normal seedlings percentage and vigor tended to decrease more intensely in O&G and COD levels, higher than 337.5 mg L(-1) and 1321 mg O2 L(-1), respectively, using untreated oilfield-produced water. These results indicate that this industrial effluent must be treated, in order to not affect adversely seedling development. This way, electroflocculation treatment appears as an interesting alternative to removing oil and soluble organic matter in excess from oilfield-produced water improving sunflower's seedling development and providing a friendly environmental destination for this wastewater, reducing its potential to harm water resources, soil, and biota.

  10. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage

    Directory of Open Access Journals (Sweden)

    Sumitahnun Chunthaburee

    2016-07-01

    Full Text Available Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT, a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.

  11. Effects of Hydrogen Sulfide (H2S) on Z. marina seedlings, seed germination and shoot density from 2013-01-16 to 2015-09-11 (NCEI Accession 0156588)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multiple experiments were conducted to determine the effects hydrogen sulfide had on seedlings and seed germination in the seagrass Zostera marina. One study...

  12. Efficiency of phosphorus (32 P) uptake and use by eucalyptus seedlings and rice

    International Nuclear Information System (INIS)

    Luca, Edgar Fernando de; Boaretto, Antonio Enedi

    2002-01-01

    The knowledge on different plant abilities to take up soil phosphorus and its use for growth can be important to improve markedly the efficiency of phosphorus fertilization. Having this in mind, an experiment was carried out under greenhouse conditions to test the hypothesis that eucalyptus seedlings are more efficient than rice in absorbing phosphorus from low solubility sources applied to a Quartzamment soil, testing different efficiency concepts. The phosphorus sources Ca(H 2 32 PO 4 ).H 2 O, CaH 32 PO 4 .2H 2 O and Ca 3 ( 32 PO 4 ) 2 , synthesised in laboratory and identified by X-ray diffractometry and thermal differential analyses, were used as radioactive tracers. It was concluded that rice is more efficient in absorbing phosphorus from these low solubility sources, while eucalyptus presents a higher coefficient of biologic P utilisation. The 'difference' method (conventional) that in based on P recovery by plants, underestimated the absorption of this nutrient for both species in relation to the isotopic method. (author)

  13. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress.

    Science.gov (United States)

    Sarkar, Anumita; Ghosh, Pallab Kumar; Pramanik, Krishnendu; Mitra, Soumik; Soren, Tithi; Pandey, Sanjeev; Mondal, Monohar Hossain; Maiti, Tushar Kanti

    2018-01-01

    Agricultural productivity is proven to be hampered by the synthesis of reactive oxygen species (ROS) and production of stress-induced ethylene under salinity stress. One-aminocyclopropane-1-carboxylic acid (ACC) is the direct precursor of ethylene synthesized by plants. Bacteria possessing ACC deaminase activity can use ACC as a nitrogen source preventing ethylene production. Several salt-tolerant bacterial strains displaying ACC deaminase activity were isolated from rice fields, and their plant growth-promoting (PGP) properties were determined. Among them, strain P23, identified as an Enterobacter sp. based on phenotypic characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry data and the 16S rDNA sequence, was selected as the best-performing isolate for several PGP traits, including phosphate solubilization, IAA production, siderophore production, HCN production, etc. Enterobacter sp. P23 was shown to promote rice seedling growth under salt stress, and this effect was correlated with a decrease in antioxidant enzymes and stress-induced ethylene. Isolation of an acdS mutant strain enabled concluding that the reduction in stress-induced ethylene content after inoculation of strain P23 was linked to ACC deaminase activity. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huijun, E-mail: lhj@mail.zjgsu.edu.cn [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province (China); Zhang, Shuxian [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province (China); Jiaxing University, Jiaxing 314001, Zhejiang Province (China); Zhang, Xiaoqiang; Chen, Caidong [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province (China)

    2015-04-09

    Highlights: • The three ILs have phytotoxic on rice growth. • The antioxidant enzyme activities increased first and then declined with ILs concentration increased. • The Hill reaction activity decreased and the PS II of leaves was damaged by ILs. • The toxicity of ILs increased as the alkyl chain length increased as the order: [OMIM]Cl < [DMIM]Cl < [C{sub 12}MIM]Cl. - Abstract: The effects of three imidazolium chloride ionic liquids (ILs) including 1-octyl-3-methylimidazolium chloride ionic liquid ([OMIM]Cl), 1-decyl-3-methylimidazolium chloride ionic liquid ([DMIM]Cl) and 1-dodecyl-3-methylimidazolium chloride ionic liquid ([C{sub 12}MIM]Cl) were studied in hydroponically grown rice seedlings. The growth inhibition rate increased and the Hill reaction activity of isolated rice chloroplasts decreased with increasing ILs concentrations. The IC{sub 50,5d} for stem length was 0.70 mg/L of [OMIM]Cl, 0.15 mg/L of [DMIM]Cl, and 0.055 mg/L of [C{sub 12}MIM]Cl, respectively. The SOD, POD and CAT activities of chloroplast exhibited initial increases followed by decreases in activity with increasing ILs concentrations. Chlorophyll fluorescence parameters such as the maximum effective quantum yield of PSII(F{sub v}/F{sub m}), the potential activity of PSII(F{sub v}/F{sub 0}), the yield of photochemical quantum [Y(II)], the photochemical quenching coefficient (qP), the non-photochemical quenching coefficient (NPQ) and the relative electron transport ratio (rETR) were affected, showing that ILs will damage the PSII. The results demonstrated that imidazolium chloride ILs are phytotoxic to rice growth and their photosystem, the toxicity increased as the alkyl chain length increased with the following order: [OMIM]Cl < [DMIM]Cl < [C{sub 12}MIM]Cl. The results will help to better understand the possible role of the defense mechanism in rice caused by ILs exposure.

  15. Control of bacillus cereus spore germination and outgrowth in cooked rice during chilling by nonorganic and organic appled, orange, and potato peel powders

    Science.gov (United States)

    The inhibition of Bacillus cereus spore germination and outgrowth in cooked rice by nine fruit and vegetable peel powders prepared from store-bought conventional (nonorganic) and organic apples, oranges, and potatoes was investigated. The powders were mixed into rice at 10% (wt/wt) along with heat ...

  16. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth.

    Science.gov (United States)

    Zhou, Zhong-Yu; Liu, Wan-Xue; Pei, Gang; Ren, Hui; Wang, Jing; Xu, Qiao-Lin; Xie, Hai-Hui; Wan, Fang-Hao; Tan, Jian-Wen

    2013-12-04

    A bioassay-directed phytochemical study was conducted to investigate potential allelochemicals in the roots of the invasive plant Ageratina adenophora. Eleven phenolic compounds, including seven new ones, 7-hydroxy-8,9-dehydrothymol 9-O-trans-ferulate (1), 7-hydroxythymol 9-O-trans-ferulate (2), 7,8-dihydroxythymol 9-O-trans-ferulate (3), 7,8-dihydroxythymol 9-O-cis-ferulate (4), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-trans-p-coumarate (5), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-cis-p-coumarate (6), and 3-(2-hydroxyphenyl)propyl methyl malonate (7), were isolated from a bioactive subfraction of the ethanol extract of the roots of A. adenophora. The new structures were established on the basis of detailed spectroscopic analysis. The potential phytotoxic effects of these compounds on the germination of Arabidopsis thaliana seeds were tested by a filter paper assay. Compound 7 and known compounds 3-(2-hydroxyphenyl)-1-propanol (8) and o-coumaric acid (9) remarkably showed inhibition activity against Arabidopsis seed germination at a concentration of 1.0 mM. Compounds 1, 2, 5, 6, and 10 showed slight inhibitory activity at the test concentration after treatment for 3 days, while the other compounds showed no obvious inhibitory effects. Moreover, 7-9 were further found to show obvious inhibitory activity on retarding the seedling growth of Ar. thaliana cultured in soil medium.

  17. Biochemical Changes under Chromium Stress on Germinating Seedlings of Vigna radiata

    Directory of Open Access Journals (Sweden)

    Bhavin SUTHAR

    2014-03-01

    Full Text Available Hexavalant chromium is considered the most toxic form because of its high solubility in water. Cr is known to induce production of elevated concentration of reactive oxygen species (ROS resulted in macromolecule damage. Plants are having unique mechanisms to overcome ROS induced damage by accumulation of proline, ascorbate and glutathione and increasing the activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, glutathione reductase (GR, and ascorbate peroxidaes (APX, peroxidise (POX. In the present investigation effects of chromium on seed germination of Mung bean (Vigna radiata 'Gujarat Mung-4’ were studied. Seeds were treated with different Cr concentrations (50, 100, 150 and 200 4M for seven days. On 7th day root and shoot length was measured and activities of antioxidant enzyme SOD, APX, POX, CAT and GR were checked along with protein, proline and lipid peroxidation. It was observed that there is gradual decrease in shoot and root length with respect to the increase in Cr concentration. Level of lipid peroxidation significantly increased along with proline and antioxidant enzyme activity at higher Cr concentration. Lipid peroxidation is an indication of membrane damage due to elevated production of reactive oxygen species (ROS. To combat oxidative damage by ROS antioxidant enzyme activity increased significantly, which indicates that antioxidant enzymes (SOD, CAT, APX and GR play a crucial role during Cr stress during germination of V. radiata.

  18. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear-magnetic-resonance-based metabolomics study

    Directory of Open Access Journals (Sweden)

    Phaiwan Pramai

    2018-01-01

    Full Text Available In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR, red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.

  19. Mechanisms of combined effects of salt and alkaline stresses on seed germination and seedlings of melilotus officials (fabaceae) in northeast of china

    International Nuclear Information System (INIS)

    VU, T. S.; Zhang, D.; Xiao, W.; Chi, C.; Xing, Y.; Fu, D.; Yuan, Z.

    2015-01-01

    In line with the salt-alkalinized soils found in the northeast of China, the conditions were simulated to investigate the mechanisms associated with this combination of stresses on Melilotus officinalis. The effects of salinity (NaCl: 0-300mM) in combination with alkali (pH: 7.1-9.8) on the seed germination and seedlings of M. officinalis were investigated. The results showed that germination was not inhibited completely by the salt-alkali conditions tested. The recovery germinations were significant higher than the control or had no significant differences with the control under the conditions of NaCl less than 200mM and pH=9.0, suggesting that non-germinated seeds may have a strategy to get through and resist the stress during germination stage. For the seedling growth, M. officinalis was capable of surviving at high pH (pH=9.8) and the salinity (NaCl=200mM) (seedling survival rate: 84.77 ± 8.62 percentage). The characteristic feature for combined salt-alkali stresses is the reciprocal enhancement between salt and alkali stresses. The combined action of salinity and pH should be considered when evaluating the effects of salt-alkali stresses. Correlation and regression analyses showed that salinity was the dominant stress factor, while pH was a secondary factor. From the physiological and ecological parameters, we suggested that M. officinalis is a salt-alkali tolerant species which can be used in vegetative restoration of saline soils in the northeast of China. (author)

  20. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank.

    Science.gov (United States)

    Ramlall, Chandika; Varghese, Boby; Ramdhani, Syd; Pammenter, Norman W; Bhatt, Arvind; Berjak, Patricia; Sershen

    2015-01-01

    Increased air pollution in a number of developing African countries, together with the reports of vegetation damage typically associated with acid precipitation in commercial forests in South Africa, has raised concerns over the potential impacts of acid rain on natural vegetation in these countries. Recalcitrant (i.e. desiccation sensitive) seeds of many indigenous African species, e.g. must germinate shortly after shedding and hence, may not be able to avoid exposure to acid rain in polluted areas. This study investigated the effects of simulated acid rain (rainwater with pH adjusted to pH 3.0 and 4.5 with 70:30, H2 SO4 :HNO3 ) on germination, seedling growth and oxidative metabolism in a recalcitrant-seeded African tree species Trichilia dregeana Sond., growing in its natural seed bank. The results suggest that acid rain did not compromise T. dregeana seed germination and seedling establishment significantly, relative to the control (non-acidified rainwater). However, pH 3.0 treated seedlings exhibited signs of stress typically associated with acid rain: leaf tip necrosis, abnormal bilobed leaf tips, leaf necrotic spots and chlorosis, reduced leaf chlorophyll concentration, increased stomatal density and indications of oxidative stress. This may explain why total and root biomass of pH 3.0 treated seedlings were significantly lower than the control. Acid rain also induced changes in the species composition and relative abundance of the different life forms emerging from T. dregeana's natural seed bank and in this way could indirectly impact on T. dregeana seedling establishment success. © 2014 Scandinavian Plant Physiology Society.

  1. Differential activity of Striga hermonthica seed germination stimulants and Gigaspora rosea hyphal branching factors in rice and their contribution to underground communication.

    Directory of Open Access Journals (Sweden)

    Catarina Cardoso

    Full Text Available Strigolactones (SLs trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (--orobanchol and ent-2'-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi.

  2. Phytotoxic Effects of Nepeta meyeri Benth. Extracts and Essential Oil on Seed Germinations and Seedling Growths of Four Weed Species

    Directory of Open Access Journals (Sweden)

    Saban Kordali

    2015-05-01

    Full Text Available Essential oil isolated from the aerial parts of Nepeta meyeri Benth. by hydrodistilation was analysed by GC and GC-MS methods. A total 18 components were identified in the oil representing 100.0% of the oil. Main components were 4aα,7α,7aβ-nepetalactone (80.3%, 4aα,7α,7aα–nepetalactone (10.3%, trans-pulegol (3.1%, 1, 8-cineole (3.0% and β-bourbonene (2.0%. In addition, n-hexane extract of N. meyeri was analysed by using GC and GC-MS methods and 18 components were identified. Likewise, nepetalactones, 4aα,7α,7aβ-nepetalactone (83.7%, 4aα,7α,7aα–nepetalactone (3.6%, 1, 8-cineole (1.9% and α-terpinene (1.5% were the predominat compounds in the hexane extract. Three concentrations (0.5, 1.0 and 2.0 mg/mL of the essential oil and n-hexane, chloroform, acetone and methanol extracts isolated from the aerial partsand roots were tested for the herbicidal effects on the germination of the seeds of four weed species including Amaranthus retroflexus L., Chenopodium album L., Cirsium arvense L. and Sinapsis arvensis L. The essential oil of N. meyeri completely inhibited the germination of all weed seeds whereas the extracts showed various inhibition effects on the germination of the weed species. Herbicidal effect was increased with the increasing application concentrations of the extracts. In general, the acetone extract was found to be more effective as compared to the other extracts. All extracts also exhibited various inhibition effects on the seedling growths of the weed species. All extracts also tested for their phytotoxic effects on the weeds at greenhouse condition and the results showed that the oil and extracts caused mortality with 22.00-66.00% 48h after the treatments. These findings suggest that the essential oil and the extracts of N. meyeri have potentials for use as herbicides against those weed species.

  3. Effect of X-ray irradiation on germination of rice and wheat at different temperatures and pH levels of water

    International Nuclear Information System (INIS)

    Rajput, T.B.S.; Singh, Jaswant

    1981-01-01

    An experiment was conducted on the germination of ''Jaya'' rice (Oryza sativa Linn.) and ''Sonalika'' wheat (Triticum aestivum Linn. emend. Thell.) to study the effects of low doses of X-ray irradiation at different temperatures and pH levels of water. The percentage of germination was more at pH 7, and decreased with an increase or decrease in pH level. In most of the cases irradiation delayed the germination and proved to be harmful. But at 20deg C, 4 KR X-ray irradiation promoted the germination of rice by more than 15% at pH levels of 5.5-8.5. But in wheat no significant increase in germination percentage was noted at any combination of the parameters. (auth.)

  4. Rice seedling and plant development as affected by increasing rates of penoxsulam under controlled environments Desenvolvimento de plântulas e plantas adultas de arroz em função de doses crescentes de penoxsulam em ambiente controlado

    Directory of Open Access Journals (Sweden)

    G. Concenço

    2006-01-01

    Full Text Available Rice is a major staple in many countries. Weed control is one of the factors limiting higher rice yield. ALS (acetolactate synthase-inhibiting herbicides are desirable weed control herbicides because of their high efficacy, low toxicity to mammalians, and low rates used. An important herbicide characteristic is high selectivity to the crop, since it facilitates fast crop establishment and greater crop advantage over the weeds. The objectives of this work were to study the effects of increasing rates of the ALS-inhibiting herbicide penoxsulam on seed integrity and germination, and seedling and plant development of rice cv. BRS Pelota under controlled laboratory and greenhouse conditions. The results showed that penoxsulam affected rice germination and seedling and plant growth at rates above 54 g a.i. ha-1, and that penoxsulam is safe for rice seedling development at the currently recommended rates.O arroz é componente importante da dieta humana em vários países. Entre os fatores que limitam o aumento na sua produtividade está o controle de plantas daninhas. Os herbicidas inibidores da ALS (acetolactato sintase são preferidos em razão da alta eficiência no controle de plantas daninhas, da baixa toxicidade aos mamíferos e das baixas doses utilizadas. Uma característica importante que um herbicida deve possuir é a alta seletividade à cultura, pois ela implica estabelecimento mais rápido, com vantagem competitiva sobre as plantas daninhas. O objetivo deste trabalho foi estudar os efeitos do herbicida inibidor da ALS penoxsulam em doses crescentes sobre a integridade e germinação das sementes, bem como sobre o desenvolvimento inicial das plântulas e da planta adulta do cultivar BRS Pelota, sob condições de ambiente controlado (laboratório e casa de vegetação. Os resultados mostraram que o penoxsulam afetou a germinação e o crescimento de plântulas e plantas adultas nas doses acima de 54 g i.a. ha-1 e que ele é seguro para o

  5. Allelopathic potential of selected rice varieties

    African Journals Online (AJOL)

    ajl10

    2012-11-01

    Nov 1, 2012 ... 1Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia. ... experiment was laid out in completely randomized design. ..... Mixed-Cultures. PLoS ONE 7(5):e37201. Islam M (2010). Allelopathic effects of rice varieties on seed germination and seedling growth of lettuce.

  6. Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae Seedlings

    Directory of Open Access Journals (Sweden)

    Cleusa Bona

    2011-12-01

    Full Text Available The effect of soil polluted by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi seedlings was analyzed at different times after contamination of the soil. The experiments were conducted under greenhouse conditions, with four treatments and five repetitions. The four treatments included: soil contaminated 30 (T30, 90 (T90 or 180 (T180 days before planting as well as a non-polluted soil (T0 (control. Soil saturated to 50% of its maximum retention capacity (MRC was contaminated with diesel oil at a rate of 92.4 mL per kg. The germination rate and germination speed index (GSI were significantly affected only in T30. The development of the plants was affected significantly in all the treatments, with reductions of biomass and eophyll area. It could be concluded that diesel oil significantly affected the germination, GSI and seedling growth of S. terebinthifolius, but the toxic effect decreased over the time.

  7. Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone.

    Science.gov (United States)

    Meena, Kamlesh K; Kumar, Manish; Kalyuzhnaya, Marina G; Yandigeri, Mahesh S; Singh, Dhananjaya P; Saxena, Anil K; Arora, Dilip K

    2012-05-01

    Methylotrophic bacteria were isolated from the phyllosphere of different crop plants such as sugarcane, pigeonpea, mustard, potato and radish. The methylotrophic isolates were differentiated based on growth characteristics and colony morphology on methanol supplemented ammonium mineral salts medium. Amplification of the mxaF gene helped in the identification of the methylotrophic isolates as belonging to the genus Methylobacterium. Cell-free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum) with highest values of 98.3% observed using Methylobacterium sp. (NC4). Highest values of seedling length and vigour were recorded with Methylobacterium sp. (NC28). HPLC analysis of production by bacterial strains ranged from 1.09 to 9.89 μg ml(-1) of cytokinins in the culture filtrate. Such cytokinin producing beneficial methylotrophs can be useful in developing bio-inoculants through co-inoculation of pink-pigmented facultative methylotrophs with other compatible bacterial strains, for improving plant growth and productivity, in an environment-friendly manner.

  8. A Germination Simulation.

    Science.gov (United States)

    Hershey, David R.

    1995-01-01

    Presents an activity that involves using sponge seedlings to demonstrate the germination process without the usual waiting period. Discusses epigeous versus hypogeous germination, and cotyledon number and biodiversity. (JRH)

  9. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    Science.gov (United States)

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  10. Tritium forms discrimination in ryegrass under constant tritium exposure: From seed germination to seedling autotrophy.

    Science.gov (United States)

    Renard, H; Maro, D; Le Dizès, S; Escobar-Gutiérrez, A; Voiseux, C; Solier, L; Hébert, D; Rozet, M; Cossonnet, C; Barillot, R

    2017-10-01

    Uncertainties remain regarding the fate of atmospheric tritium after it has been assimilated in grasslands (ryegrass) in the form of TFWT (Tissue Free Water Tritium) or OBT (Organically Bound Tritium). One such uncertainty relates to the tritium forms discrimination during transfer from TFWT to OBT resulting from photosynthesis (OBT photo ), corresponding to the OBT photo /TFWT ratio. In this study, the OBT/TFWT ratio is determined by experiments in the laboratory using a ryegrass model and hydroponic cultures, with constant activity of tritium in the form of tritiated water (denoted as HTO) in the "water" compartment (liquid HTO) and "air" compartment (HTO vapour in the air). The OBT photo /TFWT ratio and the exchangeable OBT fraction are measured for three parts of the plant: the leaf, seed and root. Plant growth is modelled using dehydrated biomass measurements taken over time in the laboratory and integrating physiological functions of the plant during the first ten days after germination. The results suggest that there is no measurable discrimination of tritium in the plant organic matter produced by photosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Compositional analyses of white, brown and germinated forms of popular Malaysian rice to offer insight into the growing diet-related diseases

    Directory of Open Access Journals (Sweden)

    Bilyaminu Abubakar

    2018-04-01

    Full Text Available Diet-related metabolic diseases, and especially obesity, are metabolic disorders with multifactorial aetiologies. Diet has been a cornerstone in both the aetiology and management of this metabolic disorders. Rice, a staple food for over half of the world's population, could be exploited as part of the solution to check this menace which has been skyrocketing in the last decade. The present study investigated nine forms of rice from three widely grown Malaysian rice cultivars for in vitro and in vivo (glycaemic index and load properties that could translate clinically into a lower predisposition to diet-related diseases. The germinated brown forms of MRQ 74 and MR 84 rice cultivars had high amylose content percentages (25.7% and 25.0%, high relative percentage antioxidant scavenging abilities of 85.0% and 91.7%, relatively low glycaemic indices (67.6 and 64.3 and glycaemic load (32.3 and 30.1 values, and modest glucose uptake capabilities of 33.69% and 31.25%, respectively. The results show that all things being equal, rice cultivars that are germinated and high in amylose content when compared to their white and low amylose counterparts could translate into a lower predisposition to diet-related diseases from the dietary point of view in individuals who consume this cereal as a staple food. Keywords: Brown rice, Diet-related metabolic diseases, Germinated brown rice, White rice

  12. Comparative proteomics and protein profile related to phenolic compounds and antioxidant activity in germinated Oryza sativa 'KDML105' and Thai brown rice 'Mali Daeng' for better nutritional value.

    Science.gov (United States)

    Maksup, Sarunyaporn; Pongpakpian, Sarintip; Roytrakul, Sittiruk; Cha-Um, Suriyan; Supaibulwatana, Kanyaratt

    2018-01-01

    Brown rice (BR) and germinated brown rice (GBR) are considered as prime sources of carbohydrate and bioactive compounds for more than half of the populations worldwide. Several studies have reported on the proteomics of BR and GBR; however, the proteomic profiles related to the synthesis of bioactive compounds are less well documented. In the present study, BR and GBR were used in a comparative analysis of the proteomic and bioactive compound profiles for two famous Thai rice varieties: Khao Dawk Mali 105 (KDML) and Mali Daeng (MD). The proteomes of KDML and MD revealed differences in the expression patterns of proteins after germination. Total phenolic compound content, anthocyanin contents and antioxidant activity of red rice MD was approximately 2.6-, 2.2- and 9.2-fold higher, respectively, compared to that of the white rice KDML. Moreover, GBR of MD showed higher total anthocyanin content and greater antioxidant activity, which is consistent with the increase expression of several proteins involved in the biosynthesis of phenolic compounds and protection against oxidative stress. Red rice MD exhibits higher nutrient values compared to white rice KDML and the appropriate germination of brown rice could represent a method for improving health-related benefits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    Science.gov (United States)

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.

  14. The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures.

    Science.gov (United States)

    Syu, Chien-Hui; Chien, Po-Hsuan; Huang, Chia-Chen; Jiang, Pei-Yu; Juang, Kai-Wei; Lee, Dar-Yuan

    2017-01-01

    Limited information is available on the effects of gallium (Ga) and indium (In) on the growth of paddy rice. The Ga and In are emerging contaminants and widely used in high-tech industries nowadays. Understanding the toxicity and accumulation of Ga and In by rice plants is important for reducing the effect on rice production and exposure risk to human by rice consumption. Therefore, this study investigates the effect of Ga and In on the growth of rice seedlings and examines the accumulation and distribution of those elements in plant tissues. Hydroponic cultures were conducted in phytotron glasshouse with controlled temperature and relative humidity conditions, and the rice seedlings were treated with different levels of Ga and In in the nutrient solutions. The growth index and the concentrations of Ga and In in roots and shoots of rice seedlings were measured after harvesting. A significant increase in growth index with increasing Ga concentrations in culture solutions (<10mgGaL -1 ) was observed. In addition, the uptake of N, K, Mg, Ca, Mn by rice plants was also enhanced by Ga. However, the growth inhibition were observed while the In concentrations higher than 0.08mgL -1 , and the nutrients accumulated in rice plants were also significant decreased after In treatments. Based on the dose-response curve, we observed that the EC 10 (effective concentration resulting in 10% growth inhibition) value for In treatment was 0.17mgL -1 . The results of plant analysis indicated that the roots were the dominant sink of Ga and In in rice seedlings, and it was also found that the capability of translocation of Ga from roots to shoots were higher than In. In addition, it was also found that the PT 10 (threshold concentration of phytotoxicity resulting in 10% growth retardation) values based on shoot height and total biomass for In were 15.4 and 10.6μgplant -1 , respectively. The beneficial effects on the plant growth of rice seedlings were found by the addition of Ga in

  15. Cadmium uptake by and translocation within rice (oryza sativa l.) seedlings as affected by iron plaque and Fe/sub 2/O/sub 3/

    International Nuclear Information System (INIS)

    Lai, Y.; Xu, B.O.; Mou, S.

    2012-01-01

    A hydroponics culture experiment was carried out to investigate the effect of iron plaque and/or Fe/sub 2/O/sub 3/ on Cadmium (Cd) uptake by and translocation within rice seedlings. Uniform rice seedlings grown in nutrient solution for two weeks were selected and transferred to nutrient solution containing ferrous iron (Fe/sup 2+/) (30 mg/L) for 24 h to induce the formation of iron plaque on the root surface. Then rice seedlings were exposed to different level of Cd (1.0 mg/L and 0.1 mg/L), and simultaneously Fe/sub 2/O/sub 3/ was added into hydroponic system for three days. At harvest Cd content in dithionite-citrate-bicarbonate (DCB) extracts, roots and shoots were determined. The results of this study showed that iron plaque could sequester more Cd on root surfaces of rice seedlings, however, Fe/sub 2/O/sub 3/ reduced Cd adsorbed on root surfaces. Both of iron plaque and/or Fe/sub 2/O/sub 3/ did not block Cd uptake by and translocation within rice seedlings. Although iron plaque could alleviate Cd toxicity to rice seedlings under low concentration of Cd (0.1 mg/L), the root tissue played more important role in reducing Cd translocation into shoot. And the long period experiment of hydroponic and soil culture was still needed to verify the potential effect of iron plaque and/or Fe/sub 2/O/sub 3/ on alleviating Cd toxicity to rice seedlings. (author)

  16. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  17. Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats.

    Science.gov (United States)

    Chompoopong, Supin; Jarungjitaree, Sunit; Punbanlaem, Tideeporn; Rungruang, Thanaporn; Chongthammakun, Sukumal; Kettawan, Aikkarach; Taechowisan, Thongchai

    2016-09-01

    The effects of germinated brown rice (GBR) on the motor deficits and the dopaminergic (DA) cell death were investigated in Parkinson's-like disease (PD) rats. Reactive oxidative species generated by chronic subcutaneous injection of rotenone (RT) lead to neuronal apoptosis particularly in the nigrostriatal DA system and produce many features of PD, bradykinesis, postural instability and rigidity. In this study, 4-phenylbutyric acid (4-PBA), previously reported to inhibit RT-induced DA cell death, was used as the positive control. Results show that pretreatment with GBR as well as 4-PBA significantly enhanced the motor activity after RT injection, and GBR affected significantly in open field test, only in the ambulation but not the mobility duration, and ameliorated the time to orient down (t-turn) and total time to descend the pole (t-total) in pole test as compared to RT group, but significantly lowered both t-turn and t-total only in 4-PBA group. The percentage of apoptotic cells in brain measured by flow cytometry and the inflammatory effect measured by ELISA of TNF-α showed significant increase in RT group as compared to the control (CT) group at P < 0.05. Apoptotic cells in RT group (85.98 %) showed a significant (P < 0.05) increase versus CT group (17.50 %), and this effect was attenuated in GBR+RT group by decreasing apoptotic cells (79.32 %), whereas, increased viable cells (17.94 %) versus RT group (10.79 %). GBR in GBR + RT group could decrease TNF-α both in the serum and in brain. In summary, GBR showed a neuroprotective effect in RT-induced PD rats, and it may be useful as a value-added functional food to prevent neurodegenerative disease or PD.

  18. The impact of global warming on germination and seedling emergence in Alliaria petiolata, a woodland species with dormancy loss dependent on low temperature.

    Science.gov (United States)

    Footitt, S; Huang, Z; Ölcer-Footitt, H; Clay, H; Finch-Savage, W E

    2018-03-23

    The impact of global warming on seed dormancy loss and germination was investigated in Alliaria petiolata (garlic mustard), a common woodland/hedgerow plant in Eurasia, considered invasive in North America. Increased temperature may have serious implications, since seeds of this species germinate and emerge at low temperatures early in spring to establish and grow before canopy development of competing species. Dormancy was evaluated in seeds buried in field soils. Seedling emergence was also investigated in the field, and in a thermogradient tunnel under global warming scenarios representing predicted UK air temperatures through to 2080. Dormancy was simple, and its relief required the accumulation of low temperature chilling time. Under a global warming scenario, dormancy relief and seedling emergence declined and seed mortality increased as soil temperature increased along a thermal gradient. Seedling emergence advanced with soil temperature, peaking 8 days earlier under 2080 conditions. The results indicate that as mean temperature increases due to global warming, the chilling requirement for dormancy relief may not be fully satisfied, but seedling emergence will continue from low dormancy seeds in the population. Adaptation resulting from selection of this low dormancy proportion is likely to reduce the overall population chilling requirement. Seedling emergence is also likely to keep pace with the advancement of biological spring, enabling A. petiolata to maintain its strategy of establishment before the woodland canopy closes. However, this potential for adaptation may be countered by increased seed mortality in the seed bank as soils warm. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  19. Allelopathic Effect of Essential Oil of Sweet Bay (Laurus nobilis L. on Germination and Seedling Vigor of Velvetleaf (Abutilon theopharasti L. and Field Bindweed (Convolvulus arvensis L.

    Directory of Open Access Journals (Sweden)

    Bahram Mirshekari

    2016-06-01

    Full Text Available To study allelopatic effect of sweet bay essence concentrations (0, 100, 200, 300 and 400 ppm on germination and early establishment of velvetleaf and field bindweed an experiment was conducted at Islamic Azad University of Tabriz, Iran, during 2013. Results indicated that germination percentage of non-treated seeds was 73.3%, and that of treated seeds 64.7%. Plant height at 400 ppm concentration was shorter than other treatments. Mean leaf area per plant of weeds ranged from 13.5 cm2 in control up to 9.7 cm2 in 300 ppm and 400 ppm concertrations. Dry weight per weed plant of the seeds treated with 300 and 400 ppm concentrations was twice lower than of untreated seeds. Vigor index of seedling from seeds treated with 100 and 200 ppm essence and control were 1.5, 1.5 and 2.6 times higher than those treated with 300-400 ppm, respectively. Regression analysis showed that germination percentage, leaf area and dry weight per plant did have higher effect on seedling vigor index. It can be concluded that essential oil of sweet-bay may have potential in controlling weeds, especially in the higher concentrations. Therefor, it could be used in the synthesis of bioherbicides compounds to control weeds.

  20. Mapping of quantitative trait locus (QTLs that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis.

    Directory of Open Access Journals (Sweden)

    Lufeng Qie

    Full Text Available Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica and its wild ancestor green foxtail (S. viridis are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.

  1. Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis.

    Science.gov (United States)

    Qie, Lufeng; Jia, Guanqing; Zhang, Wenying; Schnable, James; Shang, Zhonglin; Li, Wei; Liu, Binhui; Li, Mingzhe; Chai, Yang; Zhi, Hui; Diao, Xianmin

    2014-01-01

    Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis) are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.

  2. Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Zhao, Ruozhi; Ghazzawi, Nora; Wu, Jiansu; Le, Khuong; Li, Chunyang; Moghadasian, Mohammed H; Siow, Yaw L; Apea-Bah, Franklin B; Beta, Trust; Yin, Zhengfeng; Shen, Garry X

    2018-05-02

    The present study investigates the impact of germinated brown rice (GBR) on atherosclerosis and the underlying mechanism in low-density lipoprotein receptor-knockout (LDLr-KO) mice. The intensity of atherosclerosis in aortas of LDLr-KO mice receiving diet supplemented with 60% GBR (weight/weight) was significantly less than that in mice fed with 60% white rice (WR) or control diet ( p mice fed with WR diet was significantly more than that from mice receiving the control diet ( p mice in comparison to the WR diet ( p mice compared to WR. The anti-atherosclerotic effect of GBR in LDLr-KO mice at least in part results from its anti-inflammatory activity.

  3. Influence of Rapeseed Cake on Iron Plaque Formation and Cd Uptake by Rice (Oryza sativa L.) Seedlings Exposed to Excess Cd.

    Science.gov (United States)

    Yang, Wen-Tao; Zhou, Hang; Gu, Jiao-Feng; Zeng, Qing-Ru; Liao, Bo-Han

    2017-11-01

    A soil spiking experiment at two Cd levels (0.72 and 5.20 mg kg -1 ) was conducted to investigate the effects of rapeseed cake (RSC) at application rates of 0%, 0.75%, 1.5%, and 3.0% (w/w) on iron plaque formation and Cd uptake by rice (Oryza sativa L.) seedlings. The use of RSC did result in a sharp decrease in soil bioavailability of Cd and a significant increase in rice growth, soil pH and organic matter. Application of RSC increased the amount of iron plaque formation and this effectively inhibited the uptake and translocation of Cd into the rice seedlings. RSC was an effective organic additive for increasing rice growth and reducing Cd uptake by rice plant, simultaneously. These results could be used as a reference for the safety use of Cd polluted paddy soil.

  4. EFFECT OF DIFFERENT INSECTICIDES UPON GERMINATION AND VIGOR OF RICE SEEDS EFEITO DE DIFERENTES INSETICIDAS NA GERMINAÇÃO E NO VIGOR DE SEMENTES DE ARROZ

    OpenAIRE

    Antônio Lopes da Silva; Valquíria da Rocha Santos Veloso; Noga Neve Ribeiro Guimarães

    2007-01-01

    A laboratory test was conducted, aiming to verify the effect of different insecticides upon germinating power and vigor of rice seeds, cultivars IAC - 25 and Rio-Paranaíba, stored at 0, 7,15, 30, 60 and 90 days, after treatments. Germination tests were settled according routine analysis and evaluated after seven days by counting number of normal and abnormal plantules and dead seeds. For vigor test, the seeds were ...

  5. Alleviatory effects of silicon on the foliar micromorphology and anatomy of rice (Oryza sativa L.) seedlings under simulated acid rain.

    Science.gov (United States)

    Ju, Shuming; Wang, Liping; Zhang, Cuiying; Yin, Tingchao; Shao, Siliang

    2017-01-01

    Silicon (Si) is a macroelement in plants. The biological effects and mitigation mechanisms of silicon under environmental stress have become hot topics. The main objectives of this study were to elucidate the roles of Si in alleviating the effects on the phenotype, micromorphology and anatomy of the leaves of rice seedlings under acid rain stress. The results indicated that the combined or single effects of Si and simulated acid rain (SAR) stress on rice roots depended on the concentration of Si and the intensity of the SAR stress. The combined or single effects of the moderate concentration of Si (2.0 mM) and light SAR (pH 4.0) enhanced the growth of the rice leaves and the development of the mesophyll cells, and the combined effects were stronger than those of the single treatments. The high concentration of Si (4.0 mM) and severe SAR (pH 3.0 or 2.0) exerted deleterious effects. The incorporation of Si (2.0 or 4.0 mM) into SAR at pH values of 3.0 or 2.0 promoted rice leaf growth, decreased necrosis spots, maintained the structure and function of the mesophyll cells, increased the epicuticular wax content and wart-like protuberance (WP) density, and improved the stomatal characteristics of the leaves of rice seedlings more than the SAR only treatments. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with the high concentration of Si (4.0 mM). The alleviatory effects were due to the enhancement of the mechanical barriers in the leaf epidermis.

  6. Alleviatory effects of silicon on the foliar micromorphology and anatomy of rice (Oryza sativa L.) seedlings under simulated acid rain

    Science.gov (United States)

    Ju, Shuming; Wang, Liping; Zhang, Cuiying; Yin, Tingchao; Shao, Siliang

    2017-01-01

    Silicon (Si) is a macroelement in plants. The biological effects and mitigation mechanisms of silicon under environmental stress have become hot topics. The main objectives of this study were to elucidate the roles of Si in alleviating the effects on the phenotype, micromorphology and anatomy of the leaves of rice seedlings under acid rain stress. The results indicated that the combined or single effects of Si and simulated acid rain (SAR) stress on rice roots depended on the concentration of Si and the intensity of the SAR stress. The combined or single effects of the moderate concentration of Si (2.0 mM) and light SAR (pH 4.0) enhanced the growth of the rice leaves and the development of the mesophyll cells, and the combined effects were stronger than those of the single treatments. The high concentration of Si (4.0 mM) and severe SAR (pH 3.0 or 2.0) exerted deleterious effects. The incorporation of Si (2.0 or 4.0 mM) into SAR at pH values of 3.0 or 2.0 promoted rice leaf growth, decreased necrosis spots, maintained the structure and function of the mesophyll cells, increased the epicuticular wax content and wart-like protuberance (WP) density, and improved the stomatal characteristics of the leaves of rice seedlings more than the SAR only treatments. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with the high concentration of Si (4.0 mM). The alleviatory effects were due to the enhancement of the mechanical barriers in the leaf epidermis. PMID:29065171

  7. Influence of chelating ligands on arsenic uptake by hydroponically grown rice seedlings (Oryza sativa L.): a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohammad A.; Hasegawa, Hiroshi; Ueda, Kazumasa; Maki, Teruya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa (Japan); Rahman, M.M. [Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2008-06-15

    Ferric (oxyhydro-)oxides (FeO{sub x}) precipitate in the rhizosphere at neutral or alkaline pH and are adsorbed on the plant root surfaces. Consequently, the higher binding affinity of arsenate to FeO{sub x} and the low iron phytoavailability of the precipitated FeO{sub x} make the phytoremediation of arsenic difficult. In the present study, the influence of chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. When chelating ligands were not treated to the growth medium, about 63 and 71% of the total arsenic and iron were distributed in the root extract (outer root surfaces) of rice, respectively. On the other hand, ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS) and hydroxyiminodisuccinic acid (HIDS) desorbed a significant amount of arsenic from FeO{sub x} of the outer root surfaces. Therefore, the uptake of arsenic and iron into the roots and their subsequent translocation to the shoots of the rice seedlings increased significantly. The order of increasing arsenic uptake by chelating ligands was HIDS > EDTA > EDDS. Methylglycinediacetic acid (MGDA) and iminodisuccinic acid (IDS) might not be effective in arsenic solubilization from FeO{sub x}. The results suggest that EDDS and HIDS would be a good and environmentally safe choice to accelerate arsenic phytoavailability in the phytoremediation process because of their biodegradability and would be a competent alternative to the widely used non-biodegradable and environmentally persistent EDTA. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Effect of heavy metal stress on the catalase activity and expression of isozymes in the leaves of rice seedling

    International Nuclear Information System (INIS)

    Ge Cailin; Yang Xiaoyong; Zhu Hongxia; Wang Zegang; Luo Shishi; Ma Fei; Sun Jinhe

    2002-01-01

    The effect of heavy metal stress on the catalase (CAT) activity and expression of isozymes in the leaves of rice (Wuyujing, Yangdao 6, Shanyou 818) seedling was measured and analyzed. The results showed as follows. (1) When the concentration of Cu, Cd and Hg was in the range of 0.05-2.0 mM, the CAT activity decreased continuously with the concentration of Cu and Cd increasing. However, with the concentration of Hg increasing the CAT activity rapidly decreased first, and then increased slightly, and again decreased obviously, indicating that the Cu, Cd and Hg of 0.05-2.0 mM inhibited the CAT activity in the leaves of rice seedling. (2) The results by using polyacrylamide concentration gradient gel electrophoresis technique to analyze the CAT isozymes indicated that, on the normal condition, there were 1 to 2 CAT isozymes being expressed in the rice leaves (2 CAT isozymes being expressed in Wuyujing leaves, 1 CAT isozymes in Yangdao 6 and Shanyou 818 leaves). 0.1 mM Cd stress induced Wuyujing leaves to express 1 new CAT isozymes, 0.1 mM Cd and Hg stress also induced Yangdao 6 leaves to express 1 new CAT isozymes, but the expression of CAT isozymes, which were expressed in normal condition, were inhibited by Cu, Cd and Hg stress

  9. Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.

    Science.gov (United States)

    Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung

    2018-03-13

    Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.

  10. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil.

    Science.gov (United States)

    Yan, Dafang; Ma, Wei; Song, Xiaojing; Bao, Yanyu

    2017-03-01

    Although the role of iron plaque on rice root surface has been investigated in recent years, its effect on antibiotic uptake remains uncertain. In the study, pot experiment was conducted to investigate the effect of iron plaque on uptake and translocation of norfloxacin (adding 10 and 50 mg·kg -1 treatments) in rice seedlings grown in paddy soil. Iron plaque was induced by adding different amounts of Fe(II) in soil. The results showed that the presence of norfloxacin can decrease the amount of iron plaque induced. After rice with iron plaque induced, norfloxacin was mainly accumulated in iron plaque on root surface, followed by inside root, but its translocation from root to other rice tissues is not observed. Iron plaque played the role of a barrier for norfloxacin uptake into rice roots under high norfloxacin concentration of 50 mg·kg -1 , however not that under low concentration of 10 mg·kg -1 . And the barrier function was the most strongest with adding Fe(II) of 30 mg·kg -1 as combined action of iron plaque and rhizosphere effect. Fluorescence microscope analysis showed that norfloxacin mainly distributed in the outside of root cell, which showed its translocation as apoplastic pathway in rice. Comparing with non-rhizosphere, more norfloxacin was accumulated in rhizosphere soil. Maybe, strong root oxidization (high Eh values) induced more iron oxide formation in rhizosphere and on root surface, which led to norfloxacin's mobility towards to rhizosphere through its strong adsorption of iron oxides and then promoted its uptake by rice on root surface.

  11. Allelopathic influence of aqueous extracts from the leaves of Morus alba L. on seed germination and seedling growth of Cucumis sativus L. and Sinapsis alba L.

    Directory of Open Access Journals (Sweden)

    Katarzyna Możdżeń

    2014-04-01

    Full Text Available The aim of the present study was to elucidate impact of the aqueous extracts from leaves of Morus alba L. on germination, growth and photosynthetic activity of Cucumis sativus L. and Sinapis alba L. Plants were grown for 21 days at the temperature 25°C (day and 18°C (night, within 12/12 hours photoperiod, light intensity 150 μmol·m-2·s-1 and relative humidity 60-70% (day/night. Our experiments proved that allelopathic compounds in aqueous extracts of the leaves M. alba at high concentrations, reduce power and energy of germination. Biometric analysis of seedlings and adult plants grown showed that allelopathic substances have stimulating or inhibiting function depending on the stage of treatment. Moreover, they cause changes in chlorophyll contents and activity of photosystem II (PS II.

  12. Differential deposition of H2A.Z in rice seedling tissue during the day-night cycle.

    Science.gov (United States)

    Zhang, Kang; Xu, Wenying; Wang, Chunchao; Yi, Xin; Su, Zhen

    2017-03-04

    Chromatin structure has an important role in modulating gene expression. The incorporation of histone variants into the nucleosome leads to important changes in the chromatin structure. The histone variant H2A.Z is highly conserved between different species of fungi, animals, and plants. However, dynamic changes to H2A.Z in rice have not been reported during the day-night cycle. In this study, we generated genome wide maps of H2A.Z for day and night time in harvested seedling tissues by combining chromatin immunoprecipitation and high-throughput sequencing. The analysis results for the H2A.Z data sets detected 7099 genes with higher depositions of H2A.Z in seedling tissues harvested at night compared with seedling tissues harvested during the day, whereas 4597 genes had higher H2A.Z depositions in seedlings harvested during the day. The gene expression profiles data suggested that H2A.Z probably negatively regulated gene expression during the day-night cycle and was involved in many important biologic processes. In general, our results indicated that H2A.Z may play an important role in plant responses to the diurnal oscillation process.

  13. HYPOCHOLESTEROLEMIC AND ANTI-OXIDATIVE PROPERTIES OF GERMINATED BROWN RICE (GBR IN HYPERCHOLESTEROLEMIA-INDUCED RATS

    Directory of Open Access Journals (Sweden)

    Froilan Bernard Matias

    2014-02-01

    Full Text Available Hypercholesterolemia, as one of the causes of obesity, affects vital organs in the body, such as the liver and kidney, resulting to oxidative stress. Germinated Brown Rice (GBR as a food-based solution in dealing with this condition is highly recommended. In this study, the effects of GBR on hypercholesterolemia-induced rats were evaluated by measuring and analyzing the changes on body weight, serum lipid profiles (TC, TG, LDL and HDL, liver function (ALT and AST, kidney function (Crea and Urea and its antioxidant capacity (MDA, SOD, GSH-PX and TAOC. Thirty (30 SD male rats were divided into 5 groups (6 rats per group; Group A was given normal basal diet, Group B (hypercholesterolemic group was given a high fat diet, while Groups C, D, and E were given 12.5%, 25% and 50% GBR, respectively. Groups C, D and E were fed with high fat diet for 4 weeks, then fed with the GBR feeds, accordingly, for another 5 weeks. Sera and liver samples were collected for testing and evaluation. Hypercholesterolemia was successfully induced in Groups B, C, D, and E after 4 weeks. Noticeable responses were observed in groups fed with GBR after 5 weeks. Group E fed with 50% GBR showed the satisfactory results (significant at p<0.05 in weight gain, serum lipid profiles, liver function enzymes, creatinine, urea and oxidative stress markers compared to the hypercholesterolemic group. The hypocholesterolemic and antioxidant properties of GBR were found to have a dose-response effect where higher percentage of GBR showed acceptable results as compared to the normal and hypercholesterolemic groups. GBR showed to effectively lessen TC, TG and LDL while increases HDL. It effectively protects the liver while its kidney protective ability was associated to its hypocholesterolemic properties. Oxidative stress was reduced as shown by a decline in lipid peroxidation and improved antioxidant production. In addition, the abovementioned GBR‘s properties are combined effects of its

  14. Effect of EI-treatment in relation to physiological and biochemical traits in rice: delay in germination and its recovery with provision of glucose

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1975-01-01

    Rice seeds treated with 0.2 to 1.2 v/v % of ethyleneimine (EI) demonstrated increasingly delayed germination concomitant with increasing dose. At the time of germination, the release of storage products was slightly inhibited at lower doses and completely reduced at higher doses. With increasing time after germination the development of shoot length, content of reducing sugar and free amino acid, and synthesis of nucleic acid and protein in treated seeds, showed the same response pattern as the control, although at reduced levels in the treated seeds. Consequently, it is interpreted that the delay of germination is due to physiological dormancy, i.e. impaired release of dormancy which would normally yield active forms of enzymes. When treated seeds were cultured in [ 14 C]-glucose medium, the specific activity of [ 14 C]-glucose was higher in late-germinating seeds than in early-germinating seeds. Furthermore, the provision of glucose prevented the delay of germination, resulting in about a 10% increase in germination rate (survival rate), and yet had no effect on subsequent growth. Finally, it is concluded that the damage resulting in delayed germination and reduction of survival differs from the damage leading to inhibition of subsequent growth in that the former can be compensated for by provision of glucose while the latter cannot. (author)

  15. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    Science.gov (United States)

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice.

    Science.gov (United States)

    Jiang, Wenzhu; Lee, Joohyun; Jin, Yong-Mei; Qiao, Yongli; Piao, Rihua; Jang, Sun Mi; Woo, Mi-Ok; Kwon, Soon-Wook; Liu, Xianhu; Pan, Hong-Yu; Du, Xinglin; Koh, Hee-Jong

    2011-04-01

    Seed germination capability of rice is one of the important traits in the production and storage of seeds. Quantitative trait loci (QTL) associated with seed germination capability in various storage periods was identified using two sets of recombinant inbred lines (RILs) which derived from crosses between Milyang 23 and Tong 88-7 (MT-RILs) and between Dasanbyeo and TR22183 (DT-RILs). A total of five and three main additive effects (QTLs) associated with seed germination capability were identified in MT-RILs and DT-RILs, respectively. Among them, six QTLs were identified repeatedly in various seed storage periods designated as qMT-SGC5.1, qMT-SGC7.2, and qMT-SGC9.1 on chromosomes 5, 7, and 9 in MT-RILs, and qDT-SGC2.1, qDT-SGC3.1, and qDT-SGC9.1 on chromosomes 2, 3, and 9 in DT-RILs, respectively. The QTL on chromosome 9 was identified in both RIL populations under all three storage periods, explaining up to 40% of the phenotypic variation. Eight and eighteen pairs additive × additive epistatic effect (epistatic QTL) were identified in MT-RILs and DT-RILs, respectively. In addition, several near isogenic lines (NILs) were developed to confirm six repeatable QTL effects using controlled deterioration test (CDT). The identified QTLs will be further studied to elucidate the mechanisms controlling seed germination capability, which have important implications for long-term seed storage.

  17. Germination and plantlet regeneration of encapsulated microshoots of aromatic rice (Oryza sativa L. Cv. MRQ 74).

    Science.gov (United States)

    Taha, Rosna Mat; Saleh, Azani; Mahmad, Noraini; Hasbullah, Nor Azlina; Mohajer, Sadegh

    2012-01-01

    Plant tissues such as somatic embryos, apical shoot tips, axillary shoot buds, embryogenic calli, and protocom-like bodies are potential micropropagules that have been considered for creating synthetic seeds. In the present study, 3-5 mm microshoots of Oryza sativa L. Cv. MRQ 74 were used as explant sources for obtaining synthetic seeds. Microshoots were induced from stem explants on Murashige and Skoog (MS) medium supplemented with 1.5 mg/L benzylaminopurine (BAP). They were encapsulated in 3% (w/v) sodium alginate, 3% sucrose, 0.1 mg/L BAP, and 0.1 mg/L α-Naphthalene acetic acid (NAA). Germination and plantlet regeneration of the encapsulated seeds were tested by culturing them on various germination media. The effect of storage period (15-30 days) was also investigated. The maximum germination and plantlet regeneration (100.0%) were recorded on MS media containing 3% sucrose and 0.8% agar with and without 0.1 mg/L BAP. However, a low germination rate (6.67%) was obtained using top soil as a sowing substrate. The germination rate of the encapsulated microshoots decreased from 93.33% to 3.33% after 30 days of storage at 4°C in the dark. Therefore, further research is being done to improve the germination rate of the synthetic seeds.

  18. Germination and Plantlet Regeneration of Encapsulated Microshoots of Aromatic Rice (Oryza sativa L. Cv. MRQ 74

    Directory of Open Access Journals (Sweden)

    Rosna Mat Taha

    2012-01-01

    Full Text Available Plant tissues such as somatic embryos, apical shoot tips, axillary shoot buds, embryogenic calli, and protocom-like bodies are potential micropropagules that have been considered for creating synthetic seeds. In the present study, 3–5 mm microshoots of Oryza sativa L. Cv. MRQ 74 were used as explant sources for obtaining synthetic seeds. Microshoots were induced from stem explants on Murashige and Skoog (MS medium supplemented with 1.5 mg/L benzylaminopurine (BAP. They were encapsulated in 3% (w/v sodium alginate, 3% sucrose, 0.1 mg/L BAP, and 0.1 mg/L α-Naphthalene acetic acid (NAA. Germination and plantlet regeneration of the encapsulated seeds were tested by culturing them on various germination media. The effect of storage period (15–30 days was also investigated. The maximum germination and plantlet regeneration (100.0% were recorded on MS media containing 3% sucrose and 0.8% agar with and without 0.1 mg/L BAP. However, a low germination rate (6.67% was obtained using top soil as a sowing substrate. The germination rate of the encapsulated microshoots decreased from 93.33% to 3.33% after 30 days of storage at 4°C in the dark. Therefore, further research is being done to improve the germination rate of the synthetic seeds.

  19. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.

    Science.gov (United States)

    Liu, Houjun; Zhang, Junling; Christie, Peter; Zhang, Fusuo

    2008-05-15

    Iron plaque is ubiquitously formed on the root surfaces of rice. However, little is known about the role of iron plaque in Cd movement from soil to the plant aboveground parts. A pot experiment was conducted to investigate the influence of iron plaque in Cd uptake and accumulation by rice seedlings in soil. Rice seedlings were pre-cultivated in solution culture for 16 days. Two seedlings were transplanted in a nylon bag containing no substrate but surrounded by soil amended with Fe and Cd combined at rates of 0, 1, or 2 g Fe kg(-1) and 0, 2.0, or 10 mg Cd kg(-1) soil. Fe was added to induce different amounts of iron plaque, and Cd to simulate Cd-polluted soils. Plants were grown for a further 43 days and then harvested. The length of the longest leaf and SPAD values of the newly mature leaves were measured during plant growth. Fe and Cd concentrations were determined in dithionite-citrate-bicarbonate (DCB) soil extracts and in plant roots and shoots. Shoot and root dry weights were significantly affected by Fe supply level but not by added Cd. Root dry weight declined with increasing Fe supply but shoot dry weight decreased at 2 g Fe kg(-1) and increased at 1 g Fe kg(-1) (except at 2 mg Cd kg(-1)). The length of the longest leaf and SPAD values of the newly mature leaves were significantly affected by plant growth stage and added Fe and Cd. Fe tended to diminish the negative effect of Cd on these two parameters. Cd concentrations in DCB extracts increased with increasing Cd and Fe supply. In contrast, external Fe supply markedly reduced shoot and root Cd concentrations and there was generally no significant difference between the two Fe supply levels. Shoot and root Cd concentrations increased with increasing Cd addition. Root Cd concentrations were negatively correlated with root Fe concentrations. The proportion of Cd in DCB extracts was significantly lower than in roots or shoots. The results indicate that enhanced Fe uptake by plants can diminish the negative

  20. Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis.

    Science.gov (United States)

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    The accumulation of cadmium (Cd) alters different physiological and biochemical attributes that affect plant growth and yield. In our study, we investigated the regulatory role of supplemental manganese (Mn) on hydroponically grown rice (Oryza sativa L. cv. BRRI dhan29) seedlings under Cd-stress conditions. Exposure of 14-d-old seedlings to 0.3mM CdCl 2 for three days caused growth inhibition, chlorosis, nutrient imbalance, and higher Cd accumulation. Higher Cd uptake caused oxidative stress through lipid peroxidation, loss of plasma membrane integrity, and overproduction of reactive oxygen species (ROS) and methylglyoxal (MG). The exogenous application of 0.3mM MnSO 4 to Cd-treated seedlings partly recovered Cd-induced water loss, chlorosis, growth inhibition, and nutrient imbalance by reducing Cd uptake and its further translocation to the upper part of the plant. Supplemental Mn also reduced Cd-induced oxidative damage and lipid peroxidation by improved antioxidant defense and glyoxalase systems through enhancing ROS and MG detoxification, respectively. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. The Effects of Cold Stress at Germination and Seedling Stages on Antioxidant Enzymes and Some Physiological Aspects of Chickpea (Cicer arientinum.

    Directory of Open Access Journals (Sweden)

    S. Wanaei

    2012-04-01

    Full Text Available In order to investigate the effects of cold stress on antioxidant enzymes and physiological characteristics in chickpea, two separate experiments were conducted at germination and seedling stages. Each experiment with six temperature levels (T1(control=15C°, T2=5C°, T3=0C°, T4=-5C°, T5=-10C° and T6=-15C° and three varieties (V1=Pirouz V2=ILC482 V3=Bivaniej was carried out in a randomized complete block design with three replications at controlled condition in crop physiological laboratory of Kurdistan university at 2009. The results showed that cold treatment increased Catalase and Peroxdase activity, cell membrane injury and H2O2 concentration significantly. The temperature -5C° treatment had the most influence on physiological traits. Based on germination stage trial, ILC482 was known as resistance cultivar and Pirouz showed highest sensitivity to cold treatments. There were positive and significant correlation between H2O2 concentration with Catalase (r = 0.98** and Peroxidase (r = 0.89** at germination stage. Peroxidase activity was about tenfold more of the Catalase activity. In general, the results showed that cold stress increased reactive oxygen species; these product lead to oxidative damages to cell membrane.

  2. Genome-Wide Association Mapping Reveals Multiple QTLs Governing Tolerance Response for Seedling Stage Chilling Stress in Indica Rice

    Directory of Open Access Journals (Sweden)

    Sharat K. Pradhan

    2017-04-01

    Full Text Available Rice crop is sensitive to cold stress at seedling stage. A panel of population representing 304 shortlisted germplasm lines was studied for seedling stage chilling tolerance in indica rice. Six phenotypic classes were exposed to six low temperature stress regimes under control phenotyping facility to investigate response pattern. A panel of 66 genotypes representing all phenotypic classes was used for ensuring genetic diversity, population structure and association mapping for the trait using 58 simple sequence repeat (SSR and 2 direct trait linked markers. A moderate level of genetic diversity was detected in the panel population for the trait. Deviation of Hardy-Weinberg's expectation was detected in the studied population using Wright's F statistic. The panel showed 30% variation among population and 70% among individuals. The entire population was categorized into three sub-populations through STRUCTURE analysis. This revealed tolerance for the trait had a common primary ancestor for each sub-population with few admix individuals. The panel population showed the presence of many QTLs for cold stress tolerance in the individuals representing like genome-wide expression of the trait. Nineteen SSR markers were significantly associated at chilling stress of 8°C to 4°C for 7–21 days duration. Thus, the primers linked to the seedling stage cold tolerance QTLs namely qCTS9, qCTS-2, qCTS6.1, qSCT2, qSCT11, qSCT1a, qCTS-3.1, qCTS11.1, qCTS12.1, qCTS-1b, and CTB2 need to be pyramided for development of strongly chilling tolerant variety.

  3. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions.

    Science.gov (United States)

    Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J

    2009-04-01

    Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress.

  4. Acetylcholinesterase Inhibition and in Vitro and in Vivo Antioxidant Activities of Ganoderma lucidum Grown on Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    Beong Ou Lim

    2013-06-01

    Full Text Available In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  5. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    Science.gov (United States)

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  6. Germinação de sementes e desenvolvimento inicial de plântulas de achachairu Seeds germination and seedlings early development of achachairu

    Directory of Open Access Journals (Sweden)

    Wilson Barbosa

    2008-03-01

    Full Text Available O achachairu (Garcinia sp, fruta largamente produzida na Bolívia, vem sendo comercializado no Brasil há vários anos. O fruto é globoso-oblongo, de polpa branca, suculenta e textura mucilaginosa e de sabor doce-acidulado equilibrado (ºBrix 15 e pH 4,1. Devido ao crescente interesse em seu cultivo no Brasil, pesquisaram-se a germinação das sementes e o desenvolvimento das plântulas durante os primeiros 12 meses após sua emergência. As sementes, extraídas de frutos bem maduros, foram postas a germinar em duas situações: 1 ambiente controlado em estufa tipo B.O.D., sob as temperaturas de 25 e 30 ºC, fotoperíodo de 16 horas e irradiância de 32 µmol.m-1.s-1, e 2 ambiente de temperatura não-controlada: 3 B.O.D, cuja temperatura oscilava entre 20 e 30 ºC, e 4 sob temperatura ambiente de laboratório (25± 2 ºC. O melhor resultado foi obtido na temperatura constante de 30 ºC, com germinação de 92% e índice de velocidade de germinação (IVG de 0,255. Quando germinada em ambiente de laboratório, a germinação das sementes mostrou-se baixa (30%, com IVG de 0,015. O desenvolvimento das plântulas em casa de vegetação ocorreu de forma bastante lenta, principalmente nas primeiras semanas após a emergência. O primeiro par de folhas surgiu após três semanas da emergência das plântulas, quando essas mediam 8 cm em média. A partir do oitavo mês de desenvolvimento, as plântulas emitiram várias ramificações laterais a partir da porção mediana para a região apical.The achachairu (Garcinia sp, a fruit widely grown in Bolivia, has been commercialized in Brazil for many years. The fruit is globular-oblong shaped, with a white succulent pulp, mucilaginous texture and a well balanced sweet-acid flavor (ºBrix 15; pH 4.1. Due to the increasing interest in its cultivation in Brazil, this work was carried out aiming to study the seeds germination and seedling development throughout the first 12 months after seed emergence. The

  7. [Effects of low temperature in the light on antioxidant contents in rice (Oryza sativa L.) indica and japonica subspecies seedlings].

    Science.gov (United States)

    Li, Xia; Dai, Chuan-Chao; Jiao, De-Mao; Foyer, Christine H

    2006-06-01

    To study the nature and mechanisms of resistance of rice plants to chilling stress, the effects of low temperature treatment (8 degrees C) on the photosynthetic rate and some important compounds forming redox cycles were measured. The rice varieties used are two japonica rice varieties, i.e., Taipei 309 and Wuyujing; three indica rice varieties, i.e., IR64, Pusa and CA212; and one intermediate type, i.e., Shanyou 63. Three types of varieties were studied by comparing. The light intensity-photosynthesis curves, CO2-photosynthesis curves, primary photochemical efficiency (Fv/Fm), active oxygen species (AOS) (O2*- and H2O2), glutathione (both oxidized and reduced forms) and ascorbate contents in their six-week old seedlings were measured before and after chilling treatment. The results showed that relative to the rice varieties chilling tolerance such as Taipei 309 and Wuyujing, the sensitive ones indica IR64, Pusa and CA212 exhibited a stronger inhibition of maximum photosynthetic rate (Pmax) (Figs.1 and 2) and a decrease in Fv/Fm (Fig.3), which led to the accumulation of AOS (Fig.6). It was found that the glutathione disulphide (GSSG) content in glutathione pool and that of dehydroascorbate (DHA) in ascorbate pool of the leaves of these sensitive ones under chilling were induced to increase obviously (Table 3). The correlation coefficient between the increases in GSSG, DHA and the decrease of Chl content were -0.701**, -0.656** respectively (Table 4). This indicated that the regeneration of reduced glutathione (GSH) and ascorbate was inhibited, resulting in accumulations of AOS and the reduction of Chl content (Fig.4) and the inhibition of photosynthetic activity (Fig.1 and Fig.2). The changes in japonica Taibei 309 and Wuyujing were small. And the changes in indica hybrid were lying between the above-mentioned types. Particularly, the ratio of AsA/DHA and GSH/GSSG (Fig.7) showed similar changes as those in Chl content (Fig.4). The correlation coefficient among Chl

  8. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Shahid Iqbal

    2012-08-01

    Full Text Available The neuroprotective and antioxidative effects of germinated brown rice (GBR, brown rice (BR and commercially available γ-aminobutyric acid (GABA against cell death induced by hydrogen peroxide (H2O2 in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP and prevented phosphatidylserine (PS translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  9. Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina

    2014-01-01

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination...... (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p ... abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins...

  10. OsRACK1 Is Involved in Abscisic Acid- and H2O2-Mediated Signaling to Regulate Seed Germination in Rice (Oryza sativa, L.)

    Science.gov (United States)

    Zhang, Dongping; Chen, Li; Li, Dahong; Lv, Bing; Chen, Yun; Chen, Jingui; XuejiaoYan; Liang, Jiansheng

    2014-01-01

    The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction. PMID:24865690

  11. Effect of pre-sowing magnetic field treatment to garden pea (pisum sativum l.) seed on germination and seedling growth

    International Nuclear Information System (INIS)

    Iqbal, M.; Muhammad, D.; Haq, Z.U.; Jamil, Y.; Ahmad, M.R.

    2012-01-01

    The seeds of garden pea ( Pisum sativum L. cv. climax) were exposed to full-wave rectified sumusoidal non-uniform magnetic fields of strength 60 mT, 120 mT and 180 mT for 5, 10 and 15 min prior to sowing. The magnetically treated seeds were sown according to the protocol of International Seed Testing Association (ISTA). Magnetically treated seed showed significant increase in germination. The emergence index, final emergence index and vigor index increased by 86.43%, 13.21% and 204.60%, respectively. It was found that exposure of 5 min for magnetic field strengths of 60 mT and 180 mT significantly enhanced the germination parameters of the pea and these treatments can be used practically to accelerate the germination in garden pea. (author)

  12. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice.

    Science.gov (United States)

    Lee, Sang-Choon; Kim, Soo-Jin; Han, Soon-Ki; An, Gynheung; Kim, Seong-Ryong

    2017-07-01

    From a T-DNA-tagging population in rice, we identified OsGASR1 (LOC_Os03g55290), a member of the GAST (gibberellin (GA)-Stimulated Transcript) family that is induced by salt stress and ABA treatment. This gene was highly expressed in the regions of cell proliferation and panicle development, as revealed by a GUS assay of the mutant line. In the osgasr1 mutants, the second leaf blades were much longer than those of the segregating wild type due to an increase in cell length. In addition, five α-amylase genes were up-regulated in the mutants, implying that OsGASR1 is a negative regulator of those genes. These results suggest that OsGASR1 plays important roles in seedling growth and α-amylase gene expression. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions.

    Science.gov (United States)

    Song, Chieun; Kim, Taeyoon; Chung, Woo Sik; Lim, Chae Oh

    2017-08-01

    Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana , which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the β -glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis , which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout ( cys5 ) plants grown under HS conditions. The HS tolerance of At-CYS5 -overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5 . Although no HS elements were identified in the 5'-flanking region of AtCYS5 , canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

  14. Effects of triazole derivatives on strigolactone levels and growth retardation in rice.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available We previously discovered a lead compound for strigolactone (SL biosynthesis inhibitors, TIS13 (2,2-dimethyl-7-phenoxy-4-(1H-1,2,4-triazol-1-ylheptan-3-ol. Here, we carried out a structure-activity relationship study of TIS13 to discover more potent and specific SL biosynthesis inhibitor because TIS13 has a severe side effect at high concentrations, including retardation of the growth of rice seedlings. TIS108, a new TIS13 derivative, was found to be a more specific SL biosynthesis inhibitor than TIS13. Treatment of rice seedlings with TIS108 reduced SL levels in both roots and root exudates in a concentration-dependent manner and did not reduce plant height. In addition, root exudates of TIS108-treated rice seedlings stimulated Striga germination less than those of control plants. These results suggest that TIS108 has a potential to be applied in the control of root parasitic weeds germination.

  15. Compositional analyses of white, brown and germinated forms of popular Malaysian rice to offer insight into the growing diet-related diseases.

    Science.gov (United States)

    Abubakar, Bilyaminu; Yakasai, Hafeez Muhammad; Zawawi, Norhasnida; Ismail, Maznah

    2018-04-01

    Diet-related metabolic diseases, and especially obesity, are metabolic disorders with multifactorial aetiologies. Diet has been a cornerstone in both the aetiology and management of this metabolic disorders. Rice, a staple food for over half of the world's population, could be exploited as part of the solution to check this menace which has been skyrocketing in the last decade. The present study investigated nine forms of rice from three widely grown Malaysian rice cultivars for in vitro and in vivo (glycaemic index and load) properties that could translate clinically into a lower predisposition to diet-related diseases. The germinated brown forms of MRQ 74 and MR 84 rice cultivars had high amylose content percentages (25.7% and 25.0%), high relative percentage antioxidant scavenging abilities of 85.0% and 91.7%, relatively low glycaemic indices (67.6 and 64.3) and glycaemic load (32.3 and 30.1) values, and modest glucose uptake capabilities of 33.69% and 31.25%, respectively. The results show that all things being equal, rice cultivars that are germinated and high in amylose content when compared to their white and low amylose counterparts could translate into a lower predisposition to diet-related diseases from the dietary point of view in individuals who consume this cereal as a staple food. Copyright © 2017. Published by Elsevier B.V.

  16. Rice hull mulch affects germination of bittercress and creeping woodsorrel in container plant culture

    Science.gov (United States)

    Mulches are commonly used to control weeds in container nursery crops, especially in sites where preemergence herbicides are either not labeled or potentially phytotoxic to the crop. Parboiled rice hulls have been shown to provide effective weed control when applied 1.25 to 2.5 cm deep over the con...

  17. Influence of environmental factors on the germination of Urena lobata L. and its response to herbicides.

    Directory of Open Access Journals (Sweden)

    Tahir Hussain Awan

    Full Text Available Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99% seed germination. Germination was slightly stimulated when seeds were placed in light (65% compared with when seeds were kept in the dark (46%. Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to -1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was -0.1 MPa; however, some seeds germinated at -0.8 MPa, but none germinated at -1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha(-1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%, which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93% at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%, glyphosate (97%, and thiobencarb + 2,4-D (98%. These herbicides reduced shoot and root biomass by 99-100%.

  18. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    Science.gov (United States)

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  19. Identification and expression analysis of CYS-A1, CYS-C1, NIT4 genes in rice seedlings exposed to cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Lin, Yu-Juan; Lu, Chun-Jiao; Zhang, Xue-Hong

    2017-09-01

    Involvement of genes (CYS-A1, CYS-C1 and NIT4) encoded with cysteine synthase, β-cyanoalanine synthase, nitrilase and cyanide metabolisms are evident in Arabidopsis. In the present study, identifications of CYS-A1, CYS-C1 and NIT4, predictions of conserved motifs, and constructions of phylogenetic relationships, based on their amino acid sequences in rice, were conducted. In order to elucidate the transcriptional responses of these cyanide-degrading genes, two candidate homologues were selected for each gene to test their expression changes upon exposure to exogenous KCN in rice seedlings using RT-PCR. Results showed that all selected candidate homologous genes were differentially expressed at different exposure points in roots and shoots of rice seedlings, suggesting their distinct roles during cyanide assimilation. Both candidate homologues for CYS-A1 constantly exhibited more abundant transcripts in comparison to control. However, only one candidate homologue for CYS-C1 and NIT4 showed a remarkable up-regulation during KCN exposure. Analysis of both tissue and solution cyanide indicated that rice seedlings were quickly able to metabolize exogenous KCN with minor accumulation in plant tissues. In conclusion, significant up-regulation of CYS-A1 suggested that the endogenous pool of cysteine catalyzed by cysteine synthase does not restrict the conversion of exogenous KCN into cyanoalanine through the β-cyanoalanine pathway. However, insufficient responses of the transcription level of NIT4 suggested that NIT enzyme may be a limiting factor for cyanoalanine assimilation by rice seedlings.

  20. Mutation induction in rice by radiation combined with chemical protectants and mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A [Agricultural College, University of Sao Paulo, Sao Paulo (Brazil)

    1970-03-01

    Seeds of the rice variety 'Dourado Precoce' were treated with different combinations of gamma rays, cysteine and EMS or gamma rays, cysteine and dES. Cysteine showed some protection against the effects of gamma radiation and combined gamma-ray + chemical treatments with regard to germination, seedling height and fertility. There are also indications of changes in the spectra of chlorophyll mutations. (author)

  1. Investigating Seed Germination Indices and Absorption Rate of Sodium, Chloride, Calcium, and Potassium in Different Parts of Seedlings of Sweet Corn KSC 403 (Zea Mays L var. Saccharata Under Salinity Stress and Seed Priming

    Directory of Open Access Journals (Sweden)

    M. Nasrolah alhossini,

    2014-02-01

    Full Text Available To investigate the effects of different levels of seed priming on germination indices and nutrient absorption at early growth stages of sweet corn (Golden Kernel Hybrid a factorial experiment based on completely randomized design was conducted with three replications in 2011. The experiment consists of 6 levels of primings (seeds without priming, priming with tap water, priming with distilled water, priming with sodium chloride, potassium chloride, and hydrous calcium chloride and five levels of salinity (zero, 4, 8, 12 and 16 ds/m sodium chloride. The characteristics studied were germination percentage, germination rate, root and shoot length, fresh weight and dry weight of seedling, root to shoot ratio and determination of sodium, chloride, calcium, and potassium concentration in different parts of seedlings (stems, roots and seed. The results indicated that increasing salinity stress levels decreased all parameters measured. Priming seeds with hydrated calcium chloride responded to significantly to salinity stress better than other treatments. Results also showed that increasing concentration of sodium chloride salt, increased absorption rate of sodium but concentration of calcium and potassium were reduced. Because application of hydrous calcium chloride stimulates cell in using calcium under salinity conditions it leads to improved seedling growth parameters. To achieve a more accurate results slicing interaction effect of seed priming×salinity levels was performed. Hydrous calcium chloride treatments improved all traits under study except sodium and potassium concentration. This represents a better performance of seeds germination under salinity stress when seeds primed with hydrous calcium chloride.

  2. The α-Amylase Induction in Endosperm during Rice Seed Germination Is Caused by Gibberellin Synthesized in Epithelium1

    Science.gov (United States)

    Kaneko, Miyuki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Ashikari, Motoyuki; Matsuoka, Makoto

    2002-01-01

    We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3β-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909–8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3β-hydroxylase genes and also an α-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and α-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3β-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3β-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for α-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for α-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced α-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not. PMID:11950975

  3. Bio-herbicide effect of salt marsh tolerant Enterobacter sp. I-3 on weed seed germination and seedling growth

    International Nuclear Information System (INIS)

    Radhakrishan, R.; Lee, I.J.

    2017-01-01

    Weeds are major challenges in crop cultivation and cause yield loss. The bacteria based bio-herbicides are emerging against chemical herbicides. This study was aimed to explore the bio-herbicide effect of salt marsh tolerant Enterobacter sp. I-3 on various weed species. The efficacy of I-3 bacterial isolates against weed growth was compared with I-4-5 bacterial strain. The bacterial strains, I-3 and I-4-5 inhibited the seed germination of Cyperus microiria Maxim. Enterobacter sp. I-3 showed higher weed control activity than I-4-5. It was confirmed with growth reduction of C. microiria Maxim. The seed germination of Digitaria sanguinalis L. weed was accelerated during the interaction of I-4-5 and it was drastically declined by I-3 bacterial culture. However, Alopecurus aequalis Sobol. seeds treated with either I-3 or I-4-5 bacterial culture showed no significant germination inhibition. The results of this study suggested that salt marsh tolerant Enterobacter sp. I-3 can be applied as bacterial herbicides to control weeds in agricultural fields. (author)

  4. Effects of soil quality and depth on seed germination and seedling survival at the Nevada test site

    International Nuclear Information System (INIS)

    Blomquist, K.W.; Lyon, G.E.

    1993-01-01

    The Nuclear Waste Policy Act, as amended in 1987, directs the US Department of Energy (DOE) to study Yucca Mountain, in southern Nevada, as a potential site for long-term storage of high-level nuclear waste. DOE policy mandates the restoration of all lands disturbed by site characterization activities and DOE has developed an environmental program that is to be implemented during site characterization activities at Yucca.Mountain. DOE is currently conducting reclamation feasibility trials as part of this environmental program. No topsoil was saved on disturbances during early site investigation and minimal soil remains at existing disturbances on Yucca Mountain. A study was developed to test the effects of soil quality and depth on seedling emergence and survival. A series of plots was established and two treatments were tested. The first treatment compared native topsoil to subsoil imported from a borrow pit. The second treatment compared four different depth ranges of both soil types. All plots received identical seeding treatments. Seedling density was measured after emergence. Overall seedling densities were low, averaging 10.3 ± 8.8 (SD) plants/m 2 . Statistical analysis revealed a significant interaction between the two treatment factors. The subsoil had increasing densities from the deep soil depths to the shallow depths while the topsoil had increasing densities from the shallow soil depths to the deep depths. The cause of this interaction may have resulted from the bedrock being close to the soil surface of the shallow plots

  5. Rice MYC2 (OsMYC2) modulates light-dependent seedling ...

    Indian Academy of Sciences (India)

    Mrunmay Kumar Giri

    2017-08-03

    Aug 3, 2017 ... 1School of life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India. 2Department of ... MYC2 orthologues from several crop plants have been characterized. The rice .... AtMYC2 over-expression and mutants were described by us ... The seeds were screened on MS media plates supplemented.

  6. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars

    Directory of Open Access Journals (Sweden)

    Saddam eHussain

    2016-02-01

    Full Text Available Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18˚C and normal temperatures (28˚C in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress.

  7. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice

    Directory of Open Access Journals (Sweden)

    Jia Yulin

    2007-06-01

    Full Text Available Abstract Background Plants respond to low temperature through an intricately coordinated transcriptional network. The CBF/DREB-regulated network of genes has been shown to play a prominent role in freeze-tolerance of Arabidopsis through the process of cold acclimation (CA. Recent evidence also showed that the CBF/DREB regulon is not unique to CA but evolutionarily conserved between chilling-insensitive (temperate and chilling-sensitive (warm-season plants. In this study, the wide contrast in chilling sensitivity between indica and japonica rice was used as model to identify other regulatory clusters by integrative analysis of promoter architecture (ab initio and gene expression profiles. Results Transcriptome analysis in chilling tolerant japonica rice identified a subset of 121 'early response' genes that were upregulated during the initial 24 hours at 10°C. Among this group were four transcription factors including ROS-bZIP1 and another larger sub-group with a common feature of having as1/ocs-like elements in their promoters. Cold-induction of ROS-bZIP1 preceded the induction of as1/ocs-like element-containing genes and they were also induced by exogenous H2O2 at ambient temperature. Coordinated expression patterns and similar promoter architectures among the 'early response' genes suggest that they belong to a potential regulon (ROS-bZIP – as1/ocs regulatory module that responds to elevated levels of ROS during chilling stress. Cultivar-specific expression signatures of the candidate genes indicate a positive correlation between the activity of the putative regulon and genotypic variation in chilling tolerance. Conclusion A hypothetical model of an ROS-mediated regulon (ROS-bZIP – as1/ocs triggered by chilling stress was assembled in rice. Based on the current results, it appears that this regulon is independent of ABA and CBF/DREB, and that its activation has an important contribution in configuring the rapid responses of rice seedlings

  8. Lazy gene (la) responsible for both an agravitropism of seedlings and lazy habit of tiller growth in rice (Oryza sativa L.).

    Science.gov (United States)

    Abe, K; Takahashi, H; Suge, H

    1996-12-01

    Using an isogenic line of rice having lazy gene (la), we studied the correlation between the agravitropic response at the young seedling stage and the lazy habit (prostrate growth of tillers) at the more advanced stage of growth. In this study, it was found that both agravitropism and lazy habit were controlled by the single recessive la gene. That is, F2 segregants of Kamenoo x lazy-Kamenoo, which had an agravitropic response at their young seedling stage, showed a lazy habit of growth in the more advanced stage of vegetative growth. On the other hand, seedlings that showed normal gravitropic curvature at their early stage of growth had an upright growth in the mature stage.

  9. The Responses of Mulch Closure on the Germination of Mindi (Melia azedarach Linn.

    Directory of Open Access Journals (Sweden)

    Nurmawati Siregar

    2017-08-01

    Full Text Available One of the factors that determine the successful of the development of mindi is the availability of seedling. The seedlings can be propagated generatively by using seeds, however there is a problem related to the hardness of the testa that make it difficult to germinate, so it needs environment condition treatments to get optimal germination, one of this is mulching. The use mulch possibly get the improvement of temperature, humidity, infiltration and evapotranspiration. The study is aimed to determine the effect of mulch and to find out the best mulch type on the germination of mindi (Melia azedarach Linn. seed. Randomized completely design was employed that arranged factorially, consisted of (A mulch types factor and mulch thicknesses factor (B. There were 5 (five types of mulch treatment i.e rice straws, transparent plastics, dark plastics, zeolite and without mulch. The thicknesses of mulch consisted of one layer and two layers of mulch. Germination capacity, germination speed and growth simultaneously were observed. The results showed, mulching effect on germination mindi the best type of mulch is black or transparent plastic mulch while the thickness of the mulch does not affect the germination. Mindi seed capable of germination in the dark and light conditions on the conditions of temperature and humidity high temperatures.

  10. Study of Salinity Tolerance in an Advanced Back Cross Rice Population Based on Some Inorganic Ions at Seedling Stage

    Directory of Open Access Journals (Sweden)

    S. Mohammadi Chamnari1

    2015-12-01

    Full Text Available The objective of the present research was to investigate the effect of salinity stress on sodium, potassium and calcium concentrations, and Na+/K+ and Na+/Ca2+ ratios at seedling stage in an advanced back cross (BC2F6 rice population. The population was derived from crossing between Hashemi, an Iranian cultivar, and IR67418-110-32222 (IR-22 from IRRI. The ANOVA indicated that the effects of genotypes, salinity stress and interaction between stress and genotype were significant for all the traits, which is suggestive of high level of genetic variation, salinity effect on traits and different response of the genotypes to salinity levels. The salinity stress markedly decreased the K+ concentration in the shoot. However the shoot Na+ and Ca2+ concentration and Na+/K+ and Na+/Ca2+ ratios were significantly increased in saline environment. The population characteristics mean value were found to be between of parents values and it often shifted to recurrent parent (Hashemi value in both stress and non stress conditions. It shows that Hashemi variety gene’s leave more influences on the expression of the traits in the population. Transgressive segregation was observed for all the studied traits in the population lines. Genetic and phenotypic correlations among the studied traits showed the same trend. The highest correlation coefficients were related to Na+ concentration and Na+/K+ (rg= 0.89** in non stress condition. The high heritability levels of the traits provide selection possibility for salinity tolerance in the population based on these traits. According to the present findings, it is possible to candidate some lines (such as line number 139 as salt tolerant at the seedling stage.

  11. Effects of gamma rays and neutrons on the seedling and callus growth in rice seeds

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.; Fujii, T.; Amano, E.

    1976-01-01

    Seeds of rice c.v. Norin-8 and two radiation induced dwarf mutants MGS-46 and -96 were used to investigate the effects of gamma and 14 MeV neutron-radiations in different culture systems. Seeding growth of irradiated seeds in soil, and in two types of synthetic media, modified White's (M-W) or modified Erickson's (M-E), as well as the callus growth on 2,4-D supplemented media were measured as an index radiation damage. Comparing the seeding height about two types of media, the M-E promoted the plant growth than the M-W in irradiated as well as non irradiated lots of the three strains studied. The callus growth on M-E surpassed by more 10 times that obtained on the M-W in all the lots. The M-E medium seems to be appropriate for both the seeding and callus growth of rice. (author)

  12. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.

    Science.gov (United States)

    Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei

    2017-01-01

    Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    OpenAIRE

    Matusmoto, Tadashi; Yamada, Kazuhiro; Yoshizawa, Yuko; Oh, Keimei

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to inve...

  14. Growth inhibition of rice (Oryza sativa L.) seedlings in Ga- and In-contaminated acidic soils is respectively caused by Al and Al+In toxicity.

    Science.gov (United States)

    Su, Jeng-Yan; Syu, Chien-Hui; Lee, Dar-Yuan

    2018-02-15

    Limited information exists on the effects of emerging contaminants gallium (Ga) and indium (In) on rice plant growth. This study investigated the effects on growth and uptake of Ga and In by rice plants grown in soils with different properties. Pot experiment was conducted and the rice seedlings were grown in two soils of different pH (Pc and Cf) spiked with various Ga and In concentrations. The results showed concentrations of Ga, In, and Al in soil pore water increased with Ga- or In-spiking in acidic Pc soils, significantly decreasing growth indices. According to the dose-response curve, we observed that the EC 50 value for Ga and In treatments were 271 and 390mgkg -1 in Pc soils, respectively. The context of previous hydroponic studies suggests that growth inhibition of rice seedlings in Ga-spiked Pc soils is mainly due to Al toxicity resulting from enhanced Al release through competitive adsorption of Ga, rather than from Ga toxicity. In-spiked Pc soils, both In and Al toxicity resulted in growth inhibition, while no such effect was found in Cf soils due to the low availability of Ga, In and Al under neutral pH conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Changes of tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars.

    Science.gov (United States)

    Ng, Lean-Teik; Huang, Shao-Hua; Chen, Yen-Ting; Su, Chun-Han

    2013-12-26

    This study examined the changes of tocopherols (Toc), tocotrienols (T3), γ-oryzanol (GO), and γ-aminobutyric acid (GABA) contents in germinated brown rice (GBR) of pigmented and nonpigmented cultivars under different germination conditions. Results showed that the Toc and T3 contents in GBR were significantly different between treatments in both rice cultivars. The pigmented GBR possessed higher total vitamin E, total Toc, total T3, and GO contents than the nonpigmented GBR; however, its level of GABA was lower. The order of the three highest vitamin E homologues in pigmented and nonpigmented GBR was γ-T3 > γ-Toc > α-Toc and α-Toc > γ-T3 > α-T3, respectively; β-Toc, β-T3, δ-Toc, and δ-T3 were present in only small amounts (≤1.0 mg/kg) in GBR of both cultivars. Although both cultivars showed an increase in GABA contents with increasing germination time, the GABA content in nonpigmented GBR was higher.

  16. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development

    Science.gov (United States)

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-01-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed. PMID:22451723

  17. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting-Wu; Wu, Fei-Hua; Wang, Wen-Hua; Chen, Juan; Li, Zhen-Ji; Dong, Xue-Jun; Patton, Janet; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-04-15

    For several decades, acid rain has been an environmental problem in North America and Europe and is now so in China. The aim of that study was to determine the effects and potential interactions between simulated acid rain (SiAR) and calcium on seed germination of different tree species present in China. Seeds from six tree species were grown is a laboratory where they were spread with SiAR or water as control and where calcium was applied at three levels. Results showed that two species were highly tolerant to SiAR while the others were sensitive; the addition of calcium also had a rescue effect on sensitive seeds but no significant effect on the tolerant ones.

  18. Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC

    International Nuclear Information System (INIS)

    Nick, P.; Yatou, O.; Furuya, M.; Lambert, A.M.

    1994-01-01

    Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the anti microtubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation. (author)

  19. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67.

    Science.gov (United States)

    James, Euan K; Gyaneshwar, Prasad; Mathan, Natarajan; Barraquio, Wilfredo L; Reddy, Pallavolu M; Iannetta, Pietro P M; Olivares, Fabio L; Ladha, Jagdish K

    2002-09-01

    A beta-glucoronidase (GUS)-marked strain of Herbaspirillum seropedicae Z67 was inoculated onto rice seedling cvs. IR42 and IR72. Internal populations peaked at over 10(6) log CFU per gram of fresh weight by 5 to 7 days after inoculation (DAI) but declined to 10(3) to 10(4) log CFU per gram of fresh weight by 28 DAI. GUS staining was most intense on coleoptiles, lateral roots, and at the junctions of some of the main and lateral roots. Bacteria entered the roots via cracks at the points of lateral root emergence, with cv. IR72 appearing to be more aggressively infected than cv. IR42. H. seropedicae subsequently colonized the root intercellular spaces, aerenchyma, and cortical cells, with a few penetrating the stele to enter the vascular tissue. Xylem vessels in leaves and stems were extensively colonized at 2 DAI but, in later harvests (7 and 13 DAI), a host defense reaction was often observed. Dense colonies of H. seropedicae with some bacteria expressing nitrogenase Fe-protein were seen within leaf and stem epidermal cells, intercellular spaces, and substomatal cavities up until 28 DAI. Epiphytic bacteria were also seen. Both varieties showed nitrogenase activity but only with added C, and the dry weights of the inoculated plants were significantly increased. Only cv. IR42 showed a significant (approximately 30%) increase in N content above that of the uninoculated controls, and it also incorporated a significant amount of 15N2.

  20. Ammonium absorption mechanism of rice seedling roots and 15N-labelling pattern of their glutamine-amide group, 2

    International Nuclear Information System (INIS)

    Arima, Yasuhiro; Kumazawa, Kikuo

    1975-01-01

    The processes of producing glutamine and asparagine at the initial stage of the absorption and assimilation of ammonia in rice seedling roots were examined in relation to glutamic acid, aspartic acid and ammonia by 15 N-labelling method. When ( 15 NH 4 ) 2 SO 4 was absorbed into the roots, 15 N concentration appeared very high in glutamine-amide radical and ammonia. It was also higher in amide radical than in amino radical in both glutamine and asparagine, while 15 N concentration in the amino radical of glutamine and asparagine were far lower than that of corresponding glutamine acid and aspartic acid. From these facts, glutamine-amide radical seems to be produced directly from the ammonia in culture media at the contact point of root cells and the culture media, while there is some possibility that asparagine-amide radical is formed from other amino compounds than ammonia. Also the amino radical of aspartic acid seems to be produced not only by the transamination from glutamic acid but also by the reductive amination of oxalautic acid by ammonium. (Kobatake, H.)

  1. Performance of Jatropha curcas L. in Semi-arid Zone: Seed Germination, Seedling Growth and Early Field Growth

    Directory of Open Access Journals (Sweden)

    Sharif AHAMAD

    2013-05-01

    Full Text Available There is a lack of information on basic agronomic properties of Jatropha curcas L. (jatropha cultivation on the marginal lands in the semi-arids. Evaluation of agronomic performance of identified elite strains of J. curcas in marginal lands would be of paramount importance for addressing gap areas in their agronomic properties and subsequently for harnessing their optimum economic potentials. The present study undertook the task of analysing the growth performance of a high oil bearing elite strain of J. curcas–DARL-2 in degraded land in semi-arid zone of Deccan Plateau, India. While undertaking the assessment of growth performance of elite strain DARL-2, two other native (wild strains (namely AHN-1 and AHN-2 of J. curcas were also considered so that a comparative evaluation could be carried out. The role of gypsum was also investigated on J. curcas in the nursery stage as well its carry over effects on growth performance of transplanted trees in the field. Two types of substrates, gypsum-treated soil (GS and untreated soil (SL were used for growing seedlings of all the three jatropha strains. Seedlings (120-days-old of DARL-2 exhibited greater plant height, collar diameter and number of branches but root length was greater in the local strains. In the second year of field transplantation, DARL-2 strain exhibited significantly (p<0.05 greater plant height and number of branches/plant. No carry over effects of gypsum treatment were observed in field transplanted plants as none of the growth parameters significantly varied among the substrate types.

  2. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  3. Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection

    Directory of Open Access Journals (Sweden)

    Michael R. Schläppi

    2017-06-01

    Full Text Available Rice (Oryza sativa L. is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay for the germination and seedling stage, and three for the seedling stage. Based on these assays, five chilling tolerance indices were calculated and assessed using 202 O. sativa accessions from the Rice Mini-Core (RMC collection. Significant differences between RMC accessions made the five indices suitable for genome-wide association study (GWAS based quantitative trait loci (QTL mapping. For young seedling stage indices, japonica and indica subspecies clustered into chilling tolerant and chilling sensitive accessions, respectively, while both subspecies had similar low temperature germinability distributions. Indica subspecies were shown to have chilling acclimation potential. GWAS mapping uncovered 48 QTL at 39 chromosome regions distributed across all 12 rice chromosomes. Interestingly, there was no overlap between the germination and seedling stage QTL. Also, 18 QTL and 32 QTL were in regions discovered in previously reported bi-parental and GWAS based QTL mapping studies, respectively. Two novel low temperature seedling survivability (LTSS–QTL, qLTSS3-4 and qLTSS4-1, were not in a previously reported QTL region. QTL with strong effect alleles identified in this study will be useful for marker assisted breeding efforts to improve chilling tolerance in rice cultivars and enhance gene discovery for chilling tolerance.

  4. Toxicity test of the F-Area seep soils by laboratory lettuce seed germination and seedling growth

    International Nuclear Information System (INIS)

    Eaton, D.; Murphy, C.E.

    1993-09-01

    This study is a follow-up of a similar study done by Loehle (1990). The objectives of the original study were to: (1) measure the toxicity of groundwater contaminated by the F-Area seepage basins where this water surfaces in a seepline along Fourmile Branch and (2) to evaluate the effectiveness of rainwater for washing contaminants from the soil. Results of seed germination tests show no significant difference between water extracted from one extraction of F-Area seepline soil, soil from a control area, the sixth consecutive extraction from F-Area soil, and a deionized water control. A root-growth assay on the same seeds shows a significant effect with the order of growth, first extraction of F-Area soil< control site< deionized water

  5. Study of Seed Germination and Morphological Characteristics of Wild Oat(Avena ludoviciana and Mustard (Sinapis arvensis Seedling, Affected by Aqueous Extracts of Black Cumin (Bunium persicum L, Chickpea (Cicer arietinum L and Mixed of Extracts

    Directory of Open Access Journals (Sweden)

    R Moradi

    2012-02-01

    Full Text Available Abstract In order to evaluate the effects of shoot aqueous extracts of chickpea, black cumin and their mixed aqueous extracts on seed germination and seedling morphological characteristics of wild oat and mustard as two common weed, an experiment was conducted with a factorial arrangement based on completely randomized design with three replications. The experimental treatments were aqueous extracts in five levels (0, 10, 20, 40 and 60 percentage, Weed species in two levels (wild oat and mustard and extract concentration in five levels (0, 10, 20. 40 and 60 percentage. Result indicated that the highest and the lowest percentage and seed germination rate, length of radicle and hypocotyle, dry weight of radicle and hypocotyle and radicle / hypocotyle ratio (R/H, were obtained in control treatment and 60% concentration, respectively. Aqueous extract of black cumin and mixed extracts had the highest and the lowest effect on percentage and seed germination rate, length of radicle and hypocotyle, dry weight of radicle and hypocotyle and radicle / hypocotyle ratio, respectively. Between two weed species, wild oat had the lowest percentage of seed germination and length of radicle compared with mustard. Mustard had the lowest seed germination rate, dry weight of radicle and hypocotyle and length of hypocotyle compare with wild oat. Generally, it was concluded that chickpea and black cumin aqueous extracts have highly inhibitory in terms of weed control that can be useful for sustainable agriculture. Keywords: Allelopathy, Black cumin, Chickpea, Extract, Mustard, Wild oat

  6. Allelopathic effects of leaf and corm water extract of saffron (Crocus sativus L. on germination and seedling growth of flixweed (Descurainia sophia L. and downy brome (Bromus tectorum L.

    Directory of Open Access Journals (Sweden)

    Zeinab Alipoor

    2015-04-01

    Full Text Available This study was conducted in two factorial experiment based on completely randomized design with three replications at research laboratory of faculty of agriculture in University of Birjand in 2013. Factors included saffron organs at 2 levels (leaves and corms and water extract concentrations at 5 levels (0, 0.5, 1, 1.5 and 2 percent.The allelopathic effects of saffron leaves and corms on seed germination and seedling growth characteristics of flixweed (Descurainia sophia L. and downy brome (Bromus tectorum L. were studied in two separate experiments. Results indicated lowest seed germination percentage of downy brome and flixweed were observed at concentration of 2% of corm extract (by 65% and 66% reduce compared to control, respectively. The rate of germination of downy brome decreased (by 71% compared to control with concentration of 2% of leaf extract but the rate of germination on flixweed was not significantly affected by extract concentrations. Different concentrations of leaf and corm extracts significantly decreased length and weight of plumule and radicals of two weeds. A logistic model provided a successful estimation of relationship between leaf water extract and germination percentage of two weeds. Based on orthogonal comparison tests, the allelopathic inhibition effects of saffron leaves and corms were more on downy brome and flixweed, respectively.

  7. Alleviation of nickel toxicity in finger millet (Eleusine coracana L. germinating seedlings by exogenous application of salicylic acid and nitric oxide

    Directory of Open Access Journals (Sweden)

    Kasi Viswanath Kotapati

    2017-06-01

    Full Text Available This study investigated the effect of salicylic acid (SA and sodium nitroprusside (SNP; NO donor on nickel (Ni toxicity in germinating finger millet seedlings. Fourteen-day-old finger millet plants were subjected to 0.5 mmol L−1 Ni overload and treated with 0.2 mmol L−1 salicylic acid and 0.2 mmol L−1 sodium nitroprusside to lessen the toxic effect of Ni. The Ni overload led to high accumulation in the roots of growing plants compared to shoots, causing oxidative stress. It further reduced root and shoot length, dry mass, total chlorophyll, and mineral content. Exogenous addition of either 0.2 mmol L−1 SA or 0.2 mmol L−1 SNP reduced the toxic effect of Ni, and supplementation with both SA and SNP significantly reduced the toxic effect of Ni and increased root and shoot length, chlorophyll content, dry mass, and mineral concentration in Ni-treated plants. The results show that oxidative stress can be triggered in finger millet plants by Ni stress by induction of lipoxygenase activity, increase in levels of proline, O2•− radical, MDA, and H2O2, and reduction in the activity of antioxidant enzymes such as CAT, SOD, and APX in shoots and roots. Exogenous application of SA or SNP, specifically the combination of SA + SNP, protects finger millet plants from oxidative stress observed under Ni treatment.

  8. Association Mapping of Ferrous, Zinc, and Aluminum Tolerance at the Seedling Stage in Indica Rice using MAGIC Populations

    Directory of Open Access Journals (Sweden)

    Lijun Meng

    2017-10-01

    Full Text Available Excessive amounts of metal are toxic and severely affect plant growth and development. Understanding the genetic control of metal tolerance is crucial to improve rice resistance to Fe, Zn, and Al toxicity. The multi-parent advanced generation inter-cross (MAGIC populations were genotyped using a 55 K rice SNP array and screened at the seedling stage for Fe, Zn, and Al toxicity using a hydroponics system. Association analysis was conducted by implementing a mixed linear model (MLM for each of the five MAGIC populations double cross DC1 (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1, double cross DC2 (founders of double cross were FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127, eight parents population 8way (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1, FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127, DC12 (DC1+DC2 and rice multi-parent recombinant inbred line population RMPRIL (DC1+DC2+8way. A total of 21, 30, and 21 QTL were identified for Fe, Zn, and Al toxicity tolerance, respectively. For multi tolerance (MT as Fe, Zn, and Al tolerance-related traits, three genomic regions, MT1.1 (chr.1: 35.4–36.3 Mb, MT1.2 (chr.1: 35.4–36.3 Mb, and MT3.2 (chr.3: 35.4-36.2 Mb harbored QTL. The chromosomal regions MT2.1 (chr.2: 2.4–2.8 Mb, MT2.2 (chr.2: 24.5–25.8 Mb, MT4 (chr.4: 1.2 Mb Mb, MT8.1 (chr.8: 0.7–0.9 Mb, and MT8.2 (chr.8: 2.2–2.4 Mb harbored QTL for Fe and Zn tolerance, while MT2.3 (chr.2: 30.5–31.6 Mb, MT3.1 (chr.3: 12.5–12.8 Mb, and MT6 (chr.6: 2.0–3.0 Mb possessed QTL for Al and Zn tolerance. The chromosomal region MT9.1 (chr.9: 14.2–14.7 Mb possessed QTL for Fe and Al tolerance. A total of 11 QTL were detected across different MAGIC populations and 12 clustered regions were detected under different metal conditions, suggesting that these genomic regions might constitute valuable regions for further marker-assisted selection (MAS in breeding

  9. Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants1

    Science.gov (United States)

    Cassán, Fabricio; Bottini, Rubén; Schneider, Gernot; Piccoli, Patricia

    2001-01-01

    Azospirillum species are plant growth-promotive bacteria whose beneficial effects have been postulated to be partially due to production of phytohormones, including gibberellins (GAs). In this work, Azospirillum brasilense strain Cd and Azospirillum lipoferum strain USA 5b promoted sheath elongation growth of two single gene GA-deficient dwarf rice (Oryza sativa) mutants, dy and dx, when the inoculated seedlings were supplied with [17,17-2H2]GA20-glucosyl ester or [17,17- 2H2]GA20-glucosyl ether. Results of capillary gas chromatography-mass spectrometry analysis show that this growth was due primarily to release of the aglycone [17,17-2H2]GA20 and its subsequent 3β-hydroxylation to [17,17-2H2]GA1 by the microorganism for the dy mutant, and by both the rice plant and microorganism for the dx mutant. PMID:11299384

  10. Population Structure, Diversity and Trait Association Analysis in Rice (Oryza sativa L. Germplasm for Early Seedling Vigor (ESV Using Trait Linked SSR Markers.

    Directory of Open Access Journals (Sweden)

    Annamalai Anandan

    Full Text Available Early seedling vigor (ESV is the essential trait for direct seeded rice to dominate and smother the weed growth. In this regard, 629 rice genotypes were studied for their morphological and physiological responses in the field under direct seeded aerobic situation on 14th, 28th and 56th days after sowing (DAS. It was determined that the early observations taken on 14th and 28th DAS were reliable estimators to study ESV as compared to 56th DAS. Further, 96 were selected from 629 genotypes by principal component (PCA and discriminate function analyses. The selected genotypes were subjected to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic by using ESV QTL linked simple sequence repeat (SSR markers. To assess the genetic structure, model and distance based approaches were used. Genotyping of 96 rice lines using 39 polymorphic SSRs produced a total of 128 alleles with the phenotypic information content (PIC value of 0.24. The model based population structure approach grouped the accession into two distinct populations, whereas unrooted tree grouped the genotypes into three clusters. Both model based and structure based approach had clearly distinguished the early vigor genotypes from non-early vigor genotypes. Association analysis revealed that 16 and 10 SSRs showed significant association with ESV traits by general linear model (GLM and mixed linear model (MLM approaches respectively. Marker alleles on chromosome 2 were associated with shoot dry weight on 28 DAS, vigor index on 14 and 28 DAS. Improvement in the rate of seedling growth will be useful for identifying rice genotypes acquiescent to direct seeded conditions through marker-assisted selection.

  11. The Hypocholesterolemic Effect of Germinated Brown Rice Involves the Upregulation of the Apolipoprotein A1 and Low-Density Lipoprotein Receptor Genes

    Directory of Open Access Journals (Sweden)

    Mustapha Umar Imam

    2013-01-01

    Full Text Available Germinated brown rice (GBR is rich in bioactive compounds, which confer GBR with many functional properties. Evidence of its hypocholesterolemic effects is emerging, but the exact mechanisms of action and bioactive compounds involved have not been fully documented. Using type 2 diabetic rats, we studied the effects of white rice, GBR, and brown rice (BR on lipid profile and on the regulation of selected genes involved in cholesterol metabolism. Our results showed that the upregulation of apolipoprotein A1 and low-density lipoprotein receptor genes was involved in the hypocholesterolemic effects of GBR. Additionally, in vitro studies using HEPG2 cells showed that acylated steryl glycoside, gamma amino butyric acid, and oryzanol and phenolic extracts of GBR contribute to the nutrigenomic regulation of these genes. Transcriptional and nontranscriptional mechanisms are likely involved in the overall hypocholesterolemic effects of GBR suggesting that it may have an impact on the prevention and/or management of hypercholesterolemia due to a wide variety of metabolic perturbations. However, there is need to conduct long-term clinical trials to determine the clinical relevance of the hypocholesterolemic effects of GBR determined through animal studies.

  12. A lack of correlation between the biological activity and rate of metabolism of ent-(3H)-17-kaurenoic acid by seedlings of dwarf rice cv. Tan-ginbozu

    International Nuclear Information System (INIS)

    Railton, I.D.; Durley, R.C.; Pharis, R.P.

    1975-01-01

    Significant leaf sheath elongation occurred within 24 hr after application of 10 μg (0.67 μCi) of ent-( 3 H)-17-kaurenoic acid (KA) to individual seedlings of dwarf rice cv. Tan-ginbozu, but this growth was unaccompanied by production of significant levels of radioactivity in more polar, acidic, ethyl acetate-soluble metabolites of ( 3 H)-KA. However modest levels of radioactivity appeared in the highly water-soluble fraction by hour 24, subsequent to the most rapid phase of KA-induced growth. Growth continued and by hour 48 was accompanied by the appearance of small amounts of radioactivity in polar, acidic products. It would appear that KA per se, and not its metabolic products, may be responsible for the leaf sheath elongation noted at hour 24. On the speculation that it might be a metabolite of KA, gibberellin A 14 (GA 14 ) was applied simultaneously with ( 3 H)-KA to individual rice seedlings. Several changes in the metabolism of 3 H-KA in the presence of GA 14 were noted, and GA 14 antagonized the KA-induced sheath elongation. (auth.)

  13. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2008-01-01

    Rice is an important staple food in Asian countries. In rural areas it is also a major source of micronutrients. Unfortunately, the bioavailability of minerals, e.g. zinc from rice, is low because it is present as an insoluble complex with food components such as phytic acid. We investigated the

  14. Studying the effects of different levels of salinity which caused by NaCl on early growth and germination of Lactuca Sativa L. seedling

    OpenAIRE

    KESHAVARZI MOHAMMAD HOSEIN BIJEH

    2012-01-01

    Soil salinity is one of the most important constraints that limit crop production in arid and semi arid regions. Seed germination is a critical stage in the history of plants and salt tolerance during germination is crucial for the establishment of plants that grow in saline soils. This research was carried out in order to test the effects of different salinity levels on germination and early growth of lettuce (Lactuca Sativa L.). The experiment was carried out using completely randomized des...

  15. Protective effects of pre-germinated brown rice diet on low levels of Pb-induced learning and memory deficits in developing rat.

    Science.gov (United States)

    Zhang, Rong; Lu, Hongzhi; Tian, Su; Yin, Jie; Chen, Qing; Ma, Li; Cui, Shijie; Niu, Yujie

    2010-03-30

    Lead (Pb) is a known neurotoxicant in humans and experimental animals. Numerous studies have provided evidence that humans, especially young children, and animals chronically intoxicated with low levels of Pb show learning and memory impairments. Unfortunately, Pb-poisoning cases continue to occur in many countries. Because the current treatment options are very limited, there is a need for alternative methods to attenuate Pb toxicity. In this study, the weaning (postnatal day 21, PND21) rats were randomly divided into five groups: the control group (AIN-93G diet, de-ionized water), the lead acetate (PbAC) group (AIN-93G diet, 2g/L PbAC in de-ionized water), the lead acetate+WR group (white rice diet, 2g/L PbAC in de-ionized water; PbAC+WR), the lead acetate+BR group (brown rice diet, 2g/L PbAC in de-ionized water; PbAC+BR) and the lead acetate+PR group (pre-germinated brown rice diet, 2g/L PbAC in de-ionized water; PbAC+PR). The animals received the different diets until PND60, and then the experiments were terminated. The protective effects of pre-germinated brown rice (PR) on Pb-induced learning and memory impairment in weaning rats were assessed by the Morris water maze and one-trial-learning passive avoidance test. The anti-oxidative effects of feeding a PR diet to Pb-exposed rats were evaluated. The levels of reactive oxygen species (ROS) were determined by flow cytometry. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), gamma-aminobutyric acid (GABA) and glutamate were determined by HPLC. Our data showed that feeding a PR diet decreased the accumulation of lead and decreased Pb-induced learning and memory deficits in developing rats. The mechanisms might be related to the anti-oxidative effects and large amount of GABA in PR. Our study provides a regimen to reduce Pb-induced toxicity, especially future learning and memory deficits in the developing brain.

  16. Mapping and validation of QTLs for cold tolerance at seedling stage in rice from an indica cultivar Habiganj Boro VI (Hbj.BVI).

    Science.gov (United States)

    Biswas, Partha S; Khatun, Hasina; Das, Nomita; Sarker, Md Mahathir; Anisuzzaman, M

    2017-12-01

    Yellowing, stunting, and seedling death associated with cold stress is a common problem in many Asian countries for winter rice cultivation. Improvement of cultivars through marker-assisted selection of QTLs for cold tolerance at seedling stage from locally adapted germplasm/cultivar is the most effective and sustainable strategy to resolve this problem. A study was undertaken to map QTLs from 151 F 2:3 progenies of a cross between a cold susceptible variety, BR1 and a locally adapted traditional indica cultivar, Hbj.BVI. A total of six significant QTLs were identified for two cold tolerance indices-cold-induced leaf discoloration and survival rate after a recovery period of seven days on chromosomes 6, 8, 11, and 12. Among these QTLs, qCTSL - 8 - 1 and qCTSS - 8 - 1 being co-localized into RM7027-RM339 on chromosome 8 and qCTSL - 12 - 1 and qCTSS - 12 - 1 into RM247-RM2529 on chromosome 12 showed 12.78 and 14.96% contribution, respectively, to the total phenotypic variation for cold tolerance. Validation of QTL effect in BC 1 F 3 population derived a cross between a cold susceptible BRRI dhan28 and Hbj.BVI showed dominating effect of qCTSL - 12 - 1 on cold tolerance at seedling stage and it became stronger when one or more other QTLs were co-segregated with it. These results suggest that the QTLs identified in this study are stable and effective on other genetic background also, which warrant the use of these QTLs for further study aiming to cultivar development for seedling stage cold tolerance.

  17. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations.

    Science.gov (United States)

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones.

  18. Chemopreventive Effects of Germinated Rough Rice Crude Extract in Inhibiting Azoxymethane-Induced Aberrant Crypt Foci Formation in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Elnaz Saki

    2017-01-01

    Full Text Available Chemoprevention has become an important area in cancer research due to low success rate of current therapeutic modalities. Diet plays a vital role in the etiology of cancer. This research was carried out to study the chemopreventive properties of germinated rough rice (GRR crude extract in Sprague-Dawley rats induced with azoxymethane. Germination of rough rice causes significant changes in several chemical compositions of presently bioactive compounds. These compounds may prevent or postpone the inception of cancer. Fifty male Sprague-Dawley rats (6 weeks of age were randomly divided into 5 groups which were (G1 induced with azoxymethane (AOM and not given GRR (positive control, (G2 induced with AOM and given 2000 mg/kg GRR, (G3 induced with AOM and given 1000 mg/kg GRR, (G4 induced with AOM and given 500 mg/kg GRR, and (G5 not induced with AOM and not given GRR crude extract (negative control. To induce colon cancer, rats received two IP injections of AOM in saline (15 mg/kg for two subsequent weeks. Organs were removed and weighed. Aberrant crypt foci (ACF were evaluated histopathologically. β-Catenin expressions were determined by Western blot. Treatment with 2000 mg/kg GRR crude extract not only resulted in the greatest reduction in the size and number of ACF but also displayed the highest percentage of nondysplastic ACF. Treatment with 2000 mg/kg GRR also gave the lowest level of expression in β-catenin. Thus, GRR could be a promising dietary supplement for prevention of CRC.

  19. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus.

    Science.gov (United States)

    Urayama, Syun-Ichi; Kimura, Yuri; Katoh, Yu; Ohta, Tomoko; Onozuka, Nobuya; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Komatsu, Ken; Moriyama, Hiromitsu

    2016-09-02

    Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Studying the effects of different levels of salinity which caused by NaCl on early growth and germination of Lactuca Sativa L. seedling

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Bijeh Keshavarzi

    2012-04-01

    Full Text Available Soil salinity is one of the most important constraints that limit crop production in arid and semi arid regions. Seed germination is a critical stage in the history of plants and salt tolerance during germination is crucial for the establishment of plants that grow in saline soils. This research was carried out in order to test the effects of different salinity levels on germination and early growth of lettuce (Lactuca Sativa L.. The experiment was carried out using completely randomized design in four replication in 2011 Zabol University laboratory Iran. The results showed that by increasing salinity, percentage and race of germination decreased, So that, in the 150 mM of salinity level, germination reached to minimized (8.33%. Other measured parameters such as plumule length, radicle length, dry and wet weight decreased as well. All the results analyzed by SAS statistical software and comparison of average had done by Duncan test on 5% possible level.

  1. seed germination and seedlings growth

    African Journals Online (AJOL)

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... however, abscisic acid (ABA) can counter this effect by keeping seeds ... Tris-HCl buffer at pH 8.8, with constant current set at 20 mA/gel. The gels were ..... on plants is rarely studied and the importance of 20E in the life cycle ...

  2. Efeito de extratos aquosos de estruturas de grama-seda no desenvolvimento inicial de plântulas de arroz, milho e trigo Effects of aqueous extracts of bermudagrass structures on initial growth of rice, corn and wheat seedlings

    Directory of Open Access Journals (Sweden)

    Maria do Carmo de Salvo Soares Novo

    2009-09-01

    Full Text Available Objetivou-se verificar os efeitos de extratos aquosos de estruturas de grama-seda (Cynodon dactylon (L. Pers e de exsudatos radiculares presentes no solo no qual a planta se desenvolveu, sobre a germinação e o crescimento inicial de arroz, trigo e milho. O extrato aquoso das estruturas da parte aérea, subterrâneas e da planta inteira, assim como do estolão, da folha + colmo, estolão + folha + colmo, rizoma, raiz e de rizoma + raiz de grama-seda foi elaborado a partir de 100 g L-1 de material seco. Foram avaliados a protrusão da radícula e os crescimentos da radícula e da plúmula de cada espécie. A inibição ou o estímulo do desenvolvimento inicial de plântulas foi dependente da espécie avaliada e da estrutura vegetal empregada na elaboração do extrato. A protrusão da radícula foi mais inibida que os crescimentos da radícula e da plúmula. O estímulo do desenvolvimento da radícula e da plúmula foi mais evidente quando o extrato foi elaborado a partir das estruturas do sistema radicular, da parte aérea e da planta inteira que de estruturas individualizadas de grama-seda. De modo geral, o arroz e o milho foram mais inibidos por extratos elaborados a partir da parte aérea e subterrânea, respectivamente. Para o trigo, a inibição ou o estímulo foi dependente da variável analisada. O desenvolvimento da radícula e da plúmula de arroz, milho e trigo foi estimulado por extrato elaborado a partir da planta inteira. O extrato produzido a partir da fração argila + silte estimulou o desenvolvimento da radícula do milho e da plúmula do trigo.The objective of this work was to study the effects of aqueous extracts of Bermudagrass structures (Cynodon dactylon (L. Pers and soil exudates, on the germination and initial growth of rice, corn and wheat seedlings. The aqueous extracts of above-ground and subterranean parts and of the whole plant, as well as of stolons, leaves + culm, stolons + leaves + culm, rhizome, root and rhizome

  3. Substrate in the emergence and initial growth of seedlings of Caesalpinia pulcherrima

    Directory of Open Access Journals (Sweden)

    Magnólia Martins Alves

    Full Text Available ABSTRACT: Caesalpinia pulcherrima is an exotic species belongs to the Fabaceae family commonly known as flamboyant-mirim, and widely used for urban forestry. This study aimed to evaluate the effect of different substrates on the emergence and early seedlings growth of C. pulcherrima . The experiment was conducted in a greenhouse belonging to the Centro de Ciências Agrárias, Universidade Federal da Paraíba. The experimental design was completely randomized and treatments had 14 substrates: sand, vegetable soil, vermiculite, wood dust, carbonized rice straw, vegetable soil + sand 1:1, sand + wood dust 1:1, sand + carbonized rice straw 1:1, earth + wood dust 1:1, vegetable soil + carbonized rice straw 1:1, vermiculite + sand 1:1, vermiculite + wood dust 1:1, vermiculite + earth 1:1 and vermiculite + carbonized rice straw 1:1. Evaluation of the effect of the treatments was through the following determinations: percentage of emergency, first count, index of germination speed, length and dry weight of roots and shoots. The vermiculite, vegetable soil + sand 1:1, vermiculite + sand 1:1, vermiculite + saw dust 1:1, are suitable for emergence and early growth of seedlings of Caesalpinia pulcherrima . Substrates saw dust and carbonized rice straw were responsible for the worst performers on emergence and seedling development.

  4. Cotyledon persistence and seedling growth in fluted Pumpkin ...

    African Journals Online (AJOL)

    Photosynthetic activity of exposed cotyledons of Telfairia occidentalis during seed germination and the growth of seedlings with removed or attached cotyledons were investigated. The experiment investigated how early cotyledon removal affects seedling growth. Seedlings from seeds germinated in light and those ...

  5. Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L. seedlings.

    Directory of Open Access Journals (Sweden)

    Yi-Kai Zhang

    Full Text Available Soil acidification is the main problem in the current rice production. Here, the effects of low pH on the root growth, reactive oxygen species metabolism, plasma membrane functions, and the transcript levels of the related genes were investigated in rice seedlings (Oryza sativa L. in a hydroponic system at pH 3.5, 4.5, and 5.5. There were two hybrid rice cultivars in this trial, including Yongyou 12 (YY12, a japonica hybrid and Zhongzheyou 1 (ZZY1, an indica hybrid. Higher H+ activity markedly decreased root length, the proportion of fine roots, and dry matter production, but induced a significant accumulation of hydrogen peroxide (H2O2, and led to serious lipid peroxidation in the roots of the two varieties. The transcript levels of copper/zinc superoxide dismutase 1 (Cu/Zn SOD1, copper/zinc superoxide dismutase 2 (Cu/Zn SOD2, catalase A (CATA and catalase B (CATB genes in YY12 and ZZY1 roots were significantly down-regulated after low pH exposure for two weeks. Meanwhile, a significant decrease was observed in the expression of the P-type Ca2+-ATPases in roots at pH 3.5. The activities of antioxidant enzymes (SOD, CAT and plasma membrane (PM Ca2+-ATPase in the two varieties were dramatically inhibited by strong rhizosphere acidification. However, the expression levels of ascorbate peroxidase 1 (APX1 and PM H+-ATPase isoform 7 were up-regulated under H+ stress compared with the control. Significantly higher activities of APX and PM H+-ATPase could contribute to the adaptation of rice roots to low pH.

  6. Autotoxicity of chard and its allelopathic potentiality on germination ...

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    Apr 3, 2008 ... Abbreviation: (W+C), Wheat germinated with chard; (C+W), chard germinated with ..... hull extracts which have inhibitory effect on the growth of barnyardgrass seedlings. .... John Wiley and Sons,. New York, pp. 171-188.

  7. on seed germination and growth of Garcinia kola

    African Journals Online (AJOL)

    SARAH

    2016-07-31

    Jul 31, 2016 ... Parameters related to seed germination and seedlings vigour was evaluated. Results indicated that substrate do not affect seed germination and plant vigour. However ..... Annual plant reviews California, USA, pp. 50-. 6.7.

  8. Muskmelon seed germination and seedling development in response to seed priming Germinação de sementes e desenvolvimento de plântulas de melão em resposta ao condicionamento osmótico

    Directory of Open Access Journals (Sweden)

    Warley Marcos Nascimento

    2003-02-01

    Full Text Available Important factors affecting seed priming have not been extensively reported in muskmelon (Cucumis melo L. studies. The optimization of the seed priming technique becomes very important at the commercial scale. Little information has been reported on seedling development of muskmelon subsequent to seed priming. Seeds of muskmelon were primed in darkness at 25°C in different solutions and three osmotic potentials. Seeds were also primed with and without aeration during different periods. In relation to osmotic solutions, an osmotic potential around -1.30 MPa is most adequate for muskmelon priming. Salt solutions gave better germination rate but were deleterious for seed germination, especially at higher osmotic potentials. Aeration of the soaking salt solution gave faster germination at 17°C, and because of the early germination, these treatments probably presented a better seedling development. Deleterious effect on total seed germination was observed for long soaking periods with aeration. Fungal growth increased on seeds primed in aerated solutions. Seeds from priming treatments had a better germination rate and seedling development under 17 and 25°C.Importantes fatores afetando o condicionamento osmótico não têm sido extensivamente relatados em sementes de melão (Cucumis melo L.. A otimização do condicionamento osmótico é extremamente importante em uma escala comercial. Poucas informações têm sido relatadas quanto ao desenvolvimento de plântulas em resposta ao condicionamento osmótico de sementes de melão. Sementes de melão foram condicionadas a 25°C, na ausência de luz, em diferentes soluções osmóticas utilizando três potenciais osmóticos para cada solução. Em outro estudo, sementes foram condicionadas com ou sem aeração durante vários períodos. Indiferentemente das soluções osmóticas, o potencial osmótico em torno de - 1,30 MPa foi mais adequado para o condicionamento osmótico. Sementes condicionadas em

  9. Germinação e formação de mudas de coqueiro irrigadas com águas salinas Germination and seedling formation of coconut irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Francisco J. L. Marinho

    2005-09-01

    Full Text Available O cultivo de coqueiro vem crescendo no Nordeste, com aumento de produtividade, quando irrigado. Sendo comuns na região águas salinas e se considerando a carência de dados de pesquisa de salinidade em coqueiro anão-verde (Cocos nucifera L., objetivou-se, através deste trabalho, avaliar os efeitos da irrigação com águas salinas (CEa = 2,2, 5, 10, 15 e 20 dS m-1 sobre a germinação e o crescimento inicial de plântulas, até 120 dias após semeadura (fase I, estendendo-se a avaliação, posteriormente, após repicagem para o viveiro, quando passaram a ser irrigadas com água de CEa = 2,2 dS m-1, durante 120 dias (fase II, estudando-se o efeito residual dos níveis de salinidade aplicados na fase I. Em ambos os experimentos, o delineamento foi inteiramente casualizado, com quatro repetições. As águas salinas foram preparadas com adição de NaCl comercial. Na primeira fase, o incremento da CEa não influenciou significativamente a germinação que variou de 80 a 97,5%, porém afetou a velocidade de germinação e o crescimento das plântulas; na fase de sementeira, a salinidade afetou a fitomassa total a partir de 5,4 dS m-1; o sistema radicular foi a variável mais afetada pela salinidade. Na fase II, as plantas oriundas de germinação sob condições de alta salinidade, após passarem a ser irrigadas com água de 2,2 dS m-1, cresceram no mesmo ritmo daquelas germinadas sem estresse salino.The coconut cultivation is growing in the Northeast Brazil with increase in productivity under irrigated conditions. Saline waters are commonly found in this region and considering the lack of data related to salinity on dwarf-green coconut (Cocos nucifera L., this work had the objective of evaluating the effects of the irrigation with saline waters (ECw = 2.2, 5, 10, 15 and 20 dS m-1 on the germination and the initial growth of seedlings until 120 days after sowing (phase I, extending the evaluation, later, after transplanting in the nursery, when

  10. In vitro sterilization technique on embryo of black Toraja rice

    Science.gov (United States)

    Haring, F.; Riadi, M.; Rafiuddin; Sjahril, R.; Muchlis, A. R.

    2018-05-01

    Toraja black rice has a high anthocyanin content, a water-soluble pigments, with antioxidant activity. Toraja black rice has a variety of seeds colour in one panicles such as full black (the outside and inside the rice), medium black (the outside and slightly inside rice) and a little black (only the outside of rice). Embryo culture in vitro is one way to grow plants in sterile conditions. The presence of contamination and the death of the embryo require in vitro embryo culture. The sterilization technique is a very important first step to eliminate contamination and the death of embryos. This research aims to determine the right material composition for sterilization of black rice’s embryo. The experiment was done by growing black rice on half strength MS media with the treatment of three method of sterilization, i.e.: S1 (70% alcohol for 5 minutes, 3% and 2% Chlorox each for 10 minutes,), S2 (70% alcohol for 3 minutes, 2% Clorox for 10 minutes) and S3 (70% alcohol for 3 minutes and 1% Clorox for 15 minutes). The materials used are rice seedlings that have been cut in two and opened the pericarp of paddy grain, leaving a piece of rice that has a complete embryo. The best sterilization for Toraja black rice embryo culture was using the S3 composition. Best germination was seen on the seeds with full and medium black color.

  11. Fatores que afetam a germinação de sementes e emergência de plântulas de arruda (Ruta graveolens L. Factors affecting seed germination and seedling emergence in rue (Ruta graveolens L.

    Directory of Open Access Journals (Sweden)

    O.M. Yamashita

    2009-01-01

    Full Text Available Ruta graveolens L., também conhecida com arruda, é planta originária do sul da Europa, cultivada no Brasil e em outros países como planta medicinal, muito utilizada em rituais religiosos. Tendo em vista que a germinação constitui um fator primordial para que a semente possa gerar uma planta vigorosa e com alto potencial produtivo, o presente trabalho teve como objetivo avaliar a resposta germinativa de sementes para arruda sob condições de temperatura, luminosidade, estresse hídrico e salino e emergência de plântulas em diferentes profundidades de semeadura. Sementes de Ruta graveolens são indiferentes à luz, germinando melhor em temperatura constante de 25ºC ou alterna (20-30ºC. Os potenciais osmóticos induzidos por manitol a partir de -0,4MPa e por NaCl a partir de -0,8MPa influenciam negativamente o processo germinativo. Maiores percentuais de plântulas são obtidas quando a espécie é semeada na superfície do substrato.Ruta graveolens L., also known as rue, is from the south of Europe, cultivated in Brazil and other countries as a medicinal plant greatly used in religious rituals. Since germination is essential for the seed to generate a vigorous plant of high productive potential, this work aimed to evaluate the germinative response of rue seeds under different temperatures, luminosity conditions, and water and salt stress, besides seedling emergence at different sowing depths. Ruta graveolens L. seeds are indifferent to light, better germinating at constant temperature of 25ºC or alternated temperature (20-30ºC. The osmotic potentials induced by mannitol from -0.4MPa and by NaCl from -0.8MPa negatively influenced the germination process. Higher seedling percentages are obtained when the species is sown on the substratum surface.

  12. Effects of temperature on growth and photosynthesis in the seedling stage of the sheath blight-resistant rice genotype 32R

    Directory of Open Access Journals (Sweden)

    Huynh Van Kiet

    2016-04-01

    Full Text Available The 32R rice genotype is resistant to sheath blight disease (ShB, with a high-yield potential. We examined effects of temperature on the plant responses of 32R in comparison with those of the ShB-susceptible rice genotype (29S and Nipponbare (Nb, a Japonica standard cultivar. The seedlings at the 4th leaf stage of rice genotypes were exposed to 14/14, 19/14, 25/20, 31/26, 37/32 and 37/37 °C (day/night for 5, 10 and 15 days. The dry weight, leaf area, photosynthesis, contents of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco and chlorophyll contents were examined. The dry weight showed lower in 32R than in 29S and Nb at a low temperature, and total dry weight correlated strongly with root dry weight and leaf area. The relative growth rate (RGR correlated strongly with the net assimilation rate (NAR. Rubisco, chlorophyll contents and the photosynthetic rates were limited at a low temperature and showed lower in 32R than in 29S and Nb. The strong correlations between Rubisco and the rates of maximum photosynthesis and initial slope were found in 32R, but not found in 29S and Nb. In addition, RGR and NAR of 32R correlated positively with Rubisco. These suggest that 32R contains traits of cold-sensitive genotypes that are related to limiting Rubisco at a low temperature, thus diminishing photosynthesis and limiting plant growth. Differences of growth among 32R, 29S and Nb were discussed in the relation of genotypes.

  13. Germinação de sementes e formação de mudas de Caesalpinia echinata Lam. (Pau - Brasil: efeito de sombreamento Seed germination and seedling growth of Caesalpinia echinata Lam. (Brazilwood: shading effect

    Directory of Open Access Journals (Sweden)

    Francismar Francisco Alves Aguiar

    2005-12-01

    Full Text Available Caesalpinia echinata Lam. (pau-brasil é a árvore nacional do Brasil, possui grande potencial ornamental, estando atualmente em perigo de extinção devido à exploração extrativista. O objetivo deste trabalho foi avaliar a germinação das sementes de C. echinata e o crescimento de mudas sob condições de sombreamento. Os experimentos foram conduzidos na Seção de Ornamentais do IBt/SMA, São Paulo, SP. As sementes foram coletadas de frutos maduros, de árvores-matriz no arboreto experimental de C. echinata em Mogi-Guaçu, SP. Os testes de germinação foram realizados nos anos de 1999, 2000 e 2003, com quatro repetições de 25 sementes cada, sendo avaliadas a porcentagem de germinação e o índice de velocidade de emergência (IVE, submetidas a cinco níveis de sombreamento (0, 20, 40, 60 e 80%. Mudas de C. echinata com nove meses de idade foram submetidas aos mesmos tratamentos de sombreamento das sementes, sendo as variáveis analisadas altura da planta, diâmetro do colo e número de folhas. O delineamento estatístico utilizado foi o inteiramente casualizado, com quatro repetições e 24 plantas por parcela, totalizando 96 mudas por tratamento. Os resultados indicaram que a germinação e o IVE não sofreram influência dos níveis de sombreamento testados. O diâmetro do coleto das mudas a pleno sol, a 20 e 40% de sombreamento, não diferiram significativamente entre si, mas dos tratamentos de 60 e 80%.Caesalpinia echinata Lam. (Brazilwood, Brazil's national tree, has ornamental potential, and due to years of exploitation this species has been reduced on the verge of extinction. This study was aimed to evaluate seed germination and seedling growth of brazil wood under shading conditions. The experiments were conducted at the IBt/SMA Ornamental Department, São Paulo-SP. Seeds were harvested from ripe fruits, from trees of the experimental arboretum of brazilwood at Mogí-Guaçu-SP. The germination tests were carried out in 1999

  14. Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants

    Science.gov (United States)

    Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong

    Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.

  15. Combining Ability for Germination Traits in Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    A. K. M. Aminul Islam

    2013-01-01

    Full Text Available Six parents of Jatropha curcas were crossed in half diallel fashion, and the F1s were evaluated to determine the combining ability for nine germination parameters. The ratio between general combining ability (GCA and specific combining ability (SCA variances indicated preponderance of additive gene action for all the characters except germination percentage, time of 50% germination, seedling length, and seedling vigor index. The parents P1 and P2 were the best general combiner for most of the characters studied. The cross P1×P5 was the best specific combiner for speed of emergence, germination percentage, germination energy, germination index, and seedling vigor index, the cross P2×P5 for mean germination time, time of 50% germination, and seedling length, and the cross P4×P5 for number of days to first germination. The germination percentage varied from 58.06 to 92.76% among the parents and 53.43 to 98.96% among the hybrids. The highest germination (98.96% was observed in hybrid P2×P4, and none of the hybrids or parents showed 100% germination. The highest germination index (GI and seedling vigor index (SVI were found in hybrid P1×P5 and P2×P5, respectively. The results of this study provide clue for the improvement of Jatropha variety through breeding program.

  16. Effect of mutagens on seed germination in chilli (Capsicum annuum L.)

    International Nuclear Information System (INIS)

    Dhamayanthi, K.P.M.; Reddy, V.R.K.

    2002-01-01

    Seeds of chilli variety CO-2 (Coimbatore-2) were irradiated with gamma rays ranging from 10 kR to 35 kR at an interval of 5 kR and the effect on seed germination, seedling survival, percent lethality and seedling injury were studied. Lower doses were stimulative, while higher doses had inhibitory effect on seed germination and seedling survival. The highest percentage of seed germination (37.5) and seedling survival (31.3) was recorded at 10 kR as compared to 28 percent of germination and 3.3 percent seedling survival in control. Percent lethality (9.6%) and seedling injury (6.5%) were comparatively low than the lethality percentage and seedling injury of the higher dose treatments. In chemical mutagen treatments, the maximum seed germination (54.5%) and seedling survival (51.2%), seedling lethality (0.97%) and seedling injury (1.37%) were obtained in the treated seeds of EMS at 0.5% concentration followed by 39.5% seed germination and 30.0% seedling survival, seedling lethality (3.8%) and seedling injury (3.06%) of MMS. The stimulative effect of seed germination is more in chemical mutagens than the physical mutagen. There was a proportionate decrease in germination percentage and seedling survival with an increase in dose/concentration of both the chemicals. (author)

  17. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Dan [Department of Environmental Sciences, East China Normal University, Shanghai (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong); Wu Shengchun; Wu Fuyong [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong); Deng Hong, E-mail: lilac_deng@yahoo.com.c [Department of Environmental Sciences, East China Normal University, Shanghai (China); Tiantong National Station of Forest Ecosystem, Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Wong Minghung, E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong)

    2010-08-15

    Hydroponic experiments were carried out to investigate the effects of root anatomy, induced by aeration and stagnation, and Fe plaque on arsenic (III and V) uptake and translocation by rice plants. The results showed that As uptake in rice plants (Gui Chao-2) treated by aeration was decreased due to lower root specific surface area. Rice roots with larger specific surface area tended to form more Fe plaque, and Fe plaque affected As uptake kinetics by changing As influx curves from linear to hyperbolic for As(III) and from hyperbolic to S-curve for As(V). Fe plaque increased As(III and V) adsorption and minimized the effects of root anatomy characteristics on As uptake into roots and subsequently translocation to shoots. Fe plaque increased As(III) uptake rate at As(III) concentrations of 0.5{approx}8 mg L{sup -1}, reduced As(V) uptake rate at low As(V) concentrations (<2 mg L{sup -1}), but increased As uptake rate at high As(V) concentrations (>6 mg L{sup -1}). - Rice root anatomy and Fe plaque affect As uptake.

  18. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture

    International Nuclear Information System (INIS)

    Deng, Dan; Wu Shengchun; Wu Fuyong; Deng Hong; Wong Minghung

    2010-01-01

    Hydroponic experiments were carried out to investigate the effects of root anatomy, induced by aeration and stagnation, and Fe plaque on arsenic (III and V) uptake and translocation by rice plants. The results showed that As uptake in rice plants (Gui Chao-2) treated by aeration was decreased due to lower root specific surface area. Rice roots with larger specific surface area tended to form more Fe plaque, and Fe plaque affected As uptake kinetics by changing As influx curves from linear to hyperbolic for As(III) and from hyperbolic to S-curve for As(V). Fe plaque increased As(III and V) adsorption and minimized the effects of root anatomy characteristics on As uptake into roots and subsequently translocation to shoots. Fe plaque increased As(III) uptake rate at As(III) concentrations of 0.5∼8 mg L -1 , reduced As(V) uptake rate at low As(V) concentrations ( -1 ), but increased As uptake rate at high As(V) concentrations (>6 mg L -1 ). - Rice root anatomy and Fe plaque affect As uptake.

  19. DOES JASMONIC ACID PREVENT THE GERMINATION

    OpenAIRE

    ÇAVUŞOĞLU, Kürşat

    2009-01-01

    Abstract: Effect of jasmonic acid on seed germination and seedling growth of barley (Hordeum vulgare L. cv. Bülbül 89) was investigated in the present study. Jasmonic acid concentrations less than 1500 µM have not inhibited the seed germination, while 1500 and 2000 µM jasmonic acid levels caused atypical germination. The germination was completely inhibited at 3000 µM level of jasmonic acid. However, the seedling growth clearly slowed down with increasing concentrations of jasmonic acid. Furt...

  20. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Identification of Sweet Sorghum accessions with seedling cold tolerance using both lab cold germination test and field early Spring planting evaluation

    Science.gov (United States)

    Cultivars with quick seedling emergence and stand establishment at early spring cold conditions may be planted early in the same region with an extended period of plant growth and can potentially increase either grain yield, stem sugar yield, or biomass production of sorghum. Planting cultivars with...

  2. Effects of pre-germinated brown rice treatment high-fat diet-induced metabolic syndrome in C57BL/6J mice.

    Science.gov (United States)

    Yen, Hsueh-Wei; Lin, Hui-Li; Hao, Chi-Long; Chen, Fu-Chih; Chen, Chun-Yun; Chen, Jia-Hao; Shen, Kuo-Ping

    2017-05-01

    To investigate using pre-germinated brown rice (PGBR) to treat metabolic syndrome, we fed one group of mice standard-regular-diet (SRD) for 20 weeks and another group of mice high-fat-diet (HFD) for 16 weeks. We subdivided them into HFD group and HFD + PGBR group whose dietary carbohydrate was replaced with PGBR for 4 weeks. The HFD group gained more weight, had higher blood pressure, heart rate, blood glucose and lipids, liver levels of TG, feces TG and bile acid, lower adipose levels of adipocytokine, lower skeletal muscle IR, IRS-1, IRS-2, PI3 K, Akt/PKB, GLUT-1, GLUT-4, GCK and PPAR-γ; higher liver SREBP-1, SCD-1, FAS, HMGCR, LDLR, CYP7α1 and PPAR-α, and higher adipose SREBP-1, SCD-1, FAS, and lower adipose PPAR-α and adiponectin. The HFD + PGBR group had clearly improved blood pressure, biochemical parameters and above proteins expressions. PGBR successful treatment of metabolic syndrome was achieved through improvements in glucose and lipid synthesis and metabolism.

  3. Effects of Germinated Brown Rice and Its Bioactive Compounds on the Expression of the Peroxisome Proliferator-Activated Receptor Gamma Gene

    Directory of Open Access Journals (Sweden)

    Zaki Tubesha

    2013-02-01

    Full Text Available Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ. PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR’s antiobesity effects. These potentials are worth studying further.

  4. Germinated Brown Rice Alters Aβ(1-42 Aggregation and Modulates Alzheimer’s Disease-Related Genes in Differentiated Human SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Nur Hanisah Azmi

    2015-01-01

    Full Text Available The pathogenesis of Alzheimer’s disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR on the morphology of Aβ(1-42 were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42 suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.

  5. Germinación asimbiótica de semillas y desarrollo in vitro de plántulas de Cattleya mendelii Dombrain (Orchidaceae Asymbiotic seed germination and in vitro seedling development of Cattleya mendelii Dombrain (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Seir Antonio Salazar-Mercado

    2012-01-01

    Full Text Available Cattleya mendelii es una orquídea endémica de Colombia de gran valor ornamental que se encuentra en peligro de extinción a causa de la recolección masiva y a la destrucción de sus hábitats naturales por la acción antrópica. El cultivo in vitro es una alternativa para la conservación de esta especie o su comercialización. En esta investigación se evaluaron la germinación asimbiótica y el desarrollo de plántulas de las semillas de orquídeas de la especie C. mendelii, en diferentes medios de cultivos in vitro. Inicialmente se recolectaron cápsulas maduras; posteriormente, se determinó la viabilidad de las semillas con la prueba de Tetrazolio. En forma paralela, las semillas se desinfectaron y sembraron con el método de jeringuilla para evaluar el efecto de cinco medios de cultivo en el desarrollo de C. mendelii después de dieciséis semanas de cultivo. Se encontró que la viabilidad de las semillas fue del 93%. El mejor porcentaje de germinación se halló en el medio de cultivo Murashige-Skoog más agua de coco (MS + AC con diferencias significativas (P Cattleya mendelii is an endemic orchid species from Colombia, which has a great ornamental value which is in danger of extinction due to massive collection and their natural habitat's destruction by human activities. In vitro culture is an alternative to preserve this species and/or carry out its marketing. In this study the asymbiotic germination and seedling development of seeds of C. mendelii, in several in vitro culture media were evaluated. Mature capsules were collected. Seed viability with tetrazolium test was done; seeds were disinfected at the same time and planted by the syringe method to evaluate the effect of five growth culture media on the development of C. mendelii after 16 weeks of cultivation. It was found that seed viability was 93%, the highest percentage of germination was found in the culture medium Murashige-Skoog plus coconut water (MS+AC with significant

  6. Induction of resistance to rice tungro virus disease in rice cultivar Pusa 2-21 through irradiation

    International Nuclear Information System (INIS)

    Mathur, S.C.; Rao, M.; Prakash, Jitendra

    1979-01-01

    The dry seeds of Pusa 2-21, a moderately resistant rice cultivar, were subjected to 10, 15 and 20 Krad (dose rate 12.3 Krad/min) radiation dosages of gamma rays to induce resistance against rice tungro virus disease. The height of M 1 seedling was significantly reduced in 15 and 20 Krad treatments. However, there was no effect of gamma irradiation on seed germination. A limited population of M 2 and M 3 generation was screened at the rate of 3 viruliferous leafhoppers/seedling using single plant caging technique. In M 2 generation 22.0, 17.6 and 25.0 percent seedlings exhibited green colour (symptomless) representing resistant reaction to the disease in 10, 15 and 20 Krad treatments, respectively. Out of 1470 seedlings in M 3 generation, 2.7 percent seedlings showing no symptoms of tungro could be isolated indicating the possibility of inducing higher degree of resistance than that of the parent to RTV through irradiation for the first time. (auth.)

  7. Comparative Study of Pre-Germination Treatments and their Effects ...

    African Journals Online (AJOL)

    FIRST LADY

    of leaves (10.05) respectively. Pre-germination treatments of seeds soaked in running water (SRW) for 24 hours were found to be more effective in seedlings growth and biomass production. Keywords: Tectona grandis, pre-germination treatment, seed dormancy, seedling growth. Introduction. Tectona grandis is one of the ...

  8. Seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Physiological quality of rice seed submitted to gamma radiation

    International Nuclear Information System (INIS)

    Miranda, Helen Lucia da Cruz; Tillmann, Maria Angela Andre; Meneghello, Geri Eduardo

    2009-01-01

    The objective of this research was to evaluate the effects of the gamma radiation ( 60 Co) on the physiological quality of rice seeds. The research was carried out through three tests; in the first test rice seeds were irradiated at dosages of 0; 1; 2.5 and 5Gy, while for the second and third tests the seeds were subjected to accelerated aging before being irradiated. For the second test the seeds were divided into wet and dry and both groups subjected to accelerated aging previous to irradiation at dosages of 0; 1; 2.5 and 5Gy. For the third test the seeds were dried after being subjected to accelerated aging, and then irradiated at dosages of 0, 10, 25 and 50Gy. To assess the physiological effects of the gamma radiation, all seeds were tested for germination and their germination speed index recorded. Seedling growth was graded through the measurement of the lengths of the first leaf and seminal root system and total seedling dry weight, across all tests. The enzymatic activity of acid phosphatase and alpha-amylase was measured on dry seeds from the second test. The results from all tests indicate that the applied gamma radiation dosages did not cause any changes to the physiological quality of rice seeds. (author)

  10. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

    Directory of Open Access Journals (Sweden)

    Yun-An Chen

    Full Text Available Mercury (Hg is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants.

  11. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

    Science.gov (United States)

    Chen, Yun-An; Chi, Wen-Chang; Trinh, Ngoc Nam; Huang, Li-Yao; Chen, Ying-Chih; Cheng, Kai-Teng; Huang, Tsai-Lien; Lin, Chung-Yi; Huang, Hao-Jen

    2014-01-01

    Mercury (Hg) is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp) and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants.

  12. Effects of sodium chloride on radiation protection and modification of gamma-ray treated rice seeds

    International Nuclear Information System (INIS)

    Wang Cailian; Zhao Kongnan; Shen Mei; Xu Gang; Chen Qiufang

    1992-11-01

    The radiation protection effect of sodium chloride on dormant and germinating rice seeds treated with gamma-rays, and modification effect of sodium chloride on mutation were studied. Results show that the radiation-damage effect on seedling growth, percentage of seedling growth, percentage of seedling growth and fertility in M 1 generation is significantly enhanced with the increasing of dose. However, the seedling growth, percentage of seedling growth and fertility can be improved if the irradiated seeds are pre-treated with sodium chloride solution having concentrations of 0.05, 0.10 and 0.20 mol/L. The difference between treated group and control group is very significant. Results also show that pre-treatment and post-treatment by sodium chloride can raise the mutation frequencies of chlorophyll deficient seedlings, especially, the mutation frequency of early heading date and height is more considerably. The conclusion is that the sodium chloride, as a radiation protection agent, combined with gamma-ray treatment could reduce the effect of radiation-damage on M 1 generation and raise the mutation frequency in M 2 generation, and this result will be helpful in rice breeding

  13. Glucose metabolism in gamma-irradiated rice seeds

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1980-01-01

    Gamma-irradiation of 30 kR in rice seeds caused marked inhibition in seedling growth, and prevented the release of reduced sugar during the period of 25 to 76hr after soaking. The C 6 /C 1 ratio following irradiation continued to decrease up to the 76th hour of soaking; the control's ratio tended to increase with comparable soaking time. The percentage recovery of 14 C in carbon dioxide from glucose -1- 14 C was lower in irradiated than in control seeds. These results indicate that gamma-irradiation reduces the participation of the pentose phosphate pathway in glucose catabolism during an early period of germination. (author)

  14. In utero exposure to germinated brown rice and its oryzanol-rich extract attenuated high fat diet-induced insulin resistance in F1 generation of rats.

    Science.gov (United States)

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2017-01-21

    The development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences. In this regard, high fat diet (HFD) feeding in pregnancy has been shown to increase risks of metabolic diseases. Thus, we investigated the effects of supplementation of HFD with germinated brown rice (GBR) and GBR-derived gamma oryzanol-rich extract (OE) on insulin resistance and its epigenetic implications in pregnant rats and their offsprings. Pregnant female Sprague dawley rats were fed with HFD alone, HFD + GBR or HFD + OE (100 or 200 mg/kg/day) throughout pregnancy and lactation. Their offsprings were weaned at 4 weeks post-delivery and were followed up until 8 weeks. Serum levels of adipokines were measured in dams and their offsprings, and global DNA methylation and histone acetylation patterns were estimated from the liver. The dams and offsprings of the GBR and OE groups had lower weight gain, glycemic response, 8-Iso prostaglandin, retinol binding protein 4 and fasting insulin, and elevated adiponectin levels compared with the HFD group. Fasting leptin levels were lower only in the GBR groups. Hepatic global DNA methylation was lower in the GBR groups while hepatic H4 acetylation was lower in both GBR and OE dams. In the offsprings, DNA methylation and H4 acetylation were only lower in the OE group. However, dams and offsprings of the GBR and OE groups had higher hepatic H3 acetylation. GBR and OE can be used as functional ingredients for the amelioration of HFD-induced epigeneticallymediated insulin resistance.

  15. Stimulatory effect of eucalyptus essential oil on the germination and early growth of Eucalyptus grandis seedlings Efeito estimulante do óleo essencial de eucalipto na germinação e crescimento inicial de mudas de Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Ricardo Bemfica Steffen

    2010-12-01

    Full Text Available

    The use of essential oil and extracts from plants is becoming an efficient alternative in the biostimulation on growth and protection of plants. The aim of this work was to evaluate the use of leaf essential oil of Eucalyptus grandis on the germination and the  development of Eucalyptus grandis seedlings in nursery conditions. The eucalyptus seeds were exposed to the concentrations of 0, 10, 25, 50, 75 and 100 μL L-1 of the essential oil in controlled conditions. The eucalyptus seedlings were sprayed with 0, 20, 30, 40, 50 and 60 μL L-1 of the essential oil per plant, at intervals of seven days. The effect of this application on the seedling development were analyzed after 30 and 60 days. The results show that the germination was significantly higher when the seeds were exposed to 25 μL L-1 of the essential oil. The application of essential oil in the concentration of 30 and 40 μL L-1 provided higher growth of the aerial part and of the roots in greenhouse conditions, being an effective alternative to biostimulation the vegetative growth of eucalyptus seedlings.

    doi: 10.4336/2010.pfb.30.63.199

    A utilização de extratos e óleos essenciais de plantas vem sendo uma alternativa eficiente no bioestímulo do crescimento e proteção vegetal. O trabalho teve por objetivo avaliar a utilização do óleo essencial extraído de folhas de Eucalyptus grandis sobre a germinação e o desenvolvimento inicial de mudas de eucalipto em condições controladas, em casa de vegetação. Sementes de eucalipto foram incubadas em  concentrações de 0, 10, 25, 50, 75 e 100 μL L-1 do óleo essencial em ambiente controlado.  Posteriormente, pulverizou-se plântulas de eucalipto com 0, 20, 30, 40, 50 e 60 μL L-1 do óleo essencial por planta, em intervalos de sete dias. Avaliou-se o efeito do óleo sobre o desenvolvimento vegetal aos 30 e 60 dias após o transplante. Os resultados evidenciam que a germinação foi significativamente maior

  16. Germinação de embriões e crescimento inicial in vitro de macaúba Germination and early growth of embryos of macaúba seedlings

    Directory of Open Access Journals (Sweden)

    Joyce Dória Rodrigues Soares

    2011-05-01

    Full Text Available A macaúba é uma palmeira oleaginosa altamente produtiva e seu óleo pode ser usado na produção de biocombustíveis. O presente trabalho teve como objetivos avaliar a influência de concentrações dos sais do meio de cultura MS e de água de coco na germinação in vitro de embriões zigóticos de macaúba e no crescimento inicial de plântulas. Os embriões foram excisados e em seguida inoculados em tubos de ensaio contendo 15mL de meio de cultura MS nas concentrações de 50 e 100% de sais minerais, acrescidos de água de coco (0, 50, 100 e 150mL L-1. As culturas foram mantidas em sala de crescimento com irradiância em torno de 42W m-2, temperatura de 25±2°C e fotoperíodo de 16 horas. Maior porcentagem de germinação de embriões de macaúba foi obtida aos 60 dias, em meio MS, na concentração original dos sais. O crescimento e a conversão de plântulas viáveis ou normais, passíveis de serem aclimatizadas, requerem metade da concentração de sais do meio MS suplementado com 50mL L-1 de água de coco.The macaw is a palm oleaginous that it is highly productive and in which their oil can be used to produce biofuels.This study aimed to evaluate the influence of concentrations of minerals of the culture medium MS and coconut water germination in vitro of zygotic embryos of macaw and initial growth of seedlings. The embryos were inoculated in test tubes containing 15mL of culture medium MS in concentrations of 50 and 100% of minerals, plus coconut water (0, 50, 100 and 150mL L-1. The cultures were kept in room for growth with irradiance around 42W m-2, at 25±2°C and photoperiod of 16 hours. Higher percentage of germination of embryos of 'macaúba' was obtained at 60 days in MS medium in the original concentration of salts. The growth and conversion to viable seedlings or normal, which can be acclimatized, require half the concentration of salts of MS medium supplemented with 50mL L-1 coconut water.

  17. Salinity tolerance of Dodonaea viscosa L. inoculated with plant growth-promoting rhizobacteria: assessed based on seed germination and seedling growth characteristics

    Directory of Open Access Journals (Sweden)

    Yousefi Sonia

    2017-06-01

    Full Text Available The study was conducted to evaluate the potential of different strains of plant growth-promoting rhizobacteria (PGPR to reduce the effects of salinity stress on the medicinal hopbush plant. The bacterium factor was applied at five levels (non-inoculated, inoculated by Pseudomonas putida, Azospirillum lipoferum + Pseudomonas putida, Azotobacter chroococcum + Pseudomonas putida, and Azospirillum lipoferum + Azotobacter chroococcum + Pseudomonas putida, and the salinity stress at six levels: 0, 5, 10, 15, 20, and 50 dS m-1. The results revealed that Pseudomonas putida showed maximal germination percentage and rate at 20 dS m-1 (18.33% and 0.35 seed per day, respectively. The strongest effect among the treatments was obtained with the treatment combining the given 3 bacteria at 15 dS m-1 salinity stress. This treatment increased the root fresh and dry weights by 31% and 87.5%, respectively (compared to the control. Our results indicate that these bacteria applied on hopbush affected positively both its germination and root growth. The plant compatibility with the three bacteria was found good, and the treatments combining Pseudomonas putida with the other one or two bacteria discussed in this study can be applied in nurseries in order to restore and extend the area of hopbush forests and akin dry stands.

  18. Seedling characters at different temperatures in pearl millet ...

    African Journals Online (AJOL)

    The effect of six temperatures ranging from 20 to 45°C on the germination and seedling length of six grain pearl millet genotypes (KS, AM, HG, EC, ZZ and D) was determined. There was significant variation in germination and seedling length across temperatures and among genotypes. As a result, significant temperature ...

  19. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    Science.gov (United States)

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  20. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.

  1. Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi.

    Science.gov (United States)

    Matić, Slavica; Bagnaresi, Paolo; Biselli, Chiara; Orru', Luigi; Amaral Carneiro, Greice; Siciliano, Ilenia; Valé, Giampiero; Gullino, Maria Lodovica; Spadaro, Davide

    2016-08-11

    Fusarium fujikuroi is the causal agent of bakanae, the most significant seed-borne disease of rice. Molecular mechanisms regulating defence responses of rice towards this fungus are not yet fully known. To identify transcriptional mechanisms underpinning rice resistance, a RNA-seq comparative transcriptome profiling was conducted on infected seedlings of selected rice genotypes at one and three weeks post germination (wpg). Twelve rice genotypes were screened against bakanae disease leading to the identification of Selenio and Dorella as the most resistant and susceptible cultivars, respectively. Transcriptional changes were more appreciable at 3 wpg, suggesting that this infection stage is essential to study the resistance mechanisms: 3,119 DEGs were found in Selenio and 5,095 in Dorella. PR1, germin-like proteins, glycoside hydrolases, MAP kinases, and WRKY transcriptional factors were up-regulated in the resistant genotype upon infection with F. fujikuroi. Up-regulation of chitinases and down-regulation of MAP kinases and WRKY transcriptional factors were observed in the susceptible genotype. Gene ontology (GO) enrichment analyses detected in Selenio GO terms specific to response to F. fujikuroi: 'response to chitin', 'jasmonic acid biosynthetic process', and 'plant-type hypersensitive response', while Dorella activated different mechanisms, such as 'response to salicylic acid stimulus' and 'gibberellin metabolic process', which was in agreement with the production of gibberellin A3 in Dorella plants. RNA-seq profiling was performed for the first time to analyse response of rice to F. fujikuroi infection. Our findings allowed the identification of genes activated in one- and three- week-old rice seedlings of two genotypes infected with F. fujikuroi. Furthermore, we found the pathways involved in bakanae resistance, such as response to chitin, JA-dependent signalling and hypersensitive response. Collectively, this provides important information to elucidate the

  2. RICE SEED TREATMENT AND RECOATING WITH POLYMERS: PHYSIOLOGICAL QUALITY AND RETENTION OF CHEMICAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    LOVANE KLEIN FAGUNDES

    2017-01-01

    Full Text Available The use of chemical seed treatment is an important tool in the protection of seedlings and has contributed to the increase of rice yield (Oryza sativa L.. The objective of this study was to evaluate the physiological quality and quantify the retention of chemical products in rice seeds treated with insecticide and fungicide coated with polymers. Six seed treatments were used: control, phytosanitary treatment and phytosanitary treatment and coating with the polymers, Florite 1127®, GV5® Solid Resin, Polyseed CF® and VermDynaseed®. The physiological quality was evaluated by the test of germination and vigor by first count tests, germination speed index, shoot length, radicle length, seedling dry mass and sand emergence. To determine the retention of the active ingredients metalaxyl-M and thiamethoxam, an equipment called extractor was used. The experiment was organized in a completely randomized design (DIC and the averages were separated by the Scott Knott test (p≤0.05. Seed treatment with the fungicide and insecticide, coated with the polymers, Florite 1127®, Solid Resin GV5®, Polyseed CF® and VermDynaseed®, did not affect the physiological quality of rice seeds. Solid Resin GV5®, Polyseed CF® and VermDynaseed® polymers were efficient at retaining thiamethoxam in the rice seeds, preventing some of the active ingredients of the insecticide from being leached through the sand columns immediately after the simulated pluvial precipitation.

  3. Changes in DNA Methylation Pattern at Two Seedling Stages in Water Saving and Drought-Resistant Rice Variety after Drought Stress Domestication

    Directory of Open Access Journals (Sweden)

    Xiao-guo ZHENG

    2014-09-01

    Full Text Available Recent studies revealed that DNA methylation plays an important role in plant growth and development. In this study, a water-saving and drought-resistant rice variety Huhan 3 was subjected to drought stress from tillering to grain-filling stages in six successive growth cycles. The variations in DNA methylation pattern between the original generation (G0 and the sixth generation (G6 were analyzed by using methylation sensitive amplification polymorphism method. The results revealed that the methylated loci accounted for 34.3% to 34.8% of the total loci. Among these methylated loci, 83.1% to 84.8% were full- and hyper-methylated and 15.2% to 16.9% were hemi-methylated. The DNA methylation level decreased from the three-leaf to four-leaf stages in Huhan 3. Differentially methylated loci (DML between generations or/and between different developmental stages accounted for 4.0% of the total loci, most of which were only related to plant development (57.9%. Compared to G0, the DNA methylation pattern of G6 changed after drought domestication, at the three-leaf stage, de-methylation accounting for 59.1%, while at the four-leaf stage, re-methylation for 47.9%. Genome-wide alternations of DNA methylation were observed between the two seedling stages, and DML mainly occurred on the gene's promoter and exon region. The genes related to DML involved in a wide range of functional biology and participated in many important biological processes.

  4. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    Science.gov (United States)

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Tree seedling response to LED spectra: Implications for forest restoration

    Science.gov (United States)

    Antonio Montagnoli; R. Kasten Dumroese; Mattia Terzaghi; Jeremiah R. Pinto; Nicoletta Fulgaro; Gabriella Stefania Scippa; Donato Chiatante

    2018-01-01

    We found that different spectra, provided by light-emitting diodes or a fluorescent lamp, caused different photomorphological responses depending on tree seedling type (coniferous or broad-leaved), species, seedling development stage, and seedling fraction (shoot or root). For two conifers (Picea abies and Pinus sylvestris) soon after germination (≤40 days), more...

  6. The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice.

    Science.gov (United States)

    Huang, Liping; Jia, Jing; Zhao, Xixi; Zhang, MengYao; Huang, Xingxiu; E Ji; Ni, Lan; Jiang, Mingyi

    2018-01-01

    Seed germination is a vital developmental process. Abscisic acid (ABA) is an essential repressor of seed germination, while ROS (reactive oxygen species) also plays a vital role in regulating seed germination. ABA could inhibit the production of ROS in seed germination, but the mechanism of ABA reduced ROS production in seed germination was hitherto unknown. Here, by ChIP (chromatin immunoprecipitation)-seq, we found that ZFP36, a rice zinc finger transcription factor, could directly bind to the promoter of OsAPX1, coding an ascorbate peroxidase (APX) which has the most affinity for H 2 O 2 (substrate; a type of ROS), and act as a transcriptional activator of OsAPX1 promoter. Moreover, ZFP36 could interact with a late embryogenesis abundant protein OsLEA5 to co-regulate the promoter activity of OsAPX1. The seed germination is highly inhibited in ZFP36 overexpression plants under ABA treatment, while an RNA interference (RNAi) mutant of OsLEA5 rice seeds were less sensitive to ABA, and exogenous ASC (ascorbate acid) could alleviate the inhibition induced by ABA. Thus, our conclusion is that OsAPX1 is a direct target of ZFP36 and OsLEA5 could interact with ZFP36 to co-regulate ABA-inhibited seed germination by controlling the expression of OsAPX1. Copyright © 2017. Published by Elsevier Inc.

  7. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    Science.gov (United States)

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  8. Compositional analyses of white, brown and germinated forms of popular Malaysian rice to offer insight into the growing diet-related diseases

    OpenAIRE

    Bilyaminu Abubakar; Hafeez Muhammad Yakasai; Norhasnida Zawawi; Maznah Ismail

    2018-01-01

    Diet-related metabolic diseases, and especially obesity, are metabolic disorders with multifactorial aetiologies. Diet has been a cornerstone in both the aetiology and management of this metabolic disorders. Rice, a staple food for over half of the world's population, could be exploited as part of the solution to check this menace which has been skyrocketing in the last decade. The present study investigated nine forms of rice from three widely grown Malaysian rice cultivars for in vitro and ...

  9. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    germination. Lastly, the application of metabolomics to barley grain germination provides essential data on biochemical processes, including insights into the formation of compounds that contribute to malt quality. To maximize the benefits of the 'omics' revolution to the malting industry, there is a need......Germination of barley grain is central to the malting industry and is a valuable model for cereal grain germination. Our current understanding of the complexity of germination at the molecular level is facilitated by access to genomic, transcriptomic, proteomic and metabolomic data. Here we review...... of germination in the context of industrial malting. For transcriptomics, recent advances in sequencing the barley genome allow next-generation sequencing approaches to reveal novel effects of variety and environment on germination. For proteomics, selection of the source tissue(s) and the protein extraction...

  10. Germinação e desenvolvimento inicial de plântulas de soja convencional e sua derivada transgênica RR em condições de estresse salino Germination and initial development of soybean seedlings and their transgenic derivatives in salt stress condition

    Directory of Open Access Journals (Sweden)

    Tereza Cristina de Carvalho

    2012-08-01

    Full Text Available O Brasil destaca-se como um dos maiores produtores mundiais de soja transgênica, sendo sua produção estendida principalmente a regiões com solos salinos, onde há acúmulo de sais que interferem na germinação da semente e no desenvolvimento das plântulas. O objetivo da pesquisa foi avaliar o efeito do estresse salino sobre a germinação e o desenvolvimento inicial de plântulas de soja convencional e sua derivada transgênica Roundup Ready (RR, submetidas a diferentes condições de salinidade. Para tanto, utilizaram-se dois lotes de sementes de soja (CD 206 e CD 206 RR, sendo que os tratamentos constaram dos seguintes níveis de NaCl: zero; 5; 15; 30; 60 e 120mmol L-1. A avaliação da qualidade fisiológica das sementes foi obtida pelos testes de germinação, comprimento de raiz e plântulas, massa seca de plântulas e volume radicular. O estresse salino reduz a germinação das sementes de ambos os genótipos, sendo que o desenvolvimento de plântulas do genótipo transgênico RR é menos sensível em condições de maior salinidade (60 a 120mmol L-1 de NaCl.Brazil stands out as the largest worldwide producer of transgenic soybeans and has extended its production mainly to regions with saline soils, where there is accumulation of salts that interferes in seed germination and seedling development. The object of this research was to evaluate the effect of saline stress on the germination and initial development of soybean conventional seedling and its transgenic derivatives Roundup Ready (RR submitted to different salinity conditions. For that purpose two lots of soybean seeds were used (CD 206 and CD 206 RR, the treatments consisted of the following levels of NaCl: 0, 5, 15, 30, 60 and 120mmol L-1. The evaluation of physiological seed quality was obtained by germination test, root and seedling length, seedling dry mass and volume of roots. The salt stress reduced germination of seeds of both genotypes, and the development of seedling

  11. Fifth workshop on seedling physiology and growth problems in oak plantings (abstracts).

    Science.gov (United States)

    Janette R. Thompson; Richard C. Schultz; J.W. Van Sambeek

    1993-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 30 abstracts.

  12. Ninth workshop on seedling physiology and growth problems in oak plantings (abstracts)

    Science.gov (United States)

    D.R. Weigel; J.W. Van Sambeek; C.H., eds. Michler

    2005-01-01

    Research results and ongoing research activities in field performance of oak plantings, seedling propagation, genetics, acorn germination, and natural regeneration of oaks are described in 26 abstracts.

  13. Tenth workshop on seedling physiology and growth problems in oak plantings

    Science.gov (United States)

    Brian Roy Lockhart; Emile S. Gardiner; Daniel C. Dey

    2008-01-01

    Research results and ongoing research activities in field performance of oak plantings, seedling propagation, genetics, acorn germination, and natural regeneration of oaks are described in 15 abstracts.

  14. Phytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings

    Science.gov (United States)

    Kagawa, Takatoshi; Tanaka, Ayumi; Ueno, Osamu; Shimada, Hiroaki; Takano, Makoto

    2015-01-01

    Accurate regulation of chlorophyll synthesis is crucial for chloroplast formation during the greening process in angiosperms. In this study, we examined the role of phytochrome B (phyB) in the regulation of chlorophyll synthesis in rice seedlings (Oryza sativa L.) through the characterization of a pale-green phenotype observed in the phyB mutant grown under continuous red light (Rc) irradiation. Our results show that the Rc-induced chlorophyll accumulation can be divided into two components—a phyB-dependent and a phyB-independent component, and that the pale-green phenotype is caused by the absence of the phyB-dependent component. To elucidate the role of the missing component we established an Rc-induced greening experiment, the results of which revealed that several genes encoding proteins on the chlorophyll branch were repressed in the phyB mutant. Notable among them were ChlH and GUN4 genes, which encode subunit H and an activating factor of magnesium chelatase (Mg-chelatase), respectively, that were largely repressed in the mutant. Moreover, the kinetic profiles of chlorophyll precursors suggested that Mg-chelatase activity simultaneously decreased with the reduction in the transcript levels of ChlH and GUN4. These results suggest that phyB mediates the regulation of chlorophyll synthesis through transcriptional regulation of these two genes, whose products exert their action at the branching point of the chlorophyll biosynthesis pathway. Reduction of 5-aminolevulinic acid (5-ALA) synthesis could be detected in the mutant, but the kinetic profiles of chlorophyll precursors indicated that it was an event posterior to the reduction of the Mg-chelatase activity. It means that the repression of 5-ALA synthesis should not be a triggering event for the appearance of the pale-green phenotype. Instead, the repression of 5-ALA synthesis might be important for the subsequent stabilization of the pale-green phenotype for preventing excessive accumulation of hazardous

  15. Germinação de sementes e emergência de plântulas de carapiá: espécie primitiva e medicinal Seed germination and seedling emergence of Dorstenia cayapia: primitive and medicinal species

    Directory of Open Access Journals (Sweden)

    José Magno Q Luz

    2010-03-01

    , with four replications of 20 seeds per plot. The use of the substrates vermiculite and rolled paper at 25ºC increased the percentage of normal seedlings and germinated seeds. The seeds germination was slower when they were placed on filter paper, and it was more asynchronous in this substrate. Additionally, the alternating temperature 20-30ºC delayed the beginning of the germination of Dorstenia cayapia seeds.

  16. Seed germination and seedling vigour of italian ryegrass, cocksfoot and timothy following harvest and storage Germinação de sementes e o vigor de plantas jovens de azevem italiano, dactilis e timóteo após a colheita e o armazenamento

    Directory of Open Access Journals (Sweden)

    Rade Stanisavljevic

    2011-12-01

    Full Text Available During post-harvest maturation, different species vary in the length of dormancy breaking or germination increases. Seed dormancy and slow seedling development often limit establishment of forage grass stands. Seed germination and seedling vigour of Italian ryegrass (Lolium italicum A. Braun, Synonym Lolium multiflorum L., cocksfoot (Dactylis glomerata L. and timothy (Phleum pretense L. were observed after harvest and storage. After harvest in June, seeds were stored under standard storage conditions and sampled every 30 days after harvest (DAH, up to 270 DAH, and then every 60 days up to 990 DAH. At each date, seeds were tested for final germination percentage and for seedling vigour traits. Timothy seeds had a maximum germination (88% and the best seedlings vigour at 90 DAH, which implies that early autumn (September-October is the best sowing period for freshly harvested seeds of timothy. Timothy seed germination was poor from 270 DAH (73%. The best germination and vigour of Italian ryegrass and cocksfoot seedlings were between 270 and 330 DAH, which equates to spring sowing time (March-April in the succeeding year. Cocksfoot and Italian ryegrass seeds maintained satisfactory germination levels up to 630 DAH (81% and 810 DAH (81%, respectively. The data can serve for the determination of a proper storage duration management between harvest and sowing of the tested species under ambient conditions of south-eastern Europe.Durante o armazenamento, diferentes espécies comportam-se diferentemente quanto à dormência e crescimento de plântulas. A dormência o desenvolvimento lento das plântulas limitam a época do plantio das gramíneas forrageiras plurianuais. A germinação de sementes e o crescimento das plântulas de azevem italiano (Lolium italicum A. Braun sin. Lolium multiflorum L., Dactilis (Dactilis glomerata L. e de timoteo (Phleum pratense L. foi pesquisada durante a maturação pós-colheita e a silagem. Após a colheita, em junho

  17. Germinação e emergência de plântulas para três espécies de gramíneas invasoras de cultura do gênero Digitaria Heister ex Haller Germination and seedling emergence for three weed grasses of the genus Digitaria Heister ex Haller

    Directory of Open Access Journals (Sweden)

    José Marcos Barbosa

    1989-01-01

    Full Text Available O presente trabalho relaciona a germinação de sementes com emergência de plântulas para as espécies Digitaria ciliaris (Retz. Koel, D. horizontalis Willd. e D. insularis (L. Fedde, as quais apresentam grande interesse científico e econômico por serem gramíneas invasoras muito agressivas e por apresentarem ampla distribuição geográfica na América tropical e subtropical. Os testes de germinação foram realizados mensalmente com sementes e cariopses armazenadas em câmara seca e submetidas ao processo de envelhecimento natural durante um período de 360 dias. O trabalho também foi realizado para verificar o efeito da profundidade de semeadura sobre a emergência de plântulas. Os resultados de porcentagem e de velocidade de germinação das sementes mostram forte inibição da germinação causada pelas brácteas que envolvem as cariopses. Entretanto, nos tratamentos com cariopses nuas a inibição da germinação, ainda, persiste, indicando que estas sementes necessitam de um período de tempo para o amadurecimento. Os resultados de emergência de plântulas mostram que as semeaduras realizadas nas superfícies e a 2 centímetros de profundidade apresentam as mais altas porcentagens de emergências de plântulas. A interpretação dos resultados de germinação e de emergência de plântulas mostram aspectos importantes do comportamento da germinação destas espécies e permite o seu controle racional em áreas cultivadas.This work deals with the germination of seeds and seedling emergence of Digitaria ciliaris (Retz. Koel., D. horizontalis Willd. and D. insularis (L. Fedde and shows significant scientific and economical interest since the three weed grasses are very agressive and present ample geographical distribution in the tropical and subtropical American continent. The germination tests were performed monthly with seeds and caryopsis stored in a dry room or submitted to natural aging over the period of 360 days. This work was

  18. Influência da posição das sementes no fruto do cacaueiro sôbre a germinação e desenvolvimento das mudas Influence of seed location in the cocoa fruit on germination and seedling growth

    Directory of Open Access Journals (Sweden)

    Mário Cardoso

    1963-01-01

    Full Text Available Foram plantadas separadamente, para comparação, amostras de sementes oriundas da ponta, do centro e da base de frutos de cacaueiro. Não foram notadas diferenças, quer na germinação das sementes, quer no desenvolvimento das mudas, em duas variedades estudadas.Seed samples from the top, center, and bottom of the cocoa fruit (Theobroma leiocarpa Bern. were planted separately for comparison. No difference in germination of the seeds or growth of the seedlings for the three types of samples was noticed.

  19. Effect of vanadium application on the paddy rice

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T F

    1953-01-01

    The height, the root length and the weight of rice seedlings were increased by the application of ammonium vanadate. The nitrogen contents of seedlings were generally increased in proportion to the amounts of vanadate applied. Carbon contents of seedlings, however, show little difference. The best result was obtained when V/sub 2/O/sub 3/ 150 ppm was applied, but more than 500 ppm was toxic to rice seedlings, and at 1000 ppm all rice seedlings were killed. N, P, and K fertilizers were added to the rice after transplantation from the nursery, but vanadium was omitted. Little difference was found in growth and yield of the rice plants. Vanadium absorbed by younger rice seedlings has little influence on the latter growth and yields of rice plants.

  20. Comparison of seed priming techniques with regards to germination ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-16

    Nov 16, 2016 ... investigate the effects of different priming techniques on seed germination and early seedling growth. The seeds ... methods in which the environment must be controlled for prolonged ..... Guanabara Koogan, Rio de Janeiro ...

  1. Constant and alternating temperature effects on germination and early growth of scorzonera

    OpenAIRE

    Dias, A.S.; Dias, L.S.; Pereira, I.P.

    2013-01-01

    Scorzonera is a threatened species in Portugal. Given the role of temperature in germination and seedling recruitment, the performance of total germination, lag of germination, duration of germination, shape of germination, root and hypocotyl length, and relative root growth of scorzonera was investigated under constant and alternating temperatures between 10 and 25ºC. Because of scorzonera’s rarity and threatened status, seeds of cultivated scorzonera were used, providing the framework for h...

  2. Oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  3. Oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.

  4. DEVELOPMENTAL CHANGES IN THE GERMINATION, GROWTH AND CHLOROPHYLLASE ACTIVITY OF VIGNA MUNGO L. USING SEAWEED EXTRACT OF ULVA RETICULATA FORSSKAL.

    OpenAIRE

    Ganapathy Selvam G.; Balamurugan M.; Thinakaran T.; Sivakumar K

    2013-01-01

    The effect of seaweed extract prepared from Ulva reticulata on seed germination, seedling growth and chlorophyllase activity of Vigna mungo L. was studied. 100% germination was recorded in the seeds treated with lower concentration of seaweed extract. The V. mungo seeds soaked with lower concentrations of the seaweed extracts showed higher rates of germination, while the higher concentrations of the extracts inhibited the germination.

  5. The perspective effects of various seed coating substances on rice seed variety Khao DAWK Mali 105 storability I: the case study of physiological properties.

    Science.gov (United States)

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2008-10-01

    This study aimed to evaluate the perspective changes of several physiological performances of rice seeds cv. KDML 105 which were coated with various seed coating substances [chemical fungicide, captan (CA) and biological coating polymers; chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E + CL)] during storage (12 months). CA significantly increased seed moisture content and seed water activity through out the storage period. The qualities and viability of the seeds were seriously declined by this treatment. Moreover, CA inhibited the shoot and root development, seedling dry weight accumulation, delayed the seed germination and seedling growth rate. CA treated seeds were susceptible to stress conditions that declined the seed germination potential under cold, high moisture and temperature stress conditions. Nevertheless, CL and E + CL coating polymer could maintain seed storability, which significantly improved seed germination and seedling performances. These improvements were attributed to maintain the nutritive reserve and dehydrogenase activity in seeds. Moreover, the biological seed treatment stimulated the embryo growth and so speeding up the seedling emergence when compared untreated seeds.

  6. Estresse salino na germinação de sementes e desenvolvimento de plântulas de niger (Guizotia abyssinica (L.f. Cass. Salt stress on seeds germination and seedlings development of niger (Guizotia abyssinica (L.f. Cass.

    Directory of Open Access Journals (Sweden)

    Carla Regina Baptista Gordin

    2012-12-01

    Full Text Available O processo de salinização dos solos e das águas subterrâneas e superficiais é um dos mais importantes problemas de degradação ambiental. O niger é uma herbácea anual com potencial para a produção de biodiesel, cujo comportamento em condições salinas ainda é desconhecido. Dessa forma, objetivou-se avaliar a germinação de sementes e crescimento de plântulas de niger submetidos a diferentes sais e concentrações. Os tratamentos utilizados corresponderam a três sais: cloreto de potássio (KCl, cloreto de cálcio (CaCl2 e cloreto de sódio (NaCl, associados a quatro potenciais osmóticos (-0,3; -0,6; -0,9 e -1,2 MPa. As sementes de niger semeadas diretamente sobre substrato umedecido com água destilada constituíram o controle. O efeito da salinidade na germinação das sementes foi avaliado pela porcentagem, tempo médio e índice de velocidade. As plântulas foram analisadas quanto ao comprimento da parte aérea e raiz e massas fresca e seca de plântulas inteiras. O delineamento estatístico adotado foi o inteiramente casualizado, constituindo-se de um fatorial 3x5 (sais x potenciais osmóticos com quatro repetições de 50 sementes cada. As sementes de niger são sensíveis a salinidade. A exposição ao NaCl, KCl e CaCl2 a partir do potencial osmótico de -0,3 MPa reduz o poder germinativo e o crescimento de plântulas. Os sais inibem a germinação de sementes do niger no potencial de -1,2 MPa.The soil, and subterranean and superficial water saltiness process is one of the most important environment degradation problems. Niger is an annual herbaceous with biodiesel production potential, which seeds behavior is unknown in saline conditions. In this way, this work aimed to evaluate the niger seeds germination and initial seedlings growth submitted to different salt solutions. The treatments used constituted of three types of salts: NaCl, KCl and CaCl2 at four osmotic potentials (-0.3; -0.6; -0.9 e -1.2 MPa. The niger seeds

  7. In vitro seed germination and seedling development of Annona crassiflora Mart. Germinação de sementes e desenvolvimento in vitro de plântulas de Annona crassiflora Mart.

    Directory of Open Access Journals (Sweden)

    Márcia de Nazaré Oliveira Ribeiro

    2009-06-01

    Full Text Available Annona crassiflora Mart known as 'araticum', 'marolo' or 'field araticum' is a typical fruit from the Cerrado biome of Brazil with socio-economic and medicinal importance. Normally, Annona crassiflora is propagated through seeds. However, due to a deep dormancy that the seeds display at dispersion and the difficulty to obtain uniform plants in a short time period, micropropagation may be a feasible alternative. Concentrations of gibberellic acid (GA3 and naphthalene-acetic acid (NAA and their interactive effects on in vitro seed germination and seedling development of Annona crassiflora were studied. Mature fruits of Annona crassiflora were depulped and the seeds washed in clear water and dried at room temperature. Seed coat was removed and the seeds were placed on Murashige & Skoog (MS medium supplemented with gibberellic acid (GA3 and naphthalene-acetic acid (NAA, 30 g L-1 sucrose and 6 g L-1 agar-agar. Seeds were kept under these conditions for 30 days. After this period, seedlings were kept for another 90 days on Wood Plant Medium (WPM with 20 g L-1 sucrose and 5 g L-1 agar-agar supplemented with the same GA3 and NAA concentrations. Cultures were incubated under controlled conditions at 25 ± 2°C temperature, 16: 8 (light: dark photoperiod of 32 µmol m-2 s-1 irradiance provided by cool white fluorescent tubes (Philips. Use of WPM medium supplemented with 25-32 mg L-1 GA3 or MS with 26-30 mg L-1 GA3 and 2 mg L-1 NAA promoted rooting and plant growth.O araticum ou marolo (Annona crassiflora Mart. é uma fruta típica de Cerrado com grande importância sócio-econômico e medicinal. Sua propagação pode ser feita através de sementes, porém devido à dormência das sementes e dificuldade de se obterem plantas uniformes e em curto espaço de tempo, a micropropagação poderá ser uma alternativa. Estudaram-se os efeitos do GA3 associado ao ANA sobre a germinação de sementes e desenvolvimento in vitro de marolo. Frutos maduros foram

  8. Physiological and biochemical changes in γ-irradiated rice

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1975-01-01

    Metabolic disturbances resulting in growth retardation and death of rice irradiated with 60 Co γ-rays at 10 to 40 kR dose levels were investigated. Seedling growth, release of storage products (reducing sugar and free amino acids) and incorporation of radioisotopic substances ([ 3 H]-uridine, [ 3 H]-thymidine and [ 3 H]-leucine) remained almost uninhibited at doses up to 20 kR but were much reduced at 40 kR. Following the 40 kR treatment, shoot elongation was terminated at the 5th day of germination, corresponding to an interruption in the release of reducing sugar. Furthermore, the onset of active increase in [ 3 H]-thymidine incorporation after germination was also delayed in the 40 kR irradiated samples. When the seeds had been cultured in glucose-medium immediately after irradiation there were significantly regular increases of survival and a disappearance in the delay in [ 3 H]-thymidine incorporation. However, glucose had no marked effect on subsequent growth and overall metabolic damage even though incorporation of [ 14 C]-glucose was slightly higher in the irradiated than in the control in the early stage of germination. It is suggested that the recovery from radiation damage in the early stages of germination can be enhanced by thw provision of glucose while recovery from damage leading to reduction of subsequent growth is less sensitive to glucose. (author)

  9. Physiological and biochemical changes in. gamma. -irradiated rice

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M; Hasegawa, H; Hori, S [Osaka Prefecture (Japan). Radiation Center

    1975-12-01

    Metabolic disturbances resulting in growth retardation and death of rice irradiated with /sup 60/Co ..gamma..-rays at 10 to 40 kR dose levels were investigated. Seedling growth, release of storage products (reducing sugar and free amino acids) and incorporation of radioisotopic substances ((/sup 3/H)-uridine, (/sup 3/H)-thymidine and (/sup 3/H)-leucine) remained almost uninhibited at doses up to 20 kR but were much reduced at 40 kR. Following the 40 kR treatment, shoot elongation was terminated at the 5th day of germination, corresponding to an interruption in the release of reducing sugar. Furthermore, the onset of active increase in (/sup 3/H)-thymidine incorporation after germination was also delayed in the 40 kR irradiated samples. When the seeds had been cultured in glucose-medium immediately after irradiation there were significantly regular increases of survival and a disappearance in the delay in (/sup 3/H)-thymidine incorporation. However, glucose had no marked effect on subsequent growth and overall metabolic damage even though incorporation of (/sup 14/C)-glucose was slightly higher in the irradiated than in the control in the early stage of germination. It is suggested that the recovery from radiation damage in the early stages of germination can be enhanced by thw provision of glucose while recovery from damage leading to reduction of subsequent growth is less sensitive to glucose.

  10. Seed germination of Stenocereus thurberi (Cactaceae) under different solar irradiation levels

    International Nuclear Information System (INIS)

    Nolasco, H.; Vega-Villasante, F.; Diaz-Rondero, A.

    1997-01-01

    Germination of Stenocereus thurberi seeds was evaluated under different conditions of solar irradiation and humidity. Seed germination increased under higher humidity and low solar irradiation which provided cooler temperatures and higher water availability. Seedlings were also greener and more turgid under these conditions. Increased solar irradiation reduced seed germination and decreased seedling size and water content. The results of this study support the importance of natural shelter systems in the arid zones in providing better conditions for S. thurberi seeds germination and seedling establishment, particularly in the desert of Baja California. (author)

  11. Comparative Transcriptome Analysis of Shoots and Roots of TNG67 and TCN1 Rice Seedlings under Cold Stress and Following Subsequent Recovery: Insights into Metabolic Pathways, Phytohormones, and Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Yun-Wei Yang

    Full Text Available Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA-, polyamine-, auxin- and jasmonic acid (JA-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice

  12. Proteomics and Transcriptomics analysis of Arabidopsis Seedlings in Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — On Earth plants are constantly exposed to a gravitational field of 1g. Gravity affects a plant in every step of its development. Germinating seedlings orient their...

  13. SEEDBANK AND SEEDLING EMERGENCE CHARACTERISTICS OF WEEDS IN RICEFIELD SOILS OF THE MUDA GRANARY AREA IN NORTH-WEST PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Tlie experiment was conducted in the glasshouse of UPM from March 2003 to June 2004 to determine the soil seedbank in the ricefields ot'Muda rice granary area in Peninsular Malaysia. Six soil cores of 5 cm in diameter and 10 cm depth were sampled from each of 24 fields. All samples from each individual field were bulked and placed in plastic trays of 38 x 25 x 10 cm. Soil was moistened as required and emergence of weed seedlings were recorded over period of one year. After one year, remaining seeds were separated, removed and identified. The total seed bank was estimated at 1136.48 million/ha of whic h 62.35% (708.60 million seedlings ha"1 germinated within 12 months and 37.65% (427.88 million seeds ha"1 remained ungerminated. Total of 20 taxa were recognized. Based on importance value (I.V. the five most dominant species in terms of emerged seedling were Fimbristylis miliacea, Leplochloa chinensis, LitJwigia hyssopifolia, Cyperus difformii and C. iria. Of the remaining seeds the five dominant species with decreasing trend in ranking were F. miliacea, Scirpus lateriflonis, Monochoria vagina/is, L. hyssopifolia and L. chinensis. Ranking of total seed reserves (seedlings+ remaining seeds were similar to emerged seedling indi cating that emerged seedlings reflect the actual weed flora in the Muda area. Among the dominant species F. miliacea accounted for 58.07% of emerged seedlings, 79.31% of remaining seeds and 66.07% of total seed bank. Total seedling emergence of all species was higher in the first observation in April 2003 and cumulative seedling emergence showed no clear peaks.

  14. The oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, O.; Hasenstein, K.

    Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).

  15. Seed vigor classification using analysis of mean radicle emergence time and single counts of radicle emergence in rice (Oryza sativa L. and mung bean (Vigna radiata (L. Wilczek

    Directory of Open Access Journals (Sweden)

    Damrongvudhi Onwimol

    2016-09-01

    Full Text Available The radicle emergence (RE test for seed vigor classification is an ingenious protocol that will lead to a fast and reliable automated procedure for verifying seed quality using image analysis. Nevertheless, the success of this protocol has never been described in rice and mung bean that are global staple foods. This experiment analyzed the correlation between RE (2 mm in length and normal seedlings (NS during a germination test of rice and mung bean. In total, 12 samples using four cultivars of each species were obtained from different locations and production years. In addition to the germination test, an accelerated ageing (AA test and an electrical conductivity (EC test were analyzed. The results revealed that the pattern of the cumulative germination curve of RE and NS coincided but the curve for NS was longer than for RE (p ≤ 0.05. There was no significant difference in the variance of the germination time between RE and NS of rice but there was a significant difference for mung bean. The vigor levels of the rice seed classified by single counts of RE at 110 h after set to germinate (HASG conformed to the result of single counts of NS at 200 HASG and the result of the AA test. However, these classifications disagreed with the result derived from the EC test. In contrast, the mung bean vigor level classified by single counts of RE, NS, the AA test and the EC test did not relate well with each other. In conclusion, it is possible to develop the automated procedure for verifying rice seed quality using image analysis via a single count of RE.

  16. Sixth workshop on seedling physiology and growth problems in oak plantings (abstracts); 1995 September 18-20; Tomahawk, WI.

    Science.gov (United States)

    Ronald M. Teclaw

    1996-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination ,and natural regeneration for oaks are described in 29 abstracts.

  17. Eighth workshop on seedling physiology and growth problems in oak plantings (abstracts). 2001 September 9-12; Hiwassee, GA.

    Science.gov (United States)

    S. Sung; P.P. Kormanik; W.J. Ostrosina; J.G. Isebrands

    2002-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 21 ab