WorldWideScience

Sample records for rice flower development

  1. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa.

    Science.gov (United States)

    Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B; Miras, Monaliza A; Mendioro, Merlyn S; Simon, Eliza V; Lumanglas, Patrick D; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S V; Ishimaru, Tsutomu

    2015-03-01

    A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5-2.0 h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Conservation and diversification of QTGs involved in photoperiodic flowering between rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kazuki eMatsubara

    2014-05-01

    Full Text Available Flowering time in rice (Oryza sativa L. is determined primarily by daylength (photoperiod, and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs, including our recently cloned QTGs, Hd17 and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding.

  3. Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice.

    Directory of Open Access Journals (Sweden)

    Eri Ogiso-Tanaka

    Full Text Available In rice (Oryza sativa L., there is a diversity in flowering time that is strictly genetically regulated. Some indica cultivars show extremely late flowering under long-day conditions, but little is known about the gene(s involved. Here, we demonstrate that functional defects in the florigen gene RFT1 are the main cause of late flowering in an indica cultivar, Nona Bokra. Mapping and complementation studies revealed that sequence polymorphisms in the RFT1 regulatory and coding regions are likely to cause late flowering under long-day conditions. We detected polymorphisms in the promoter region that lead to reduced expression levels of RFT1. We also identified an amino acid substitution (E105K that leads to a functional defect in Nona Bokra RFT1. Sequencing of the RFT1 region in rice accessions from a global collection showed that the E105K mutation is found only in indica, and indicated a strong association between the RFT1 haplotype and extremely late flowering in a functional Hd1 background. Furthermore, SNPs in the regulatory region of RFT1 and the E105K substitution in 1,397 accessions show strong linkage disequilibrium with a flowering time-associated SNP. Although the defective E105K allele of RFT1 (but not of another florigen gene, Hd3a is found in many cultivars, relative rate tests revealed no evidence for differential rate of evolution of these genes. The ratios of nonsynonymous to synonymous substitutions suggest that the E105K mutation resulting in the defect in RFT1 occurred relatively recently. These findings indicate that natural mutations in RFT1 provide flowering time divergence under long-day conditions.

  4. The COMPASS-Like Complex Promotes Flowering and Panicle Branching in Rice1[OPEN

    Science.gov (United States)

    Wang, Shiliang; Jiang, Haiyang; Cheng, Beijiu

    2018-01-01

    Flowering time (heading date) and panicle branch number are important agronomic traits that determine yield in rice (Oryza sativa). The activation of flowering requires histone methylation, but the roles of trimethylation of Lys 4 of histone 3 (H3K4me3) in modulating heading date and panicle development are unclear. Here, we showed that the COMPASS-like complex promotes flowering and panicle branching. The rice (Oryza sativa) WD40 protein OsWDR5a interacts with the TRITHORAX-like protein OsTrx1/SET domain group protein 723 (SDG723) to form the core components of the COMPASS-like complex. Plants in which OsWDR5a or OsTrx1 expression was decreased by RNA interference produced fewer secondary branches and less grain and exhibited a delayed heading date under long-day and short-day conditions, whereas loss of OsWDR5a function resulted in embryo lethality. OsWDR5a binds to Early heading date 1 to regulate its H3K4me3 and expression levels. Together, our results show that the COMPASS-like complex promotes flowering and panicle development and suggest that modulation of H3K4me3 levels by the COMPASS-like complex is critical for rice development. PMID:29440594

  5. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering.

    Science.gov (United States)

    Shao, Yafang; Xu, Feifei; Sun, Xiao; Bao, Jinsong; Beta, Trust

    2014-01-15

    This study investigated differences in total phenolic content (TPC), antioxidant capacity, and phenolic acids in free, conjugated and bound fractions of white (unpolished), red and black rice at 1-, 2-, and 3-weeks of grain development after flowering and at maturity. Unlike the TPC (mg/100g) of white rice (14.6-33.4) and red rice (66.8-422.2) which was significantly higher at 1-week than at later stages, the TPC of black rice (56.5-82.0) was highest at maturity. The antioxidant capacity measured by DPPH radical scavenging and ORAC methods generally followed a similar trend as TPC. Only black rice had detectable anthocyanins (26.5-174.7mg/100g). Cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) were the main anthocyanins in black rice showing significantly higher levels at 2- and 3-weeks than at 1-week development and at maturity. At all stages, the phenolic acids existed mainly in the bound form as detected by HPLC and confirmed by LC-MS/MS. Black rice (20.1-31.7mg/100g) had higher total bound phenolic acids than white rice and red rice (7.0-11.8mg/100g). Protocatechuic acid was detected in red rice and black rice with relatively high levels at 1-week development (1.41mg/100g) and at maturity (4.48mg/100g), respectively. Vanillic acid (2.4-5.4mg/100g) was detected only in black rice where it peaked at maturity. p-Coumaric acid (black rice. Ferulic acid (4.0-17.9mg/100g), the most abundant bound phenolic acid, had an inconsistent trend with higher levels being observed in black rice where it peaked at maturity. Isoferulic acid levels (0.8-1.6mg/100g) were generally low with slightly elevated values being observed at maturity. Overall black rice had higher total bound phenolic acids than white and red rice while white rice at all stages of development after flowering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A model for photothermal responses of flowering in rice. II. Model evaluation.

    NARCIS (Netherlands)

    Yin, X.; Kropff, M.J.; Nakagawa, H.; Horie, T.; Goudriaan, J.

    1997-01-01

    A detailed nonlinear model, the 3s-Beta model, for photothermal responses of flowering in rice (Oryza sativa L.) was evaluated for predicting rice flowering date in field conditions. This model was compared with other three models: a three-plane linear model and two nonlinear models, viz, the

  7. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Chen, Zongxiang; Li, Fuli; Yang, Songnan; Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, Xinwu

    2013-01-01

    MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change

  8. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff..

    Directory of Open Access Journals (Sweden)

    Zongxiang Chen

    Full Text Available BACKGROUND: MicroRNAs (miRNAs is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. RESULTS: Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2 and one flowering stage (CWR-F2 were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. CONCLUSIONS: This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and

  9. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice

    KAUST Repository

    Kim, SoonKap

    2015-11-05

    OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice. Protein interaction studies showed that the physical interactions occurred between the three OsNF-YC proteins (OsNF-YC2, OsNF-YC4 and OsNF-YC6) and three OsNF-YB proteins (OsNF-YB8, OsNF-YB10 and OsNF-YB11). Repression and overexpression of the OsNF-YC2 and OsNF-YC4 genes revealed that they act as inhibitors of flowering only under long-day (LD) conditions. Overexpression of OsNF-YC6, however, promoted flowering only under LD conditions, suggesting it could function as a flowering promoter. These phenotypes correlated with the changes in the expression of three rice flowering-time genes [Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1)]. The diurnal and tissue-specific expression patterns of the subsets of OsNF-YB and OsNF-YC genes were similar to those of CCT domain encoding genes such as OsCO3, Heading date 1 (Hd1) and Ghd7. We propose that OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response by interacting directly with OsNF-YB8, OsNF-YB10 or OsNF-YB11 proteins in rice.

  10. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice.

    Directory of Open Access Journals (Sweden)

    He Gao

    Full Text Available Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops. Rice (Oryza sativa L. is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis is evolutionary conserved in short-day plants (Hd1-Hd3a in rice. However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4. ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the "florigen" genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice.

  11. Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice.

    Science.gov (United States)

    Wei, Fu-Jin; Tsai, Yuan-Ching; Wu, Hshin-Ping; Huang, Lin-Tzu; Chen, Yu-Chi; Chen, Yi-Fang; Wu, Cheng-Chieh; Tseng, Yi-Tzu; Hsing, Yue-Ie C

    2016-01-01

    Rice is a facultative short-day plant, and it requires a photoperiod shorter than the critical day length to get flowering. Sensitivity to photoperiod has been suggested as a major selection target in cultivated or weedy rice. The modern rice varieties in Taiwan may be cultivated twice a year. These varieties contain loss-of-function of two important flowering-time related genes, Heading date 1 (Hd1) and Early heading date 1 (Ehd1), and are mainly from a mega variety, Taichung 65. However, the parental lines of this variety were sensitive to photoperiod, thus, how Taichung 65 loss its sensitivity is a mystery. In this study, we used accession-specific single nucleotide polymorphism analysis to reveal the gene flow that occurred between different rice accessions decades ago and demonstrate that two landraces introgressed during the breeding process, which led to the loss of photoperiod sensitivity. Both Hd1 and Ehd1 may be important during artificial selection for flowering time, especially in a subtropical region such as Taiwan. This is a good example of introgression playing important roles during rice domestication. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. MADS box genes expressed in developing inflorescences of rice and sorghum

    NARCIS (Netherlands)

    Greco, R.; Stagi, L.; Colombo, L.; Angenent, G.C.; Sari-Gorla, M.; Pé, M.E.

    1997-01-01

    With the aim of elucidating the complex genetic system controlling flower morphogenesis in cereals, we have characterized two rice and two sorghum MADS box genes isolated from cDNA libraries made from developing inflorescences. The rice clones OsMADS24 and OsMADS45, which share high homology with

  13. Use of the Beta function to quantify effects of photoperiod on flowering and leaf number in rice.

    NARCIS (Netherlands)

    Yin, X.; Kropff, M.J.

    1996-01-01

    The time of flowering in rice (Oryza sativa L.) is affected by photoperiod. A nonlinear response has been reported with an optimum photoperiod, either below or above which flowering can be delayed. Three equations which account for both short- and long-day nonlinear effects were compared to describe

  14. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung; Kim, SoonKap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-01-01

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  15. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung

    2016-01-11

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  16. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  17. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers

    NARCIS (Netherlands)

    Chen, Y.; Miller, A.J.; Luo, B.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2016-01-01

    Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA)

  18. Carbon isotope discrimination and yield of upland rice as affected by drought at flowering

    Directory of Open Access Journals (Sweden)

    PINHEIRO BEATRIZ DA SILVEIRA

    2000-01-01

    Full Text Available Field experiments involving upland rice genotypes, sown in various dates in late season, were carried out to assess the relationship of carbon isotope discrimination with grain yield and drought resistance. In each one of the three years, one trial was kept under good water availability, while other suffered water shortage for a period of 18-23 days, encompassing panicle emergence and flowering. Drought stress reduced carbon isotope discrimination measured on soluble sugars (deltas extracted from stem uppermost internode at the end of the imposition period, but had relatively less effect on bulk dry matter of leaves, sampled at the same period, or that of uppermost internodes and grains, sampled at harvest. The drought-induced reduction in deltas was accompanied of reduced spikelet fertility and grain yield. In the three trials subjected to drought, genotypes with the highest yield and spikelet fertility had the lowest deltas. However, this relationship was weak and it was concluded that deltas is not a sufficiently reliable indicator of rice drought resistance to be useful as a screening test in breeding programs. On the other hand, grain yield and spikelet fertility of genotypes which were the soonest to reach 50% flowering within the drought imposition period, were the least adversely affected by drought. Then, timing of drought in relation to panicle emergence and to flowering appeared to be a more important cause of yield variation among genotypes than variation in deltas.

  19. The Rice Enhancer of Zeste [E(z] Genes SDG711 and SDG718 are respectively involved in Long Day and Short Day Signaling to Mediate the Accurate Photoperiod Control of Flowering time

    Directory of Open Access Journals (Sweden)

    Xiaoyun eLiu

    2014-10-01

    Full Text Available Recent advances in rice flowering studies have shown that the accurate control of flowering by photoperiod is regulated by key mechanisms that involve the regulation of flowering genes including Hd1, Ehd1, Hd3a, and RFT1. The chromatin mechanism involved in the regulation of rice flowering genes is presently not well known. Here we show that the rice E(z genes SDG711 and SDG718, which encode the Polycomb Repressive Complex2 (PRC2 key subunit that is required for trimethylation of histone H3 lysine 27 (H3K27me3, are respectively involved in long day (LD and short day (SD regulation of key flowering genes. The expression of SDG711 and SDG718 is induced by LD and SD, respectively. Over-expression and down-regulation of SDG711 respectively repressed and promoted flowering in LD, but had no effect in SD. By contrast, down-regulation of SDG718 had no effect in LD but delayed flowering in SD. SDG711 and SDG718 repressed OsLF (a repressor of Hd1 respectively in LD and SD, leading to a higher expression of Hd1 thus late flowering in LD and early flowering in SD. SDG711 was also found to be involved in the repression of Ehd1 in LD. SDG711 was shown to directly target to OsLF and Ehd1 loci to mediate H3K27me3 and gene repression. The function of the rice E(z genes in LD repression and SD promotion of flowering suggests that PRC2-mediated epigenetic repression of gene expression is involved in the accurate photoperiod control of rice flowering.

  20. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling.

    Science.gov (United States)

    Dai, Cheng; Xue, Hong-Wei

    2010-06-02

    The plant hormone gibberellin (GA) is crucial for multiple aspects of plant growth and development. To study the relevant regulatory mechanisms, we isolated a rice mutant earlier flowering1, el1, which is deficient in a casein kinase I that has critical roles in both plants and animals. el1 had an enhanced GA response, consistent with the suppression of EL1 expression by exogenous GA(3). Biochemical characterization showed that EL1 specifically phosphorylates the rice DELLA protein SLR1, proving a direct evidence for SLR1 phosphorylation. Overexpression of SLR1 in wild-type plants caused a severe dwarf phenotype, which was significantly suppressed by EL1 deficiency, indicating the negative effect of SLR1 on GA signalling requires the EL1 function. Further studies showed that the phosphorylation of SLR1 is important for maintaining its activity and stability, and mutation of the candidate phosphorylation site of SLR1 results in the altered GA signalling. This study shows EL1 a novel and key regulator of the GA response and provided important clues on casein kinase I activities in GA signalling and plant development.

  1. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice.

    Directory of Open Access Journals (Sweden)

    Yuhui Cai

    Full Text Available Flowering time and plant height are important agronomic traits for crop production. In this study, we characterized a semi-dwarf and late flowering (dlf1 mutation of rice that has pleiotropic effects on these traits. The dlf1 mutation was caused by a T-DNA insertion and the cloned Dlf1 gene was found to encode a WRKY transcription factor (OsWRKY11. The dlf1 mutant contains a T-DNA insertion at the promoter region, leading to enhanced accumulation of Dlf1 transcripts, resulting in a semidominant mutation. The dlf1 mutation suppressed the transcription of Ehd2/RID1/OsId1 and its downstream flowering-time genes including Hd1, Ehd1 and Hd3a under both long-day (LD and short-day (SD conditions. Knock-down of Dlf1 expression exhibited early flowering at LD condition related to the wild-type plants. Accumulation of Dlf1 mRNA was observed in most tissues, and two splicing forms of Dlf1 cDNAs were obtained (OsWRKY11.1 and OsWRKY11.2. These two proteins showed transactivation activity in yeast cells. Dlf1 protein was found to be localized in the nucleus. Enhanced expression of OsWRKY11.2 or its 5' truncated gene showed similar phenotypes to the dlf1 mutant, suggesting that it might function as a negative regulator. We conclude that Dlf1 acts as a transactivator to downregulate Ehd2/RID1/OsId1 in the signal transduction pathway of flowering and plays an important role in the regulation of plant height in rice.

  2. Dynamic variability of the heading-flowering stages of single rice in China based on field observations and NDVI estimations.

    Science.gov (United States)

    Zhang, Zhao; Song, Xiao; Chen, Yi; Wang, Pin; Wei, Xing; Tao, Fulu

    2015-05-01

    Although many studies have indicated the consistent impact of warming on the natural ecosystem (e.g., an early flowering and prolonged growing period), our knowledge of the impacts on agricultural systems is still poorly understood. In this study, spatiotemporal variability of the heading-flowering stages of single rice was detected and compared at three different scales using field-based methods (FBMs) and satellite-based methods (SBMs). The heading-flowering stages from 2000 to 2009 with a spatial resolution of 1 km were extracted from the SPOT/VGT NDVI time series data using the Savizky-Golay filtering method in the areas in China dominated by single rice of Northeast China (NE), the middle-lower Yangtze River Valley (YZ), the Sichuan Basin (SC), and the Yunnan-Guizhou Plateau (YG). We found that approximately 52.6 and 76.3 % of the estimated heading-flowering stages by a SBM were within ±5 and ±10 days estimation error (a root mean square error (RMSE) of 8.76 days) when compared with those determined by a FBM. Both the FBM data and the SBM data had indicated a similar spatial pattern, with the earliest annual average heading-flowering stages in SC, followed by YG, NE, and YZ, which were inconsistent with the patterns reported in natural ecosystems. Moreover, diverse temporal trends were also detected in the four regions due to different climate conditions and agronomic factors such as cultivar shifts. Nevertheless, there were no significant differences (p > 0.05) between the FBM and the SBM in both the regional average value of the phenological stages and the trends, implying the consistency and rationality of the SBM at three scales.

  3. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa).

    Science.gov (United States)

    Zhao, Jing; Chen, Hongyi; Ren, Ding; Tang, Huiwu; Qiu, Rong; Feng, Jinglei; Long, Yunming; Niu, Baixiao; Chen, Danping; Zhong, Tianyu; Liu, Yao-Guang; Guo, Jingxin

    2015-11-01

    Initiation of flowering, also called heading, in rice (Oryza sativa) is determined by the florigens encoded by Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Early heading date 1 (Ehd1) regulates Hd3a and RFT1. However, different rice varieties have diverged alleles of Ehd1 and Hd3a/RFT1 and their genetic interactions remain largely unclear. Here we generated three segregating populations for different combinations of diverged Ehd1 and Hd3a/RFT1 alleles, and analyzed their genetic interactions between these alleles. We demonstrated that, in an ehd1 mutant background, Hd3a was silenced, but RFT1 was expressed (although at lower levels than in plants with a functional Ehd1) under short-day (SD) and long-day (LD) conditions. We identified a nonfunctional RFT1 allele (rft1); the lines carrying homozygous ehd1 and Hd3a/rft1 failed to induce the floral transition under SD and LD conditions. Like Hd3a, RFT1 also interacted with 14-3-3 proteins, the florigen receptors, but a nonfunctional RFT1 with a crucial E105K mutation failed to interact with 14-3-3 proteins. Furthermore, analyses of sequence variation and geographic distribution suggested that functional RFT1 alleles were selected during rice adaptation to high-latitude regions. Our results demonstrate the important roles of RFT1 in rice flowering and regional adaptation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. A label-free quantitative shotgun proteomics analysis of rice grain development

    Directory of Open Access Journals (Sweden)

    Koh Hee-Jong

    2011-09-01

    Full Text Available Abstract Background Although a great deal of rice proteomic research has been conducted, there are relatively few studies specifically addressing the rice grain proteome. The existing rice grain proteomic researches have focused on the identification of differentially expressed proteins or monitoring protein expression patterns during grain filling stages. Results Proteins were extracted from rice grains 10, 20, and 30 days after flowering, as well as from fully mature grains. By merging all of the identified proteins in this study, we identified 4,172 non-redundant proteins with a wide range of molecular weights (from 5.2 kDa to 611 kDa and pI values (from pH 2.9 to pH 12.6. A Genome Ontology category enrichment analysis for the 4,172 proteins revealed that 52 categories were enriched, including the carbohydrate metabolic process, transport, localization, lipid metabolic process, and secondary metabolic process. The relative abundances of the 1,784 reproducibly identified proteins were compared to detect 484 differentially expressed proteins during rice grain development. Clustering analysis and Genome Ontology category enrichment analysis revealed that proteins involved in the metabolic process were enriched through all stages of development, suggesting that proteome changes occurred even in the desiccation phase. Interestingly, enrichments of proteins involved in protein folding were detected in the desiccation phase and in fully mature grain. Conclusion This is the first report conducting comprehensive identification of rice grain proteins. With a label free shotgun proteomic approach, we identified large number of rice grain proteins and compared the expression patterns of reproducibly identified proteins during rice grain development. Clustering analysis, Genome Ontology category enrichment analysis, and the analysis of composite expression profiles revealed dynamic changes of metabolisms during rice grain development. Interestingly, we

  5. Assessing the impacts of climate change on rice yields in the main rice areas of China

    International Nuclear Information System (INIS)

    Yao, Fengmei; Xu, Yinglong; Lin, Erda; Yokozawa, Masayuki; Zhang, Jiahua

    2007-01-01

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within ± 10% of observed flowering duration and ± 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations

  6. Assessing the impacts of climate change on rice yields in the main rice areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fengmei [College of Earth Sciences, The Graduate University of the Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100049 (China); Xu, Yinglong; Lin, Erda [Agricultural Environment and Sustainable Development Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 (China); Yokozawa, Masayuki [National Institute for Agro-environmental Sciences, Tsukuba 305-8604 (Japan); Zhang, Jiahua [Chinese Academy of Meteorological Sciences, Beijing, 100081 (China)

    2007-02-15

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within {+-} 10% of observed flowering duration and {+-} 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations.

  7. Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Zhigang Zheng

    2017-09-01

    Full Text Available Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1 and agamous-like 24 (AGL24. Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1, a homolog of Pin1At, from Phyllostachys violascens (Bambusoideae. Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis-acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA and methyl jasmonate (MeJA, respectively, were characteristic of P. violascens in comparison with Arabidopsis. On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.

  8. Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice.

    Science.gov (United States)

    Zheng, Zhigang; Yang, Xiaoming; Fu, Yaping; Zhu, Longfei; Wei, Hantian; Lin, Xinchun

    2017-01-01

    Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1) and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1 , a homolog of Pin1At , from Phyllostachys violascens (Bambusoideae). Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis -acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison with Arabidopsis . On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.

  9. The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering.

    Directory of Open Access Journals (Sweden)

    Xuehui Sun

    2016-03-01

    Full Text Available Rice is a facultative short-day plant (SDP, and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1, an ortholog of Arabidopsis CONSTANS (CO, is a key regulator that suppresses flowering under long-day conditions (LDs, but promotes flowering under short-day conditions (SDs by influencing the expression of the florigen gene Heading date 3a (Hd3a. Another key regulator, Early heading date 1 (Ehd1, is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1. Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1 in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E, as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice.

  10. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice

    Directory of Open Access Journals (Sweden)

    Hepler Peter K

    2011-01-01

    Full Text Available Abstract Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild

  11. A genomic approach to elucidating grass flower development

    Directory of Open Access Journals (Sweden)

    Dornelas Marcelo C.

    2001-01-01

    Full Text Available In sugarcane (Saccharum sp as with other species of grass, at a certain moment of its life cycle the vegetative meristem is converted into an inflorescence meristem which has at least two distinct inflorescence branching steps before the spikelet meristem terminates in the production of a flower (floret. In model dicotyledonous species such successive conversions of meristem identities and the concentric arrangement of floral organs in specific whorls have both been shown to be genetically controlled. Using data from the Sugarcane Expressed Sequence Tag (EST Project (SUCEST database, we have identified all sugarcane proteins and genes putatively involved in reproductive meristem and flower development. Sequence comparisons of known flower-related genes have uncovered conserved evolutionary pathways of flower development and flower pattern formation between dicotyledons and monocotyledons, such as some grass species. We have paid special attention to the analysis of the MADS-box multigene family of transcription factors that together with the APETALA2 (AP2 family are the key elements of the transcriptional networks controlling plant reproductive development. Considerations on the evolutionary developmental genetics of grass flowers and their relation to the ABC homeotic gene activity model of flower development are also presented.

  12. Allelic Variation in the Perennial Ryegrass FLOWERING LOCUS T Gene is Associated with Changes in Flowering Time across a Range of Populations

    DEFF Research Database (Denmark)

    Skøt, Leif; Sanderson, Ruth; Thomas, Ann

    2011-01-01

    The Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT) gene and its orthologs in other plant species (e.g. rice [Oryza sativa] OsFTL2/Hd3a) have an established role in the photoperiodic induction of flowering response. The genomic and phenotypic variations associated with the perennial...

  13. Rice SUB1A constrains remodeling of the transcriptome and metabolome during submergence and post-submergence recovery”.

    Science.gov (United States)

    The rice (Oryza sativa L.) ethylene-responsive transcription factor SUB1A confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Rice encoding SUB1A-1 also recovers photosynthetic function and re-commences development towards flowering more rapidly after desu...

  14. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development

    Directory of Open Access Journals (Sweden)

    Yuying Li

    2016-04-01

    Full Text Available Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS was employed to identify the volatile organic compounds (VOCs emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%–83% followed by (E,E-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.

  15. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis.

    Science.gov (United States)

    Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke

    2017-01-05

    Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Boron Application Improves Growth, Yield and Net Economic Return of Rice

    Directory of Open Access Journals (Sweden)

    Mubshar HUSSAIN

    2012-09-01

    Full Text Available A field trial was conducted to evaluate the role of boron (B application at different growth stages in improving the growth, yield and net economic return of rice at farmer's fields during summer season, 2009. Boron was soil applied (1.5 kg/hm2 at the transplanting, tillering, flowering and grain formation stages of rice; foliar applied (1.5% B solution at the tillering, flowering and grain formation stages of rice, and dipped seedling roots in 1.5% B solution before transplanting; while control plots did not apply any B. Boron application (except dipping of seedling roots in B solution, which caused toxicity and reduced the number of tillers and straw yield than control substantially improved the rice growth and yield. However, soil application was better in improving the number of grains per panicle, 1000-grain weight, grain yield, harvest index, net economic income and ratio of benefit to cost compared with the rest of treatments. Overall, for improving rice performance and maximizing the net economic returns, B might be applied as soil application at flowering.

  17. Anther-preferential expressing gene PMR is essential for the mitosis of pollen development in rice.

    Science.gov (United States)

    Liu, Yaqin; Xu, Ya; Ling, Sheng; Liu, Shasha; Yao, Jialing

    2017-06-01

    Phenotype identification, expression examination, and function prediction declared that the anther-preferential expressing gene PMR may participate in regulation of male gametophyte development in rice. Male germline development in flowering plants produces the pair of sperm cells for double fertilization and the pollen mitosis is a key process of it. Although the structural features of male gametophyte have been defined, the molecular mechanisms regulating the mitotic cell cycle are not well elucidated in rice. Here, we reported an anther-preferential expressing gene in rice, PMR (Pollen Mitosis Relative), playing an essential role in male gametogenesis. When PMR gene was suppressed via RNAi, the mitosis of microspore was severely damaged, and the plants formed unmatured pollens containing only one or two nucleuses at the anthesis, ultimately leading to serious reduction of pollen fertility and seed-setting. The CRISPR mutants, pmr-1 and pmr-2, both showed the similar defects as the PMR-RNAi lines. Further analysis revealed that PMR together with its co-expressing genes were liable to participate in the regulation of DNA metabolism in the nucleus, and affected the activities of some enzymes related to the cell cycle. We finally discussed that unknown protein PMR contained the PHD, SWIB and Plus-3 domains and they might have coordinating functions in regulation pathway of the pollen mitosis in rice.

  18. Flower development: open questions and future directions.

    Science.gov (United States)

    Wellmer, Frank; Bowman, John L; Davies, Brendan; Ferrándiz, Cristina; Fletcher, Jennifer C; Franks, Robert G; Graciet, Emmanuelle; Gregis, Veronica; Ito, Toshiro; Jack, Thomas P; Jiao, Yuling; Kater, Martin M; Ma, Hong; Meyerowitz, Elliot M; Prunet, Nathanaël; Riechmann, José Luis

    2014-01-01

    Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.

  19. Comprehensive expression profiling of rice tetraspanin genes reveals diverse roles during development and abiotic stress

    Directory of Open Access Journals (Sweden)

    Balaji eM

    2015-12-01

    Full Text Available Tetraspanin family is comprised of evolutionarily conserved integral membrane proteins. The incredible ability of tetraspanins to form ‘micro domain complexes’ and their preferential targeting to membranes emphasizes their active association with signal recognition and communication with neighboring cells, thus acting as key modulators of signaling cascades. In animals, tetraspanins are associated with multitude of cellular processes. Unlike animals, the biological relevance of tetraspanins in plants has not been well investigated. In Arabidopsis tetraspanins are known to contribute in important plant development processes such as leaf morphogenesis, root and floral organ formation. In the present study we investigated the genomic organization, chromosomal distribution, phylogeny and domain structure of 15 rice tetraspanin proteins (OsTETs. OsTET proteins had similar domain structure and signature ‘GCCK/R’ motif as reported in Arabidopsis. Comprehensive expression profiling of OsTET genes suggested their possible involvement during rice development. While OsTET9 and 10 accumulated predominantly in flowers, OsTET5, 8 and 12 were preferentially expressed in root tissues. Noticeably, seven OsTETs exhibited more than 2-fold up regulation at early stages of flag leaf senescence in rice. Furthermore, several OsTETs were differentially regulated in rice seedlings exposed to abiotic stresses, exogenous treatment of hormones and nutrient deprivation. Transient subcellular localization studies of eight OsTET proteins in tobacco epidermal cells showed that these proteins localized in plasma membrane. The present study provides valuable insights into the possible roles of tetraspanins in regulating development and defining response to abiotic stresses in rice. Targeted proteomic studies would be useful in identification of their interacting partners under different conditions and ultimately their biological function in plants

  20. Identifying molecular markers associated with stigma characteristics in rice

    Science.gov (United States)

    Stigma characteristics play essential roles in hybrid seed production of rice and marker-assisted breeding plays essential role because they are quantitatively inherited with single-flowered perfect spikelet. Ninety four accessions originated from 47 countries were selected from the USDA rice core c...

  1. Phenological characters and genetic divergence in aromatic rices

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... Phenological properties of a plant are measured in time duration between ... The time interval between sowing and flowering in rice (Oryza sativa L.) ... locally adapted genotypes of aromatic rices have evolved because of natural ... classification of genotypes based on suitable scale is quite imperative to ...

  2. The Effect of Medium Cultures on Water Use and Charactristic of Gazania Flowers (Gazania hybrida in Green Roof.

    Directory of Open Access Journals (Sweden)

    Tahereh Bahrami

    2017-09-01

    Full Text Available Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping. Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10% and rice hull (zero, 7, and 14%. Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of

  3. The Effect of Medium Cultures on Water Use and Charactristic of Gazania Flowers (Gazania hybrida in Green Roof.

    Directory of Open Access Journals (Sweden)

    Tahereh Bahrami

    2017-02-01

    Full Text Available Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping. Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10% and rice hull (zero, 7, and 14%. Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of

  4. Transgene Flow from Glufosinate-Resistant Rice to Improved and Weedy Rice in China

    Directory of Open Access Journals (Sweden)

    Yong-liang LU

    2014-09-01

    Full Text Available The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09, two inbred indica rice (Zhongzu 14 and Zhongzao 22, two indica hybrid rice (Zhongzheyou 1 and Guodao 1, and one weedy indica rice (Taizhou weedy rice. The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice > Chunjiang 016 > Xiushui 09 and Zhongzu 14 > Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and

  5. Goethe and the ABC model of flower development.

    Science.gov (United States)

    Coen, E

    2001-06-01

    About 10 years ago, the ABC model for the genetic control of flower development was proposed. This model was initially based on the analysis of mutant flowers but has subsequently been confirmed by molecular analysis. This paper describes the 200-year history behind this model, from the late 18th century when Goethe arrived at his idea of plant metamorphosis, to the genetic studies on flower mutants carried out on Arabidopsis and Antirrhinum in the late 20th century.

  6. Hormonal regulation of floret closure of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Youming Huang

    Full Text Available Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA, indole-3-butyric acid (IBA, 1-naphthalene-acetic acid (NAA, 2,4-dichlorophenoxy acetic acid (2,4-D and 3,6-dichloro-2-methoxybenzoic acid (DIC and abscisic acid (ABA on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013-2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of

  7. Hormonal regulation of floret closure of rice (Oryza sativa)

    Science.gov (United States)

    Huang, Youming; Zeng, Xiaochun

    2018-01-01

    Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA), indole-3-butyric acid (IBA), 1-naphthalene-acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (DIC) and abscisic acid (ABA) on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013–2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of the varieties

  8. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).

    Science.gov (United States)

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  9. Leaf development of cultivated rice and weedy red rice under elevated temperature scenarios

    OpenAIRE

    Streck,Nereu A.; Uhlmann,Lilian O.; Gabriel,Luana F.

    2013-01-01

    The objective of this study was to simulate leaf development of cultivated rice genotypes and weedy red rice biotypes in climate change scenarios at Santa Maria, RS, Brazil. A leaf appearance (LAR) model adapted for rice was used to simulate the accumulated leaf number, represented by the Haun Stage, from crop emergence to flag leaf appearance (EM-FL). Three cultivated rice genotypes and two weedy red rice biotypes in six emergence dates were used. The LAR model was run for each emergence dat...

  10. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2012-09-01

    Full Text Available In 1996, China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types. Today, approximately 80 super rice varieties have been released and some of them show high grain yields of 12–21 t/hm2 in field experiments. The main reasons for the high yields of super rice varieties, compared with those of conventional varieties, can be summarized as follows: more spikelets per panicle and larger sink size (number of spikelets per square meter; larger leaf area index, longer duration of green leaf, greater photosynthetic rate, higher lodging resistance, greater dry matter accumulation before the heading stage, greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity. However, there are two main problems in super rice production: poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets, and low and unstable seed-setting rate. Here, we review recent research advances in the crop physiology of super rice, focusing on biological features, formation of yield components, and population quality. Finally, we suggest further research on crop physiology of super rice.

  11. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of

  12. Pistil Development in 2 Types of Flowers of Xanthoceras sorbifolia

    Institute of Scientific and Technical Information of China (English)

    Hu Qing; Gao Shumin; Li Fenglan

    2004-01-01

    In order to investigate flower development and female abortion during sex differentiation of Xanthoceras sorbifolia, anatomical observations and comparative study on differential proteins were carried out in different developmental stages of two types of flowers of this species. It was found that the selective abortion happened in male flower before the formation of megasporocyte. Special proteins related to the female abortion were found through 2-dimensional electrophoretic analysis. Protein A1 (14.2 kD) only existed in florescence of male flower, while B1 (13.7 kD) and B2 (18.2 kD) disappeared in that stage of male flower. They were all considered to be relative to pistil abortion of Xanthoceras sorbifolia.

  13. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice.

    Science.gov (United States)

    Wang, Hongru; Vieira, Filipe G; Crawford, Jacob E; Chu, Chengcai; Nielsen, Rasmus

    2017-06-01

    The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon , are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus , indica , and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica , possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow. © 2017 Wang et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Characterization and Selection of Phosphorus Deficiency Tolerant Rice Genotypes in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Y.C. Aluwihare

    2016-07-01

    Full Text Available Phosphorus (P deficiency in soil is a major constrain for rice production. An important set of rice genotypes (landraces, old improved and new improved varieties were screened for P deficiency tolerance in two major cropping seasons of Sri Lanka, in 2012. The Ultisol soil, which was collected from a plot cultivated with rice without fertilizer application for past 40 years (P0 at the Rice Research and Development Institute (RRDI, Bathalagoda, Sri Lanka, was used as the potting medium for greenhouse trials. Two field trials were conducted in the same plots at RRDI. Both P0 and P30 (30 mg/kg P2O5 conditions were used in the two greenhouse trials. At the early vegetative (three weeks after transplanting, late vegetative (six weeks after transplanting and flowering stages, plant height and number of tillers per plant were recorded. At the flowering stage, shoots were harvested and shoot dry weight, shoot P concentration, shoot P uptake and P utilization efficiency were measured. All data were statistically analyzed using analysis of variance, regression and cluster procedures. The measured parameters were significantly different between P0 and P30 conditions (P < 0.05. Higher shoot dry weight was reported by the rice genotypes H4 and Marss under P0 conditions. The regression analysis between shoot dry weight and P utilization efficiency revealed that the studied rice genotypes could be categorized to three P deficiency tolerance classes. A total of 13 genotypes could be considered as highly tolerant and 4 genotypes as sensitive for P deficiency. These results could be used to select parental genotypes for breeding and genetic studies and also to select interesting varieties or landraces for organic rice production.

  15. Shielding Flowers Developing under Stress: Translating Theory to Field Application

    Directory of Open Access Journals (Sweden)

    Noam Chayut

    2014-07-01

    Full Text Available Developing reproductive organs within a flower are sensitive to environmental stress. A higher incidence of environmental stress during this stage of a crop plants’ developmental cycle will lead to major breaches in food security. Clearly, we need to understand this sensitivity and try and overcome it, by agricultural practices and/or the breeding of more tolerant cultivars. Although passion fruit vines initiate flowers all year round, flower primordia abort during warm summers. This restricts the season of fruit production in regions with warm summers. Previously, using controlled chambers, stages in flower development that are sensitive to heat were identified. Based on genetic analysis and physiological experiments in controlled environments, gibberellin activity appeared to be a possible point of horticultural intervention. Here, we aimed to shield flowers of a commercial cultivar from end of summer conditions, thus allowing fruit production in new seasons. We conducted experiments over three years in different settings, and our findings consistently show that a single application of an inhibitor of gibberellin biosynthesis to vines in mid-August can cause precocious flowering of ~2–4 weeks, leading to earlier fruit production of ~1 month. In this case, knowledge obtained on phenology, environmental constraints and genetic variation, allowed us to reach a practical solution.

  16. Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L.

    Science.gov (United States)

    Pimenta Lange, Maria João; Knop, Nicole; Lange, Theo

    2012-04-01

    Gibberellin (GA) signalling during pumpkin male flower development is highly regulated, including biosynthetic, perception, and transduction pathways. GA 20-oxidases, 3-oxidases, and 2-oxidases catalyse the final part of GA synthesis. Additionally, 7-oxidase initiates this part of the pathway in some cucurbits including Cucurbita maxima L. (pumpkin). Expression patterns for these GA-oxidase-encoding genes were examined by competitive reverse transcription-PCR (RT-PCR) and endogenous GA levels were determined during pumpkin male flower development. In young flowers, GA20ox3 transcript levels are high in stamens, followed by high levels of the GA precursor GA(9). Later, just before flower opening, transcript levels for GA3ox3 and GA3ox4 increase in the hypanthium and stamens, respectively. In the stamen, following GA3ox4 expression, bioactive GA(4) levels rise dramatically. Accordingly, catabolic GA2ox2 and GA2ox3 transcript levels are low in developing flowers, and increase in mature flowers. Putative GA receptor GID1b and DELLA repressor GAIPb transcript levels do not change in developing flowers, but increase sharply in mature flowers. Emasculation arrests floral development completely and leads to abscission of premature flowers. Application of GA(4) (but not of its precursors GA(12)-aldehyde or GA(9)) restores normal growth of emasculated flowers. These results indicate that de novo GA(4) synthesis in the stamen is under control of GA20ox3 and GA3ox4 genes just before the rapid flower growth phase. Stamen-derived bioactive GA is essential and sufficient for male flower development, including the petal and the pedicel growth.

  17. Global Information Resources on Rice for Research and Development

    Directory of Open Access Journals (Sweden)

    Shri RAM

    2012-12-01

    Full Text Available Various issues concerning the progress of rice research are related to ambiguous germplasm identification, difficulty in tracing pedigree information, and lack of integration between genetic resources, characterization, breeding, evaluation and utilization data. These issues are the constraints in developing knowledge-intensive crop improvement programs. The rapid growth, development and the global spread of modern information and communication technology allow quick adoption in fundamental research. Thus, there is a need to provide an opportunity for the establishment of services which describe the rice information for better accessibility to information resources used by researchers to enhance the competitiveness. This work reviews some of available resources on rice bioinformatics and their roles in elucidating and propagating biological and genomic information in rice research. These reviews will also enable stakeholders to understand and adopt the change in research and development and share knowledge with the global community of agricultural scientists. The establishment like International Rice Information System, Rice Genome Research Project and Integrated Rice Genome Explorer are major initiatives for the improvement of rice. Creation of databases for comparative studies of rice and other cereals are major steps in further improvement of genetic compositions. This paper will also highlight some of the initiatives and organizations working in the field of rice improvement and explore the availability of the various web resources for the purpose of research and development of rice. We are developing a meta web server for integration of online resources such as databases, web servers and journals in the area of bioinformatics. This integrated platform, with acronym iBIRA, is available online at ibiranet.in. The resources reviewed here are the excerpts from the resources integrated in iBIRA.

  18. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and

  19. Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae

    Directory of Open Access Journals (Sweden)

    Teeri Teemu H

    2006-06-01

    Full Text Available Abstract Background The inflorescence of the cut-flower crop Gerbera hybrida (Asteraceae consists of two principal flower types, ray and disc, which form a tightly packed head, or capitulum. Despite great interest in plant morphological evolution and the tractability of the gerbera system, very little is known regarding genetic mechanisms involved in flower type specification. Here, we provide comparative staging of ray and disc flower development and microarray screening for differentially expressed genes, accomplished via microdissection of hundreds of coordinately developing flower primordia. Results Using a 9K gerbera cDNA microarray we identified a number of genes with putative specificity to individual flower types. Intrestingly, several of these encode homologs of MADS-box transcription factors otherwise known to regulate flower organ development. From these and previously obtained data, we hypothesize the functions and protein-protein interactions of several gerbera MADS-box factors. Conclusion Our RNA expression results suggest that flower-type specific MADS protein complexes may play a central role in differential development of ray and disc flowers across the gerbera capitulum, and that some commonality is shared with known protein functions in floral organ determination. These findings support the intriguing conjecture that the gerbera flowering head is more than a mere floral analog at the level of gene regulation.

  20. Influence of ethyl-trinexapac on 15N accumulation and distribution and on highland rice yield

    International Nuclear Information System (INIS)

    Alvarez, Rita de Cassia Felix; Crusciol, Carlos Alexandre Costa; Alvarez, Angela Cristina Camarim; Trivelin, Paulo Cesar Ocheuze; Rodrigues, Joao Domingos

    2007-01-01

    The high rice grain yields ensured by sprinkler irrigation have encouraged the use of higher fertilizer doses, mainly the nitrogen fertilizers. However, an improper management of nitrogen fertilization may result in plant lodging. Application of plant regulators may redirect assimilates to grain production while limiting the vegetative growth. This study aimed to: evaluate the influence of the growth regulator Ethyl-trinexapac on plant growth parameters and on 15 N accumulation and distribution in the whole plant and plant components, and determine the contribution of nitrogen taken up in different developmental stages in panicle formation, yield components and rice yield. The experiment was carried out under controlled greenhouse conditions. The treatments consisted of application or not of a plant growth regulator (0 and 200 g active ingredient ha-1 of ethyl-trinexapac) at four plant development stages (beginning to end of tillering; end of tillering and flower differentiation; flower differentiation to flowering; flowering until physiological maturation). The experimental design was arranged in random blocks, in a 2 x 4 factorial scheme, with three replications. The plants were placed in a group of 48 pots. In a group of 24 pots with nutrient solution containing 15 NH 4 SO 4 , plants were collected and separated in parts in the beginning of each pre-established plant development stage and at the end of each stage. In a second group (24 pots), pre-labeled plants were left to grow in nutrient solution with 14 NH 4 SO 4 and harvested at the end of each cycle in order to access 15 N redistribution.. The growth regulator reduced plant height and 15 N accumulation in the panicle and promoted redistribution of the absorbed 15 N, and increased accumulated 15 N in root, stem+sheats and leaves. The contribution of absorbed 15 N to panicle formation in each stage increased with the plant development, though in a lower proportion in the presence of the growth regulator

  1. Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Manzano, Susana; Martínez, Cecilia; García, Juan Manuel; Megías, Zoraida; Jamilena, Manuel

    2014-12-01

    Although it is known that ethylene has a masculinizing effect on watermelon, the specific role of this hormone in sex expression and flower development has not been analyzed in depth. By using different approaches the present work demonstrates that ethylene regulates differentially two sex-related developmental processes: sexual expression, i.e. the earliness and the number of female flowers per plant, and the development of individual floral buds. Ethylene production in the shoot apex as well as in male, female and bisexual flowers demonstrated that the female flower requires much more ethylene than the male one to develop, and that bisexual flowers result from a decrease in ethylene production in the female floral bud. The occurrence of bisexual flowers was found to be associated with elevated temperatures in the greenhouse, concomitantly with a reduction of ethylene production in the shoot apex. External treatments with ethephon and AVG, and the use of Cucurbita rootstocks with different ethylene production and sensitivity, confirmed that, as occurs in other cucurbit species, ethylene is required to arrest the development of stamens in the female flower. Nevertheless, in watermelon ethylene inhibits the transition from male to female flowering and reduces the number of pistillate flowers per plant, which runs contrary to findings in other cucurbit species. The use of Cucurbita rootstocks with elevated ethylene production delayed the production of female flowers but reduced the number of bisexual flowers, which is associated with a reduced fruit set and altered fruit shape.

  2. New Service Development in Flower Retail

    OpenAIRE

    Abdigali, Alikhan

    2010-01-01

    My research will focus on the practical dimension of new service development in flower retail in Kazakhstan. Our group project, the business plan, investigated the issue from an entrepreneur perspective without going into detail in theoretical part. I will try to come up with a set of recommendations to entrepreneurs who want to develop a customer oriented service, based on theories drawn from service development literature. The product and service mix development is a difficult task, and I h...

  3. Identification of microRNAs differentially expressed involved in male flower development.

    Science.gov (United States)

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.

  4. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L. flower development

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2016-10-01

    Full Text Available Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L. seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1, pollination (S2, and the post-pollination senescence period (S3. Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD. Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs, carbonic anhydrase (CA, and NADPH: quinone oxidoreductase-like protein (NQOLs. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower

  5. Rice improvement, involving altered flower structure more suitable to cross-pollination, using in vitro culture in combination with mutagenesis

    International Nuclear Information System (INIS)

    Min, S.K.

    1998-01-01

    Anther and somatic tissue culture in combination with mutagenesis were carried out to evaluate the efficiency of different mutagenic treatments of various in vitro culture materials, and to obtain some promising variants for rice improvement. Results indicated that in japonica rice radiation treatment of dry seeds and young panicles influenced the percentage of green plantlets regeneration from anther culture. Both treatments increased significantly the percentage of regenerated green plantlets in comparison with the control. Irradiation with 30 Gy of rice callus increased also the percentage of regenerated green plantlets. For indica rice, the combination of the suitable dose of gamma rays irradiation on seeds and an improved medium, increased the percentage of callus induction. This approach made it possible to use anther culture in indica rice breeding. Somatic tissue cultures combined with radiation-induced mutagenesis led to the development of a number of promising mutants including some new cytoplasm-nucleus interacting male-sterile lines with almost 100% stigma exertion. Their development would be of practical significance for increasing the genetic diversity for production of hybrid rice. (author)

  6. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  7. Physiological and biochemical aspects of flower development and senescence in Nicotiana plumbaginifolia Viv.

    Directory of Open Access Journals (Sweden)

    Nisar Shaziya

    2017-06-01

    Full Text Available Healthy buds of Nicotiana plumbaginifolia growing in the Kashmir University Botanic Garden were selected for the present study. Flower development and senescence was divided into seven stages, viz., tight bud stage (I, mature bud stage (II, pencil stage (III, partially open stage (IV, open stage (V, partially senescent stage (VI and senescent stage (VII. Various physiological and biochemical changes were recorded at each stage of flower development and senescence. Floral diameter, fresh mass, dry mass and water content showed an increase up to flower opening (stage V and thereafter a significant decrease was recorded as the flower development progressed towards senescence through stages VI and VII. An increase in α-amino acids, total phenols and sugars was registered towards anthesis (stage V and a decrease in these parameters was recorded with senescence. Protease activity showed a significant increase towards senescence with a concomitant decrease in soluble proteins. Based on the quantitative analysis of various biochemical parameters, the flower opening in N. plumbaginifolia seems to be accompanied by an increase in the water content, soluble proteins, α‑amino acids and phenols. A decrease in these parameters, besides an increase in protease activity induces senescence in the beautiful flowers of N. plumbaginifolia. Understanding flower senescence may help in improving the postharvest performance of this beautiful ornamental flower to make it a potential material for the floriculture industry.

  8. Development of instant noodles from high-iron rice and iron-fortified rice flour

    Directory of Open Access Journals (Sweden)

    Suparat Reungmaneepaitoon

    2008-08-01

    Full Text Available Instant high-iron noodles, prepared from wheat flour and high iron brown rice flour, were developed. Three varieties of rice flour, Suphan Buri 90 (SB, Homnin 313 (HW and Homnin 1000 (HP, containing amylose content of 30.40, 19.10 and 15.74% (w/w and iron content of 1.24, 2.04 and 2.22 (mg/100 g respectively, were used to replace wheat flour for instant fried noodle production. To determine the physicochemical properties and acceptability of instant fried noodles,different percentages (30, 40, 50% (w/w of each rice flour sample were used. The instant fried noodles were fortified with ferrous sulphate at levels of 0, 32, 64% iron of RDI per serving. Increasing amount of iron content in the mixtures decreased the L* value, b* value and increased a* value for the color of the instant fried noodle with brown rice flour. The texture characteristic of the noodles with 30, 40, 50% replacement with each variety of brown rice flour were significantly different from those of wheat noodle. Tensile force of the noodles decreased from 11.57±1.30 g to 6.38±1.45 g (SB, 8.36±0.96 g to 5.71±0.57 g (HP and 10.09±1.20 g to 5.46±1.31 g (HW as the rice flour content increased from 30 to 50%. The sensoryacceptability of the noodles made from each variety of 30% brown rice flour fortified with 32% iron of RDI had higher preference scores for elasticity, firmness, color and overall acceptability, than those with 64% iron of RDI. Instant fried noodles with HW and HP brown rice flour were subjected to consumer test using 100 rural primary school children. The frequency percent of the acceptability scores of the noodle with HP and HW were 88 and 84% respectively. Shelf life studyrevealed that the developed products were still acceptable up to 4 months. These products were claimed to be high iron noodle.

  9. Coordination of flower development by homeotic master regulators.

    Science.gov (United States)

    Ito, Toshiro

    2011-02-01

    Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Breeding and characterization of homokaryotic heteroplasmic male sterile lines in rice (oryza sativa)

    International Nuclear Information System (INIS)

    Mei, Q.; Zhou, X.; Liu, C.

    2011-01-01

    Twelve different Cytoplasmic Male-Sterile (CMS) lines were crossed with 18 rice varieties. From the hybrid with japonica rice Nongken 58, twelve homokaryotic-heteroplasmic male sterile lines were developed in B7F1 after successive back crossing and selection for stable male sterility and desirable agronomic traits such as flowering habit and high out crossing rate. The experimental results demonstrated that expression of the CMS factors were influenced by the corresponding nuclear genes. Three pollen abortion types, including the typical, the spherical and the stained abortion, were observed in the homokaryotic-heteroplasmic male sterile lines. Formation of the aborted pollen grains was influenced by the interaction among specific cytoplasmic and the corresponding nuclear genes. As the CMS carriers, these homokaryotic-heteroplasmic lines will have significant impact on the utilization of multiple types of CMS in hybrid rice breeding. What is more important is that these CMS lines are the invaluable materials for the investigation of the molecular mechanism of CMS formation in rice. (author)

  11. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice.

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D; Huang, Zhongyun; Hyma, Katie E; Gealy, David R; Caicedo, Ana L

    2014-11-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. © 2014 American Society of Plant Biologists. All Rights Reserved.

  12. Cytological observation of solanum pimpinellifolium l. microspore development

    International Nuclear Information System (INIS)

    Qu, H.; Rylosona, J.S.

    2015-01-01

    Tomato (Solanum lycopersicum L.) is one of the most important horticultural crops worldwide, and has also been adapted as a model plant in a wide range of research disciplines. However, stamen development in tomato is less known than other model species, such as Arabidopsis thaliana and Oryza sativa L. (rice). In order to understand tomato flower development in more detail, the key goal of this study was to establish a precise correlation between visual morphological features and cytological events. To this end, we characterized a wild tomato species, S. pimpinellifolium (accession LA1585), to define stamen developmental stages using semi-thin sectioning. Based on distinct stages of flower development, S. pimpinellifolium anther/stamen development was divided into ten stages, and characteristic morphological and cytological features in stamens at each developmental stage were identified. In this way, flower characteristics and microspore development were correlated. In addition, specific cytological key events in S. pimpinellifolium were compared with those in A. thaliana and rice at corresponding stages, as well as with those in domesticated tomato (S. lycopersicum L.), and the differences are discussed. (author)

  13. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  14. Improving resource-use efficiency in rice-based systems of Pakistan

    NARCIS (Netherlands)

    Awan, M.I.

    2013-01-01

    Keywords: Aerobic rice, water productivity, pre-flowering phenology, eco-efficiency, perceptions, transformational technology, food security, resource constraints, Punjab, Pakistan.

    Just like in many other parts of the world, diminishing resources of water, labour and energy

  15. Harvest season and head rice yield of upland rice cultivars submitted to parboiling

    Directory of Open Access Journals (Sweden)

    Diva Mendonça Garcia

    2012-11-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE This work aimed to evaluate the effects of parboiling on the yield of upland rice cultivars harvested at different times. The cultivars were BRS Primavera and BRS Sertaneja, harvested at 30 and 47 days after flowering (DAF. For parboiling, samples were soaked in water bath at 65 °C in grain: water ratio of 1:1.6 in order to reach 25% and 30% moisture, and then were autoclaved for 10 minutes at 120 °C and 1.1 kg/cm2 of pressure. After drying up to 13% moisture in a greenhouse with forced air at 40 °C, samples were benefited, followed by separation using the trieur equipment and weighing to obtain the head rice yield. The results showed a higher yield for head rice harvested at 30 DAF than at 47 DAF (BRS Primavera 63.2 and 38.7%; BRS Sertaneja 68.5 and 55.7%, respectively. Parboiling increased the head rice yield, regardless of harvest season, but partly reflected the potential of the cultivar origin: BRS Primavera 70.06%, BRS Sertaneja 74.94%. It is concluded that the harvest season is one of the factors that most influence the quality of industrial rice and the effect of parboiling also depends on the potential of the material source.

  16. The Impact of Herbicide-Resistant Rice Technology on Phenotypic Diversity and Population Structure of United States Weedy Rice1[W][OPEN

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D.; Huang, Zhongyun; Hyma, Katie E.; Gealy, David R.; Caicedo, Ana L.

    2014-01-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. PMID:25122473

  17. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Fiammetta Alagna

    Full Text Available The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia, included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  18. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    Science.gov (United States)

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  19. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    Science.gov (United States)

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  20. The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway.

    Science.gov (United States)

    Yang, Chao; Ma, Yamei; Li, Jianxiong

    2016-10-01

    YABBY genes encode seed plant-specific transcription factors that play pivotal roles in diverse aspects of leaf, shoot, and flower development. Members of the YABBY gene family are primarily expressed in lateral organs in a polar manner and function to specify abaxial cell fate in dicotyledons, but this polar expression is not conserved in monocotyledons. The function of YABBY genes is therefore not well understood in monocotyledons. Here we show that overexpression of the rice (Oryza sativa L.) YABBY4 gene (OsYABBY4) leads to a semi-dwarf phenotype, abnormal development in the uppermost internode, an increased number of floral organs, and insensitivity to gibberellin (GA) treatment. We report on an important role for OsYABBY4 in negative control of the expression of a GA biosynthetic gene by binding to the promoter region of the gibberellin 20-oxidase 2 gene (GA20ox2), which is a direct target of SLR1 (the sole DELLA protein negatively controlling GA responses in rice). OsYABBY4 also suppresses the expression level of SLR1 and interacts with SLR1 protein. The interaction inhibits GA-dependent degradation of SLR1 and therefore leads to GA insensitivity. These data together suggest that OsYABBY4 serves as a DNA-binding intermediate protein for SLR1 and is associated with the GA signaling pathway regulating gene expression during plant growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Science.gov (United States)

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R

    2015-02-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  2. Genomic selection and association mapping in rice (Oryza sativa: effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Directory of Open Access Journals (Sweden)

    Jennifer Spindel

    2015-02-01

    Full Text Available Genomic Selection (GS is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  3. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines

    Science.gov (United States)

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R.

    2015-01-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline. PMID:25689273

  4. Some aspects of mineral nutrition and flowering

    NARCIS (Netherlands)

    Hinnawy, El E.I.

    1956-01-01

    In mustard N deficiency accelerated flower initiation and particularly flower bud development. Excess N delayed flowering but increased number of flowers. Of other elements Ca influenced flowering most.

    Dill developed its flowers most rapidly with normal or high rates of N. N deficiency retarded

  5. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  6. Genetic diversity of Iranian rice germplasm based on morphological traits

    Directory of Open Access Journals (Sweden)

    nade ali bagheri

    2009-06-01

    Full Text Available Study of genetic diversity of rice is very important for rice breeders. In this study 64 genotypes for 14 agronomic traits were evaluated. Phenotypic variation coefficients of some of traits were high which showed essential variation in this traits. Principal component analysis detected 6 components which explained 74.66 percent of the total variations. The first component was related to generative traits such as number of spiklet per panicle, number of full grain per panicle, date of 50% flowering and length of panicle. In the third component, the date of complete maturity with -0.730 has negative effects on yield. Correlation analysis of morphological traits indicated a negative and significant relationship between early maturity and plant height, which showed early maturity cultivars had higher plant type. Results of stepwise regression analysis for early maturity, indicated that three traits such as date of 50% flowering, number of full grain per panicle and plant height showed higher variation and explained 54.3 percent of total early maturity variations. All traits were classified into 2 groups, by cluster analysis and traits belonged to early maturity classified as a sub-group. Genotypes were classified into 4 groups by using method of Ward,s minimum variance and squared Euclidean distance. Native cultivars from the view point of early maturity and yield components had useful information for rice breeding. Key words: Genetic diversity, rice, morphological traits.

  7. Response of rice genotypes to weed competition in dry direct-seeded rice in India.

    Science.gov (United States)

    Mahajan, Gulshan; Ramesha, Mugalodi S; Chauhan, Bhagirath S

    2014-01-01

    The differential weed-competitive abilities of eight rice genotypes and the traits that may confer such attributes were investigated under partial weedy and weed-free conditions in naturally occurring weed flora in dry direct-seeded rice during the rainy seasons of 2011 and 2012 at Ludhiana, Punjab, India. The results showed genotypic differences in competitiveness against weeds. In weed-free plots, grain yield varied from 6.6 to 8.9 t ha(-1) across different genotypes; it was lowest for PR-115 and highest for the hybrid H-97158. In partial weedy plots, grain yield and weed biomass at flowering varied from 3.6 to 6.7 t ha(-1) and from 174 to 419 g m(-2), respectively. In partial weedy plots, grain yield was lowest for PR-115 and highest for PR-120. Average yield loss due to weed competition ranged from 21 to 46% in different rice genotypes. The study showed that early canopy closure, high leaf area index at early stage, and high root biomass and volume correlated positively with competitiveness. This study suggests that some traits (root biomass, leaf area index, and shoot biomass at the early stage) could play an important role in conferring weed competitiveness and these traits can be explored for dry-seeded rice.

  8. Development of Rice Reprocessing to Strengthen Small Scale Rice Mills in Indramayu West Java

    Science.gov (United States)

    Firdaus, Y. R.; Hasbullah, R.; Djohar, S.

    2018-05-01

    Small Rice Mill (SRM) has a very important role in rice production of strong institutional relationships to farmers and rice markets. Nevertheless, the rice produced in low quality and changing consumer preferences cause SRM to have difficulty in maintaining the role. Development of a reprocessing business - called Rice to Rice Processing Plant (R2RP) - as a separate business unit will support their role and existence. This study aimed at analyzing the feasibility of R2RP business that integrates SRM and market as an independent business unit and determines mutual partnership pattern. The study was conducted with special reference to West Java Province. The qualitative method used for non-financial aspects analysis includes raw material, market, technical-technological, management and regulation and partnership pattern. The financial aspect used the quantitative method of Net Present Value (NPV), Net Benefit Cost Ratio (Net B/C), Internal Rate of Return (IRR), Payback Period (PP) and Switching Value to check their sensitivity.The results showed R2R business is feasible for non-financially, technical-technological and financial aspects. Technology has evolved to produce various qualities (premium or medium) after the quality of raw materials (low quality or off-grade rice) using profit optimization. Value of the financial parameters was NPV of Rp 137 billion, Net B/C of 5.80, IRR of 84.27 percent and PP of 2.18 years at capacity of 19,800 tons/year with total investment of Rp 30 billion (Rp 13,500/USD). The switching value analysis showed that a decrease in product prices is sensitively influencing the financial feasibility. To strengthen cooperation that enhancing mutually beneficial relationship, R2R assists equipment investment in and buy raw material from SRM at a rational agreed price.

  9. The development of tomatillo (Physalis ixocarpa Brot. in Polish conditions. II. Flowering and fruiting

    Directory of Open Access Journals (Sweden)

    Leszek S. Jankiewicz

    2013-12-01

    Full Text Available The reproductive development of tomatillo (husk tomato was investigated in the conditions of central Poland. The developmental cycle of tomatillo in Poland lasts 20-23 weeks, including 6 weeks in a greenhouse or a tunnel and is longer than in Mexico (15 weeks. The plant grows well in Poland and is fruiting aboundantly. The cv. Rendidora B1 was early fruiting and sensitive to drought so it should be cultivated in a garden. Cvs Bujna and Antocyjanowa were medium late or late and suitable for open-field cultivation. Fruit development lasts about 6 weeks. Fruiting was concentrated on the apparent lateral branches of the 1st and 2nd order during the large part of a vegetative season. Among the abscised generative organs predominated flowers and at the end of vegetative season the flower buds. The maximum abscission of flower buds and flowers took place about 2-4 weeks after the most intensive flowering and fruit set. The fruits of many individuals are easily cracking. After being abscised they are attacked frequently by Botrytis sp.

  10. Flower development in Arabidopsis: there is more to it than learning your ABCs.

    Science.gov (United States)

    Prunet, Nathanaël; Jack, Thomas P

    2014-01-01

    The field of Arabidopsis flower development began in the early 1980s with the initial description of several mutants including apetala1, apetala2, and agamous that altered floral organ identity (Koornneef and van der Veen, Theor Appl Genet 58:257-263, 1980; Koornneef et al., J Hered 74:265-272, 1983). By the end of the 1980s, these mutants were receiving more focused attention to determine precisely how they affected flower development (Komaki et al., Development 104:195-203, 1988; Bowman et al., Plant Cell 1:37-52, 1989). In the last quarter century, impressive progress has been made in characterizing the gene products and molecular mechanisms that control the key events in flower development. In this review, we briefly summarize the highlights of work from the past 25 years but focus on advances in the field in the last several years.

  11. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard

    2002-02-01

    All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.

  12. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice.

    Science.gov (United States)

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A D; Chen, Liang-Jwu; Yu, Su-May

    2008-10-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C(20) GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C(20) GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C(20) GA2oxs were found to cause less severe GA-defective phenotypes than C(19) GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C(20) GA2oxs.

  13. Development of a Monoclonal Antibody-Based icELISA for the Detection of Ustiloxin B in Rice False Smut Balls and Rice Grains

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Fu

    2015-08-01

    Full Text Available Rice false smut is an emerging and economically-important rice disease caused by infection by the fungal pathogen Villosiclava virens. Ustiloxin B is an antimitotic cyclopeptide mycotoxin isolated from the rice false smut balls that formed in the pathogen-infected rice spikelets. A monoclonal antibody (mAb designated as mAb 1B5A10 was generated with ustiloxin B—ovalbumin conjugate. A highly-sensitive and specific indirect competitive enzyme-linked immunosorbent assay (icELISA was then developed. The median inhibitory concentration (IC50 of the icELISA was 18.0 ng/mL for the detection of ustiloxin B; the limit of detection was 0.6 ng/mL, and the calibration range was from 2.5 to 107.4 ng/mL. The LOD/LOQ values of the developed ELISA used for the determination of ustiloxin B in rice false smut balls and rice grains were 12/50 μg/g and 30/125 ng/g, respectively. The mAb 1B5A10 cross-reacted with ustiloxin A at 13.9% relative to ustiloxin B. Average recoveries of ustiloxin B ranged from 91.3% to 105.1% for rice false smut balls at spiking levels of 0.2 to 3.2 mg/g and from 92.6% to 103.5% for rice grains at spiking levels of 100 to 5000 ng/g. Comparison of ustiloxin B content in rice false smut balls and rice grains detected by both icELISA and high performance liquid chromatography (HPLC demonstrated that the developed icELISA can be employed as an effective and accurate method for the detection of ustiloxin B in rice false smut balls, as well as rice food and feed samples.

  14. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae).

    Science.gov (United States)

    Mauro-Herrera, Margarita; Wang, Xuewen; Barbier, Hugues; Brutnell, Thomas P; Devos, Katrien M; Doust, Andrew N

    2013-02-01

    We report the first study on the genetic control of flowering in Setaria, a panicoid grass closely related to switchgrass, and in the same subfamily as maize and sorghum. A recombinant inbred line mapping population derived from a cross between domesticated Setaria italica (foxtail millet) and its wild relative Setaria viridis (green millet), was grown in eight trials with varying environmental conditions to identify a small number of quantitative trait loci (QTL) that control differences in flowering time. Many of the QTL across trials colocalize, suggesting that the genetic control of flowering in Setaria is robust across a range of photoperiod and other environmental factors. A detailed comparison of QTL for flowering in Setaria, sorghum, and maize indicates that several of the major QTL regions identified in maize and sorghum are syntenic orthologs with Setaria QTL, although the maize large effect QTL on chromosome 10 is not. Several Setaria QTL intervals had multiple LOD peaks and were composed of multiple syntenic blocks, suggesting that observed QTL represent multiple tightly linked loci. Candidate genes from flowering time pathways identified in rice and Arabidopsis were identified in Setaria QTL intervals, including those involved in the CONSTANS photoperiod pathway. However, only three of the approximately seven genes cloned for flowering time in maize colocalized with Setaria QTL. This suggests that variation in flowering time in separate grass lineages is controlled by a combination of conserved and lineage specific genes.

  15. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    Science.gov (United States)

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  16. vitisFlower®: Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques.

    Science.gov (United States)

    Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier

    2015-08-28

    Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower(®), firstly guides the user to appropriately take an inflorescence photo using the smartphone's camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower(®) has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application's efficiency on four different devices covering a wide range of the market's spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play.

  17. vitisFlower®: Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques

    Directory of Open Access Journals (Sweden)

    Arturo Aquino

    2015-08-01

    Full Text Available Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower®, firstly guides the user to appropriately take an inflorescence photo using the smartphone’s camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower® has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application’s efficiency on four different devices covering a wide range of the market’s spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play.

  18. Developing climate resilient rice through genomics assisted breeding

    Directory of Open Access Journals (Sweden)

    Valarmathi Muthu

    2017-10-01

    Full Text Available Rice is one of the major cereal food crops whose production has to be doubled to achieve the projected demand [1] and current yield trends are not sufficient to meet the projected growth in production. Increasing the rice production by 30% during 2030 needs overcoming challenges viz., yield plateau, declining land, water and labor resources and predicted effects of global climate change. Development of high performance rice genotypes with enhanced yield potential and resilience to climate change will help in sustained increase in rice production. Deployment of genomic technologies can accelerate development and delivery of improved germplasm with enhanced resilience and adaptability [2, 3]. In this context, the present study was undertaken with an aim of developing rice genotypes pyramided with QTLs/genes controlling tolerance against various biotic and abiotic stresses viz., bacterial leaf blight (xa13, Xa21, blast (Pi9, Gall midge (Gm4, drought (qDTY1.1 qDTY2.1, submergence (Sub1 and salinity (Saltol. CBMAS14065 an elite culture harboring QTLs controlling tolerance against drought, salinity and submergence was crossed with a donor harboring BLB, Blast and Gall midge resistant genes. True F1s were backcrossed with CBMAS14065 and BC1F1 progenies were subjected to foreground selection using markers linked to the target traits. Superior plants (18 of BC1F1 generation were subjected to background selection which revealed 71.42 - 86.90% recurrent parent (CBMAS14065 genome recovery. Selected BC1F1 plants were advanced to BC2F1 generation backcrossing with CBMAS14065. In BC2F1 generation, through foreground selection 6-8 QTL/gene positive plants have been selected and advanced for further evaluation. The superior lines with desired QTLs/genes will be subjected to rigorous phenotypic evaluation against target stresses and advanced further.

  19. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation

    Directory of Open Access Journals (Sweden)

    Jian-Zhi Huang

    2016-05-01

    Full Text Available The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima ‘B8802,’ a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids.

  20. Effects of Hd2 in the presence of the photoperiod-insensitive functional allele of Hd1 in rice

    Directory of Open Access Journals (Sweden)

    Zhen-Hua Zhang

    2016-11-01

    Full Text Available The role of photoperiod sensitivity (PS of flowering genes have become well recognized in rice, whereas little attention has been drawn to the non-PS component of these genes, especially to their influence on gene-by-gene interactions. Rice populations in which the photoperiod-sensitive allele at Hd1 has become insensitive to photoperiod but continued to affect heading date (HD were used in this study to fine-map a quantitative trait locus (QTL for HD and analyze its genetic relationship to Hd1. The QTL was delimitated to a 96.3-kb region on the distal end of the long arm of chromosome 7. Sequence comparison revealed that this QTL is identical to Hd2. In the near-isogenic line (NIL populations analyzed, Hd1 and Hd2 were shown to be photoperiod insensitive and have pleiotropic effects for HD, plant height and yield traits. The two genes were found to largely act additively in regulating HD and yield traits. The results indicate that non-PS components of flowering genes involved in photoperiod response play an important role in controlling flowering time and grain yield in rice, which should allow breeders to better manipulate pleiotropic genes for balancing adaptability and high-yielding accumulation.

  1. Temperatures during flower bud development affect pollen germination, self-incompatibility reaction and early fruit development of clementine (Citrus clementina Hort. ex Tan.).

    Science.gov (United States)

    Distefano, G; Gentile, A; Hedhly, A; La Malfa, S

    2018-03-01

    One of the key environmental factors affecting plant reproductive systems is temperature. Characterising such effects is especially relevant for some commercially important genera such as Citrus. In this genus, failure of fertilisation results in parthenocarpic fruit development and seedlessness, which is a much-prized character. Here, we characterise the effects of temperature on flower and ovary development, and on pollen-pistil interactions in 'Comune' clementine (Citrus clementina Hort. ex Tan.). We examine flower bud development, in vitro pollen germination and pollen-pistil interaction at different temperatures (15, 20, 25 or 30 °C). These temperatures span the range from 'cold' to 'hot' weather during the flowering season in many citrus-growing regions. Temperature had a strong effect on flower and ovary development, pollen germination, and pollen tube growth kinetics. In particular, parthenocarpic fruit development (indicated by juice vesicle growth) was initiated early if flowers were exposed to warmer temperatures during anthesis. Exposure to different temperatures during flower bud development also alters expression of the self-incompatibility reaction. This affects the point in the pistil at which pollen tube growth is arrested and confirms the role of sub- and supra-optimal temperatures in determining the numbers of pollen tubes reaching the ovary. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  2. Perspectives on MADS-box expression during orchid flower evolution and development.

    Science.gov (United States)

    Mondragón-Palomino, Mariana

    2013-01-01

    The diverse morphology of orchid flowers and their complex, often deceptive strategies to become pollinated have fascinated researchers for a long time. However, it was not until the 20th century that the ontogeny of orchid flowers, the genetic basis of their morphology and the complex phylogeny of Orchidaceae were investigated. In parallel, the improvement of techniques for in vitro seed germination and tissue culture, together with studies on biochemistry, physiology, and cytology supported the progress of what is now a highly productive industry of orchid breeding and propagation. In the present century both basic research in orchid flower evo-devo and the interest for generating novel horticultural varieties have driven the characterization of many members of the MADS-box family encoding key regulators of flower development. This perspective summarizes the picture emerging from these studies and discusses the advantages and limitations of the comparative strategy employed so far. I address the growing role of natural and horticultural mutants in these studies and the emergence of several model species in orchid evo-devo and genomics. In this context, I make a plea for an increasingly integrative approach.

  3. Perspectives on MADS-box expression during orchid flower evolution and development

    Directory of Open Access Journals (Sweden)

    Mariana eMondragón Palomino

    2013-09-01

    Full Text Available The diverse morphology of orchid flowers and their complex, often deceptive strategies to become pollinated have fascinated researchers for a long time. However, it was not until the 20th century that the ontogeny of orchid flowers, the genetic basis of their morphology and the complex phylogeny of Orchidaceae were investigated. In parallel, the improvement of techniques for in vitro seed germination and tissue culture, together with studies on biochemistry, physiology and cytology supported the progress of what is now a highly productive industry of orchid breeding and propagation. In the present century both basic research in orchid flower evo-devo and the interest for generating novel horticultural varieties have driven the characterization of many members of the MADS-box family encoding key regulators of flower development. This perspective summarizes the picture emerging from these studies and discusses the advantages and limitations of the comparative strategy employed so far. I address the growing role of natural and horticultural mutants in these studies and the emergence of several model species in orchid evo-devo and genomics. In this context, I make a plea for an increasingly integrative approach.

  4. Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate.

    Science.gov (United States)

    Ramimoghadam, Donya; Bin Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin

    2013-01-01

    Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study. The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours. The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar. Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.

  5. PASSIOMA: Exploring Expressed Sequence Tags during Flower Development in Passiflora spp.

    Directory of Open Access Journals (Sweden)

    Lucas Cutri

    2012-01-01

    Full Text Available The genus Passiflora provides a remarkable example of floral complexity and diversity. The extreme variation of Passiflora flower morphologies allowed a wide range of interactions with pollinators to evolve. We used the analysis of expressed sequence tags (ESTs as an approach for the characterization of genes expressed during Passiflora reproductive development. Analyzing the Passiflora floral EST database (named PASSIOMA, we found sequences showing significant sequence similarity to genes known to be involved in reproductive development such as MADS-box genes. Some of these sequences were studied using RT-PCR and in situ hybridization confirming their expression during Passiflora flower development. The detection of these novel sequences can contribute to the development of EST-based markers for important agronomic traits as well as to the establishment of genomic tools to study the naturally occurring floral diversity among Passiflora species.

  6. Comparative Transcriptional Profiling of Three Super-Hybrid Rice Combinations

    Directory of Open Access Journals (Sweden)

    Yonggang Peng

    2014-03-01

    Full Text Available Utilization of heterosis has significantly increased rice yields. However, its mechanism remains unclear. In this study, comparative transcriptional profiles of three super-hybrid rice combinations, LY2163, LY2186 and LYP9, at the flowering and filling stages, were created using rice whole-genome oligonucleotide microarray. The LY2163, LY2186 and LYP9 hybrids yielded 1193, 1630 and 1046 differentially expressed genes (DGs, accounting for 3.2%, 4.4% and 2.8% of the total number of genes (36,926, respectively, after using the z-test (p < 0.01. Functional category analysis showed that the DGs in each hybrid combination were mainly classified into the carbohydrate metabolism and energy metabolism categories. Further analysis of the metabolic pathways showed that DGs were significantly enriched in the carbon fixation pathway (p < 0.01 for all three combinations. Over 80% of the DGs were located in rice quantitative trait loci (QTLs of the Gramene database, of which more than 90% were located in the yield related QTLs in all three combinations, which suggested that there was a correlation between DGs and rice heterosis. Pathway Studio analysis showed the presence of DGs in the circadian regulatory network of all three hybrid combinations, which suggested that the circadian clock had a role in rice heterosis. Our results provide information that can help to elucidate the molecular mechanism underlying rice heterosis.

  7. Impact of National Fadama Development Project II on Rice farmers ...

    African Journals Online (AJOL)

    ... examined the impact of National Fadama Development Project II on the profitability of rice farmers and assessed the extent to which the various innovations disseminated by the project were adopted by the rice farmer beneficiaries. The project which had all operating expenses cofinanced by the various key stakeholders ...

  8. Genetic Diversity of Upland Rice Germplasm in Malaysia Based on Quantitative Traits

    Directory of Open Access Journals (Sweden)

    M. Sohrabi

    2012-01-01

    Full Text Available Genetic diversity is prerequisite for any crop improvement program as it helps in the development of superior recombinants. Fifty Malaysian upland rice accessions were evaluated for 12 growth traits, yield and yield components. All of the traits were significant and highly significant among the accessions. The higher magnitudes of genotypic and phenotypic coefficients of variation were recorded for flag leaf length-to-width ratio, spikelet fertility, and days to flowering. High heritability along with high genetic advance was registered for yield of plant, days to flowering, and flag leaf length-to-width ratio suggesting preponderance of additive gene action in the gene expression of these characters. Plant height showed highly significant positive correlation with most of the traits. According to UPGMA cluster analysis all accessions were clustered into six groups. Twelve morphological traits provided around 77% of total variation among the accessions.

  9. DEVELOPMENT OF TECHNIQUES FOR QUANTITATIVE ANALYSIS OF LIME FLOWERS

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2016-03-01

    Full Text Available Introduction. The article is devoted to the development of techniques for quantitative analysis of lime flower in order to make amendments to existing pharmacopoeian monographs for this herbal drug. Lime inflorescences contain lipophilic biologically active substances (BAS causing notable antimicrobial and anti-inflammatory effects and also more polar phenolic compounds with antiulcer activity. Considering this, it’s necessary to regulate all these groups of BAS quantitatively. Materials and methods. For this study six batches of lime flowers harvested in 2008-2009 yrs. in Kharkiv, Rivno and Zhitomir regions were used as crude herbal drug. Loss on drying was determined by routine pharmacopoeian procedures. Total content of lipophilic substances was determined gravimetrically after Soxhlet extraction of samples 1, 5, 7 and 10 g in weight with methylene chloride, considering that by its extracting ability this solvent is close to liquefied difluorochloromethane (freon R22 used by us for obtaining of lipophilic complexes. The duration of complete analytical extraction was determined by infusion of six 10 g assays of lime flowers during 1, 2, 3, 4, 5, 6 hours, then quantity of lipophilic extractives was revealed gravimetrically. Quantity of essential oil in lime flowers was evaluated under the procedure of ЕР7, 2.8.12. Weight of the herbal drug sample was 200 g, distillation rate – 2,5- 3,5 ml/min, volume of distillation liquid (water – 500 ml, volume of xylene in the graduated tube – 0,50 ml. Total flavonoid content recalculated to quercetin was determined after hydrolysis with acidified acetone, withdrawing of flavonoid aglycones with ethylacetate and by further spectrophotometry of their complexes with aluminium chloride. All quantitative determinations were replicated five times for each assay. All chemicals and reagents were of analytical grade. Results and discussion. It was found that adequate accuracy of the analysis of lipophilic

  10. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-12-15

    Black rice ( Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3-10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  11. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  12. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  13. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.

    Science.gov (United States)

    Deng, Weiwei; Ying, Hua; Helliwell, Chris A; Taylor, Jennifer M; Peacock, W James; Dennis, Elizabeth S

    2011-04-19

    FLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of flowering in Arabidopsis. FLC binds and represses two genes that promote flowering, FT and SOC1. We show that FLC binds to many other genes, indicating that it has regulatory roles other than the repression of flowering. We identified 505 FLC binding sites, mostly located in the promoter regions of genes and containing at least one CArG box, the motif known to be associated with MADS-box proteins such as FLC. We examined 40 of the target genes, and 20 showed increased transcript levels in an flc mutant compared with the wild type. Five genes showed decreased expression in the mutant, indicating that FLC binding can result in either transcriptional repression or activation. The genes we identified as FLC targets are involved in developmental pathways throughout the life history of the plant, many of which are associated with reproductive development. FLC is also involved in vegetative development, as evidenced by its binding to SPL15, delaying the progression from juvenile to adult phase. Some of the FLC target genes are also bound by two other MADS-box proteins, AP1 and SEP3, suggesting that MADS-box genes may operate in a network of control at different stages of the life cycle, many ultimately contributing to the development of the reproductive phase of the plant.

  14. Performance of Mentik Wangi rice (Oryza sativa, L.) M2 generation from gamma ray irradiation

    Science.gov (United States)

    Yunus, A.; Parjanto; Nandariyah; Wulandari, S.

    2018-03-01

    The objective of this research is to produce Mentik Wangi rice with shorter flowering age, shorter rice stem and high yield. This research was conducted in Palur Village, Mojolaban Sub-district, Sukoharjo District, from April to August 2016. This research used descriptive method, performed by observing each individual and comparing to the control average. Observational variables included plant height, total number of tillers, number of productive tillers, panicle length, number of grain per panicle, panicle density index, 1,000 filled seed weight, seed weight of cluster, flowering age and M2 mutant selection. The results showed that there were several plants indicated mutation, there were 7 plants indicate short stem mutation with height 85 cm to 97 cm. The plants which indicated short flowering age were 5 weeks after planting up to 6 weeks after planting. The mutated plants indicating of the highest number of productive tillers which were 27 up to 36. Each component result includes total number of tillers, number of productive tillers, number of grain of panicle as well as the weight of 1000 seeds in the plant indicated some mutation that has a high level of diversity in each treatment.

  15. Identification of Morphological Character and Esterase Isozyme Pattern in Second-Generation Black Rice Plant Irradiated to Gamma Rays

    Science.gov (United States)

    Hartanti, R. S.; Putri, T. A. N.; Zulfa, F.; Sutarno; Suranto

    2017-04-01

    Black rice is one of the functional foods due to its high anthocyanin content. Black rice grain was irradiated by gamma rays with a dose of 200 Gy and 300 Gy. The main purpose of this irradiation is to induce mutation to the black rice plant in order to achieve the improved organism. This study was undertaken to elucidate the morphological character and esterase isozyme pattern of black rice plant after irradiated by gamma rays. There were morphological differences on leaves, stems and grains between irradiated and non irradiated black rice plant. Gamma radiation dose of 200 Gy showed the significant influence of the length of the stem, number of internodes, and length of leaves. The radiation dose of 300 Gy showed the significant influence of the decrease value of diameter of 3rd internodes, number of branches and width of leaves. Flowering time is getting faster as increasing radiation dose. At the age of 74 days after planting there are 9.15% plants of 200 Gy radiation dose that have flowered faster than normal plants. This value increased into 11.45% at the dose of radiation 300 Gy. There were differences in the esterase banding pattern between radiation dose of 200 Gy and 300 Gy than the control plants, indicated that randomly mutation has occurred.

  16. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    Science.gov (United States)

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  17. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours.

    Science.gov (United States)

    Nakamura, S; Suzuki, K; Ohtsubo, K

    2009-04-01

    Characteristics of the bread prepared from wheat flour blended with the flour of various kinds of newly developed rice cultivars were investigated. Qualities of the bread made from wheat flour blended with rice flour have been reported to be inferior to those from 100% wheat flour bread. To improve its qualities, we searched for the new-characteristic rice flours among the various kinds of newly developed rice cultivars to blend with the wheat flour for the bread preparation. The most suitable new characteristic rices are combination of purple waxy rice, high-amylose rice, and sugary rice. Specific volume of the bread from the combination of wheat and these 3 kinds of rice flours showed higher specific volume (3.93) compared with the traditional wheat/rice bread (3.58). We adopted the novel method, continuous progressive compression test, to measure the physical properties of the dough and the bread in addition to the sensory evaluation. As a result of the selection of the most suitable rice cultivars and blending ratio with the wheat flour, we could develop the novel wheat/rice bread, of which loaf volume, physical properties, and tastes are acceptable and resistant to firming on even 4 d after the bread preparation. To increase the ratio of rice to wheat, we tried to add a part of rice as cooked rice grains. The specific volume and qualities of the bread were maintained well although the rice content of total flour increased from 30% to 40%.

  18. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus.

    Science.gov (United States)

    Klocko, Amy L; Ma, Cathleen; Robertson, Sarah; Esfandiari, Elahe; Nilsson, Ove; Strauss, Steven H

    2016-02-01

    Eucalyptus trees are among the most important species for industrial forestry worldwide. However, as with most forest trees, flowering does not begin for one to several years after planting which can limit the rate of conventional and molecular breeding. To speed flowering, we transformed a Eucalyptus grandis × urophylla hybrid (SP7) with a variety of constructs that enable overexpression of FLOWERING LOCUS T (FT). We found that FT expression led to very early flowering, with events showing floral buds within 1-5 months of transplanting to the glasshouse. The most rapid flowering was observed when the cauliflower mosaic virus 35S promoter was used to drive the Arabidopsis thaliana FT gene (AtFT). Early flowering was also observed with AtFT overexpression from a 409S ubiquitin promoter and under heat induction conditions with Populus trichocarpa FT1 (PtFT1) under control of a heat-shock promoter. Early flowering trees grew robustly, but exhibited a highly branched phenotype compared to the strong apical dominance of nonflowering transgenic and control trees. AtFT-induced flowers were morphologically normal and produced viable pollen grains and viable self- and cross-pollinated seeds. Many self-seedlings inherited AtFT and flowered early. FT overexpression-induced flowering in Eucalyptus may be a valuable means for accelerating breeding and genetic studies as the transgene can be easily segregated away in progeny, restoring normal growth and form. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Accumulation of methylmercury in rice and flooded soil in experiments with an enriched isotopic Hg(II) tracer

    Science.gov (United States)

    Strickman, R. J.; Mitchell, C. P. J.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxin produced in anoxic aquatic sediments. Numerous factors, including the presence of aquatic plants, alter the biogeochemistry of sediments, affecting the rate at which microorganisms transform bioavailable inorganic Hg (IHg) to MeHg. Methylmercury produced in flooded paddy soils and its transfer into rice has become an important dietary consideration. An improved understanding of how MeHg reaches the grain and the extent to which rice alters MeHg production in rhizosphere sediments could help to inform rice cultivation practices. We conducted a controlled greenhouse experiment with thirty rice plants grown in individual, flooded pots amended with enriched 200Hg. Unvegetated controls were maintained under identical conditions. At three plant growth stages (vegetative growth, flowering, and grain maturity), ten plants were sacrificed and samples collected from soil, roots, straw, panicle, and grain of vegetated and unvegetated pots, and assessed for MeHg and THg concentrations. We observed consistent ratios between ambient and tracer MeHg between soils (0.36 ±0.04 — 0.44 ± 0.09) and plant compartments (0.23 ± 0.07 -0.34 ± 0.05) indicating that plant MeHg contamination originates in the soil rather than in planta methylation. The majority of this MeHg was absorbed between the tillering (4.48 ± 2.38 ng/plant) and flowering (8.43 ± 5.12 ng/pl) phases, with a subsequent decline at maturity (2.87 ± 1.23 ng/pl) only partly explained by translocation to the developing grain, indicating that MeHg was demethylated in planta. In contrast, IHg was absorbed from both soil and air, as evidenced by the higher ambient IHg concentrations compared to tracer (3.76 ± 1.19 vs. 0.27 ± 0.40 ng/g). Surprisingly, MeHg accumulation was significantly (p= 0.042-- 0.003) lower in vegetated vs. unvegetated sediments at flowering (1.41 ± 0.26 vs. 1.57 ± 0.23) and maturity (1.27 ± 0.22 vs. 1.71 ± 0.25), suggesting that plant exudates bound Hg

  20. Prospects for Genetic Improvement in Internal Nitrogen Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2017-10-01

    Full Text Available While improving the efficiency at which rice plants take up fertiliser nitrogen (N will be critical for the sustainability of rice (Oryza sativa L. farming systems in future, improving the grain yield of rice produced per unit of N accumulated in aboveground plant material (agronomic N use efficiency; NUEagron through breeding may also be a viable means of improving the sustainability of rice cropping. Given that NUEagron (grain yield/total N uptake is a function of harvest index (HI; grain yield/crop biomass × crop biomass/total N uptake, and that improving HI is already the target of most breeding programs, and specific improvement in NUEagron can only really be achieved by increasing the crop biomass/N uptake. Since rice crops take up around 80% of total crop N prior to flowering, improving the biomass/N uptake (NUEveg prior to, or at, flowering may be the best means to improve the NUEagron. Ultimately, however, enhanced NUEagron may come at the expense of grain protein unless the N harvest index increases concurrently. We investigated the relationships between NUEagron, total N uptake, grain yield, grain N concentration (i.e., protein and N harvest index (NHI in 16 rice genotypes under optimal N conditions over two seasons to determine if scope exists to improve the NHI and/or grain protein, while maintaining or enhancing NUEagron in rice. Using data from these experiments and from an additional experiment with cv. IR64 under optimum conditions at an experimental farm to establish a benchmark for NUE parameters in high-input, high yielding conditions, we simulated theoretical potential improvements in NUEveg that could be achieved in both low and high-input scenarios by manipulating target NHIs and grain protein levels. Simulations suggested that scope exists to increase grain protein levels in low yielding scenarios with only modest (5–10% reductions in current NUEagron by increasing the current NHI from 0.6 to 0.8. Furthermore

  1. Overexpression of a flower-specific aerolysin-like protein from the dioecious plant Rumex acetosa alters flower development and induces male sterility in transgenic tobacco.

    Science.gov (United States)

    Manzano, Susana; Megías, Zoraida; Martínez, Cecilia; García, Alicia; Aguado, Encarnación; Chileh, Tarik; López-Alonso, Diego; García-Maroto, Federico; Kejnovský, Eduard; Široký, Jiří; Kubát, Zdeněk; Králová, Tereza; Vyskot, Boris; Jamilena, Manuel

    2017-01-01

    Sex determination in Rumex acetosa, a dioecious plant with a complex XY 1 Y 2 sex chromosome system (females are XX and males are XY 1 Y 2 ), is not controlled by an active Y chromosome but depends on the ratio between the number of X chromosomes and autosomes. To gain insight into the molecular mechanisms of sex determination, we generated a subtracted cDNA library enriched in genes specifically or predominantly expressed in female floral buds in early stages of development, when sex determination mechanisms come into play. In the present paper, we report the molecular and functional characterization of FEM32, a gene encoding a protein that shares a common architecture with proteins in different plants, animals, bacteria and fungi of the aerolysin superfamily; many of these function as β pore-forming toxins. The expression analysis, assessed by northern blot, RT-PCR and in situ hybridization, demonstrates that this gene is specifically expressed in flowers in both early and late stages of development, although its transcripts accumulate much more in female flowers than in male flowers. The ectopic expression of FEM32 under both the constitutive promoter 35S and the flower-specific promoter AP3 in transgenic tobacco showed no obvious alteration in vegetative development but was able to alter floral organ growth and pollen fertility. The 35S::FEM32 and AP3::FEM32 transgenic lines showed a reduction in stamen development and pollen viability, as well as a diminution in fruit set, fruit development and seed production. Compared with other floral organs, pistil development was, however, enhanced in plants overexpressing FEM32. According to these effects, it is likely that FEM32 functions in Rumex by arresting stamen and pollen development during female flower development. The aerolysin-like pore-forming proteins of eukaryotes are mainly involved in defence mechanisms against bacteria, fungi and insects and are also involved in apoptosis and programmed cell death (PCD

  2. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice

    Directory of Open Access Journals (Sweden)

    Kamatsuki Kaori

    2011-01-01

    Full Text Available Abstract Background Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions. Results A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change. Conclusions Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.

  3. Down-Regulation of OsEMF2b Caused Semi-sterility Due to Anther and Pollen Development Defects in Rice

    Directory of Open Access Journals (Sweden)

    Luchang Deng

    2017-11-01

    Full Text Available Anther and pollen development are crucial processes of plant male reproduction. Although a number of genes involved in these processes have been identified, the regulatory networks of pollen and anther development are still unclear. EMBRYONIC FLOWER 2b (OsEMF2b is important for rice development. Its biological function in floral organ, flowering time and meristem determinacy have been well-studied, but its role, if only, on male reproduction is still unknown, because null mutants of OsEMF2b barely have anthers. In this study, we identified a weak allele of OsEMF2b, osemf2b-4. The T-DNA insertion was located in the promoter region of OsEMF2b, and OsEMF2b expression was significantly decreased in osemf2b-4. The osemf2b-4 mutant exhibited much more normal anthers than null mutants of OsEMF2b, and also showed defective floret development similar to null mutants. Cytological analysis showed various defects of anther wall and pollen development in osemf2b-4, such as slightly or extremely enlarged tapetum, irregular or normal morphology microspores, and partial or complete sterility. OsEMF2b was highly expressed in tapetum and microspores, and the protein was localized in the nucleus. The expression of 15 genes essential for anther and pollen development was investigated in both WT and osemf2b-4. Fourteen genes including GAMYB was up-regulated, and only PTC1 was down-regulated in osemf2b-4. This suggests that up-regulated GAMYB and down-regulated PTC1 might contribute to the defective anther and pollen development in osemf2b-4. Overall, our work suggests that OsEMF2b plays an essential role during post-meiotic anther and pollen development.

  4. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  5. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Buendia, L.V.; Neue, H.U.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  6. Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium

    Czech Academy of Sciences Publication Activity Database

    Faricelli, M. E.; Valárik, Miroslav; Dubcovsky, J.

    2010-01-01

    Roč. 10, č. 2 (2010), s. 293-306 ISSN 1438-793X Institutional research plan: CEZ:AV0Z50380511 Keywords : Comparative genomics * Earliness per se * Flowering Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.397, year: 2010

  7. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice.

    Science.gov (United States)

    Xu, Donglin; Mou, Guiping; Wang, Kang; Zhou, Guohui

    2014-09-22

    Southern rice black-streaked dwarf virus (SRBSDV) is a recently emerged rice virus that has spread across Asia. This devastating virus causes rice plants to produce a variety of symptoms during different growth stages. MicroRNAs (miRNAs) comprise a large group of 21-24-nt RNA molecules that are important regulators of plant development processes and stress responses. In this study, we used microarray profiling to investigate rice miRNAs responding to SRBSDV infection at 3, 9, 15, and 20 days post-inoculation (dpi). Expression levels of 56 miRNAs were altered in SRBSDV-infected rice plants, with these changes classified into eight different regulation patterns according to their temporal expression dynamics. Fourteen miRNAs belonging to six families (miR164, R396, R530, R1846, R1858, and R2097) were significantly regulated at 20 dpi. We used RT-qPCR to search for expression level correlations between members of these families and their putative targets at 3, 9, and 15 dpi. Some members of the miR164, R396, R530, and R1846 families were found to be positively or negatively correlated with their respective targets during 3-15 days after SRBSDV infection, whereas in more cases the rice miRNAs were not in correlation with their targets along the post-inoculation period, suggesting that some additional factors may be involved in rice miRNA-target interactions. The reported functions of rice genes targeted by the miR164, R396, R530, R1846, and R1858 families indicated that these genes are associated with symptom development. These results provide insights into miRNA-mediated SRBSDV-rice interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Development, anatomy, and genetic control of some teratological phenotypes of Ranunculaceae flowers

    Directory of Open Access Journals (Sweden)

    Florian Jabbour

    2016-04-01

    Full Text Available Teratological organisms originate from developmental anomalies, and exhibit structures and a body organization that deviate from the species standard. These monsters give essential clues about the formation and evolutionary significance of the wild-type groundplan. We focus on flower terata, which can be affected in their sterile and/or fertile organs, with special emphasis on the Ranunculaceae. The diversity of perianth shapes and organizations in flowers of this family is huge, and is even increased when anomalies occur during organo- and/or morphogenesis. To begin with, we synthesize the observations and research conducted on the Ranunculacean floral terata, following the most recent phylogenetic framework published in 2016 by our team. Then, we report results regarding the morphology of developing meristems, the anatomy of buds, and the genetic control of selected teratological phenotypes of Ranunculaceae flowers. We focus on species and horticultural varieties belonging to the genera Aquilegia, Delphinium, and Nigella. Wildtype flowers of these species are actinomorphic (Aquilegia, Nigella or zygomorphic (Delphinium, spurred (Aquilegia, Delphinium or with pocket-like petals (Nigella. Last, we discuss the evolutionary potential of such teratological phenotypes when they occur in the wild.

  9. Experimental studies on the injurious effect of sulfur dioxide upon the rice cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T; Takahashi, T

    1952-01-01

    From experimental studies on the injurious effect of sulfur dioxide upon the cultivation of rice it was ascertained that SO2 strongly affects the pollen and the ovary. The pollen and the matured grain showed a decrease in fertility when the plant is fumigated at the flowering and boot stage.

  10. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Carla P. Coelho

    2014-05-01

    Full Text Available Agriculturally important grasses such as rice, maize and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  11. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis.

    Science.gov (United States)

    Coelho, Carla P; Minow, Mark A A; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

  12. Methodology development for area determination of rice planted paddy using RADARSAT data

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Murakami, T.; Ogawa, S.; Okamoto, K.

    2003-01-01

    Every year, the agricultural statistics section of the Japanese government announces rice planting paddy area and rice yield per hectare (ha). At present, the rice planting paddy area is calculated based on field survey by human power. In future, the Japanese government should like to determine the rice transplanted paddy area using remote sensing. Already, some results have come out using satellite-borne optical sensors. However, Japan has a rainy-season at crop growing time, and therefore it is difficult, under such weather condition, to make accurate and consistent observation of paddy fields every year by optical means. On the other hand, Synthetic Aperture Radar (SAR) is capable of observing the earth's surface without influence of clouds. Making use of this all-weather imaging capability, we are currently developing a method to determine the rice planted paddy area using SAR data acquired by RADARSAT. Paddy fields are filled with water during rice-planting period. When the microwave is incident on the filled paddy fields, it is reflected away from the SAR antenna by the water surface acting like a mirror. This phenomenon is called 'specular reflection'. The microwave backscatter is therefore small from the surface covered with water. Thus, the radar cross section (RCS) is very small from rice paddies at a transplanting period due to the specular reflection, and it increases with the growth of rice plants because of volume scatter by stems and leaves, and also by multiple reflection between the water surface and rice plants. In our study, this characteristic is used to develop methods of estimating rice paddy area. Our study area is the Saga plain in the southeast Japan. First, We determine the threshold of image intensity to separate the land and water areas using the histogram and maps. Next, we develop techniques of classification, utilizing (1) RADARSAT and optical data, (2) two multi-temporal RADARSAT data, (3) RADARSAT and GIS data, and (4

  13. A Virus-Induced Assay for Functional Dissection and Analysis of Monocot and Dicot Flowering Time Genes.

    Science.gov (United States)

    Qin, Cheng; Chen, Weiwei; Shen, Jiajia; Cheng, Linming; Akande, Femi; Zhang, Ke; Yuan, Chen; Li, Chunyang; Zhang, Pengcheng; Shi, Nongnong; Cheng, Qi; Liu, Yule; Jackson, Stephen; Hong, Yiguo

    2017-06-01

    Virus-induced flowering (VIF) uses virus vectors to express Flowering Locus T ( FT ) to induce flowering in plants. This approach has recently attracted wide interest for its practical applications in accelerating breeding in crops and woody fruit trees. However, the insight into VIF and its potential as a powerful tool for dissecting florigenic proteins remained to be elucidated. Here, we describe the mechanism and further applications of Potato virus X (PVX)-based VIF in the short-day Nicotiana tabacum cultivar Maryland Mammoth. Ectopic delivery of Arabidopsis ( Arabidopsis thaliana ) AtFT by PVX/AtFT did not induce the expression of the endogenous FT ortholog NtFT4 ; however, it was sufficient to trigger flowering in Maryland Mammoth plants grown under noninductive long-day conditions. Infected tobacco plants developed no systemic symptoms, and the PVX-based VIF did not cause transgenerational flowering. We showed that the PVX-based VIF is a much more rapid method to examine the impacts of single amino acid mutations on AtFT for floral induction than making individual transgenic Arabidopsis lines for each mutation. We also used the PVX-based VIF to demonstrate that adding a His- or FLAG-tag to the N or C terminus of AtFT could affect its florigenic activity and that this system can be applied to assay the function of FT genes from heterologous species, including tomato ( Solanum lycopersicum ) SFT and rice ( Oryza sativa ) Hd3a Thus, the PVX-based VIF represents a simple and efficient system to identify individual amino acids that are essential for FT-mediated floral induction and to test the ability of mono- and dicotyledonous FT genes and FT fusion proteins to induce flowering. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Development of a remote sensing-based rice yield forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H.

    2016-11-01

    This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh. (Author)

  15. A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Hou, Yuxuan; Qiu, Jiehua; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Zhang, Jian

    2017-06-27

    PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.

  16. Development of Ozone Technology Rice Storage Systems (OTRISS) for Quality Improvement of Rice Production

    International Nuclear Information System (INIS)

    Nur, M; Kusdiyantini, E; Wuryanti, W; Winarni, T A; Widyanto, S A; Muharam, H

    2015-01-01

    This research has been carried out by using ozone to address the rapidly declining quality of rice in storage. In the first year, research has focused on the rice storage with ozone technology for small capacity (e.g., household) and the medium capacity (e.g., dormitories, hospitals). Ozone was produced by an ozone generator with Dielectric Barrier Discharge Plasma (DBDP). Ozone technology rice storage system (OTRISS) is using ozone charateristic which is a strong oxidizer. Ozone have a short endurance of existence and then decompose, as a result produce oxygen and radicals of oxygen. These characteristics could kill microorganisms and pests, reduce air humidity and enrich oxygen. All components used in SPBTO assembled using raw materials available in the big cities in Indonesia. Provider of high voltage (High Voltage Power Supply, 40-70 kV, 23 KH, AC) is one of components that have been assembled and tested. Ozone generator is assembled with 7 reactors of Dielectric Barrier Discharge Plasma (DBDP). Rice container that have been prepared for OTRISS have adjusted so can be integrated with generator, power supply and blower to blow air. OTRISS with a capacity of 75 kg and 100 kg have been made and tested. The ability of ozone to eliminate bacteria and fungi have been tested and resulted in a decrease of microorganisms at 3 log CFU/g. Testing in food chemistry showed that ozone treatment of rice had not changed the chemical content that still meet the standard of chemical content and nutritional applicable to ISO standard milled rice. The results of this study are very likely to be used as an alternative to rice storage systems in warehouse. Test and scale-up is being carried out in a mini warehouse whose condition is mimicked to rice in National Rice Storage of Indonesia (Bulog) to ensure quality. Next adaptations would be installed in the rice storage system in the Bulog. (paper)

  17. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering

    Directory of Open Access Journals (Sweden)

    Jorge Del Cueto

    2017-05-01

    Full Text Available Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars – differing from very early to extra-late in flowering time – and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.

  18. Development of aromatic giant-embryo rice by molecular marker-assisted selection

    Directory of Open Access Journals (Sweden)

    ZHU Yingdong

    2013-12-01

    Full Text Available Aromatic rice is loved for its distinctive aroma when cooking and eating.In this research,aromatic normal-embryo rice and non-aromatic giant-embryo rice,"Shangshida No.5",both bred by our laboratory,were selected as the parents for the hybridization.We used conventional breeding techniques as well as fragrance gene marker-assisted selection to derive new aromatic giant-embryo rice "Shangshida No.8".By comparing the agronomic and yield characters of "Shangshida No.5" and "Shangshida No.8",the average of filled grains per panicle of "Shangshida No.5" exceeds "Shangshida No.8" very significantly,while the average of effective panicles of "Shangshida No.8" is slightly more than "Shangshida No.5".Also,in the weight of thousand grains "Shangshida No.8" is slightly heavier than "Shangshida No.5".Thus,their grain weights per plant are close,29.10 g and 28.92 g respectively.By comparing the traits of rice embryo,there is no significant difference in embryo weight and volume.Also,there is no significant difference in weight ratio and volume ratio of embryo.This research has laid a solid foundation for further market development and application of aromatic giant-embryo rice.

  19. DEP and AFO regulate reproductive habit in rice.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    2010-01-01

    Full Text Available Sexual reproduction is essential for the life cycle of most angiosperms. However, pseudovivipary is an important reproductive strategy in some grasses. In this mode of reproduction, asexual propagules are produced in place of sexual reproductive structures. However, the molecular mechanism of pseudovivipary still remains a mystery. In this work, we found three naturally occurring mutants in rice, namely, phoenix (pho, degenerative palea (dep, and abnormal floral organs (afo. Genetic analysis of them indicated that the stable pseudovivipary mutant pho was a double mutant containing both a Mendelian mutation in DEP and a non-Mendelian mutation in AFO. Further map-based cloning and microarray analysis revealed that dep mutant was caused by a genetic alteration in OsMADS15 while afo was caused by an epigenetic mutation in OsMADS1. Thus, OsMADS1 and OsMADS15 are both required to ensure sexual reproduction in rice and mutations of them lead to the switch of reproductive habit from sexual to asexual in rice. For the first time, our results reveal two regulators for sexual and asexual reproduction modes in flowering plants. In addition, our findings also make it possible to manipulate the reproductive strategy of plants, at least in rice.

  20. Radiotracer experiments on the desorption of iodine from paddy soil with and without rice plants

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Uchida, Shigeo; Yoshida, Satoshi

    1991-01-01

    In order to assess the behavior of radioiodine in rice fields, we have performed laboratory experiments, using 125 I tracer, on the desorption phenomena of iodine from soil during rice cultivation. Most of the 125 I added to the soil was adsorbed by the soil solid phase at the beginning of the experiment. However, the iodine started to desorb into the soil solution with the growth of rice plants. The highest desorption rate of iodine was found around the flowering period, i.e. nearly 30% of the 125 I was desorbed from Ando soil into the soil solution. In contrast to this, no particular increase in the iodine desorption was observed from the uncultivated flooded soil. It was suggested that rice plants had some influence upon iodine desorption from soil and the desorption also depended on the soil types. (author)

  1. Influence of shading on ornamental and physiological characteristics during flower development of groundcover rose (Rosa hybrida L.)

    Science.gov (United States)

    Hou, Wei; Luo, Ya; Wang, Xiaorong; Chen, Qing; Sun, Bo; Wang, Yan; Liu, Zejing; Tang, Haoru; Zhang, Yong

    2018-04-01

    The objective of the present investigation was to study the effect of shading on flower quality during flower development and photosynthetic capacity of groundcover rose (Rosa hybrida L.). The results showed that shade significantly increased flower diameter, levels of soluble protein and soluble sugar, total carotenoids content and superoxide dismutase (SOD) activity, while contents of malondialdehyde (MDA) and total anthocyanins in shaded flowers were significantly decreased as compared to sun-exposed flowers. However, no significant changes were observed in petal color parameters L*, a*, b* and C* between sun exposure and shade treatment plants at each flower developmental stage. Therefore, groundcover rose seemed to have the capacity to shade condition through auto-regulation. These results could provide us with a theoretical basis for further application of groundcover rose in the greening of urban spaces and an understanding of the mechanisms behind the changes induced by shade.

  2. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon).

    Science.gov (United States)

    Dai, Xiaodong; Ding, Younian; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Zhu, Zuofeng; Sun, Xianyou; Sun, Xuewen; Gu, Ping; Cai, Hongwei; Sun, Chuanqing

    2012-10-01

    Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehd1, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehd1, Hd3a and RFT1 under long-day conditions. © 2012 Institute of Botany, Chinese Academy of Sciences.

  3. Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing.

    Science.gov (United States)

    Wang, Zheng Jia; Huang, Jian Qin; Huang, You Jun; Li, Zheng; Zheng, Bing Song

    2012-08-01

    Hickory (Carya cathayensis Sarg.) is an economically important woody plant in China, but its long juvenile phase delays yield. MicroRNAs (miRNAs) are critical regulators of genes and important for normal plant development and physiology, including flower development. We used Solexa technology to sequence two small RNA libraries from two floral differentiation stages in hickory to identify miRNAs related to flower development. We identified 39 conserved miRNA sequences from 114 loci belonging to 23 families as well as two novel and ten potential novel miRNAs belonging to nine families. Moreover, 35 conserved miRNA*s and two novel miRNA*s were detected. Twenty miRNA sequences from 49 loci belonging to 11 families were differentially expressed; all were up-regulated at the later stage of flower development in hickory. Quantitative real-time PCR of 12 conserved miRNA sequences, five novel miRNA families, and two novel miRNA*s validated that all were expressed during hickory flower development, and the expression patterns were similar to those detected with Solexa sequencing. Finally, a total of 146 targets of the novel and conserved miRNAs were predicted. This study identified a diverse set of miRNAs that were closely related to hickory flower development and that could help in plant floral induction.

  4. Distribution of assimilates derived from canopy leaves at different milky stage of intergeneric high-yielding hybrid rice

    International Nuclear Information System (INIS)

    Tang Jianjun

    1997-01-01

    Distribution characteristics of assimilates derived from 14 C-glucose fed on different canopy leaves of the high-yielding intergeneric hybrid rice Yuanyou 1 and GER-1, intra-varietal 3-line hybrid rice Shanyou 63, maternal and paternal parents of intergeneric hybrid rice at various ripening stage from flowering stage to late milky stage were studied with pot experiments under greenhouse in 1993 and 1994 in Guangzhou. The results indicates that there exists a significant difference in exportation of radioactivity from the leaf fed, partitioning of radioactivity exported into different organs and importation accumulation percent of total radioactivity in the rice panicle Yuanyou 1 has a high average exportation percent, importation accumulation percent and a stable and sustainable grain-filling process, which results in a high seed-setting rate with large spikelet population

  5. PENGEMBANGAN BERAS ANALOG DENGAN MEMANFAATKAN JAGUNG PUTIH [Development of White Corn-Based Rice Analogues

    Directory of Open Access Journals (Sweden)

    Santi Noviasari*

    2013-12-01

    Full Text Available White corn can be utilized as a source of non-rice carbohydrate in the manufacture of rice analogues. The rice analogues with rice-like characteristics were produced by an extrusion technique. The aim of this research was to develop rice analogues from white corn and to evaluate their physicochemical and sensory properties. The study was conducted in several stages, i.e. preparation, formulation, and physicochemical and sensory properties evaluation. The physicochemical properties of rice analogues evaluated included proximate nutritional composition, dietary fiber concentration, cooking time, water loss rate, color, and whiteness percentage, while their sensory preferences were evaluated using hedonic scale test. The rice analogues made of Pulut Harapan and Lokal Purbalingga corns (4.34:65.66% added with 30% sago starch, was found to be the most preferred. The moisture, ash, protein, fat, carbohydrate, and dietary fiber composition of this rice analog was 9.32, 0.38, 6.86, 1.22, 91.54, and 5.35%, respectively.

  6. Transcriptomic Analysis of Flower Bud Differentiation in Magnolia sinostellata

    Directory of Open Access Journals (Sweden)

    Lijie Fan

    2018-04-01

    Full Text Available Magnolias are widely cultivated for their beautiful flowers, but despite their popularity, the molecular mechanisms regulating flower bud differentiation have not been elucidated. Here, we used paraffin sections and RNA-seq to study the process of flower bud differentiation in Magnolia sinostellata. Flower bud development occurred between 28 April and 30 May 2017 and was divided into five stages: undifferentiated, early flower bud differentiation, petal primordium differentiation, stamen primordium differentiation, and pistil primordium differentiation. A total of 52,441 expressed genes were identified, of which 11,592 were significantly differentially expressed in the five bud development stages. Of these, 82 genes were involved in the flowering. In addition, MADS-box and AP2 family genes play critical roles in the formation of flower organs and 20 differentially expressed genes associated with flower bud differentiation were identified in M. sinostellata. A qRT-PCR analysis verified that the MADS-box and AP2 family genes were expressed at high levels during flower bud differentiation. Consequently, this study provides a theoretical basis for the genetic regulation of flowering in M. sinostellata, which lays a foundation for further research into flowering genes and may facilitate the development of new cultivars.

  7. Flowering in Xanthium strumarium: INITIATION AND DEVELOPMENT OF FEMALE INFLORESCENCE AND SEX EXPRESSION.

    Science.gov (United States)

    Leonard, M; Kinet, J M; Bodson, M; Havelange, A; Jacqmard, A; Bernier, G

    1981-06-01

    Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences.Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus.

  8. Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria

    Institute of Scientific and Technical Information of China (English)

    Md Mohibul Alam KHAN; Effi HAQUE; Narayan Chandra PAUL; Md Abdul KHALEQUE; Saleh M. S. AL-GARNI; Mahfuzur RAHMAN; Md Tofazzal ISLAM

    2017-01-01

    Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. In this study, rice associated bacteria were isolated and assessed for mineral phosphate solubilization and indole-3-acetic acid (IAA) production activity in vitro. Six promising strains, which were tentatively identified as phylotaxon Pseudochrobactrum sp. (BRRh-1), Burkholderia sp. (BRRh-2), Burkholderia sp. (BRRh-3), Burkholderia sp. (BRRh-4), Pseudomonas aeruginosa (BRRh-5 and BRRh-6) based on their 16S rRNA gene phylogeny, exhibited significant phosphate solubilizing activity in National Botanical Research Institute phosphate growth medium, and BRRh-4 displayed the highest phosphate solubilizing activity, followed by BRRh-5. The pH of the culture broth declined, resulting in increase of growth rate of bacteria at pH 7, which might be due to organic acid secretion by the strains. In presence of L-tryptophan, five isolates synthesized IAA and the maximum IAA was produced by BRRh-2, followed by BRRh-1. Application of two most efficient phosphate solubilizing isolates BRRh-4 and BRRh-5 by root dipping (colonization) of seedling and spraying at the flowering stage significantly enhanced the growth and grain yield of rice variety BRRI dhan-29. Interestingly, application of both strains with 50% of recommended nitrogen, phosphorus and potassium fertilizers produced equivalent or higher grain yield of rice compared to the control grown with full recommended fertilizer doses, which suggests that these strains may have the potential to be used as bioinoculants for sustainable rice production.

  9. Cloning and characterisation of two CTR1-like genes in Cucurbita pepo: regulation of their expression during male and female flower development.

    Science.gov (United States)

    Manzano, Susana; Martínez, Cecilia; Gómez, Pedro; Garrido, Dolores; Jamilena, Manuel

    2010-12-01

    Ethylene is an essential regulator of flower development in Cucurbita pepo, controlling the sexual expression, and the differentiation and maturation of floral organs. To study the action mechanism of ethylene during the male and female flower development, we have identified two CTR1 homologues from C. pepo, CpCTR1 and CpCTR2, and analysed their expressions during female and male flower development and in response to external treatments with ethylene. CpCTR1 and CpCTR2 share a high homology with plant CTR1-like kinases, but differ from other related kinases such as the Arabidopsis EDR1 and the tomato LeCTR2. The C-terminal ends of both CpCTR1 and CpCTR2 have all the conserved motifs of Ser/Thr kinase domains, including the ATP-binding signature and the protein kinase active site consensus sequence, which suggests that CpCTR1 and CpCTR2 could have the same function as CTR1 in ethylene signalling. The transcripts of both genes were detected in different organs of the plant, including roots, leaves and shoots, but were mostly accumulated in mature flowers. During the development of male and female flowers, CpCTR1 and CpCTR2 expressions were concomitant with ethylene production, which indicates that both genes could be upregulated by ethylene, at least in flowers. Moreover, external treatments with ethylene, although did not alter the expression of these two genes in seedlings and leaves, were able to upregulate their expression in flowers. In the earlier stages of flower development, when ethylene production is very low, the expression of CpCTR1 and CpCTR2 is higher in male floral organs, which agrees with the role of these genes as negative regulators of ethylene signalling, and explain the lower ethylene sensitivity of male flowers in comparison with female flowers. The function of the upregulation of these two genes in later stages of female flower development, when the production of ethylene is also increased, is discussed.

  10. Physiological analysis for enhancing radiation use efficiency (RUE) in rice

    International Nuclear Information System (INIS)

    Punzalan, B.; Calibo, S.; Jagadish, S.V.K.

    2012-01-01

    Global dimming, or the decrease in global irradiance has been observed in the last 50 years at a rate of 2.7% per decade. Potential consequences of reduced solar radiation include a decline in total biomass production and productivity. Systematic studies involving rice and its ability to utilize available radiation efficiently under tropical conditions are limited. The study was conducted at the International Rice Research Institute (IRRI), Philippines, during the wet season of 2011 to physiologically analyze enhanced radiation use efficiency (RUE) under natural field conditions with limited sunlight. Five varieties were selected from previous seasons' experiments involving 48 different entries. Among the five entries, two with low yield under low solar radiation were selected to serve as checks. Growth analysis for estimating total biomass production and partitioning was done at key growth stages i.e. mid-tillering, panicle initiation, flowering, 15 days after flowering (15 DAF), and physiological maturity, coupled with analysis of non-structural carbohydrates (NSC). Yield and yield components were recorded at maturity. Results show that poor-performing varieties IR40 and IR54 had significantly more panicles than the other three varieties at flowering, indicating a higher sink to source ratio. NSIC RC 222 had the highest RUE of 1.33, while a 22% reduction in RUE was observed among the poor-performing varieties, which also had the lowest leaf area index (LAI) at 15 DAF. Data on thousand-grain weight revealed that IR40 and IR54 had smaller grain size. In conclusion, the authors hypothesize that either insufficient production or inefficient translocation of NSC might be causing the reduced grain size in poor-performing varieties

  11. Optimizing hill seeding density for high-yielding hybrid rice in a single rice cropping system in South China.

    Directory of Open Access Journals (Sweden)

    Danying Wang

    Full Text Available Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2. In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice.

  12. Studies on development of new functional natural materials from agricultural products - Technology developments for ceramic powders and materials from rice phytoliths

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Kap; Kim, Yong Ik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yoon, Nang Kyu; Seong, Seo Yong [Myongseong Ceramics Com., Taejon (Korea, Republic of); Ryu, Sang Eun [Bae Jae Univ., Taejon (Korea, Republic of); Lee, Jae Chun [Myungji Univ., Seoul (Korea, Republic of)

    1995-08-01

    Based on an estimation of annual rice production of 5.2 million tons, rice husks by-production reaches to 1.17 million tons per year in Korea. Distinguished to other corns, rice contains a lot of Si; 10-20% by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this first year research, researches of the following subjects were performed; material properties of rice husks, milling of rice husks, acid treatments, oxidations at low and high temperatures, sintering and crystalization of amorphous silica, low temperature carburization, formation of silicon carbide whiskers, and brick lightening method using milled rice husks. 11 tabs., 49 figs., 75 refs. (Author).

  13. Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development

    Directory of Open Access Journals (Sweden)

    Sarah Russell French

    2014-02-01

    Full Text Available Indole-3-acetic acid (IAA synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relationship to CWIN activity and invertase inhibitors (INVINH. The analysis shows a brief peak of OsYUC12 expression early in endosperm development. Meta-analysis of microarray data, confirmed by quantitative expression analysis, revealed that OsYUC12 is coexpressed with OsIAA29, which encodes an unusual AUX/IAA transcription factor previously reported as poorly expressed. Maximum expression of OsYUC12 and OsIAA29 coincided with maximum CWIN activity, but also with a peak in INVINH expression. Unlike ZmYUC1, OsYUC12 expression is not reduced in the rice CWIN mutant, gif1. Several reports have investigated CWIN expression in rice grains but none has reported on expression of INVINH in this species. We show that rice has 54 genes encoding putative invertase/pectin methylesterase inhibitors, seven of which are expressed exclusively during grain development. Our results suggest a more complex relationship between IAA, CWIN, and INVINH than previously proposed.

  14. Development of techniques for storing rough rice in cold regions, 1: Storage of rough rice at country elevator with natural heat radiation in winter

    International Nuclear Information System (INIS)

    Takekura, K.; Kawamura, S.; Itoh, K.

    2003-01-01

    An on-farm experiment in which 361 metric tons of rough rice was stored in a silo from November until July was conducted at a country elevator in Hokkaido to develop new techniques for storing rough rice in cold regions. The temperature of the rough rice near the inner silo wall decreased to below ice point (-5°C) due to natural heat radiation in winter, which the temperature of the rough rice in the center of the silo was maintained at almost the same temperature as that at the beginning of storage (5°C). Ventilation in the upper vacant space of the silo prevented moisture condensation on the inside surface of the silo during storage. When the cold rough rice was unloaded from the silo in summer, an unheated forced-air drier was used to increase the temperature of rough rice to above the dew point temperature of surrounding air. During the unloading and rewarming process, the moisture content of the rough rice increased due to moisture condensation on the grain from the air. However, the husks first absorbed the condensation and then the moisture slowly permeated into the brown rice kernel. Thus the rewarming process didn't cause any fissures in the brown rice. The results of the experiment indicate that condensation on rough rice doesn't give rise to any problems

  15. Photosynthetic utilization of radiant energy by CAM Dendrobium flowers

    International Nuclear Information System (INIS)

    Khoo, G.H.; Hew, C.S.; He, J.

    1997-01-01

    14 CO 2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (ΦPS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while ΦPS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m -2 s -1 resulted in a very drastic drop of ΦPS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m -2 s -1 ) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m -2 s -1 . A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean. (author)

  16. Control of the first flowering in forest trees

    Energy Technology Data Exchange (ETDEWEB)

    Chalupka, W. [Inst. od Dendrology, Kornik (Poland); Cecich, R.A. [U.S.D.A.-Forest Service, Columbia, MO (United States). North Central Forest Experiment Station

    1997-04-01

    Precocious flowering provides opportunities to shorten a breeding cycle. A tree may flower for the first time when sufficient crown development has occurred and there are enough meristems to support both vegetative and reproductive buds. Precocious flowering can be promoted through the use of cultural techniques, such as photoperiod, accelerated growth, gibberellins and water stress. The length of the juvenile phase is dependent on genetic and environmental variables that affect achievement of a minimum size, and is positively correlated with the height of the plants within a family. Selection pressure can be applied successfully to the precocious flowering character, and crossed or inbred lines of precocious flowering progeny can be developed. Various levels and amounts of genetic control have been implicated in the control of precocious flowering. 90 refs, 1 tab

  17. Genetic Variability Studies on Twelve Genotypes of Rice (Oryza sativa L. for Growth and Yield Performance in South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Vincent N. ONYIA

    2017-03-01

    Full Text Available Twelve genotypes of rice collected from the National Cereals Research Institute (NCRI, Badeggi, Bida, Niger State, Nigeria were evaluated to estimate the magnitude of genetic variability and relationship of some agronomic traits of rice and their contributions to yield. The results obtained showed a significant difference (p ≤ 0.05 among the genotypes in all the traits studied. Genotype ‘WAB 35-1-FX2’ produced a significantly higher grain yield of 3.40 t/ha compared with all the other genotypes in the two years combined. Genotypes ‘WAB 33-25’, ‘WAB 56-1-FX2’, ‘WAB 56-39’, ‘WAB 56-125’, ‘ITA 150’ and ‘FAROX 16 (LC’ were the most stable grain yielding genotypes across the two years of the experiment. High broad sense heritability (h2bs was associated with grain yield (h2bs = 98.63%, number of spikelets/panicle (98.78%, plant height (98.34% for the first year planting, whereas in the second year planting, days to 50% flowering (96.72%, days to maturity (94.14% and grain yield (83.33% were among the traits that showed high broad sense heritability. The two years combined correlation analysis showed that grain yield correlated significantly and positively with number of spikelets/panicle (r = 0.2358*, number of panicles/m2 (r = 0.1895*, number of fertile spikelets/panicle (r = 0.1672* and 1,000 grain weight (r = 0.1247*, indicating that these traits can be phenotypic basis for improving grain yield of rice. Conversely, grain yield exhibited negative correlation with days to 50% flowering (-0.3009 and days to maturity (-0.2650, though not significant. This suggests that rice grain yield can be improved by selecting early flowering and maturing genotypes especially under heat and drought prone conditions.

  18. Development and characterization of emulsions containing purple rice bran and brown rice oils

    Science.gov (United States)

    The aims of this study were to characterize purple rice bran oil (PRBO) as extracted from the bran, and to produce and characterize a nano-emulsion containing purple rice bran oil. An emulsion was prepared using PRBO (10%), sodium caseinate (5%) and water (85%). The mixture was sonicated followed ...

  19. Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom

    Science.gov (United States)

    Song, Xiaoming; Duan, Weike; Huang, Zhinan; Liu, Gaofeng; Wu, Peng; Liu, Tongkun; Li, Ying; Hou, Xilin

    2015-09-01

    In plants, flowering is the most important transition from vegetative to reproductive growth. The flowering patterns of monocots and eudicots are distinctly different, but few studies have described the evolutionary patterns of the flowering genes in them. In this study, we analysed the evolutionary pattern, duplication and expression level of these genes. The main results were as follows: (i) characterization of flowering genes in monocots and eudicots, including the identification of family-specific, orthologous and collinear genes; (ii) full characterization of CONSTANS-like genes in Brassica rapa (BraCOL genes), the key flowering genes; (iii) exploration of the evolution of COL genes in plant kingdom and construction of the evolutionary pattern of COL genes; (iv) comparative analysis of CO and FT genes between Brassicaceae and Grass, which identified several family-specific amino acids, and revealed that CO and FT protein structures were similar in B. rapa and Arabidopsis but different in rice; and (v) expression analysis of photoperiod pathway-related genes in B. rapa under different photoperiod treatments by RT-qPCR. This analysis will provide resources for understanding the flowering mechanisms and evolutionary pattern of COL genes. In addition, this genome-wide comparative study of COL genes may also provide clues for evolution of other flowering genes.

  20. Blob Flowers.

    Science.gov (United States)

    Canfield, Elaine

    2003-01-01

    Describes an art project called blob flowers in which fifth-grade students created pictures of flowers using watercolor and markers. Explains that the lesson incorporates ideas from art and science. Discusses in detail how the students created their flowers. (CMK)

  1. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  2. Eating flowers? Exploring attitudes and consumers' representation of edible flowers.

    Science.gov (United States)

    Rodrigues, H; Cielo, D P; Goméz-Corona, C; Silveira, A A S; Marchesan, T A; Galmarini, M V; Richards, N S P S

    2017-10-01

    Edible flowers have gained more attention in recent years thanks to their perceived health benefits. Despite this attention, it seems that edible flowers are not popularized for consumption in South America, being considered unfamiliar for some cultures from this continent. In this context, the general goal of the present study was to investigate the three dimensions of social representation theory, the representational field, the information and the attitude of the two conditions of edible flowers: a more general "food made with flowers" and more directional product "yoghurt made with flowers", using Brazilian consumers. To achieve this goal, a free word association task was applied. A total of 549 consumers participated in this study. Participants were divided into two conditions, in which the inductor expressions for the free word association task changed: (a) food products made with flowers and (b) yoghurt made with flowers. Results showed a very positive attitude to both situations, and consumers associated Food products made with flowers to "health care" while the central core of yoghurt made with flowers reflected the innovative condition of this product, supported here by their unpredictable character (information generated). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines.

    Science.gov (United States)

    Chakraborty, Anirban; Mitra, Joy; Bhattacharyya, Jagannath; Pradhan, Subrata; Sikdar, Narattam; Das, Srirupa; Chakraborty, Saikat; Kumar, Sachin; Lakhanpaul, Suman; Sen, Soumitra K

    2015-06-01

    Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.

  4. The structure of flower visitation webs : how morphology and abundance affect interaction patterns between flowers and flower visitors

    NARCIS (Netherlands)

    Stang, Martina

    2007-01-01

    Interaction patterns between plants and flower visitors in a Mediterranean flower visitation web can be explained surprisingly well by the combination of two simple mechanisms. Firstly, the size threshold that the nectar tube depth of flowers puts on the tongue length of potential flower visitors;

  5. Determining the stages of tillering stage, initiation of primordia, flowering and maturity in the rice plant, with the system S, V and R correlated with the thermal sum at the time

    Directory of Open Access Journals (Sweden)

    Jennifer Velázquez

    2015-11-01

    Full Text Available Temperature is one of the major climatic factors that affect growth, development and yield of the rice crop, and also can reduce the time of change of phenological stages. The beginning stages of tillering, initiation of primordia, flowering and harvest maturity were determined with the S, V and R system recently proposed by Counce et ál. (2000; it consists on counting the number of fully developed leaves; in addition, a correlation was made with accumulated degree days that the plant had at that time, in order to estimate with how many degree days the plant began a phenological stage; this parameter is related to the average daily temperature and a base temperature of 10ºC. For the start of tillering the plant needed 140.9 degree days; for primordium start, 1268.9; for bloom 1746; and completed its cycle with a total of 2333.2 degree days. This allows to conclude that, for a variety of long cycle (130-135 days, when the accumulation of degree days is equal or similar to the previous data, the plant initiates one of the above-mentioned phenological stages; however, each one of the varieties in use by farmers must be calibrated, because there are differences in crop cycle length among them.

  6. Temperatures and the growth and development of maize and rice

    DEFF Research Database (Denmark)

    Sánchez, Berta; Rasmussen, Anton; Porter, John Roy

    2014-01-01

    and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize...... defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models....

  7. Flowering Trees

    Indian Academy of Sciences (India)

    IAS Admin

    Flowering Trees. Ailanthus excelsa Roxb. (INDIAN TREE OF. HEAVEN) of Simaroubaceae is a lofty tree with large pinnately compound alternate leaves, which are ... inflorescences, unisexual and greenish-yellow. Fruits are winged, wings many-nerved. Wood is used in making match sticks. 1. Male flower; 2. Female flower.

  8. Development on improved parboiling equipment for paddy rice in ...

    African Journals Online (AJOL)

    Mo

    Development on improved parboiling equipment for paddy rice in Benin. P. Houssou and E. ... Its performance was evaluated by measuring the time for parboiling ... of the new system combined with the high cost ($ 36 US) of its realisation.

  9. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    Science.gov (United States)

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  10. MAEWEST expression in flower development of two petunia species.

    Science.gov (United States)

    Segatto, Ana Lúcia A; Turchetto-Zolet, Andreia Carina; Aizza, Lilian Cristina B; Monte-Bello, Carolina C; Dornelas, Marcelo C; Margis, Rogerio; Freitas, Loreta B

    2013-07-03

    Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription-quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions.

  11. MAEWEST Expression in Flower Development of Two Petunia Species

    Directory of Open Access Journals (Sweden)

    Ana Lúcia A. Segatto

    2013-07-01

    Full Text Available Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae, adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively by reverse transcriptase polymerase chain reaction (RT-PCR, reverse transcription–quantitative PCR (qRT-PCR and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions.

  12. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    OpenAIRE

    Jie Liu; Jie Liu; Muyun Xu; Gonzalo M. Estavillo; Emmanuel Delhaize; Rosemary G. White; Meixue Zhou; Peter R. Ryan

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ...

  13. Functional analysis of PI-like gene in relation to flower development ...

    Indian Academy of Sciences (India)

    lying flower development in bamboo, a petal-identity gene was identified as a ... 35S::BoPI fully rescued the defective petal forma- tion in the ... Arabidopsis converted sepals to petals; BoPI-C interacted with BoAP3 on yeast two-hybrid assay, just like the full-length ... PI homologue function in regulating perianth organ forma-.

  14. Flowering Trees

    Indian Academy of Sciences (India)

    user

    Flowering Trees. Gliricidia sepium(Jacq.) Kunta ex Walp. (Quickstick) of Fabaceae is a small deciduous tree with. Pinnately compound leaves. Flower are prroduced in large number in early summer on terminal racemes. They are attractive, pinkish-white and typically like bean flowers. Fruit is a few-seeded flat pod.

  15. Gibberellin regulates pollen viability and pollen tube growth in rice.

    Science.gov (United States)

    Chhun, Tory; Aya, Koichiro; Asano, Kenji; Yamamoto, Eiji; Morinaka, Yoichi; Watanabe, Masao; Kitano, Hidemi; Ashikari, Motoyuki; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako

    2007-12-01

    Gibberellins (GAs) play many biological roles in higher plants. We collected and performed genetic analysis on rice (Oryza sativa) GA-related mutants, including GA-deficient and GA-insensitive mutants. Genetic analysis of the mutants revealed that rice GA-deficient mutations are not transmitted as Mendelian traits to the next generation following self-pollination of F1 heterozygous plants, although GA-insensitive mutations are transmitted normally. To understand these differences in transmission, we examined the effect of GA on microsporogenesis and pollen tube elongation in rice using new GA-deficient and GA-insensitive mutants that produce semifertile flowers. Phenotypic analysis revealed that the GA-deficient mutant reduced pollen elongation1 is defective in pollen tube elongation, resulting in a low fertilization frequency, whereas the GA-insensitive semidominant mutant Slr1-d3 is mainly defective in viable pollen production. Quantitative RT-PCR revealed that GA biosynthesis genes tested whose mutations are transmitted to the next generation at a lower frequency are preferentially expressed after meiosis during pollen development, but expression is absent or very low before the meiosis stage, whereas GA signal-related genes are actively expressed before meiosis. Based on these observations, we predict that the transmission of GA-signaling genes occurs in a sporophytic manner, since the protein products and/or mRNA transcripts of these genes may be introduced into pollen-carrying mutant alleles, whereas GA synthesis genes are transmitted in a gametophytic manner, since these genes are preferentially expressed after meiosis.

  16. DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya Smile.

    Science.gov (United States)

    Wang, Yanwen; Liu, Lu; Song, Shiyong; Li, Yan; Shen, Lisha; Yu, Hao

    2017-12-16

    FLOWERING LOCUS T (FT) in Arabidopsis encodes the florigen that moves from leaves to the shoot apical meristem to induce flowering, and this is partly mediated by FT-INTERACTING PROTEIN 1 (FTIP1). Although FT orthologs have been identified in some flowering plants, their endogenous roles in Orchidaceae, which is one of the largest families of flowering plants, are still largely unknown. In this study, we show that DOFT and DOFTIP1, the orchid orthologs of FT and FTIP1, respectively, play important roles in promoting flowering in the orchid Dendrobium Chao Praya Smile. Expression of DOFT and DOFTIP1 increases in whole plantlets during the transition from vegetative to reproductive development. Both transcripts are present in significant levels in reproductive organs, including inflorescence apices, stems, floral buds, and open flowers. Through successful generation of transgenic orchids, we have revealed that overexpression or down-regulation of DOFT accelerates or delays flowering, respectively, while alteration of DOFT expression also greatly affects pseudobulb formation and flower development. In common with their counterparts in Arabidopsis and rice, DOFTIP1 interacts with DOFT and affects flowering time in orchids. Our results suggest that while DOFT and DOFTIP1 play evolutionarily conserved roles in promoting flowering, DOFT may have evolved with hitherto unknown functions pertaining to the regulation of storage organs and flower development in the Orchidaceae family. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Influence of ethyl-trinexapac on 1{sup 5N} accumulation and distribution and on highland rice yield; Influencia do etil-trinexapac no acumulo, na distribuicao de nitrogenio ({sup 15}N) e na massa de graos de arroz de terras altas

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Rita de Cassia Felix [Universidade Federal do Mato Grosso do Sul (UFMS), Chapadao do Sul, MS (Brazil)]. E-mail: ritaalvarez@nin.ufms.br; Crusciol, Carlos Alexandre Costa; Alvarez, Angela Cristina Camarim [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Depto. de Producao Vegetal]. E-mail: crusciol@fca.unesp.br; angela.alvarez@pop.com.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis]. E-mail: pcotrive@cena.usp.br; Rodrigues, Joao Domingos [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Botanica]. E-mail: mingo@unesp.br

    2007-11-15

    The high rice grain yields ensured by sprinkler irrigation have encouraged the use of higher fertilizer doses, mainly the nitrogen fertilizers. However, an improper management of nitrogen fertilization may result in plant lodging. Application of plant regulators may redirect assimilates to grain production while limiting the vegetative growth. This study aimed to: evaluate the influence of the growth regulator Ethyl-trinexapac on plant growth parameters and on {sup 15}N accumulation and distribution in the whole plant and plant components, and determine the contribution of nitrogen taken up in different developmental stages in panicle formation, yield components and rice yield. The experiment was carried out under controlled greenhouse conditions. The treatments consisted of application or not of a plant growth regulator (0 and 200 g active ingredient ha-1 of ethyl-trinexapac) at four plant development stages (beginning to end of tillering; end of tillering and flower differentiation; flower differentiation to flowering; flowering until physiological maturation). The experimental design was arranged in random blocks, in a 2 x 4 factorial scheme, with three replications. The plants were placed in a group of 48 pots. In a group of 24 pots with nutrient solution containing {sup 15}NH{sub 4}SO{sub 4}, plants were collected and separated in parts in the beginning of each pre-established plant development stage and at the end of each stage. In a second group (24 pots), pre-labeled plants were left to grow in nutrient solution with {sup 14}NH{sub 4}SO{sub 4} and harvested at the end of each cycle in order to access {sup 15}N redistribution.. The growth regulator reduced plant height and {sup 15}N accumulation in the panicle and promoted redistribution of the absorbed {sup 15}N, and increased accumulated {sup 15}N in root, stem+sheats and leaves. The contribution of absorbed {sup 15}N to panicle formation in each stage increased with the plant development, though in a

  18. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).

    Science.gov (United States)

    Li, Xiao-Jie; Zhang, Ya-Feng; Hou, Mingming; Sun, Feng; Shen, Yun; Xiu, Zhi-Hui; Wang, Xiaomin; Chen, Zong-Liang; Sun, Samuel S M; Small, Ian; Tan, Bao-Cai

    2014-09-01

    RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. A study on the neoasozine residues in rice grain by neutron activation method

    International Nuclear Information System (INIS)

    Kim, Y.H.; Lee, K.J.; Lee, S.R.

    1981-01-01

    Residues of neoasozine in rice grain were determined by neutron activation and colorimetric techniques. Twice application of the chemical before flowering did not lead to any increased residue level while 4-times application resulted in significant increase in the residue level up to 0.54 - 0.75 mg As 2 O 3 /kg. The partition ratio of arsenic residues into polished rice grain and bran was 73 : 27 in 100 % polishing while most of the residues in the bran was transferred to oil cake fraction during solvent extraction, reaching up to 2.9 mg As 2 O 3 /kg. The neutron activation technique was advantageous because of its high sensitivity and the smaller sample amounts required for analysis. (author)

  20. Silicon fertilization and soil water tensions on rice development and yield

    Directory of Open Access Journals (Sweden)

    Jakeline R. de Oliveira

    2016-02-01

    Full Text Available ABSTRACT The cultivation of upland rice (Oryza sativa in Brazil occurs mainly in the Cerrado, a region with adverse weather conditions. The use of silicon in its cultivation becomes important, since this nutrient provides higher rigidity, lower transpiration and higher resistance to dry spells in rice plants. The objective of the present study was to evaluate the effect of silicon fertilization and soil water tensions on upland rice development and yield in a Cerrado Oxisol. A 5 x 5 fractionated factorial with five soil water tensions (0, 15, 30, 45 and 60 kPa and five silicon doses (0, 120, 240, 480 and 960 mg dm-3 was used, which were distributed in a randomized block design, with four replicates. Plant height, number of tillers, number of panicles, number of grains per panicle, numbers of full and empty grains and percentage of empty grains were evaluated. Silicon fertilization promotes increased tillering in rice plants at the dose of 960 mg dm-3. The numbers of tillers and panicles decreased with the application of silicon up to the doses of 460 and 490 mg dm-3, respectively. The increase in soil water tensions reduced plant height and the number of full grains, and increased the percentage of empty grains of upland rice.

  1. Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice.

    Science.gov (United States)

    Long, Nguyen Phuoc; Lim, Dong Kyu; Mo, Changyeun; Kim, Giyoung; Kwon, Sung Won

    2017-08-17

    Geographical origin determination of white rice has become the major issue of food industry. However, there is still lack of a high-throughput method for rapidly and reproducibly differentiating the geographical origins of commercial white rice. In this study, we developed a method that employed lipidomics and deep learning to discriminate white rice from Korea to China. A total of 126 white rice of 30 cultivars from different regions were utilized for the method development and validation. By using direct infusion-mass spectrometry-based targeted lipidomics, 17 lysoglycerophospholipids were simultaneously characterized within minutes per sample. Unsupervised data exploration showed a noticeable overlap of white rice between two countries. In addition, lysophosphatidylcholines (lysoPCs) were prominent in white rice from Korea while lysophosphatidylethanolamines (lysoPEs) were enriched in white rice from China. A deep learning prediction model was built using 2014 white rice and validated using two different batches of 2015 white rice. The model accurately discriminated white rice from two countries. Among 10 selected predictors, lysoPC(18:2), lysoPC(14:0), and lysoPE(16:0) were the three most important features. Random forest and gradient boosting machine models also worked well in this circumstance. In conclusion, this study provides an architecture for high-throughput classification of white rice from different geographical origins.

  2. Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Xiuping Chen

    Full Text Available In fields of genetically modified, insect-resistant rice expressing Bacillus thuringiensis (Bt proteins, frogs are exposed to Bt Cry proteins by consuming both target and non-target insects, and through their highly permeable skin. In the present study, we assessed the potential risk posed by transgenic cry1Ca rice (T1C-19 on the development of a frog species by adding purified Cry1Ca protein or T1C-19 rice straw into the rearing water of Xenopus laevis tadpoles, and by feeding X. laevis froglets diets containing rice grains of T1C-19 or its non-transformed counterpart MH63. Our results showed that there were no significant differences among groups receiving 100 μg L-1 or 10 μg L-1 Cry1Ca and the blank control in terms of time to completed metamorphosis, survival rate, body weight, body length, organ weight and liver enzyme activity after being exposed to the Cry1Ca (P > 0.05. Although some detection indices in the rice straw groups were significantly different from those of the blank control group (P < 0.05, there was no significant difference between the T1C-19 and MH63 rice straw groups. Moreover, there were no significant differences in the mortality rate, body weight, daily weight gain, liver and fat body weight of the froglets between the T1C-19 and MH63 dietary groups after 90 days, and there were no abnormal pathological changes in the stomach, intestines, livers, spleens and gonads. Thus, we conclude that the planting of transgenic cry1Ca rice will not adversely affect frog development.

  3. RiceAtlas, a spatial database of global rice calendars and production

    NARCIS (Netherlands)

    Laborte, Alice G.; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander; Boschetti, Mirco; Murty, M. V.R.; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J.; Nelson, Andrew

    2017-01-01

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It

  4. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.

    Science.gov (United States)

    Chen, Tingting; Xu, Yunji; Wang, Jingchao; Wang, Zhiqin; Yang, Jianchang; Zhang, Jianhua

    2013-05-01

    This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.

  5. Developing selection protocols for weed competitiveness in aerobic rice

    NARCIS (Netherlands)

    Zhao, D.L.; Atlin, G.N.; Bastiaans, L.; Spiertz, J.H.J.

    2006-01-01

    Aerobic rice production systems, wherein rice is dry-sown in non-puddled soil and grown as an upland crop, offer large water savings but are subject to severe weed infestation. Weed-competitive cultivars will be critical to the adoption of aerobic rice production by farmers. Breeding

  6. RiceAtlas, a spatial database of global rice calendars and production.

    Science.gov (United States)

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  7. Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China.

    Science.gov (United States)

    Ye, Jing; Niu, Xiaojun; Yang, Yaolong; Wang, Shan; Xu, Qun; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wang, Shu; Feng, Yue; Wei, Xinghua

    2018-01-01

    The heading date is a vital factor in achieving a full rice yield. Cultivars with particular flowering behaviors have been artificially selected to survive in the long-day and low-temperature conditions of Northeast China. To dissect the genetic mechanism responsible for heading date in rice populations from Northeast China, association mapping was performed to identify major controlling loci. A genome-wide association study (GWAS) identified three genetic loci, Hd1 , Ghd7 , and DTH7 , using general and mixed linear models. The three genes were sequenced to analyze natural variations and identify their functions. Loss-of-function alleles of these genes contributed to early rice heading dates in the northern regions of Northeast China, while functional alleles promoted late rice heading dates in the southern regions of Northeast China. Selecting environmentally appropriate allele combinations in new varieties is recommended during breeding. Introducing the early indica rice's genetic background into Northeast japonica rice is a reasonable strategy for improving genetic diversity.

  8. Flowering Trees

    Indian Academy of Sciences (India)

    More Details Fulltext PDF. Volume 8 Issue 8 August 2003 pp 112-112 Flowering Trees. Zizyphus jujuba Lam. of Rhamnaceae · More Details Fulltext PDF. Volume 8 Issue 9 September 2003 pp 97-97 Flowering Trees. Moringa oleifera · More Details Fulltext PDF. Volume 8 Issue 10 October 2003 pp 100-100 Flowering Trees.

  9. Main biological characters of series of mutant waxy rices developed from irradiation-induced mutation

    International Nuclear Information System (INIS)

    Huang Ronghua; Zhang Shubiao; Zhang Qingqi; Yang Rencui; Lin Jinhu

    2008-01-01

    The main biological characters of the waxy male sterile lines, maintainer lines, restorer lines and waxy hybrids which had been developed by radiation-induced mutation were studied, and the grain quality of the waxy hybrids were analyzed as well. Sesults indicated that the mutant waxy rice had the same growth duration, similar agronomic characters, panicle and spikelet traits as parent. The waxy male-sterile line had the same pollen sterility characteristic as its parent male-sterile line. The waxy hybrid rice retained the yield potential as original hybrid rice, and the grain quality of the waxy hybrids was similar to the conventional waxy rice Ejinnuo 6. (authors)

  10. Premature Tapetum Degeneration: a Major Cause of Abortive Pollen Development in Photoperiod Sensitive Genic Male Sterility in Rice

    Institute of Scientific and Technical Information of China (English)

    Yinlian Shi; Sha Zhao; Jialing Yao

    2009-01-01

    Photoperiod-sensitive genic male-sterile (PSGMS) rice (Oryza sativa L.), a natural mutant found in the rice cultivar Nongken 58, is very useful for the development of hybrid rice cultivars. Despite its widespread use in breeding programs, the initial stage of the abortive development of PSGMS rice and the possible cytological mechanisms of pollen abortion have not been determined. In the present study, a systematic cytological comparison of the anther development of PSGMS rice with its normal fertile counterpart is conducted. The results show that pollen abortion in PSGMS rice first occurs before the pollen mother cell (PMC) stage, and continues during the entire process of pollen development until pollen degradation. The abortive process was closely associated with the abnormal behavior of the tapetum. Although tapetum degeneration in PSGMS rice initiates already at the PMC stage, it proceeds slowly and does not complete until the breakdown of the pollen. Such cytological observations were supported by the results of the TUNEL (TdT-mediated dUTP Nick End Labeling) assay, which detects DNA fragmentation resulting from programmed cell death (PCD), indicating that the premature tapetum degeneration is in the process of PCD.

  11. Tuhar pulse flowers corroding by corrosive pollutants | Singh ...

    African Journals Online (AJOL)

    These acids in turn develop micro electrochemical cell with flower of Tuhar pulse which destroy flowering of arhar pulse. Other factors are acid rain, global warming and depletion of ozone layer affecting the production of arhar pulse. Key words: Tuhar (Arhar) pulse flowers, pollutants, particulates, micro electrochemical cell, ...

  12. Mutant-inducing effect of γ-ray irradiation for hybrid rice F1 derived from cross of black glutinous rice x wild rice

    International Nuclear Information System (INIS)

    Mao Dezhi; Tang Yilan

    1998-01-01

    The hybrid rice F 1 plant derived from the back crossing of glutinous rice x wild rice was irradiated with γ-ray. The result of investigation to the induced mutant showed that through the selection and backcross, a black glutinous rice strain with the short stem, cold tolerance and high yield was developed. The analysis of the ability of heredity variance showed that the selection was effective for the husk colour, black glutinous and black Indica rice, but ineffective for the white Indica rice and seed setting

  13. Mapping genes governing flower architecture and pollen development in a double mutant population of carrot

    Directory of Open Access Journals (Sweden)

    Holger eBudahn

    2014-10-01

    Full Text Available A linkage map of carrot (Daucus carota L. was developed in order to study reproductive traits. The F2 mapping population derived from an initial cross between a yellow leaf (yel chlorophyll mutant and a compressed lamina (cola mutant with unique flower defects of the sporophytic parts of male and female organs. The genetic map has a total length of 781 cM and included 285 loci. The length of the nine linkage groups ranged between 65 cM and 145 cM. All linkage groups have been anchored to the reference map. The objective of this study was the generation of a well-saturated linkage map of D. carota. Mapping of the cola-locus associated with flower development and fertility was successfully demonstrated. Two MADS-box genes (DcMADS3, DcMADS5 with prominent roles in flowering and reproduction as well as three additional genes (DcAOX2a, DcAOX2b, DcCHS2 with further importance for male reproduction were assigned to different loci that did not co-segregate with the cola-locus.

  14. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian

    2017-11-01

    DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines.

    Science.gov (United States)

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-06-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs.

  16. Diversity and activity of nitrogen fixing archaea and bacteria associated with micro-environments of wetland rice

    Science.gov (United States)

    Schmidt, Hannes; Woebken, Dagmar

    2017-04-01

    Wetland rice is one of the world's most important crop plants. The cultivation on waterlogged paddy soils is strongly limited by nitrogen (N), which is typically supplied by industrial fertilizers that are not only costly but also exhibit hazardous effects on the environment. It has been reported that "Biological Nitrogen Fixation" through N2-fixing bacteria and archaea (diazotrophs) can alleviate the N-shortage in rice cultivation, thus carrying out an important ecosystem function. However, our understanding of the diversity and in situ N2 fixation activity of diazotrophs in flooded rice fields is still rudimentary. Moreover, knowledge on the impact of biochemical gradients established by root activity (i.e. exudation, radial oxygen loss) on the functioning of N-fixing microorganisms in paddy soil ecosystems is limited. We aimed at studying underlying processes on biologically relevant scales. Greenhouse studies were performed to identify key factors that control rice-diazotroph association and related N2 fixation activities. Paddy soils of different geographical origin were cultivated with two commercially used genotypes of wetland rice. Samples were separated into bulk soil, rhizosphere soil, rhizoplane, and roots at flowering stage of rice plant development. These samples were subjected to functional assays and various molecular biological techniques in order to analyze the associated diazotroph communities. Based on Illumina amplicon sequencing of nifH genes and transcripts, we show that the diversity and potential activity of diazotroph communities varies according to micro-environments. We will comparatively discuss the influence of (a) the soil microbial "seed bank" and (b) plant genotype in shaping the respective microbiomes and selecting for potentially active diazotrophs. Actual N2 fixation activities of soil-genotype combinations and micro-environments will be shown on the basis of incubation assays using 15N2-containing atmospheres. Areas of potential

  17. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico.

    Science.gov (United States)

    Martínez-Adriano, Cristian Adrian; Jurado, Enrique; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1-4 styles; 2-9 stamens; 6.5-41.5 mm long corolla; sepals from 4.5-29.5 mm in length; a total length from 15.5-59 mm; a corolla diameter from 10.5-77 mm. The nectar guide had a diameter from 5-30.5 mm; 4-9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  18. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization

    International Nuclear Information System (INIS)

    Sinha, Shailendra; Agarwal, Avinash Kumar; Garg, Sanjeev

    2008-01-01

    Increased environmental awareness and depletion of resources are driving industry to develop viable alternative fuels from renewable resources that are environmentally more acceptable. Vegetable oil is a potential alternative fuel. The most detrimental properties of vegetable oils are its high viscosity and low volatility, and these cause several problems during their long duration usage in compression ignition (CI) engines. The most commonly used method to make vegetable oil suitable for use in CI engines is to convert it into biodiesel, i.e. vegetable oil esters using process of transesterification. Rice bran oil is an underutilized non-edible vegetable oil, which is available in large quantities in rice cultivating countries, and very little research has been done to utilize this oil as a replacement for mineral Diesel. In the present work, the transesterification process for production of rice bran oil methyl ester has been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized with the objective of producing high quality rice bran oil biodiesel with maximum yield. The optimum conditions for transesterification of rice bran oil with methanol and NaOH as catalyst were found to be 55 deg. C reaction temperature, 1 h reaction time, 9:1 molar ratio of rice bran oil to methanol and 0.75% catalyst (w/w). Rice bran oil methyl ester thus produced was characterized to find its suitability to be used as a fuel in engines. Results showed that biodiesel obtained under the optimum conditions has comparable properties to substitute mineral Diesel, hence, rice bran oil methyl ester biodiesel could be recommended as a mineral Diesel fuel substitute for compression ignition (CI) engines in transportation as well as in the agriculture sector

  19. Effect of Rice bran on the Quality of Rice Flour Breads (Gluten-free)

    OpenAIRE

    仲上, 晴世; 矢部, えん; Haruyo, Nakagami; En, Yabe

    2016-01-01

    Over recent years progress has been made in the development of substitute foods for allergy patients. One such is rice flour bread. However, typically rice flour bread uses polysaccharide thickener in substitution for the gluten in wheat. Most polysaccharide thickeners are of dietary fiber origin, and the nutritive value is poor. Therefore, in this study, I made rice flour bread adding rice bran in place of polysaccharide thickener. Various nutrients are included in rice bran, including vitam...

  20. Whole-plant mineral partitioning during the reproductive development of rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sperotto, R.A.; Vasconcelos, M.W.; Grusak, M.A.; Fett, J.

    2017-07-01

    Minimal information exists on whole-plant dynamics of mineral flow. Understanding these phenomena in a model plant such as rice could help in the development of nutritionally enhanced cultivars. A whole-plant mineral accumulation study was performed in rice (cv. Kitaake), using sequential harvests during reproductive development panicle exertion, grain filling, and full maturity stages in order to characterize mineral accumulation in roots, non-flag leaves, flag leaves, stems/sheaths, and panicles. Partition quotient analysis showed that Fe, Zn, Cu and Ni are preferentially accumulated in roots; Mn and Mg are accumulated in leaves; Mo, Ca, and S in roots and leaves; and K in roots, leaves and stems/sheaths. Correlation analysis indicated that changes in the concentrations of mineral pairs Fe-Mn, K-S, Fe-Ni, Cu-Mg, Mn-Ni, S-Mo, Mn-Ca, and Mn-Mg throughout the reproductive development of rice were positively correlated in all four of the above ground organs evaluated, with Fe-Mn and K-S being positively correlated also in roots, which suggest that root-to-shoot transfer is not driven simply by concentrations in roots. These analyses will serve as a starting point for a more detailed examination of mineral transport and accumulation in rice plants.

  1. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development.

    Science.gov (United States)

    Sussmilch, Frances C; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L

    2015-04-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. © 2015 American Society of Plant Biologists. All rights reserved.

  2. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae from northeastern Mexico

    Directory of Open Access Journals (Sweden)

    Cristian Adrian Martínez-Adriano

    2016-05-01

    Full Text Available We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1–4 styles; 2–9 stamens; 6.5–41.5 mm long corolla; sepals from 4.5–29.5 mm in length; a total length from 15.5–59 mm; a corolla diameter from 10.5–77 mm. The nectar guide had a diameter from 5–30.5 mm; 4–9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  3. Genetic dissection of black grain rice by the development of a near isogenic line

    OpenAIRE

    Maeda, Hiroaki; Yamaguchi, Takuya; Omoteno, Motoyasu; Takarada, Takeshi; Fujita, Kenji; Murata, Kazumasa; Iyama, Yukihide; Kojima, Yoichiro; Morikawa, Makiko; Ozaki, Hidenobu; Mukaino, Naoyuki; Kidani, Yoshinori; Ebitani, Takeshi

    2014-01-01

    Rice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health. We developed a black rice introgression line in the genetic background of Oryza sativa L. ‘Koshihikari’, which is a leading variety in Japan. We used Oryza sativa L. ‘Hong Xie Nuo’ as the donor parent and backcrossed with ‘Koshihikari’ four times, resulting in a near isogenic line (NIL) for black g...

  4. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y

    2017-09-01

    The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.

  5. Understanding the evolution of rice technology in China - from traditional agriculture to GM rice today.

    Science.gov (United States)

    Shen, Xiaobai

    2010-01-01

    This paper provides an historical survey of the evolution of rice technology in China, from the traditional farming system to genetically modified rice today. Using sociotechnological analytical framework, it analyses rice technology as a socio-technical ensemble - a complex interaction of material and social elements, and discusses the specificity of technology development and its socio-technical outcomes. It points to two imperatives in rice variety development: wholesale transporting agricultural technology and social mechanism to developing countries are likely lead to negative consequences; indigenous innovation including deploying GM technology for seed varietal development and capturing/cultivating local knowledge will provide better solutions.

  6. Reduction of gibberellin by low temperature disrupts pollen development in rice.

    Science.gov (United States)

    Sakata, Tadashi; Oda, Susumu; Tsunaga, Yuta; Shomura, Hikaru; Kawagishi-Kobayashi, Makiko; Aya, Koichiro; Saeki, Kenichi; Endo, Takashi; Nagano, Kuniaki; Kojima, Mikiko; Sakakibara, Hitoshi; Watanabe, Masao; Matsuoka, Makoto; Higashitani, Atsushi

    2014-04-01

    Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change.

  7. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhang Yanwei

    2013-02-01

    Full Text Available Abstract Background SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. Results In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1 encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY; Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. Conclusions In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the

  8. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L.; Vega-Sánchez, Miguel E.; Williams, Brian; Chiniquy, Dawn M.; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G.; Willats, William G. T.; Scheller, Henrik V.; Ronald, Pamela C.; Bartley, Laura E.

    2016-08-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  9. Identification of Heading Date Six (Hd6 Gene Derived from Rice Mutant Varieties

    Directory of Open Access Journals (Sweden)

    Aryanti Aryanti

    2017-04-01

    Full Text Available Genes which were associated with flowering time to indicate the early maturity is known as heading date (Hd. Heading date six (Hd6 gene was identified from rice mutant varieties were Atomita 2, Atomita 3, Atomita 4, Bestari, Cilosari, Diah Suci, Sidenuk, Kahayan, Mayang, Meraoke, Mira-1, Pandan Putri, Superwin, Suluttan Unsrat 1, Suluttan Unsrat 2, Winongo, Woyla, Yuwono, while the rice var. Nipponbare was used as a positive control. All of rice mutant varieties derived from mutation induction by the dose of 0.2 kGy. The aim of this experiment was to find out the data base of mutant varieties which could be used as parent material with earlier maturity trait genetically. To obtain the DNA of plants, young leaves of each variety were extracted by liquid nitrogen, and then lysis and extracted by Kit Plant Genomic DNA. The amplification of DNA with 7 primers of Hd6 conducted of 40 cycles by PCR and were continues to separated by 1 % agarose. The results were shown that the rice Mira-1 and Bestari varieties obtained from mutation of Cisantana highly different from one to another on 7 primers of Hd6 used. Mayang variety from mutation of cross breeding between Cilosari and IR64, Pandan putri from Pandan wangi and Woyla from mutation of cross breeding from Atomita 2 and IR64 were highly different with those of their parents. Identification of Hd6 gene on Sidenuk variety was shown the same bands pattern with Nipponbare as control positive toward all primers used, this variety would be better for earlier maturity parent material compared to others. The information could be useful for breeding programs aiming to develop early maturing widely adaptive and high yielding rice cultivars.

  10. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Directory of Open Access Journals (Sweden)

    Malay Kumar ADAK

    2011-06-01

    Full Text Available The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation. It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield. The detrimental effects of the complete submergence were recorded in generation of sucrose, starch, sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e. non-submerged condition. The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity. Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity. However, under normal or control condition, there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity. Still, photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield. Finally, plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues. It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles, in this case as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  11. Genetic dissection of black grain rice by the development of a near isogenic line.

    Science.gov (United States)

    Maeda, Hiroaki; Yamaguchi, Takuya; Omoteno, Motoyasu; Takarada, Takeshi; Fujita, Kenji; Murata, Kazumasa; Iyama, Yukihide; Kojima, Yoichiro; Morikawa, Makiko; Ozaki, Hidenobu; Mukaino, Naoyuki; Kidani, Yoshinori; Ebitani, Takeshi

    2014-06-01

    Rice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health. We developed a black rice introgression line in the genetic background of Oryza sativa L. 'Koshihikari', which is a leading variety in Japan. We used Oryza sativa L. 'Hong Xie Nuo' as the donor parent and backcrossed with 'Koshihikari' four times, resulting in a near isogenic line (NIL) for black grains. A whole genome survey of the introgression line using DNA markers suggested that three regions, on chromosomes 1, 3 and 4 are associated with black pigmentation. The locus on chromosome 3 has not been identified previously. A mapping analysis with 546 F2 plants derived from a cross between the black rice NIL and 'Koshihikari' was evaluated. The results indicated that all three loci are essential for black pigmentation. We named these loci Kala1, Kala3 and Kala4. The black rice NIL was evaluated for eating quality and general agronomic traits. The eating quality was greatly superior to that of 'Okunomurasaki', an existing black rice variety. The isogenicity of the black rice NIL to 'Koshihikari' was very high.

  12. Photoperiodic control of floral initiation in rice plant, 4: Promotive effect of far-red radiation given at the end of day

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K. [Mie Univ., Tsu (Japan)

    1987-12-15

    Using a strongly photoperiod-sensitive cultivar of rice, Oryza sativa L., ev. Norin 18, though several cultivars with weak sensitivity to photoperiod were added in some trials, we have investigated on the effect of FR radiation at the close of the daily photoperiod on the flowering response.

  13. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Directory of Open Access Journals (Sweden)

    Guan-fu FU

    2008-09-01

    Full Text Available By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05 respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  14. Identification of Genes Associated with Lemon Floral Transition and Flower Development during Floral Inductive Water Deficits: A Hypothetical Model.

    Science.gov (United States)

    Li, Jin-Xue; Hou, Xiao-Jin; Zhu, Jiao; Zhou, Jing-Jing; Huang, Hua-Bin; Yue, Jian-Qiang; Gao, Jun-Yan; Du, Yu-Xia; Hu, Cheng-Xiao; Hu, Chun-Gen; Zhang, Jin-Zhi

    2017-01-01

    Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5' flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis -regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed.

  15. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

    Science.gov (United States)

    Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  16. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    Evaluation of SAR effects on budding, flowering, leaf abscission and pollen development revealed that ... Keywords: Simulated acid rain, Helianthus annuus, flowering, leaf abscission, pollen germination, sunflower. ... HOW TO USE AJOL.

  17. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    Science.gov (United States)

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application

    Science.gov (United States)

    Zulpadrianto, Z.; Yohandri, Y.; Putra, A.

    2018-04-01

    The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.

  19. PhosphoRice: a meta-predictor of rice-specific phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Que Shufu

    2012-02-01

    Full Text Available Abstract Background As a result of the growing body of protein phosphorylation sites data, the number of phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to predict protein phosphorylation sites in rice. Results In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters selected by restricted grid search and conditional random search, performed the best at predicting phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC and Accuracy (ACC reached to 0.474 and 73.8%, respectively. Compared to the best individual element predictor (Disphos_default, PhosphoRice archieved a significant increase in MCC of 0.071 (P Conclusions PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice.

  20. Rapid crown root development confers tolerance to zinc deficiency in rice

    Directory of Open Access Journals (Sweden)

    Amrit Kaur eNanda

    2016-03-01

    Full Text Available Zinc (Zn deficiency is one of the leading nutrient disorders in rice (Oryza sativa. Many studies have identified Zn efficient rice genotypes, but causal mechanisms for Zn deficiency tolerance remain poorly understood. Here we report a detailed study of the impact of Zn deficiency on crown root development of rice genotypes, differing in their tolerance to this stress. Zn deficiency delayed crown root development and plant biomass accumulation in both Zn efficient and inefficient genotypes, with the effects being much stronger in the latter. Zn efficient genotypes had developed new crown roots as early as three days after transplanting (DAT to a Zn deficient field and that was followed by a significant increase in total biomass by 7 DAT. Zn-inefficient genotypes developed few new crown roots and did not increase biomass during the first seven days following transplanting. This correlated with Zn efficient genotypes retranslocating a higher proportion of shoot Zn to their roots, compared to Zn inefficient genotypes. These latter genotypes were furthermore not efficient in utilizing the limited Zn for root development. Histological analyses indicated no anomalies in crown tissue of Zn-efficient or inefficient genotypes that would have suggested crown root emergence was impeded. We therefore conclude that the rate of crown root initiation was differentially affected by Zn deficiency between genotypes. Rapid crown root development, following transplanting, was identified as a main causative trait for tolerance to Zn deficiency and better Zn retranslocation from shoot to root was a key attribute of Zn-efficient genotypes.

  1. THE EFFECT OF ETHREL ON THE DURATION OF FLOWERING OF MALE FLOWERS SQUASH PLANTS WITH DIFFERENT GENETIC EXPRESSIVENESS OF FLOWER GENDER IN THE KRASNODAR REGION CONDITION

    Directory of Open Access Journals (Sweden)

    R. A. Gish

    2016-01-01

    Full Text Available Depending on the genotype of monoecious plants Cucurbitaceae family may have different gender expressions: predominantly female, mixed and predominantlymale type of flowering. However, the degree of sexual differentiation can be changedunder the influence of abiotic and endogenous factors. Among the chemicals that affect the level of female flowering in pumpkin crops, preparations based on 2-chloroethylphosphonic acid (Ethephon or Etrelle are the most promising for hybrid seed production. Study of plant response of squash Cucurbita pepo var. giromontina with varying sex expressions on the treatments with Etrelle revealed common conformities and specificities of preparation action in the condition of Krasnodar region. It is shown the use of treatment once is not effective even if the high concentration range, 500-1100 mg/L, was taken. On gender switch was effectively influenced successive plant treatments with Etrelle at stages of 3-5 true leaves in a wide concentration range from 250 to 700 mg /L., where the restraining was that the start of male flower blossoming was 14-25 days after female flower blossoming. K69 line with predominantly female flowering was more responsive to the variation of concentration and frequency of treatments whereas the line K49 with male flowering was less responsive to the frequency of treatments. It is shown that in the range of effective concentrations, Etrelle may have phytotoxic effects on the growth and development of squash plants at the time of restraining flowering of male flowers. It is important to  ake that into account when choosing a regime of preparation treatments for chemical castration of maternal forms in hybrid seed production of this crop.

  2. Non-linked inhibitory gene controls a disease mimicking mutant in rice [Oryza sativa L.

    International Nuclear Information System (INIS)

    Jambhulkar, S.J.; Joshua, D.C.; Goswamy, D.G.

    2001-01-01

    A gamma ray induced disease mimicking mutant called luchai lesion was isolated in the rice variety White Luchai 112. The appearance of small light red lesions and their development continued from seedling to flowering. The lesions appeared gradually on older leaves and their uncontrolled spread eventually lead to leaf senescence. They resembled the disease spots caused by Magnaporthe grisea. However, pathological studies ruled out the possibility of pathogen mediated disease symptoms. Genetic studies revealed that lesions were governed by a dominant gene; however, their expression was suppressed in presence of a non-linked inhibitory gene. It is hypothesised that the plant cells of the mutant are able to sense inbuilt spontaneous signals leading to lesion development, but in presence of an inhibitory gene the signals are suppressed by perturbation in the signal transduction pathway [it

  3. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo

    KAUST Repository

    Latrasse, David; Rodriguez-Granados, Natalia Y.; Veluchamy, Alaguraj; Mariappan, Kiruthiga Gayathri; Bevilacqua, Claudia; Crapart, Nicolas; Camps, Celine; Sommard, Vivien; Raynaud, Cé cile; Dogimont, Catherine; Boualem, Adnane; Benhamed, Moussa; Bendahmane, Abdelhafid

    2017-01-01

    BackgroundMelon (Cucumis melo) is an important vegetable crop from the Cucurbitaceae family and a reference model specie for sex determination, fruit ripening and vascular fluxes studies. Nevertheless, the nature and role of its epigenome in gene expression regulation and more specifically in sex determination remains largely unknown.ResultsWe have investigated genome wide H3K27me3 and H3K9ac histone modifications and gene expression dynamics, in five melon organs. H3K9ac and H3K27me3 were mainly distributed along gene-rich regions and constrained to gene bodies. H3K9ac was preferentially located at the TSS, whereas H3K27me3 distributed uniformly from TSS to TES. As observed in other species, H3K9ac and H3K27me3 correlated with high and low gene expression levels, respectively. Comparative analyses of unisexual flowers pointed out sex-specific epigenetic states of TFs involved in ethylene response and flower development. Chip-qPCR analysis of laser dissected carpel and stamina primordia, revealed sex-specific histone modification of MADS-box genes. Using sex transition mutants, we demonstrated that the female promoting gene, CmACS11, represses the expression of the male promoting gene CmWIP1 via deposition of H3K27me3.ConclusionsOur findings reveal the organ-specific landscapes of H3K9ac and H3K27me3 in melon. Our results also provide evidence that the sex determination genes recruit histone modifiers to orchestrate unisexual flower development in monoecious species.

  4. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo

    KAUST Repository

    Latrasse, David

    2017-05-08

    BackgroundMelon (Cucumis melo) is an important vegetable crop from the Cucurbitaceae family and a reference model specie for sex determination, fruit ripening and vascular fluxes studies. Nevertheless, the nature and role of its epigenome in gene expression regulation and more specifically in sex determination remains largely unknown.ResultsWe have investigated genome wide H3K27me3 and H3K9ac histone modifications and gene expression dynamics, in five melon organs. H3K9ac and H3K27me3 were mainly distributed along gene-rich regions and constrained to gene bodies. H3K9ac was preferentially located at the TSS, whereas H3K27me3 distributed uniformly from TSS to TES. As observed in other species, H3K9ac and H3K27me3 correlated with high and low gene expression levels, respectively. Comparative analyses of unisexual flowers pointed out sex-specific epigenetic states of TFs involved in ethylene response and flower development. Chip-qPCR analysis of laser dissected carpel and stamina primordia, revealed sex-specific histone modification of MADS-box genes. Using sex transition mutants, we demonstrated that the female promoting gene, CmACS11, represses the expression of the male promoting gene CmWIP1 via deposition of H3K27me3.ConclusionsOur findings reveal the organ-specific landscapes of H3K9ac and H3K27me3 in melon. Our results also provide evidence that the sex determination genes recruit histone modifiers to orchestrate unisexual flower development in monoecious species.

  5. Transcriptional changes of rice in response to rice black-streaked dwarf virus.

    Science.gov (United States)

    Ahmed, Mohamed M S; Ji, Wen; Wang, Muyue; Bian, Shiquan; Xu, Meng; Wang, Weiyun; Zhang, Jiangxiang; Xu, Zhihao; Yu, Meimei; Liu, Qiaoquan; Zhang, Changquan; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-09-10

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the

  6. Explaining the apparent paradox of persistent selection for early flowering.

    Science.gov (United States)

    Austen, Emily J; Rowe, Locke; Stinchcombe, John R; Forrest, Jessica R K

    2017-08-01

    Decades of observation in natural plant populations have revealed pervasive phenotypic selection for early flowering onset. This consistent pattern seems at odds with life-history theory, which predicts stabilizing selection on age and size at reproduction. Why is selection for later flowering rare? Moreover, extensive evidence demonstrates that flowering time can and does evolve. What maintains ongoing directional selection for early flowering? Several non-mutually exclusive processes can help to reconcile the apparent paradox of selection for early flowering. We outline four: selection through other fitness components may counter observed fecundity selection for early flowering; asymmetry in the flowering-time-fitness function may make selection for later flowering hard to detect; flowering time and fitness may be condition-dependent; and selection on flowering duration is largely unaccounted for. In this Viewpoint, we develop these four mechanisms, and highlight areas where further study will improve our understanding of flowering-time evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Say it with flowers: Flowering acceleration by root communication.

    Science.gov (United States)

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  8. The effect of flowering on adventitious root-formation

    NARCIS (Netherlands)

    Selim, H.H.A.

    1956-01-01

    The rooting of cuttings from day-neutral tomato was not influenced by flower development, nor by SD or LD treatments of them or of the mother plants. In cuttings of the SD plant Perilla crispa flower initiation and development severely inhibited rooting. Leaves produced about 61 %

  9. Comparative Transcriptomes Profiling of Photoperiod-sensitive Male Sterile Rice Nongken 58S During the Male Sterility Transition between Short-day and Long-day

    Directory of Open Access Journals (Sweden)

    Zhu Yingguo

    2011-09-01

    Full Text Available Abstract Background Photoperiod-sensitive genic male sterile (PGMS rice, Nongken 58S, was discovered in 1973. It has been widely used for the production of hybrid rice, and great achievements have been made in improving rice yields. However, the mechanism of the male sterility transition in PGMS rice remains to be determined. Results To investigate the transcriptome during the male sterility transition in PGMS rice, the transcriptome of Nongken 58S under short-day (SD and long-day (LD at the glume primordium differentiation and pistil/stamen primordium forming stages was compared. Seventy-three and 128 differentially expressed genes (DEGs were identified at the glume primordium differentiation and pistil/stamen primordium forming stages, respectively. Five and 22 genes were markedly up-regulated (≥ 5-fold, and two and five genes were considerably down-regulated (≥ 5-fold under SD during the male sterility transition. Gene ontology annotation and pathway analysis revealed that four biological processes and the circadian rhythms and the flowering pathways coordinately regulated the male sterility transition. Further quantitative PCR analysis demonstrated that the circadian rhythms of OsPRR1, OsPRR37, OsGI, Hd1, OsLHY and OsDof in leaves were obviously different between Nongken 58S and Nongken 58 under LD conditions. Moreover, both OsPRR37 and Hd1 in the inflorescence displayed differences between Nongken 58S and Nongken 58 under both LD and SD conditions. Conclusion The results presented here indicate that the transcriptome in Nongken 58S was significantly suppressed under LD conditions. Among these DEGs, the circadian rhythm and the flowering pathway were involved in the male sterility transition. Furthermore, these pathways were coordinately involved in the male sterility transition in PGMS rice.

  10. Development of defined mixed-culture fungal fermentation starter granulate for controlled production of rice wine

    NARCIS (Netherlands)

    Ngo Thi Phuong Dung, N.T.P.; Rombouts, F.M.; Nout, M.J.R.

    2005-01-01

    As a first step in the development of defined fungal starter granules for controlled winemaking from purple glutinous rice, the interaction of moulds and yeasts isolated from Vietnamese rice wine starters and the effect of some representative oriental herbs on the growth of moulds and yeasts were

  11. Physicochemical and sensory analysis of USA rice varieties developed for the basmati and jasmine markets

    Science.gov (United States)

    There is a steady demand for imported basmati and jasmine rice in The USA. Rice varieties that can be domestically produced and compete with these imports, have been developed from basmati, jasmine, and other aromatic germplasm sources. This study evaluated differences among eight USA aromatic varie...

  12. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments.

    Science.gov (United States)

    Liu, Juanxu; Li, Jingyu; Wang, Huinan; Fu, Zhaodi; Liu, Juan; Yu, Yixun

    2011-01-01

    Ethylene-responsive element-binding factor (ERF) genes constitute one of the largest transcription factor gene families in plants. In Arabidopsis and rice, only a few ERF genes have been characterized so far. Flower senescence is associated with increased ethylene production in many flowers. However, the characterization of ERF genes in flower senescence has not been reported. In this study, 13 ERF cDNAs were cloned from petunia. Based on the sequence characterization, these PhERFs could be classified into four of the 12 known ERF families. Their predicted amino acid sequences exhibited similarities to ERFs from other plant species. Expression analyses of PhERF mRNAs were performed in corollas and gynoecia of petunia flower. The 13 PhERF genes displayed differential expression patterns and levels during natural flower senescence. Exogenous ethylene accelerates the transcription of the various PhERF genes, and silver thiosulphate (STS) decreased the transcription of several PhERF genes in corollas and gynoecia. PhERF genes of group VII showed a strong association with the rise in ethylene production in both petals and gynoecia, and might be associated particularly with flower senescence in petunia. The effect of sugar, methyl jasmonate, and the plant hormones abscisic acid, salicylic acid, and 6-benzyladenine in regulating the different PhERF transcripts was investigated. Functional nuclear localization signal analyses of two PhERF proteins (PhERF2 and PhERF3) were carried out using fluorescence microscopy. These results supported a role for petunia PhERF genes in transcriptional regulation of petunia flower senescence processes.

  13. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub

    Science.gov (United States)

    Rodríguez-Pérez, Javier; Traveset, Anna

    2016-01-01

    Flowering phenology and synchrony with biotic and abiotic resources are crucial traits determining the reproductive success in insect-pollinated plants. In seasonal climates, plants flowering for long periods should assure reproductive success when resources are more predictable. In this work, we evaluated the relationship between flowering phenology and synchrony and reproductive success in Hypericum balearicum, a shrub flowering all year round but mainly during spring and summer. We studied two contrasting localities (differing mostly in rainfall) during 3 years, and at different biological scales spanning from localities to individual flowers and fruits. We first monitored (monthly) flowering phenology and reproductive success (fruit and seed set) of plants, and assessed whether in the locality with higher rainfall plants had longer flowering phenology and synchrony and relatively higher reproductive success within or outside the flowering peak. Secondly, we censused pollinators on H. balearicum individuals and measured reproductive success along the flowering peak of each locality to test for an association between (i) richness and abundance of pollinators and (ii) fruit and seed set, and seed weight. We found that most flowers (∼90 %) and the highest fruit set (∼70 %) were produced during the flowering peak of each locality. Contrary to expectations, plants in the locality with lower rainfall showed more relaxed flowering phenology and synchrony and set more fruits outside the flowering peak. During the flowering peak of each locality, the reproductive success of early-flowering individuals depended on a combination of both pollinator richness and abundance and rainfall; by contrast, reproductive success of late-flowering individuals was most dependent on rainfall. Plant species flowering for long periods in seasonal climates, thus, appear to be ideal organisms to understand how flowering phenology and synchrony match with biotic and abiotic resources, and

  14. Flowering in Xanthium strumarium

    Science.gov (United States)

    Leonard, Maggy; Kinet, Jean-Marie; Bodson, Monique; Havelange, Andrée; Jacqmard, Annie; Bernier, Georges

    1981-01-01

    Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences. Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus. Images PMID:16661844

  15. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  16. Effects of Nitrogen Application Time on Caryopsis Development and Grain Quality of Rice Variety Yangdao 6

    Directory of Open Access Journals (Sweden)

    Fei XIONG

    2008-03-01

    Full Text Available A pot experiment was conducted to study the effects of different nitrogen application time (during the tillering or the booting stages with the same nitrogen rates on the caryopsis development and grain quality of rice variety Yangdao 6. The increased nitrogen fertilizer (urea, especially applied during the booting stage, could evidently increase the milled rice rate, head rice rate and protein content in rice grains compared with the control (no nitrogen application, and decrease chalky grain rate and amylose content. Moreover, the increased nitrogen fertilizer significantly affected the caryopsis development and enhanced the grain weight when nitrogen applied during the tillering and the booting stages, especially during the booting stage. During caryopsis development the increased nitrogen fertilizer applied during the tillering and booting stages could obviously decrease the total starch and amylose contents, but not obviously for the amylopectin content in rice grain. Increased topdressing of nitrogen fertilizer, especially applied during the booting stage, had significant effect on the development and structures of amyloplasts and proteinoplasts. That is, it could change the distribution, number and shape of amyloplasts and proteinoplasts in the endosperm cells especially in grain abdomen. Compared with the control the arrangements of amyloplasts and proteinoplasts were closer, with more numbers, higher density and less interspaces each ohter. Furthermore, most amyloplasts showed polyhedron under the increased nitrogen fertilizer level.

  17. Collective action and technology development: up-scaling of innovation in rice farming communities in Northern Thailand

    NARCIS (Netherlands)

    Limnirankul, B.

    2007-01-01

    Keywords:small-scale rice farmers, collective action, community rice seed, local innovations, green manure crop, contract farming, participatory technology development, up-scaling, technological configuration, grid-group theory,

  18. Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice fsv1

    Directory of Open Access Journals (Sweden)

    Helian Liu

    2017-11-01

    Full Text Available The regulation of female fertility is an important field of rice sexual reproduction research. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during development processes. However, few reports have described the methylation profiles of female-sterile rice during ovule development. In this study, ovules were continuously acquired from the beginning of megaspore mother cell meiosis until the mature female gametophyte formation period, and global DNA methylation patterns were compared in the ovules of a high-frequency female-sterile line (fsv1 and a wild-type rice line (Gui99 using whole-genome bisulfite sequencing (WGBS. Profiling of the global DNA methylation revealed hypo-methylation, and 3471 significantly differentially methylated regions (DMRs were observed in fsv1 ovules compared with Gui99. Based on functional annotation and Kyoto encyclopedia of genes and genomes (KEGG pathway analysis of differentially methylated genes (DMGs, we observed more DMGs enriched in cellular component, reproduction regulation, metabolic pathway, and other pathways. In particular, many ovule development genes and plant hormone-related genes showed significantly different methylation patterns in the two rice lines, and these differences may provide important clues for revealing the mechanism of female gametophyte abortion.

  19. [Development of bakery products for greater adult consumption based on wheat and rice flour].

    Science.gov (United States)

    Reyes Aguilar, María José; Palomo, Patricia de; Bressani, Ricardo

    2004-09-01

    The present investigation was developed as a contribution to Guatemalan's elderly food and nutrition. Its main objective was to evaluate the chemical, nutritional and sensory quality of bread prepared from the partial substitution of wheat flour with rice flour. Wheat flour substitutions with rice flour in the order of 15, 20, 30, 40, 50 and 60% were evaluated. Differences with the control (100% wheat bread) were found during the process of preparation, as well as texture, volume, height, weight and specific volume. Important effects in dough handling were noted specifically in the 40, 50 and 60% rice bread. Thus, a sandy texture was found in breads of higher rice levels. The bread protein quality increased with the level of substitution; however the protein quality difference between the wheat bread and the bread with 60% rice flour did not achieve statistical significance. Based on a statistical analysis of the physical properties the bread with 30 and 40% rice flour was selected, and through a preference test between these last two, the 30% rice flour bread was selected as the sample best suited to the present study's purposes. This bread was not different to wheat bread in many nutritional parameters, although in others it showed to be superior. Each serving size of bread has a weight of 80 grams (2 slices) that contributes adequate quantity of calories, protein and sodium, although a little less dietary fiber than 100% wheat bread.

  20. Perspectives on MADS-box expression during orchid flower evolution and development

    OpenAIRE

    Mondrag?n-Palomino, Mariana

    2013-01-01

    The diverse morphology of orchid flowers and their complex, often deceptive strategies to become pollinated have fascinated researchers for a long time. However, it was not until the 20th century that the ontogeny of orchid flowers, the genetic basis of their morphology and the complex phylogeny of Orchidaceae were investigated. In parallel, the improvement of techniques for in vitro seed germination and tissue culture, together with studies on biochemistry, physiology, and cytology supported...

  1. Induced mutation for tungro resistance in rice

    International Nuclear Information System (INIS)

    Ikeda, R.; Yumol, R.R.; Taura, S.

    2001-01-01

    Tungro is the most serious virus disease of rice in South and Southeast Asia. It is a composite disease of two kinds of viruses, rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Damage to the plant is mostly caused by RTBV, while RTSV acts to facilitate RTBV acquisition and transmission by insect vector. Both viruses are transmitted mainly by green leafhopper (GLH). Resistance to GLH is common in rice germplasm but extremely rare for the two viruses. To induce mutations for tungro resistance, a susceptible variety IR22 was treated with N-methyl-N-nitrosourea (MNH) following the procedure of Satoh and Omura. The panicles of rice variety 'IR22' were soaked in 1 mM MNH solution for 45 minutes at 16 to 18 hours after flowering. Two thousand six hundred and forty fertile M 1 plants were produced. From these plants M 2 lines with 10 or more seedlings were planted in the field to evaluate their reaction against tungro under natural conditions in the 1990 dry season on the IRRI central research farm, Los Banos, the Philippines. Of these, 124 M 2 lines were selected by visual evaluation. Five plants were harvested individually from each selected line. A bulk was also made from all the remaining plants in the line. In the M 3 generation, each family consisted of five sister lines and one bulked line. One line (M 3 -723) showed no tungro symptoms and its related bulk segregated for resistance but all other M 3 lines from the same family were susceptible to tungro. The resistant line, M 3 -723, showed low infection with RTBV and RTSV when leaves were tested by enzyme-linked immunosorbent assay (ELISA) to diagnose tungro infection. All M 4 lines from M 3 -723 showed uniform resistance in the field. They were not infected with RTBV and were resistant to RTSV infection

  2. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development

    Science.gov (United States)

    Trivellini, Alice; Ferrante, Antonio; Vernieri, Paolo; Serra, Giovanni

    2011-01-01

    The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style–stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l−1 methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style–stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style–stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied. PMID:21841180

  3. Transfer of gaseous iodine from atmosphere to rough rice, brown rice and polished rice

    International Nuclear Information System (INIS)

    Sumiya, Misako; Uchida, Shigeo; Muramatsu, Yasuyuki; Ohmomo, Yoichiro; Yamaguchi, Shuho; Obata, Hitoshi.

    1987-01-01

    Experiments were carried out in order to obtain information required for establishing transfer coefficients of gaseous iodine (I 2 ) to rough rice, brown rice and polished rice. The gaseous iodine deposited on young rice plants before the heading period was scarcely found in the rough rice harvested at the full ripe stage. The biological half life of iodine in hull, however, was much slower than that in leaves of 14 days. The translocation of iodine from leaves and stalks to rough rice was not clearly recognized. Therefore, it was deduced that iodine found in brown rice mainly should originate from that deposited on the hull. The distribution ratios of iodine between rough rice and brown rice, and between brown rice and polished rice were 100:4 and 100:30 on 100 grains basis, respectively. If average normalized deposition velocity (V d(m) ) or derived deposition velocity (V s ) are given, the transfer coefficients of gaseous iodine to rough rice (TF r ), brown rice (TF b ) and polished rice (TF p ) could be calculated. (author)

  4. Effects of cobalt-60 low doses radiation on beam, rice and radish seeds

    International Nuclear Information System (INIS)

    Kikuchi, O.K.

    1987-01-01

    The effects of cobalt-60 gamma radiation on seeds of bean (Phaseolus vulgaris L.), rice (Oryza sativa L.) and radish (Raphanus sativus L.) were studied. Bean and rice seeds were irradiated with 3.5 and 7.7 Gy (32 Gy/h). There was an apparent acceleration on rice seed germination with 3.5 Gy when they were stored for 6 days after irradiation, but the same dose caused a delay when the store time was 1 day. Bean seeds germination was not modified by 3.5 and 7.7 Gy, but the fresh and dry weight of young plants showed an increase, mainly due the major quantity of water in the embryonic axis. Bean seeds were irradiated with 0.5 and 2.0 Gy (30 Gy/h). Seeds germination showed a slight delay irradiating with 0.5 Gy, while height, fresh and dry weight and primary leaves area of the young plants as well as number of nodes, leaves, flowers, beans and seeds were not modified after irradiation with 0.5 and 2.0 Gy. Radish seeds irradiated with 10 and 30 Gy at dose rates of 4.5, 22.5 and 45.0 Gy/h showed a germination delay and fresh and dry weight values for young plants leaves lower than control. Roots of totally developed plants showed no modifications in weight, volume, mean diameter, lenght and in the amount of soluble reducing sugar. (author)

  5. Responses of sri lankan traditional rice to photoperiod at early vegetative stage

    International Nuclear Information System (INIS)

    Rathnathunga, U.U.E.; Geekiyanage, S.

    2017-01-01

    Rice is a photoperiod sensitive plant for flowering initiation. Effect of photoperiod can be important in vegetative growth and yield determination in rice. The objective of the research was to determine the effect of photoperiod on the vegetative responses of Sri Lankan traditional rice germplasm (SLTRG). Forty five traditional rice accessions (TRA), 5 improved rice varieties (IR), Sri Lankan wild rice (Oryza nivara and Oryza rufipogan) and Oryza japonica accessions 6782 and 6752 were grown in short day (SD), day neutral (DN) and long day (LD) conditions. Days to reach the fifth leaf stage (DFL), plant height (PH) and tiller number (TN) at the fifth leaf stage were recorded. Twenty three genotypes including 21 TRA, Oryza japonica 6752 and Oryza nivara did not respond to photoperiod having non-significant values for DFL, PH and TN among photoperiods. The DFL was affected in 25 genotypes; among them both DFL and PH were affected in 7 genotypes. DFL was significantly increased during LD in 4 TRA while DFL was significantly reduced in all 5 IR and 5 TRA. DFL was significantly increased in Oryza japonica 6782 and 5 TRA under SD. In 4 TRA, DFL was reduced under SD. The TN was affected in Oryza japonica 6782 only under SD with increased DFL. The DFL was significantly increased under DN in Oryza rufipogan, 5 TRA and 2 IR. Both SD and LD photoperiods differently affected the interaction between DFL and PH in TRA while only LD affected that of IR. DN had an effect on the interaction between DFL and PH only in wild rice Oryza rufipogon. Variation of vegetative growth response to photoperiod may depict the wide genetic basis of SLTRG. (author)

  6. Efikasi Chitosan untuk Memperpanjang Flower Longevity Bunga Anggrek Dendrobium Hibrida dalam Pot (Potted Flower

    Directory of Open Access Journals (Sweden)

    I MADE SUKEWIJAYA

    2015-09-01

    Full Text Available Effication of Chitosan on Lengthening The Flower Longevity of Potted Orchid ofDendrobium Hybrid. The aim of the current research is to investigate general effects of Chitosantreatment on the flowering of Dendrobium orchid and to find out the optimum concentration of Chitosanin lengthening flower longevity of potted orchid of Dendrobium hybrid. Results of the research showedthat Chitosan application significantly affected variables of the number of flower per-plant, the length ofindividual flower, period of time to get full blooming, and the flower longevity. The best results for thoseof variables was achieved with Chitosan concentration of 0.15%.

  7. Luminosity on development and flowering of Dendrobium nobile Lindl.

    Directory of Open Access Journals (Sweden)

    Yara Brito Chaim Jardim Rosa

    2014-09-01

    Full Text Available This study, conducted at Jardinocultura area of Faculdade de Ciências Agrárias of UFGD during the period from September of 2010 to August of 2011, had as aim evaluate the cultivation and flowering of Dendrobium nobile Lindl., under five levels of luminosity (83, 104, 115, 154 e 237 μmol m-2 s-1 . During 12 months the plants were irrigated and fertilized with NPK 10-10-10 and after this period they were evaluated for the number, length and diameter of pseudobulbs, being calculated the increments in relation to initial data. At flowering time it was counted the total buds, reproductive buds, vegetative buds and undifferentiated buds and registered the anthesis at each light intensity. The experimental was arranged at completely randomized design with five treatments and seven replicates with two plants and the averages were compared by Tukey test at 5% probability. All the lighting conditions were favorable to the D. nobile cultivation, being registered increases of 36,7%, 16,0% e 16,2% in the number, diameter and length of pseudobulbs, respectively. The largest number of reproductive buds was observed at 104 μmol m-2 s-1. D. nobile can be cultivated in the light conditions varying between 83 and 237 μmol m-2 s-1, recommending the luminosity of 104 μmol m-2 s-1 to promote their flowering.

  8. Molecular basis of development in petaloid monocot flowers

    DEFF Research Database (Denmark)

    Johansen, Bo; Frederiksen, Signe; Skipper, Martin

    2006-01-01

    -class genes apparently are expressed in meristems of both flower and inflorescence. Morphologically petaloid stamens and styles are well known within the petaloid monocots, whereas the phenomenon is rare in core eudicots. A simple model based on the extra copies of B-class genes can explain the molecular...

  9. [Influence of sulfur on the bioavailability of arsenic uptake by rice (Oryza. sativa L. ) and its speciation in soil ].

    Science.gov (United States)

    Yang, Shi-jie; Tang, Bing-pei; Wang, Dai-chang; Rao, Wei; Zhang, Ya-nan; Wang, Dan; Zhu, Yun-ji

    2014-09-01

    Pot experiments using exogenous arsenic-polluted paddy soils were carried out to investigate the influence of different forms of sulfur fertilizers (sulfur and gypsum) on As uptake by rice and its chemical speciation. Soil solution pH value ranged 7. 38-7. 45 in different growth period of rice, and the pH value of AsS0 and AsS1 treatments was higher than that of AsS2 treatment. Variation of Eh value in soil solution was about 200 mV and the Eh of AsS0 was higher than those of AsS1 and AsS2 treatments. From dry matter weight of root and stem and grain of rice, S-fertilizer applied by sulfur and gypsum could improve the amounts of dry matter in rice, while the effects of sulfur treatments and gypsum treatments were not significant. Concentrations of Fe and Mn in iron-manganese plaque on rice roots were 10-30 g.kg-1 and 0.1-1.3 g.kg-1, respectively. Contents of Fe-Mn plaque were mainly different in the tiller stage. Elemental S treatment could more greatly promote the formation of Fe-Mn plaque of rice root than gypsum treatment. Concentrations of As adsorbed by rice roots surface plaque were 583-719 mg.kg-' in tiller stage, 466-621 mg.kg-1 in boot stage, and 310-384 mg kg-1 in flower and matur stage. And it was consistent with the thickness of Fe-Mn plaque on rice root surface. Concentrations of As uptake in roots and stem and leaf and grain were significantly reduced by the application of S fertilizer, and it may be related to the amount of As adsorbed by Fe-Mn plaque at boot stage. According to chemical speciation of soil arsenic, As of non-specific and specific adsorption was most active, and their amounts of As adsorbed in AsS, treatment were significantly lower by 2.85 mg kg-~' than that in AsS2 treatment in tiller stage, and was 0.77 mg.kg- higher than that in AsS2 treatment in the flower stage. Perhaps soil arsenic was easily dissolved in the soil solution and the bioavailability of AsS, treatment was better than that of AsS, treatment.

  10. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    Science.gov (United States)

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  11. Analysis on Structure of Flower Market in Beijing

    OpenAIRE

    SUN, Xi; ZHANG, Yingying

    2015-01-01

    With the socio-economic development and people’s living condition improvement, the requirement for environment is higher and higher and the mental demand is also more and more. For this, Beijing Municipal Bureau of Landscape and Forestry listed survey programs of consumption demands of flower market in Beijing in 2014, and provided several recommendations in line with current situations, problems and environment of the flower industry, for future reference of flower decision making of Beiji...

  12. Model development for nutrient loading estimates from paddy rice fields in Korea.

    Science.gov (United States)

    Jeon, Ji-Hong; Yoon, Chun G; Ham, Jong-Hwa; Jung, Kwang-Wook

    2004-01-01

    A field experiment was performed to evaluate water and nutrient balances in paddy rice culture operations during 2001-2002. The water balance analysis indicated that about half (50-60%) of the total outflow was lost by surface drainage, with the remainder occurring by evapotranspiration (490-530 mm). The surface drainage from paddy fields was mainly caused by rainfall and forced-drainage, and in particular, the runoff during early rice culture periods depends more on the forced-drainage due to fertilization practices. Most of the total phosphorus (T-P) inflow was supplied by fertilization at transplanting, while the total nitrogen (T-N) inflow was supplied by the three fertilizations, precipitation. and from the upper paddy field, which comprised 13-33% of the total inflow. Although most of the nutrient outflow was attributed to plant uptake. nutrient loss by surface drainage was substantial, comprising 20% for T-N and 10% for T-P. Water and nutrient balances indicate that reduction of surface drainage from paddy rice fields is imperative for nonpoint source pollution control. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient (T-N and T-P) behavior in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and convenient planning model that could be used to evaluate BMPs of paddy rice fields alone or in combination with other complex watershed models. Application of the PADDIMOD to other paddy rice fields with different agricultural environments might require further calibration and validation.

  13. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nonomura

    2011-01-01

    Full Text Available The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1, though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.

  14. USING BACH FLOWER IN HOLISTIC PSYCHOTHERAPY

    Directory of Open Access Journals (Sweden)

    Vagner Ferreira do Nascimento

    2017-05-01

    Full Text Available This is a narrative review from scientific literature that aimed to describe concepts and approaches for indications of the therapeutic use of Bach flower remedies in holistic psychotherapy. The review was developed in February 2016 from books, official documents and articles indexed in Lilacs and Scielo databases. Bach flower remedies is a therapeutic method that aims to restore the balance of human being, restoring its vital energy through holistic care. Because the flower essences act on psychic and emotional dimension of individual, when employed in holistic psychotherapy can provide greater autonomy, self-care and effectiveness compared to other alternative methods. The literature indicated that flower essence therapy is a safe practice and can be used in a complementary to health care, but should be performed by qualified professionals. It has also shown to be a promising and important area for nursing professional, but it still requires greater investment in research in the area to support the practice.

  15. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    Directory of Open Access Journals (Sweden)

    Chou Hong

    2011-12-01

    Full Text Available Abstract Background Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. Results In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (E1 gene, from the thermophilic bacterium Acidothermus cellulolyticus, was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial E1 gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice

  16. Movement of CO2 from the rhizosphere of rice to the top and its discharge into the atmosphere

    International Nuclear Information System (INIS)

    Wada, Hidenori; Yokoyama, Tadashi; Takai, Yasuo

    1983-01-01

    The amount of 14 C transferred from the rhizosphere to the top of rice and that discharged into the atmosphere after predetermined hours were measured, when the rice was grown in flooded soil, and a certain amount of NaH 14 CO 3 was introduced under light or dark condition. Under light condition, 14 C began to accumulate in the shoot of the rice about 10 minutes after the introduction of NaH 14 CO 3 solution, and the radioactivity increased rapidly with time. At every time of measurement, the radioactivity in the lower part of the rice was higher than that in the upper part, which confirmed that 14 C was constantly transported from the root to the top, and was fixed within the rice plants. Under light condition, 70 % of the CO 2 transferred from the soil solution to the top through the roots was fixed in the top. Under dark condition, most of the CO 2 transferred into the top was found to be discharged into the air. The amount of 14 C fixed in the top of the rice increased with the growth of the rice after transplantation, reached the maximum at the flowering period, and thereafter decreased rapidly. The change with the lapse of time in the amount of CO 2 fixed corresponded with that in the amount of water absorbed by the rice. This was considered to support the hypothesis that the rice plants absorb CO 2 along with water absorption. (Kaihara, S.)

  17. Productivity of Upland Rice Genotypes under Different Nitrogen Doses

    Energy Technology Data Exchange (ETDEWEB)

    Traore, K.; Traore, O. [INERA /Station de Farakoba, Bobo-Dioulasso (Burkina Faso); Bado, V. B. [Africa Rice Center (AfricaRice), Saint Louis (Senegal)

    2013-11-15

    Nitrogen (N) deficiency is one of the most yield-limiting nutrients in upland rice growing area in Burkina Faso. A field experiment was carried out from 2008 to 2010 in Farakoba research center with the objective to evaluate 200 upland rice (Oryza sativa L.) genotypes from WAB, NERICA, CNA, CNAX, IRAT and IR lines for N use efficiency. The treatments consisted of three levels of N: low, medium and high at 20, 60 and 100 kg-N h{sup a-1}, respectively. Both grain and straw yield increased with N application. The yields were highest for NERICA and WAB lines compared to the other lines, and this was consistent over the N doses. A large variability was found among the genotypes. Three groups of genotypes were identified according to N use efficiency. The high N use efficiency genotypes were found in WAB and NERICA lines. The N concentration in the shoot at flowering significantly increased with N doses and this was similar for N taken up by genotypes. (author)

  18. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    Science.gov (United States)

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Gyrocarpus americanus Jacq. (Helicopter Tree) of Hernandiaceae is a moderate size deciduous tree that grows to about 12 m in height with a smooth, shining, greenish-white bark. The leaves are ovate, rarely irregularly ... flowers which are unpleasant smelling. Fruit is a woody nut with two long thin wings.

  20. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Acrocarpus fraxinifolius Wight & Arn. (PINK CEDAR, AUSTRALIAN ASH) of. Caesalpiniaceae is a lofty unarmed deciduous native tree that attains a height of 30–60m with buttresses. Bark is thin and light grey. Leaves are compound and bright red when young. Flowers in dense, erect, axillary racemes.

  1. Puffing of okara/rice blends using a rice cake machine.

    Science.gov (United States)

    Xie, M; Huff, H; Hsieh, F; Mustapha, A

    2008-10-01

    Okara is the insoluble byproduct of soymilk and tofu manufactures. It is cheap, high in nutrients, and possesses great potential to be applied to functional human foods. In this study, a puffed okara/rice cake product was developed with blends of okara pellets and parboiled rice. Consumer preference and acceptance tests were conducted for the product. Okara pellets were prepared by grinding the strands obtained from extruding a mixture of dried okara and rice flour (3:2, w/w) with a twin-screw extruder. Okara pellets and parboiled rice were blended in 4 ratios, 90:10, 70:30, 40:60, and 0:100 (w/w), and tempered to 14% and 17% moisture. The blends were puffed at 221, 232, and 243 degrees C for 4, 5, or 6 s. The okara/rice cakes were evaluated for specific volume (SPV), texture, color, and percent weight loss after tumbling. Overall, the decrease in okara content and increase in moisture, heating temperature and time led to greater specific volume (SPV) and hardness, lighter color, and lower percent weight loss after tumbling. The consumer tests indicated that the okara/rice cake containing 70% okara pellets was preferred and the 90% one was liked the least. The possible drivers of liking for the puffed okara/rice cakes could be the okara content, hardness, SPV, bright color, and percent weight loss after tumbling.

  2. Development of sampling methods for the slash pine flower thrips Gnophothrips fuscus (Morgan), (Thysanoptera: Phlaeothripidae)

    Science.gov (United States)

    Carl W. Fatzinger; Wayne N. Dixen

    1991-01-01

    Slash pine flower thrips typically destroy about 24% of the flowers (cones) present in slash pine seed orchards. The seasonal distribution and abundance of slash pine flower thrips are being investigated and methods for sampling field populations of the insect are being evaluated for potential use in integrated pest management strategies. The efficacies of several...

  3. Design a Hummingbird Flower.

    Science.gov (United States)

    Bailey, Kim

    2002-01-01

    Presents an activity that engages students in designing and making an artificial flower adapted for pollination by hummingbirds. Students work in teams to design flowers that maximize the benefit from attracting hummingbirds. Examines characteristics of real flowers adapted to pollination by hummingbirds. (DLH)

  4. Rice improvement involving altered flower structure more suitable to cross-pollination, using in vitro culture in combination with mutagenesis

    International Nuclear Information System (INIS)

    Min, S.K.

    1998-01-01

    Anther and somatic tissue culture in combination with mutagenesis were carried out to evaluate the efficiency of different mutagenic treatments of various in vitro culture materials, and to obtain some promising variants for rice improvement. Results indicated that in japonica rice radiation treatment of dry seeds and young panicles influenced the percentage of green plantlets regeneration from anther culture. Both treatments increased significantly the percentage of regenerated green plant lets in comparison with the control

  5. Development of Nutritious Snack from rice industry waste using twin screw extrusion

    Directory of Open Access Journals (Sweden)

    Sharma Renu

    2016-01-01

    Full Text Available Deoiled rice bran, a byproduct of rice milling industry was transformed into highly nutritious snack by the application of twin screw extrusion process. Response Surface Methodology (RSM with four- factor- five level central composite rotatable design (CCRD was employed to investigate the effects of extrusion conditions including moisture content of different raw flours, feed composition, barrel temperature and screw speed of extruder on properties of extrudates was studied. Second order quadratic regression model fitted adequately in the variation. The significance was established at P ≤ 0.05. The regression models can be used to interpret the effect of feed composition, moisture content, screw speed and barrel temperature on the properties of the final product. It was shown that higher rice bran in feed composition showed in minimum water absorption index and maximum water solubility index. Numerical optimization technique resulted in 123.83°C of barrel temperature, 294.68 rpm of screw speed, 13.94 % of feed moisture and 17.73 % of deoiled rice bran. The responses predicted for these optimum process conditions resulted water absorption index, 5.91468 g/g and water solubility index of 18.5553 % for the development of value added product with health benefits.

  6. Development of inter-specific chromosomes segment substitution libraries (CSSL) in rice

    Science.gov (United States)

    Six libraries of inter-specific Chromosome Segment Substitution Lines (CSSLs) of rice are being developed as pre-breeding materials and genetic stocks. Three accessions of O. rufipogon were selected as donors, based on phylogenetic, geographical and morphological divergence, and crossed with two rec...

  7. Potencial de cruzamento natural entre o arroz transgênico resistente ao herbicida glufosinato de amônio e o arroz daninho Outcrossing potential of glufosinate-resistant rice to red rice

    Directory of Open Access Journals (Sweden)

    J.A. Noldin

    2002-08-01

    crosses, when GM rice was the pollen donor and red rice, the female parent, the outcrossing rate was 0.26 and 0.14%, respectively, for strawhull and blackhull red rice. The results of this study suggest that, under field conditions, outcrossing of glufosinate-resistant rice to red rice can occur at a measurable level. The potential frequency of hybrids would be minimum under situations where weed control measures help prevent the red rice from flowering.

  8. Flowering Trees

    Indian Academy of Sciences (India)

    narrow towards base. Flowers are large and attrac- tive, but emit unpleasant foetid smell. They appear in small numbers on erect terminal clusters and open at night. Stamens are numerous, pink or white. Style is slender and long, terminating in a small stigma. Fruit is green, ovoid and indistinctly lobed. Flowering Trees.

  9. Multi-Input Convolutional Neural Network for Flower Grading

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available Flower grading is a significant task because it is extremely convenient for managing the flowers in greenhouse and market. With the development of computer vision, flower grading has become an interdisciplinary focus in both botany and computer vision. A new dataset named BjfuGloxinia contains three quality grades; each grade consists of 107 samples and 321 images. A multi-input convolutional neural network is designed for large scale flower grading. Multi-input CNN achieves a satisfactory accuracy of 89.6% on the BjfuGloxinia after data augmentation. Compared with a single-input CNN, the accuracy of multi-input CNN is increased by 5% on average, demonstrating that multi-input convolutional neural network is a promising model for flower grading. Although data augmentation contributes to the model, the accuracy is still limited by lack of samples diversity. Majority of misclassification is derived from the medium class. The image processing based bud detection is useful for reducing the misclassification, increasing the accuracy of flower grading to approximately 93.9%.

  10. Flowering Trees

    Indian Academy of Sciences (India)

    Canthium parviflorum Lam. of Rubiaceae is a large shrub that often grows into a small tree with conspicuous spines. Leaves are simple, in pairs at each node and are shiny. Inflorescence is an axillary few-flowered cymose fascicle. Flowers are small (less than 1 cm across), 4-merous and greenish-white. Fruit is ellipsoid ...

  11. Flowering Trees

    Indian Academy of Sciences (India)

    mid-sized slow-growing evergreen tree with spreading branches that form a dense crown. The bark is smooth, thick, dark and flakes off in large shreds. Leaves are thick, oblong, leathery and bright red when young. The female flowers are drooping and are larger than male flowers. Fruit is large, red in color and velvety.

  12. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis.

    Science.gov (United States)

    Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A; Vernieri, Paolo; Ferrante, Antonio

    2016-10-01

    Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Towards the identification of flower-specific genes in Citrus spp

    Directory of Open Access Journals (Sweden)

    Marcelo Carnier Dornelas

    2007-01-01

    Full Text Available Citrus sinensis is a perennial woody species, for which genetic approaches to the study of reproductive development are not readily amenable. Here, the usefulness of the CitEST Expressed Sequence Tag (EST database is demonstrated as a reliable new resource for identifying novel genes exclusively related to Citrus reproductive biology. We performed the analysis of an EST dataset of the CitEST Project containing 4,330 flower-derived cDNA sequences. Relying on bioinformatics tools, sequences exclusively present in this flower-derived sequence collection were selected and used for the identification of Citrus putative flower-specific genes. Our analysis revealed several Citrus sequences showing significant similarity to conserved genes known to have flower-specific expression and possessing functions related to flower metabolism and/or reproductive development in diverse plant species. Comparison of the Citrus flower-specific sequences with all available plant peptide sequences unraveled 247 unique transcripts not identified elsewhere within the plant kingdom. Additionally, 49 transcripts, for which no biological function could be attributed by means of sequence comparisons, were found to be conserved among plant species. These results allow further gene expression analysis and possibly novel approaches to the understanding of reproductive development in Citrus.

  14. Evaluation of low light intensity at three phenological stages in the agronomic and physiological responses of two rice (Oryza sativa L. cultivars

    Directory of Open Access Journals (Sweden)

    Hermann Restrepo

    2013-08-01

    Full Text Available A study was carried out to assess the effect of two irradiance levels (100 and 50% natural light at three different growth stages on yield and physiological characteristics of two rice cultivars (Fedearroz 50 and Fedearroz 733. The plants were exposed to low irradiance for 5 days consecutive by using black net cloth (about 50% of normal at the panicle primordium, flowering and grain filling stages. The obtained results showed that the leaf chlorophyll content (SPAD readings was higher in rice leaves under low irradiance. The chlorophyll content from the shade treatment apparently remained constant until the grain filling phase, then decreased slightly in the 'F50' rice plants and remarkably in the 'F733' plants. Stomatal conductance (gs was negatively affected by shading, with the effect being more adverse in the 'F733' plants. At the flowering and grain filling phases, grain yield was reduced by the low light treatments by around ~20% in the 'F50' plants. While, in 'F733', they were only affected by shading at the grain filling stage, causing a decrease of around 25%. These results seem to indicate that "F773" may have a better capacity for partitioning dry matter than "F50" in spite of the fact that the gas exchange characteristics were conditioned by low irradiance conditions at the reproductive and ripening phases

  15. Development of a method for estimating total CH{sub 4} emission from rice paddies in Japan using the DNDC-Rice model

    Energy Technology Data Exchange (ETDEWEB)

    Katayanagi, Nobuko [National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Fumoto, Tamon, E-mail: tamon@affrc.go.jp [National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Hayano, Michiko [National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Anno 1742-1, Nishinoomote, Kagoshima 891-3102 (Japan); Takata, Yusuke; Kuwagata, Tsuneo; Shirato, Yasuhito [National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Sawano, Shinji [Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687 (Japan); Kajiura, Masako; Sudo, Shigeto; Ishigooka, Yasushi; Yagi, Kazuyuki [National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2016-03-15

    Methane (CH{sub 4}) is a greenhouse gas, and paddy fields are one of its main anthropogenic emission sources. To mitigate this emission based on effective management measures, CH{sub 4} emission from paddy fields must be quantified at a national scale. In Japan, country-specific emission factors have been applied since 2003 to estimate national CH{sub 4} emission from paddy fields. However, this method cannot account for the effects of weather conditions and temporal variability of nitrogen fertilizer and organic matter application rates; thus, the estimated emission is highly uncertain. To improve the accuracy of national-scale estimates, we calculated country-specific emission factors using the DeNitrification–DeComposition-Rice (DNDC-Rice) model. First, we calculated CH{sub 4} emission from 1981 to 2010 using 986 datasets that included soil properties, meteorological data, and field management data. Using the simulated site-specific emission, we calculated annual mean emission for each of Japan's seven administrative regions, two water management regimes (continuous flooding and conventional mid-season drainage), and three soil drainage rates (slow, moderate, and fast). The mean emission was positively correlated with organic carbon input to the field, and we developed linear regressions for the relationships among the regions, water management regimes, and drainage rates. The regression results were within the range of published observation values for site-specific relationships between CH{sub 4} emission and organic carbon input rates. This suggests that the regressions provide a simplified method for estimating CH{sub 4} emission from Japanese paddy fields, though some modifications can further improve the estimation accuracy. - Highlights: • DNDC-Rice is a process-based model to simulate rice CH{sub 4} emission from rice paddies. • We simulated annual CH{sub 4} emissions from 986 paddy fields in Japan by DNDC-Rice. • Regional means of CH{sub 4

  16. Dormancy in Peach (Prunus persica L.) Flower Buds : I. Floral Morphogenesis and Endogenous Gibberellins at the End of the Dormancy Period.

    Science.gov (United States)

    Luna, V; Lorenzo, E; Reinoso, H; Tordable, M C; Abdala, G; Pharis, R P; Bottini, R

    1990-05-01

    Flower buds of peach (Prunus persica L.) trees, cv Novedad de Cordoba (Argentina), were collected near the end of the dormant period and immediately before anthesis. After removal of scale leaves, morphological observations of representative buds, made on transverse and longitudinal microtome sections, showed that all verticils making up the flower are present in an undifferentiated form during the dormant period (June). Flower buds collected at the end of dormant period (August) showed additional growth and differentiation, at which time formation of two ovules was beginning in the unicarpelar gynoecium. Dehiscence of anthers had not yet occurred 10 days before full bloom, and the ovules were still developing. Free endogenous gibberellin (GA)-like substances were quantified by bioassay (Tan-ginbozu dwarf rice microdrop) after SiO(2) partition column chromatography, reversed phase C18-high performance liquid chromatography, and finally Nucleosil [N(CH(3))(2)]high performance liquid chromatography. Bioactive fractions were then subjected to capillary gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM). Gibberellins A(1), A(3), and A(8) were tentatively identified in peach flower buds using GC-SIM and Kovat's retention indices, and relative amounts approximated by GC-SIM (2:8:6 for GA(1), GA(3), and GA(8), respectively). The highest concentration (330 nanograms per gram dry weight) of free GA(1)/GA(3) was found in dormant buds (June) and diminished thereafter. The concentration free of GA(1)/GA(3) did not increase immediately prior to bud break. However, high GA(1)/GA(3) concentrations occurred during stages where rate of growth and cellular differentiation of (mainly fertile) verticils can be influenced.

  17. Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus.

    Science.gov (United States)

    Le, Dung Tien; Chu, Ha Duc; Sasaya, Takahide

    2015-01-01

    Rice tungro spherical virus (RTSV), also known as Rice waika virus, does not cause visible symptoms in infected rice plants. However, the virus plays a critical role in spreading Rice tungro bacilliform virus (RTBV), which is the major cause of severe symptoms of rice tungro disease. Recent studies showed that RNA interference (RNAi) can be used to develop virus-resistance transgenic rice plants. In this report, we presented simple procedures and protocols needed for the creation of transgenic rice plants capable of producing small interfering RNA specific against RTSV sequences. Notably, our study showed that 60 out of 64 individual hygromycin-resistant lines (putative transgenic lines) obtained through transformation carried transgenes designed for producing hairpin double-stranded RNA. Northern blot analyses revealed the presence of small interfering RNA of 21- to 24-mer in 46 out of 56 confirmed transgenic lines. Taken together, our study indicated that transgenic rice plants carrying an inverted repeat of 500-bp fragments encoding various proteins of RTSV can produce small interfering RNA from the hairpin RNA transcribed from that transgene. In light of recent studies with other viruses, it is possible that some of these transgenic rice lines might be resistant to RTSV.

  18. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... important export production in cut flower is carnation and it consists of 89% of cut flower export. ... irrigation management in arid and semi-arid regions will shift from emphasizing ..... Handbook of Plant and Crop. Stress (Ed: M.

  19. Flowering, nectar production and insects visits in two cultivars of Cucurbita maxima Duch. flowers

    Directory of Open Access Journals (Sweden)

    Marta Dmitruk

    2012-12-01

    Full Text Available The study was conducted on experimental plots in the conditions of Lublin. In the years 1998-2000 flowering, nectar secretion and insect visitation of male and female flowers of two winter squash (Cucurbita maxima Duch. cultivars: 'Ambar' and 'Amazonka', were studied. The plants flowered from July to October. The flower life span was within the range of 7-10 hours. Female flowers of cv. Ambar were marked by the most abundant nectar secretion (129 mg. The nectar sugar content can be estimated as average (25%-35%. Winter squash nectar contained 84% of sucrose as well as 8-9% of fructose and 7%-8% of glucose. Flowers of the studied taxa were frequently foraged by the honey bee (66%-98% of total insects and bumblebees (1%-30%.

  20. Levels and patterns of nucleotide variation in domestication QTL regions on rice chromosome 3 suggest lineage-specific selection.

    Directory of Open Access Journals (Sweden)

    Xianfa Xie

    Full Text Available Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa--indica and tropical japonica--as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups.

  1. International Conference on Sustainable Rice Production - Policy, Technology and Extension Celebration Activity for International Year of Rice and World Food Day 2004

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Rice is the staple food of more than half of the world's population. The production, processing and management of paddy rice have provided the basic conditions for the living of mankind. The production of rice has not only created employment opportunities for one billion agricultural population in developing nations, but has also contributed to the development of the splendid culture associated with rice production. Hence, effective and productive rice systems play an influential role in development of economy and improvement of quality of life. In view of this, on 16 December,2002, the UN General Assembly declared the year of 2004 the International Year of Rice.

  2. Soil to rice transfer factors for 210Pb: a study on rice grown in India

    International Nuclear Information System (INIS)

    Karunakara, N.; Rao, Chetan; Ujwal, P.; Yashodhara, I.; Sudeep Kumara; Somashekarappa, H.M.; Bhaskara Shenoy, K.; Ravi, P.M.

    2013-01-01

    India is the second largest producer of rice (Oryza sativa L.) in the world and rice is the essential component of the diet for the majority of the population of India. However, detailed studies aimed at evaluation of radionuclide transfer factors (F v ) for rice grown in India are almost non-existent. This paper presents soil to rice transfer factors for 210 Pb for rice grown in natural field conditions on the West Coast of India. A rice field was developed very close to the Kaiga nuclear power plant for the field studies. For a comparative study of radionuclide transfer factors, rice samples were also collected from the rice fields of nearby villages. The soil to un-hulled rice grain 210 Pb varied in the range <1.2 x10 -2 to 8.1 x 10 -1 with a mean of 1.4 x 10 -1 . The mean values of un-hulled grain to white rice processing retention factors (F r ) was 0.03 for 210 Pb. Using the processing retention factors the soil to white rice transfer factor was estimated and found to have the mean value of 4.2 x 10 -3 . The study has shown that the transfer of 210 Pb was retained in the root and its transfer to above ground organs of rice plant is significantly lower. (author)

  3. What flowers do we like? The influence of shape and color on the rating of flower beauty

    Directory of Open Access Journals (Sweden)

    Martin Hůla

    2016-06-01

    Full Text Available There is no doubt that people find flowers beautiful. Surprisingly, we know very little about the actual properties which make flowers so appealing to humans. Although the evolutionary aesthetics provides some theories concerning generally preferred flower traits, empirical evidence is largely missing. In this study, we used an online survey in which residents of the Czech Republic (n = 2006 rated the perceived beauty of 52 flower stimuli of diverse shapes and colors. Colored flowers were preferred over their uncolored versions. When controlling for flower shape, we found an unequal preference for different flower colors, blue being the most and yellow the least preferred. In the overall assessment of beauty, shape was more important than color. Prototypical flowers, i.e., radially symmetrical flowers with low complexity, were rated as the most beautiful. We also found a positive effect of sharp flower contours and blue color on the overall rating of flower beauty. The results may serve as a basis for further studies in some areas of the people-plant interaction research.

  4. What flowers do we like? The influence of shape and color on the rating of flower beauty

    Science.gov (United States)

    Flegr, Jaroslav

    2016-01-01

    There is no doubt that people find flowers beautiful. Surprisingly, we know very little about the actual properties which make flowers so appealing to humans. Although the evolutionary aesthetics provides some theories concerning generally preferred flower traits, empirical evidence is largely missing. In this study, we used an online survey in which residents of the Czech Republic (n = 2006) rated the perceived beauty of 52 flower stimuli of diverse shapes and colors. Colored flowers were preferred over their uncolored versions. When controlling for flower shape, we found an unequal preference for different flower colors, blue being the most and yellow the least preferred. In the overall assessment of beauty, shape was more important than color. Prototypical flowers, i.e., radially symmetrical flowers with low complexity, were rated as the most beautiful. We also found a positive effect of sharp flower contours and blue color on the overall rating of flower beauty. The results may serve as a basis for further studies in some areas of the people-plant interaction research. PMID:27330863

  5. Electricity generation from rice husk in Indian rice mills: potential and financial viability

    International Nuclear Information System (INIS)

    Kapur, T.; Kandpal, T.C.; Garg, H.P.

    1998-01-01

    Rice husk generated as a by-product of rice processing is an important energy resource. The availability of this resource in India has been assessed and the technologies for exploitation of its energy potential in the rice processing industry discussed. Nomographs have been developed for estimation of the husk required to meet the energy of parboiling, drying and milling operations. The unit cost of electricity using rice husk gasifier-based power generation systems has been calculated and its financial feasibility assessed in comparison with utility-supplied and diesel-generated electricity. With the cost and efficiency data assumed here, the unit cost of electricity produced by rice husk gasifier-dual fuel engine-generator system varies between Rs 2/kWh and Rs 7/kWh. (35 Rs approximates to SUS 1.). (author)

  6. Electricity generation from rice husk in Indian rice mills: potential and financial viability

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, T.; Kandpal, T.C.; Garg, H.P. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)

    1998-12-31

    Rice husk generated as a by-product of rice processing is an important energy resource. The availability of this resource in India has been assessed and the technologies for exploitation of its energy potential in the rice processing industry discussed. Nomographs have been developed for estimation of the husk required to meet the energy of parboiling, drying and milling operations. The unit cost of electricity using rice husk gasifier-based power generation systems has been calculated and its financial feasibility assessed in comparison with utility-supplied and diesel-generated electricity. With the cost and efficiency data assumed here, the unit cost of electricity produced by rice husk gasifier-dual fuel engine-generator system varies between Rs 2/kWh and Rs 7/kWh. (35 Rs approximates to SUS 1.). (author)

  7. Assessment of System of Rice Intensification (SRI and Conventional Practices under Organic and Inorganic Management in Japan

    Directory of Open Access Journals (Sweden)

    Tejendra CHAPAGAIN

    2011-12-01

    Full Text Available The system of rice intensification (SRI is a production system that involves the adoption of certain changes in management practices for rice cultivation that create a better growing environment for the crop. This system was compared with conventional practices and assessed under organic and inorganic management. SRI practices showed significant response in root number, number of effective tillers per hill, days to flowering and harvest index. In addition, SRI was found effective in minimizing pest and disease incidence, shortening the crop cycle, and improving plant stand. Grain yield was not different from conventional method. Except for harvest index and plant lodging percentage, there were no significant effects from management treatments. Synergistic responses were noted when SRI practices were combined with organic management for plant height, number of effective tillers per hill, days to flowering and to maturity. The improved panicle characteristics, lower plant lodging percentage and higher harvest index that ultimately led to comparable grain yields. Net returns increased approximately 1.5 times for SRI-organic management regardless of the added labor requirements for weed control. However, comparatively higher grain yield from conventional-inorganic methods underscore the need for further investigations in defining what constitutes an optimum set of practices for an SRI-organic system specifically addressing grain yield and weed management.

  8. Role of combined use of classical induced mutation breeding and biotechnology in development of new flower colour/form in ornamentals

    International Nuclear Information System (INIS)

    Datta, SK.

    2001-01-01

    In floriculture trade there is always demand and necessity of new and novel ornamental varieties. Flower colour is one of the most important component of novelties. Induced somatic mutation techniques by using ionizing radiations and other mutagens have successfully produced quite a large number of new promising varieties (50 Nos.) in different ornamental (Bougainvillea, Chrysanthemum, Hibiscus, Rose, Tuberose, Lantana depressa etc.) plants by bringing about genetic changes at Floriculture Section, National Botanical Research Institute, India. For inducing novelties in flower colour of different plants the technique of selection of proper type/state of plant material for experiment, suitable dose, detection of mutation at right stage of development, isolation and multiplication of chimeric tissue have been standardised. The capability of the technique is well understood from significant number of new varieties developed via direct mutation breeding in already adapted, modern genotypes and enriched the germplasm. The mutations in flower lour/shape were detected as chimera in M1v1, M1v2, M1v3 generations. The mutation frequency varied with the cultivar and exposure of gamma rays. The main bottleneck of mutation breeding is that the mutation appears as chimera. When the entire branch is mutated, mutants can be isolated through conventional propagation techniques while small sectorial mutation in the floret cannot be isolated using existing conventional techniques. Therefore, many new flower colour/shape mutants are lost due to the lack of a suitable propagation technique. By applying biotechnological technique on the same mutagen treated gamma rays population a novel tissue culture technique hasbeen standardised to regenerate plants directly from such mutated sectors (ray florets) of Chrysanthemum. A number of somatic flower colour/shape mutants have been developed in Chrysanthemum by using this in vitro technique. Combination of classical mutation breeding and

  9. Management of chimera and in vitro mutagenesis for development of new flower color/shape and chlorophyll variegated mutants in chrysanthemum

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K. [CSIR, Madhyamgram Experimental Farm, Bose Institute, Kolkata (India)], E-mail: subodhskdatta@rediffmail.com; Chakrabarty, D [Floriculture Laboratory, National Botanical Research Institute, Lucknow (India)

    2008-07-01

    Induced mutagenesis has played a major role in the development of many new flower color/shape mutant varieties in ornamentals. The main bottleneck with vegetatively propagated plants is that the mutation appears as a chimera whether developed through bud sport or through induced mutation. The size of the mutant sector varies from a narrow streak on a petal to the entire flower and from a portion of a branch to the entire branch. When a portion of a branch or entire branch is mutated, the mutant tissue can be isolated; on the other hand, a small sector of a mutated branch or flower cannot be isolated using the available conventional propagation techniques. A novel technique has been standardized in our laboratory for the management of chimeric tissues through direct shoot regeneration from chrysanthemum florets. 'Kasturba Gandhi', a large white flowered chrysanthemum, developed few chimeric yellow florets due to spontaneous mutation. Using in vitro protocol new yellow florets were established in pure form. In vitro mutagenesis experiments were conducted treating ray florets of chrysanthemum cultivars using gamma rays. Induced chimeric yellow, white, light yellow, light mauve and dark mauve floret color sectors and chlorophyll variegation in leaves of cv. 'Maghi' (with mauve floret and green leaves) have been established in pure form. Gamma ray induced sectorial yellow florets of cv. 'Lilith' (white floret) and yellow ray florets in both the cvs. 'Purnima' (with white florets) and 'Colchi Bahar' (with red florets) have been isolated in pure form through in vitro management. Induced sectorial flower color/shape mutations in cvs. 'Puja', 'Lalima', 'Flirt', 'Maghi' and 'Sunil' have been isolated in pure form through in vitro culture. Gamma radiation procedure and tissue culture techniques have been optimized to regenerate plants from stem internodes, stem node, shoot tip and ray florets. Present technique has opened a new way for isolating new flower color

  10. Flower morphology of Dendrobium Sonia mutants

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Azhar Mohamad; Affrida Abu Hassan; Zaiton Ahmad; Mohd Nazir Basiran

    2010-01-01

    Dendrobium Sonia is a commercial hybrid which is popular as cut flower and potted plant in Malaysia. Variability in flower is important for new variety to generate more demands and choices in selection. Mutation induction is a tool in creating variability for new flower color and shape. In vitro cultures of protocorm-like bodies (PLBs) were exposed to gamma ray at dose 35 Gy. Phenotypic characteristics of the flower were observed at fully bloomed flower with emphasis on shape and color. Approximately 2000 regenerated irradiated plants were observed and after subsequent flowering, 100 plants were finally selected for further evaluation. Most of the color and shape changes are expressed in different combinations of petal, sepal and lip of the flower. In this work, 11 stable mutants were found different at flower phenotype as compared to control. Amongst these, four mutant varieties with commercial potential has been named as Dendrobium 'SoniaKeenaOval', Dendrobium 'SoniaKeenaRadiant', Dendrobium 'SoniaKeenaHiengDing' and Dendrobium 'Sonia KeenaAhmadSobri'. In this paper, variations in flower morphology and flower color were discussed, giving emphasis on variations in flower petal shape. (author)

  11. Chemical control of flowering time

    DEFF Research Database (Denmark)

    Ionescu, Irina Alexandra; Møller, Birger Lindberg; Sánchez Pérez, Raquel

    2017-01-01

    Flowering at the right time is of great importance; it secures seed production and therefore species survival and crop yield. In addition to the genetic network controlling flowering time, there are a number of much less studied metabolites and exogenously applied chemicals that may influence...... on the genetic aspects of flowering time regulation in annuals, but less so in perennials. An alternative to plant breeding approaches is to engineer flowering time chemically via the external application of flower-inducing compounds. This review discusses a variety of exogenously applied compounds used in fruit...

  12. Preferences of cut flowers consumers

    Directory of Open Access Journals (Sweden)

    Sylwia Kierczyńska

    2010-01-01

    Full Text Available The results of interviews suggest that majority of the cut flowers’ consumers has favourite kind of flower, among which most frequently pointed one was the rose. More than half of the interviewed favour the uniform colour of cut flowers and red colour was the most favourite one. The subtle smell of flowers was the most preferable one but the intensive fragrance was favoured for more consumers than odourless flowers. The data from selected florists’ confirm the information from interviews – in spite of the occasion, roses were the most demanded cut flowers.

  13. Rice varieties in relation to rice bread quality.

    Science.gov (United States)

    Han, Hye Min; Cho, Jun Hyeon; Kang, Hang Won; Koh, Bong Kyung

    2012-05-01

    It is difficult to predict rice bread quality only from the amylose content (AC) or dough characteristics of new lines produced by rice breeding programmes. This study investigated the AC relative to bread baking quality of rice varieties developed in Korea, and identified specific characteristics that contribute to rice bread quality. Manmibyeo, Jinsumi, Seolgaeng and Hanareumbyeo were classified as low AC, YR24088 Acp9, Suweon517, Chenmaai and Goamibyeo as intermediate AC and Milyang261 as high AC. Suweon517, Milyang261 and Manmibyeo had a high water absorption index (WAI), while Goamibyeo, YR24088 Acp9, Jinsumi, Seolgaeng, Hanareumbyeo and Chenmaai had a low WAI. The gelatinisation enthalpy of flour varied from 9.2 J g(-1) in Milyang261 to 14.8 J g(-1) in YR24088 Acp9. After 7 days of storage the rate of flour retrogradation and crumb firmness were weakly correlated, with the exception of Jinsumi. Bread volumes of Jinsumi, Chenmaai, YR24088 Acp9 and Goamibyeo were comparable to that of wheat flour, but the rest were unsuited to bread making because of their low volume and hard crumb texture. Based on volume, texture and crumb firmness ratio, Chenmaai and Goamibyeo were the most appropriate varieties for making bread. An intermediate AC and low WAI were the primary indicators of rice bread flour quality. Copyright © 2011 Society of Chemical Industry.

  14. Radiation disinfestation of Basmati rice

    International Nuclear Information System (INIS)

    Rao, V.S.; Gholap, A.S.; Adhikari, H.R.; Nair, P.M.

    1994-01-01

    Effect of low dose γ-radiation on prepackaged Basmati rice was studied in order to achieve disinfestation of rice. Basmati rice procured from local market was repacked in 1 kg pouches made from high density polyethylene (HDP) and biaxially oriented polypropylene: low density polyethylene (BOPP/LDP) laminate and irradiated at doses from 0.25-1.0 kGy. Within one month of storage at room temperature, unirradiated (control) Basmati rice developed heavy infestation. No infestation was observed in any of the irradiated samples even at 0.25 kGy and the rice could be stored for 6 months in a clean state. Irradiation (at 0.25 kGy) did not alter the moisture content of the rice. Likewise, no significant change was noted due to irradiation in the functional properties of rice such as swelling index and water absorption and in total volatile components responsible for flavour of Basmati rice. In organoleptic evaluation, no significant difference was found between the acceptability of irradiated (0.25 kGy) and control rice. These results are significant in view of the high export potential of Basmati rice and the transit losses at present due to infestation. (author). 24 refs., 5 tabs., 1 fig

  15. Leaf gas exchange and yield of three upland rice cultivars

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2015-03-01

    Full Text Available Studies of physiological parameters associated with crop performance and growth in different groups of upland rice (Oryza sativa L. may support plant breeding programs. We evaluated the role of gas exchange rates and dry matter accumulation (DMA as traits responsible for yields in a traditional (cv. ‘Caiapó’, intermediate (cv. ‘Primavera’ and modern (cv. ‘Maravilha’ upland rice cultivars. Leaf gas exchange rates, DMA, leaf area index (LAI, harvest indexes (HI and yield components were measured on these genotypes in the field, under sprinkler irrigation. Panicles per m2 and DMA at flowering (FL and heading, as well as CO2 assimilation rates (A were similar across these cultivars. The highest yield was found in ‘Primavera’, which may be explained by (i a two-fold higher HI compared to the other cultivars, (ii greater rates of DMA during spikelet formation and grain-filling, as well as (iii a slow natural decrease of A in this cultivar, at the end of the season (between FL and maturation.

  16. Flower power: tree flowering phenology as a settlement cue for migrating birds.

    Science.gov (United States)

    McGrath, Laura J; van Riper, Charles; Fontaine, Joseph J

    2009-01-01

    1. Neotropical migrant birds show a clear preference for stopover habitats with ample food supplies; yet, the proximate cues underlying these decisions remain unclear. 2. For insectivorous migrants, cues associated with vegetative phenology (e.g. flowering, leaf flush, and leaf loss) may reliably predict the availability of herbivorous arthropods. Here we examined whether migrants use the phenology of five tree species to choose stopover locations, and whether phenology accurately predicts food availability. 3. Using a combination of experimental and observational evidence, we show migrant populations closely track tree phenology, particularly the flowering phenology of honey mesquite (Prosopis glandulosa), and preferentially forage in trees with more flowers. Furthermore, the flowering phenology of honey mesquite reliably predicts overall arthropod abundance as well as the arthropods preferred by migrants for food. 4. Together, these results suggest that honey mesquite flowering phenology is an important cue used by migrants to assess food availability quickly and reliably, while in transit during spring migration.

  17. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development.

    Science.gov (United States)

    Vimolmangkang, Sornkanok; Han, Yuepeng; Wei, Guochao; Korban, Schuyler S

    2013-11-07

    TF is involved in regulation of flower development. This study has identified a novel MYB transcription factor in the apple genome. This TF, designated as MdMYB3, is involved in transcriptional activation of several flavonoid pathway genes. Moreover, this TF not only regulates the accumulation of anthocyanin in the skin of apple fruits, but it is also involved in the regulation of flower development, particularly that of pistil development.

  18. Arabidopsis thaliana: A model host plant to study plant-pathogen interaction using rice false smut isolates of Ustilaginoidea virens

    Directory of Open Access Journals (Sweden)

    Mebeaselassie eAndargie

    2016-02-01

    Full Text Available Rice false smut fungus which is a biotrophic fungal pathogen causes an important rice disease and bring a severe damage where rice is cultivated. We established a new fungal-plant pathosystem where Ustilaginoidea virens was able to interact compatibly with the model plant Arabidopsis thaliana. Disease symptoms were apparent on the leaves of the plants after 6 days of post inoculation in the form of chlorosis. Cytological studies showed that U. virens caused a heavy infestation inside the cells of the chlorotic tissues. Development and colonization of aerial mycelia in association with floral organ, particularly on anther and stigma of the flowers after 3 weeks of post inoculation was evident which finally caused infection on the developing seeds and pod tissues. The fungus adopts a uniquely biotrophic infection strategy in roots and spreads without causing a loss of host cell viability. We have also demonstrated that U. virens isolates infect Arabidopsis and the plant subsequently activates different defense response mechanisms which are witnessed by the expression of pathogenesis-related genes, PR-1, PR-2, PR-5, PDF1.1 and PDF1.2. The established A. thaliana–U. virens pathosystem will now permit various follow-up molecular genetics and gene expression experiments to be performed to identify the defense signals and responses that restrict fungal hyphae colonization in planta and also provide initial evidence for tissue-adapted fungal infection strategies.

  19. Genetic analysis of rice blast disease resistance genes using USDA rice mini-core and a mapping population

    Science.gov (United States)

    Rice blast disease caused by the fungal pathogen Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases of cultivated rice, resulting in significant yield loss each year all over the world. Developing and utilizing blast resistant rice varieties is the most economical and effective m...

  20. The Rice Mitochondria Proteome and its Response During Development and to the Environment

    Directory of Open Access Journals (Sweden)

    Shaobai eHuang

    2013-02-01

    Full Text Available Rice (Oryza sativa L. is both a major crop species and the key model grass for molecular and physiological research. Mitochondria are important in rice, as in all crops, as the main source of ATP for cell maintenance and growth. However, the practical significance of understanding the function of mitochondria in rice is increased by the widespread farming practice of using hybrids to boost rice production. This relies on cytoplasmic male-sterile (CMS lines with abortive pollen caused by dysfunctional mitochondria. We provide an overview of what is known about the mitochondrial proteome of rice seedlings. To date, more than 320 proteins have been identified in purified rice mitochondria using mass spectrometry. The insights from this work include a broad understanding of the major subunits of mitochondrial respiratory complexes and TCA cycle enzymes, carbon and nitrogen metabolism enzymes as well as details of the supporting machinery for biogenesis and the subset of stress-responsive mitochondrial proteins. Many proteins with unknown functions have also been found in rice mitochondria. Proteomic analysis has also revealed the features of rice mitochondrial protein presequences required for mitochondrial targeting, as well as cleavage site features for processing of precursors after import. Changes in the abundance of rice mitochondrial proteins in response to different stresses, especially anoxia and light, are summarized. Future research on quantitative analysis of the rice mitochondrial proteomes at the spatial and developmental level, its response to environmental stresses and recent advances in understanding of basis of rice CMS systems are highlighted.

  1. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.

    Science.gov (United States)

    Xu, Gang; Huang, Jian; Yang, Yong; Yao, Yin-an

    2016-01-01

    Jatropha curcas is thought to be a promising biofuel material, but its yield is restricted by a low ratio of instaminate/staminate flowers (1/10-1/30). Furthermore, valuable information about flower sex differentiation in this plant is scarce. To explore the mechanism of this process in J. curcas, transcriptome profiling of flower development was carried out, and certain genes related with sex differentiation were obtained through digital gene expression analysis of flower buds from different phases of floral development. After Illumina sequencing and clustering, 57,962 unigenes were identified. A total of 47,423 unigenes were annotated, with 85 being related to carpel and stamen differentiation, 126 involved in carpel and stamen development, and 592 functioning in the later development stage for the maturation of staminate or instaminate flowers. Annotation of these genes provided comprehensive information regarding the sex differentiation of flowers, including the signaling system, hormone biosynthesis and regulation, transcription regulation and ubiquitin-mediated proteolysis. A further expression pattern analysis of 15 sex-related genes using quantitative real-time PCR revealed that gibberellin-regulated protein 4-like protein and AMP-activated protein kinase are associated with stamen differentiation, whereas auxin response factor 6-like protein, AGAMOUS-like 20 protein, CLAVATA1, RING-H2 finger protein ATL3J, auxin-induced protein 22D, and r2r3-myb transcription factor contribute to embryo sac development in the instaminate flower. Cytokinin oxidase, Unigene28, auxin repressed-like protein ARP1, gibberellin receptor protein GID1 and auxin-induced protein X10A are involved in both stages mentioned above. In addition to its function in the differentiation and development of the stamens, the gibberellin signaling pathway also functions in embryo sac development for the instaminate flower. The auxin signaling pathway also participates in both stamen development

  2. Sustainable rice production in Malaysia beyond 2000

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ho Nai Kin; Ismail Sahid; Ahyaudin Ali; Lum Keng Yeang; Mashhor Mansor

    2002-01-01

    This book is a compendium of works carried out by various institutions on subjects related to sustainable rice production. The institutions comprise Department of Agriculture, Malaysian Agricultural Research and Development Institute, Malaysian Institute for Nuclear Technology Research, Muda Agricultural Development Authority, Universiti Kebangsaan Malaysia, Universiti Putra Malaysia, Universiti Sains Malaysia, International Islamic University of Malaysia and the Agrochemical Company Mosanto. Integrated Biodiversity Management parallel with the Integrated Weed / Pest / Disease Management, rice-fish farming networking, agrochemical residue monitoring in rice and marine ecosystems, and application of biotechnology in rice productivity are taken as the future direction towards achieving sustainable rice production beyond 2000. Challenges from social and technical agroecosystem constraints, agricultural input management and maintenance of agroecosystem biodiversity are highlighted. It is imperative that the challenges are surmounted to attain the target that would be reflected by tangible rice output of 10 t/ha, and at the same time maintaining the well-being of rice-farmers. (Author)

  3. Simultaneous rough rice drying and rice bran stabilization using infrared radiation heating

    Science.gov (United States)

    The objective of this study was to develop a new rice drying method by using IR heating followed by tempering. Freshly harvested medium grain rice (M206) samples with different initial moisture contents (IMCs) were used in this study. The samples were dried for one- and two-passes by using a catalyt...

  4. Comparative Mapping of Seed Dormancy Loci Between Tropical and Temperate Ecotypes of Weedy Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Lihua Zhang

    2017-08-01

    Full Text Available Genotypic variation at multiple loci for seed dormancy (SD contributes to plant adaptation to diverse ecosystems. Weedy rice (Oryza sativa was used as a model to address the similarity of SD genes between distinct ecotypes. A total of 12 quantitative trait loci (QTL for SD were identified in one primary and two advanced backcross (BC populations derived from a temperate ecotype of weedy rice (34.3°N Lat.. Nine (75% of the 12 loci were mapped to the same positions as those identified from a tropical ecotype of weedy rice (7.1°N Lat.. The high similarity suggested that the majority of SD genes were conserved during the ecotype differentiation. These common loci are largely those collocated/linked with the awn, hull color, pericarp color, or plant height loci. Phenotypic correlations observed in the populations support the notion that indirect selections for the wild-type morphological characteristics, together with direct selections for germination time, were major factors influencing allelic distributions of SD genes across ecotypes. Indirect selections for crop-mimic traits (e.g., plant height and flowering time could also alter allelic frequencies for some SD genes in agroecosystems. In addition, 3 of the 12 loci were collocated with segregation distortion loci, indicating that some gametophyte development genes could also influence the genetic equilibria of SD loci in hybrid populations. The SD genes with a major effect on germination across ecotypes could be used as silencing targets to develop transgene mitigation (TM strategies to reduce the risk of gene flow from genetically modified crops into weed/wild relatives.

  5. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.

    Science.gov (United States)

    Boden, Scott A; Cavanagh, Colin; Cullis, Brian R; Ramm, Kerrie; Greenwood, Julian; Jean Finnegan, E; Trevaskis, Ben; Swain, Steve M

    2015-01-26

    The domestication of cereal crops such as wheat, maize, rice and barley has included the modification of inflorescence architecture to improve grain yield and ease harvesting(1). Yield increases have often been achieved through modifying the number and arrangement of spikelets, which are specialized reproductive branches that form part of the inflorescence. Multiple genes that control spikelet development have been identified in maize, rice and barley(2-5). However, little is known about the genetic underpinnings of this process in wheat. Here, we describe a modified spikelet arrangement in wheat, termed paired spikelets. Combining comprehensive QTL and mutant analyses, we show that Photoperiod-1 (Ppd-1), a pseudo-response regulator gene that controls photoperiod-dependent floral induction, has a major inhibitory effect on paired spikelet formation by regulating the expression of FLOWERING LOCUS T (FT)(6,7). These findings show that modulated expression of the two important flowering genes, Ppd-1 and FT, can be used to form a wheat inflorescence with a more elaborate arrangement and increased number of grain producing spikelets.

  6. Mapping of genes for flower-related traits and QTLs for flowering ...

    Indian Academy of Sciences (India)

    Mapping of genes for flower-related traits and QTLs for flowering time ... which would greatly enhance the use of G. darwinii-specific desirable genes in ... used to determine all linkage groups, the order of groups on the same ... age groups.

  7. Say it with flowers: Flowering acceleration by root communication

    OpenAIRE

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs i...

  8. Association between sequence variants in panicle development genes and the number of spikelets per panicle in rice.

    Science.gov (United States)

    Jang, Su; Lee, Yunjoo; Lee, Gileung; Seo, Jeonghwan; Lee, Dongryung; Yu, Yoye; Chin, Joong Hyoun; Koh, Hee-Jong

    2018-01-15

    Balancing panicle-related traits such as panicle length and the numbers of primary and secondary branches per panicle, is key to improving the number of spikelets per panicle in rice. Identifying genetic information contributes to a broader understanding of the roles of gene and provides candidate alleles for use as DNA markers. Discovering relations between panicle-related traits and sequence variants allows opportunity for molecular application in rice breeding to improve the number of spikelets per panicle. In total, 142 polymorphic sites, which constructed 58 haplotypes, were detected in coding regions of ten panicle development gene and 35 sequence variants in six genes were significantly associated with panicle-related traits. Rice cultivars were clustered according to their sequence variant profiles. One of the four resultant clusters, which contained only indica and tong-il varieties, exhibited the largest average number of favorable alleles and highest average number of spikelets per panicle, suggesting that the favorable allele combination found in this cluster was beneficial in increasing the number of spikelets per panicle. Favorable alleles identified in this study can be used to develop functional markers for rice breeding programs. Furthermore, stacking several favorable alleles has the potential to substantially improve the number of spikelets per panicle in rice.

  9. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis.

    Science.gov (United States)

    Xiao, Chaowen; Somerville, Chris; Anderson, Charles T

    2014-03-01

    Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1's involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.

  10. Application of gamma-ray irradiation technique to select, create and develop super rice with high quality to substitute the imported hybrid rice

    International Nuclear Information System (INIS)

    Tran Duy Quy; Tran Duy Vuong; Tran Duy Duong; Bui Huy Thuc

    2015-01-01

    Three varieties NPT3, BQ and TQ14 were selected by irradiation ray source Gamma Co-60 with dry seed, 13% grain moisture and created at 25-30 krad. NPT3 is super rice varieties with characteristics such as: extremely short growing period (105-110 day crop; 130- 135 days in the spring, the average yield of 9-10 tones/ha), quality, stem, leaf stand, suitable for intensive capability, able to resist pests and unfavorable conditions especially the elements of productivity (amylase from 15-16%) and mass produced including hybrid rice as Nhi Uu 868, Thien Nguyen Uu 9, HYT100, etc. BQ rice varieties were high quality, average productivity gain of 7.5- 8.0 ton/ha, equivalent to hybrid rice, short growth period (105-110 days in summer season; 120- 130 days in spring season), and quality rice: content 18-20% amylose, rice delicious, supple as BC15. TQ14 varieties was planted in 2 seasons/ year, with agricultural and biological characteristics as Khang-Dan18 mutant with wide adaptation, high yield potential, the average gain from 5.9 to 6.2 tones/ha, short growth period (105-110 days in summer season, 130-135 days in spring season), insect resistance, quality of rice suitable for manufacturing technology like noodles, instant noodles, rice noodles, Ethanol. (author)

  11. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    Science.gov (United States)

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  12. Determination of Tinopal CBS-X in rice papers and rice noodles using HPLC with fluorescence detection and LC-MS/MS.

    Science.gov (United States)

    Ko, Kyung Yuk; Lee, Chae A; Choi, Jae Chon; Kim, Meehye

    2014-01-01

    To date there have been no reports of methods to determine Tinopal CBS-X. We developed a rapid and simple method to determine the Tinopal CBS-X content in rice noodles and rice papers using HPLC equipped with fluorescence detection. Heating the rice noodles and rice papers to 80°C after adding 75% methanol solution induced the release of Tinopal CBS-X from processed rice products. Tinopal CBS-X was separated using an isocratic mobile phase comprising 50% acetonitrile/water containing 0.4% tetrabutyl ammonium hydrogen sulphate at pH 8.0. The samples suspected to be positive by HPLC analysis were then confirmed by LC-MS/MS analysis. This study also investigated the Tinopal CBS-X content of three rice noodle products and two rice papers. The limits of quantification for rice papers and rice noodles were 1.58 and 1.51 µg kg(-1), respectively, and their correlation curves showed good linearity with r(2) ≥ 0.9997 and ≥ 0.9998, respectively. Moreover, rice papers had recoveries of 70.3-83.3% with precision ranging from 5.0% to 7.9%, whereas rice noodles had slightly lower recoveries of 63.4-78.7% and precisions of 8.5-11.5%. Only one rice noodle product contained Tinopal CBS-X, at around 2.1 mg kg(-1), whereas it was not detected in four other samples. Consequently, Tinopal CBS-X from rice noodles and rice papers can be successfully detected using the developed pre-treatment and ion-pairing HPLC system coupled with fluorescence detection.

  13. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod; Lucyshyn, Doris; Jaeger, Katja E.; Aló s, Enriqueta; Alvey, Elizabeth; Harberd, Nicholas P.; Wigge, Philip A.

    2012-01-01

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  14. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  15. Download this PDF file

    African Journals Online (AJOL)

    Dr.Adesope

    Journal Of Agriculture and Social Research (JASR) Vol. 6, No.2 .... catsup, fragrant flower rice glue ball and other fragrant flower foods were all great creations ... The ancients put some fragrant flower into the rice flour, laid the admixture in a.

  16. Refuges, flower strips, biodiversity and agronomic interest.

    Science.gov (United States)

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  17. Improved climate risk simulations for rice in arid environments.

    Directory of Open Access Journals (Sweden)

    Pepijn A J van Oort

    Full Text Available We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region of interest in the 1990s. Rice variety 'IR64' was sown monthly 15-times in a row in two locations in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert with extreme temperatures during day and night. The existing subroutines underestimated cold stress and overestimated heat stress. Forcing the model to use observed spikelet number and phenology and replacing the existing heat and cold subroutines improved accuracy of yield simulation from EF = -0.32 to EF =0.70 (EF is modelling efficiency. The main causes of improved accuracy were that the new model subversions take into account transpirational cooling (which is high in arid environments and early morning flowering for heat sterility, and minimum rather than average temperature for cold sterility. Simulations were less accurate when also spikelet number and phenology were simulated. Model efficiency was 0.14 with new heat and cold routines and improved to 0.48 when using new cardinal temperatures for phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a powerful analytic tool for climate change impact assessment and cropping calendar optimisation in arid regions.

  18. Reduction of Gibberellin by Low Temperature Disrupts Pollen Development in Rice1[W][OPEN

    Science.gov (United States)

    Sakata, Tadashi; Oda, Susumu; Tsunaga, Yuta; Shomura, Hikaru; Kawagishi-Kobayashi, Makiko; Aya, Koichiro; Saeki, Kenichi; Endo, Takashi; Nagano, Kuniaki; Kojima, Mikiko; Sakakibara, Hitoshi; Watanabe, Masao; Matsuoka, Makoto; Higashitani, Atsushi

    2014-01-01

    Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change. PMID:24569847

  19. International tourist preference of Lodok Rice Field natural elements, the cultural rice field from Manggarai - Indonesia

    Science.gov (United States)

    March Syahadat, Ray; Trie Putra, Priambudi; Nuraini; Nailufar, Balqis; Fatmala Makhmud, Desy

    2017-10-01

    Lodok Rice Field or usually known as spiderweb rice field is a system of land division. It cultural rice field only found on Manggarai, Province of East Nusa Tenggara, Indonesia. The landscape of Lodok Rice Field was aesthetic and it has big potential for tourism development. The aim of this study was to know the perception of natural elements of Lodok Rice Field landscape that could influence international tourist to visited Lodok Rice Field. If we know the elements that could influenced the international tourist, we could used the landscape image for tourism media promotion. The methods of this study used scenic beauty estimation (SBE) by 85 respondents from 34 countries and Kruskal Wallis H test. The countries grouped by five continents (Asia, America, Europe, Africa, and Oceania). The result showed that the Asian respondents liked the elements of sky, mountain, and the rice field. Then, the other respondent from another continent liked the elements of sunshine, mountain, and the rice field. Although the Asian had different perception about landscape elements of rice field’s good view, it’s not differ significantly by Kruskal Wallis H test.

  20. Pistil starch reserves at anthesis correlate with final flower fate in avocado (Persea americana.

    Directory of Open Access Journals (Sweden)

    María Librada Alcaraz

    Full Text Available A common observation in different plant species is a massive abscission of flowers and fruitlets even after adequate pollination, but little is known as to the reason for this drop. Previous research has shown the importance of nutritive reserves accumulated in the flower on fertilization success and initial fruit development but direct evidence has been elusive. Avocado (Persea americana is an extreme case of a species with a very low fruit to flower ratio. In this work, the implications of starch content in the avocado flower on the subsequent fruit set are explored. Firstly, starch content in individual ovaries was analysed from two populations of flowers with a different fruit set capacity showing that the flowers from the population that resulted in a higher percentage of fruit set contained significantly more starch. Secondly, in a different set of flowers, the style of each flower was excised one day after pollination, once the pollen tubes had reached the base of the style, and individually fixed for starch content analysis under the microscope once the fate of its corresponding ovary (that remained in the tree was known. A high variability in starch content in the style was found among flowers, with some flowers having starch content up to 1,000 times higher than others, and the flowers that successfully developed into fruits presented significantly higher starch content in the style at anthesis than those that abscised. The relationship between starch content in the ovary and the capacity of set of the flower together with the correlation found between the starch content in the style and the fate of the ovary support the hypothesis that the carbohydrate reserves accumulated in the flower at anthesis are related to subsequent abscission or retention of the developing fruit.

  1. Pistil starch reserves at anthesis correlate with final flower fate in avocado (Persea americana).

    Science.gov (United States)

    Alcaraz, María Librada; Hormaza, José Ignacio; Rodrigo, Javier

    2013-01-01

    A common observation in different plant species is a massive abscission of flowers and fruitlets even after adequate pollination, but little is known as to the reason for this drop. Previous research has shown the importance of nutritive reserves accumulated in the flower on fertilization success and initial fruit development but direct evidence has been elusive. Avocado (Persea americana) is an extreme case of a species with a very low fruit to flower ratio. In this work, the implications of starch content in the avocado flower on the subsequent fruit set are explored. Firstly, starch content in individual ovaries was analysed from two populations of flowers with a different fruit set capacity showing that the flowers from the population that resulted in a higher percentage of fruit set contained significantly more starch. Secondly, in a different set of flowers, the style of each flower was excised one day after pollination, once the pollen tubes had reached the base of the style, and individually fixed for starch content analysis under the microscope once the fate of its corresponding ovary (that remained in the tree) was known. A high variability in starch content in the style was found among flowers, with some flowers having starch content up to 1,000 times higher than others, and the flowers that successfully developed into fruits presented significantly higher starch content in the style at anthesis than those that abscised. The relationship between starch content in the ovary and the capacity of set of the flower together with the correlation found between the starch content in the style and the fate of the ovary support the hypothesis that the carbohydrate reserves accumulated in the flower at anthesis are related to subsequent abscission or retention of the developing fruit.

  2. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants.

    Science.gov (United States)

    Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations.

  3. A Marketing Strategy for the Development of Want Want Rice Crackers in China Biscuits Market

    Institute of Scientific and Technical Information of China (English)

    杜卉

    2015-01-01

    The Want Want Group, as the biggest rice crackers manufacturer in the world, entered the mainland China's biscuit market and established its first factory in Hunan 1994. Rice Crackers are widely welcomed by Chinese consumers; however, in this decade it remained a stable company share with a very little decline in China's biscuit market. In order to maintain sustainable development, it is worthy to consider the competitive environment and distinguish the opportunities and challenges, analysis strengths and weaknesses.

  4. Evaluation of methane emissions of some rice cultivars of Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Namaratne, S.Y.; Alwis, H.P.W. de [Institute of Fundamental Studies, Kandy (Sri Lanka)

    1996-12-31

    A field experiment on three local rice cultivars, namely BG 300, BG 304 and AT 303, showed no statistically significant difference (p<0.05) among them with-respect to the methane flux emitted. The methane flux profiles of all three varieties indicated a more or less constant emission during the vegetative and reproductive periods, a peak emission during late flowering/early ripening stage and a dramatic increase in the flux during the late ripening period. The seasonal methane flux of BG 300, BG 304 and AT 303 were 200 {+-} 48, 156 {+-} 52 and 129 {+-} 40 g m{sup {minus}2}, respectively for a 92 day cropping period.

  5. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae).

    Science.gov (United States)

    Zhu, Pingyang; Lu, Zhongxian; Heong, Kongluen; Chen, Guihua; Zheng, Xusong; Xu, Hongxing; Yang, Yajun; Nicol, Helen I; Gurr, Geoff M

    2014-01-01

    Ecological engineering for pest management involves the identification of optimal forms of botanical diversity to incorporate into a farming system to suppress pests, by promoting their natural enemies. Whilst this approach has been extensively researched in many temperate crop systems, much less has been done for rice. This paper reports the influence of various plant species on the performance of a key natural enemy of rice planthopper pests, the predatory mirid bug, Cyrtorhinus lividipennis. Survival of adult males and females was increased by the presence of flowering Tagetes erecta, Trida procumbens, Emilia sonchifolia (Compositae), and Sesamum indicum (Pedaliaceae) compared with water or nil controls. All flower treatments resulted in increased consumption of brown plant hopper, Nilaparvata lugens, and for female C. lividipennis, S. indicum was the most favorable. A separate study with a wider range of plant species and varying densities of prey eggs showed that S. indicum most strongly promoted predation by C. lividipennis. Reflecting this, S. indicum gave a relatively high rate of prey search and low prey handling time. On this basis, S. indicum was selected for more detailed studies to check if its potential incorporation into the farming system would not inadvertently benefit Cnaphalocrocis medinalis and Marasmia patnalis, serious Lepidoptera pests of rice. Adult longevity and fecundity of both pests was comparable for S. indicum and water treatments and significantly lower than the honey solution treatment. Findings indicate that S. indicumis well suited for use as an ecological engineering plant in the margins of rice crops. Sesame indicum can be a valuable crop as well as providing benefits to C. lividipennis whilst denying benefit to key pests.

  6. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae.

    Directory of Open Access Journals (Sweden)

    Pingyang Zhu

    Full Text Available Ecological engineering for pest management involves the identification of optimal forms of botanical diversity to incorporate into a farming system to suppress pests, by promoting their natural enemies. Whilst this approach has been extensively researched in many temperate crop systems, much less has been done for rice. This paper reports the influence of various plant species on the performance of a key natural enemy of rice planthopper pests, the predatory mirid bug, Cyrtorhinus lividipennis. Survival of adult males and females was increased by the presence of flowering Tagetes erecta, Trida procumbens, Emilia sonchifolia (Compositae, and Sesamum indicum (Pedaliaceae compared with water or nil controls. All flower treatments resulted in increased consumption of brown plant hopper, Nilaparvata lugens, and for female C. lividipennis, S. indicum was the most favorable. A separate study with a wider range of plant species and varying densities of prey eggs showed that S. indicum most strongly promoted predation by C. lividipennis. Reflecting this, S. indicum gave a relatively high rate of prey search and low prey handling time. On this basis, S. indicum was selected for more detailed studies to check if its potential incorporation into the farming system would not inadvertently benefit Cnaphalocrocis medinalis and Marasmia patnalis, serious Lepidoptera pests of rice. Adult longevity and fecundity of both pests was comparable for S. indicum and water treatments and significantly lower than the honey solution treatment. Findings indicate that S. indicumis well suited for use as an ecological engineering plant in the margins of rice crops. Sesame indicum can be a valuable crop as well as providing benefits to C. lividipennis whilst denying benefit to key pests.

  7. Engineered Dwarf Male-Sterile Rice: A Promising Genetic Tool for Facilitating Recurrent Selection in Rice.

    Science.gov (United States)

    Ansari, Afsana; Wang, Chunlian; Wang, Jian; Wang, Fujun; Liu, Piqing; Gao, Ying; Tang, Yongchao; Zhao, Kaijun

    2017-01-01

    Rice is a crop feeding half of the world's population. With the continuous raise of yield potential via genetic improvement, rice breeding has entered an era where multiple genes conferring complex traits must be efficiently manipulated to increase rice yield further. Recurrent selection is a sound strategy for manipulating multiple genes and it has been successfully performed in allogamous crops. However, the difficulties in emasculation and hand pollination had obstructed efficient use of recurrent selection in autogamous rice. Here, we report development of the dwarf male-sterile rice that can facilitate recurrent selection in rice breeding. We adopted RNAi technology to synergistically regulate rice plant height and male fertility to create the dwarf male-sterile rice. The RNAi construct pTCK-EGGE, targeting the OsGA20ox2 and OsEAT1 genes, was constructed and used to transform rice via Agrobacterium -mediated transformation. The transgenic T0 plants showing largely reduced plant height and complete male-sterile phenotypes were designated as the dwarf male-sterile plants. Progenies of the dwarf male-sterile plants were obtained by pollinating them with pollens from the wild-type. In the T1 and T2 populations, half of the plants were still dwarf male-sterile; the other half displayed normal plant height and male fertility which were designated as tall and male-fertile plants. The tall and male-fertile plants are transgene-free and can be self-pollinated to generate new varieties. Since emasculation and hand pollination for dwarf male-sterile rice plants is no longer needed, the dwarf male-sterile rice can be used to perform recurrent selection in rice. A dwarf male-sterile rice-based recurrent selection model has been proposed.

  8. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    Water usage is a vital issue for all agricultural crops as well as for ornamental crops. To obtain high quality flowers, it is essential to supply water when it is required. A problem which is common with cut flower growers are determining when to irrigate and the amount of water to apply. The effect of two irrigation intervals (I1: ...

  9. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development.

    Science.gov (United States)

    Zhu, Changfu; Yamamura, Saburo; Nishihara, Masashiro; Koiwa, Hiroyuki; Sandmann, Gerhard

    2003-02-20

    cDNAs encoding lycopene epsilon -cyclase, lycopene beta-cyclase, beta-carotene hydroxylase and zeaxanthin epoxidase were isolated from a Gentiana lutea petal cDNA library. The function of all cDNAs was analyzed by complementation in Escherichia coli. Transcript levels during different stages of flower development of G. lutea were determined and compared to the carotenoid composition. Expression of all genes increased by a factor of up to 2, with the exception of the lycopene epsilon -cyclase gene. The transcript amount of the latter was strongly decreased. These results indicate that during flower development, carotenoid formation is enhanced. Moreover, metabolites are shifted away from the biosynthetic branch to lutein and are channeled into beta-carotene and derivatives.

  10. Molecular and Functional Characterization of FLOWERING LOCUS T Homologs in Allium cepa

    Directory of Open Access Journals (Sweden)

    Ranjith Kumar Manoharan

    2016-02-01

    Full Text Available Onion bulbing is an important agricultural trait affecting economic value and is regulated by flowering-related genes. FLOWERING LOCUS T (FT-like gene function is crucial for the initiation of flowering in various plant species and also in asexual reproduction in tuber plants. By employing various computational analysis using RNA-Seq data, we identified eight FT-like genes (AcFT encoding PEBP (phosphatidylethanolamine-binding protein domains in Allium cepa. Sequence and phylogenetic analyses of FT-like proteins revealed six proteins that were identical to previously reported AcFT1-6 proteins, as well as one (AcFT7 with a highly conserved region shared with AcFT6 and another (comp106231 with low similarity to MFT protein, but containing a PEBP domain. Homology modelling of AcFT7 proteins showed similar structures and conservation of amino acids crucial for function in AtFT (Arabidopsis and Hd3a (rice, with variation in the C-terminal region. Further, we analyzed AcFT expression patterns in different transitional stages, as well as under SD (short-day, LD (long-day, and drought treatment in two contrasting genotypic lines EM (early maturation, 36101 and LM (late maturation, 36122. The FT transcript levels were greatly affected by various environmental factors such as photoperiod, temperature and drought. Our results suggest that AcFT7 is a member of the FT-like genes in Allium cepa and may be involved in regulation of onion bulbing, similar to other FT genes. In addition, AcFT4 and AcFT7 could be involved in establishing the difference in timing of bulb maturity between the two contrasting onion lines.

  11. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  12. Zingiber zerumbet flower stem postharvest characterization

    Directory of Open Access Journals (Sweden)

    Charleston Gonçalves

    2017-05-01

    Full Text Available About the Zingiber zerumbet little is known about its cut flower postharvest and market, despite its high ornamental potential. The inflorescences, which resemble a compact cone, emerge from the base of the plants and start with green color changing to red with the age. This study objective was to characterize floral stem of ornamental ginger in two cultivate conditions and to evaluate the longevity of those submitted to post-harvest treatments. Flower stems were harvest from clumps cultivated under full sun and partial shade area, and were submitted to the postharvest treatments: complete flower immersion in tap water (CFI or only the base stem immersion (BSI. The flower stems harvested from clumps at partial shade presented higher fresh weight, length and diameter of the inflorescences compared to flower stems harvested from clumps at full sun area. The flower stem bracts cultivated in full sun area changed the color from green to red 10.69 and 11.94 days after BSI and CFI postharvest treatments, and the vase life were 22.94 and 28.19 days, respectively. Flower stem harvest in partial shade area change the color only after 18.94 and 18.43 days and the vase life durability was 27.56 and 31.81, respectively. The complete immersion of the flower stem increase the vase life durability in 5.25 and 4.25 days compared to flowers kept with the stem base immersed only, in flower stems harvested from clumps cultivated in full sun area and partial shade area, respectively. Flower stems harvested from clumps cultivated in partial shade area and completely immerse in tap water during 3 hours increase the vase life durability in 8.87 days compared to flowers harvested from clumps cultivated in full sun area and base immersed only.

  13. An Apology for Flowers

    OpenAIRE

    Mehdi Aghamohammadi

    2017-01-01

    Prompting critical reflection on the common claim that flowers are always symbolic of female sexuality, the present article intends to explore symbolic roles of flowers in Persian literature and provide examples, mainly from Persian poetry, with the aim of refuting the claim. The writer, in fact, attempts to highlight overshadowed facets of flower symbolism by overshadowing carnal and ignoble readings of it. The reason why Persian literature has come into the focus of this study is that flowe...

  14. Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics.

    Science.gov (United States)

    Han, Min-Woo; Ahn, Sung-Hoon

    2017-04-01

    A loop-linked structure, which is capable of morphing in various modes, including volumetric transformation, is developed based on knitting methods. Morphing flowers (a lily-like, a daffodil-like, gamopetalous, and a calla-like flower) are fabricated using loop patterning, and their blooming motion is demonstrated by controlling a current that selectively actuates the flowers petals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of environmental conditions on flower induction of marian plum (Bouea burmanica Griff

    Directory of Open Access Journals (Sweden)

    Vusie L. Mavuso

    2017-08-01

    Full Text Available Marian plum flowering naturally occurs during the cool, dry season so Thailand farmers usually withdraw irrigation a month before flowering. However, irregular flowering continues to be a serious problem. This study investigated the effects of environmental conditions (air temperature, soil moisture and relative humidity on flower induction of marian plum. Daily weather data were collected using weather stations in three orchards where flowering was also recorded. Thirty representative trees per orchard were randomly selected for data collection. The results showed that trees from all orchards flowered in response to low temperature (below 18 °C despite different levels of water stress and relative humidity. These results indicated that soil moisture content and relative humidity had no influence on marian plum flower induction but enhanced flower bud development. Night temperatures of 18 °C or lower are essential for marian plum flower induction.

  16. Integrated rice-duck farming mitigates the global warming potential in rice season.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH 4 emission by 8.80-16.68%, while increased the N 2 O emission by 4.23-15.20%, when compared to CF. Given that CH 4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH 4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH 4 and N 2 O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH 4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N 2 O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    Science.gov (United States)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  18. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2007-03-22

    Mar 22, 2007 ... Here, we report the functional validation of this antiporter in crop plant rice. Overexpression of PgNHX1 conferred high level of salinity tolerance in rice. Transgenic rice plants overexpressing PgNHX1 developed more extensive root system and completed their life cycle by setting flowers and seeds in the ...

  19. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  20. Mapping of genes for flower-related traits and QTLs for flowering ...

    Indian Academy of Sciences (India)

    Mapping of genes for flower-related traits and QTLs for flowering time in an interspecific population of Gossypium hirsutum × G. darwinii. Shuwen Zhang, Qianqian Lan, Xiang Gao, Biao Yang, Caiping Cai, Tianzhen Zhang and Baoliang Zhou. J. Genet. 95, 197–201. Table 1. Loci composition and recombination distances of ...

  1. Induced mutation altering flower colour in Chrysanthemum

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S K [National Botanical Research Institute, Lucknow (India)

    1989-01-01

    Full text: 'Flirt' is a double Korean type, small flowered Chrysanthemum of red colour. Rooted cuttings were treated with 1.5-2.5 krad gamma rays. A chimeral flower colour mutant was detected after 1.5 krad treatment. After purification through repeated cuttings a mutant clone was developed and released as commercial cultivar 'Man Bhawan'. It produces bi-coloured flower-heads: yellow and red at full bloom stage becoming completely yellow later on. By chromatography, 6 pigment spots could be identified in the variety 'Flirt' but only 5 in the mutant, violet (hRf 69.83) being absent. Spectrophotometric analysis of petal extracts showed presence of three peaks in both 'Flirt' and 'Man Bhawan' at full bloom stage but only two in 'Man Bhawan' at fading stage. (author)

  2. Biology of flower-infecting fungi.

    Science.gov (United States)

    Ngugi, Henry K; Scherm, Harald

    2006-01-01

    The ability to infect host flowers offers important ecological benefits to plant-parasitic fungi; not surprisingly, therefore, numerous fungal species from a wide range of taxonomic groups have adopted a life style that involves flower infection. Although flower-infecting fungi are very diverse, they can be classified readily into three major groups: opportunistic, unspecialized pathogens causing necrotic symptoms such as blossom blights (group 1), and specialist flower pathogens which infect inflorescences either through the gynoecium (group 2) or systemically through the apical meristem (group 3). This three-tier system is supported by life history attributes such as host range, mode of spore transmission, degree of host sterilization as a result of infection, and whether or not the fungus undergoes an obligate sexual cycle, produces resting spores in affected inflorescences, and is r- or K-selected. Across the three groups, the flower as an infection court poses important challenges for disease management. Ecologically and evolutionarily, terms and concepts borrowed from the study of venereal (sexually transmitted) diseases of animals do not adequately capture the range of strategies employed by fungi that infect flowers.

  3. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening

    Science.gov (United States)

    Harada, Taro; Torii, Yuka; Morita, Shigeto; Onodera, Reiko; Hara, Yoshinao; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Satoh, Shigeru

    2011-01-01

    Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1–DcXTH4) and three cDNAs encoding expansin (DcEXPA1–DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening. PMID:20959626

  4. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  5. Comparative transcriptional profiling provides insights into the evolution and development of the zygomorphic flower of Vicia sativa (Papilionoideae.

    Directory of Open Access Journals (Sweden)

    Zhipeng Liu

    Full Text Available BACKGROUND: Vicia sativa (the common vetch possesses a predominant zygomorphic flower and belongs to the subfamily Papilionoideae, which is related to Arabidopsis thaliana in the eurosid II clade of the core eudicots. Each vetch flower consists of 21 concentrically arranged organs: the outermost five sepals, then five petals and ten stamens, and a single carpel in the center. METHODOLOGY/PRINCIPAL FINDINGS: We explored the floral transcriptome to examine a genome-scale genetic model of the zygomorphic flower of vetch. mRNA was obtained from an equal mixture of six floral organs, leaves and roots. De novo assembly of the vetch transcriptome using Illumina paired-end technology produced 71,553 unigenes with an average length of 511 bp. We then compared the expression changes in the 71,553 unigenes in the eight independent organs through RNA-Seq Quantification analysis. We predominantly analyzed gene expression patterns specific to each floral organ and combinations of floral organs that corresponded to the traditional ABC model domains. Comparative analyses were performed in the floral transcriptomes of vetch and Arabidopsis, and genomes of vetch and Medicago truncatula. CONCLUSIONS/SIGNIFICANCE: Our comparative analysis of vetch and Arabidopsis showed that the vetch flowers conform to a strict ABC model. We analyzed the evolution and expression of the TCP gene family in vetch at a whole-genome level, and several unigenes specific to three different vetch petals, which might offer some clues toward elucidating the molecular mechanisms underlying floral zygomorphy. Our results provide the first insights into the genome-scale molecular regulatory network that controls the evolution and development of the zygomorphic flower in Papilionoideae.

  6. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development

    Science.gov (United States)

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-01-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed. PMID:22451723

  7. Testing hypotheses for excess flower production and low fruit-to-flower ratios in a pollinating seed-consuming mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; Bronstein, Judith L.; DeAngelis, Donald L.

    2004-01-01

    Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.

  8. Estimation of rice yield affected by drought and relation between rice yield and TVDI

    Science.gov (United States)

    Hongo, C.; Tamura, E.; Sigit, G.

    2016-12-01

    Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.

  9. Recent Progress of Flower Colour Modification by Biotechnology

    Directory of Open Access Journals (Sweden)

    Steve Chandler

    2009-12-01

    Full Text Available Genetically-modified, colour-altered varieties of the important cut-flower crop carnation have now been commercially available for nearly ten years. In this review we describe the manipulation of the anthocyanin biosynthesis pathway that has lead to the development of these varieties and how similar manipulations have been successfully applied to both pot plants and another cut-flower species, the rose. From this experience it is clear that down- and up-regulation of the flavonoid and anthocyanin pathway is both possible and predictable. The major commercial benefit of the application of this technology has so far been the development of novel flower colours through the development of transgenic varieties that produce, uniquely for the target species, anthocyanins derived from delphinidin. These anthocyanins are ubiquitous in nature, and occur in both ornamental plants and common food plants. Through the extensive regulatory approval processes that must occur for the commercialization of genetically modified organisms, we have accumulated considerable experimental and trial data to show the accumulation of delphinidin based anthocyanins in the transgenic plants poses no environmental or health risk.

  10. Cloning and characterization of prunus serotina AGAMOUS, a putative flower homeotic gene

    Science.gov (United States)

    Xiaomei Liu; Joseph Anderson; Paula Pijut

    2010-01-01

    Members of the AGAMOUS subfamily of MADS-box transcription factors play an important role in regulating the development of reproductive organs in flowering plants. To help understand the mechanism of floral development in black cherry (Prunus serotina), PsAG (a putative flower homeotic identity gene) was isolated...

  11. Large and abundant flowers increase indirect costs of corollas: a study of coflowering sympatric Mediterranean species of contrasting flower size.

    Science.gov (United States)

    Teixido, Alberto L; Valladares, Fernando

    2013-09-01

    Large floral displays receive more pollinator visits but involve higher production and maintenance costs. This can result in indirect costs which may negatively affect functions like reproductive output. In this study, we explored the relationship between floral display and indirect costs in two pairs of coflowering sympatric Mediterranean Cistus of contrasting flower size. We hypothesized that: (1) corolla production entails direct costs in dry mass, N and P, (2) corollas entail significant indirect costs in terms of fruit set and seed production, (3) indirect costs increase with floral display, (4) indirect costs are greater in larger-flowered sympatric species, and (5) local climatic conditions influence indirect costs. We compared fruit set and seed production of petal-removed flowers and unmanipulated control flowers and evaluated the influence of mean flower number and mean flower size on relative fruit and seed gain of petal-removed and control flowers. Fruit set and seed production were significantly higher in petal-removed flowers in all the studied species. A positive relationship was found between relative fruit gain and mean individual flower size within species. In one pair of species, fruit gain was higher in the large-flowered species, as was the correlation between fruit gain and mean number of open flowers. In the other pair, the correlation between fruit gain and mean flower size was also higher in the large-flowered species. These results reveal that Mediterranean environments impose significant constraints on floral display, counteracting advantages of large flowers from the pollination point of view with increased indirect costs of such flowers.

  12. The mangosteen flowering date model in Nakhon Si Thammarat province, southern Thailand

    Directory of Open Access Journals (Sweden)

    Poontarasa OUNLERT

    2017-03-01

    Full Text Available Mangosteen (Garcinia mangostana L. is one of the economically important fruits of Thailand. Recent studies show that the climatic variability affects the flowering period of tropical fruit trees. The objectives of this study are: 1 to investigate the correlation between climatic factors (in particular with, rainfall, maximum temperature, minimum temperature, relative humidity, and dry period before flowering and mangosteen flowering date and 2 to develop the poisson regression model to predict the flowering date of mangosteen in Nakhon Si Thammarat Province, Thailand. This model is useful in guiding farmers to manage mangosteen orchards. The results showed that the rainfall, the maximum and minimum temperatures, the relative humidity, and the dry period before flowering dates affect mangosteen flowering dates. The model which will be used as a guideline for mangosteen flowering date prediction was log(μ=10.85+0.0001x1-0.0564x2-0.0634x3-0.0232x4+0.0003x5 where μ where is the mean of mangosteen flowering date, x1 is rainfall, x2 is maximum temperature, x3 is minimum temperature, x4 is relative humidity, and x5 is dry period before flowering date.

  13. Flowering and vegetative propagation of pyrethrum (Chrysanthemum cinerariaefolium Vis.) in vivo and in vitro

    NARCIS (Netherlands)

    Roest, S.

    1976-01-01

    The influence of climatic conditions was investigated on flowering behaviour of pyrethrum ( Chrysanthemum cinerariaefolium Vis.). At low temperatures high numbers of plants initiated high numbers of flower heads. Both the development of the initiated flower heads and the

  14. Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins.

    Science.gov (United States)

    Sagdic, Osman; Ekici, Lutfiye; Ozturk, Ismet; Tekinay, Turgay; Polat, Busra; Tastemur, Bilge; Bayram, Okan; Senturk, Berna

    2013-08-01

    This study was conducted to determine the potential use of anthocyanin-based extracts (ABEs) of wasted tulip flowers as food/drug colorants. For this aim, wasted tulip flowers were samples and analyzed for their bioactive properties and cytotoxicity. Total phenolic contents of the extracts of the claret red (126.55 mg of gallic acid equivalent (GAE)/g dry extract) and orange-red (113.76 mg GAE/g dry extract) flowers were the higher than those of the other tulip flowers. Total anthocyanin levels of the violet, orange-red, claret red and pink tulip flower extracts were determined as 265.04, 236.49, 839.08 and 404.45 mg pelargonidin 3-glucoside/kg dry extract, respectively and these levels were higher than those of the other flowers. The extracts were more effective for the inhibition of Listeria monocytogenes, Staphylococcus aureus and Yersinia enterocolitica compared to other tested bacteria. Additionally, the cytotoxic effects of five different tulip flower extracts on human breast adenocarcinoma (MCF-7) cell line were investigated. The results showed that the orange red, pink and violet extracts had no cytotoxic activity against MCF-7 cell lines while yellow and claret red extracts appeared to be toxic for the cells. Overall, the extracts of tulip flowers with different colors possess remarkable bioactive and cytotoxic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The biology of flowering of winter aconite (Eranthis hyemalis (L. Salisb.

    Directory of Open Access Journals (Sweden)

    Krystyna Rysiak

    2012-12-01

    Full Text Available Eranthis hyemalis belongs to the Ranunculaceae family whose representatives enrich early spring pollen flow and nectar for pollinating insects. Flowering biology and morphological characteristics flowers of winter aconite were studied. The forage value was estimated as the rate of nectar production. Observations were carried out between 2008 and 2011 in the Botanical Garden of the Maria Curie-Skłodowska University located in the Lublin area. In the conditions of Lublin, flowering of winter aconite plants started at the beginning of February and lasted until the end of March. The seasonal bloom dynamics was strongly affected by maximum temperatures, which intensified flower blooming, and snowfalls which hampered this process. During the day, flowers opened between 8.00 am and 3.00 pm, but the highest intensity was between 10.00 am and 12.00 am. The process of pollen release, with the average number of 29 stamens shedding pollen in the flowers, lasted from 2 to 3 days. During the day the largest number of anthers opened at noon hours, between 11.00 am and 1.00 pm, though a certain rise in this number was also observed in the morning hours between 8.00 and 9.00 am. Eranthis hyemalis flowers develop funnel-shaped nectaries, on average 3-6 per flower. The determined amount of nectar per flower was 1.23 mg, while the concentration of sugars in it averaged 72.11%. The weight of nectar sugar per flower was 0.88 mg.

  16. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    Science.gov (United States)

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population.

    Science.gov (United States)

    Raghavan, Chitra; Mauleon, Ramil; Lacorte, Vanica; Jubay, Monalisa; Zaw, Hein; Bonifacio, Justine; Singh, Rakesh Kumar; Huang, B Emma; Leung, Hei

    2017-06-07

    Multi-parent Advanced Generation Intercross (MAGIC) populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL) mapping. In this study, 1316 S6:8 indica MAGIC (MI) lines and the eight founders were sequenced using Genotyping by Sequencing (GBS). As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height), physical (grain length and grain width) and cooking properties (amylose content) of the rice grain, abiotic stress (submergence tolerance), and biotic stress (brown spot disease) were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations. Copyright © 2017 Raghavan et al.

  18. Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population

    Directory of Open Access Journals (Sweden)

    Chitra Raghavan

    2017-06-01

    Full Text Available Multi-parent Advanced Generation Intercross (MAGIC populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL mapping. In this study, 1316 S6:8 indica MAGIC (MI lines and the eight founders were sequenced using Genotyping by Sequencing (GBS. As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height, physical (grain length and grain width and cooking properties (amylose content of the rice grain, abiotic stress (submergence tolerance, and biotic stress (brown spot disease were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations.

  19. Rainfed Rice Production and there Germplasm Development in Kenya

    International Nuclear Information System (INIS)

    Onyango, J.C.; Onyango, M.O.A.

    1999-01-01

    Rice (Oryza Sativa L.) has been grown in Kenya for several centuries and during this time has been locally selected by farmers for adaptation in the dry climate of Kenya highlands and coastal region. this history of selection by farmers has led to the concentration of genetic information for performance under drought conditions in locally-adapted rice types. Since water availability affects many processes in plants, drought tolerance is a complex character and due to the complex nature of the drought tolerance limited progress has been made in breeding for drought tolerance using simple screening methods. To produce drought tolerant cultivars, characters can used as parents in a breeding program, this is a two step process. Obviously, the root system is central to drought tolerance. The root system must be able to remove water efficiently from soils with low moisture and withstand the dynamics of soil during drought conditions will prevent stomata closure and maximise photosynthesis which is essential for high crop production. Over 365 cultivars of rainfed rice have been identified in Kenya and can be used in the two step process as source material for identifying characters related to drought tolerance and as parental lines. To advance the first step, research was conducted to identify drought tolerance characters in rainfed cultivars from Kenya. The study had a total of 580 mm of rainfall which was below the mean precipitation requirement of 750 mm. The drought sensitive variety IR20 was compared with drought tolerant IR52 and five KR (Kenya Rice) KR21, KR22, KR35,KR108 and KR135 cultivars. Plant biomass, plant height, leaf area, leaf length, protein: chlorophyll content ratio and grain yield were affected by limiting water availability and differences between cultivars were noted. The protein to chlorophyll ratio in leaves in the KR. cultivars increase from 18.4 to 28.0 as water deficient increases from -0.8 mpa to -1.4 Mpa allowing these cultivars to maintain

  20. Integrated physiological, biochemical and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature

    Directory of Open Access Journals (Sweden)

    Boghireddy eSailaja

    2015-11-01

    Full Text Available In changing climate, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical and molecular level is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in eleven popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS, antioxidants, and photosynthesis were studied at vegetative and reproductive phases which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified which will be important resource to develop high temperature tolerant rice cultivars. Interestingly, Nagina22 emerged as best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activity, lesser reduction in net photosynthetic rate (PN, high transpiration rate (E and other photosynthetic/ fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Further, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant and Vandana (susceptible at flowering phase, strengthening the fact that N22 performs better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes which are needed to be characterized to address the challenges of future climate extreme conditions.

  1. Defensive Responses of Rice Genotypes for Resistance Against Rice Leaffolder Cnaphalocrocis medinalis

    Directory of Open Access Journals (Sweden)

    M. PUNITHAVALLI

    2013-09-01

    Full Text Available The experiment was carried out to assess the reaction of different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild in response to the infestation by rice leaffolder (RLF, Cnaphalocrocis medinalis (Guenee and to explore the possible use of these genotypes in developing RLF-resistant rice varieties. The changes of various biochemical constituents such as leaf soluble protein, phenol, ortho-dihydroxy phenol, tannin and enzymes viz., peroxidase, phenyl alanine ammonia lyase (PAL were assessed spectrophotometrically in all the rice genotypes before and after RLF infestation. The protein profile was analyzed using sodium dodecyl sulphate-poly acrylamide gel electrophoresis (SDS-PAGE method. A significant constituent of biochemical content such as tannin, phenol and ortho-dihydroxy phenol has been increased along with enzyme activities of peroxidase and PAL in the infested resistant (Ptb 33, TKM6 and LFR831311 and wild rice genotypes (Oryza minuta and O. rhizomatis. A decrease in leaf protein content was evident invariably in all the infested rice genotypes. It is also evident that the contents of biochemicals such as phenol, ortho-dihydroxy phenol and tannin were negatively correlated with leaffolder damage. However, leaf protein content was positively correlated with the damage by rice leaffolder. SDS-PAGE analysis for total protein profiling of healthy and C. medinalis-infested genotypes revealed the enhanced expression of a high molecular weight (> 97 kDa protein in all the genotypes. Besides, there was also an increased induction of a 38 kDa protein in C. medinalis infested resistant genotypes, which was absent in uninfested plants. The present investigation proved that the elevated levels of biochemicals and enzymes may play a vital role in rice plants resistance to RLF.

  2. Estimating pollination success with novel artificial flowers: Effects of nectar concentration

    Directory of Open Access Journals (Sweden)

    James D. Thomson

    2012-10-01

    Full Text Available We developed novel artificial flowers that dispense and receive powdered food dyes as pollen analogues while their nectar is replenished by capillary action. Dye receipt, which can be measured colourimetrically, is a direct surrogate for pollen receipt or female reproductive success, but can also serve to compare pollen donation (male reproductive success from flowers with different colours of dye. By allowing captive bumble bee colonies to visit large arrays of such flowers, we investigated whether total dye receipt depended on the sugar concentration of a flower’s nectar. Estimating pollen transfer, rather than simply visitation rate, is appropriate for this question because flowers with more concentrated nectar might accrue more pollen not only through higher visitation rates but also through longer visits that transfer more pollen per visit. Flowers with richer nectar did receive more dye regardless of their spatial arrangement, but the effect was greatest when rich and poor flowers were segregated in large blocks, as opposed to being intermingled.

  3. Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies.

    Science.gov (United States)

    Kim, Sang Yoon; Park, Chi Kyu; Gwon, Hyo Suk; Khan, Muhammad Israr; Kim, Pil Joo

    2015-12-15

    Rye (Secale cerealis) has been widely cultivated to improve soil quality in temperate paddies. However, its biomass incorporation can significantly increase greenhouse gas emissions, particularly the emission of methane (CH4), during rice cultivation. The chemical composition and productivity of cover crop biomass may vary at different growing stages. Therefore, nutrient productivity and CH4 production potential might be controlled by selecting the optimum harvesting stage. To investigate the effect of rye harvesting stage on nutrient productivity and CH4 production potential, rye was harvested at different growing stages, from the flowering stage to the maturing stage, for seven weeks. The chemical composition and biomass productivity of rye were investigated. CH4 production was measured by laboratory incubation, and CH4 production potential was estimated to determine the real impact on CH4 dynamics in rice soils. Rye biomass increased with plant maturation, but nutrient productivities such as N (nitrogen), P2O5, and K2O were maximized at the flowering stage. The contents of cellulose and lignin increased significantly as plants matured, but the total N, labile organic carbon (C), and hot and cold water-extractable organic C clearly decreased. Soils were mixed with 0.3% (wt wt(-1) on dry weight) air-dried biomass and incubated to measure the maximum CH4 productivity at 30 °C under flooded conditions. Maximum CH4 productivity was significantly correlated with increasing labile organic C and protein content, but it was negatively correlated with total organic C, cellulose, and lignin content. CH4 production potentials were significantly increased up to the pre-maturing stage (220 DAS) and remained unchanged thereafter. As a result, CH4 production potential per N productivity was the lowest at the late flowering stage (198-205 DAS), which could be the best harvesting stage as well as the most promising stage for increasing nutrient production and decreasing GHG

  4. Rice agroecosystem and the maintenance of biodiversity

    International Nuclear Information System (INIS)

    Ahyaudin Ali

    2002-01-01

    Rice fields are a special type of wetland. They are shallow, constantly disturbed and experience extremes in temperature and dissolved oxygen content. They receive nutrients in the form of fertilizers during rice cultivation. Rice fields; support a variety of flora and fauna that have adapted and adjusted themselves to the extreme conditions. Since rice fields also support populations of wild fish, rice?fish integration should be done in order to optimize land use and provide supplementary income to farmers. Rice?fish farming encourages farmers to judiciously apply pesticides and herbicides in their fields thus helping to control excessive and unwarranted use of these chemicals. Rice fields also support many migratory and nonmigratory bird species and provides habitat for small mammals. Thus the rice agroecosystem helps to maintain aquatic biodiversity. The Muda rice agroecosystem consists of a troika of interconnected ecosystems. The troika consisting of reservoirs, the connecting network of canals and the rice fields; should be investigated further. This data is needed for informed decision-making concerning development and management of the system so that productivity and biodiversity can be maintained and sustained. (Author)

  5. Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD)

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, S; Iqbal, N; Arif, M [Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad (Pakistan)

    1998-03-01

    Random Amplified Polymorphic DNA (RAPDs) markers were utilized to detect polymorphism between pure lines and commercially available Basmati rice varieties to assess variation which may be helpful in quality control and varietal identification (Basmati-370 and derived radiation induced mutants), differentiation of mutants and parents, and identification of RAPD markers co-segregating with important agronomic traits including plant height, days to flower and grain quality. Basmati varieties were distinguished from non-Basmati varieties with the help of five diagnostic markers which will be useful for detecting mixing of non-Basmati and Basmati rices, currently a serious marketing problem. Different Basmati cultivars were identified with the help of diagnostic RAPD markers which can be used in quality control as well as for ``fingerprinting`` of cultivars. Different radiation induced mutants were also successfully distinguished from the parents on the basis of variety specific and mutant specific markers which will be useful for varietal identification. In addition to this, other markers were also identified which can differentiate mutants from each other and are being, used for the fingerprinting of different mutants, particularly the dwarf mutants having similar appearance but different parentage. For identification of RAPD markers co-segregating with plant height and days to flower, 50 F{sub 2} plants and four F{sub 3} families were studied from a reciprocal cross made between Kashmir Basmati (tall and early) and Basmati-198 (dwarf and late). Segregating bands were observed within these populations, and indicating the possible use of RAPD markers for tagging gene(s) of agronomic importance in rice. (author). 38 refs, 6 figs, 3 tabs.

  6. Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD)

    International Nuclear Information System (INIS)

    Farooq, S.; Iqbal, N.; Arif, M.

    1998-01-01

    Random Amplified Polymorphic DNA (RAPDs) markers were utilized to detect polymorphism between pure lines and commercially available Basmati rice varieties to assess variation which may be helpful in quality control and varietal identification (Basmati-370 and derived radiation induced mutants), differentiation of mutants and parents, and identification of RAPD markers co-segregating with important agronomic traits including plant height, days to flower and grain quality. Basmati varieties were distinguished from non-Basmati varieties with the help of five diagnostic markers which will be useful for detecting mixing of non-Basmati and Basmati rices, currently a serious marketing problem. Different Basmati cultivars were identified with the help of diagnostic RAPD markers which can be used in quality control as well as for ''fingerprinting'' of cultivars. Different radiation induced mutants were also successfully distinguished from the parents on the basis of variety specific and mutant specific markers which will be useful for varietal identification. In addition to this, other markers were also identified which can differentiate mutants from each other and are being, used for the fingerprinting of different mutants, particularly the dwarf mutants having similar appearance but different parentage. For identification of RAPD markers co-segregating with plant height and days to flower, 50 F 2 plants and four F 3 families were studied from a reciprocal cross made between Kashmir Basmati (tall and early) and Basmati-198 (dwarf and late). Segregating bands were observed within these populations, and indicating the possible use of RAPD markers for tagging gene(s) of agronomic importance in rice. (author)

  7. Flowering T Flowering Trees

    Indian Academy of Sciences (India)

    Adansonia digitata L. ( The Baobab Tree) of Bombacaceae is a tree with swollen trunk that attains a dia. of 10m. Leaves are digitately compound with leaflets up to 18cm. long. Flowers are large, solitary, waxy white, and open at dusk. They open in 30 seconds and are bat pollinated. Stamens are many. Fruit is about 30 cm ...

  8. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

    OpenAIRE

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-01-01

    Nuclear male sterility is common in flowering plants, but its application in hybrid breeding and seed production is limited because of the inability to propagate a pure male sterile line for commercial hybrid seed production. Here, we characterized a rice nuclear gene essential for sporophytic male fertility and constructed a male sterility system that can propagate the pure male sterile seeds on a large scale. This system is fundamentally advantageous over the current cytoplasmic male steril...

  9. Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand

    International Nuclear Information System (INIS)

    Parnphumeesup, Piya; Kerr, Sandy A.

    2011-01-01

    This research applies both quantitative and qualitative methods to investigate stakeholder preferences towards sustainable development (SD) priorities in Clean Development Mechanism (CDM) projects. The CDM's contribution to SD is explored in the context of a biomass (rice husk) case study conducted in Thailand. Quantitative analysis ranks increasing the usage of renewable energy as the highest priority, followed by employment and technology transfer. Air pollution (dust) is ranked as the most important problem. Preference weights expressed by experts and local resident are statistically different in the cases of: employment generation; emission reductions; dust; waste disposal; and noise. Qualitative results, suggest that rice husk CDM projects contribute significantly to SD in terms of employment generation, an increase in usage of renewable energy, and transfer of knowledge. However, rice husk biomass projects create a potential negative impact on air quality. In order to ensure the environmental sustainability of CDM projects, stakeholders suggest that Thailand should cancel an Environmental Impact Assessment (EIA) exemption for CDM projects with an installed capacity below 10 MW and apply it to all CDM projects. - Highlights: → Stakeholders rank increasing the usage of renewable energy as the highest priority. → Biomass (rice husk) CDM projects create a potential negative impact on air quality. → Rice husk CDM projects cannot give an extra income to farmers. → Preference weights expressed by experts and local residents are statistically different.

  10. Epigenetic regulation of photoperiodic flowering

    OpenAIRE

    Takeno, Kiyotoshi

    2010-01-01

    The cytidine analogue 5-azacytidine, which causes DNA demethylation, induced flowering in the non-vernalization-requiring plants Perilla frutescens var. crispa, Silene armeria and Pharbitis nil (synonym Ipomoea nil) under non-inductive photoperiodic conditions, suggesting that the expression of photoperiodic flowering-related genes is regulated epigenetically by DNA methylation. The flowering state induced by DNA demethylation was not heritable. Changes in the genome-wide methylation state we...

  11. Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction.

    Directory of Open Access Journals (Sweden)

    Ellen O Martinson

    Full Text Available A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association.

  12. Evaluation of Genetic Diversity and Development of a Core Collection of Wild Rice (Oryza rufipogon Griff.) Populations in China.

    Science.gov (United States)

    Liu, Wen; Shahid, Muhammad Qasim; Bai, Lin; Lu, Zhenzhen; Chen, Yuhong; Jiang, Lan; Diao, Mengyang; Liu, Xiangdong; Lu, Yonggen

    2015-01-01

    Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.

  13. Flowering of Woody Bamboo in Tissue Culture Systems

    Directory of Open Access Journals (Sweden)

    Jin-Ling Yuan

    2017-09-01

    Full Text Available Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.

  14. Persea americana (avocado): bringing ancient flowers to fruit in the genomics era.

    Science.gov (United States)

    Chanderbali, André S; Albert, Victor A; Ashworth, Vanessa E T M; Clegg, Michael T; Litz, Richard E; Soltis, Douglas E; Soltis, Pamela S

    2008-04-01

    The avocado (Persea americana) is a major crop commodity worldwide. Moreover, avocado, a paleopolyploid, is an evolutionary "outpost" among flowering plants, representing a basal lineage (the magnoliid clade) near the origin of the flowering plants themselves. Following centuries of selective breeding, avocado germplasm has been characterized at the level of microsatellite and RFLP markers. Nonetheless, little is known beyond these general diversity estimates, and much work remains to be done to develop avocado as a major subtropical-zone crop. Among the goals of avocado improvement are to develop varieties with fruit that will "store" better on the tree, show uniform ripening and have better post-harvest storage. Avocado transcriptome sequencing, genome mapping and partial genomic sequencing will represent a major step toward the goal of sequencing the entire avocado genome, which is expected to aid in improving avocado varieties and production, as well as understanding the evolution of flowers from non-flowering seed plants (gymnosperms). Additionally, continued evolutionary and other comparative studies of flower and fruit development in different avocado strains can be accomplished at the gene expression level, including in comparison with avocado relatives, and these should provide important insights into the genetic regulation of fruit development in basal angiosperms.

  15. Broken rice kernels and the kinetics of rice hydration and texture during cooking.

    Science.gov (United States)

    Saleh, Mohammed; Meullenet, Jean-Francois

    2013-05-01

    During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.

  16. Phosphorus utilization by three rice varieties at different stages of growth in a vertisol

    International Nuclear Information System (INIS)

    Rastogi, A.K.; Mahajan, J.P.; Sinha, S.B.

    1981-01-01

    A pot experiment was conducted using labelled superphosphate to study the utilization of applied fertilizer phosphorus by three rice varieties, viz., Jaya, Ratna and Sona at tillering, flowering and harvesting stages. Total phosphorus uptake and phosphorus derived from fertilizer increased significantly with increasing level of phosphorus, but per cent utilization of applied phosphorus showed a reverse trend in all the three varieties at all the growth stages. Dry matter yield in general, increased significantly with increasing P levels in all the three varieties. Average soil-p uptake decreased with increasing levels of phosphorus at all the stages. (author)

  17. Investigating differences in light stable isotopes between Thai jasmine rice and Sungyod rice

    Science.gov (United States)

    Kukusamude, C.; Kongsri, S.

    2017-10-01

    We report the differences in light stable isotopes between two kinds of Thai rice (Thai jasmine and Sungyod rice). Thai jasmine rice and Sungyod rice were cultivated in the northeast and the south of Thailand. Light isotopes including 13C, 15N and 18O of Thai jasmine rice and Sungyod rice samples were carried out using isotope ratio mass spectrometry (IRMS). Thai jasmine rice (Khao Dawk Mali 105) was cultivated from Thung Kula Rong Hai area, whereas Sungyod rice was cultivated from Phathalung province. Hypothesis testing of difference of each isotope between Thai jasmine rice and Sungyod rice was also studied. The study was the feasibility test whether the light stable isotopes can be the variables to identify Thai jasmine rice and Sungyod rice. The result shows that there was difference in the isotope patterns of Thai jasmine rice and Sungyod rice. Our results may provide the useful information in term of stable isotope profiles of Thai rice.

  18. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  19. Effect of Red Yeast Rice and Coconut, Rice Bran or Sunflower Oil Combination in Rats on Hypercholesterolemic Diet.

    Science.gov (United States)

    Govindarajan, Sumitra; Vellingiri, Kishore

    2016-04-01

    Dietary supplements provide a novel population based health approach for treating hyperlipidemias. Red yeast rice is known to have lipid lowering effects. Combination of red yeast rice with various oils is taken by different population around the world. In this present work, we aimed to compare the effects of red yeast rice with different oil (coconut, rice bran and sunflower oil) supplementations on lipid levels and oxidative stress in rats fed on hypercholesterolemic diet. A Randomized controlled study was conducted on 28 male Sprague Dawley rats. It included 4 arms-Control arm (hypercholesterolemic diet), Test arm A (hypercholesterolemic diet +Red yeast rice + Rice bran oil), arm B (hypercholesterolemic diet +Red yeast rice + Coconut oil) and arm C (hypercholesterolemic diet +Red yeast rice + Sunflower oil). At the end of one month, serum cholesterol, triglycerides, MDA and paraoxonase was measured. The mean values of analytes between the different groups were compared using student 't-' test. The rats fed with red yeast rice and rice bran oil combination showed significantly lower levels of serum cholesterol, triglycerides and MDA when compared to the controls. The serum paraoxonase levels were significantly higher in this group when compared to the controls. The rats fed with red yeast rice and coconut oil combination showed significantly lower serum cholesterol and MDA levels when compared to the controls. The mean triglyceride and paraoxonase levels did not show any statistically significant difference from the controls. The rats on red yeast rice and sunflower oil combination did not show any statistically significant difference in the lipid levels and oxidative stress parameters. The food combination which had best outcome in preventing the development of hyperlipidemia and oxidative stress in rats fed with hypercholesterolemic diet was red yeast rice and rice bran oil. Combining red yeast rice with coconut oil and sunflower oil gave suboptimal benefits.

  20. Translating BPEL to FLOWer

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard

    FLOWer is a case handling tool made by Pallas-Athena for process management in the service industry. BPEL on the other hand is a language for web service orchestration, and has become a de facto standard, because of its popularity, for specifying workflow processes even though that was not its...... original purpose. This paper describe an approach translating BPLE to FLOWer, or more precisely form BPEL to CHIP. where CHIP is the interchange language that FLOWer import from and export to. The aim of the translation scheme that I give is to derive a CHIP specification that is behaviorally equivalent...

  1. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis.

    Science.gov (United States)

    Oguntunde, Philip G; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease (P  1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  2. Rice Water: A Traditional Ingredient with Anti-Aging Efficacy

    Directory of Open Access Journals (Sweden)

    Joana Marto

    2018-04-01

    Full Text Available The skin healing benefits of rice have been known for centuries. Rice (Oryza sativa water is a food processing waste that can potentially be incorporated into cosmetic formulations. However, no scientific evidence supports their role in skincare products. The aim of this project is to design and develop a topical gel formulation containing rice water and to evaluate its biological properties, namely, the anti-aging and antioxidant rice water properties. Rice water was evaluated in terms of physico-chemical composition and in terms of in vitro biological antioxidant activity and elastase inhibitory effect. Rice water was incorporated into a hydrogel and the developed formulation was subjected to pharmacotechnical tests such as pH and viscosity. Biological and sensory effects were evaluated on a panel of 12 volunteers for 28 days. The safety evaluation study was performed on rice water gel, using the Human Repeat Insult Patch test protocol. Rice water presented in vitro biological antioxidant activity and elastase inhibitory effect. The gel formulation containing 96% rice water was biocompatible with the human skin and presented suitable cosmetic properties. Rice water should be thus considered as an anti-aging ingredient to be used as raw material for skincare applications.

  3. Upland and lowland rice in the Netherlands Indies

    NARCIS (Netherlands)

    Maat, H.

    2016-01-01

    The global trade in rice is historically recent and its total quantity relatively small. Colonial explorations were the main incentive for its development, but only beginning in the 19th century did rice-producing countries in Asia export rice outside the continent in bulk. In previous centuries

  4. Tolerance of edible flowers to gamma irradiation

    International Nuclear Information System (INIS)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H.

    2011-01-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  5. Tolerance of edible flowers to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H., E-mail: ackoike@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2011-07-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  6. Development of Novel Cytoplasmic Male Sterile Source from Dongxiang Wild Rice (Oryza rufipogon

    Directory of Open Access Journals (Sweden)

    Xian-hua SHEN

    2013-09-01

    Full Text Available This study was conducted to develop and characterize a novel cytoplasmic male sterile (CMS source which was identified from Dongxiang wild rice (Oryza rufipogon by crossing Dongxiang wild rice as female with Zhongzao 35, an indica inbred variety, as male and continuous backcrossing with Zhongzao 35. Observation under optical microscope manifested that this novel CMS belonged to typical abortion type with less pollen compared with wild abortive type cytoplasm (CMS-WA. Sequential planting showed that this novel CMS has complete and stable male sterility. Testcross experiment showed that all the 24 tested materials including maintainer and restorer lines of CMS-WA and Honglian type cytoplasm (CMS-HL and other indica inbred varieties are the maintainers with complete maintaining ability, suggesting that this novel CMS has fertility restoration totally different from CMS-WA and CMS-HL and belongs to a novel type of CMS. So far, we only discovered a unique fertility restoration source for this novel CMS. Inheritance analysis showed that the fertility restoration of this CMS was governed by three pairs of independent dominant genes. Prospect for application of this novel CMS system in hybrid rice breeding was also discussed.

  7. Flower development as an interplay between dynamical physical fields and genetic networks.

    Science.gov (United States)

    Barrio, Rafael Ángel; Hernández-Machado, Aurora; Varea, C; Romero-Arias, José Roberto; Alvarez-Buylla, Elena

    2010-10-27

    In this paper we propose a model to describe the mechanisms by which undifferentiated cells attain gene configurations underlying cell fate determination during morphogenesis. Despite the complicated mechanisms that surely intervene in this process, it is clear that the fundamental fact is that cells obtain spatial and temporal information that bias their destiny. Our main hypothesis assumes that there is at least one macroscopic field that breaks the symmetry of space at a given time. This field provides the information required for the process of cell differentiation to occur by being dynamically coupled to a signal transduction mechanism that, in turn, acts directly upon the gene regulatory network (GRN) underlying cell-fate decisions within cells. We illustrate and test our proposal with a GRN model grounded on experimental data for cell fate specification during organ formation in early Arabidopsis thaliana flower development. We show that our model is able to recover the multigene configurations characteristic of sepal, petal, stamen and carpel primordial cells arranged in concentric rings, in a similar pattern to that observed during actual floral organ determination. Such pattern is robust to alterations of the model parameters and simulated failures predict altered spatio-temporal patterns that mimic those described for several mutants. Furthermore, simulated alterations in the physical fields predict a pattern equivalent to that found in Lacandonia schismatica, the only flowering species with central stamens surrounded by carpels.

  8. Foraging behavior of three bee species in a natural mimicry system: female flowers which mimic male flowers in Ecballium elaterium (Cucurbitaceae).

    Science.gov (United States)

    Dukas, Reuyen

    1987-12-01

    The behavior of Apis mellifera and two species of solitary bees which forage in the flowers of monoecious Ecballium elaterium (L.) A. Rich (Cucurbitaceae) were compared. The female flowers of E. elaterium resemble male flowers visually but are nectarless, and their number is relatively smaller. Apis mellifera was found to discriminate between the two genders and to pay relatively fewer visits to female flowers (mean of 30% relative to male flowers) from the beginning of their activity in the morning. The time spent by honeybees in female flowers is very short compared to that spent in male flowers. It is surmised that the bees remember the differences between the flowers where they foraged on the previous days. In contrast, the two species of solitary bees Lasioglossum politum (Morawitz) (Halictidae) and Ceratina mandibularis Fiese (Anthophoridae) visit the female flowers with nearly equal frequencies at the beginning of each foraging day and stay longer in these flowers. Over the day there is a decline in the relative frequency of visits to female flowers and also in the mean time spent in them. The study shows that bees can collect rewards at high efficiency from the flowers of Ecballium elaterium because of their partial discrimination ability and the scarcity of the mimic flowers. It is suggested that the memory pattern of some solitary bees may be different from that of Apis mellifera. It seems that the limited memory and discrimination ability of bees can lead to a high frequency of visits to the mimic flowers during a long flowering season.

  9. Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Yoon [Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen (Netherlands); Park, Chi Kyu [Hamyang-gun Agricultural Development & Technology Center, Hamyang 676-806 (Korea, Republic of); Gwon, Hyo Suk; Khan, Muhammad Israr [Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Pil Joo, E-mail: pjkim@gnu.ac.kr [Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2015-12-15

    Rye (Secale cerealis) has been widely cultivated to improve soil quality in temperate paddies. However, its biomass incorporation can significantly increase greenhouse gas emissions, particularly the emission of methane (CH{sub 4}), during rice cultivation. The chemical composition and productivity of cover crop biomass may vary at different growing stages. Therefore, nutrient productivity and CH{sub 4} production potential might be controlled by selecting the optimum harvesting stage. To investigate the effect of rye harvesting stage on nutrient productivity and CH{sub 4} production potential, rye was harvested at different growing stages, from the flowering stage to the maturing stage, for seven weeks. The chemical composition and biomass productivity of rye were investigated. CH{sub 4} production was measured by laboratory incubation, and CH{sub 4} production potential was estimated to determine the real impact on CH{sub 4} dynamics in rice soils. Rye biomass increased with plant maturation, but nutrient productivities such as N (nitrogen), P{sub 2}O{sub 5}, and K{sub 2}O were maximized at the flowering stage. The contents of cellulose and lignin increased significantly as plants matured, but the total N, labile organic carbon (C), and hot and cold water-extractable organic C clearly decreased. Soils were mixed with 0.3% (wt wt{sup −1} on dry weight) air-dried biomass and incubated to measure the maximum CH{sub 4} productivity at 30 °C under flooded conditions. Maximum CH{sub 4} productivity was significantly correlated with increasing labile organic C and protein content, but it was negatively correlated with total organic C, cellulose, and lignin content. CH{sub 4} production potentials were significantly increased up to the pre-maturing stage (220 DAS) and remained unchanged thereafter. As a result, CH{sub 4} production potential per N productivity was the lowest at the late flowering stage (198–205 DAS), which could be the best harvesting stage as well

  10. Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies

    International Nuclear Information System (INIS)

    Kim, Sang Yoon; Park, Chi Kyu; Gwon, Hyo Suk; Khan, Muhammad Israr; Kim, Pil Joo

    2015-01-01

    Rye (Secale cerealis) has been widely cultivated to improve soil quality in temperate paddies. However, its biomass incorporation can significantly increase greenhouse gas emissions, particularly the emission of methane (CH_4), during rice cultivation. The chemical composition and productivity of cover crop biomass may vary at different growing stages. Therefore, nutrient productivity and CH_4 production potential might be controlled by selecting the optimum harvesting stage. To investigate the effect of rye harvesting stage on nutrient productivity and CH_4 production potential, rye was harvested at different growing stages, from the flowering stage to the maturing stage, for seven weeks. The chemical composition and biomass productivity of rye were investigated. CH_4 production was measured by laboratory incubation, and CH_4 production potential was estimated to determine the real impact on CH_4 dynamics in rice soils. Rye biomass increased with plant maturation, but nutrient productivities such as N (nitrogen), P_2O_5, and K_2O were maximized at the flowering stage. The contents of cellulose and lignin increased significantly as plants matured, but the total N, labile organic carbon (C), and hot and cold water-extractable organic C clearly decreased. Soils were mixed with 0.3% (wt wt"−"1 on dry weight) air-dried biomass and incubated to measure the maximum CH_4 productivity at 30 °C under flooded conditions. Maximum CH_4 productivity was significantly correlated with increasing labile organic C and protein content, but it was negatively correlated with total organic C, cellulose, and lignin content. CH_4 production potentials were significantly increased up to the pre-maturing stage (220 DAS) and remained unchanged thereafter. As a result, CH_4 production potential per N productivity was the lowest at the late flowering stage (198–205 DAS), which could be the best harvesting stage as well as the most promising stage for increasing nutrient production and

  11. Realistic Simulation of Rice Plant

    Directory of Open Access Journals (Sweden)

    Wei-long DING

    2011-09-01

    Full Text Available The existing research results of virtual modeling of rice plant, however, is far from perfect compared to that of other crops due to its complex structure and growth process. Techniques to visually simulate the architecture of rice plant and its growth process are presented based on the analysis of the morphological characteristics at different stages. Firstly, the simulations of geometrical shape, the bending status and the structural distortion of rice leaves are conducted. Then, by using an improved model for bending deformation, the curved patterns of panicle axis and various types of panicle branches are generated, and the spatial shape of rice panicle is therefore created. Parametric L-system is employed to generate its topological structures, and finite-state automaton is adopted to describe the development of geometrical structures. Finally, the computer visualization of three-dimensional morphologies of rice plant at both organ and individual levels is achieved. The experimental results showed that the proposed methods of modeling the three-dimensional shapes of organs and simulating the growth of rice plant are feasible and effective, and the generated three-dimensional images are realistic.

  12. Interconnection between flowering time control and activation of systemic acquired resistance

    Directory of Open Access Journals (Sweden)

    Zeeshan Zahoor Banday

    2015-03-01

    Full Text Available The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some local infections, plants develop systemic acquired resistance (SAR, which provides heightened resistance during subsequent infections. Infected tissues generate mobile signalling molecules that travel to the systemic tissues, where they epigenetically modify expression of a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA which is required for SAR activation positively regulates flowering. Certain components of chromatin remodelling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D (FLD, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 (PIE1, an orthologue of yeast chromatin remodelling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  13. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  14. Extraction of rice bran oil from local rice husk

    International Nuclear Information System (INIS)

    Anwar, J.; Zaman, W.; Salman, M.; Jabeen, N.

    2006-01-01

    Rice Bran Oil is widely used in pharmaceutical, food and chemical industries due to its unique properties and high medicinal value. In the present work, extraction of rice bran oil from different samples of rice husk collected from local rice shellers by solvent extraction method has been studied. Experiments were conducted using a soxhelt apparatus, to extract rice bran oil using hexane, petroleum ether, ethanol and methanol as the solvents and the yields obtained under different conditions were compared. Batch extraction tests showed that the rate of extraction decreases with time and the solution approaches saturation at an exponential rate. (author)

  15. EFFECT OF PLANTING MEDIA (RICE HUSK AND COCO PEAT ON THE UPTAKE OF CADMIUM AND SOME MICRONUTRIENTS IN CHILLI (CAPSICUM ANNUM L.

    Directory of Open Access Journals (Sweden)

    Abdalla M. Alzrog

    2013-09-01

    Full Text Available The ecological effects of heavy metals or trace elements in soils are closely related to their contents and speciation in the soil. They play a significant role in the metabolic pathways throughout the growth and development of plants when presented in required concentration. In this study the effect of rice husk and coco peat media on the cadmium uptake by chilli plant (Capsicum annuum L was investigated. The experiment was conducted in complete randomized block design (RBD comprising of three replications. Various concentrations of Cd were dosed to the media once after one week of transplantation. All the required agricultural practices were applied uniformly until harvesting. Cd accumulation in roots, shoots and fruits were analyzed during vegetative, flowering and maturity stages, using atomic absorption spectrophotometric analysis (AAS. Results showed that both planting media exhibited higher accumulation of Cd in roots and shoots at the vegetative stage. The accumulated amount was found significantly dependent on the Cd dose injected to the media. Consequently, micronutrients contents and plant growth were also affected. The accumulated Cd in fruits was found slightly less in rice husk than coco peat media and above the prescribed safety limits recommended by FAO and WHO. Rice husk has higher impact on the microneutrients absorption than coco peat media. In this study, root length, plant hight, dry weight and fruits showed small differences among growing media.

  16. 32P tracer studies on the efficiency of ammonium nitrate phosphates and polyphosphates for growing rice on different soil types

    International Nuclear Information System (INIS)

    Sadanandan, A.K.; Mohanty, S.K.; Patnaik, S.; Mistry, K.B.

    1980-01-01

    A pot experiment was conducted with 32 P tagged phosphates to evaluate the efficiency of ammonium nitrate phosphate containing 30, 50 and 70 percent of P in the water soluble form, tri- and tetra-ammonium pyrophosphate, as compared with mono-ammonium ortho-phosphate (MAP) for growing rice on red, laterite and black soils, with regard to recovery of applied P in soil, dry matter production and utilization of applied P by crop at flowering and grain and straw yield at harvest. Ammonium nitrate phosphates containing 50 percent or more of P in the water soluble form could be used for growing rice on all soil types. The pyrophosphates were as efficient as MAP on soils having pH 6.2 and above but less efficient in soils of lower pH. (author)

  17. Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines

    Directory of Open Access Journals (Sweden)

    Yunyu Wu

    2017-12-01

    Full Text Available The development of resistant varieties and hybrid combinations has been the most effective and economical strategy to control blast disease caused by Magnaporthe oryzae. However, the distribution of major R genes and blast resistance characterization in hybrid rice parents has not been well investigated, resulting in their limited use in hybrid rice blast-resistance breeding. In the present study, 88 elite indica hybrid rice parental lines were evaluated with 30 isolates of M. oryzae collected from the main planting area of indica hybrid rice in China and were characterized for the presence of 11 major resistance genes using molecular markers. The pathogenicity assays showed that four types of hybrid rice parent line showed some resistance to M. oryzae. However, the proportions of highly resistant lines and the mean resistance frequency (RF varied among the four types, with resistance in decreasing order shown by three-line restorer lines, three-line maintainer lines, two-line sterile lines, and two-line restorer lines. All 88 hybrid rice parental lines carried more than one R gene, but none carried the R genes Pi1 and Pi2. Although Pid3 and Pi9 were present only in three-line restorer lines and Pigm only in three-line maintainer lines, the remaining six R genes (Pib, Pid2, Pi5, Pia, Pi54, and Pita were present in the four types of hybrid rice parent with significantly different distribution frequencies. The correlation between R genes and resistance reactions was investigated. The results are expected to provide useful information for rational utilization of major R genes in hybrid rice breeding programs. Keywords: Hybrid rice parental lines, Magnaporthe oryzae, Pi genes, Resistance evaluation, Molecular markers

  18. Yield in almond is related more to the abundance of flowers than the relative number of flowers that set fruit

    Directory of Open Access Journals (Sweden)

    Sergio Tombesi

    2016-11-01

    Full Text Available Almond tree yield is a function of the number of flowers on a tree and the percentage of flowers that set fruit. Almonds are borne on spurs (short proleptic shoots that can have both leaves and flowers. Almond tree spur dynamics research has documented that previous year spur leaf area is a predictive parameter for year-to-year spur survival, spur flowering and to a lesser extent spur fruiting, while previous year fruit bearing has a negative impact on subsequent year flowering. However, a question remained about whether yields are more dependent on flower numbers or relative fruit set of the flowers that are present. The aim of the present work was to compare the importance of flower abundance with that of relative fruit set in determining the productivity of a population of tagged spurs in almond trees over a 6-year period. Overall tree yield among years was more sensitive to total number of flowers on a tree rather than relative fruit set. These results emphasize the importance of maintaining large populations of healthy flowering spurs for sustained high production in almond orchards.

  19. An Environmental Approach to Positive Emotion: Flowers

    Directory of Open Access Journals (Sweden)

    Jeannette Haviland-Jones

    2005-01-01

    Full Text Available For more than 5000 years, people have cultivated flowers although there is no known reward for this costly behavior. In three different studies we show that flowers are a powerful positive emotion “inducer”. In Study 1, flowers, upon presentation to women, always elicited the Duchenne or true smile. Women who received flowers reported more positive moods 3 days later. In Study 2, a flower given to men or women in an elevator elicited more positive social behavior than other stimuli. In Study 3, flowers presented to elderly participants (55+ age elicited positive mood reports and improved episodic memory. Flowers have immediate and long-term effects on emotional reactions, mood, social behaviors and even memory for both males and females. There is little existing theory in any discipline that explains these findings. We suggest that cultivated flowers are rewarding because they have evolved to rapidly induce positive emotion in humans, just as other plants have evolved to induce varying behavioral responses in a wide variety of species leading to the dispersal or propagation of the plants.

  20. Regulating N application for rice yield and sustainable eco-agro development in the upper reaches of Yellow River basin, China.

    Science.gov (United States)

    Zhang, Aiping; Liu, Ruliang; Gao, Ji; Yang, Shiqi; Chen, Zhe

    2014-01-01

    High N fertilizer and flooding irrigation applied to rice on anthropogenic-alluvial soil often result in N leaching and low recovery of applied fertilizer N from the rice fields in Ningxia irrigation region in the upper reaches of the Yellow River, which threatens ecological environment, food security, and sustainable agricultural development. This paper reported the regulating N application for rice yield and sustainable Eco-Agro development in the upper reaches of Yellow River basin. The results showed that reducing and postponing N application could maintain crop yields while substantially reducing N leaching losses to the environment and improving the nitrogen use efficiency. Considering the high food production, the minimum environmental threat, and the low labor input, we suggested that regulating N application is an important measure to help sustainable agricultural development in this region.

  1. [Extruded rice flour as a gluten substitute in the poduction of rice bread].

    Science.gov (United States)

    Clerici, Maria Teresa Pedrosa Silva; El-Dash, Ahmed A

    2006-09-01

    Research regarding the production of gluten-free bread (GFB) is very important nutritionally, technically and economically speaking, both to celiac patients and to developing countries who import wheat. The main technological problem in the production of GFB is obtaining a gluten substitute that is both inexpensive and capable of retaining gas during bread fermentation and baking. The use of gelatinized starch as an alternative for gluten seems promising. In this project, rice bread was made using pregelatinized extruded rice flour as a gluten substitute. Pre-gelatinized rice flours (PRF) were manufactured in a single screw Brabender extruder, varying extrusion temperature (108-192 degrees C) and the moisture of the raw material (19.2 - 24.8%), and were used in a proportion of 10 g for every 100 g of raw rice flour, in the production of gluten-free bread. Results showed that rice flour extruded at a high temperature (180 degrees) and low moisture content (20%), rendered bread with the best technological characteristics, presenting crust and crumb color similar to those of conventional wheat bread, although with volume and texture not as satisfactory in the same comparison.

  2. A plant-based chemical genomics screen for the identification of flowering inducers.

    Science.gov (United States)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  3. The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java

    Science.gov (United States)

    Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.

    2018-03-01

    Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.

  4. Agronomic efficiency INIAP-17 rice with levels of chemical and biological fertilization in Ecuadorian Coast

    Directory of Open Access Journals (Sweden)

    Eduardo Neptali Colina Navarrete

    2017-05-01

    Full Text Available The investigation was carried out in the experimental farm of the College of Agricultural Sciences of the Technical University of Babahoyo, canton Babahoyo. Ten treatments were evaluated with three repetitions. The objective was to analyze the influence of four organic bioestimulantes on the efficiency of the conventional chemical fertilization in rice (Oryza sativa, to measure the effect on the agronomic behavior of the cultivation. The variety of rice INIAP-17 was sowed in parcels of 20 m2. The treatments were distributed at random in a design of complete blocks. For the evaluation of stockings the test was used from Tukey to significancia 5%. At the end of the cycle of the cultivation was evaluated: height of plants, sprout number for m2, grains for panicles, length and number of panicles m2, days to flowering, days to crop, number of grains for panicles, weight 1000 grains and yield for hectare. The results determined that the application of a program of high fertilization level (140-60-90-30 kg/ha, of N-P-K-S + Azospirillum 3 L/ha, the grain yield increased with increments of 23,44% with relationship to the witness. In the same way applications of Bacilllus and Azotobacter more levels means (120-40-60-20 and first floor (100-30-40-10 of application of N-P-K-S, they don't impact in days to the flowering, tipping, weight of 1000 grains, number of grains for panicles and relationship grain/straw.

  5. Development of dynamic compartment models for prediction of radionuclide behaviors in rice paddy fields

    International Nuclear Information System (INIS)

    Takahashi, Tomoyuki; Tomita, Ken'ichi; Yamamoto, Kazuhide; Uchida, Shigeo

    2007-01-01

    We are developing dynamic compartment models for prediction of behaviors of some important radionuclides in rice paddy fields for safety assessment of nuclear facilities. For a verification of these models, we report calculations for several different deposition patterns of radionuclides. (author)

  6. Impact of enhanced ultraviolet-B radiation on flower, pollen, and nectar production

    International Nuclear Information System (INIS)

    Sampson, B.J.; Cane, J.H.

    1999-01-01

    Intensified ultraviolet-B radiation or UV-B (wavelengths between 280 and 320 nm) can delay flowering and diminish lifetime flower production in a few plants. Here we studied the effects of enhanced UV-B on floral traits crucial to pollination and pollinator reproduction. We observed simultaneous flowering responses of a new crop plant, Limnanthes alba (Limnathaceae), and a wildflower, Phacelia campanularia (Hydrophyllaceae), to five lifetime UV-B dosages ranging between 2.74 and 15.93 kJ·m -2 ·d -1 . Floral traits known to link plant pollination with bee host preference, host fidelity and larval development were measured. Intensified UV-B had no overall effect on nectar and pollen production of L. alba and P. campanularia flowers. A quadratic relationship between UV-B and nectar sugar production occurred in P. campanularia and showed that even subambient UV-B dosages can be deleterious for a floral trait. Other floral responses to UV-B were more dramatic and idiosyncratic. As UV-B dosage increased, L. alba plants were less likely to flower, but suffered no delays in flowering or reductions to lifetime flower production for those that did flower. Conversely, an equal proportion of P. campanularia plants flowered under all UV-B treatments, but these same plants experienced delayed onset to bloom and produced fewer flowers at greater UV-B intensities. Therefore, intensified UV-B elicits idiosyncratic responses in flowering phenology and flower production from these two annual plants. Diurnal patterns in nectar and pollen production strongly coincided with fluctuating humidity and only weakly with UV-B dosage. Overall, our results indicated that intensified UVB can alter some flowering traits that impinge upon plant competition for pollinator services, as well as plant and pollinator reproductive success. (author)

  7. Flowers and Wild Megachilid Bees Share Microbes.

    Science.gov (United States)

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  8. Notes on collecting flower-visiting insects

    NARCIS (Netherlands)

    Willemstein, S.C.

    1974-01-01

    Flower-visiting insects may play a role in the pollination of the flowers they visit. An important indication for this is the pollen they carry on their body. The transport of pollen does not prove pollination without observations of the behaviour of the insects on the flowers, but at least it

  9. A spectral analysis of rice grains

    International Nuclear Information System (INIS)

    McIlvaine, M.S.; Cua, F.T.; Navarro, E.F.

    1976-06-01

    With the advent of extensive nuclear testing and the development and use of highly potent pesticides and fertilizers, the hazardous threats of radioactive contamination due to fallout and to the absorption of pesticide residues have been given due consideration. Among the many forms of life exposed to these threats are food crops and among these is rice. Several rice grain samples - Japanese rice samples ''A'' and ''B'' submitted by the National Grains Authority (NGA) for analysis, random samples of rice being sold to the public at local markets, and ''black rice'' which were picked from along the shores of a Mindoro town were subjected to spectral analysis. Results revealed the presence of trace elements normally found in plants, such as; K-42, I-124, Cl-38, Na-24, Br-82, and Mn-56. No mercury was detected in the sample specimen analyzed

  10. Rice production model based on the concept of ecological footprint

    Science.gov (United States)

    Faiz, S. A.; Wicaksono, A. D.; Dinanti, D.

    2017-06-01

    Pursuant to what had been stated in Region Spatial Planning (RTRW) of Malang Regency for period 2010-2030, Malang Regency was considered as the center of agricultural development, including districts bordered with Malang City. To protect the region functioning as the provider of rice production, then the policy of sustainable food farming-land (LP2B) was made which its implementation aims to protect rice-land. In the existing condition, LP2B system was not maximally executed, and it caused a limited extend of rice-land to deliver rice production output. One cause related with the development of settlements and industries due to the effect of Malang City that converted land-function. Location of research focused on 30 villages with direct border with Malang City. Review was conducted to develop a model of relation between farming production output and ecological footprint variables. These variables include rice-land area (X1), built land percentage (X2), and number of farmers (X3). Analysis technique was regression. Result of regression indicated that the model of rice production output Y=-207,983 + 10.246X1. Rice-land area (X1) was the most influential independent variable. It was concluded that of villages directly bordered with Malang City, there were 11 villages with higher production potential because their rice production yield was more than 1,000 tons/year, while 12 villages were threatened with low production output because its rice production yield only attained 500 tons/year. Based on the model and the spatial direction of RTRW, it can be said that the direction for the farming development policy must be redesigned to maintain rice-land area on the regions on which agricultural activity was still dominant. Because rice-land area was the most influential factor to farming production. Therefore, the wider the rice-land is, the higher rice production output is on each village.

  11. Effects of electron beam irradiation on cut flowers and mites

    International Nuclear Information System (INIS)

    Dohino, Toshiyuki; Tanabe, Kazuo

    1994-01-01

    Two spotted spider mite, Tetranychus urticae KOCH were irradiated with electron beams (2.5MeV) to develop an alternative quarantine treatment for imported cut flowers. The tolerance of eggs increased with age (1-5-day-old). Immature stages (larva-teleiochrysalis) irradiated at 0.4-0.8kGy increased tolerance with their development. Mated mature females irradiated at 0.4kGy or higher did not produce viable eggs, although temporary recovery was observed at 0.2kGy. Adult males were sterilized at 0.4kGy because non-irradiated virgin females mated with yielded female progeny malformed and sterilized. Various effects of electron beam irradiation were observed when nine species of cut flowers were irradiated in 5MeV Dynamitron accelerator. Chrysanthemum and rose were most sensitive among cut flowers. (author)

  12. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2008-05-01

    Full Text Available Abstract Background We report the development of a microarray platform for rapid and cost-effective genetic mapping, and its evaluation using rice as a model. In contrast to methods employing whole-genome tiling microarrays for genotyping, our method is based on low-cost spotted microarray production, focusing only on known polymorphic features. Results We have produced a genotyping microarray for rice, comprising 880 single feature polymorphism (SFP elements derived from insertions/deletions identified by aligning genomic sequences of the japonica cultivar Nipponbare and the indica cultivar 93-11. The SFPs were experimentally verified by hybridization with labeled genomic DNA prepared from the two cultivars. Using the genotyping microarrays, we found high levels of polymorphism across diverse rice accessions, and were able to classify all five subpopulations of rice with high bootstrap support. The microarrays were used for mapping of a gene conferring resistance to Magnaporthe grisea, the causative organism of rice blast disease, by quantitative genotyping of samples from a recombinant inbred line population pooled by phenotype. Conclusion We anticipate this microarray-based genotyping platform, based on its low cost-per-sample, to be particularly useful in applications requiring whole-genome molecular marker coverage across large numbers of individuals.

  13. Role of mutation in improving rice productivity-retrospect and prospect

    International Nuclear Information System (INIS)

    Chakrabarti, S.N.

    1996-01-01

    With the recent development in the hybrid rice breeding and rice biotechnology, the role of mutation induction in genetic manipulation deserves special importance. In many instances, the major constraint in hybrid rice breeding is lack of suitable cytoplasmic male sterile line. There is immense scope for developing such male sterile lines through use of mutation tool. In this paper improvement of rice productivity with particular reference to attainments in India have been discussed. 50 refs., 2 figs., 6 tabs

  14. Employment in the Ecuadorian cut-flower industry and the risk of spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Harlow Sioban D

    2009-10-01

    Full Text Available Abstract Background Research on the potentially adverse effects of occupational pesticide exposure on risk of spontaneous abortion (SAB is limited, particularly among female agricultural workers residing in developing countries. Methods Reproductive histories were obtained from 217 Ecuadorian mothers participating in a study focusing on occupational pesticide exposure and children's neurobehavioral development. Only women with 2+ pregnancies were included in this study (n = 153. Gravidity, parity and frequency of SAB were compared between women with and without a history of working in the cut-flower industry in the previous 6 years. Logistic regression analysis was conducted to assess the relation between SAB and employment in the flower industry adjusting for maternal age. Results In comparison to women not working in the flower industry, women working in the flower industry were significantly younger (27 versus 32 years and of lower gravidity (3.3 versus 4.5 and reported more pregnancy losses. A 2.6 (95% CI: 1.03-6.7 fold increase in the odds of pregnancy loss among exposed women was observed after adjusting for age. Odds of reporting an SAB increased with duration of flower employment, increasing to 3.4 (95% CI: 1.3, 8.8 among women working 4 to 6 years in the flower industry compared to women who did not work in the flower industry. Conclusion This exploratory analysis suggests a potential adverse association between employment in the cut-flower industry and SAB. Study limitations include the absence of a temporal relation between exposure and SAB, no quantification of specific pesticides, and residual confounding such as physical stressors (i.e., standing. Considering that approximately half of the Ecuadorian flower laborers are women, our results emphasize the need for an evaluating the reproductive health effects of employment in the flower industry on reproductive health in this population.

  15. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens

    Science.gov (United States)

    Makino, Takashi T.; Yokoyama, Jun

    2015-01-01

    When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly. PMID:26650121

  16. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens.

    Directory of Open Access Journals (Sweden)

    Takashi T Makino

    Full Text Available When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies, and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant-pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly.

  17. Formulating Phenological Equations for Rainfed Upland Rice in Bastar Plateau and Assessment of Genotype X Environment Interaction

    International Nuclear Information System (INIS)

    Kumar, P.; Sao, A.; Salam, J. L.; Kanwar, R. R.; Kumari, P.

    2016-01-01

    Upland rice encompasses 12 percent of global rice production area in the lowest yielding ecosystem, produced by poorest farmers with 0.5 ha average operational holdings. Due to subtle selection over long period of time, upland rice has become drought tolerant potential crop and harbors great genetic potential for future water limited rice. It has also precious traits like high pestilent insect resistant possibility and short growing season. In present investigation, 18 new genotypes were tested for upland ecology during Kharif 2013 and 2014, to identify promising genotypes and formulate phenological relationships at phenotypic and genotypic levels and estimate G x E interactions with uncertain weather parameters. The test populations exhibited enough variation to carry on crop breeding research however, genotypes responded differentially to water stress and late season drought with respect to morphological and yield traits. Considering secondary productivity factors (SPF), days to flowering, plant height, panicles per unit area, spikelet fertility and harvest index was observed to be major contributors for water scarce survivals. Biased selection for earliness cause reduction in grain yield due to shortened vegetative phase hence, research is to be focused to minimize the yield penalty associated with earliness. Among the genotypes evaluated, IR-83381-B-B-137-3 and IR-86857-46-1-1-2 was found to be promising for rainfed breeding programme as parent material. Based on results of farmer field and station trials, existing upland rice variety CR 40 is concluded as promising for upland ecology and will be crucial to uplift the economy of poor and marginal farmers of Chhattisgarh. (author)

  18. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in auto tetraploid rice

    International Nuclear Information System (INIS)

    Shahid, M.Q.; Xiong, C.Z.; Juan, L.Y.; Ming, X.H.

    2011-01-01

    Genetic analysis and genotype-by-environment interaction for important traits of auto tetraploid rice were evaluated by additive, dominance and additive X additive model. It was show n that genetic effects had more influence on grain yield and other quantitative traits of auto tetraploid rice than genotypic environment interaction. Plant height, panicle length, seed set , grain yield, dry matter production and 1000-grain weight we re mainly regulated by dominance variance. Additive and additive X additive gene action constructed the main proportion of genetic variance for heading date (flowering), number of panicles, grains per panicle, grain length, however grain width was supposed to be affected by additive X additive and dominance variance. Flag leaf length and width, fresh weight, peduncle length, unfilled grains and awn length were greatly influenced by genotypic environment interaction. Heading date produced highly negative heterosis over mid parent (H pm) and better parent ( H pb), whereas H pm and H pb were detected to be highly positive and significant for grain yield, seed set, peduncle length, filled grains and 1000-grain weight in F/sub 1/ and F/sub 2/ generations. The results indicated that auto tetraploid hybrids 96025 X Jackson (indica/japonica), 96025 X Linglun (indica/indica) and Linglun X Jackson (indica/japonica) showed highly significant hybrid vigor with improved seed set percentage and grain yield. These results suggest that intra-specific auto tetraploid rice hybrids have more hybrid vigor as compared to intra-sub specific auto tetraploid rice hybrids and auto tetraploid rice has the potential to be used for further studies and commercial application. (author)

  19. Flower-like Ag/AgCl microcrystals: Synthesis and photocatalytic activity

    International Nuclear Information System (INIS)

    Daupor, Hasan; Wongnawa, Sumpun

    2015-01-01

    Silver/silver chloride (Ag/AgCl) composites with a novel flower-like morphology were prepared via a hot precipitation assisted by the vinyl acetate monomer (VAM) route. An aqueous solution of AlCl 3 was mixed with the vinyl acetate monomer and acetic acid before adding a AgNO 3 solution at a temperature of 100 °C. The octapod shaped flower-like Ag/AgCl particles (or “flower-like Ag/AgCl” hereinafter) has eight petals each of which was about 7–11 μm in length. The flower-like octapods were formed by preferential overgrowth along the <111> directions of the cubic seeds. Detailed studies of the growth process at different AlCl 3 concentrations revealed that the concave cube developed into a Rubik's cube where eight corners grew further into the flower-like structures. The VAM and acetic acid concentration strongly affected the growth of the Ag/AgCl to the flower-like structure and their optimum concentrations were determined. The morphologies of these particles were carefully examined by scanning electron microscopy (SEM). The crystal structures and orientation relationship were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffused reflectance spectroscopy (DRS). The flower-like Ag/AgCl microcrystals were tested for their photocatalytic degradation of orange G dye (OG) catalyzed by visible light. From comparative test runs, the flower-like Ag/AgCl exhibited better photocatalytic activity than simple and commercial Ag/AgCl particles. - Highlights: • Interesting transformation of microcrystals Ag/AgCl from concave cube via Rubik's cube to flower-like shape. • The first to use VAM as morphology control reagent. • High photocatalytic activity under visible light irradiation

  20. In vitro flowering ofDendrobium candidum.

    Science.gov (United States)

    Wang, G; Xu, Z; Chia, T F; Chua, N H

    1997-02-01

    Dendrobium candidum, a wild orchid species from China, normally requires three to four years of cultivation before it can produce flowers. The effects of plant hormones and polyamines on flower initiation of this species in tissue culture were investigated. The addition of spermidine, or BA, or the combination of NAA and BA to the culture medium can induce protocorms or shoots to flower within three to six months with a frequency of 31.6%-45.8%. The flowering frequency can be further increased to 82.8 % on the average by pre-treatment of protocorms in an ABA-containing medium followed by transfer onto MS medium with BA. The induction of precocious flowering depends on the developmental stage of the experimental materials (protocorms, shoots and plantlets) used, and usually occurs only when mt formation is inhibited.

  1. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry.

    Science.gov (United States)

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Jiang, Ning; Hancock, James F

    2013-11-01

    The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering. Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6-10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic 'Aurora' and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

  2. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards.

    Science.gov (United States)

    Campbell, Alistair John; Wilby, Andrew; Sutton, Peter; Wäckers, Felix

    2017-09-20

    Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators ('concealed-nectar plants'); (2) natural enemies ('open-nectar plants'); or (3) both groups concurrently (i.e., 'multi-functional' mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that 'multi-functional' flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.

  3. Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color.

    Science.gov (United States)

    Iwashina, Tsukasa; Yamaguchi, Masa-atsu; Nakayama, Masayoshi; Onozaki, Takashi; Yoshida, Hiroyuki; Kawanobu, Shuji; Onoe, Hiroshi; Okamura, Masachika

    2010-12-01

    Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, 1H and 13C NMR spectra as kaempferol 3-O-neohesperidoside, kaempferol 3-O-sophoroside and kaempferol 3-O-glucosyl-(1 --> 2)-[rhamnosyl-(1 --> 6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-O-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers.

  4. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  5. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Pollination Services of Mango Flower Pollinators

    Science.gov (United States)

    Huda, A. Nurul; Salmah, M. R. Che; Hassan, A. Abu; Hamdan, A.; Razak, M. N. Abdul

    2015-01-01

    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. ‘Sala’ and ‘Chok Anan’. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors. PMID:26246439

  7. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB.

    Science.gov (United States)

    Aya, Koichiro; Ueguchi-Tanaka, Miyako; Kondo, Maki; Hamada, Kazuki; Yano, Kentaro; Nishimura, Mikio; Matsuoka, Makoto

    2009-05-01

    Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and beta-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-beta-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation.

  8. Strategy to Develop Rice Farm Business Insurance in PT Asuransi Jasa Indonesia

    Directory of Open Access Journals (Sweden)

    Graita Gaiety Jatmiko

    2017-09-01

    Full Text Available Agricultural sector has very significant roles in Indonesian economy, some of which are as the contributor of the second highest PDB and the biggest labor absorber with the contribution of 13.6% and 32% respectively. Even though, it is the biggest labor absorber,agricultural business is not interesting to the community nowadays. This is because this business has a quite high risk to fail to harvest. This research aimed to analyze the external and internal factors affecting the development of Rice Farm Business Insurance (AUTP, to know the position of the company in carrying out the AUTP, and to formulate the strategy to develop AUTP in PT Asuransi Jasa Indonesia (Jasindo. This research used descriptive method through case study with the analysis equipment, like Five Forces Porter, IFE/EFE Matrix, IE Matrix, SWOT, and QSPM. The results showed that there were several strategic factors influencing the implementation of AUTP, i.e. a wide market opportunity. The position of the company in the implementation of AUTP was in the position of hold and maintain with the recommended strategy, of market penetration and product development. In this research, eight alternative strategies were obtained with the with the highest priority was to expand the distribution channel network.Keywords: development stragety, rice farm business insurance,agricultural risk, Jasindo, QSPM

  9. Methylation controls the low temperature induction of flowering in Arabidopsis.

    Science.gov (United States)

    Dennis, E S; Bilodeau, P; Burn, J; Finnegan, E J; Genger, R; Helliwell, C; Kang, B J; Sheldon, C C; Peacock, W J

    1998-01-01

    Control of the transition to flowering is critical for reproductive success of a plant. Studies in Arabidopsis have led us to suggest how this species has harnessed the environmental cue of a period of low temperature to ensure flowering occurs at an appropriate time. We propose that Arabidopsis has both vernalization-independent and vernalization-dependent pathways for the initiation of inflorescence development in the shoot apex. The vernalization-independent pathway may be concerned with the supply of carbohydrate to the shoot apex. In late flowering ecotypes which respond to vernalization the vernalization-independent pathway is blocked by the action of two dominant repressors of flowering, FRI and FLC, which interact to produce very late flowering plants which respond strongly to vernalization. We have isolated a gene which may correspond to FLC. We suggest the vernalization-dependent pathway, which may be concerned with apical GA biosynthesis, is blocked by methylation of a gene critical for flowering. This gene may correspond to that encoding kaurenoic acid hydroxylase (KAH), an enzyme catalysing a step in the GA biosynthetic pathway. Under this scheme vernalization causes unblocking of this pathway by demethylation possibly of the KAH gene and consequent biosynthesis of active GAs in the apex.

  10. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure.

    Science.gov (United States)

    Iordachescu, Mihaela; Verlinden, Sven

    2005-08-01

    Using a combination of approaches, three EIN3-like (EIL) genes DC-EIL1/2 (AY728191), DC-EIL3 (AY728192), and DC-EIL4 (AY728193) were isolated from carnation (Dianthus caryophyllus) petals. DC-EIL1/2 deduced amino acid sequence shares 98% identity with the previously cloned and characterized carnation DC-EIL1 (AF261654), 62% identity with DC-EIL3, and 60% identity with DC-EIL4. DC-EIL3 deduced amino acid sequence shares 100% identity with a previously cloned carnation gene fragment, Dc106 (CF259543), 61% identity with Dianthus caryophyllus DC-EIL1 (AF261654), and 59% identity with DC-EIL4. DC-EIL4 shared 60% identity with DC-EIL1 (AF261654). Expression analyses performed on vegetative and flower tissues (petals, ovaries, and styles) during growth and development and senescence (natural and ethylene-induced) indicated that the mRNA accumulation of the DC-EIL family of genes in carnation is regulated developmentally and by ethylene. DC-EIL3 mRNA showed significant accumulation upon ethylene exposure, during flower development, and upon pollination in petals and styles. Interestingly, decreasing levels of DC-EIL3 mRNA were found in wounded leaves and ovaries of senescing flowers whenever ethylene levels increased. Flowers treated with sucrose showed a 2 d delay in the accumulation of DC-EIL3 transcripts when compared with control flowers. These observations suggest an important role for DC-EIL3 during growth and development. Changes in DC-EIL1/2 and DC-EIL4 mRNA levels during flower development, and upon ethylene exposure and pollination were very similar. mRNA levels of the DC-EILs in styles of pollinated flowers showed a positive correlation with ethylene production after pollination. The cloning and characterization of the EIN3-like genes in the present study showed their transcriptional regulation not previously observed for EILs.

  11. /sup 32/P tracer studies on the efficiency of ammonium nitrate phosphates and polyphosphates for growing rice on different soil types

    Energy Technology Data Exchange (ETDEWEB)

    Sadanandan, A K; Mohanty, S K; Patnaik, S [Central Rice Research Inst., Cuttack (India); Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1980-12-01

    A pot experiment was conducted with /sup 32/P tagged phosphates to evaluate the efficiency of ammonium nitrate phosphate containing 30, 50 and 70 percent of P in the water soluble form, tri- and tetra-ammonium pyrophosphate, as compared with mono-ammonium ortho-phosphate (MAP) for growing rice on red, laterite and black soils, with regard to recovery of applied P in soil, dry matter production and utilization of applied P by crop at flowering and grain and straw yield at harvest. Ammonium nitrate phosphates containing 50 percent or more of P in the water soluble form could be used for growing rice on all soil types. The pyrophosphates were as efficient as MAP on soils having pH 6.2 and above but less efficient in soils of lower pH.

  12. Microbial Activity and Silica Degradation in Rice Straw

    Science.gov (United States)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  13. Analysis of rice purchase decision on rice consumer in Bandung city

    Science.gov (United States)

    Kusno, K.; Imannurdin, A.; Syamsiyah, N.; Djuwendah, E.

    2018-03-01

    This study was conducted at three kinds of purchase location which were traditional market, rice kiosk, and supermarket in Bandung City, with survey data of 108 respondents which were selected by systematic random sampling. The aim of this study is to (1) identify consumer characteristics, (2) identify which atribute is considered by consumer in buying rice, and (3) analyze the relationship between purchase decision and income class. Data were analyzed by descriptive analysis and Chi Square test. The results showed most consumers in the traditional market were middle-educated and lower middle-income, at the rice kiosk, the consumer were generally middle-educated and middle-income, and in the supermarkets, the majority were high-educated and upper middle-income consumers. “Kepulenan” be the first priority of most consumers, but for the lower-middle class, the main priority was price. Thus, in case of scarcity and rice price increase, the government should immediately arrange market operations which targeting to lower-middle class consumers. There was a significant relationship between (1) the quality of rice consumed, (2) the frequency of rice purchase per month, and (3) attitudes toward rice price increase; each with the income class. Although the price of rice increase, consumers of middle and upper-middle were remain loyal to the quality of rice they consumed. This indicates rice market in Bandung city is an ideal market for premium rice so that traders and producers are expected to maintain the quality of rice, such as keep using superior seeds and applying good cultivation based on Good Agricultural Practice (GAP) rules.

  14. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A. [University of Aberdeen, Institute of Biological and Environmental Sciences, Aberdeen (United Kingdom); Lombi, Enzo; Donner, Erica [University of South Australia, Centre for Environmental Risk Assessment and Remediation, Mawson Lakes, South Australia (Australia); Jonge, Martin D. de [Australian Synchrotron, X-ray Fluorescence Microscopy, Clayton, Victoria (Australia); Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou [Dartmouth College, Department of Biological Sciences, Hanover, NH (United States)

    2012-04-15

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. (orig.)

  15. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    Science.gov (United States)

    Carey, Anne-Marie; Lombi, Enzo; Donner, Erica; de Jonge, Martin D.; Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou; Price, Adam H.; Meharg, Andrew A.

    2014-01-01

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. PMID:22159463

  16. Recent advances on bioactivities of black rice.

    Science.gov (United States)

    Dias, Aécio L de S; Pachikian, Barbara; Larondelle, Yvan; Quetin-Leclercq, Joëlle

    2017-11-01

    Black rice has been consumed for centuries in Asian countries such as China, Korea or Japan. Nowadays, extracts and derivatives are considered as beneficial functional foods because of their high content in several bioactive molecules such as anthocyanins, other phenolics and terpenoids. The purpose of this review is to summarize and discuss recent developments on black rice bioactivities. Some sterols and triterpenoids with potential anticancer properties already tested in vitro and in vivo have been isolated and identified from bran extracts of black rice. Protection against osteoporosis has been suggested for the first time for black rice extracts. Because of its antioxidant and anti-inflammatory properties, black rice also protects liver and kidney from injuries. One clinical study reported the interest of black rice in case of alcohol withdrawal. Several advances have been recently achieved on the understanding of the potential biological effects of black rice and its derivatives. They further confirm that black rice should be considered as a promising source of health-promoting functional foods targeting a large set of noninfectious diseases. However, more clinical studies are needed to support the findings highlighted in this review.

  17. Mobile Application to Identify Indonesian Flowers on Android Platform

    Directory of Open Access Journals (Sweden)

    Tita Karlita

    2013-12-01

    Full Text Available Although many people love flowers, they do not know their name. Especially, many people do not recognize local flowers. To find the flower image, we can use search engine such as Google, but it does not give much help to find the name of local flower. Sometimes, Google cannotshow the correct name of local flowers. This study proposes an application to identify Indonesian flowers that runs on the Android platform for easy use anywhere. Flower recognition is based on the color features using the Hue-Index, shape feature using Centroid Contour Distance (CCD, and the similarity measurement using Entropy calculations. The outputs of this application are information about inputted flower image including Latinname, local name, description, distribution and ecology. Based on tests performed on 44 types of flowers with 181 images in the database, the best similarity percentage is 97.72%. With this application, people will be expected to know more about Indonesia flowers. Keywords: Indonesian flowers, android, hue-index, CCD, entropy

  18. Flowering biology of three taxa of the genus Scilla L. (Hyacinthaceae and flower visitation by pollinating insects

    Directory of Open Access Journals (Sweden)

    Beata Żuraw

    2012-12-01

    Full Text Available Squill of the family Hyacinthaceae is a small bulb perennial. The present study on flowering and pollination of Scilla sibirica Andr., S. sibirica 'Alba', and S. bifolia L. was conducted in the years 1995, 1997, and 1999 in the Botanical Garden of the Maria Curie-Skłodowska University in Lublin. The plants flowered from the end of March until the middle of May. The duration of flowering of individual taxa was similar and it averaged 20 days (Scilla sibirica, 21 days (S. sibirica 'Alba', and 23 days (S. bifolia. The opening of flower buds always started around 9.00 am and lasted, depending on the taxon, until 3.00 pm (Scilla sibirica 'Alba', 4.00 pm (S. bifolia, and 5.00 pm (S. sibirica. The flowers were visited by bees (Apoidea, primarily the honey bee (Apis mellifera L., bumblebee (Bombus L., and solitary bees. Numerous honey bee foragers were observed; they bit through the anther walls and even attempted to open still closed flower buds in order to reach the pollen.

  19. Flower Development of Lilium longiflorum: Characterization of MADS-box transcription factors

    NARCIS (Netherlands)

    Benedito, V.A.

    2004-01-01

    Lily (Liliumspp.) is among the most traditional and beloved ornamental flowers worldwide. The genus Lilium comprises almost one hundred species, among which is the primary subject of our research, described in this thesis, the species Lilium

  20. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available In Arabidopsis and rice, miR159-regulated GAMYB-like family transcription factors function in flower development and gibberellin (GA signaling in cereal aleurone cells. In this study, the involvement of miR159 in the regulation of its putative target TaGAMYB and its relationship to wheat development were investigated. First, we demonstrated that cleavage of TaGAMYB1 and TaGAMYB2 was directed by miR159 using 5'-RACE and a transient expression system. Second, we overexpressed TamiR159, TaGAMYB1 and mTaGAMYB1 (impaired in the miR159 binding site in transgenic rice, revealing that the accumulation in rice of mature miR159 derived from the precursor of wheat resulted in delayed heading time and male sterility. In addition, the number of tillers and primary branches in rice overexpressing mTaGAMYB1 increased relative to the wild type. Our previous study reported that TamiR159 was downregulated after two hours of heat stress treatment in wheat (Triticum aestivum L.. Most notably, the TamiR159 overexpression rice lines were more sensitive to heat stress relative to the wild type, indicating that the downregulation of TamiR159 in wheat after heat stress might participate in a heat stress-related signaling pathway, in turn contributing to heat stress tolerance.

  1. Evaluation of real-time PCR detection methods for detecting rice products contaminated by rice genetically modified with a CpTI-KDEL-T-nos transgenic construct.

    Science.gov (United States)

    Nakamura, Kosuke; Akiyama, Hiroshi; Kawano, Noriaki; Kobayashi, Tomoko; Yoshimatsu, Kayo; Mano, Junichi; Kitta, Kazumi; Ohmori, Kiyomi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko

    2013-12-01

    Genetically modified (GM) rice (Oryza sativa) lines, such as insecticidal Kefeng and Kemingdao, have been developed and found unauthorised in processed rice products in many countries. Therefore, qualitative detection methods for the GM rice are required for the GM food regulation. A transgenic construct for expressing cowpea (Vigna unguiculata) trypsin inhibitor (CpTI) was detected in some imported processed rice products contaminated with Kemingdao. The 3' terminal sequence of the identified transgenic construct for expression of CpTI included an endoplasmic reticulum retention signal coding sequence (KDEL) and nopaline synthase terminator (T-nos). The sequence was identical to that in a report on Kefeng. A novel construct-specific real-time polymerase chain reaction (PCR) detection method for detecting the junction region sequence between the CpTI-KDEL and T-nos was developed. The imported processed rice products were evaluated for the contamination of the GM rice using the developed construct-specific real-time PCR methods, and detection frequency was compared with five event-specific detection methods. The construct-specific detection methods detected the GM rice at higher frequency than the event-specific detection methods. Therefore, we propose that the construct-specific detection method is a beneficial tool for screening the contamination of GM rice lines, such as Kefeng, in processed rice products for the GM food regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Chemical, physical, and sensory characteristics of analog rice developed from the mocaf, arrowroof, and red bean flour

    Science.gov (United States)

    Wahjuningsih, S. B.; Susanti, S.

    2018-01-01

    This research was aimed to analyze the chemical, physical, and sensory characteristics of the analog rice developed from a composite formula consisting of mocaf, arrowroot, and red bean flour. Experiment was designed into 5 different composition types i.e B1 (90%: 0%: 10%), B2 (80%:10%: 10%), B3 (70% : 20% : 10%), B4 (60%: 30%:10%), and B5 (50%: 40%: 10%) which in each type was repeated in 4 times. Carrageenan was used as a binder in the making process of those analog rice. Investigation procedure was carried out into several stages such as preparation and characterization of raw materials, production of analog rice in composite formula, then the testing of its chemical and sensory properties. Chemical characteristics were evaluated about the level of starch, amylose, dietary fiber, and resistant starch while sensory characteristics were examined about the texture, flavor, and aroma. The result showed that based on the sensory test, the best composite formula of rice analog was B2 (ratio flour of mocaf: Arrowroot: Red bean = 80:10:10). In addition, B2 formula possessed the chemical characteristics similar with the truth rice either in water content (12.18%), ash (2.63%), protein (6.17%), fat (1.31%), carbohydrate (89.88%), starch (73.29%), amylose (24.91%), total dietary fiber (7.04%), or resistant starch (6.71%). Furthermore, the higher of arrowroot flour proportion, the greater of amylose, dietary fiber and resistant starch containing in the rice analog. In the opposite, its starch content was getting down.

  3. Flower development as an interplay between dynamical physical fields and genetic networks.

    Directory of Open Access Journals (Sweden)

    Rafael Ángel Barrio

    Full Text Available In this paper we propose a model to describe the mechanisms by which undifferentiated cells attain gene configurations underlying cell fate determination during morphogenesis. Despite the complicated mechanisms that surely intervene in this process, it is clear that the fundamental fact is that cells obtain spatial and temporal information that bias their destiny. Our main hypothesis assumes that there is at least one macroscopic field that breaks the symmetry of space at a given time. This field provides the information required for the process of cell differentiation to occur by being dynamically coupled to a signal transduction mechanism that, in turn, acts directly upon the gene regulatory network (GRN underlying cell-fate decisions within cells. We illustrate and test our proposal with a GRN model grounded on experimental data for cell fate specification during organ formation in early Arabidopsis thaliana flower development. We show that our model is able to recover the multigene configurations characteristic of sepal, petal, stamen and carpel primordial cells arranged in concentric rings, in a similar pattern to that observed during actual floral organ determination. Such pattern is robust to alterations of the model parameters and simulated failures predict altered spatio-temporal patterns that mimic those described for several mutants. Furthermore, simulated alterations in the physical fields predict a pattern equivalent to that found in Lacandonia schismatica, the only flowering species with central stamens surrounded by carpels.

  4. Evaluation of growth and flowering of Chenopodium quinoa Willd. under Polish conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Gęsiński

    2012-12-01

    Full Text Available The material presented refers to the estimation of growth and the flowering (Chenopodium quinoa Willd. under Polish conditions. The species has been a South-American pseudocereal cultivated in the traditional form in the Andean region for over 5 thousand years. Its advantage, apart from low soil and climate requirements, is that it shows high nutritive value. The Chenopodium quinoa protein is especially valuable with its amino acid composition which is better balanced than that of wheat or maize. It shows a better share of egzogenic aminoacids. Field examinations were carried out in 1999-2001 at the Experiment Station of Cultivar Testing at Chrząstowo. The experiment involved two cultivars from two various growing regions: America and Europe. Analyses were made to include development stages, plant growth dynamics, inflorescences development dynamics, inflorescence habit and flowering. Differences were recorded in the growth and development models of the cultivars researched. The European cultivar had a short compact inflorescence with a short flowering period, reaching 120 cm. American cultivar plants were high (160 cm; they showed a slower continuous growth, loose big-in-size inflorescence, and a long period of flowering. The plants ended their growing season over the flowering stage or seed formation. The adequate growth, the course of flowering and, as a result, a stable yielding of the European cultivar make the group suitable for the cultivation under Polish conditions. This breeding group should also be the parent material for the cultivation of the Polish cultivar of Chenopodium quinoa.

  5. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae).

    Science.gov (United States)

    Chen, Hao; Zhang, Guoan; Zhang, Qifa; Lin, Yongjun

    2008-02-01

    Ten transgenic Bacillus thuringiensis Bt rice, Oryza sativa L., lines with different Bt genes (two Cry1Ac lines, three Cry2A lines, and five Cry9C lines) derived from the same variety Minghui 63 were evaluated in both the laboratory and the field. Bioassays were conducted by using the first instars of two main rice lepidopteran insect species: yellow stem borer, Scirpophaga incertulas (Walker) and Asiatic rice borer, Chilo suppressalis (Walker). All transgenic lines exhibited high toxicity to these two rice borers. Field evaluation results also showed that all transgenic lines were highly insect resistant with both natural infestation and manual infestation of the neonate larvae of S. incertulas compared with the nontransformed Minghui63. Bt protein concentrations in leaves of 10 transgenic rice lines were estimated by the sandwich enzyme-linked immunosorbent assay. The cry9C gene had the highest expression level, next was cry2A gene, and the cry1Ac gene expressed at the lowest level. The feeding behavior of 7-d-old Asiatic rice borer to three classes of Bt transgenic rice lines also was detected by using rice culm cuttings. The results showed that 7-d-old larvae of Asiatic rice borer have the capacity to distinguish Bt and non-Bt culm cuttings and preferentially fed on non-Bt cuttings. When only Bt culm cuttings with three classes of different Bt proteins (CrylAc, Cry2A, and Cry9C) were fed, significant distribution difference of 7-d-old Asiatic rice borer in culm cuttings of different Bt proteins also was found. In the current study, we evaluate different Bt genes in the same rice variety in both the laboratory and the field, and also tested feeding behavior of rice insect to these Bt rice. These data are valuable for the further development of two-toxin Bt rice and establishment of appropriate insect resistance management in the future.

  6. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice.

    Science.gov (United States)

    Magome, Hiroshi; Nomura, Takahito; Hanada, Atsushi; Takeda-Kamiya, Noriko; Ohnishi, Toshiyuki; Shinma, Yuko; Katsumata, Takumi; Kawaide, Hiroshi; Kamiya, Yuji; Yamaguchi, Shinjiro

    2013-01-29

    Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.

  7. Rice microstructure

    Science.gov (United States)

    An understanding of plant structure is desirable to obtain a clear idea of the overall impact of a crop. A mature rice plant consists of leafy components (left in the field post-harvest) and paddy rice (collected). The rice plant is supported by a hollow stem (culm) with leaf sheaths attached to nod...

  8. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Science.gov (United States)

    Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi

    2015-01-01

    CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  9. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Directory of Open Access Journals (Sweden)

    Xiaoding Ma

    Full Text Available CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483 exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  10. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  11. Stamina pistilloida, the Pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves.

    Science.gov (United States)

    Taylor, S; Hofer, J; Murfet, I

    2001-01-01

    Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2-mutations known to influence leaf, inflorescence, and flower development in pea-suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea.

  12. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  13. Process Development in the Preparation and Characterization of Silicon Alkoxide From Rice Husk

    International Nuclear Information System (INIS)

    Khin San Win; Toe Shein; Nyunt Wynn

    2011-12-01

    The preparation and characterization of silicon alkoxide (silicon isopropoxide) from rice husk char has been studied. In the investigation, four kinds of Myanmar paddies were chemically assayed. Analyses showed the silicon contend varies from 73-92% . Based on the silicon content, the process development in the production of silicon isopropoxide was carried out. In the process development, silicon isopropoxide with a yield of 44.21% was achieved by the direct reaction of isopropanol in situ by silicon tetrachloride, which was directly produced by the chlorination of rice husk char at the high temperature range of 900-1100 C. The novelity of the process was that, silicon isopropoxide was achieved in situ and not by using the old process, where generally isopropanol was reacted with silicon tetrachloride. The physiochemical properties of silicon isopropoxide was confirmed by conventional and modern techniques. In the investigation, the starting materials, silica in the reaction products were characterized, identified and confirmed by modren techniques. Silicon isopropoxide can be a sources of pore silica whereby silicon of 97-99% of purity can be achieved.

  14. [Nitrogen cycling in rice-duck mutual ecosystem during double cropping rice growth season].

    Science.gov (United States)

    Zhang, Fan; Chen, Yuan-Quan; Sui, Peng; Gao, Wang-Sheng

    2012-01-01

    Raising duck in paddy rice field is an evolution of Chinese traditional agriculture. In May-October 2010, a field experiment was conducted in a double cropping rice region of Hunan Province, South-central China to study the nitrogen (N) cycling in rice-duck mutual ecosystem during early rice and late rice growth periods, taking a conventional paddy rice field as the control. Input-output analysis method was adopted. The N output in the early rice-duck mutual ecosystem was 239.5 kg x hm(-2), in which, 12.77 kg x hm(-2) were from ducks, and the N output in the late rice-duck mutual ecosystem was 338.7 kg x hm(-2), in which, 23.35 kg x hm(-2) were from ducks. At the present N input level, there existed soil N deficit during the growth seasons of both early rice and late rice. The N input from duck sub-system was mainly from the feed N, and the cycling rate of the duck feces N recycled within the system was 2.5% during early rice growth season and 3.5% during late rice growth season. After late rice harvested, the soil N sequestration was 178.6 kg x hm(-2).

  15. Transcriptomic Analysis Reveals Candidate Genes for Female Sterility in Pomegranate Flowers

    Directory of Open Access Journals (Sweden)

    Lina Chen

    2017-08-01

    Full Text Available Pomegranate has two types of flowers on the same plant: functional male flowers (FMF and bisexual flowers (BF. BF are female-fertile flowers that can set fruits. FMF are female-sterile flowers that fail to set fruit and that eventually drop. The putative cause of pomegranate FMF female sterility is abnormal ovule development. However, the key stage at which the FMF pomegranate ovules become abnormal and the mechanism of regulation of pomegranate female sterility remain unknown. Here, we studied ovule development in FMF and BF, using scanning electron microscopy to explore the key stage at which ovule development was terminated and then analyzed genes differentially expressed (differentially expressed genes – DEGs between FMF and BF to investigate the mechanism responsible for pomegranate female sterility. Ovule development in FMF ceased following the formation of the inner integument primordium. The key stage for the termination of FMF ovule development was when the bud vertical diameter was 5.0–13.0 mm. Candidate genes influencing ovule development may be crucial factors in pomegranate female sterility. INNER OUTER (INO/YABBY4 (Gglean016270 and AINTEGUMENTA (ANT homolog genes (Gglean003340 and Gglean011480, which regulate the development of the integument, showed down-regulation in FMF at the key stage of ovule development cessation (ATNSII. Their upstream regulator genes, such as AGAMOUS-like (AG-like (Gglean028014, Gglean026618, and Gglean028632 and SPOROCYTELESS (SPL homolog genes (Gglean005812, also showed differential expression pattern between BF and FMF at this key stage. The differential expression of the ethylene response signal genes, ETR (ethylene-resistant (Gglean022853 and ERF1/2 (ethylene-responsive factor (Gglean022880, between FMF and BF indicated that ethylene signaling may also be an important factor in the development of pomegranate female sterility. The increase in BF observed after spraying with ethephon supported this

  16. Carbohydrate Status of Tulip Bulbs during Cold-Induced Flower Stalk Elongation and Flowering.

    Science.gov (United States)

    Lambrechts, H.; Rook, F.; Kolloffel, C.

    1994-01-01

    The effect of a cold treatment on the carbohydrate status of the scales and flower stalk of Tulipa gesneriana L. cv Apeldoorn bulbs during growth after planting was studied and compared with bulbs not given cold treatment. Bulbs were stored dry for 12 weeks at 5[deg]C (precooled) or 17[deg]C (noncooled). Only the 5[deg]C treatment led to rapid flower stalk elongation and flowering following planting at higher temperatures. Precooling enhanced mobilization of starch, fructans, and sucrose in the scales. The cold-stimulated starch breakdown was initially accompanied by increased [alpha]-amylase activity per scale. In noncooled bulbs, [alpha]-amylase activity slightly decreased or remained more or less constant. Cold-induced flower stalk elongation was partially accompanied by a decrease in the sucrose content and an increase in the glucose content and invertase activity per g dry weight. The starch content in internodes initially decreased and subsequently increased; [alpha]-amylase activity per g dry weight of the lowermost internode showed a peak pattern during starch breakdown and increased thereafter. The internodes of noncooled bulbs, on the contrary, accumulated sucrose. Their glucose content and invertase activity per g dry weight remained low. Starch breakdown was not found and [alpha]-amylase activity per g dry weight of the lowermost internode remained at a low level. Precooling of tulip bulbs thus favors reserve mobilization in the scales and flower stalk and glucose accumulation in the elongating internodes. PMID:12232100

  17. Co-development of climate smart flooded rice farming systems

    Science.gov (United States)

    de Neergaard, Andreas; Stoumann Jensen, Lars; Ly, Proyuth; Pandey, Arjun; Duong Vu, Quynh; Tariq, Azeem; Islam, Syed; van Groenigen, Jan Willem; Sander, Bjoern Ole; de Tourdonnet, Stephane; Van Mai, Trinh; Wassmann, Reiner

    2017-04-01

    Mid-season drainage in flooded rice is known to reduce CH4 emission, while effects on N2O emission are more variable. Banning of crop-residue burning, and growing markets for organically fertilized rice, are resulting in systems with larger reactive C input, and potentially larger methane emissions. Tight farming systems with 2 or 3 annual crops are effective in mitigating emissions, in that the land sparing value is high, but put serious constraints on mitigation options under increased C input scenarios. In a series of field (Cambodia, Philippines and Vietnam) and greenhouse experiments, we investigated the effect of a variety of organic amendments and wetting and drying cycles on yield and GHG emissions. Specifically we have tested the effect of inserting very early, or even-pre-planting drainage, as a means to accelerate turnover of straw or other C sources, and reduce methane emission later in the season. Overall, our results showed that drying periods had minimal impact on yields, while reducing overall GHG emission. Methane emission was strongly controlled by C availability in the substrate (on equal total C-input basis), increasing in the order: biochar-composts-animal manure-fresh material. Nitrous oxide emissions generally increased with draining cycles, but did not lead to overall increase in GHG emissions as its contribution was balanced by lowered CH4 emissions. Growth chamber experiments showed that methane emission was significantly reduced for extended periods after re-flooding, hence the idea of early drainage was developed. Meanwhile, Cambodian farmers expressed concerns over re-supply of water after drainage. In response to that, we tested if early-season drainage could replace mid-season drainage. With addition of labile carbon substrates (straw) duration of early season drainage was more important for reducing GHG emissions, than duration of mid-season drainage, and had the highest potential for total emission reduction. In a farmers

  18. Phenolic compounds and antioxidant activity of edible flowers

    Directory of Open Access Journals (Sweden)

    Marta Natalia Skrajda

    2017-08-01

    Full Text Available Introduction: Edible flowers has been used for thousands of years. They increase aesthetic appearance of food, but more often they are mentioned in connection with biologically active substances. The main ingredient of the flowers is water, which accounts for more than 80%. In small amounts, there are also proteins, fat, carbohydrates, fiber and minerals. Bioactive substances such as carotenoids and phenolic compounds determine the functional properties of edible flowers. Aim: The aim of this work was to characterize the phenolic compounds found in edible flowers and compare their antioxidant activity. Results: This review summarizes current knowledge about the usage of edible flowers for human nutrition. The work describes the antioxidant activity and phenolic compounds of some edible flowers. Based on literature data there is a significant difference both in content of phenolic compounds and antioxidant activity between edible flowers. These difference reaches up to 3075-fold in case of antioxidant potential. Among described edible flowers the most distinguishable are roses, peonies, osmanthus fragans and sambuco nero. Conclusions: Edible flowers are the new source of nutraceuticals due to nutritional and antioxidant values.

  19. Effects of Extraction Methods on Phytochemicals of Rice Bran Oils Produced from Colored Rice.

    Science.gov (United States)

    Mingyai, Sukanya; Srikaeo, Khongsak; Kettawan, Aikkarach; Singanusong, Riantong; Nakagawa, Kiyotaka; Kimura, Fumiko; Ito, Junya

    2018-02-01

    Rice bran oil (RBO) especially from colored rice is rich in phytochemicals and has become popular in food, cosmetic, nutraceutical and pharmaceutical applications owing to its offering health benefits. This study determined the contents of phytochemicals including oryzanols, phytosterols, tocopherols (Toc) and tocotrienols (T3) in RBOs extracted using different methods namely cold-press extraction (CPE), solvent extraction (SE) and supercritical CO 2 extraction (SC-CO 2 ). Two colored rice, Red Jasmine rice (RJM, red rice) and Hom-nin rice (HN, black rice), were studied in comparison with the popular Thai fragrant rice Khao Dawk Mali 105 (KDML 105, white rice). RBOs were found to be the rich source of oryzanols, phytosterols, Toc and T3. Rice varieties had a greater effect on the phytochemicals concentrations than extraction methods. HN rice showed the significantly highest concentration of all phytochemicals, followed by RJM and KDML 105 rice, indicating that colored rice contained high concentration of phytochemicals in the oil than non-colored rice. The RBO samples extracted by the CPE method had a greater concentration of the phytochemicals than those extracted by the SC-CO 2 and SE methods, respectively. In terms of phytochemical contents, HN rice extracted using CPE method was found to be the best.

  20. Comprehensive Cloning of Prunus mume Dormancy Associated MADS-Box Genes and Their Response in Flower Bud Development and Dormancy

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    2018-02-01

    Full Text Available Dormancy Associated MADS-box genes are SVP/MADs-box members and supposed to play crucial roles in plant dormancy of perennial species. In Prunus mume, PmDAM6 has been previously identified to induce plant dormancy. In the current study, six PmDAMs were cloned in P. mume and functionally analyzed in yeast and tobacco to detect the roles of the genes paralogous to PmDAM6. The expression patterns together with sequence similarities indicate that PmDAMs are divided into two sub-clades within SVP group. Moreover, PmDAMs are verified to take part in the development of different plant organs, specifically the flower buds, in some intricate patterns. Furthermore, the PmDAM proteins are found to have special functions by forming corresponding protein complex during the development of flower bud and induction of dormancy. In particular, when PmDAM1 dominating in flower bud in the warm months, the protein complexes are consisted of PmDAM1 itself or with PmDAM2. With the decrease temperatures in the following months, PmDAM6 was found to be highly expressed and gradually changed the complex structure to PmDAM6-protein complex due to strong binding tendencies with PmDAM1 and PmDAM3. Finally, the homodimers of PmDAM6 prevailed to induce the dormancy. The results obtained in the current study highlight the functions of PmDAMs in the tissue development and dormancy, which provide available suggestions for further explorations of protein-complex functions in association with bud growth and dormancy.

  1. Post harvest controlling of orchid thrips on cut flowers by irradiation

    International Nuclear Information System (INIS)

    Bansiddhi, K.; Siriphontangmun, S.

    1999-01-01

    Post-harvest controlling of orchid thrips, Thrips palmi Karny on cut flowers by irradiation was conducted during October 1992 to September 1997 at the Thai Irradiation Centre (TIC) and Division of Entomology and Zoology, Department of Agriculture, Thailand. The studies were carried out by conducting experiments on irradiation of cut flowers for controlling thrips with doses ranging from 0.1 to 1 kGy. The vase-life of radiated cut flowers was evaluated. Colonies of thrips were established in the laboratory in order to determine radiation sensitivity of various development stages of thrips and also to assess the occurrence of natural infestations by examining commercial market quality flowers from growers where management practices can be identified. Results from five years of research on post harvest control of thrips on orchids and cut flowers by irradiation showed that despite intensive investigation, difficulty in permanent establishment of a laboratory colony of Thrips palmi Karny for bioassays continued. The snap bean rearing method for rearing large number of thrips has bean developed, although it is less satisfactory than desirable. It has given sufficient numbers for testing in the 6th experiment. The maximum dose tolerated by Dendrobium orchid flowers at ambient temperature (25-30 deg. C) was below 0.5 kGy, but at a pre- and post irradiation temperature 15-18 deg. C, the maximum dose tolerated approached 0.75-0.8 kGy. The effective dose for control Thrips palmi Karny, however, was higher than 0.75 kGy. (author)

  2. Development and Validation of a TaqMan Real-Time PCR Assay for the Specific Detection and Quantification of Fusarium fujikuroi in Rice Plants and Seeds.

    Science.gov (United States)

    Carneiro, Greice Amaral; Matić, Slavica; Ortu, Giuseppe; Garibaldi, Angelo; Spadaro, Davide; Gullino, Maria Lodovica

    2017-07-01

    Bakanae disease, which is caused by the seedborne pathogen Fusarium fujikuroi, is found throughout the world on rice. A TaqMan real-time PCR has been developed on the TEF 1-α gene to detect F. fujikuroi in different rice tissues. Three primer/probe sets were tested. The selected set produced an amplicon of 84 bp and was specific for F. fujikuroi with respect to eight Fusarium species of rice and six other rice common pathogens. The assay was validated for specificity, selectivity, sensitivity, repeatability, and reproducibility. The detection limit was set at 27.5 fg of DNA, which is approximately equivalent to one haploid genome of F. fujikuroi. The developed TaqMan real-time assay was able to efficiently detect and quantify F. fujikuroi from rice culms, leaves, roots, and seeds. At 1 week post-germination (wpg), the pathogen was more diffused in the green tissues, while at 3 wpg it was uniformly spread also in the roots. The highest concentration of F. fujikuroi was measured in the M6 cultivar, which showed around 1,450 fungal cells/g. The assay was sufficiently sensitive to detect a few genomic equivalents in the rice seeds, corresponding to 9.89 F. fujikuroi cells/g. The assay permitted bakanae disease to be detected in asymptomatic tissues at the early rice development stages.

  3. Rice methylmercury exposure and mitigation: a comprehensive review.

    Science.gov (United States)

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G-quadruplex prediction based on transcriptome.

    Science.gov (United States)

    Yang, Minglei; Wu, Ying; Jin, Shan; Hou, Jinyan; Mao, Yingji; Liu, Wenbo; Shen, Yangcheng; Wu, Lifang

    2015-01-01

    Sapium sebiferum (Linn.) Roxb. (Chinese Tallow Tree) is a perennial woody tree and its seeds are rich in oil which hold great potential for biodiesel production. Despite a traditional woody oil plant, our understanding on S. sebiferum genetics and molecular biology remains scant. In this study, the first comprehensive transcriptome of S. sebiferum flower has been generated by sequencing and de novo assembly. A total of 149,342 unigenes were generated from raw reads, of which 24,289 unigenes were successfully matched to public database. A total of 61 MADS box genes and putative pathways involved in S. sebiferum flower development have been identified. Abiotic stress response network was also constructed in this work, where 2,686 unigenes are involved in the pathway. As for lipid biosynthesis, 161 unigenes have been identified in fatty acid (FA) and triacylglycerol (TAG) biosynthesis. Besides, the G-Quadruplexes in RNA of S. sebiferum also have been predicted. An interesting finding is that the stress-induced flowering was observed in S. sebiferum for the first time. According to the results of semi-quantitative PCR, expression tendencies of flowering-related genes, GA1, AP2 and CRY2, accorded with stress-related genes, such as GRX50435 and PRXⅡ39562. This transcriptome provides functional genomic information for further research of S. sebiferum, especially for the genetic engineering to shorten the juvenile period and improve yield by regulating flower development. It also offers a useful database for the research of other Euphorbiaceae family plants.

  5. Removal of phenol from aqueous solution using rice straw as adsorbent

    Science.gov (United States)

    Sarker, Nandita; Fakhruddin, A. N. M.

    2017-06-01

    Phenol is an environmental pollutant; the present study was conducted to examine the adsorption of phenol by rice straw. For this purpose raw (untreated), physically treated (boiled and dried) and thermally treated (heated at 230 °C for 3 h to produce ash) rice straw were selected to determine phenol removal efficiency at different contact times and adsorbent dosages for 1 and Percentage of removal of phenol increased as the adsorbent dose increase. The removal efficiency increase in the order of: raw rice straw ash) rice straw. Langmuir and Freundlich isotherm was developed for 1 and ash) treated rice straw. Freundlich isotherm best fit the equilibrium data for 1 mm thermally treated rice straw. The results showed that thermally treated rice straw (ash) can be developed as a potential adsorbent for phenol removal from aqueous solution.

  6. Earlier flowering did not alter pollen limitation in an early flowering shrub under short-term experimental warming

    OpenAIRE

    Pan, Cheng-Chen; Feng, Qi; Zhao, Ha-Lin; Liu, Lin-De; Li, Yu-Lin; Li, Yu-Qiang; Zhang, Tong-Hui; Yu, Xiao-Ya

    2017-01-01

    In animal pollinated plants, phenological shifts caused by climate change may have important ecological consequences. However, no empirical evidence exists at present on the consequences that flowering phenology shifts have on the strength of pollen limitation under experimental warming. Here, we investigated the effects of experimental warming on flowering phenology, flower density, reproductive success, and pollen limitation intensity in Caragana microphylla and evaluated whether earlier fl...

  7. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits

    Directory of Open Access Journals (Sweden)

    Nian eWang

    2016-03-01

    Full Text Available Plants have developed sophisticated systems to adapt to local conditions during evolution, domestication and natural or artificial selection. The selective pressures of these different growing conditions have caused significant genomic divergence within species. The flowering time trait is the most crucial factor because it helps plants to maintain sustainable development. Controlling flowering at appropriate times can also prevent plants from suffering from adverse growth conditions, such as drought, winter hardness, and disease. Hence, discovering the genome-wide genetic mechanisms that influence flowering time variations and understanding their contributions to adaptation should be a central goal of plant genetics and genomics. A global core collection panel with 448 inbred rapeseed lines was first planted in four independent environments, and their flowering time traits were evaluated. We then performed a genome-wide association mapping of flowering times with a 60 K SNP array for this core collection. With quality control and filtration, 20,342 SNP markers were ultimately used for further analyses. In total, 312 SNPs showed marker-trait associations in all four environments, and they were based on a threshold p value of 4.06x10-4; the 40 QTLs showed significant association with flowering time variations. To explore flowering time QTLs and genes related to growth habits in rapeseed, selection signals related to divergent habits were screened at the genome-wide level and 117 genomic regions were found. Comparing locations of flowering time QTLs and genes with these selection regions revealed that 20 flowering time QTLs and 224 flowering time genes overlapped with 24 and 81 selected regions, respectively. Based on this study, a number of marker-trait associations and candidate genes for flowering time variations in rapeseed were revealed. Moreover, we also showed that both flowering time QTLs and genes play important roles in rapeseed growth

  8. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    Science.gov (United States)

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  9. RESEARCH OF SOPHORA JAPONICA L. FLOWER BUDS VOLATILE COMPOUNDS WITH GAS-CHROMATOGRAPHY/MASS- SPECTROMETRY METHOD

    Directory of Open Access Journals (Sweden)

    Cholak I.S.

    2013-10-01

    Full Text Available This work represents the results of the research ofessential oil contained in Sophora japonica L. flowerbuds volatile compounds collected during the nextstages of their development: green flower buds, formedflower buds and the beginning of flower buds opening.Essential oil assay content in Sophora japonica L.flower buds was determined with hydrodistillationmethod. Content of essential oil in the raw material isless than 0,1%. Qualitative composition and assaycontent of Sophora japonica L. flower buds essential oilconstituents were determined with chromato-massspectrometry method. In consequence of the research 80constituents were identified in Sophora japonica L.flower buds out of which 61 substances are during thegreen flower buds and beginning of flower budsopening stages, 66 substances are during formed flowerbuds stage. Substances are represented by aliphatic andcyclic terpenoids, their alcohols and ketones. Mostvolatile substances were extracted on the stage offormed buds.

  10. Development and appraisal of economical and sustainable approach for weed management in drill seeded aerobic rice (oryza sativa l.)

    International Nuclear Information System (INIS)

    Saqib, M.; Akbar, N.; Ehsanullah, A.; Ghafoor, A.

    2012-01-01

    Conventional rice cultivation by puddling and transplanting is a labor intensive activity. Water scarcity is a threat for the sustain ability of transplanted rice. In many areas of Asia, rice transplantation of rice is being replaced by direct seeding as farmers tried to solve the problems of labor cost and water scarcity but weed control is one of the major constraints to direct seeding. So, to control weeds in direct seeded rice present studies were designed. A two years study was conducted to develop sustainable and economical methods for managing weeds in aerobic rice grown by dry direct-seeding at Student's Farm, Department of Agronomy, University of Agriculture, Faisalabad during the years 2008 and 2009. Experiment was laid out in RCBD with five weed management strategies: hand weeding, hoeing with kasula, inter-row cultivation with tine cultivator, inter-row cultivation with spike hoe and chemical control with Nominee 100 SC along with control (no weeding). Weed dry weight was 300 g m/sup -2/, 257 g m/sup -2/, 225 g m/sup -2/ and 157 g m/sup -2/ less in hand weeding, hoeing, tine cultivator and Nominee 100 SC respectively than no weeding. Paddy yield was 221%, 203%, 181% and 105% more in hand weeding, hoeing, tine cultivator and Nominee 100 SC respectively than no weeding. (author)

  11. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Plant non-specific lipid transfer proteins (nsLTPs constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.

  12. Preparation of an In-House Reference Material Containing Fumonisins in Thai Rice and Matrix Extension of the Analytical Method for Japanese Rice

    Science.gov (United States)

    Awaludin, Norhafniza; Nagata, Reiko; Kawasaki, Tomomi; Kushiro, Masayo

    2009-01-01

    Mycotoxin contamination in rice is less reported, compared to that in wheat or maize, however, some Fusarium fungi occasionally infect rice in the paddy field. Fumonisins are mycotoxins mainly produced by Fusarium verticillioides, which often ruins maize. Rice adherent fungus Gibberella fujikuroi is taxonomically near to F. verticillioides, and there are sporadic reports of fumonisin contamination in rice from Asia, Europe and the United States. Therefore, there exists the potential risk of fumonisin contamination in rice as well as the need for the validated analytical method for fumonisins in rice. Although both natural and spiked reference materials are available for some Fusarium mycotoxins in matrices of wheat and maize, there are no reference materials for Fusarium mycotoxins in rice. In this study, we have developed a method for the preparation of a reference material containing fumonisins in Thai rice. A ShakeMaster grinding machine was used for the preparation of a mixed material of blank Thai rice and F. verticillioides-infected Thai rice. The homogeneity of the mixed material was confirmed by one-way analysis of variance, which led this material to serve as an in-house reference material. Using this reference material, several procedures to extract fumonisins from Thai rice were compared. Accordingly, we proved the applicability of an effective extraction procedure for the determination of fumonisins in Japanese rice. PMID:22069540

  13. Processes underpinning development and maintenance of diversity in rice in West Africa: evidence from combining morphological and molecular markers.

    Directory of Open Access Journals (Sweden)

    Alfred Mokuwa

    Full Text Available We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp. from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and

  14. Processes underpinning development and maintenance of diversity in rice in West Africa: evidence from combining morphological and molecular markers.

    Science.gov (United States)

    Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should

  15. DETERMINATION OF SPATIAL INTEGRATION AND SUBSTITUTION OF FOREIGN RICE FOR LOCAL RICE IN GHANA

    Directory of Open Access Journals (Sweden)

    Philip Kofi ADOM

    2014-11-01

    Full Text Available This study tested for spatial integration in the rice market and the substitution of imported rice for local rice in Ghana. It is established that the markets for domestic imported rice are well-integrated, but not complete. The imperfect spatial integration of domestic foreign rice markets implies that the market provides opportunities for arbitrage. Price leadership roles are found to be determined by the kind of sub-inter-regional-trade network defined. However, in all, the Accra market emerged as a dominant market leader in the domestic foreign rice market. There is evidence of significant regional substitution of foreign rice for local rice in the long run, but the result is mixed in the short run. The result that local rice is not a perfect substitute for imported rice implies that price disincentive measures such as increasing the import tariffs on foreign rice will only produce a mild effect on increasing the producer price faced by local rice farmers, but aggravate the burden on households’ budget.

  16. [Effects of fish on field resource utilization and rice growth in rice-fish coculture].

    Science.gov (United States)

    Zhang, Jian; Hu, Liang Liang; Ren, Wei Zheng; Guo, Liang; Wu, Min Fang; Tang, Jian Jun; Chen, Xin

    2017-01-01

    Rice field can provide habitat for fish and other aquatic animals. Rice-fish coculture can increase rice yield and simultaneously reduce the use of chemicals through reducing rice pest occurrence and nutrient complementary use. However, how fish uses food sources (e.g. phytoplankton, weeds, duckweed, macro-algal and snail) from rice field, and whether the nutrients releasing from those food sources due to fish transforming can improve rice growth are still unknown. Here, we conducted two field experiments to address these questions. One was to investigate the pattern of fish activity in the field using the method of video recording. The other was to examine the utilization of field resources by fish using stable isotope technology. Rice growth and rice yield were also exa-mined. Results showed that fish tended to be more active and significantly expanded the activity range in the rice-fish coculture compared to fish monoculture (fish not living together with rice plants). The contributions of 3 potential aquatic organisms (duckweed, phytoplankton and snail) to fish dietary were 22.7%, 34.8% and 30.0% respectively under rice-fish coculture without feed. Under the treatment with feed, however, the contributions of these 3 aquatic organisms to the fish die-tary were 8.9%, 5.9% and 1.6% respectively. The feed contribution was 71.0%. Rice-fish coculture significantly increased the nitrogen concentration in rice leaves, prolonged tillering stage by 10-12 days and increased rice spike rate and yield. The results suggested that raising fish in paddy field may transform the nutrients contained in field resources to bioavailable for rice plants through fish feeding activity, which can improve rice growth and rice yield.

  17. The Effect of Increased Temperature on Flowering Behaviour of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A. Koocheki

    2011-01-01

    Full Text Available Abstract Flowering in saffron requires a period of incubation at high temperatures for flower differentiation followed by a period of low temperatures for flower emergence. Global warming could adversely affect the flowering of saffron because of its high sensitivity to temperature. Flowering behaviour of saffron in response to rising temperature was studied in an experiment conducted in controlled environment. Corms with identical sizes were collected form green or fully withered field grown plants and sown in plastic pots. Pots were incubated in 25, 27 and 30 °C for 70, 90 and 120 days. By the end of each incubation period, pots incubated in 25, 27 and 30 °C were transferred to 17, 19 and 21 °C, respectively. Days to flowering, development rate and growth characteristics of saffron were measured in alternative temperature regimes of 25/17, 27/19 and 30/21 °C in combination with 3 incubation periods and in 3 replications. The results indicated that increasing incubation temperature up to 27 °C had no significant effects on saffron flowering behaviour however, no flower was appeared from corms incubated in 30°C. Increased duration of incubation period had adverse effects on flower emergence and corms incubated for 120 days were only flowered in 27/19 °C temperature regime. The optimal flowering response and the highest number of vegetative buds was obtained when 90 days incubation period at 27 °C was followed by a period for flower emergence at 17°C. Corms lifted from green or withered plants showed similar response to temperature regimes and incubation periods. However, in average duration of sowing to flowering was 5 days longer in corms lifted from green plants. Comparing the results of this research with daily temperature in the main saffron production areas of Khorasan provinces showed that increasing mean daily temperature by 2 °C during summer and autumn results in a considerable delay in flowering of saffron.

  18. Development of Briquette from Coir Dust and Rice Husk Blend: An Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Md. Hamidul Islam

    2014-05-01

    Full Text Available Biomass is one of the predominant renewable energy sources and the use of biomass for the energy generation has got much attention due to its environmental friendliness. Densification of coir dust into fuel briquette can solve waste disposal problem as well as can serve as an alternative energy source. The objective of this study was to investigate the possibility of producing briquette from coir dust and rice husk blend without binder. During this study, a briquetting experiment was conducted with different coir dust and rice husk blends (i.e. coir dust and rice husk ratio of 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100. Briquetting operation was performed using a die-screw press type briquetting machine. The briquettes were tested to evaluate their density, compressive strength, calorific value, burning rate and water vaporizing capacity and it was found that mixing ratio had a significant effect on the physical, mechanical and combustion properties of the coir dust-rice husk briquettes. Density, compressive strength and calorific value and water vaporizing capacity were increased with increasing mixing ratio while burning rate was decreased. Coir dust-rice husk briquettes with mixing ratio of 20:80 had higher density (1.413 g/cm3, compressive strength (218.4 N/cm2, calorific value (4879 kcal/kg, water vaporizing capacity (0.853 l/kg and low burning rate (0.783 kg/hour followed by the mixing ratio 40:60, 50:50, 60:40 and 0:100. The results indicate that coir dust and rice husk blend briquettes were found to have better overall handling characteristics over rice husk briquette. However, production of briquettes from coir dust and rice husk at mixing ratio of 50:50 was found to be more suitable for commercial application in terms of cost effectiveness.

  19. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains

    Directory of Open Access Journals (Sweden)

    Masaru Nakata

    2017-12-01

    Full Text Available Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by

  20. Stop and Paint the Flowers.

    Science.gov (United States)

    Phillips, Shelley

    2002-01-01

    Describes an art lesson where students used watercolors to paint a flower bouquet arranged in a vase. Explains that the students viewed examples of flower bouquets by artists such as Vincent van Gogh and Odilon Redon. Discusses, in detail, the process of creating the artworks. (CMK)

  1. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  2. Rice methylmercury exposure and mitigation: a comprehensive review

    Science.gov (United States)

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, price percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  3. A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers

    DEFF Research Database (Denmark)

    Jensen, Line; Hegelund, Josefine Nymark; Olsen, Andreas

    2016-01-01

    BACKGROUND: The phytohormone ethylene plays a central role in development and senescence of climacteric flowers. In ornamental plant production, ethylene sensitive plants are usually protected against negative effects of ethylene by application of chemical inhibitors. In Campanula, flowers...... are sensitive to even minute concentrations of ethylene. RESULTS: Monitoring flower longevity in three Campanula species revealed C. portenschlagiana (Cp) as ethylene sensitive, C. formanekiana (Cf) with intermediate sensitivity and C. medium (Cm) as ethylene insensitive. We identified key elements in ethylene...... signal transduction, specifically in Ethylene Response Sensor 2 (ERS2), Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 3- Like 1 and 2 (EIL1 and EIL2) homologous. Transcripts of ERS2, CTR1 and EIL1 were constitutively expressed in all species both throughout flower development...

  4. Genetic control of flowering time in legumes

    Directory of Open Access Journals (Sweden)

    James L Weller

    2015-04-01

    Full Text Available The timing of flowering, and in particular the degree to which it is responsive to the environment, is a key factor in the adaptation of a given species to various eco-geographic locations and agricultural practices. Flowering time variation has been documented in many crop legumes, and selection for specific variants has permitted significant expansion and improvement in cultivation, from prehistoric times to the present day. Recent advances in legume genomics have accelerated the process of gene identification and functional analysis, and opened up new prospects for a molecular understanding of flowering time adaptation in this important crop group. Within the legumes, two species have been prominent in flowering time studies; the vernalization-responsive long-day species pea (Pisum sativum and the warm-season short-day plant soybean (Glycine max. Analysis of flowering in these species is now being complemented by reverse genetics capabilities in the model legumes Medicago truncatula and Lotus japonicus, and the emergence of genome-scale resources in a range of other legumes. This review will outline the insights gained from detailed forward genetic analysis of flowering time in pea and soybean, highlighting the importance of light perception, the circadian clock and the FT family of flowering integrators. It discusses the current state of knowledge on genetic mechanisms for photoperiod and vernalization response, and concludes with a broader discussion of flowering time adaptation across legumes generally.

  5. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision.

    Science.gov (United States)

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice.

  6. Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach.

    Science.gov (United States)

    Rees, Mark; Rose, Karen E

    2002-07-22

    The timing of reproduction is a key determinant of fitness. Here, we develop parameterized integral projection models of size-related flowering for the monocarpic perennial Oenothera glazioviana and use these to predict the evolutionarily stable strategy (ESS) for flowering. For the most part there is excellent agreement between the model predictions and the results of quantitative field studies. However, the model predicts a much steeper relationship between plant size and the probability of flowering than observed in the field, indicating selection for a 'threshold size' flowering function. Elasticity and sensitivity analysis of population growth rate lambda and net reproductive rate R(0) are used to identify the critical traits that determine fitness and control the ESS for flowering. Using the fitted model we calculate the fitness landscape for invading genotypes and show that this is characterized by a ridge of approximately equal fitness. The implications of these results for the maintenance of genetic variation are discussed.

  7. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    OpenAIRE

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations inst...

  8. Flower-petal mode converter for NLC

    International Nuclear Information System (INIS)

    Hoag, H.A.; Tantawi, S.G.; Callin, R.; Deruyter, H.; Farkas, Z.D.; Ko, K.; Kroll, N.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.

    1993-01-01

    It is important to minimize power loss in the waveguide system connecting klystron, pulse-compressor, and accelerator in an X-Band NLC. However, existing designs of klystron output cavity circuits and accelerator input couplers utilize rectangular waveguide which has relatively high transmission loss. It is therefore necessary to convert to and from the low-loss mode in circulator waveguide at each end of the system. A description is given of development work on high-power, high-vacuum open-quote flower-petal close-quote transducers, which convert the TE 10 mode in rectangular guide to the TE 01 mode in circular guide. A three-port modification of the flower petal device, which can be used as either a power combiner at the klystron or a power divider at the accelerator is also described

  9. Flower-petal mode converter for NLC

    International Nuclear Information System (INIS)

    Hoag, H.A.; Tantawi, S.G.; Callin, R.

    1993-04-01

    It is important to minimize power loss in the waveguide system connecting klystron, pulse-compressor, and accelerator in an X-Band NLC. However, existing designs of klystron output cavity circuits and accelerator input couplers utilize rectangular waveguide which has relatively high transmission loss. It is therefore necessary to convert to and from the low-loss mode in circular waveguide at each end of the system. A description is given of development work on high-power, high-vacuum 'flower-petal' transducers, which convert the TE 10 mode in rectangular guide to the TE 01 mode in circular guide. A three-port modification of the flower petal device, which can be used as either a power combiner at the klystron or a power divider at the accelerator is also described

  10. A quantitative framework for flower phenotyping in cultivated carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Chacón, Borja; Ballester, Roberto; Birlanga, Virginia; Rolland-Lagan, Anne-Gaëlle; Pérez-Pérez, José Manuel

    2013-01-01

    Most important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L.) that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D. caryophyllus, including 55 standard, 22 spray and 1 pot carnation cultivars. Correlation analyses allowed us to reduce the number of parameters accounting for the observed variation in flower and petal morphology. Convexity was used as a descriptor for the level of serration in flowers and petals. We used a landmark-based approach that allowed us to identify eight main principal components (PCs) accounting for most of the variance observed in petal shape. The effect and the strength of these PCs in standard and spray carnation cultivars are consistent with shared underlying mechanisms involved in the morphological diversification of petals in both subpopulations. Our results also indicate that neighbor-joining trees built with morphological data might infer certain phylogenetic relationships among carnation cultivars. Based on estimated broad-sense heritability values for some flower and petal features, different genetic determinants shall modulate the responses of flower and petal morphology to environmental cues in this species. We believe our image analysis toolbox could allow capturing flower variation in other species of high ornamental value.

  11. Current Insights into Research on Rice stripe virus

    Directory of Open Access Journals (Sweden)

    Won Kyong Cho

    2013-09-01

    Full Text Available Rice stripe virus (RSV is one of the most destructive viruses of rice, and greatly reduces rice production in China, Japan, and Korea, where mostly japonica cultivars of rice are grown. RSV is transmitted by the small brown plant-hopper (SBPH in a persistent and circulative-propagative manner. Several methods have been developed for detection of RSV, which is composed of four single-stranded RNAs that encode seven proteins. Genome sequence data and comparative phylogenetic analysis have been used to identify the origin and diversity of RSV isolates. Several rice varieties resistant to RSV have been selected and QTL analysis and fine mapping have been intensively performed to map RSV resistance loci or genes. RSV genes have been used to generate several genetically modified transgenic rice plants with RSV resistance. Recently, genome-wide transcriptome analyses and deep sequencing have been used to identify mRNAs and small RNAs involved in RSV infection; several rice host factors that interact with RSV proteins have also been identified. In this article, we review the current statues of RSV research and propose integrated approaches for the study of interactions among RSV, rice, and the SBPH.

  12. Nitrogen fixation in rice systems: State of knowledge and future prospects

    International Nuclear Information System (INIS)

    Ladha, J.K.; Reddy, P.M.

    2001-01-01

    Rice is the most important cereal crop. In the next three decades, the world will need to produce about 60% more rice than today's global production to feed the extra billion people. Nitrogen is the major nutrient limiting rice production. Development of fertilizer-responsive varieties in the Green Revolution, coupled with the realization by farmers of the importance of nitrogen, has led to high rates of N fertilizer use on rice. Increased future demand for rice will entail increased application of fertilizer N. Awareness is growing, however, that such an increase in agricultural production needs to be achieved without endangering the environment. To achieve food security through sustainable agriculture, the requirement for fixed nitrogen must increasingly met by biological nitrogen fixation (BNF) rather than by using nitrogen fixed industrially. It is thus imperative to improve existing BNF systems and develop N 2 -fixing non-leguminous crops such as rice. Here we review the potentials and constraints of conventional BNF systems in rice agriculture, as well as the prospects of achieving in planta nitrogen fixation in rice. (author)

  13. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Lewis H Ziska

    Full Text Available Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2 from an early 20(th century concentration (300 µmol mol(-1 to current (400 µmol mol(-1 and projected, mid-21(st century (600 µmol mol(-1 values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  14. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa).

    Science.gov (United States)

    Ziska, Lewis H; Gealy, David R; Tomecek, Martha B; Jackson, Aaron K; Black, Howard L

    2012-01-01

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2) between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2) from an early 20(th) century concentration (300 µmol mol(-1)) to current (400 µmol mol(-1)) and projected, mid-21(st) century (600 µmol mol(-1)) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1). The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2) also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2) could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  15. Flowering, nectar secretion, pollen shed and insect foraging on Aquilegia vulgaris L. (Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Bożena Denisow

    2012-12-01

    Full Text Available This study on blooming biology, nectar secretion, pollen production and insect visitation of Aquilegia vulgaris L. was carried out in 2009 and 2011 in Lublin. The peak of flower opening during the day was between 5.00 and 7.00 (GMT +2. The flowers are protandrous with the female phase beginning approx. on the 3rd day of anthesis. The dynamics of nectar secretion and pollen shed from anthers (progressing from the central part of the androecium outwards support the reproductive system. The amount of nectar accumulated in the spurs increased from the bud stage and was the highest in the phase with approx. ¾ of dehisced anthers, usually on the 3rd day of flower life. Then, towards the end of anthesis, the amount of secreted and accumulated nectar decreased. The number of anthers developed per flower varied from 41 to 61 (mean = 49.1. The mass of pollen per 100 anthers averaged 6.7 mg. Pollen production per flower (mean = 3.28 mg slightly varied between years and was mainly correlated with the number of developed anthers. Estimated pollen yield was 1.69 g per m2 and sugar yield 1.22 g per m2. Species from the genus Bombus were the main flower visitors, with B. terrestris being the most frequent forager.

  16. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Science.gov (United States)

    Krishnan S, Gopala; Waters, Daniel L E; Henry, Robert J

    2014-01-01

    Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts). Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  17. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Directory of Open Access Journals (Sweden)

    Gopala Krishnan S

    Full Text Available BACKGROUND: Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. RESULTS: We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts. Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. CONCLUSIONS: Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  18. Flower bud transcriptome analysis of Sapium sebiferum (Linn. Roxb. and primary investigation of drought induced flowering: pathway construction and G-quadruplex prediction based on transcriptome.

    Directory of Open Access Journals (Sweden)

    Minglei Yang

    Full Text Available Sapium sebiferum (Linn. Roxb. (Chinese Tallow Tree is a perennial woody tree and its seeds are rich in oil which hold great potential for biodiesel production. Despite a traditional woody oil plant, our understanding on S. sebiferum genetics and molecular biology remains scant. In this study, the first comprehensive transcriptome of S. sebiferum flower has been generated by sequencing and de novo assembly. A total of 149,342 unigenes were generated from raw reads, of which 24,289 unigenes were successfully matched to public database. A total of 61 MADS box genes and putative pathways involved in S. sebiferum flower development have been identified. Abiotic stress response network was also constructed in this work, where 2,686 unigenes are involved in the pathway. As for lipid biosynthesis, 161 unigenes have been identified in fatty acid (FA and triacylglycerol (TAG biosynthesis. Besides, the G-Quadruplexes in RNA of S. sebiferum also have been predicted. An interesting finding is that the stress-induced flowering was observed in S. sebiferum for the first time. According to the results of semi-quantitative PCR, expression tendencies of flowering-related genes, GA1, AP2 and CRY2, accorded with stress-related genes, such as GRX50435 and PRXⅡ39562. This transcriptome provides functional genomic information for further research of S. sebiferum, especially for the genetic engineering to shorten the juvenile period and improve yield by regulating flower development. It also offers a useful database for the research of other Euphorbiaceae family plants.

  19. Growth and Physiological Performance of Aerobic and Lowland Rice as Affected by Water Stress at Selected Growth Stages

    Directory of Open Access Journals (Sweden)

    Nadzariah Kamarul Zaman

    2018-03-01

    Full Text Available Aerobic rice technology is still new in Malaysia, and information regarding MARDI Aerob 1 (MA1, the first local aerobic rice variety, is still lacking. Therefore, comparative studies were carried out to determine the physiological performance of aerobic rice variety MA1 and lowland rice variety MR253 under water stress given at the panicle initiation, flowering and ripening stages. This experiment was arranged in a randomized complete block design. Stomatal conductance (gs, chlorophyll a fluorescence (Fv/Fm, leaf relative water content (leaf RWC, and soil moisture content (SMC as well as yield component parameters such as panicle number, grain yield and 100-grain weight were measured. Results revealed that gs and leaf RWC for both varieties decreased with depletion of SMC. The correlation study between the physiological parameters and SMC indicated that Fv/Fm was not affected by water stress, regardless of varieties. The yield components (panicle number, grain yield and 100-grain weight for both varieties greatly decreased when water stress was imposed at the panicle initiation stage. This study showed that the panicle initiation period was the most sensitive stage to water stress that contributed to a substantial reduction in yield for both varieties. Under the aerobic condition (control, MR253 produced higher panicle number, 100-grain weight and yield than MA1. Although MR253 is bred for lowland, it is well adapted to aerobic condition.

  20. Ethanol production from rice on radioactively contaminated field toward sustainable rice farming

    International Nuclear Information System (INIS)

    Yokoyama, Shinya; Izumi, Bintaro; Oki, Kazuo

    2011-01-01

    Radioactive species such as 137 Cs were discharged from Fukushima Daiichi Nuclear Power Plant which was severely damaged by the enormous earthquake and tsunami. Cropland has been radioactively contaminated by 137 Cs etc. and it seems impossible to plant rice due to the non-suitability for food. According to the reports, 137 Cs transferred into the rice from soil is less than 1% on the average. Therefore, it is expected that the concentration of 137 Cs in bioethanol will be well below the tentative restriction value even if bioethanol could be produced from the rice. It is proposed that the rice field should be filled with water to avoid the flow of runoff contaminated by radioactive cesium compounds because they are insoluble in aqueous phase and that bioethanol should be produced from the rice in order to maintain the multifunction of rice field and to continue the agriculture. If rice farming is halted and neglected, agricultural function of rice field as well as local community will be permanently destroyed. (author)