WorldWideScience

Sample records for ribosomal rna rdna

  1. Single Cell Analysis Linking Ribosomal (r)DNA and rRNA Copy Numbers to Cell Size and Growth Rate Provides Insights into Molecular Protistan Ecology.

    Science.gov (United States)

    Fu, Rao; Gong, Jun

    2017-11-01

    Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)-based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single-cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per-cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV 0.14 . The maximum growth rate could be well predicted by a combination of per-cell ribotype CN and temperature. Our empirical data and modeling on single-cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance-based interpretation of quantitative ribotype data in population and community ecology of protists. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  2. 5S ribosomal RNA database Y2K.

    Science.gov (United States)

    Szymanski, M; Barciszewska, M Z; Barciszewski, J; Erdmann, V A

    2000-01-01

    This paper presents the updated version (Y2K) of the database of ribosomal 5S ribonucleic acids (5S rRNA) and their genes (5S rDNA), http://rose.man/poznan.pl/5SData/index.html. This edition of the database contains 1985primary structures of 5S rRNA and 5S rDNA. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms.

  3. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    International Nuclear Information System (INIS)

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-01-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. 32 P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA

  4. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    Science.gov (United States)

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family.

    Science.gov (United States)

    Garcia, Sònia; Panero, José L; Siroky, Jiri; Kovarik, Ales

    2010-08-16

    In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in approximately 200 species representing the family diversity and other closely related groups. Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units, their copy

  6. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription.

    Science.gov (United States)

    Herdman, Chelsea; Mars, Jean-Clement; Stefanovsky, Victor Y; Tremblay, Michel G; Sabourin-Felix, Marianne; Lindsay, Helen; Robinson, Mark D; Moss, Tom

    2017-07-01

    Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin

  7. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription.

    Directory of Open Access Journals (Sweden)

    Chelsea Herdman

    2017-07-01

    Full Text Available Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state

  8. A ribosomal RNA gene intergenic spacer based PCR and DGGE fingerprinting method for the analysis of specific rhizobial communities in soil

    NARCIS (Netherlands)

    de Oliveira, VM; Manfio, GP; Coutinho, HLD; Keijzer-Wolters, AC; van Elsas, JD

    A direct molecular method for assessing the diversity of specific populations of rhizobia in soil, based on nested PCR amplification of 16S-23S ribosomal RNA gene (rDNA) intergenic spacer (IGS) sequences, was developed. Initial generic amplification of bacterial rDNA IGS sequences from soil DNA was

  9. A ribosomal RNA gene intergenic spacer based PCR and DGGE fingerprinting method for the analysis of specific rhizobial communities in soil

    NARCIS (Netherlands)

    Oliveira, de V.M.; Manfio, G.P.; Coutinho, H.L.D.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    2006-01-01

    A direct molecular method for assessing the diversity of specific populations of rhizobia in soil, based on nested PCR amplification of 16S-23S ribosomal RNA gene (rDNA) intergenic spacer (IGS) sequences, was developed. Initial generic amplification of bacterial rDNA IGS sequences from soil DNA was

  10. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Santo Domingo, J W; Keinänen-Toivola, M M; Ryu, H; Pitkänen, T

    2016-06-01

    Next-generation sequencing of 16S ribosomal RNA genes (rDNA) and ribosomal RNA (rRNA) was used to characterize water and biofilm microbiome collected from a drinking water distribution system of an office building after its first year of operation. The total bacterial community (rDNA) and active bacterial members (rRNA) sequencing databases were generated by Illumina MiSeq PE250 platform. As estimated by Chao1 index, species richness in cold water system was lower (180-260) in biofilms (Sphingomonas spp., Methylobacterium spp., Limnohabitans spp., Rhizobiales order) than in waters (250-580), (also Methylotenera spp.) (P = 0·005, n = 20). Similarly species richness (Chao1) was slightly higher (210-580) in rDNA libraries compared to rRNA libraries (150-400; P = 0·054, n = 24). Active Mycobacterium spp. was found in cross-linked polyethylene (PEX), but not in corresponding copper pipeline biofilm. Nonpathogenic Legionella spp. was found in rDNA libraries but not in rRNA libraries. Microbial communities differed between water and biofilms, between cold and hot water systems, locations in the building and between water rRNA and rDNA libraries, as shown by clear clusters in principal component analysis (PcoA). By using the rRNA method, we found that not all bacterial community members were active (e.g. Legionella spp.), whereas other members showed increased activity in some locations; for example, Pseudomonas spp. in hot water circulations' biofilm and order Rhizobiales and Limnohabitans spp. in stagnated locations' water and biofilm. rRNA-based methods may be better than rDNA-based methods for evaluating human health implications as rRNA methods can be used to describe the active bacterial fraction. This study indicates that copper as a pipeline material might have an adverse impact on the occurrence of Mycobacterium spp. The activity of Legionella spp. maybe questionable when detected solely by using DNA-based methods. © 2016 The Society for Applied

  11. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    Science.gov (United States)

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  13. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    Science.gov (United States)

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  14. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    Science.gov (United States)

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  15. A ribosome without RNA

    Directory of Open Access Journals (Sweden)

    Harold S Bernhardt

    2015-11-01

    Full Text Available It was Francis Crick who first asked why the ribosome contains so much RNA, and discussed the implications of this for the direct flow of genetic information from DNA to protein. Remarkable advances in our understanding of the ribosome and protein synthesis, including the recent publication of two mammalian mitochondrial ribosome structures, have shed new light on this intriguing aspect of evolution in molecular biology. We examine here whether RNA is indispensable for coded protein synthesis, or whether an all-protein ‘ribosome’ (or ‘synthosome’ might be possible, with a protein enzyme catalyzing peptide synthesis, and release factor-like protein adaptors able to read a message composed of deoxyribonucleotides. We also compare the RNA world hypothesis with the alternative ‘proteins first’ hypothesis in terms of their different understandings of the evolution of the ribosome, and whether this might have been preceded by an ancestral form of nonribosomal peptide synthesis catalyzed by protein enzymes.

  16. RINT-1 interacts with MSP58 within nucleoli and plays a role in ribosomal gene transcription

    International Nuclear Information System (INIS)

    Yang, Chuan-Pin; Kuo, Yu-Liang; Lee, Yi-Chao; Lee, Kuen-Haur; Chiang, Chi-Wu; Wang, Ju-Ming; Hsu, Che-Chia

    2016-01-01

    The nucleolus is the cellular site of ribosomal (r)DNA transcription and ribosome biogenesis. The 58-kDa microspherule protein (MSP58) is a nucleolar protein involved in rDNA transcription and cell proliferation. However, regulation of MSP58-mediated rDNA transcription remains unknown. Using a yeast two-hybrid system with MSP58 as bait, we isolated complementary (c)DNA encoding Rad50-interacting protein 1 (RINT-1), as a MSP58-binding protein. RINT-1 was implicated in the cell cycle checkpoint, membrane trafficking, Golgi apparatus and centrosome dynamic integrity, and telomere length control. Both in vitro and in vivo interaction assays showed that MSP58 directly interacts with RINT-1. Interestingly, microscopic studies revealed the co-localization of MSP58, RINT-1, and the upstream binding factor (UBF), a rRNA transcription factor, in the nucleolus. We showed that ectopic expression of MSP58 or RINT-1 resulted in decreased rRNA expression and rDNA promoter activity, whereas knockdown of MSP58 or RINT-1 by siRNA exerted the opposite effect. Coexpression of MSP58 and RINT-1 robustly decreased rRNA synthesis compared to overexpression of either protein alone, whereas depletion of RINT-1 from MSP58-transfected cells enhanced rRNA synthesis. We also found that MSP58, RINT-1, and the UBF were associated with the rDNA promoter using a chromatin immunoprecipitation assay. Because aberrant ribosome biogenesis contributes to neoplastic transformation, our results revealed a novel protein complex involved in the regulation of rRNA gene expression, suggesting a role for MSP58 and RINT-1 in cancer development. - Highlights: • RINT-1 is a novel MSP58-interacting protein. • RINT-1 is a nucleolar protein that suppresses ribosomal RNA gene transcription. • RINT-1 and MSP58 cooperate to suppress ribosomal RNA gene transcription. • RINT-1, MSP58, and UBF form a complex on the rDNA promoter.

  17. Replication and meiotic transmission of yeast ribosomal RNA genes.

    Science.gov (United States)

    Brewer, B J; Zakian, V A; Fangman, W L

    1980-11-01

    The yeast Saccharomyces cerevisiae has approximately 120 genes for the ribosomal RNAs (rDNA) which are organized in tandem within chromosomal DNA. These multiple-copy genes are homogeneous in sequence but can undergo changes in copy number and topology. To determine if these changes reflect unusual features of rDNA metabolism, we have examined both the replication of rDNA in the mitotic cell cycle and the inheritance of rDNA during meiosis. The results indicate that rDNA behaves identically to chromosomal DNA: each rDNA unit is replicated once during the S phase of each cell cycle and each unit is conserved through meiosis. Therefore, the flexibility in copy number and topology of rDNA does not arise from the selective replication of units in each S phase nor by the selective inheritance of units in meiosis.

  18. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Directory of Open Access Journals (Sweden)

    Joseph C Sanchez

    2017-10-01

    Full Text Available A form of dwarfism known as Meier-Gorlin syndrome (MGS is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5. These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45. The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C. We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  19. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Science.gov (United States)

    Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J

    2017-10-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  20. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer.

    Science.gov (United States)

    Karahan, Gurbet; Sayar, Nilufer; Gozum, Gokcen; Bozkurt, Betul; Konu, Ozlen; Yulug, Isik G

    2015-06-01

    Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation

  1. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns that e...... in the nucleolus....

  2. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. TRE5-A retrotransposition profiling reveals putative RNA polymerase III transcription complex binding sites on the Dictyostelium extrachromosomal rDNA element.

    Directory of Open Access Journals (Sweden)

    Thomas Spaller

    Full Text Available The amoeba Dictyostelium discoideum has a haploid genome in which two thirds of the DNA encodes proteins. Consequently, the space available for selfish mobile elements to expand without excess damage to the host genome is limited. The non-long terminal repeat retrotransposon TRE5-A maintains an active population in the D. discoideum genome and apparently adapted to this gene-dense environment by targeting positions ~47 bp upstream of tRNA genes that are devoid of protein-coding regions. Because only ~24% of tRNA genes are associated with a TRE5-A element in the reference genome, we evaluated whether TRE5-A retrotransposition is limited to this subset of tRNA genes. We determined that a tagged TRE5-A element (TRE5-Absr integrated at 384 of 405 tRNA genes, suggesting that expansion of the current natural TRE5-A population is not limited by the availability of targets. We further observed that TRE5-Absr targets the ribosomal 5S gene on the multicopy extrachromosomal DNA element that carries the ribosomal RNA genes, indicating that TRE5-A integration may extend to the entire RNA polymerase III (Pol III transcriptome. We determined that both natural TRE5-A and cloned TRE5-Absr retrotranspose to locations on the extrachromosomal rDNA element that contain tRNA gene-typical A/B box promoter motifs without displaying any other tRNA gene context. Based on previous data suggesting that TRE5-A targets tRNA genes by locating Pol III transcription complexes, we propose that A/B box loci reflect Pol III transcription complex assembly sites that possess a function in the biology of the extrachromosomal rDNA element.

  4. Relationship between organization and function of ribosomal genes in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Karpen, G.H.

    1987-01-01

    In most eukaryotic organisms, the genes that encode the 18S and 28S ribosomal RNAs (rDNA genes) are tandemly repeated, and are located in constitutive heterochromatin and/or centromeric or telomeric regions. P-element mediated transformation was used to investigate the relationship between rDNA organization and function in Drosophila melanogaster. Tritiated-uridine incorporation under heat shock conditions and in situ hybridization to rRNA were used to demonstrate that a single rDNA gene inserted into euchromatin can be transcribed at a high rate, in polytene nuclei. P-element-mediated transformation of a single Drosophila rDNA gene was also utilized to investigate the ability of ribosomal DNA to organize a nucleolus. Cytological approaches demonstrated that structures resembling the endogenous nucleoli were preferentially associated with four different sites of rDNA insertion, in polytene nuclei. These mini-nucleoli also contained components specific to the nucleolus, as shown by in situ hybridization to rRNA and indirect immunofluorescence with an antibody that binds to Drosophila nucleoli. The transformed genes were able to partially rescue mutant phenotypes due to a deficiency of rDNA, indicating that the mini-nucleoli were functional

  5. Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig

    DEFF Research Database (Denmark)

    Maddox-Hyttel, Poul; Svarcova, Olga; Laurincik, Josef

    2007-01-01

    The nucleolus is the site of ribosomal RNA (rRNA) and ribosome production. In the bovine primordial follicle oocyte, this organelle is inactive, but in the secondary follicle an active fibrillo-granular nucleolus develops and proteins involved in rDNA transcription (topoisomerase I, RNA polymerase...... I and upstream binding factor) and early (fibrillarin) or late rRNA processing (nucleolin and nucleophosmin) localize to it. At the end of the oocyte growth phase, the nucleolus is inactivated again and transforms into a solid remnant. The nucleolar remnant is dissolved when meiosis is resumed. Upon...... fertilization, structures resembling the nucleolar remnant, now referred to as nucleolus precursor bodies (NPBs), are established in the pronuclei. These entities are engaged in the re-establishment of fibrilo-granular nucleoli at the major activation of the embryonic genome. This nucleolar formation can...

  6. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Derek L Lindstrom

    2011-03-01

    Full Text Available Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array. As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  7. Inhibition of ribosomal RNA synthesis in yeast by ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Weber, K; Kiefer, J [Giessen Univ. (Germany, F.R.). Strahlenzentrum

    1984-12-01

    Synthesis of ribosomal RNA(r-RNA) was measured for 1 h after exposure of Saccharomyces cerevisiae to ..gamma..-rays, X-rays or ..cap alpha.. particles. ..gamma..- or X-ray induced transcription inhibition was always found to decrease exponentially with dose. D/sub 0/ values of 2150 or 1950 Gy were determined in wild-type cells, corresponding to a mean energy of about 60 eV per r-RNA gene. The finding of differential sensitivities of the two high molecular-weight r-RNA species which are cotranscribed from r-DNA is compatible with the existence of a transcription terminating mechanism. Cells from a mutant strain (rad-9), radiation sensitive to colony forming ability, showed an approximately equal sensitivity for transcription inhibition compared to the wild-type (D/sub 0/ (2095) = 2400 Gy). Inactivation of r-RNA synthesis in cells exposed to ..cap alpha..-particles at room-temperature showed a decreased sensitivity with higher particle fluences ('resistant tail'). This phenomenon was drastically reduced if the temperature during irradiation was lowered to 4/sup 0/C and completely abolished when dried cells were used. An inactivation cross-section for ..cap alpha..-particle induced transcription inhibition of about 0.02 ..mu..m/sup 2/ can be derived from the experimental data.

  8. Chromosomal organization of the ribosomal RNA genes in the genus Chironomus (Diptera, Chironomidae

    Directory of Open Access Journals (Sweden)

    Larisa Gunderina

    2015-05-01

    Full Text Available Chromosomal localization of ribosomal RNA coding genes has been studied by using FISH (fluorescence in situ hybridization in 21 species from the genus Chironomus Meigen, 1803. Analysis of the data has shown intra- and interspecific variation in number and location of 5.8S rDNA hybridization sites in 17 species from the subgenus Chironomus and 4 species from the subgenus Camptochironomus Kieffer, 1914. In the majority of studied species the location of rDNA sites coincided with the sites where active NORs (nucleolus organizer regions were found. The number of hybridization sites in karyotypes of studied chironomids varied from 1 to 6. More than half of the species possessed only one NOR (12 out of 21. Two rDNA hybridization sites were found in karyotypes of five species, three – in two species, and five and six sites – in one species each. NORs were found in all chromosomal arms of species from the subgenus Chironomus with one of them always located on arm G. On the other hand, no hybridization sites were found on arm G in four studied species from the subgenus Camptochironomus. Two species from the subgenus Chironomus – Ch. balatonicus Devai, Wuelker & Scholl, 1983 and Ch. “annularius” sensu Strenzke, 1959 – showed intraspecific variability in the number of hybridization signals. Possible mechanisms of origin of variability in number and location of rRNA genes in the karyotypes of species from the genus Chironomus are discussed.

  9. RINT-1 interacts with MSP58 within nucleoli and plays a role in ribosomal gene transcription.

    Science.gov (United States)

    Yang, Chuan-Pin; Kuo, Yu-Liang; Lee, Yi-Chao; Lee, Kuen-Haur; Chiang, Chi-Wu; Wang, Ju-Ming; Hsu, Che-Chia; Chang, Wen-Chang; Lin, Ding-Yen

    2016-09-16

    The nucleolus is the cellular site of ribosomal (r)DNA transcription and ribosome biogenesis. The 58-kDa microspherule protein (MSP58) is a nucleolar protein involved in rDNA transcription and cell proliferation. However, regulation of MSP58-mediated rDNA transcription remains unknown. Using a yeast two-hybrid system with MSP58 as bait, we isolated complementary (c)DNA encoding Rad50-interacting protein 1 (RINT-1), as a MSP58-binding protein. RINT-1 was implicated in the cell cycle checkpoint, membrane trafficking, Golgi apparatus and centrosome dynamic integrity, and telomere length control. Both in vitro and in vivo interaction assays showed that MSP58 directly interacts with RINT-1. Interestingly, microscopic studies revealed the co-localization of MSP58, RINT-1, and the upstream binding factor (UBF), a rRNA transcription factor, in the nucleolus. We showed that ectopic expression of MSP58 or RINT-1 resulted in decreased rRNA expression and rDNA promoter activity, whereas knockdown of MSP58 or RINT-1 by siRNA exerted the opposite effect. Coexpression of MSP58 and RINT-1 robustly decreased rRNA synthesis compared to overexpression of either protein alone, whereas depletion of RINT-1 from MSP58-transfected cells enhanced rRNA synthesis. We also found that MSP58, RINT-1, and the UBF were associated with the rDNA promoter using a chromatin immunoprecipitation assay. Because aberrant ribosome biogenesis contributes to neoplastic transformation, our results revealed a novel protein complex involved in the regulation of rRNA gene expression, suggesting a role for MSP58 and RINT-1 in cancer development. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse [corrected].

    Directory of Open Access Journals (Sweden)

    Kaitlynn LeRiche

    Full Text Available Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼ 87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species.

  11. A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes

    Directory of Open Access Journals (Sweden)

    Jean-Clement Mars

    2018-01-01

    Full Text Available The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein–DNA interaction profiles. Here, we describe a simple numerical deconvolution approach that, in large part, corrects for this variability, and significantly improves both the resolution and quantitation of protein–DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus and human (Homo sapiens ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a “Spacer Promoter” and associated stalled polymerase in the intergenic spacer of the human ribosomal RNA genes, and reveal a very similar enhancer structure to that found in rodents and lower vertebrates.

  12. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells.

    Science.gov (United States)

    Wang, Hsiang-Tsui; Chen, Tzu-Ying; Weng, Ching-Wen; Yang, Chun-Hsiang; Tang, Moon-Shong

    2016-12-06

    Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.

  13. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

    Science.gov (United States)

    Fischer, Niels; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V; Stark, Holger

    2010-07-15

    The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.

  14. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    Science.gov (United States)

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  15. rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments

    OpenAIRE

    O?Connor, Patrick B. F.; Li, Gene-Wei; Weissman, Jonathan S.; Atkins, John F.; Baranov, Pavel V.

    2013-01-01

    Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine?Dalgarno (SD) sequences have a major global effect on translation rates in bacteria: ribosomes pause at SD sites in mRNA. Therefore, it is important to understand how SD sites effect mRNA movement through the ribosome and generation of ribosome footprints. Results: Here, we provide...

  16. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation.

    Science.gov (United States)

    Rodnina, Marina V; Wintermeyer, Wolfgang

    2011-04-01

    Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.

  17. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number

    Directory of Open Access Journals (Sweden)

    Katherine I. Farley-Barnes

    2018-02-01

    Full Text Available Ribosome biogenesis is a highly regulated, essential cellular process. Although studies in yeast have established some of the biological principles of ribosome biogenesis, many of the intricacies of its regulation in higher eukaryotes remain unknown. To understand how ribosome biogenesis is globally integrated in human cells, we conducted a genome-wide siRNA screen for regulators of nucleolar number. We found 139 proteins whose depletion changed the number of nucleoli per nucleus from 2–3 to only 1 in human MCF10A cells. Follow-up analyses on 20 hits found many (90% to be essential for the nucleolar functions of rDNA transcription (7, pre-ribosomal RNA (pre-rRNA processing (16, and/or global protein synthesis (14. This genome-wide analysis exploits the relationship between nucleolar number and function to discover diverse cellular pathways that regulate the making of ribosomes and paves the way for further exploration of the links between ribosome biogenesis and human disease.

  18. Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814).

    Science.gov (United States)

    Śliwińska-Jewsiewicka, A; Kuciński, M; Kirtiklis, L; Dobosz, S; Ocalewicz, K; Jankun, Malgorzata

    2015-08-01

    Brook trout Salvelinus fontinalis (Mitchill, 1814) chromosomes have been analyzed using conventional and molecular cytogenetic techniques enabling characteristics and chromosomal location of heterochromatin, nucleolus organizer regions (NORs), ribosomal RNA-encoding genes and telomeric DNA sequences. The C-banding and chromosome digestion with the restriction endonucleases demonstrated distribution and heterogeneity of the heterochromatin in the brook trout genome. DNA sequences of the ribosomal RNA genes, namely the nucleolus-forming 28S (major) and non-nucleolus-forming 5S (minor) rDNAs, were physically mapped using fluorescence in situ hybridization (FISH) and primed in situ labelling. The minor rDNA locus was located on the subtelo-acrocentric chromosome pair No. 9, whereas the major rDNA loci were dispersed on 14 chromosome pairs, showing a considerable inter-individual variation in the number and location. The major and minor rDNA loci were located at different chromosomes. Multichromosomal location (3-6 sites) of the NORs was demonstrated by silver nitrate (AgNO3) impregnation. All Ag-positive i.e. active NORs corresponded to the GC-rich blocks of heterochromatin. FISH with telomeric probe showed the presence of the interstitial telomeric site (ITS) adjacent to the NOR/28S rDNA site on the chromosome 11. This ITS was presumably remnant of the chromosome rearrangement(s) leading to the genomic redistribution of the rDNA sequences. Comparative analysis of the cytogenetic data among several related salmonid species confirmed huge variation in the number and the chromosomal location of rRNA gene clusters in the Salvelinus genome.

  19. Phylogenetic analysis of subgenus vigna species using nuclear ribosomal RNA ITS: evidence of hybridization among Vigna unguiculata subspecies.

    Science.gov (United States)

    Vijaykumar, Archana; Saini, Ajay; Jawali, Narendra

    2010-01-01

    Molecular phylogeny among species belonging to subgenus Vigna (genus Vigna) was inferred based on internal transcribed spacer (ITS) sequences of 18S-5.8S-26S ribosomal RNA gene unit. Analysis showed a total of 356 polymorphic sites of which approximately 80% were parsimony informative. Phylogenetic reconstruction by neighbor joining and maximum parsimony methods placed the 57 Vigna accessions (belonging to 15 species) into 5 major clades. Five species viz. Vigna heterophylla, Vigna pubigera, Vigna parkeri, Vigna laurentii, and Vigna gracilis whose position in the subgenus was previously not known were placed in the section Vigna. A single accession (Vigna unguiculata ssp. tenuis, NI 1637) harbored 2 intragenomic ITS variants, indicative of 2 different types of ribosomal DNA (rDNA) repeat units. ITS variant type-I was close to ITS from V. unguiculata ssp. pubescens, whereas type-II was close to V. unguiculata ssp. tenuis. Transcript analysis clearly demonstrates that in accession NI 1637, rDNA repeat units with only type-II ITS variants are transcriptionally active. Evidence from sequence analysis (of 5.8S, ITS1, and ITS2) and secondary structure analysis (of ITS1 and ITS2) indicates that the type-I ITS variant probably does not belong to the pseudogenic rDNA repeat units. The results from phylogenetic and transcript analysis suggest that the rDNA units with the type-I ITS may have introgressed as a result of hybridization (between ssp. tenuis and ssp. pubescens); however, it has been epigenetically silenced. The results also demonstrate differential evolution of ITS sequence among wild and cultivated forms of V. unguiculata.

  20. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  1. Clinorotation influences rDNA and NopA100 localization in nucleoli

    Science.gov (United States)

    Sobol, M. A.; González-Camacho, F.; Rodríguez-Vilariño, V.; Kordyum, E. L.; Medina, F. J.

    The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts. The plant nucleolin homologue NopA100 is involved in the regulation of r-chromatin condensation/expansion and rDNA transcription as well as in rRNA processing. We have investigated with immunogold electron microscopy the location of nucleolar DNA and NopA100 in cress root meristematic cells grown under slow horizontal clinorotation, reproducing an important feature of microgravity, namely the absence of an orienting action of a gravity vector, compared to control conditions. We demonstrate redistribution of both rDNA and NopA100 in nucleolar subcomponents induced by clinorotation. Ribosomal DNA concentrated predominantly in fibrillar centers in the form of condensed r-chromatin inclusions and internal non condensed fibrils, redistributing from the dense fibrillar component and the transition zone between fibrillar centers and the dense fibrillar component, recognized as the loci of rDNA transcription. The content of NopA100 was much higher in the inner space of fibrillar centers and reduced in the dense fibrillar component as compared to the control. Based on these data, an effect of slow horizontal clinorotation in lowering the level of rDNA transcription as well as rRNA processing is suggested.

  2. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants.

    Science.gov (United States)

    Wicke, Susann; Costa, Andrea; Muñoz, Jesùs; Quandt, Dietmar

    2011-11-01

    Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S

  3. Effect of primary and secondary radicals on chain breaks in ribosomal RNA in E. coli ribosomes

    International Nuclear Information System (INIS)

    Singh, H.; Bishop, J.

    1984-01-01

    It has been shown previously that, in dilute aerated solutions, ribosomes are inactivated by OH radicals and by secondary radicals produced from added alcohols (Singh and Vadasz 1983 a). In de-aerated solutions, both radicalH and e - sub(aq) also inactivate ribosomes (Singh and Vadasz 1983 b). The results of these studies and other on different systems (Adams et al. 1973, Aldrich and Cundall 1969, Dewey and Stein 1970, Masuda et al. 1971, Nabben et al. 1982, 1983, Samuni et al. 1980, Singh and Singh 1982) have shown that damage to biological systems occurs by diverse mechanisms. One of these mechanisms involves chain breaks in RNA (Pollard and Weller 1967). The purpose of this study was to determine which of the primary and secondary radicals cause chain breaks in ribosomal RNA (rRNA) within the ribosomes. (author)

  4. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    Science.gov (United States)

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and

  5. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.

    Science.gov (United States)

    Konevega, Andrey L; Fischer, Niels; Semenkov, Yuri P; Stark, Holger; Wintermeyer, Wolfgang; Rodnina, Marina V

    2007-04-01

    During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.

  6. The use of 125iodine-labeled RNA for detection of the RNA binding to ribosomes

    International Nuclear Information System (INIS)

    Mori, Tomohiko; Fukuda, Mitsuru

    1975-01-01

    The in vitro labeling of RNA with radioactive iodine is the efficient method to obtain the RNA with high specific activity. The present paper reports on the application of this technique to the production of iodine-labeled RNA for use in the experiment of binding RNA to ribosomes. Tobacco mosaic virus (TMV) RNA was used as natural mRNA, and E. coli S-30 preparation was used as a source of ribosomes. The TMV-RNA was prepared by bentonite-phenol extraction from TMV, and the method used for the iodation of RNA was based on the procedure described by Getz et al. The iodine-labeled RNA was incubated in a cell-free protein synthesizing system (S-30) prepared from E. coli K-12. After the incubation, the reaction mixture was layered onto sucrose gradient, centrifuged, and fractionated into 18 fractions. Optical density at 260 nm was measured, and radioactivity was counted, for each fraction. The binding of mRNA to ribosomes occurred even at 0 deg C, and the occurrence of the nonspecific binding was also shown. Consequently, the specific binding, i.e. the formation of the initiation complex being involved in amino acid incorporation, may be estimated by subtracting the radioactivity associated with monosomes in the presence of both rRNA and ATA from that in the presence of rRNA only. It was shown that the iodine-labeled RNA can be used for the studies of binding RNA to ribosomes. (Kako, I.)

  7. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  8. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  9. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  10. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    Science.gov (United States)

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  11. Systematic analysis and evolution of 5S ribosomal DNA in metazoans.

    Science.gov (United States)

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-11-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.

  12. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    Science.gov (United States)

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  13. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Sunghan [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Shin, Yun-jeong [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Woo-Young [College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Koh, Hee-Jong, E-mail: heejkoh@snu.ac.kr [Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  14. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Science.gov (United States)

    2011-01-01

    Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution. PMID:21627815

  15. Studies of the effects of ultraviolet radiation on the structural integrities of ribosomal RNA components of the Escherichia coli 50S ribosomal subunit

    International Nuclear Information System (INIS)

    Gorelic, L.; Parker, D.

    1978-01-01

    The effects of 254-nm radiation on the structural integrities of free and 50S ribosome-bound 5S and 23S ribosomal ribonucleic acids (rRNA) have been elucidated. Irradiation of aqueous solutions of Escherichia coli 50S ribosomes with 253.7-nm radiation results in the formation of single-strand breaks in double-stranded regions of the 23S rRNA component, but not in rRNA chain scission, and destabilization of the secondary structure of the 23S rRNA toward denaturation. The minimum doses of 253.7-nm radiation required for the first detection of the two effects are 7 x 10 19 quanta for the production of single-strand breaks in double-stranded regions of the 23S rRNA, and 19 quanta for destabilization of the 23S rRNA secondary structure. Free 23S rRNA is resistant toward photoinduced chain breakage at doses of 253.7-nm radiation up to at least 2.3 x 10 20 and is much less sensitive toward destabilization of secondary structure than ribosome-bound 23S rRNA. In contrast to the photosensitivity of 50S ribosome-bound 23S rRNA toward chain breakage, 50S ribosome-bound 5S rRNA is resistant toward chain breakage at doses of 253.7-nm radiation up to at least 2.3 x 10 20 quanta. Ribosome-bound 5S and 23S rRNA are also not photosensitive toward intermolecular 5S/23S rRNA cross-linkage

  16. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

    Science.gov (United States)

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.

  17. Epigenetic silencing of nucleolar rRNA genes in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Maciej Pietrzak

    Full Text Available Ribosomal deficits are documented in mild cognitive impairment (MCI, which often represents an early stage Alzheimer's disease (AD, as well as in advanced AD. The nucleolar rRNA genes (rDNA, transcription of which is critical for ribosomal biogenesis, are regulated by epigenetic silencing including promoter CpG methylation.To assess whether CpG methylation of the rDNA promoter was dysregulated across the AD spectrum, we analyzed brain samples from 10 MCI-, 23 AD-, and, 24 age-matched control individuals using bisulfite mapping. The rDNA promoter became hypermethylated in cerebro-cortical samples from MCI and AD groups. In parietal cortex, the rDNA promoter was hypermethylated more in MCI than in advanced AD. The cytosine methylation of total genomic DNA was similar in AD, MCI, and control samples. Consistent with a notion that hypermethylation-mediated silencing of the nucleolar chromatin stabilizes rDNA loci, preventing their senescence-associated loss, genomic rDNA content was elevated in cerebrocortical samples from MCI and AD groups.In conclusion, rDNA hypermethylation could be a new epigenetic marker of AD. Moreover, silencing of nucleolar chromatin may occur during early stages of AD pathology and play a role in AD-related ribosomal deficits and, ultimately, dementia.

  18. Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA

    Science.gov (United States)

    Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.

    2015-01-01

    Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222

  19. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    Science.gov (United States)

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C0t method.

    Science.gov (United States)

    Gouveia, Juceli Gonzalez; Wolf, Ivan Rodrigo; de Moraes-Manécolo, Vivian Patrícia Oliveira; Bardella, Vanessa Belline; Ferracin, Lara Munique; Giuliano-Caetano, Lucia; da Rosa, Renata; Dias, Ana Lúcia

    2016-12-01

    Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C 0 t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C 0 t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.

  1. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    Science.gov (United States)

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  2. Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli

    International Nuclear Information System (INIS)

    Gravel, M.; Melancon, P.; Barkier-Gingras, L.

    1987-01-01

    [ 3 H]Dihydrostreptomycin was cross-linked to the 30S ribosomal subunit from Escherichia coli with the bifunctional reagent nitrogen mustard. The cross-linking primarily involved the 16S RNA. To localize the site of cross-linking of streptomycin to the 16S RNA, the authors hybridized RNA labeled with streptomycin to restriction fragments of the 16S RNA gene. Labeled RNA hybridized to DNA fragments corresponding to bases 892-917 and bases 1394-1415. These two segments of the ribosomal RNA must by juxtaposed in the ribosome, since there is a single binding site for streptomycin. This region has been implicated both in the decoding site and in the binding of initiation factor IF-3, indicating its functional importance

  3. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    International Nuclear Information System (INIS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Jernigan, Robert L; Sen, Taner Z; Kloczkowski, Andrzej

    2008-01-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine–Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit

  4. Proto-ribosome: a theoretical approach based on RNA relics

    OpenAIRE

    Demongeot, Jacques

    2017-01-01

    We describe in this paper, based on already published articles, a contribution to the theory postulating the existence of a proto-ribosome, which could have appeared early at the origin of life and we discuss the interest of this notion in an evolutionary perspective, taking into account the existence of possible RNA relics of this proto-ribosome.

  5. Genetic diversity of Entamoeba: Novel ribosomal lineages from cockroaches.

    Directory of Open Access Journals (Sweden)

    Tetsuro Kawano

    Full Text Available Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba.

  6. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  7. A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH

    Directory of Open Access Journals (Sweden)

    Jinzhong FU

    2009-04-01

    Full Text Available The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA. Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number, location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation, low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution.

  8. Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells.

    Science.gov (United States)

    Galbiati, Alice; Penzo, Marianna; Bacalini, Maria Giulia; Onofrillo, Carmine; Guerrieri, Ania Naila; Garagnani, Paolo; Franceschi, Claudio; Treré, Davide; Montanaro, Lorenzo

    2017-06-06

    The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription. Since JHDM1B is a negative regulator of gene transcription, we focused on the effects induced by JHDM1B knock-down (KD). We studied the consequences of stable inducible JHDM1B silencing in cell lines derived from transformed and untransformed mammary epithelial cells. In these cellular models, prolonged JHDM1B downregulation triggered a surge of 45S pre-rRNA transcription and processing, associated with a re-modulation of the H3K36me2 levels at rDNA loci and with changes in DNA methylation of specific CpG sites in rDNA genes. We also found that after JHDM1B KD, cells showed a higher ribosome content: which were engaged in mRNA translation. JHDM1B KD and the consequent stimulation of ribosomes biogenesis conferred more aggressive features to the tested cellular models, which acquired a greater clonogenic, staminal and invasive potential. Taken together, these data indicate that the reduction of JHDM1B leads to a more aggressive cellular phenotype in mammary gland cells, by virtue of its negative regulatory activity on ribosome biogenesis.

  9. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus.

    Directory of Open Access Journals (Sweden)

    John N Griffin

    2015-03-01

    Full Text Available The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.

  10. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes

    Directory of Open Access Journals (Sweden)

    Mickey R. Miller

    2014-09-01

    Full Text Available In bacteria, transfer-messenger RNA (tmRNA and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.

  11. Synthesis and methylation of ribosomal RNA in HeLa cells infected with the herpes virus pseudorabies virus

    International Nuclear Information System (INIS)

    Furlong, J.C.; Kyriakidis, S.; Stevely, W.S.

    1982-01-01

    The effects of infection with the herpes virus pseudorabies virus on the metabolism of HeLa cell ribosomal RNA were examined. There is a decline both in the synthesis of nucleolar 45S ribosomal precursor RNA and in its processing to mature cytoplasmic RNA. The methylated oligonucleotides in the ribosomal RNA species were studied. The methylation of cytoplasmic ribosomal RNA was essentially unchanged. However there was some undermethylation of the nucleolar precursor. If undermethylated RNA does not mature then this may partly explain the reduced processing in the infected cells. (Author)

  12. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA.

    Science.gov (United States)

    Hochstatter, Julia; Hölzel, Michael; Rohrmoser, Michaela; Schermelleh, Lothar; Leonhardt, Heinrich; Keough, Rebecca; Gonda, Thomas J; Imhof, Axel; Eick, Dirk; Längst, Gernot; Németh, Attila

    2012-07-13

    Ribosomal RNA gene transcription, co-transcriptional processing, and ribosome biogenesis are highly coordinated processes that are tightly regulated during cell growth. In this study we discovered that Mybbp1a is associated with both the RNA polymerase I complex and the ribosome biogenesis machinery. Using a reporter assay that uncouples transcription and RNA processing, we show that Mybbp1a represses rRNA gene transcription. In addition, overexpression of the protein reduces RNA polymerase I loading on endogenous rRNA genes as revealed by chromatin immunoprecipitation experiments. Accordingly, depletion of Mybbp1a results in an accumulation of the rRNA precursor in vivo but surprisingly also causes growth arrest of the cells. This effect can be explained by the observation that the modulation of Mybbp1a protein levels results in defects in pre-rRNA processing within the cell. Therefore, the protein may play a dual role in the rRNA metabolism, potentially linking and coordinating ribosomal DNA transcription and pre-rRNA processing to allow for the efficient synthesis of ribosomes.

  13. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex.

    Science.gov (United States)

    Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel

    2003-08-01

    Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.

  14. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA

    Science.gov (United States)

    Andreeva, Irena

    2018-01-01

    During translation, consecutive ribosomes load on an mRNA and form a polysome. The first ribosome binds to a single-stranded mRNA region and moves toward the start codon, unwinding potential mRNA structures on the way. In contrast, the following ribosomes can dock at the start codon only when the first ribosome has vacated the initiation site. Here we show that loading of the second ribosome on a natural 38-nt-long 5′ untranslated region of lpp mRNA, which codes for the outer membrane lipoprotein from Escherichia coli, takes place before the leading ribosome has moved away from the start codon. The rapid formation of this standby complex depends on the presence of ribosomal proteins S1/S2 in the leading ribosome. The early recruitment of the second ribosome to the standby site before translation by the leading ribosome and the tight coupling between translation elongation by the first ribosome and the accommodation of the second ribosome can contribute to high translational efficiency of the lpp mRNA. PMID:29632209

  15. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Science.gov (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  16. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  17. Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes

    Czech Academy of Sciences Publication Activity Database

    Vitales, D.; D'Ambrosio, U.; Galvez, F.; Kovařík, Aleš; Garcia, S.

    2017-01-01

    Roč. 303, č. 8 (2017), s. 1115-1121 ISSN 0378-2697 R&D Projects: GA ČR(CZ) GC16-02149J Institutional support: RVO:68081707 Keywords : in-situ hybridization * ribosomal-rna genes * 5s rdna Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.239, year: 2016

  18. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    Science.gov (United States)

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  19. A Listeria monocytogenes RNA helicase essential for growth and ribosomal maturation at low temperatures uses its C terminus for appropriate interaction with the ribosome.

    Science.gov (United States)

    Netterling, Sakura; Vaitkevicius, Karolis; Nord, Stefan; Johansson, Jörgen

    2012-08-01

    Listeria monocytogenes, a Gram-positive food-borne human pathogen, is able to grow at temperatures close to 0°C and is thus of great concern for the food industry. In this work, we investigated the physiological role of one DExD-box RNA helicase in Listeria monocytogenes. The RNA helicase Lmo1722 was required for optimal growth at low temperatures, whereas it was dispensable at 37°C. A Δlmo1722 strain was less motile due to downregulation of the major subunit of the flagellum, FlaA, caused by decreased flaA expression. By ribosomal fractionation experiments, it was observed that Lmo1722 was mainly associated with the 50S subunit of the ribosome. Absence of Lmo1722 decreased the fraction of 50S ribosomal subunits and mature 70S ribosomes and affected the processing of the 23S precursor rRNA. The ribosomal profile could be restored to wild-type levels in a Δlmo1722 strain expressing Lmo1722. Interestingly, the C-terminal part of Lmo1722 was redundant for low-temperature growth, motility, 23S rRNA processing, and appropriate ribosomal maturation. However, Lmo1722 lacking the C terminus showed a reduced affinity for the 50S and 70S fractions, suggesting that the C terminus is important for proper guidance of Lmo1722 to the 50S subunit. Taken together, our results show that the Listeria RNA helicase Lmo1722 is essential for growth at low temperatures, motility, and rRNA processing and is important for ribosomal maturation, being associated mainly with the 50S subunit of the ribosome.

  20. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  1. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  2. Regulation of rDNA stability by sumoylation

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2009-01-01

    Repair of DNA lesions by homologous recombination relies on the copying of genetic information from an intact homologous sequence. However, many eukaryotic genomes contain repetitive sequences such as the ribosomal gene locus (rDNA), which poses a risk for illegitimate recombination. Therefore, t......6 complex and sumoylation of Rad52, which directs DNA double-strand breaks in the rDNA to relocalize from within the nucleolus to the nucleoplasm before association with the recombination machinery. The relocalization before repair is important for maintaining rDNA stability. The focus...

  3. Production of RNA-protein cross links in γ irradiated E. Coli ribosomes

    International Nuclear Information System (INIS)

    Ekert, Bernard; Giocanti, Nicole

    1976-01-01

    γ irradiation in de-aerated conditions of E. coli MRE 600 ribosomes, labelled with 14 C uracil, leads to a decrease of extractibility of 14 C RNA by lithium chloride 4 M-urea 8 M. On the other hand, the radioactivity of the protein fraction increases with irradiation. These results strongly suggest that RNA-protein cross links are formed in irradiated ribosomes [fr

  4. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V

    2018-04-06

    Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.

  5. Structural Studies of RNA Helicases Involved in Eukaryotic Pre-mRNA Splicing, Ribosome Biogenesis, and Translation Initiation

    DEFF Research Database (Denmark)

    He, Yangzi

    and ligates the neighbouring exons to generate mature mRNAs. Prp43 is an RNA helicase of the DEAH/RHA family. In yeast, once mRNAs are released, Prp43 catalyzes the disassembly of spliceosomes. The 18S, 5.8S and 25S rRNAs are transcribed as a single polycistronic transcript—the 35S pre......-rRNA. It is nucleolytically cleaved and chemically modified to generate mature rRNAs, which assemble with ribosomal proteins to form the ribosome. Prp43 is required for the processing of the 18S rRNA. Using X-ray crystallography, I determined a high resolution structure of Prp43 bound to ADP, the first structure of a DEAH....../RHA helicase. It defined the conserved structural features of all DEAH/RHA helicases, and unveiled a novel nucleotide binding site. Additionally a preliminary low resolution structure of a ternary complex comprising Prp43, a non-hydrolyzable ATP analogue, and a single-stranded RNA, was obtained. The ribosome...

  6. Simulating movement of tRNA through the ribosome during hybrid-state formation.

    Science.gov (United States)

    Whitford, Paul C; Sanbonmatsu, Karissa Y

    2013-09-28

    Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the

  7. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    Science.gov (United States)

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  8. Novel mRNA-specific effects of ribosome drop-off on translation rate and polysome profile.

    Directory of Open Access Journals (Sweden)

    Pierre Bonnin

    2017-05-01

    Full Text Available The well established phenomenon of ribosome drop-off plays crucial roles in translational accuracy and nutrient starvation responses during protein translation. When cells are under stress conditions, such as amino acid starvation or aminoacyl-tRNA depletion due to a high level of recombinant protein expression, ribosome drop-off can substantially affect the efficiency of protein expression. Here we introduce a mathematical model that describes the effects of ribosome drop-off on the ribosome density along the mRNA and on the concomitant protein synthesis rate. Our results show that ribosome premature termination may lead to non-intuitive ribosome density profiles, such as a ribosome density which increases from the 5' to the 3' end. Importantly, the model predicts that the effects of ribosome drop-off on the translation rate are mRNA-specific, and we quantify their resilience to drop-off, showing that the mRNAs which present ribosome queues are much less affected by ribosome drop-off than those which do not. Moreover, among those mRNAs that do not present ribosome queues, resilience to drop-off correlates positively with the elongation rate, so that sequences using fast codons are expected to be less affected by ribosome drop-off. This result is consistent with a genome-wide analysis of S. cerevisiae, which reveals that under favourable growth conditions mRNAs coding for proteins involved in the translation machinery, known to be highly codon biased and using preferentially fast codons, are highly resilient to ribosome drop-off. Moreover, in physiological conditions, the translation rate of mRNAs coding for regulatory, stress-related proteins, is less resilient to ribosome drop-off. This model therefore allows analysis of variations in the translational efficiency of individual mRNAs by accounting for the full range of known ribosome behaviours, as well as explaining mRNA-specific variations in ribosome density emerging from ribosome profiling

  9. Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.

    Science.gov (United States)

    Nikolaitchik, Olga A; Hu, Wei-Shau

    2014-04-01

    A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1

  10. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?

    Science.gov (United States)

    Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo

    2017-04-15

    Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ribosomal RNA in the salivary gland of Sciara ocellaris during larval development

    International Nuclear Information System (INIS)

    Dessen, E.M.B.; Perondini, A.L.P.

    1979-01-01

    Ribosomal RNA in the salivary gland of Sciara ocellaris during larval development. The molecular weights of the precursor and of the 28S and 18S mature fractions of the ribosomal RNA estimated by poliacrilamid gel electrophoresis are 2.6 X 10 6 D, 1.4 X 10 6 D and 0.68 X 10 6 D, respectively. The in vivo processing of pre-rRNA is very fast since radioactivity could be detected in the mature fractions fifteen minutes after incorporation. The processing rate of salivary pre-rRNA increases after the stage of metamorphosis induction. The in vitro processing of the pre-rRNA is less rapid when compared to that in vivo, and no differences were found in RNAs [pt

  12. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    Directory of Open Access Journals (Sweden)

    Giulio Donati

    2013-07-01

    Full Text Available Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.

  13. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    Science.gov (United States)

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The Ribosomal RNA is a Useful Marker to Visualize Rhizobia Interacting with Legume Plants

    Science.gov (United States)

    Rinaudi, Luciana; Isola, Maria C.; Giordano, Walter

    2004-01-01

    Symbiosis between rhizobia and leguminous plants leads to the formation of nitrogen-fixing root nodules. In the present article, we recommend the use of the ribosomal RNA (rRNA) isolated from legume nodules in an experimental class with the purpose of introducing students to the structure of eukaryotic and prokaryotic ribosomes and of…

  15. Fluctuations in protein synthesis from a single RNA template: stochastic kinetics of ribosomes.

    Science.gov (United States)

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T V

    2009-01-01

    Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them--namely, the dwell time distribution--has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

  16. Mutations affecting RNA polymerase I-stimulated exchange and rDNA recombination in yeast

    International Nuclear Information System (INIS)

    Lin, Y.H.; Keil, R.L.

    1991-01-01

    HOT1 is a cis-acting recombination-stimulatory sequence isolated from the rDNA repeat unit of yeast. The ability of HOT1 to stimulate mitotic exchange appears to depend on its ability to promote high levels of RNA polymerase I transcription. A qualitative colony color sectoring assay was developed to screen for trans-acting mutations that alter the activity of HOT1. Both hypo-recombination and hyper-recombination mutants were isolated. Genetic analysis of seven HOT1 recombination mutants (hrm) that decrease HOT1 activity shows that they behave as recessive nuclear mutations and belong to five linkage groups. Three of these mutations, hrm1, hrm2, and hrm3, also decrease rDNA exchange but do not alter recombination in the absence of HOT1. Another mutation, hrm4, decreases HOT1-stimulated recombination but does not affect rDNA recombination or exchange in the absence of HOT1. Two new alleles of RAD52 were also isolated using this screen. With regard to HOT1 activity, rad52 is epistatic to all four hrm mutations indicating that the products of the HRM genes and of RAD52 mediate steps in the same recombination pathway. Finding mutations that decrease both the activity of HOT1 and exchange in the rDNA supports the hypothesis that HOT1 plays a role in rDNA recombination

  17. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    Science.gov (United States)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  18. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1993-01-01

    RNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S r......The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S r......)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there....

  19. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome.

    Science.gov (United States)

    Robicheau, Brent M; Susko, Edward; Harrigan, Amye M; Snyder, Marlene

    2017-02-01

    Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an "rDNA-like signal", representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong; Qian, Pei-Yuan

    2009-01-01

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions

  1. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Milbury Coren A

    2010-09-01

    Full Text Available Abstract Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.

  2. Introducing W.A.T.E.R.S.: a workflow for the alignment, taxonomy, and ecology of ribosomal sequences.

    Science.gov (United States)

    Hartman, Amber L; Riddle, Sean; McPhillips, Timothy; Ludäscher, Bertram; Eisen, Jonathan A

    2010-06-12

    For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly. We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16 S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-source Kepler system as a platform. By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable

  3. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  4. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  5. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    Science.gov (United States)

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  6. Distribution of protein and RNA in the 30S ribosomal subunit

    International Nuclear Information System (INIS)

    Ramakrishnan, V.

    1986-01-01

    In Escherichia coli, the small ribosomal subunit has a sedimentation coefficient of 30S, and consists of a 16S RNA molecule of 1541 nucleotides complexed with 21 proteins. Over the last few years, a controversy has emerged regarding the spatial distribution of RNA and protein in the 30S subunit. Contrast variation with neutron scattering was used to suggest that the RNA was located in a central core of the subunit and the proteins mainly in the periphery, with virtually no separation between the centers of mass of protein and RNA. However, these findings are incompatible with the results of efforts to locate individual ribosomal proteins by immune electron microscopy and triangulation with interprotein distance measurements. The conflict between these two views is resolved in this report of small-angle neutron scattering measurements on 30S subunits with and without protein S1, and on subunits reconstituted from deuterated 16S RNA and unlabeled proteins. The results show that (i) the proteins and RNA are intermingled, with neither component dominating at the core or the periphery, and (ii) the spatial distribution of protein and RNA is asymmetrical, with a separation between their centers of mass of about 25 angstroms

  7. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex

    Science.gov (United States)

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  8. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  9. The IGS-ETS in Bacillus (Insecta Phasmida: molecular characterization and the relevance of sex in ribosomal DNA evolution

    Directory of Open Access Journals (Sweden)

    Passamonti Marco

    2008-10-01

    Full Text Available Abstract Background DNA encoding for ribosomal RNA (rDNA is arranged in tandemly-repeated subunits, each containing ribosomal genes and non-coding spacers. Because tandemly-repeated, rDNA evolves under a balanced influence of selection and "concerted evolution", which homogenizes rDNA variants over the genome (through genomic turnover mechanisms and the population (through sexuality. Results In this paper we analyzed the IGS-ETS of the automictic parthenogen Bacillus atticus and the bisexual B. grandii, two closely related stick-insect species. Both species share the same IGS-ETS structure and sequence, including a peculiar head-to-tail array of putative transcription enhancers, here named Bag530. Sequence variability of both IGS-ETS and Bag530 evidenced a neat geographic and subspecific clustering in B. grandii, while B. atticus shows a little but evident geographic structure. This was an unexpected result, since the parthenogen B. atticus should lack sequence fixation through sexuality. In B. atticus a new variant might spread in a given geographic area through colonization by an all-female clone, but we cannot discard the hypothesis that B. atticus was actually a bisexual taxon in that area at the time the new variant appeared. Moreover, a gene conversion event between two Bag530 variants of B. grandii benazzii and B. grandii maretimi suggested that rRNA might evolve according to the so-called "library hypothesis" model, through differential amplification of rDNA variants in different taxa. Conclusion On the whole, Bacillus rDNA evolution appears to be under a complex array of interacting mechanisms: homogenization may be achieved through genomic turnover that stabilizes DNA-binding protein interactions but, simultaneously, new sequence variants can be adopted, either by direct appearance of newly mutated repeats, or by competition among repeats, so that both DNA-binding proteins and repeat variants drive each other's evolution. All this

  10. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22.

    Directory of Open Access Journals (Sweden)

    Jennifer L Houmani

    Full Text Available The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.

  11. 5-Methyldeoxycytidine in the Physarum minichromosome containing the ribosomal RNA genes.

    Science.gov (United States)

    Cooney, C A; Matthews, H R; Bradbury, E M

    1984-01-01

    5-Methyldeoxycytidine (5MC) was analyzed by high pressure liquid chromatography (HPLC) and by restriction enzyme digestion in rDNA isolated from Physarum polycephalum. rDNA from Physarum M3C strain microplasmodia has a significant 5MC content (about half that of the whole genomic DNA). This rDNA contains many C5MCGG sites because it is clearly digested further by Msp I than by Hpa II. However, most 5MC is in other sites. In particular, alternating CG sequences appear to be highly methylated. HPLC of deoxyribonucleosides shows tha most of the transcribed regions contain little or no 5MC. Restriction digestion indicates that there is little or no 5MC in any of the transcribed regions including the transcription origin and adjacent sequences. Over 90% of the total 5MC is in or near the central nontranscribed spacer and most methylated restriction sites are in inverted repeats of this spacer. rDNA is very heterogeneous with respect to 5MC. The 5MC pattern doesn't appear to change with inactivation of the rRNA genes during reversible differentiation from microplasmodia (growing) to microsclerotia (dormant), showing that inactivation is due to changes in other chromatin variables. The 5MC pattern is different between Physarum strains. The possible involvement of this 5MC in rDNA chromatin structure and in cruciform and Z-DNA formation is discussed. Images PMID:6322108

  12. Karyotyping and in situ chromosomal localization of rDNA sites in black cumin Bunium persicum (Boiss B. Fedtsch,1915 (Apiaceae

    Directory of Open Access Journals (Sweden)

    R. K. Chahota

    2011-11-01

    Full Text Available The fluorescent in situ hybridization (FISH technique has been applied to somatic chromosomes in the medicinally important species, Bunium persicum, to elucidate its karyotypes. The bicolour FISH technique involving 18S-5.8S-26S and 5S ribosomal RNA genes as probes was used to assign physical localization and measurement of rDNA sites on homologous pairs of chromosomes. The two 18S-5.8S-26S rRNA gene sites were at the terminal regions of the short arms of the chromosomes 1 and 2 involving NOR region of chromosome 1. The 5S rDNA sites were found on subtelomeric region of the long arm of the chromosome number 5 and at interstitial regions of the short arm of chromosome 7. Based on direct visual analysis of chromosome length, morphology and position of FISH signals, a pioneer attempt has been made to construct metaphase karyotype in B. persicum, an endangered medicinal plant of North Western Himalayas.

  13. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance

    DEFF Research Database (Denmark)

    Douthwaite, S; Powers, T; Lee, J Y

    1989-01-01

    The helix spanning nucleotides 1198 to 1247 (helix 1200-1250) in Escherichia coli 23 S ribosomal RNA (rRNA) is functionally important in protein synthesis, and deletions in this region confer erythromycin resistance. In order to define the structural requirements for resistance, we have dissected...... deletion mutants show a sensitive phenotype. Deletions that extend into the base-pairing between GCC1208 and GGU1240 result in non-functional 23 S RNAs, which consequently do not confer resistance. A number of phylogenetically conserved nucleotides have been shown to be non-essential for 23 S RNA function....... However, removal of either these or non-conserved nucleotides from helix 1200-1250 measurably reduces the efficiency of 23 S RNA in forming functional ribosomes. We have used chemical probing and a modified primer extension method to investigate erythromycin binding to wild-type and resistant ribosomes...

  14. Isolamento e caracterização parcial de sequências homólogas a genes ribossomais (rDNA em Blastocladiella emersonii - DOI: 10.4025/actascibiolsci.v25i2.2037 Isolation and partial characterization of homologous sequences of ribosomal genes (rDNA in Blastocladiella emersonii

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Correa

    2003-04-01

    Full Text Available A definição e a caracterização de regiões de origens de replicação nos eucariotos superiores são ainda controversas. A iniciação da replicação é sítio-específica em alguns sistemas e, em outros, parece estar contida em regiões extensas. Regiões rDNA são modelos atrativos para o estudo de origens de replicação pela sua organização in tandem, reduzindo a área de estudo para o espaço restrito que codifica uma unidade de transcrição. Neste trabalho nós isolamos e caracterizamos parcialmente um clone que contém uma sequência ribossomal do fungo aquático Blastocladiella emersonii, Be97M20. Southern blots mostraram diversos sítios para enzimas de restrição Eco RI, HindIII e SalI. Northern blot de RNA total hibridado contra uma sonda feita com Be97M20 confirmou a sua homologia com o gene ribossomal 18S. A caracterização detalhada, incluindo o mapeamento de restrição completo, subclonagem, sequenciamento e análise em géis bidimensionais proverão informações adicionais importantes sobre a estrutura e dinâmica desta regiãoThe definition and the characterization of replication origins regions in higher eukaryotes are still controversial. The initiation of the replication is site-specific in some systems but seems to occur in large regions in others. Because of its in tandem organization, reducing the area to the restricted space that codifies an unit of transcription, rDNA regions are attractive models to study replication origins. In this work we isolated and started to characterize a clone that contains a ribosomal sequence from the aquatic fungus B. emersonii, Be97M20. Southern blots showed several sites for the restrition enzymes Eco RI, HindIII and SalI. A northern blot of total RNA, hybridized against a probe made from Be97M20, confirmed its homology with the ribosomal 18S gene. The detailed characterization, including complete restriction map, subcloning, sequence and analysis on bidimensional gels will

  15. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  16. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation

    Science.gov (United States)

    2016-02-11

    unlimited. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation The views, opinions and...into Dynamics and Regulation of Yeast Translation Report Title Ribosome-footprint profiling provides genome-wide snapshots of translation, but...tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was

  17. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    Science.gov (United States)

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  18. Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors.

    Science.gov (United States)

    Gerasimova, Yulia V; Yakovchuk, Petro; Dedkova, Larisa M; Hecht, Sidney M; Kolpashchikov, Dmitry M

    2015-10-01

    Mutations in ribosomal RNA (rRNA) have traditionally been detected by the primer extension assay, which is a tedious and multistage procedure. Here, we describe a simple and straightforward fluorescence assay based on binary deoxyribozyme (BiDz) sensors. The assay uses two short DNA oligonucleotides that hybridize specifically to adjacent fragments of rRNA, one of which contains a mutation site. This hybridization results in the formation of a deoxyribozyme catalytic core that produces the fluorescent signal and amplifies it due to multiple rounds of catalytic action. This assay enables us to expedite semi-quantification of mutant rRNA content in cell cultures starting from whole cells, which provides information useful for optimization of culture preparation prior to ribosome isolation. The method requires less than a microliter of a standard Escherichia coli cell culture and decreases analysis time from several days (for primer extension assay) to 1.5 h with hands-on time of ∼10 min. It is sensitive to single-nucleotide mutations. The new assay simplifies the preliminary analysis of RNA samples and cells in molecular biology and cloning experiments and is promising in other applications where fast detection/quantification of specific RNA is required. © 2015 Gerasimova et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Mapping of the 18S and 5S ribosomal RNA genes in Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae from the upper Paraná river basin, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Fernandes

    2006-01-01

    Full Text Available Fluorescence in situ hybridization (FISH was undertaken in order to determinate the chromosomal distribution pattern of 18S and 5S ribosomal DNAs (rDNA in four populations of the characid fish Astyanax altiparanae from the upper Paraná river basin, Brazil. The 18S rDNA probe FISH revealed numerical and positional variations among specimens from the Keçaba stream compared to specimens of the other populations studied. In contrast to the variable 18S rDNA distribution pattern, highly stable chromosomal positioning of the 5S rDNA sites was observed in the four A. altiparanae populations. Divergence in the distribution pattern of 18S and 5S rDNA sites is also discussed.

  1. Interplay of ribosomal DNA loci in nucleolar dominance: dominant NORs are up-regulated by chromatin dynamics in the wheat-rye system.

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    Full Text Available BACKGROUND: Chromatin organizational and topological plasticity, and its functions in gene expression regulation, have been strongly revealed by the analysis of nucleolar dominance in hybrids and polyploids where one parental set of ribosomal RNA (rDNA genes that are clustered in nucleolar organizing regions (NORs, is rendered silent by epigenetic pathways and heterochromatization. However, information on the behaviour of dominant NORs is very sparse and needed for an integrative knowledge of differential gene transcription levels and chromatin specific domain interactions. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular and cytological approaches in a wheat-rye addition line (wheat genome plus the rye nucleolar chromosome pair 1R, we investigated transcriptional activity and chromatin topology of the wheat dominant NORs in a nucleolar dominance situation. Herein we report dominant NORs up-regulation in the addition line through quantitative real-time PCR and silver-staining technique. Accompanying this modification in wheat rDNA trascription level, we also disclose that perinucleolar knobs of ribosomal chromatin are almost transcriptionally silent due to the residual detection of BrUTP incorporation in these domains, contrary to the marked labelling of intranucleolar condensed rDNA. Further, by comparative confocal analysis of nuclei probed to wheat and rye NORs, we found that in the wheat-rye addition line there is a significant decrease in the number of wheat-origin perinucleolar rDNA knobs, corresponding to a diminution of the rDNA heterochromatic fraction of the dominant (wheat NORs. CONCLUSIONS/SIGNIFICANCE: We demonstrate that inter-specific interactions leading to wheat-origin NOR dominance results not only on the silencing of rye origin NOR loci, but dominant NORs are also modified in their transcriptional activity and interphase organization. The results show a cross-talk between wheat and rye NORs, mediated by ribosomal chromatin

  2. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A

    2014-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient...... recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1...

  3. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure?

    Science.gov (United States)

    O'Sullivan, Justin M; Pai, Dave A; Cridge, Andrew G; Engelke, David R; Ganley, Austen R D

    2013-06-01

    The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.

  4. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  5. The use of 16s rDNA methods in soil microbial ecology Uso de métodos 16S rDNA em ecologia microbiana do solo

    Directory of Open Access Journals (Sweden)

    Andrew Macrae

    2000-06-01

    Full Text Available New and exciting molecular methods, many using the 16S small sub-unit ribosomal nucleic acid molecule, are opening the microbial "black box" in soil. These studies have added much to our knowledge of microbial diversity in soils, and are beginning to advance our understanding of the relationship between this diversity and its function in soil processes. Over the next few years, the knowledge gained from molecular studies will, we hope, lead to improvements in sustainable land management and sustainable exploitation of soil genetic resources. As we enter the third millenium, it is appropriate to review the application of 16S rDNA methods to soil microbiology. This review examines 16S ribosomal DNA (rDNA methods and their application to soil. It mentions their limits and suggests how they may be applied in the future.Novas e excitantes técnicas moleculares muitas usando a fração 16S da subunidade menor da molécula de ácido nucleico ribossomal, estão abrindo a "caixa-preta" da microbiologia do solo. Esses estudos têm acrescentado muito ao nosso conhecimento acerca da diversidade microbiana no solo, e começam a avançar nosso entendimento sobre a relação entre essa diversidade a sua função nos processos no solo. Ao longo dos próximos anos, o conhecimento obtido a partir de técnicas moleculares irão, esperamos, levar a melhoramentos do manejo de áreas sustentáveis da exploração dos recursos genéticos do solo. Com a chegada do terceiro milênio, é apropriado revermos a aplicação das técnicas da fração 16S do rDNA em microbiologia de solo. Esta revisão examina aplicações das técnicas da fração 16S do DNA (RNA no solo, menciona seus limites e sugere como elas poderão ser usadas no futuro.

  6. Comparing the potential for identification of lactobacillus spp. of 16s rDNA variable regions

    International Nuclear Information System (INIS)

    Riano Pachon, Diego Mauricio; Vanegas Lopez, Maria Consuelo; Gonzalez Garcia, Laura Natalia

    2013-01-01

    16s rDNA is used for bacterial identification because its variation rate between species allows differentiation. The gene for this ribosomal subunit has 9 variable regions and some of them give more information than others. We were interested in evaluating the potential for species identification of each region and their combinations. We extracted the V1 to V8 regions of 16s rDNA from different strains and species of Lactobacillus and analyzed them using STAP (ss-RNA Taxonomy Assigning Pipeline) and RDP (Ribosomal Database Project) multiclassifier packages. Phylogenetic trees obtained by maximum likelihood analyses were compared. Classification results show that many regions give the correct genus classification using RDP and STAP; however they are not enough to classify up to the level of species. V5V6 region presents the highest quantity of informative fragments but also present the highest rate of false negatives. V1V3 region presents the highest rate of true positives (species) using STAP and the region V5V8 in RDP (genus).The phylogenetic result shows that the reference topology could be obtained using different combination of regions as V1V3 and V1V8.The experimental validation was done using commercial strains from a probiotic tampon. Sequencing analysis show that the V1V3 region gives the same information and result as the complete 16s rDNA; the three isolated strains correspond to the strains indicated in the product. We conclude that the V1V3 region is the minimum required region to classify Lactobacillus spp. in the correct way and this region is useful in metagenomics to analyze probiotics samples.

  7. Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida).

    Science.gov (United States)

    Carranza, S; Giribet, G; Ribera, C; Baguñà; Riutort, M

    1996-07-01

    Sequences of 18S ribosomal DNA (rDNA) are increasingly being used to infer phylogenetic relationships among living taxa. Although the 18S rDNA belongs to a multigene family, all its copies are kept homogeneous by concerted evolution (Dover 1982; Hillis and Dixon 1991). To date, there is only one well-characterized exception to this rule, the protozoan Plasmodium (Gunderson et al. 1987; Waters, Syin, and McCutchan 1989; Qari et al. 1994). Here we report the 1st case of 18S rDNA polymorphism within a metazoan species. Two types (I and II) of 18S rDNA have been found and sequenced in the platyhelminth Dugesia (Schmidtea) mediterranea (Turbellaria, Seriata, Tricladida). Southern blot analysis suggested that both types of rDNA are present in the genome of this flatworm. This was confirmed through sequence comparisons and phylogenetic analysis using the neighbor-joining method and bootstrap test. Although secondary structure analysis suggests that both types are functional, only type I seems to be transcribed to RNA, as demonstrated by Northern blot analysis. The finding of different types of 18S rDNAs in a single genome stresses the need for analyzing a large number of clones whenever 18S sequences obtained by PCR amplification and cloning are being used in phylogenetic reconstruction.

  8. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  9. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    Directory of Open Access Journals (Sweden)

    Cory Ann Leonard

    2016-01-01

    Full Text Available The 18S ribosomal RNA (rRNA gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR analysis. We compared (i samples from various animal species, tissues, and sample types, including swabs; (ii multiple DNA extraction methods; and (iii both fresh and formalin-fixed paraffin-embedded (FFPE samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects.

  10. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction

    DEFF Research Database (Denmark)

    Recht, M I; Douthwaite, S; Dahlquist, K D

    1999-01-01

    antibiotics, which also interact with this region of rRNA. Mutations of certain nucleotides in rRNA reduce aminoglycoside binding affinity, as previously demonstrated using a model RNA oligonucleotide system. Here, predictions from the oligonucleotide system were tested in the ribosome by mutation...... for the aminoglycoside paromomycin, whereas no discernible reduction in affinity was observed with 1406 mutant ribosomes. These data are consistent with prior NMR structural determination of aminoglycoside interaction with the decoding region, and further our understanding of how aminoglycoside resistance can...

  11. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data.

    Science.gov (United States)

    Szymanski, Maciej; Karlowski, Wojciech M

    2016-01-01

    In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.

  12. The functional half-life of an mRNA depends on the ribosome spacing in an early coding region

    DEFF Research Database (Denmark)

    Pedersen, Margit; Nissen, Søren; Mitarai, Namiko

    2011-01-01

    Bacterial mRNAs are translated by closely spaced ribosomes and degraded from the 5'-end, with half-lives of around 2 min at 37 °C in most cases. Ribosome-free or "naked" mRNA is known to be readily degraded, but the initial event that inactivates the mRNA functionally has not been fully described...

  13. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals.

    Science.gov (United States)

    Kournoutou, Georgia G; Giannopoulou, Panagiota C; Sazakli, Eleni; Leotsinidis, Michel; Kalpaxis, Dimitrios L

    2017-11-01

    Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40μg/L Cu, 30μg/L Hg, or 100μg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or

  14. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo.

    Science.gov (United States)

    Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M

    2014-08-01

    5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.

  15. The nucleotide sequence and organization of nuclear 5S rRNA genes in yellow lupine

    International Nuclear Information System (INIS)

    Nuc, K.; Nuc, P.; Pawelkiewicz, J.

    1993-01-01

    We have isolated a genomic clone containing 'Lupinus luteus' 5S ribosomal RNA genes by screening with 5S rDNA probe clones that were hybridized previously with the initiator methionine tRNA preparation (contaminated) with traces of rRNA or its degradation products). The clone isolated contains ten repeat units of 342 bp with 119 bp fragment showing 100% homology to the 5S rRNA from yellow lupine. Sequence analysis indicates only point heterogeneities among the flanking regions of the genes. (author). 6 refs, 3 figs

  16. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae).

    Science.gov (United States)

    Rosato, Marcela; Álvarez, Inés; Nieto Feliner, Gonzalo; Rosselló, Josep A

    2017-01-01

    The nuclear genome harbours hundreds to several thousand copies of ribosomal DNA. Despite their essential role in cellular ribogenesis few studies have addressed intrapopulation, interpopulation and interspecific levels of rDNA variability in wild plants. Some studies have assessed the extent of rDNA variation at the sequence and copy-number level with large sampling in several species. However, comparable studies on rDNA site number variation in plants, assessed with extensive hierarchical sampling at several levels (individuals, populations, species) are lacking. In exploring the possible causes for ribosomal loci dynamism, we have used the diploid genus Anacyclus (Asteraceae) as a suitable system to examine the evolution of ribosomal loci. To this end, the number and chromosomal position of 45S rDNA sites have been determined in 196 individuals from 47 populations in all Anacyclus species using FISH. The 45S rDNA site-number has been assessed in a significant sample of seed plants, which usually exhibit rather consistent features, except for polyploid plants. In contrast, the level of rDNA site-number variation detected in Anacyclus is outstanding in the context of angiosperms particularly regarding populations of the same species. The number of 45S rDNA sites ranged from four to 11, accounting for 14 karyological ribosomal phenotypes. Our results are not even across species and geographical areas, and show that there is no clear association between the number of 45S rDNA loci and the life cycle in Anacyclus. A single rDNA phenotype was detected in several species, but a more complex pattern that included intra-specific and intra-population polymorphisms was recorded in A. homogamos, A. clavatus and A. valentinus, three weedy species showing large and overlapping distribution ranges. It is likely that part of the cytogenetic changes and inferred dynamism found in these species have been triggered by genomic rearrangements resulting from contemporary

  17. The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition.

    Science.gov (United States)

    Onofrillo, Carmine; Galbiati, Alice; Montanaro, Lorenzo; Derenzini, Massimo

    2017-01-17

    Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA.

  18. How does a scanning ribosomal particle move along the 5'-untranslated region of eukaryotic mRNA? Brownian Ratchet model.

    Science.gov (United States)

    Spirin, Alexander S

    2009-11-17

    A model of the ATP-dependent unidirectional movement of the 43S ribosomal initiation complex (=40S ribosomal subunit + eIF1 + eIF1A + eIF2.GTP.Met-tRNA(i) + eIF3) during scanning of the 5'-untranslated region of eukaryotic mRNA is proposed. The model is based on the principles of molecular Brownian ratchet machines and explains several enigmatic data concerning the scanning complex. In this model, the one-dimensional diffusion of the ribosomal initiation complex along the mRNA chain is rectified into the net-unidirectional 5'-to-3' movement by the Feynman ratchet-and-pawl mechanism. The proposed mechanism is organized by the heterotrimeric protein eIF4F (=eIF4A + eIF4E + eIF4G), attached to the scanning ribosomal particle via eIF3, and the RNA-binding protein eIF4B that is postulated to play the role of the pawl. The energy for the useful work of the ratchet-and-pawl mechanism is supplied from ATP hydrolysis induced by the eIF4A subunit: ATP binding and its hydrolysis alternately change the affinities of eIF4A for eIF4B and for mRNA, resulting in the restriction of backward diffusional sliding of the 43S ribosomal complex along the mRNA chain, while stochastic movements ahead are allowed.

  19. Heavy ion effects on yeast: Inhibition of ribosomal RNA synthesis

    International Nuclear Information System (INIS)

    Weber, K.J.; Schneider, E.; Kiefer, J.; Kraft, G.

    1990-01-01

    Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated

  20. Processing of the 17-S Escherichia coli precursor RNA in the 27-S pre-ribosomal particle

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, F; Vasseur, M [Institut de Biologie Physico-Chimique, 75 - Paris (France)

    1976-01-01

    An RNase activity probably involved in the maturation of 16-S pre-ribosomal RNA in Escherichia coli has been partially purified from crude cell extracts. When 27-S ribosome precursor particles are incubated with this enzyme preparation in vitro, their 17-S RNA is converted to a product with the same electrophoretic mobility as mature 16-S rRNA. FingerprS rRNA. Generation of the normal 5'-P terminus seems to require a factor present in cell extracts since incubation of the 27-S precursor particle in an extract obtained after centrifugation at 30,000 x g causes conversion of the 17-S RNA to a 16-S species containing both termini of mature 16-S rRNS. Preliminary experiments suggest that correct maturation of the 5' end of the 17-S precursor RNA requires a system in which protein synthesis can take place.

  1. Electron microscopic in situ hybridization and autoradiography: Localization and transcription of rDNA in human lymphocyte nucleoli

    International Nuclear Information System (INIS)

    Wachtler, F.; Mosgoeller, W.S.; Schwarzacher, H.G.

    1990-01-01

    The distribution of ribosomal DNA (rDNA) in the nucleoli of human lymphocytes was revealed by in situ hybridization with a nonautoradiographic procedure at the electron microscopic level. rDNA is located in the dense fibrillar component of the nucleolus but not in the fibrillar centers. In the same cells the incorporation of tritiated uridine takes place in the dense fibrillar component of the nucleolus as seen by autoradiography followed by gold latensification. From these findings it can be concluded that the transcription of ribosomal DNA takes place in the dense fibrillar component of the nucleolus

  2. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    OpenAIRE

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in ...

  3. Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major.

    Science.gov (United States)

    Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Nepomuceno-Mejía, Tomás; Rojas-Sánchez, Saúl; Vélez-Ramírez, Daniel E; Padilla-Mejía, Norma E; Figueroa-Angulo, Elisa; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

    2016-12-01

    Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

  4. The nucleotide sequence of 5S ribosomal RNA from Micrococcus lysodeikticus.

    Science.gov (United States)

    Hori, H; Osawa, S; Murao, K; Ishikura, H

    1980-01-01

    The nucleotide sequence of ribosomal 5S RNA from Micrococcus lysodeikticus is pGUUACGGCGGCUAUAGCGUGGGGGAAACGCCCGGCCGUAUAUCGAACCCGGAAGCUAAGCCCCAUAGCGCCGAUGGUUACUGUAACCGGGAGGUUGUGGGAGAGUAGGUCGCCGCCGUGAOH. When compared to other 5S RNAs, the sequence homology is greatest with Thermus aquaticus, and these two 5S RNAs reveal several features intermediate between those of typical gram-positive bacteria and gram-negative bacteria. PMID:6780979

  5. Variation in Ribosomal DNA among Isolates of the Mycorrhizal Fungus Cenococcum Geophilum FR.

    Science.gov (United States)

    Lobuglio, Katherine Frances

    1990-01-01

    Cenococcum geophilum Fr., a cosmopolitan mycorrhizal fungus, is well-known for its extremely wide host and habitat range. The ecological diversity of C. geophilum sharply contrasts its present taxonomic status as a monotypic form -genus. Restriction fragment length polymorphisms (RFLPs) in nuclear ribosomal DNA (rDNA) was used to assess the degree of genetic variation among 72 isolates of C. geophilum. The probe used in this study was the rDNA repeat cloned from C. geophilum isolate A145 (pCG15). Length of the rDNA repeat was approximately 9 kb. The rDNA clone was mapped for 5 restriction endonucleases. Hybridization with cloned Saccharomyces cerevisiae rDNA (pSR118, and pSR125 containing the 18S, and 5.8-25S rRNA genes respectively), and alignment of restriction endonuclease sites conserved in the rDNA genes of other fungi, were used to position the corresponding rDNAs of C. geophilum. Southern hybridizations with EcoRI, HindIII, XhoI, and PstI digested DNAs indicated extensive variation among the C. geophilum isolates, greater than has been previously reported to occur within a fungal species. Most of the rDNA polymorphisms occurred in the IGS region. Restriction endonuclease site and length polymorphisms were also observed in the 5.8S-26S genic regions. Sixteen size categories of length mutations, 6 restriction endonuclease site additions, and 4 restriction endonuclease site deletions were determined using isolate A145 as a reference. The rDNA repeat length among the isolates varied from approximately 8.5 to 10.2 kb. RFLPs were also observed in the mitochondrial (mt) 24S rRNA gene and flanking regions of HindIII digested DNAs of C. geophilum isolates representing both geographically distinct and similar origins. Among the C. geophilum isolates analyzed there were fewer RFLPs in mt-DNA than in nuclear rDNA. EcoRI rDNA phenotypes between C. geophilum and Elaphomyces anthracinus, its proposed teleomorph or sexual state, did not correspond. In addition, the four

  6. Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array.

    Science.gov (United States)

    Roehrdanz, R; Heilmann, L; Senechal, P; Sears, S; Evenson, P

    2010-08-01

    Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.

  7. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome.

    Science.gov (United States)

    Sergeeva, Ekaterina M; Shcherban, Andrey B; Adonina, Irina G; Nesterov, Michail A; Beletsky, Alexey V; Rakitin, Andrey L; Mardanov, Andrey V; Ravin, Nikolai V; Salina, Elena A

    2017-11-14

    The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread

  8. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  9. A ribosomal RNA gene intergenic spacer based PCR and DGGE fingerprinting method for the analysis of specific rhizobial communities in soil.

    Science.gov (United States)

    de Oliveira, Valéria Maia; Manfio, Gilson Paulo; da Costa Coutinho, Heitor Luiz; Keijzer-Wolters, Anneke Christina; van Elsas, Jan Dirk

    2006-03-01

    A direct molecular method for assessing the diversity of specific populations of rhizobia in soil, based on nested PCR amplification of 16S-23S ribosomal RNA gene (rDNA) intergenic spacer (IGS) sequences, was developed. Initial generic amplification of bacterial rDNA IGS sequences from soil DNA was followed by specific amplification of (1) sequences affiliated with Rhizobium leguminosarum "sensu lato" and (2) R. tropici. Using analysis of the amplified sequences in clone libraries obtained on the basis of soil DNA, this two-sided method was shown to be very specific for rhizobial subpopulations in soil. It was then further validated as a direct fingerprinting tool of the target rhizobia based on denaturing gradient gel electrophoresis (DGGE). The PCR-DGGE approach was applied to soils from fields in Brazil cultivated with common bean (Phaseolus vulgaris) under conventional or no-tillage practices. The community fingerprints obtained allowed the direct analysis of the respective rhizobial community structures in soil samples from the two contrasting agricultural practices. Data obtained with both primer sets revealed clustering of the community structures of the target rhizobial types along treatment. Moreover, the DGGE profiles obtained with the R. tropici primer set indicated that the abundance and diversity of these organisms were favoured under NT practices. These results suggest that the R. leguminosarum-as well as R. tropici-targeted IGS-based nested PCR and DGGE are useful tools for monitoring the effect of agricultural practices on these and related rhizobial subpopulations in soils.

  10. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.

    Science.gov (United States)

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-07-15

    In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.

  11. In situ DNA-RNA hybridization using in vitro 125I-labeled ribosomal RNA of higher plant

    International Nuclear Information System (INIS)

    Sato, Seiichi; Kikuchi, Tadatoshi; Ishida, M.R.; Tanaka, Ryuso.

    1975-01-01

    In situ hybridization using 125 I-labeled ribosomal RNA was applied to plant cells. Cytoplasmic 25 s rRNA, which was eluted from acrylamide gels after electrophoretic separation, was labeled in vitro with carrier-free 125 I and hybridized with the interphase nuclei in root tips of Vicia faba. In most of the preparations, the nucleoli were more heavily labeled than the other regions within nuclei, and several types of grain distribution were observed on the nucleoli. From these results, it was confirmed that in situ hybridization using 125 I-labeled rRNA can be used very effectively to detect the annealing sites of different molecular species of rRNA within the nuclei of plant cells, for which it is not as easy to obtain high specific radioactive rRNA in vivo as it is in the case of cultured animal cells. (auth.)

  12. Plant rDNA database: ribosomal DNA loci information goes online

    Czech Academy of Sciences Publication Activity Database

    Garcia, S.; Garnatje, T.; Kovařík, Aleš

    2012-01-01

    Roč. 121, č. 4 (2012), s. 389-394 ISSN 0009-5915 R&D Projects: GA ČR(CZ) GAP501/10/0208; GA ČR GBP501/12/G090 Institutional research plan: CEZ:AV0Z50040702 Keywords : rDNA loci * FISH * database Subject RIV: BO - Biophysics Impact factor: 3.340, year: 2012

  13. Comparative physical mapping of 18S rDNA in the karyotypes of six leafcutter ant species of the genera Atta and Acromyrmex (Formicidae: Myrmicinae).

    Science.gov (United States)

    Teixeira, Gisele Amaro; Barros, Luísa Antônia Campos; de Aguiar, Hilton Jeferson Alves Cardoso; das Graças Pompolo, Silvia

    2017-10-01

    Leafcutter ants of the Atta and Acromyrmex genera are important plagues in different cultures. Cytogenetic data on chromosome number, morphology, and chromosomal banding pattern are only available for 17 species of leafcutter ants. Molecular cytogenetic data for the detection of ribosomal genes by the FISH technique are scarce, and only 15 Neotropical ant species have been studied. This study aimed to physically map the 18S ribosomal RNA genes (rDNA) of six leafcutter ants belonging to the genera Atta and Acromyrmex using FISH. The results were compared with data on the fluorochrome CMA 3 currently available for these species. All analyzed species presented the 18S rDNA on one pair of chromosomes. In Acromyrmex subterraneus molestans and Ac. aspersus, FISH signals were observed in the terminal region of the short arm of the largest subtelocentric pair, while in Atta bisphaerica, A. laevigata, and A. sexdens, FISH signals were observed in the interstitial region of the long arm of the fourth metacentric pair. In Acromyrmex striatus, 18S rDNA was located in the interstitial region of the second metacentric pair. The karyotypic formula for Ac. aspersus was 2n = 38 (8m + 10sm + 16st + 4a), representing the first report in this species. The observed 18S rDNA regions in A. laevigata, A. sexdens, A. bisphaerica, Ac. aspersus, and Ac. subterraneus molestans corresponded to the CMA 3 + bands, while in Ac. striatus, several GC-rich bands and one pair of 18S rDNA bands were observed. No differential bands were visible using the DAPI fluorochrome. Karyotype uniformity with previously studied Atta spp. was also observed at the level of molecular cytogenetics using 18S rDNA FISH. A difference in the size of the chromosomal pair carrying the 18S rDNA gene was observed in Ac. striatus (2n = 22) and Atta spp. (2n = 22) highlighting the dissimilarity between these species. The results from the present study contribute to the description of 18S rDNA clusters

  14. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.).

    Science.gov (United States)

    Symonová, Radka; Ocalewicz, Konrad; Kirtiklis, Lech; Delmastro, Giovanni Battista; Pelikánová, Šárka; Garcia, Sonia; Kovařík, Aleš

    2017-05-18

    Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n = 2x = 50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes. The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30-38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10-30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides. Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation

  15. Ribosomal synthesis of polylysine from individual lysyl-tRNA/sup Lys/ in the absence of a template

    International Nuclear Information System (INIS)

    Yusupova, G.Z.; Remme, Y.L.; Belitsina, N.B.; Spirin, A.S.

    1987-01-01

    Earlier studies showed that ribosomes of Escherichia coli, in the absence of a template, can synthesize oligolysine, using lysyl-tRNA as a substrate. The authors present results on the use of preparations of individual lysyl-tRNA/sup Lys/ and phenylalanyl-tRNA/sup Phe/ in a system of templateless peptide synthesis. For these studies, the authors used ribosomes of E. coli MRE 600, washed four times with 1 M NH 4 Cl with 10 MM MgCl 2 . The purified ribosomes were stored at -70 0 C in standard buffer, containing 20 mM Tris-HCl, 100 mM NH 4 Cl, 10 mM MgCl 2 , 0.1 mM ethylenediamine tetraacetate (EDTA), and 10% glycerin, pH/sub 37 0 C/7.6. A preparation of [ 14 C]lysyl-tRNA/sup Lys/ was produced by affinity chromatography on immobilized factor EF-T/sub u/ from Thermus thermophilus HB8. The elongation factor EF-T/sub u/ from T. thermophilus and immobilized on BrCN-activated Sepharose 4B. The initial preparation of total tRNA of E. coli, enzymatically acylated by [ 14 C]lysine (348 Ci/mole, Amersham), was produced as described earlier. The degree of aminoacylation was 52-59 pmoles [ 14 C]lysine per unit of A 260 of tRNA

  16. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates.

    Science.gov (United States)

    Pringle, Märit; Poehlsgaard, Jacob; Vester, Birte; Long, Katherine S

    2004-12-01

    The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.

  17. Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC. A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.

  18. Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.

    Science.gov (United States)

    Mallik, Saurav; Basu, Sudipto; Hait, Suman; Kundu, Sudip

    2018-04-21

    Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. © 2018 Wiley Periodicals, Inc.

  19. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes

    Science.gov (United States)

    Woese, C. R.; Luehrsen, K. R.; Pribula, C. D.; Fox, G. E.

    1976-01-01

    Complete nucleotide sequences are presented for 5S rRNA from Bacillus subtilis, B. firmus, B. pasteurii, B. brevis, Lactobacillus brevis, and Streptococcus faecalis, and 5S rRNA oligonucleotide catalogs and partial sequence data are given for B. cereus and Sporosarcina ureae. These data demonstrate a striking consistency of 5S rRNA primary and secondary structure within a given bacterial grouping. An exception is B. brevis, in which the 5S rRNA sequence varies significantly from that of other bacilli in the tuned helix and the procaryotic loop. The localization of these variations suggests that B. brevis occupies an ecological niche that selects such changes. It is noted that this organism produces antibiotics which affect ribosome function.

  20. The ribosome can prevent aggregation of partially folded protein intermediates: studies using the Escherichia coli ribosome.

    Directory of Open Access Journals (Sweden)

    Bani Kumar Pathak

    Full Text Available BACKGROUND: Molecular chaperones that support de novo folding of proteins under non stress condition are classified as chaperone 'foldases' that are distinct from chaperone' holdases' that provide high affinity binding platform for unfolded proteins and prevent their aggregation specifically under stress conditions. Ribosome, the cellular protein synthesis machine can act as a foldase chaperone that can bind unfolded proteins and release them in folding competent state. The peptidyl transferase center (PTC located in the domain V of the 23S rRNA of Escherichia coli ribosome (bDV RNA is the chaperoning center of the ribosome. It has been proposed that via specific interactions between the RNA and refolding proteins, the chaperone provides information for the correct folding of unfolded polypeptide chains. RESULTS: We demonstrate using Escherichia coli ribosome and variants of its domain V RNA that the ribosome can bind to partially folded intermediates of bovine carbonic anhydrase II (BCAII and lysozyme and suppress aggregation during their refolding. Using mutants of domain V RNA we demonstrate that the time for which the chaperone retains the bound protein is an important factor in determining its ability to suppress aggregation and/or support reactivation of protein. CONCLUSION: The ribosome can behave like a 'holdase' chaperone and has the ability to bind and hold back partially folded intermediate states of proteins from participating in the aggregation process. Since the ribosome is an essential organelle that is present in large numbers in all living cells, this ability of the ribosome provides an energetically inexpensive way to suppress cellular aggregation. Further, this ability of the ribosome might also be crucial in the context that the ribosome is one of the first chaperones to be encountered by a large nascent polypeptide chains that have a tendency to form partially folded intermediates immediately following their synthesis.

  1. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis.

    Science.gov (United States)

    Yuan, Fuwen; Xu, Chenzhong; Li, Guodong; Tong, Tanjun

    2018-05-03

    The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.

  2. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    OpenAIRE

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-01-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic ...

  3. Control of ribosome formation in rat heart

    International Nuclear Information System (INIS)

    Russo, L.A.

    1987-01-01

    Diabetes of 9 days duration produced a 17% diminution in the rate of total protein synthesis in rat hearts perfused as Langendorff preparations supplied with glucose, plasma levels of amino acids, and 400 μU/ml insulin. This reduction was attributable to a decrease in efficiency of protein synthesis and total RNA content. Total messenger RNA content decreased in diabetic hearts in proportion to the reduction in total RNA. Diabetes also resulted in diminished ribosome content as reflected by the induction in total RNA. Ribosome production was investigated by monitoring incorporation of [ 3 H]phenylalanine into the proteins of cytoplasmic ribosomes. Rates of ribosome formation in diabetic hearts were as fast as control rates in the presence of insulin, and were faster than control rates in the absence of the hormone. These results indicated that ribosome content fell in diabetic hearts despite unchanged or faster rates of ribosome formation

  4. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  5. Molecular phylogeny of Oncaeidae (Copepoda using nuclear ribosomal internal transcribed spacer (ITS rDNA.

    Directory of Open Access Journals (Sweden)

    Iole Di Capua

    Full Text Available Copepods belonging to the Oncaeidae family are commonly and abundantly found in marine zooplankton. In the Mediterranean Sea, forty-seven oncaeid species occur, of which eleven in the Gulf of Naples. In this Gulf, several Oncaea species were morphologically analysed and described at the end of the XIX century by W. Giesbrecht. In the same area, oncaeids are being investigated over seasonal and inter-annual scales at the long-term coastal station LTER-MC. In the present work, we identified six oncaeid species using the nuclear ribosomal internal transcribed spacers (ITS rDNA and the mitochondrial cytochrome c oxidase subunit I (mtCOI. Phylogenetic analyses based on these two genomic regions validated the sisterhood of the genera Triconia and the Oncaea sensu stricto. ITS1 and ITS2 phylogenies produced incongruent results about the position of Oncaea curta, calling for further investigations on this species. We also characterised the ITS2 region by secondary structure predictions and found that all the sequences analysed presented the distinct eukaryotic hallmarks. A Compensatory Base Change search corroborated the close relationship between O. venusta and O. curta and between O. media and O. venusta already identified by ITS phylogenies. The present results, which stem from the integration of molecular and morphological taxonomy, represent an encouraging step towards an improved knowledge of copepod biodiversity: The two complementary approaches, when applied to long-term copepod monitoring, will also help to better understanding their genetic variations and ecological niches of co-occurring species.

  6. Eigenvectors determination of the ribosome dynamics model during mRNA translation using the Kleene Star algorithm

    Science.gov (United States)

    Ernawati; Carnia, E.; Supriatna, A. K.

    2018-03-01

    Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.

  7. Post-transcriptional regulation of ribosome biogenesis in yeast

    Directory of Open Access Journals (Sweden)

    Isabelle C. Kos-Braun

    2017-05-01

    Full Text Available Most microorganisms are exposed to the constantly and often rapidly changing environment. As such they evolved mechanisms to balance their metabolism and energy expenditure with the resources available to them. When resources become scarce or conditions turn out to be unfavourable for growth, cells reduce their metabolism and energy usage to survive. One of the major energy consuming processes in the cell is ribosome biogenesis. Unsurprisingly, cells encountering adverse conditions immediately shut down production of new ribosomes. It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA (rRNA. However, if pre-rRNA processing and ribosome assembly are regulated post-transcriptionally remains largely unclear. We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-rRNA processing pathways depending on the environmental conditions. Our findings reveal a new level of complexity in the regulation of ribosome biogenesis.

  8. Mouse ribosomal RNA genes contain multiple differentially regulated variants.

    Directory of Open Access Journals (Sweden)

    Hung Tseng

    2008-03-01

    Full Text Available Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA. The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs, which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active, two are expressed in some tissues (selectively active, and two are not expressed (silent. These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.

  9. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    Science.gov (United States)

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  10. Ribosomal history reveals origins of modern protein synthesis.

    Directory of Open Access Journals (Sweden)

    Ajith Harish

    Full Text Available The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17 and the oldest substructure (the ribosomal ratchet in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  11. Affinity labelling of ribosomes from the livers of different vertebrates by 2-nitro-4-azidobenzoyl-Phe-tRNA

    International Nuclear Information System (INIS)

    Stahl, J.; Boehm, H.; Voderberg, M.

    1981-01-01

    Ribosomal protein L 10 from the livers of trout, hen, and rat was found to be the main target for 2-nitro-4-azidobenzoyl-Phe-tRNA in affinity labelling experiments. Therefore, despite somewhat different electrophoretic mobilities, this protein seems to be involved in the organization of the peptidyl transferase centre in ribosomes of various vertebrates. (author)

  12. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Johansen

    Full Text Available A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%. The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%, and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.

  13. Structural and functional organization of ribosomal genes within the mammalian cell nucleolus.

    Science.gov (United States)

    Derenzini, Massimo; Pasquinelli, Gianandrea; O'Donohue, Marie-Françoise; Ploton, Dominique; Thiry, Marc

    2006-02-01

    Data on the in situ structural-functional organization of ribosomal genes in the mammalian cell nucleolus are reviewed here. Major findings on chromatin structure in situ come from investigations carried out using the Feulgen-like osmium ammine reaction as a highly specific electron-opaque DNA tracer. Intranucleolar chromatin shows three different levels of organization: compact clumps, fibers ranging from 11 to 30 nm, and loose agglomerates of extended DNA filaments. Both clumps and fibers of chromatin exhibit a nucleosomal organization that is lacking in the loose agglomerates of extended DNA filaments. In fact, these filaments constantly show a thickness of 2-3 nm, the same as a DNA double-helix molecule. The loose agglomerates of DNA filaments are located in the fibrillar centers, the interphase counterpart of metaphase NORs, therefore being constituted by ribosomal DNA. The extended, non-nucleosomal configuration of this rDNA has been shown to be independent of transcriptional activity and characterizes ribosome genes that are either transcribed or transcriptionally silent. Data reviewed are consistent with a model of control for ribosome gene activity that is not mediated by changes in chromatin structure. The presence of rDNA in mammalian cells always structurally ready for transcription might facilitate a more rapid adjustment of the ribosome production in response to the metabolic needs of the cell.

  14. Altered gravity influences rDNA and NopA100 localization in nucleoli

    Science.gov (United States)

    Sobol, M. A.; Kordyum, E. L.

    Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In

  15. Phylogenetic utility of ribosomal genes for reconstructing the phylogeny of five Chinese satyrine tribes (Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    Mingsheng Yang

    2015-03-01

    Full Text Available Satyrinae is one of twelve subfamilies of the butterfly family Nymphalidae, which currently includes nine tribes. However, phylogenetic relationships among them remain largely unresolved, though different researches have been conducted based on both morphological and molecular data. However, ribosomal genes have never been used in tribe level phylogenetic analyses of Satyrinae. In this study we investigate for the first time the phylogenetic relationships among the tribes Elymniini, Amathusiini, Zetherini and Melanitini which are indicated to be a monophyletic group, and the Satyrini, using two ribosomal genes (28s rDNA and 16s rDNA and four protein-coding genes (EF-1α, COI, COII and Cytb. We mainly aim to assess the phylogenetic informativeness of the ribosomal genes as well as clarify the relationships among different tribes. Our results show the two ribosomal genes generally have the same high phylogenetic informativeness compared with EF-1α; and we infer the 28s rDNA would show better informativeness if the 28s rDNA sequence data for each sampling taxon are obtained in this study. The placement of the monotypic genus Callarge Leech in Zetherini is confirmed for the first time based on molecular evidence. In addition, our maximum likelihood (ML and Bayesian inference (BI trees consistently show that the involved Satyrinae including the Amathusiini is monophyletic with high support values. Although the relationships among the five tribes are identical among ML and BI analyses and are mostly strongly-supported in BI analysis, those in ML analysis are lowly- or moderately- supported. Therefore, the relationships among the related five tribes recovered herein need further verification based on more sampling taxa.

  16. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning.

    Science.gov (United States)

    Kupriyanova, Natalia S; Netchvolodov, Kirill K; Sadova, Anastasia A; Cherepanova, Marina D; Ryskov, Alexei P

    2015-11-10

    Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA.

    Science.gov (United States)

    Saraiya, Ashesh A; Lamichhane, Tek N; Chow, Christine S; SantaLucia, John; Cunningham, Philip R

    2008-02-22

    The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.

  18. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    Science.gov (United States)

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  19. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat.

    Science.gov (United States)

    Guo, Xiang; Han, Fangpu

    2014-11-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. © 2014 American Society of Plant Biologists. All rights reserved.

  20. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    Science.gov (United States)

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  1. New Face for Chromatin-Related Mesenchymal Modulator: n-CHD9 Localizes to Nucleoli and Interacts With Ribosomal Genes.

    Science.gov (United States)

    Salomon-Kent, Ronit; Marom, Ronit; John, Sam; Dundr, Miroslav; Schiltz, Louis R; Gutierrez, Jose; Workman, Jerry; Benayahu, Dafna; Hager, Gordon L

    2015-09-01

    Mesenchymal stem cells' differentiation into several lineages is coordinated by a complex of transcription factors and co-regulators which bind to specific gene promoters. The Chromatin-Related Mesenchymal Modulator, CHD9 demonstrated in vitro its ability for remodeling activity to reposition nucleosomes in an ATP-dependent manner. Epigenetically, CHD9 binds with modified H3-(K9me2/3 and K27me3). Previously, we presented a role for CHD9 with RNA Polymerase II (Pol II)-dependent transcription of tissue specific genes. Far less is known about CHD9 function in RNA Polymerase I (Pol I) related transcription of the ribosomal locus that also drives specific cell fate. We here describe a new form, the nucleolar CHD9 (n-CHD9) that is dynamically associated with Pol I, fibrillarin, and upstream binding factor (UBF) in the nucleoli, as shown by imaging and molecular approaches. Inhibitors of transcription disorganized the nucleolar compartment of transcription sites where rDNA is actively transcribed. Collectively, these findings link n-CHD9 with RNA pol I transcription in fibrillar centers. Using chromatin immunoprecipitation (ChIP) and tilling arrays (ChIP- chip), we find an association of n-CHD9 with Pol I related to rRNA biogenesis. Our new findings support the role for CHD9 in chromatin regulation and association with rDNA genes, in addition to its already known function in transcription control of tissue specific genes. © 2015 Wiley Periodicals, Inc.

  2. Selective inhibition of precursor incorporation into ribosomal RNA in gamma-irradiated Tetrahymena pyriformis

    International Nuclear Information System (INIS)

    Ernst, S.G.; Oleinick, N.L.; Rustad, R.C.; Greenblatt, R.M.

    1979-01-01

    Sublethal doses of γ radiation are known to inhibit total RNA synthesis in the ciliate protozoan Tetrahymena. To determine if the synthesis of a particular class of RNA is preferentially inhibited, pulse-labeled RNA was isolated from normal exponentially growing cells, irradiated cells, and cells in which total RNA synthesis had recovered to the pre-irradiation level. The RNAs were analyzed by SDS-polyacrylamide gel electrphoresis and oligo(dT)-cellulose column chromatography. Inhibition of RNA synthesis primarily involves ribosomal RNA. However, radiation does not cause a delay in the processing of precursor rRNA or a preferential loss of either of the mature rRNAs. Following irradiation, poly(A)-containing RNA [poly(A+)RNA] is synthesized at a rate up to three times greater than the control rate. The elevated poly(A+)RNA synthesis occurs during the period of depressed rRNA synthesis and even after rRNA synthesis has recovered to its pre-irradiation rate. While the sizes of the total cellular ribonucleoside triphosphate pools are depressed in the irradiated cells, these pools probably do not represent the actual compartments containing the precursors for RNA synthesis, and the observed changes cannot explain the modifications in macromolecular synthesis in irradiated Tetrahymena. (Auth.)

  3. Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes

    Science.gov (United States)

    Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V

    1971-01-01

    Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558

  4. An approach to analyse the specific impact of rapamycin on mRNA-ribosome association

    Directory of Open Access Journals (Sweden)

    Jaquier-Gubler Pascale

    2008-08-01

    Full Text Available Abstract Background Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background. Methods We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out. For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation. Results High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug. Conclusion The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of

  5. Characterization of the regions from E. coli 16 S RNA covalently linked to ribosomal proteins S4 and S20 after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ehresmann, B.; Backendorf, C.; Ehresmann, C.; Ebel, J.P.

    1977-01-01

    The use of ultraviolet irradiation to form photochemical covalent bonds between the 16 S RNA and a ribosomal protein is a reliable method to check RNA regions which are interacting with the protein. This technique was successfully used to covalently link RNA or DNA and specific proteins in several cases. In the case of ribosome, it has been shown that the irradiation of 30 S and 50 S subunits using high doses of ultraviolet light allowed the covalent binding of almost all of the ribosomal proteins to the 16 S or 23 S RNAs. Using mild conditions, only proteins S7 and L4 could be covalently linked to the 16 S and 23 S RNAs, respectively, and the 16 S RNA region linked to protein S7 has now been characterized. The specificity of the photoreaction was demonstrated earlier and the tryptic peptides from proteins S4 and S7, photochemically linked to the 16 S RNA complexes, were identified. A report is presented on the sequences of the RNA regions which can be photochemically linked to proteins S4 and S7 after ultraviolet irradiation of the specific S4-16 S RNA and 20 S-16 S RNA complexes

  6. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage.

    Science.gov (United States)

    Azpurua, Jorge; Ke, Zhonghe; Chen, Iris X; Zhang, Quanwei; Ermolenko, Dmitri N; Zhang, Zhengdong D; Gorbunova, Vera; Seluanov, Andrei

    2013-10-22

    The naked mole-rat (Heterocephalus glaber) is a subterranean eusocial rodent with a markedly long lifespan and resistance to tumorigenesis. Multiple data implicate modulation of protein translation in longevity. Here we report that 28S ribosomal RNA (rRNA) of the naked mole-rat is processed into two smaller fragments of unequal size. The two breakpoints are located in the 28S rRNA divergent region 6 and excise a fragment of 263 nt. The excised fragment is unique to the naked mole-rat rRNA and does not show homology to other genomic regions. Because this hidden break site could alter ribosome structure, we investigated whether translation rate and amino acid incorporation fidelity were altered. We report that naked mole-rat fibroblasts have significantly increased translational fidelity despite having comparable translation rates with mouse fibroblasts. Although we cannot directly test whether the unique 28S rRNA structure contributes to the increased fidelity of translation, we speculate that it may change the folding or dynamics of the large ribosomal subunit, altering the rate of GTP hydrolysis and/or interaction of the large subunit with tRNA during accommodation, thus affecting the fidelity of protein synthesis. In summary, our results show that naked mole-rat cells produce fewer aberrant proteins, supporting the hypothesis that the more stable proteome of the naked mole-rat contributes to its longevity.

  7. Crystallization of ribosomes from Thermus thermophilus

    International Nuclear Information System (INIS)

    Karpova, E.A.; Serdyuk, I.N.; Tarkhovskii, Yu.S.; Orlova, E.V.; Borovyagin, V.L.

    1987-01-01

    An understanding of the molecular bases of the process of protein biosynthesis on the ribosome requires a knowledge of its structure with high three-dimensional resolution involving the method of x-ray crystallographic analysis. The authors report on the production of crystals of the 70S ribosomes from a new source - the highly thermophilic bacterium Thermus thermophilus. Ribosomes for crystallization were obtained from Th. thermophilus strain HB8 by two washings in buffer with high ionic strength. The ribosome preparation was investigated for homogeneity by the method of high-speed sedimentation in a buffer containing 15 mM MgCl 2 , 50 mM NH 4 Cl, and 10 MM Tris-HCl, pH 7.5. Analysis showed that the preparation if homogeneous. The same preparation was investigated for intactness of ribosomal RNA by the method of gel electrophoresis in 2.75% acrylamide 0.5% agarose gel in a buffer containing 30 mM Tris, 30 mM NaH 2 PO 4 , 10 mM EDTA, 1-2% SDS, and 6 M urea. Analysis showed that the preparation possesses intact 16S and 23S RNA. The latter did not degrade, at least in a week of exposure of the ribosomes in buffer solution at 5 0 C. The ribosome preparation had no appreciable RNase activity, which was verified by incubating 4.5 micrograms of ribosomes with 3 micrograms of 14 C-labeled 16S rRna (50 0 C, 90 min) in a buffer containing 10 mM MgCl 2 , 100 mM NH 4 Cl, and 10 mM Tris-HCl, pH/sub 20 0 / 7.5. The incubated nonhydrolyzed RNA was precipitated with 5% trichloroacetic acid and applied on a GF/C filter. The radioactivity was determined in a toluene scintillator on an LS-100C counter

  8. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  9. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    Science.gov (United States)

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. Copyright © 2012 Elsevier Inc

  10. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    Czech Academy of Sciences Publication Activity Database

    Garcia, S.; Panero, J.L.; Široký, Jiří; Kovařík, Aleš

    2010-01-01

    Roč. 10, č. 176 (2010), s. 1-18 ISSN 1471-2229 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : organization of rDNA unit * intergenic spacer * Asteraceae Subject RIV: BO - Biophysics Impact factor: 4.085, year: 2010

  11. Structural basis for ribosome protein S1 interaction with RNA in trans-translation of Mycobacterium tuberculosis.

    Science.gov (United States)

    Fan, Yi; Dai, Yazhuang; Hou, Meijing; Wang, Huilin; Yao, Hongwei; Guo, Chenyun; Lin, Donghai; Liao, Xinli

    2017-05-27

    Ribosomal protein S1 (RpsA), the largest 30S protein in ribosome, plays a significant role in translation and trans-translation. In Mycobacterium tuberculosis, the C-terminus of RpsA is known as tuberculosis drug target of pyrazinoic acid, which inhibits the interaction between MtRpsA and tmRNA in trans-translation. However, the molecular mechanism underlying the interaction of MtRpsA with tmRNA remains unknown. We herein analyzed the interaction of the C-terminal domain of MtRpsA with three RNA fragments poly(A), sMLD and pre-sMLD. NMR titration analysis revealed that the RNA binding sites on MtRpsA CTD are mainly located in the β2, β3 and β5 strands and the adjacent L3 loop of the S1 domain. Fluorescence experiments determined the MtRpsA CTD binding to RNAs are in the micromolar affinity range. Sequence analysis also revealed conserved residues in the mapped RNA binding region. Residues L304, V305, G308, F310, H322, I323, R357 and I358 were verified to be the key residues influencing the interaction between MtRpsA CTD and pre-sMLD. Molecular docking further confirmed that the poly(A)-like sequence and sMLD of tmRNA are all involved in the protein-RNA interaction, through charged interaction and hydrogen bonds. The results will be beneficial for designing new anti-tuberculosis drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. In Profile: Models of Ribosome Biogenesis Defects and Regulation of Protein Synthesis

    NARCIS (Netherlands)

    Essers, P.B.M.

    2013-01-01

    Ribosomes are the mediators of protein synthesis in the cell and therefore crucial to proper cell function. In addition, ribosomes are highly abundant, with ribosomal RNA making up 80% of the RNA in the cell. A large amount of resources go into maintaining this pool of ribosomes, so ribosome

  13. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection.

    Science.gov (United States)

    Perina, Alejandra; Seoane, David; González-Tizón, Ana M; Rodríguez-Fariña, Fernanda; Martínez-Lage, Andrés

    2011-10-17

    The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.

  14. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    Science.gov (United States)

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  15. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain.

    Directory of Open Access Journals (Sweden)

    Patrick O McGowan

    Full Text Available BACKGROUND: Alterations in gene expression in the suicide brain have been reported and for several genes DNA methylation as an epigenetic regulator is thought to play a role. rRNA genes, that encode ribosomal RNA, are the backbone of the protein synthesis machinery and levels of rRNA gene promoter methylation determine rRNA transcription. METHODOLOGY/PRINCIPAL FINDINGS: We test here by sodium bisulfite mapping of the rRNA promoter and quantitative real-time PCR of rRNA expression the hypothesis that epigenetic differences in critical loci in the brain are involved in the pathophysiology of suicide. Suicide subjects in this study were selected for a history of early childhood neglect/abuse, which is associated with decreased hippocampal volume and cognitive impairments. rRNA was significantly hypermethylated throughout the promoter and 5' regulatory region in the brain of suicide subjects, consistent with reduced rRNA expression in the hippocampus. This difference in rRNA methylation was not evident in the cerebellum and occurred in the absence of genome-wide changes in methylation, as assessed by nearest neighbor. CONCLUSIONS/SIGNIFICANCE: This is the first study to show aberrant regulation of the protein synthesis machinery in the suicide brain. The data implicate the epigenetic modulation of rRNA in the pathophysiology of suicide.

  16. Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications.

    Science.gov (United States)

    Kim, Ji Yeon; Kim, Yunmi; Cha, Hyo Kyeong; Lim, Hye Young; Kim, Hyungsub; Chung, Sooyoung; Hwang, Juck-Joon; Park, Seong Hwan; Son, Gi Hoon

    2017-06-30

    Estimation of postmortem interval (PMI) is a key issue in the field of forensic pathology. With the availability of quantitative analysis of RNA levels in postmortem tissues, several studies have assessed the postmortem degradation of constitutively expressed RNA species to estimate PMI. However, conventional RNA quantification as well as biochemical and physiological changes employed thus far have limitations related to standardization or normalization. The present study focuses on an interesting feature of the subdomains of certain RNA species, in which they are site-specifically cleaved during apoptotic cell death. We found that the D8 divergent domain of ribosomal RNA (rRNA) bearing cell death-related cleavage sites was rapidly removed during postmortem RNA degradation. In contrast to the fragile domain, the 5' terminal region of 28S rRNA was remarkably stable during the postmortem period. Importantly, the differences in the degradation rates between the two domains in mammalian 28S rRNA were highly proportional to increasing PMI with a significant linear correlation observed in mice as well as human autopsy tissues. In conclusion, we demonstrate that comparison of the degradation rates between domains of a single RNA species provides quantitative information on postmortem degradation states, which can be applied for the estimation of PMI.

  17. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    Science.gov (United States)

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. Copyright © 2016, American Association for the Advancement of Science.

  18. [18S-25S rDNA variation in tissue culture of some Gentiana L. species].

    Science.gov (United States)

    Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A

    2007-01-01

    18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.

  19. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.

    Science.gov (United States)

    Poulsen, S M; Karlsson, M; Johansson, L B; Vester, B

    2001-09-01

    The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.

  20. MMB-GUI: a fast morphing method demonstrates a possible ribosomal tRNA translocation trajectory.

    Science.gov (United States)

    Tek, Alex; Korostelev, Andrei A; Flores, Samuel Coulbourn

    2016-01-08

    Easy-to-use macromolecular viewers, such as UCSF Chimera, are a standard tool in structural biology. They allow rendering and performing geometric operations on large complexes, such as viruses and ribosomes. Dynamical simulation codes enable modeling of conformational changes, but may require considerable time and many CPUs. There is an unmet demand from structural and molecular biologists for software in the middle ground, which would allow visualization combined with quick and interactive modeling of conformational changes, even of large complexes. This motivates MMB-GUI. MMB uses an internal-coordinate, multiscale approach, yielding as much as a 2000-fold speedup over conventional simulation methods. We use Chimera as an interactive graphical interface to control MMB. We show how this can be used for morphing of macromolecules that can be heterogeneous in biopolymer type, sequence, and chain count, accurately recapitulating structural intermediates. We use MMB-GUI to create a possible trajectory of EF-G mediated gate-passing translocation in the ribosome, with all-atom structures. This shows that the GUI makes modeling of large macromolecules accessible to a wide audience. The morph highlights similarities in tRNA conformational changes as tRNA translocates from A to P and from P to E sites and suggests that tRNA flexibility is critical for translocation completion. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.

    Science.gov (United States)

    Alejo, Jose L; Blanchard, Scott C

    2017-10-10

    Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.

  2. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    Directory of Open Access Journals (Sweden)

    Elizabeth X. Kwan

    2016-09-01

    Full Text Available The Saccharomyces cerevisiae ribosomal DNA (rDNA locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae.

  3. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants.

    Science.gov (United States)

    Kwan, Elizabeth X; Wang, Xiaobin S; Amemiya, Haley M; Brewer, Bonita J; Raghuraman, M K

    2016-09-08

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. Copyright © 2016 Kwan et al.

  4. Affinity labelling in situ of the bL12 protein on E. coli 70S ribosomes by means of a tRNA dialdehyde derivative.

    Science.gov (United States)

    Hountondji, Codjo; Créchet, Jean-Bernard; Le Caër, Jean-Pierre; Lancelot, Véronique; Cognet, Jean A H; Baouz, Soria

    2017-12-01

    In this report, we have used periodate-oxidized tRNA (tRNAox) as an affinity laleling reagent to demonstrate that: (i) the bL12 protein contacts the CCA-arm of P-site bound tRNA on the Escherichia coli 70S ribosomes; (ii) the stoichiometry of labelling is one molecule of tRNAox bound to one polypeptide chain of endogenous bL12; (iii) cross-linking in situ of bL12 with tRNAox on the ribosomes provokes the loss of activity; (iv) intact tRNA protects bL12 in the 70S ribosomes against cross-linking with tRNAox; (v) both tRNAox and pyridoxal 5'-phosphate (PLP) compete for the same or for proximal cross-linking site(s) on bL12 inside the ribosome; (vi) the stoichiometry of cross-linking of PLP to the recombinant E. coli bL12 protein is one molecule of PLP covalently bound per polypeptide chain; (vii) the amino acid residue of recombinant bL12 cross-linked with PLP is Lys-65; (viii) Lys-65 of E. coli bL12 corresponds to Lys-53 of eL42 which was previously shown to cross-link with P-site bound tRNAox on human 80S ribosomes in situ; (ix) finally, E. coli bL12 and human eL42 proteins display significant primary structure similarities, which argues for evolutionary conservation of these two proteins located at the tRNA-CCA binding site on eubacterial and eukaryal ribosomes. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    Science.gov (United States)

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  6. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome

    DEFF Research Database (Denmark)

    Poulsen, S M; Karlsson, M; Johansson, L B

    2001-01-01

    The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs...... centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous...... results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer....

  7. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.

    Science.gov (United States)

    Qiao, Qi; Yan, Yanhua; Guo, Jinmei; Du, Shuqiang; Zhang, Jiangtao; Jia, Ruyue; Ren, Haimin; Qiao, Yuanbiao; Li, Qingshan

    2017-06-01

    Programmed '-1' ribosomal frameshifting is necessary for expressing the pol gene overlapped from a gag of human immunodeficiency virus. A viral RNA structure that requires base pairing across the overlapping sequence region suggests a mechanism of regulating ribosome and helicase traffic during expression. To get precise roles of an element around the frameshift site, a review on architecture of the frameshifting RNA is performed in combination of reported information with augments of a representative set of 19 viral samples. In spite of a different length for the viral RNAs, a canonical comparison on the element sequence allocation is performed for viewing variability associations between virus genotypes. Additionally, recent and historical insights recognized in frameshifting regulation are looked back as for indel and single nucleotide polymorphism of RNA. As specially noted, structural changes at a frameshift site, the spacer sequence, and a three-helix junction element, as well as two Watson-Crick base pairs near a bulge and a C-G pair close a loop, are the most vital strategies for the virus frameshifting regulations. All of structural changes, which are dependent upon specific sequence variations, facilitate an elucidation about the RNA element conformation-dependent mechanism for frameshifting. These facts on disrupting base pair interactions also allow solving the problem of competition between ribosome and helicase on a same RNA template, common to single-stranded RNA viruses. In a broad perspective, each new insight of frameshifting regulation in the competition systems introduced by the RNA element construct changes will offer a compelling target for antiviral therapy.

  8. Selection of mRNA 5'-untranslated region sequence with high translation efficiency through ribosome display

    International Nuclear Information System (INIS)

    Mie, Masayasu; Shimizu, Shun; Takahashi, Fumio; Kobatake, Eiry

    2008-01-01

    The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library

  9. Ribosomal RNA gene sequences confirm that protistan endoparasite of larval cod Gadus morhua is Ichthyodinium sp

    DEFF Research Database (Denmark)

    Skovgaard, Alf; Meyer, Stefan; Overton, Julia Lynne

    2010-01-01

    An enigmatic protistan endoparasite found in eggs and larvae of cod Gadus morhua and turbot Psetta maxima was isolated from Baltic cod larvae, and DNA was extracted for sequencing of the parasite's small Subunit ribosomal RNA (SSU rRNA) gene. The endoparasite has previously been suggested...... to be related to Ichthyodinium chabelardi, a dinoflagellate-like protist that parasitizes yolk sacs of embryos and larvae of a variety of fish species. Comparison of a 1535 bp long fragment of the SSU rRNA gene of the cod endoparasite showed absolute identify with I. chabelardi, demonstrating that the 2...

  10. D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp.

    Science.gov (United States)

    Dagar, Sumit S; Kumar, Sanjay; Mudgil, Priti; Singh, Rameshwar; Puniya, Anil K

    2011-09-01

    This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation.

  11. In vitro degradation of ribosomes.

    Science.gov (United States)

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  12. Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability

    International Nuclear Information System (INIS)

    Tao Weitao; Budd, Martin; Campbell, Judith L.

    2003-01-01

    We and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the hypomorphic dna2-2 helicase mutant. Deletion of FOB1 suppresses the elevated pausing and DSB formation. Our current work shows that mutation inactivating Sgs1, the yeast RecQ helicase ortholog, also causes accumulation of stalled replication forks and DSBs at the rDNA RFB. Either deletion of FOB1, which suppresses fork blocking and certain types of rDNA recombination, or an increase in SIR2 gene dosage, which suppresses rDNA recombination, reduces the number of forks persisting at the RFB. Although dna2-2 sgs1Δ double mutants are conditionally lethal, they do not show enhanced rDNA defects compared to sgs1Δ alone. However, surprisingly, the dna2-2 sgs1Δ lethality is suppressed by deletion of FOB1. On the other hand, the dna2-2 sgs1Δ lethality is only partially suppressed by deletion of rad51Δ. We propose that the replication-associated defects that we document in the rDNA are characteristic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones

  13. Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability

    Energy Technology Data Exchange (ETDEWEB)

    Tao Weitao; Budd, Martin; Campbell, Judith L

    2003-11-27

    We and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the hypomorphic dna2-2 helicase mutant. Deletion of FOB1 suppresses the elevated pausing and DSB formation. Our current work shows that mutation inactivating Sgs1, the yeast RecQ helicase ortholog, also causes accumulation of stalled replication forks and DSBs at the rDNA RFB. Either deletion of FOB1, which suppresses fork blocking and certain types of rDNA recombination, or an increase in SIR2 gene dosage, which suppresses rDNA recombination, reduces the number of forks persisting at the RFB. Although dna2-2 sgs1{delta} double mutants are conditionally lethal, they do not show enhanced rDNA defects compared to sgs1{delta} alone. However, surprisingly, the dna2-2 sgs1{delta} lethality is suppressed by deletion of FOB1. On the other hand, the dna2-2 sgs1{delta} lethality is only partially suppressed by deletion of rad51{delta}. We propose that the replication-associated defects that we document in the rDNA are characteristic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones.

  14. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.

    Science.gov (United States)

    Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C

    2015-10-06

    The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering

    International Nuclear Information System (INIS)

    Burkhardt, N.

    1997-01-01

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ( 1 H) for deuterium ( 2 H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [de

  16. D1/D2 Domain of Large-Subunit Ribosomal DNA for Differentiation of Orpinomyces spp.▿

    Science.gov (United States)

    Dagar, Sumit S.; Kumar, Sanjay; Mudgil, Priti; Singh, Rameshwar; Puniya, Anil K.

    2011-01-01

    This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation. PMID:21784906

  17. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number

    Science.gov (United States)

    Gyorfy, Zsuzsanna; Draskovits, Gabor; Vernyik, Viktor; Blattner, Frederick F.; Gaal, Tamas; Posfai, Gyorgy

    2015-01-01

    Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5–10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7–8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, ‘feast and famine’ life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology. PMID:25618851

  18. Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients.

    Science.gov (United States)

    Tsoi, H; Lam, K C; Dong, Y; Zhang, X; Lee, C K; Zhang, J; Ng, S C; Ng, S S M; Zheng, S; Chen, Y; Fang, J; Yu, J

    2017-11-02

    One characteristic of cancer cells is the abnormally high rate of cell metabolism to sustain their enhanced proliferation. However, the behind mechanism of this phenomenon is still elusive. Here we find that enhanced precursor 45s ribosomal RNA (pre-45s rRNA) is one of the core mechanisms in promoting the pathogenesis of colorectal cancer (CRC). Pre-45s rRNA expression is significantly higher in primary CRC tumor tissues samples and cancer cell lines compared with the non-tumorous colon tissues, and is associated with tumor sizes. Knockdown of pre-45s rRNA inhibits G1/S cell-cycle transition by stabilizing p53 through inducing murine double minute 2 (MDM2) and ribosomal protein L11 (RpL11) interaction. In addition, we revealed that high rate of cancer cell metabolism triggers the passive release of calcium ion from endoplasmic reticulum to the cytoplasm. The elevated calcium ion in the cytoplasm activates the signaling cascade of calcium/calmodulin-dependent protein kinase II, ribosomal S6 kinase (S6K) and ribosomal S6K (CaMKII-S6K-UBF). The activated UBF promotes the transcription of rDNA, which therefore increases pre-45s rRNA. Disruption of CaMKII-S6K-UBF axis by either RNAi or pharmaceutical approaches leads to reduction of pre-45s rRNA expression, which subsequently suppresses cell proliferation in colon cancer cells by causing cell-cycle arrest. Knockdown of APC activates CaMKII-S6K-UBF cascade and thus enhances pre-45s rRNA expression. Moreover, the high expression level of pre-45s rRNA is associated with poor survival of CRC patients in two independent cohorts. Our study identifies a novel mechanism in CRC pathogenesis mediated by pre-45s rRNA and a prognostic factor of pre-45s rRNA in CRC patients.

  19. Placeholder factors in ribosome biogenesis: please, pave my way

    Directory of Open Access Journals (Sweden)

    Francisco J. Espinar-Marchena

    2017-04-01

    Full Text Available The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as “placeholders”. Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.

  20. The AAA-ATPase NVL2 is a component of pre-ribosomal particles that interacts with the DExD/H-box RNA helicase DOB1

    International Nuclear Information System (INIS)

    Nagahama, Masami; Yamazoe, Takeshi; Hara, Yoshimitsu; Tani, Katsuko; Tsuji, Akihiko; Tagaya, Mitsuo

    2006-01-01

    Nuclear VCP/p97-like protein 2 (NVL2) is a member of the chaperone-like AAA-ATPase family with two conserved ATP-binding modules. Our previous studies have shown that NVL2 is localized to the nucleolus by interacting with ribosomal protein L5 and may participate in ribosome synthesis, a process involving various non-ribosomal factors including chaperones and RNA helicases. Here, we show that NVL2 is associated with pre-ribosomal particles in the nucleus. Moreover, we used yeast two-hybrid and co-immunoprecipitation assays to identify an NVL2-interacting protein that could yield insights into NVL2 function in ribosome biogenesis. We found that NVL2 interacts with DOB1, a DExD/H-box RNA helicase, whose yeast homologue functions in a late stage of the 60S subunit synthesis. DOB1 can interact with a second ATP-binding module mutant of NVL2, which shows a dominant negative effect on ribosome synthesis. In contrast, it cannot interact with a first ATP-binding module mutant, which does not show the dominant negative effect. When the dominant negative mutant of NVL2 was overexpressed in cells, DOB1 appeared to remain associated with nuclear pre-ribosomal particles. Such accumulation was not observed upon overexpression of wild-type NVL2 or a nondominant-negative mutant. Taken together, our results suggest that NVL2 might regulate the association/dissociation reaction of DOB1 with pre-ribosomal particles by acting as a molecular chaperone

  1. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae).

    Science.gov (United States)

    Vierna, J; Jensen, K T; Martínez-Lage, A; González-Tizón, A M

    2011-08-01

    The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.

  2. MXD1 localizes in the nucleolus, binds UBF and impairs rRNA synthesis.

    Science.gov (United States)

    Lafita-Navarro, Maria Del Carmen; Blanco, Rosa; Mata-Garrido, Jorge; Liaño-Pons, Judit; Tapia, Olga; García-Gutiérrez, Lucía; García-Alegría, Eva; Berciano, María T; Lafarga, Miguel; León, Javier

    2016-10-25

    MXD1 is a protein that interacts with MAX, to form a repressive transcription factor. MXD1-MAX binds E-boxes. MXD1-MAX antagonizes the transcriptional activity of the MYC oncoprotein in most models. It has been reported that MYC overexpression leads to augmented RNA synthesis and ribosome biogenesis, which is a relevant activity in MYC-mediated tumorigenesis. Here we describe that MXD1, but not MYC or MNT, localizes to the nucleolus in a wide array of cell lines derived from different tissues (carcinoma, leukemia) as well as in embryonic stem cells. MXD1 also localizes in the nucleolus of primary tissue cells as neurons and Sertoli cells. The nucleolar localization of MXD1 was confirmed by co-localization with UBF. Co-immunoprecipitation experiments showed that MXD1 interacted with UBF and proximity ligase assays revealed that this interaction takes place in the nucleolus. Furthermore, chromatin immunoprecipitation assays showed that MXD1 was bound in the transcribed rDNA chromatin, where it co-localizes with UBF, but also in the ribosomal intergenic regions. The MXD1 involvement in rRNA synthesis was also suggested by the nucleolar segregation upon rRNA synthesis inhibition by actinomycin D. Silencing of MXD1 with siRNAs resulted in increased synthesis of pre-rRNA while enforced MXD1 expression reduces it. The results suggest a new role for MXD1, which is the control of ribosome biogenesis. This new MXD1 function would be important to curb MYC activity in tumor cells.

  3. 5SRNAdb: an information resource for 5S ribosomal RNAs.

    Science.gov (United States)

    Szymanski, Maciej; Zielezinski, Andrzej; Barciszewski, Jan; Erdmann, Volker A; Karlowski, Wojciech M

    2016-01-04

    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA-protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Molecular Characterization and Analysis of 16S Ribosomal DNA in Some Isolates of Demodex folicullorum.

    Science.gov (United States)

    Daneshparvar, Afrooz; Mowlavi, Gholamreza; Mirjalali, Hamed; Hajjaran, Homa; Mobedi, Iraj; Naddaf, Saeed Reza; Shidfar, Mohammadreza; Sadat Makki, Mahsa

    2017-01-01

    Demodicosis is one of the most prevalent skin diseases resulting from infestation by Demodex mites. This parasite usually inhabits in follicular infundibulum or sebaceous duct and transmits through close contact with an infested host. This study was carried from September 2014 to January 2016 at Tehran University of Medical Sciences, Tehran, Iran. DNA extraction and amplification of 16S ribosomal RNA was performed on four isolates, already obtained from four different patients and identified morphologically though clearing with 10% Potassium hydroxide (KOH) and microscopical examination. Amplified fragments from the isolates were compared with GeneBank database and phylogenetic analysis was carried out using MEGA6 software. A 390 bp fragment of 16S rDNA was obtained in all isolates and analysis of generated sequences showed high similarity with those submitted to GenBank, previously. Intra-species similarity and distance also showed 99.983% and 0.017, respectively, for the studied isolates. Multiple alignments of the isolates showed Single Nucleotide Polymorphisms (SNPs) in 16S rRNA fragment. Phylogenetic analysis revealed that all 4 isolates clustered with other D. folliculorum, recovered from GenBank database. Our accession numbers KF875587 and KF875589 showed more similarity together in comparison with two other studied isolates. Mitochondrial 16S rDNA is one of the most suitable molecular barcodes for identification D. folliculorum and this fragment can use for intra-species characterization of the most human-infected mites.

  5. Molecular Characterization and Analysis of 16S Ribosomal DNA in some Isolates of Demodex folliculorum

    Directory of Open Access Journals (Sweden)

    Afrooz DANESHPARVAR

    2017-06-01

    Full Text Available Background: Demodicosis is one of the most prevalent skin diseases resulting from infestation by Demodex mites. This parasite usually inhabits in follicular infundibulum or sebaceous duct transmitted through close contact with an infested host.Methods: This study was carried from September 2014 to January 2016 at Tehran University of Medical Sciences, Tehran, Iran. DNA extraction and amplification of 16S ribosomal RNA was performed on four isolates, obtained from four patients and identified morphologically through clearing with 10% Potassium hydroxide (KOH and microscopical examination. Amplified fragments from the isolates were compared with GenBank database and phylogenetic analysis was carried out using MEGA6 software.Results: A 390 bp fragment of 16S rDNA was obtained in all isolates and analysis of generated sequences showed high similarity with those submitted to GenBank, previously. Intra-species similarity and distance also showed 99.983% and 0.017, respectively, for the studied isolates. Multiple alignments of the isolates showed Single Nucleotide Polymorphisms (SNPs in 16S rRNA fragment. Phylogenetic analysis revealed that all 4 isolates clustered with other D. folliculorum, recovered from GenBank database. Our accession numbers KF875587 and KF875589 showed more similarity together in comparison with two other studied isolates. Conclusion: Mitochondrial 16S rDNA is one of the most suitable molecular barcodes for identification D. folliculorum and this fragment can use for intra-species characterization of the most human-infected mites.

  6. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering; Strukturuntersuchungen am 70S-Ribosom von E.coli unter Anwendung von Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, N. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1997-12-31

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ({sup 1}H) for deuterium ({sup 2}H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [Deutsch] Ribosomen sind Ribonukleinsaeure-Protein Komplexe, die in allen lebenden Organismen die Proteinbiosynthese katalysieren. Strukturmodelle fuer das prokaryontische 70S-Ribosom beruhen derzeit vorwiegend auf elektronenmikroskopischen Untersuchungen und beschreiben im wesentlichen die aeussere Oberflaeche des Partikels. Informationen ueber die innere Struktur des Ribosoms koennen Messungen mit

  7. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering; Strukturuntersuchungen am 70S-Ribosom von E.coli unter Anwendung von Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, N [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1998-12-31

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ({sup 1}H) for deuterium ({sup 2}H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [Deutsch] Ribosomen sind Ribonukleinsaeure-Protein Komplexe, die in allen lebenden Organismen die Proteinbiosynthese katalysieren. Strukturmodelle fuer das prokaryontische 70S-Ribosom beruhen derzeit vorwiegend auf elektronenmikroskopischen Untersuchungen und beschreiben im wesentlichen die aeussere Oberflaeche des Partikels. Informationen ueber die innere Struktur des Ribosoms koennen Messungen mit

  8. Studies on the catalytic rate constant of ribosomal peptidyltransferase.

    Science.gov (United States)

    Synetos, D; Coutsogeorgopoulos, C

    1987-02-20

    A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.

  9. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites.

    Science.gov (United States)

    Wittmann-Liebold, B; Uhlein, M; Urlaub, H; Müller, E C; Otto, A; Bischof, O

    1995-01-01

    Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2-iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, and L36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at the peptide level in several proteins that were found to constitute the antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, AND L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA-peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 with a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.

  10. An Unusual Accumulation of Ribosomal Multigene Families and Microsatellite DNAs in the XX/XY Sex Chromosome System in the Trans-Andean Catfish Pimelodella cf. chagresi (Siluriformes:Heptapteridae).

    Science.gov (United States)

    Conde-Saldaña, Cristhian Camilo; Barreto, Cynthia Aparecida Valiati; Villa-Navarro, Francisco Antonio; Dergam, Jorge Abdala

    2018-02-01

    This work constitutes the first cytogenetic characterization of a trans-Andean species of Heptapteridae. The catfish Pimelodella cf. chagresi from the Upper Rio Magdalena was studied, applying standard cytogenetic techniques (Giemsa, C-banding, and argyrophilic nucleolar organizer region [Ag-NOR]) and fluorescence in situ hybridization techniques using repetitive DNA probes: microsatellites (CA 15 and GA 15 ) and ribosomal RNA (rRNA) multigene families (18S and 5S recombinant DNA [rDNA] probes). The species showed a unique diploid chromosome number 2n = 50 (32m [metacentrics] +14sm [submetacentrics] +4st [subtelocentrics]) and a XX/XY sex chromosomal system, where the heteromorphic Y-chromosome revealed a conspicuous accumulation of all the assayed domains of repetitive DNA. P. cf. chagresi karyotype shares common features with other Heptapteridae, such as the predominance of metacentric and submetacentric chromosomes, and one pair of subtelomeric nucleolar organizer regions (NORs). These results reflect an independent karyological identity of a trans-Andean species and the relevance of repetitive DNA sequences in the process of sex chromosome differentiation in fish; it is the first case of syntenic accumulation of rRNA multigene families (18S and 5S rDNA) and microsatellite sequences (CA 15 and GA 15 ) in a differentiated sex chromosome in Neotropical fish.

  11. A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly.

    Directory of Open Access Journals (Sweden)

    Brittany Burton

    Full Text Available Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20 with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17 tend to adopt more stable solution conformations than an RNA-embedded protein (S20. We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins.

  12. Potential pitfalls of modelling ribosomal RNA data in phylogenetic tree reconstruction: evidence from case studies in the Metazoa.

    Science.gov (United States)

    Letsch, Harald O; Kjer, Karl M

    2011-05-27

    Failure to account for covariation patterns in helical regions of ribosomal RNA (rRNA) genes has the potential to misdirect the estimation of the phylogenetic signal of the data. Furthermore, the extremes of length variation among taxa, combined with regional substitution rate variation can mislead the alignment of rRNA sequences and thus distort subsequent tree reconstructions. However, recent developments in phylogenetic methodology now allow a comprehensive integration of secondary structures in alignment and tree reconstruction analyses based on rRNA sequences, which has been shown to correct some of these problems. Here, we explore the potentials of RNA substitution models and the interactions of specific model setups with the inherent pattern of covariation in rRNA stems and substitution rate variation among loop regions. We found an explicit impact of RNA substitution models on tree reconstruction analyses. The application of specific RNA models in tree reconstructions is hampered by interaction between the appropriate modelling of covarying sites in stem regions, and excessive homoplasy in some loop regions. RNA models often failed to recover reasonable trees when single-stranded regions are excessively homoplastic, because these regions contribute a greater proportion of the data when covarying sites are essentially downweighted. In this context, the RNA6A model outperformed all other models, including the more parametrized RNA7 and RNA16 models. Our results depict a trade-off between increased accuracy in estimation of interdependencies in helical regions with the risk of magnifying positions lacking phylogenetic signal. We can therefore conclude that caution is warranted when applying rRNA covariation models, and suggest that loop regions be independently screened for phylogenetic signal, and eliminated when they are indistinguishable from random noise. In addition to covariation and homoplasy, other factors, like non-stationarity of substitution rates

  13. Structure based hypothesis of a mitochondrial ribosome rescue mechanism

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2012-05-01

    Full Text Available Abstract Background mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1. Results Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site. Conclusions We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria. Reviewers This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann and Dr. Shamil Sunyaev.

  14. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    Science.gov (United States)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-01

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  15. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B., E-mail: garber@vega.protres.ru [Institute of Protein Research RAS (Russian Federation)

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  16. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana.

    Science.gov (United States)

    Havlová, Kateřina; Dvořáčková, Martina; Peiro, Ramon; Abia, David; Mozgová, Iva; Vansáčová, Lenka; Gutierrez, Crisanto; Fajkus, Jiří

    2016-11-01

    Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.

  17. Further characterization of ribosome binding to thylakoid membranes

    International Nuclear Information System (INIS)

    Hurewitz, J.; Jagendorf, A.T.

    1987-01-01

    Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation, and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of [ 3 H]leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins

  18. Control of ribosome traffic by position-dependent choice of synonymous codons

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Pedersen, Steen

    2013-01-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino...... acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby...... ribosomes by affecting the appearance of 'traffic jams' where multiple ribosomes collide and form queues. To test this 'context effect' further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated...

  19. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina.

    Science.gov (United States)

    Iwanowicz, Luke R; Iwanowicz, Deborah D; Pote, Linda M; Blazer, Vicki S; Schill, William B

    2008-02-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 +/- 0.3 microm (range 15.7-20.3) in length, and 5.4 +/- 0.1 microm (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 +/- 1.1 microm (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 +/- 0.1 microm (range 5.48-7.06), while the shorter is 5.7 +/- 0.1 microm (range 4.8-6.4) in length. Polar capsule width is 1.2 +/- 0.03 microm (range 1.0-1.54). The total length of the spore is 60.9 +/- 1.2 microm (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus.

  20. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly

    International Nuclear Information System (INIS)

    Lott, Brittany Burton; Wang, Yongmei; Nakazato, Takuya

    2013-01-01

    Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear. We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction. However, the binding order of

  1. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cloning and restriction enzyme mapping of ribosomal DNA of Giardia duodenalis, Giardia ardeae and Giardia muris.

    Science.gov (United States)

    van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1991-06-01

    In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.

  3. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    Science.gov (United States)

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-05-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.

  4. Detection of Aspergillus fumigatus pulmonary fungal infections in mice with 99mTc-labeled MORF oligomers targeting ribosomal RNA

    International Nuclear Information System (INIS)

    Wang Yuzhen; Chen Ling; Liu Xinrong; Cheng Dengfeng; Liu Guozheng; Liu Yuxia; Dou Shuping; Hnatowich, Donald J.; Rusckowski, Mary

    2013-01-01

    Purpose: Invasive aspergillosis is a major cause of infectious morbidity and mortality in immunocompromised patients. The fungus Aspergillus fumigatus (A. fumigatus) is the primary causative agent of invasive aspergillosis. However, A. fumigatus infections remain difficult to diagnose particularly in the early stages due to the lack of a rapid, sensitive and specific diagnostic approach. In this study, we investigated 99m Tc labeled MORF oligomers targeting fungal ribosomal RNA (rRNA) for the imaging detection of fungal infections. Procedures: Three phosphorodiamidate morpholino (MORF) oligomer (a DNA analogue) probes were designed: AGEN, complementary to a sequence of the fungal 28S ribosomal RNA (rRNA) of Aspergillus, as a genus-specific probe; AFUM, complementary to the 28S rRNA sequence of A. fumigatus, as a fungus species-specific probe; and cMORF, irrelevant to all fungal species, as a control probe. The probes were conjugated with Alexa Fluor 633 carboxylic acid succinimidyl ester (AF633) for fluorescence imaging or with NHS-mercaptoacetyl triglycine (NHS-MAG3) for nuclear imaging with 99m Tc and then evaluated in vitro and in vivo. Results: The specific binding of AGEN and AFUM to fungal total RNA was confirmed by dot blot hybridization while specific binding of AGEN and AFUM in fixed and live A. fumigatus was demonstrated by both fluorescent in situ hybridization (FISH) analysis and accumulation in live cells. SPECT imaging of BALB/c mice with pulmonary A. fumigatus infections and administered 99m Tc labeled AGEN and AFUM showed immediate and obvious accumulation in the infected lungs, while no significant accumulation of the control 99m Tc-cMORF in the infected lung was observed. Compared to non-infected mice, with sacrifice at 1 h, the accumulation of 99m Tc-AGEN and 99m Tc-AFUM in the lungs of mice infected with A. fumigatus was 2 and 2.7 fold higher respectively. Conclusions: In vivo targeting fungal ribosomal RNA with 99m Tc labeled MORF probes AGEN

  5. Cryo-EM Structure of the Archaeal 50S Ribosomal Subunit in Complex with Initiation Factor 6 and Implications for Ribosome Evolution

    Science.gov (United States)

    Greber, Basil J.; Boehringer, Daniel; Godinic-Mikulcic, Vlatka; Crnkovic, Ana; Ibba, Michael; Weygand-Durasevic, Ivana; Ban, Nenad

    2013-01-01

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea. PMID:22306461

  6. Free-Energy Landscape of Reverse tRNA Translocation through the Ribosome Analyzed by Electron Microscopy Density Maps and Molecular Dynamics Simulations

    Science.gov (United States)

    Ishida, Hisashi; Matsumoto, Atsushi

    2014-01-01

    To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999

  7. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Hisashi Ishida

    Full Text Available To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.

  8. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.

    Science.gov (United States)

    Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C

    2016-04-01

    Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.

  9. Eukaryotic Plankton Species Diversity in the Western Channel of the Korea Strait using 18S rDNA Sequences and its Implications for Water Masses

    Science.gov (United States)

    Lee, Sang-Rae; Song, Eun Hye; Lee, Tongsup

    2018-03-01

    Organisms entering the East Sea (Sea of Japan) through the Korea Strait, together with water, salt, and energy, affect the East Sea ecosystem. In this study, we report on the biodiversity of eukaryotic plankton found in the Western Channel of the Korea Strait for the first time using small subunit ribosomal RNA gene (18S rDNA) sequences. We also discuss the characteristics of water masses and their physicochemical factors. Diverse taxonomic groups were recovered from 18S rDNA clone libraries, including putative novel, higher taxonomic entities affiliated with Cercozoa, Raphidophyceae, Picozoa, and novel marine Stramenopiles. We also found that there was cryptic genetic variation at both the intraspecific and interspecific levels among arthropods, diatoms, and green algae. Specific plankton assemblages were identified at different sampling depths and they may provide useful information that could be used to interpret the origin and the subsequent mixing history of the water masses that contribute to the Tsushima Warm Current waters. Furthermore, the biological information highlighted in this study may help improve our understanding about the complex water mass interactions that were highlighted in the Korea Strait.

  10. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    Science.gov (United States)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  11. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

    Science.gov (United States)

    Mazzoleni, Sofia; Rovatsos, Michail; Schillaci, Odessa; Dumas, Francesca

    2018-01-01

    Abstract We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates. PMID:29416829

  12. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

    Directory of Open Access Journals (Sweden)

    Sofia Mazzoleni

    2018-01-01

    Full Text Available We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876 (Scandentia, in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates.

  13. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    Science.gov (United States)

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing.

    Science.gov (United States)

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L

    2013-02-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.

  15. NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Boris Eleuteri

    2018-05-01

    Full Text Available Summary: Embryonic stem cells (ESCs display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC. A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation. : Histone variant H2A.X defines the rate of embryonic stem cell proliferation. Eleuteri et al. identify H2A.X-interacting proteins, and they show that H2A.X deposition at rDNA promoters assembles the NoRC, which represses rRNA transcription and determines the rate of self-renewal. Keywords: ribosomal biogenesis, rRNA, rDNA, stem cells, TIP5, SNF2H, SPT16, BRG1, H2A.X, G1, cell cycle, cell cycle arrest, proliferation

  16. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    Science.gov (United States)

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  17. Comparison of 16S ribosomal RNA gene sequence analysis and conventional culture in the environmental survey of a hospital

    OpenAIRE

    Manaka, Akihiro; Tokue, Yutaka; Murakami, Masami

    2017-01-01

    Background Nosocomial infection is one of the most common complications within health care facilities. Certain studies have reported outbreaks resulting from contaminated hospital environments. Although the identification of bacteria in the environment can readily be achieved using culturing methods, these methods detect live bacteria. Sequencing of the 16S ribosomal RNA (16S rRNA) gene is recognized to be effective for bacterial identification. In this study, we surveyed wards where drug-res...

  18. Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains.

    Science.gov (United States)

    Walker, Sarah E; Zhou, Fujun; Mitchell, Sarah F; Larson, Victoria S; Valasek, Leos; Hinnebusch, Alan G; Lorsch, Jon R

    2013-02-01

    Eukaryotic translation initiation factor (eIF)4B stimulates recruitment of mRNA to the 43S ribosomal pre-initiation complex (PIC). Yeast eIF4B (yeIF4B), shown previously to bind single-stranded (ss) RNA, consists of an N-terminal domain (NTD), predicted to be unstructured in solution; an RNA-recognition motif (RRM); an unusual domain comprised of seven imperfect repeats of 26 amino acids; and a C-terminal domain. Although the mechanism of yeIF4B action has remained obscure, most models have suggested central roles for its RRM and ssRNA-binding activity. We have dissected the functions of yeIF4B's domains and show that the RRM and its ssRNA-binding activity are dispensable in vitro and in vivo. Instead, our data indicate that the 7-repeats and NTD are the most critical domains, which mediate binding of yeIF4B to the head of the 40S ribosomal subunit via interaction with Rps20. This interaction induces structural changes in the ribosome's mRNA entry channel that could facilitate mRNA loading. We also show that yeIF4B strongly promotes productive interaction of eIF4A with the 43S•mRNA PIC in a manner required for efficient mRNA recruitment.

  19. Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant

    DEFF Research Database (Denmark)

    Douthwaite, S; Prince, J B; Noller, H F

    1985-01-01

    A mutation affording low levels of erythromycin resistance has been obtained by in vitro hydroxylamine mutagenesis of a cloned ribosomal RNA operon from Escherichia coli. The site of the mutational event responsible for antibiotic resistance was localized to the gene region encoding domain II of ...

  20. Advantages and Limitations of Ribosomal RNA PCR and DNA Sequencing for Identification of Bacteria in Cardiac Valves of Danish Patients

    DEFF Research Database (Denmark)

    Kemp, Michael; Bangsborg, Jette; Kjerulf, Anne

    2013-01-01

    of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements. In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part...... of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between...... bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group. Ribosomal PCR with subsequent...

  1. On the control of ribosomal protein biosynthesis in Escherichia coli

    International Nuclear Information System (INIS)

    Pichon, J.; Marvaldi, J.; Coeroli, C.; Cozzone, A.; Marchis-Mouren, G.

    1977-01-01

    The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel + and rel - cells, under valyl-tRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer of the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel + strain appear more labelled than those from the rel - strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene

  2. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    lloyd eLoza-Muller

    2015-11-01

    Full Text Available Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58 and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.

  3. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    Directory of Open Access Journals (Sweden)

    Arava Yoav

    2007-08-01

    Full Text Available Abstract Background The yeast ribosomal protein S9 (S9 is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4 has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.

  4. Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction.

    Science.gov (United States)

    Herbert, Zachary T; Kershner, Jamie P; Butty, Vincent L; Thimmapuram, Jyothi; Choudhari, Sulbha; Alekseyev, Yuriy O; Fan, Jun; Podnar, Jessica W; Wilcox, Edward; Gipson, Jenny; Gillaspy, Allison; Jepsen, Kristen; BonDurant, Sandra Splinter; Morris, Krystalynne; Berkeley, Maura; LeClerc, Ashley; Simpson, Stephen D; Sommerville, Gary; Grimmett, Leslie; Adams, Marie; Levine, Stuart S

    2018-03-15

    Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them.

  5. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies ( Ctenogobius , Gobiidae).

    Science.gov (United States)

    Lima-Filho, P A; Bertollo, L A C; Cioffi, M B; Costa, G W W F; Molina, W F

    2014-01-01

    Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome. © 2014 S. Karger AG, Basel.

  6. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    Science.gov (United States)

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. The CCA-end of P-tRNA Contacts Both the Human RPL36AL and the A-site Bound Translation Termination Factor eRF1 at the Peptidyl Transferase Center of the Human 80S Ribosome.

    Science.gov (United States)

    Hountondji, Codjo; Bulygin, Konstantin; Créchet, Jean-Bernard; Woisard, Anne; Tuffery, Pierre; Nakayama, Jun-Ichi; Frolova, Ludmila; Nierhaus, Knud H; Karpova, Galina; Baouz, Soria

    2014-01-01

    We have demonstrated previously that the E-site specific protein RPL36AL present in human ribosomes can be crosslinked with the CCA-end of a P-tRNA in situ. Here we report the following: (i) We modeled RPL36AL into the structure of the archaeal ortholog RPL44E extracted from the known X-ray structure of the 50S subunit of Haloarcula marismortui. Superimposing the obtained RPL36AL structure with that of P/E tRNA observed in eukaryotic 80S ribosomes suggested that RPL36AL might in addition to its CCA neighbourhood interact with the inner site of the tRNA elbow similar to an interaction pattern known from tRNA•synthetase pairs. (ii) Accordingly, we detected that the isolated recombinant protein RPL36AL can form a tight binary complex with deacylated tRNA, and even tRNA fragments truncated at their CCA end showed a high affinity in the nanomolar range supporting a strong interaction outside the CCA end. (iii) We constructed programmed 80S complexes containing the termination factor eRF1 (stop codon UAA at the A-site) and a 2',3'-dialdehyde tRNA (tRNAox) analog at the P-site. Surprisingly, we observed a crosslinked ternary complex containing the tRNA, eRF1 and RPL36AL crosslinked both to the aldehyde groups of tRNAox at the 2'- and 3'-positions of the ultimate A. We also demonstrated that, upon binding to the ribosomal A-site, eRF1 induces an alternative conformation of the ribosome and/or the tRNA, leading to a novel crosslink of tRNAox to another large-subunit ribosomal protein (namely L37) rather than to RPL36AL, both ribosomal proteins being labeled in a mutually exclusive fashion. Since the human 80S ribosome in complex with P-site bound tRNAox and A-site bound eRF1 corresponds to the post-termination state of the ribosome, the results represent the first biochemical evidence for the positioning of the CCA-arm of the P-tRNA in close proximity to both RPL36AL and eRF1 at the end of the translation process.

  8. GTPases and the origin of the ribosome

    Directory of Open Access Journals (Sweden)

    Smith Temple F

    2010-05-01

    Full Text Available Abstract Background This paper is an attempt to trace the evolution of the ribosome through the evolution of the universal P-loop GTPases that are involved with the ribosome in translation and with the attachment of the ribosome to the membrane. The GTPases involved in translation in Bacteria/Archaea are the elongation factors EFTu/EF1, the initiation factors IF2/aeIF5b + aeIF2, and the elongation factors EFG/EF2. All of these GTPases also contain the OB fold also found in the non GTPase IF1 involved in initiation. The GTPase involved in the signal recognition particle in most Bacteria and Archaea is SRP54. Results 1 The Elongation Factors of the Archaea based on structural considerations of the domains have the following evolutionary path: EF1→ aeIF2 → EF2. The evolution of the aeIF5b was a later event; 2 the Elongation Factors of the Bacteria based on the topological considerations of the GTPase domain have a similar evolutionary path: EFTu→ IF→2→EFG. These evolutionary sequences reflect the evolution of the LSU followed by the SSU to form the ribosome; 3 the OB-fold IF1 is a mimic of an ancient tRNA minihelix. Conclusion The evolution of translational GTPases of both the Archaea and Bacteria point to the evolution of the ribosome. The elongation factors, EFTu/EF1, began as a Ras-like GTPase bringing the activated minihelix tRNA to the Large Subunit Unit. The initiation factors and elongation factor would then have evolved from the EFTu/EF1 as the small subunit was added to the evolving ribosome. The SRP has an SRP54 GTPase and a specific RNA fold in its RNA component similar to the PTC. We consider the SRP to be a remnant of an ancient form of an LSU bound to a membrane. Reviewers This article was reviewed by George Fox, Leonid Mirny and Chris Sander.

  9. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase.

    Science.gov (United States)

    Iqbal, Emil S; Dods, Kara K; Hartman, Matthew C T

    2018-02-14

    The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.

  10. Partial characterization of ribosomal operons of Lactobacillus delbrueckii UFV H2b20 Caracterização parcial de operons ribossomais de Lactobacillus delbrueckii UFV H2b20

    Directory of Open Access Journals (Sweden)

    Juliana Teixeira de Magalhães

    2005-06-01

    Full Text Available Ribosomal operons are great tools for microbe community characterization and for microorganisms relationship study, particularly in the case of the acid lactic bacteria. The ribosomal operon of the probiotic strain Lactobacillus delbrueckii UFV H2b20 was partially characterized. A genomic library of this strain was constructed and the clones with partial ribosomal operon were sub-cloned using the shot-gun method for subsequent sequencing with the forward primer. The sequence analysis revealed that the 3' end of the rDNA 16S was following by the short spacer region 1 (16S-23S and that the 3' end of the rDNA 23S was following by the short spacer region 2 (23S-5S, which preceded the rDNA 5S. In the flanking region of the rDNA 5S gene of this operon rrn, a region encoding six tRNAs was detected.Operons ribossomais têm sido instrumentos importantes na caracterização de comunidades microbianas e no estudo de relacionamentos entre microrganismos, principalmente em bactérias do ácido láctico. Operons ribossomais da linhagem probiótica, Lactobacillus delbrueckii UFV H2b20, foram parcialmente caracterizados. Um banco genômico da linhagem foi construído e os clones, contendo parte do operon ribossomal, foram subclonados pelo método de "shot gun", para em seguida serem seqüenciados com primer "forward". As seqüências indicaram a presença da extremidade 3' do rDNA 16S seguida da região espaçadora curta 1 (16S-23S e a presença da extremidade 3' do rDNA 23S seguido da região espaçadora 2 (23S-5S, que por sua vez precedia o rDNA 5S. Adjacente ao gene rDNA 5S deste operon rrn uma região codificadora de 6 tRNAs foi detectada.

  11. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation

    Science.gov (United States)

    Xie, Ping

    2014-12-01

    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30 S and large 50 S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  12. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    suggested the dynamic movement of ribosomal proteins. The L2 protein (a .... Such kinds of interactions are important in elucidating the evolution of RNA .... Tamura K 2009 Molecular handedness of life: significance of RNA aminoacylation.

  13. Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of some of the major Tetrahymena groups

    DEFF Research Database (Denmark)

    Sogin, M L; Ingold, A; Karlok, M

    1986-01-01

    . In an attempt to evaluate the evolutionary origins of the intervening sequences, we have now determined complete small subunit ribosomal RNA gene sequences from 13 species of Tetrahymena and the absolute number of nucleotide differences between the sequences was used to construct a phylogenetic tree...

  14. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens.

    Science.gov (United States)

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D Timothy J

    2015-06-19

    The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology. Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared. We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its 'barcode' region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida. Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and

  15. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting.

    Science.gov (United States)

    Hulscher, Ryan M; Bohon, Jen; Rappé, Mollie C; Gupta, Sayan; D'Mello, Rhijuta; Sullivan, Michael; Ralston, Corie Y; Chance, Mark R; Woodson, Sarah A

    2016-07-01

    The assembly of the Escherichia coli ribosome has been widely studied and characterized in vitro. Despite this, ribosome biogenesis in living cells is only partly understood because assembly is coupled with transcription, modification and processing of the pre-ribosomal RNA. We present a method for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of nascent RNA to be probed over time. Together, these can be used to determine changes in the structures of ribosome assembly intermediates as they fold in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes

    DEFF Research Database (Denmark)

    Porse, B T; Kirillov, S V; Awayez, M J

    1999-01-01

    of action was investigated by inducing a crosslink between sparsomycin and bacterial, archaeal, and eukaryotic ribosomes complexed with P-site-bound tRNA, on irradiating with low energy ultraviolet light (at 365 nm). The crosslink was localized exclusively to the universally conserved nucleotide A2602...

  17. Eukaryotic 5S rRNA biogenesis

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  18. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  19. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031

  20. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae using nuclear rDNA expansion segments and DNA barcodes

    Directory of Open Access Journals (Sweden)

    Raupach Michael J

    2010-09-01

    Full Text Available Abstract Background The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. Results We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97% of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95% of the studied Carabidae. Conclusion Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  1. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes.

    Science.gov (United States)

    Raupach, Michael J; Astrin, Jonas J; Hannig, Karsten; Peters, Marcell K; Stoeckle, Mark Y; Wägele, Johann-Wolfgang

    2010-09-13

    The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  2. Using the Ribodeblur pipeline to recover A-sites from yeast ribosome profiling data.

    Science.gov (United States)

    Wang, Hao; Kingsford, Carl; McManus, C Joel

    2018-03-15

    Ribosome profiling has emerged as a powerful technique to study mRNA translation. Ribosome profiling has the potential to determine the relative quantities and locations of ribosomes on mRNA genome wide. Taking full advantage of this approach requires accurate measurement of ribosome locations. However, experimental inconsistencies often obscure the positional information encoded in ribosome profiling data. Here, we describe the Ribodeblur pipeline, a computational analysis tool that uses a maximum likelihood framework to infer ribosome positions from heterogeneous datasets. Ribodeblur is simple to install, and can be run on an average modern Mac or Linux-based laptop. We detail the process of applying the pipeline to high-coverage ribosome profiling data in yeast, and discuss important considerations for potential extension to other organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Comparison of sequencing the D2 region of the large subunit ribosomal RNA gene (MicroSEQ®) versus the internal transcribed spacer (ITS) regions using two public databases for identification of common and uncommon clinically relevant fungal species.

    Science.gov (United States)

    Arbefeville, S; Harris, A; Ferrieri, P

    2017-09-01

    Fungal infections cause considerable morbidity and mortality in immunocompromised patients. Rapid and accurate identification of fungi is essential to guide accurately targeted antifungal therapy. With the advent of molecular methods, clinical laboratories can use new technologies to supplement traditional phenotypic identification of fungi. The aims of the study were to evaluate the sole commercially available MicroSEQ® D2 LSU rDNA Fungal Identification Kit compared to the in-house developed internal transcribed spacer (ITS) regions assay in identifying moulds, using two well-known online public databases to analyze sequenced data. 85 common and uncommon clinically relevant fungi isolated from clinical specimens were sequenced for the D2 region of the large subunit (LSU) of ribosomal RNA (rRNA) gene with the MicroSEQ® Kit and the ITS regions with the in house developed assay. The generated sequenced data were analyzed with the online GenBank and MycoBank public databases. The D2 region of the LSU rRNA gene identified 89.4% or 92.9% of the 85 isolates to the genus level and the full ITS region (f-ITS) 96.5% or 100%, using GenBank or MycoBank, respectively, when compared to the consensus ID. When comparing species-level designations to the consensus ID, D2 region of the LSU rRNA gene aligned with 44.7% (38/85) or 52.9% (45/85) of these isolates in GenBank or MycoBank, respectively. By comparison, f-ITS possessed greater specificity, followed by ITS1, then ITS2 regions using GenBank or MycoBank. Using GenBank or MycoBank, D2 region of the LSU rRNA gene outperformed phenotypic based ID at the genus level. Comparing rates of ID between D2 region of the LSU rRNA gene and the ITS regions in GenBank or MycoBank at the species level against the consensus ID, f-ITS and ITS2 exceeded performance of the D2 region of the LSU rRNA gene, but ITS1 had similar performance to the D2 region of the LSU rRNA gene using MycoBank. Our results indicated that the MicroSEQ® D2 LSU rDNA

  4. Control of ribosome traffic by position-dependent choice of synonymous codons

    International Nuclear Information System (INIS)

    Mitarai, Namiko; Pedersen, Steen

    2013-01-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby ribosomes by affecting the appearance of ‘traffic jams’ where multiple ribosomes collide and form queues. To test this ‘context effect’ further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated from experiments. We compare the ribosome traffic on wild-type (WT) sequences and sequences where the synonymous codons were swapped randomly. By simulating translation of 87 genes, we demonstrate that the WT sequences, especially those with a high bias in codon usage, tend to have the ability to reduce ribosome collisions, hence optimizing the cellular investment in the translation apparatus. The magnitude of such reduction of the translation time might have a significant impact on the cellular growth rate and thereby have importance for the survival of the species. (paper)

  5. Ribosomal DNA variation in finger millet and wild species of Eleusine (Poaceae).

    Science.gov (United States)

    Hilu, K W; Johnson, J L

    1992-04-01

    Finger millet is an important cereal crop in the semi-arid regions of Africa and India. The crop belongs to the grass genus Eleusine, which includes nine annual and perennial species native to Africa except for the New World species E. tristachya. Ribosomal DNA (rDNA) variation in finger millet and related wild species was used to provide information on the origin of the genomes of this tetraploid crop and point out genetic relationships of the crop to other species in the genus. The restriction endonucleases used revealed a lack of variability in the rDNA spacer region in domesticated finger millet. All the rDNA variants of the crop were found in the proposed direct tetraploid ancestor, E. coracana subsp. africana. Wild and domesticated finger millet displayed the phenotypes found in diploid E. indica. Diploid Eleusine tristachya showed some similarity to the crop in some restriction sites. The remaining species were quite distinct in rDNA fragment patterns. The study supports the direct origin of finger millet from subspecies africana shows E. indica to be one of the genome donors of the crop, and demonstrates that none of the other species examined could have donated the second genome of the crop. The rDNA data raise the possibility that wild and domesticated finger millet could have originated as infraspecific polyploid hybrids from different varieties of E. indica.

  6. Ribosome-catalyzed formation of an abnormal peptide analogue

    International Nuclear Information System (INIS)

    Roesser, J.R.; Chorghade, M.S.; Hecht, S.M.

    1986-01-01

    The peptidyl-tRNA analogue N-(chloracetyl) phenylalanyl-tRNA/sup Phe/ was prepared by chemical aminoacylation and prebound to the P site of Escherichia coli ribosomes in response to poly(uridylic acid). Admixture of phenylalanyl-tRNA/sup Phe/ to the A site resulted in the formation of two dipeptides, one of which was found by displacement of chloride ion from the peptidyl-tRNA. This constitutes the first example of ribosome-mediated formation of a peptide of altered connectivity and suggests a need for revision of the current model of peptide bond formation. Also suggested by the present finding is the feasibility of utilizing tRNAs to prepare polypeptides of altered connectivity in an in vitro protein biosynthesizing system. [ 32 P]-oligo(rA), [ 3 H]- and [ 14 C] phenylalanines were used in the assay of the peptidye-tRNA analogue

  7. Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas?

    Science.gov (United States)

    Alasaad, S; Soglia, D; Spalenza, V; Maione, S; Soriguer, R C; Pérez, J M; Rasero, R; Degiorgis, M P Ryser; Nimmervoll, H; Zhu, X Q; Rossi, L

    2009-02-05

    The present study examined the relationship among individual Sarcoptes scabiei mites from 13 wild mammalian populations belonging to nine species in four European countries using the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) as genetic marker. The ITS-2 plus primer flanking 5.8S and 28S rDNA (ITS-2+) was amplified from individual mites by polymerase chain reaction (PCR) and the amplicons were sequenced directly. A total of 148 ITS-2+ sequences of 404bp in length were obtained and 67 variable sites were identified (16.59%). UPGMA analyses did not show any geographical or host-specific clustering, and a similar outcome was obtained using population pairwise Fst statistics. These results demonstrated that ITS-2 rDNA does not appear to be suitable for examining genetic diversity among mite populations.

  8. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  9. Crystal Structure of the 23S rRNA Fragment Specific to r-Protein L1 and Designed Model of the Ribosomal L1 Stalk from Haloarcula marismortui

    Directory of Open Access Journals (Sweden)

    Azat Gabdulkhakov

    2017-02-01

    Full Text Available The crystal structure of the 92-nucleotide L1-specific fragment of 23S rRNA from Haloarcula marismortui (Hma has been determined at 3.3 Å resolution. Similar to the corresponding bacterial rRNA fragments, this structure contains joined helix 76-77 topped by an approximately globular structure formed by the residual part of the L1 stalk rRNA. The position of HmaL1 relative to the rRNA was found by its docking to the rRNA fragment using the L1-rRNA complex from Thermus thermophilus as a guide model. In spite of the anomalous negative charge of the halophilic archaeal protein, the conformation of the HmaL1-rRNA interface appeared to be very close to that observed in all known L1-rRNA complexes. The designed structure of the L1 stalk was incorporated into the H. marismortui 50S ribosomal subunit. Comparison of relative positions of L1 stalks in 50S subunits from H. marismortui and T. thermophilus made it possible to reveal the site of inflection of rRNA during the ribosome function.

  10. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells.

    Science.gov (United States)

    Watanabe-Susaki, Kanako; Takada, Hitomi; Enomoto, Kei; Miwata, Kyoko; Ishimine, Hisako; Intoh, Atsushi; Ohtaka, Manami; Nakanishi, Mahito; Sugino, Hiromu; Asashima, Makoto; Kurisaki, Akira

    2014-12-01

    Pluripotent stem cells have been shown to have unique nuclear properties, for example, hyperdynamic chromatin and large, condensed nucleoli. However, the contribution of the latter unique nucleolar character to pluripotency has not been well understood. Here, we show that fibrillarin (FBL), a critical methyltransferase for ribosomal RNA (rRNA) processing in nucleoli, is one of the proteins highly expressed in pluripotent embryonic stem (ES) cells. Stable expression of FBL in ES cells prolonged the pluripotent state of mouse ES cells cultured in the absence of leukemia inhibitory factor (LIF). Analyses using deletion mutants and a point mutant revealed that the methyltransferase activity of FBL regulates stem cell pluripotency. Knockdown of this gene led to significant delays in rRNA processing, growth inhibition, and apoptosis in mouse ES cells. Interestingly, both partial knockdown of FBL and treatment with actinomycin D, an inhibitor of rRNA synthesis, induced the expression of differentiation markers in the presence of LIF and promoted stem cell differentiation into neuronal lineages. Moreover, we identified p53 signaling as the regulatory pathway for pluripotency and differentiation of ES cells. These results suggest that proper activity of rRNA production in nucleoli is a novel factor for the regulation of pluripotency and differentiation ability of ES cells. © 2014 AlphaMed Press.

  11. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations.

    Science.gov (United States)

    Bonaïti, Catherine; Parayre, Sandrine; Irlinger, Françoise

    2006-03-15

    Cheese microorganisms, such as bacteria and fungi, constitute a complex ecosystem that plays a central role in cheeses ripening. The molecular study of cheese microbial diversity and activity is essential but the extraction of high quality nucleic acid may be problematic: the cheese samples are characterised by a strong buffering capacity which negatively influenced the yield of the extracted rRNA. The objective of this study is to develop an effective method for the direct and simultaneous isolation of yeast and bacterial ribosomal RNA and genomic DNA from the same cheese samples. DNA isolation was based on a protocol used for nucleic acids isolation from anaerobic digestor, without preliminary washing step with the combined use of the action of chaotropic agent (acid guanidinium thiocyanate), detergents (SDS, N-lauroylsarcosine), chelating agent (EDTA) and a mechanical method (bead beating system). The DNA purification was carried out by two washing steps of phenol-chloroform. RNA was isolated successfully after the second acid extraction step by recovering it from the phenolic phase of the first acid extraction. The novel method yielded pure preparation of undegraded RNA accessible for reverse transcription-PCR. The extraction protocol of genomic DNA and rRNA was applicable to complex ecosystem of different cheese matrices.

  12. Unexpected Diagnosis of Cerebral Toxoplasmosis by 16S and D2 Large-Subunit Ribosomal DNA PCR and Sequencing

    DEFF Research Database (Denmark)

    Kruse, Alexandra Yasmin Collin; Kvich, Lasse Andersson; Eickhardt-Dalbøge, Steffen Robert

    2015-01-01

    The protozoan parasite Toxoplasma gondii causes severe opportunistic infections. Here, we report an unexpected diagnosis of cerebral toxoplasmosis. T. gondii was diagnosed by 16S and D2 large-subunit (LSU) ribosomal DNA (rDNA) sequencing of a cerebral biopsy specimen and confirmed by T. gondii...

  13. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution....... stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5....

  14. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    Directory of Open Access Journals (Sweden)

    Paul C Whitford

    Full Text Available Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  15. Differential Stoichiometry among Core Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2015-11-01

    Full Text Available Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs, some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function.

  16. A new version of the RDP (Ribosomal Database Project)

    Science.gov (United States)

    Maidak, B. L.; Cole, J. R.; Parker, C. T. Jr; Garrity, G. M.; Larsen, N.; Li, B.; Lilburn, T. G.; McCaughey, M. J.; Olsen, G. J.; Overbeek, R.; hide

    1999-01-01

    The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.

  17. Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis.

    Science.gov (United States)

    Rahmanzadeh, R; Hüttmann, G; Gerdes, J; Scholzen, T

    2007-06-01

    Expression of the nuclear Ki-67 protein (pKi-67) is strongly associated with cell proliferation. For this reason, antibodies against this protein are widely used as prognostic tools for the assessment of cell proliferation in biopsies from cancer patients. Despite this broad application in histopathology, functional evidence for the physiological role of pKi-67 is still missing. Recently, we proposed a function of pKi-67 in the early steps of ribosomal RNA (rRNA) synthesis. Here, we have examined the involvement of pKi-67 in this process by photochemical inhibition using chromophore-assisted light inactivation (CALI). Anti-pKi-67 antibodies were labelled with the fluorochrome fluorescein 5(6)-isothiocyanate and were irradiated after binding to their target protein. Performing CALI in vitro on cell lysates led to specific cross-linking of pKi-67. Moreover, the upstream binding factor (UBF) necessary for rRNA transcription was also partly subjected to cross-link formation, indicating a close spatial proximity of UBF and pKi-67. CALI in living cells, using micro-injected antibody, caused a striking relocalization of UBF from foci within the nucleoli to spots located at the nucleolar rim or within the nucleoplasm. pKi-67-CALI resulted in dramatic inhibition of RNA polymerase I-dependent nucleolar rRNA synthesis, whereas RNA polymerase II-dependent nucleoplasmic RNA synthesis remained almost unaltered. Our data presented here argue for a crucial role of pKi-67 in RNA polymerase I-dependent nucleolar rRNA synthesis.

  18. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites.

    Directory of Open Access Journals (Sweden)

    Xiao P Peng

    2018-01-01

    Full Text Available Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA array. Each rDNA repeat contains a programmed replication fork barrier (RFB established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth.

  19. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs.

    Science.gov (United States)

    Tsuji, K; Tsien, H C; Hanson, R S; DePalma, S R; Scholtz, R; LaRoche, S

    1990-01-01

    16S ribosomal RNAs (rRNA) of 12 methylotrophic bacteria have been almost completely sequenced to establish their phylogenetic relationships. Methylotrophs that are physiologically related are phylogenetically diverse and are scattered among the purple eubacteria (class Proteobacteria). Group I methylotrophs can be classified in the beta- and the gamma-subdivisions and group II methylotrophs in the alpha-subdivision of the purple eubacteria, respectively. Pink-pigmented facultative and non-pigmented obligate group II methylotrophs form two distinctly separate branches within the alpha-subdivision. The secondary structures of the 16S rRNA sequences of 'Methylocystis parvus' strain OBBP, 'Methylosinus trichosporium' strain OB3b, 'Methylosporovibrio methanica' strain 81Z and Hyphomicrobium sp. strain DM2 are similar, and these non-pigmented obligate group II methylotrophs form one tight cluster in the alpha-subdivision. The pink-pigmented facultative methylotrophs, Methylobacterium extorquens strain AM1, Methylobacterium sp. strain DM4 and Methylobacterium organophilum strain XX form another cluster within the alpha-subdivision. Although similar in phenotypic characteristics, Methylobacterium organophilum strain XX and Methylobacterium extorquens strain AM1 are clearly distinguishable by their 16S rRNA sequences. The group I methylotrophs, Methylophilus methylotrophus strain AS1 and methylotrophic species DM11, which do not utilize methane, are similar in 16S rRNA sequence to bacteria in the beta-subdivision. The methane-utilizing, obligate group I methanotrophs, Methylococcus capsulatus strain BATH and Methylomonas methanica, are placed in the gamma-subdivision. The results demonstrate that it is possible to distinguish and classify the methylotrophic bacteria using 16S rRNA sequence analysis.

  20. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong

    2009-10-09

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969- 983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies. © 2009 Wang, Qian.

  1. lncRNA-Induced Nucleosome Repositioning Reinforces Transcriptional Repression of rRNA Genes upon Hypotonic Stress

    Directory of Open Access Journals (Sweden)

    Zhongliang Zhao

    2016-03-01

    Full Text Available The activity of rRNA genes (rDNA is regulated by pathways that target the transcription machinery or alter the epigenetic state of rDNA. Previous work has established that downregulation of rRNA synthesis in quiescent cells is accompanied by upregulation of PAPAS, a long noncoding RNA (lncRNA that recruits the histone methyltransferase Suv4-20h2 to rDNA, thus triggering trimethylation of H4K20 (H4K20me3 and chromatin compaction. Here, we show that upregulation of PAPAS in response to hypoosmotic stress does not increase H4K20me3 because of Nedd4-dependent ubiquitinylation and proteasomal degradation of Suv4-20h2. Loss of Suv4-20h2 enables PAPAS to interact with CHD4, a subunit of the chromatin remodeling complex NuRD, which shifts the promoter-bound nucleosome into the transcriptional “off” position. Thus, PAPAS exerts a “stress-tailored” dual function in rDNA silencing, facilitating either Suv4-20h2-dependent chromatin compaction or NuRD-dependent changes in nucleosome positioning.

  2. Eukaryotic ribosome display with in situ DNA recovery.

    Science.gov (United States)

    He, Mingyue; Edwards, Bryan M; Kastelic, Damjana; Taussig, Michael J

    2012-01-01

    Ribosome display is a cell-free display technology for in vitro selection and optimisation of proteins from large diversified libraries. It operates through the formation of stable protein-ribosome-mRNA (PRM) complexes and selection of ligand-binding proteins, followed by DNA recovery from the selected genetic information. Both prokaryotic and eukaryotic ribosome display systems have been developed. In this chapter, we describe the eukaryotic rabbit reticulocyte method in which a distinct in situ single-primer RT-PCR procedure is used to recover DNA from the selected PRM complexes without the need for prior disruption of the ribosome.

  3. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.

    Science.gov (United States)

    Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel

    2007-12-07

    The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.

  4. Ribosomal DNA intergenic spacer sequence in foxtail millet, Setaria italica (L.) P. Beauv. and its characterization and application to typing of foxtail millet landraces.

    Science.gov (United States)

    Fukunaga, Kenji; Ichitani, Katsuyuki; Taura, Satoru; Sato, Muneharu; Kawase, Makoto

    2005-02-01

    We determined the sequence of ribosomal DNA (rDNA) intergenic spacer (IGS) of foxtail millet isolated in our previous study, and identified subrepeats in the polymorphic region. We also developed a PCR-based method for identifying rDNA types based on sequence information and assessed 153 accessions of foxtail millet. Results were congruent with our previous works. This study provides new findings regarding the geographical distribution of rDNA variants. This new method facilitates analyses of numerous foxtail millet accessions. It is helpful for typing of foxtail millet germplasms and elucidating the evolution of this millet.

  5. Trapping the ribosome to control gene expression.

    Science.gov (United States)

    Boehringer, Daniel; Ban, Nenad

    2007-09-21

    Protein synthesis is often regulated by structured mRNAs that interact with ribosomes. In this issue of Cell, Marzi et al. (2007) provide insights into the autoregulation of protein S15 by visualizing the folded repressor mRNA on the ribosome stalled in the preinitiation state. These results have implications for our understanding of the mechanism of translation initiation in general.

  6. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion

    DEFF Research Database (Denmark)

    Beuchert Kallehauge, Thomas; Li, Shangzhong; Pedersen, Lasse Ebdrup

    2017-01-01

    Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as effici......Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated...... as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated...... as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we...

  7. Conservation of RNA sequence and cross-linking ability in ribosomes from a higher eukaryote: photochemical cross-linking of the anticodon of P site bound tRNA to the penultimate cytidine of the UACACACG sequence in Artemia salina 18S rRNA

    International Nuclear Information System (INIS)

    Ciesiolka, J.; Nurse, K.; Klein, J.; Ofengand, J.

    1985-01-01

    The complex of Artemia salina ribosomes and Escherichia coli acetylvalyl-tRNA could be cross-linked by irradiation with near-UV light. Cross-linking required the presence of the codon GUU, GUA being ineffective. The acetylvalyl group could be released from the cross-linked tRNA by treatment with puromycin, demonstrating that cross-linking had occurred at the P site. This was true both for pGUU- and also for poly(U2,G)-dependent cross-linking. All of the cross-linking was to the 18S rRNA of the small ribosomal subunit. Photolysis of the cross-link at 254 nm occurred with the same kinetics as that for the known cyclobutane dimer between this tRNA and Escherichia coli 16S rRNA. T1 RNase digestion of the cross-linked tRNA yielded an oligonucleotide larger in molecular weight than any from un-cross-linked rRNA or tRNA or from a prephotolyzed complex. Extended electrophoresis showed this material to consist of two oligomers of similar mobility, a faster one-third component and a slower two-thirds component. Each oligomer yielded two components on 254-nm photolysis. The slower band from each was the tRNA T1 oligomer CACCUCCCUVACAAGp, which includes the anticodon. The faster band was the rRNA 9-mer UACACACCGp and its derivative UACACACUG. Unexpectedly, the dephosphorylated and slower moving 9-mer was derived from the faster moving dimer. Deamination of the penultimate C to U is probably due to cyclobutane dimer formation and was evidence for that nucleotide being the site of cross-linking. Direct confirmation of the cross-linking site was obtained by Z-gel analysis

  8. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database

    Czech Academy of Sciences Publication Activity Database

    Garcia, S.; Kovařík, Aleš; Leitch, A. R.; Garnatje, T.

    2017-01-01

    Roč. 89, č. 5 (2017), s. 1020-1030 ISSN 0960-7412 R&D Projects: GA ČR(CZ) GC16-02149J Institutional support: RVO:68081707 Keywords : in-situ hybridization * 5s rdna * 45s rdna * concerted evolution Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  9. Fluctuations and synchrony of RNA synthesis in nucleoli.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Baev, Alexander; Berezney, Ronald; Prasad, Paras N

    2015-06-01

    Ribosomal RNA (rRNA) sequences are synthesized at exceptionally high rates and, together with ribosomal proteins (r-proteins), are utilized as building blocks for the assembly of pre-ribosomal particles. Although it is widely acknowledged that tight regulation and coordination of rRNA and r-protein production are fundamentally important for the maintenance of cellular homeostasis, still little is known about the real-time kinetics of the ribosome component synthesis in individual cells. In this communication we introduce a label-free MicroRaman spectrometric approach for monitoring rRNA synthesis in live cultured cells. Remarkably high and rapid fluctuations of rRNA production rates were revealed by this technique. Strikingly, the changes in the rRNA output were synchronous for ribosomal genes located in separate nucleoli of the same cell. Our findings call for the development of new concepts to elucidate the coordination of ribosomal components production. In this regard, numerical modeling further demonstrated that the production of rRNA and r-proteins can be coordinated, regardless of the fluctuations in rRNA synthesis. Overall, our quantitative data reveal a spectacular interplay of inherently stochastic rates of RNA synthesis and the coordination of gene expression.

  10. [An intriguing model for 5S rDNA sequences dispersion in the genome of freshwater stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae)].

    Science.gov (United States)

    Cruz, V P; Oliveira, C; Foresti, F

    2015-01-01

    5S rDNA genes of the stingray Potamotrygon motoro were PCR replicated, purified, cloned and sequenced. Two distinct classes of segments of different sizes were obtained. The smallest, with 342 bp units, was classified as class I, and the largest, with 1900 bp units, was designated as class II. Alignment with the consensus sequences for both classes showed changes in a few bases in the 5S rDNA genes. TATA-like sequences were detected in the nontranscribed spacer (NTS) regions of class I and a microsatellite (GCT) 10 sequence was detected in the NTS region of class II. The results obtained can help to understand the molecular organization of ribosomal genes and the mechanism of gene dispersion.

  11. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  12. [Structural organization of 5S ribosomal DNA of Rosa rugosa].

    Science.gov (United States)

    Tynkevych, Iu O; Volkov, R A

    2014-01-01

    In order to clarify molecular organization of the genomic region encoding 5S rRNA in diploid species Rosa rugosa several 5S rDNA repeated units were cloned and sequenced. Analysis of the obtained sequences revealed that only one length variant of 5S rDNA repeated units, which contains intact promoter elements in the intergenic spacer region (IGS) and appears to be transcriptionally active is present in the genome. Additionally, a limited number of 5S rDNA pseudogenes lacking a portion of coding sequence and the complete IGS was detected. A high level of sequence similarity (from 93.7 to 97.5%) between the IGS of major 5S rDNA variants of East Asian R. rugosa and North American R. nitida was found indicating comparatively recent divergence of these species.

  13. 18S rDNA phylogeny of lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa.

    Directory of Open Access Journals (Sweden)

    Anna Maria Fiore-Donno

    Full Text Available The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.

  14. Assembly constraints drive co-evolution among ribosomal constituents.

    Science.gov (United States)

    Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip

    2015-06-23

    Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. The Nucleolus: In Genome Maintenance and Repair.

    Science.gov (United States)

    Tsekrekou, Maria; Stratigi, Kalliopi; Chatzinikolaou, Georgia

    2017-07-01

    The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.

  16. Differentiation of Actinobacillus pleuropneumoniae strains by sequence analysis of 16S rDNA and ribosomal intergenic regions, and development of a species specific oligonucleotide for in situ detection

    DEFF Research Database (Denmark)

    Fussing, Vivian; Paster, Bruce J.; Dewhirst, Floyd E.

    1998-01-01

    . The larger RIS's were different between the 3 species tested. The sequence of the 16S ribosomal gene was determined for 8 serotypes of A. pleuropneumoniae. These sequences showed only minor base differences, indicating a close genetic relatedness of these serotypes within the species. An oligonucleotide DNA...... probe designed from the 16S rRNA gene sequence of A. pleuropneumoniae was specific for all strains of the target species and did not cross react with A. lignieresii, the closest known relative of A. pleuropneumoniae. This species-specific DNA probe labeled with fluorescein was used for in situ......The aims of this study were to characterize and determine intraspecies and interspecies relatedness of Actinobacillus pleuropneumoniae to Actinobacillus lignieresii and Actinobacillus suis by sequence analysis of the ribosomal operon and to find a species-specific area for in situ detection of A...

  17. Emergence of Tetracycline Resistance in Helicobacter pylori: Multiple Mutational Changes in 16S Ribosomal DNA and Other Genetic Loci

    Science.gov (United States)

    Dailidiene, Daiva; Bertoli, M. Teresita; Miciuleviciene, Jolanta; Mukhopadhyay, Asish K.; Dailide, Giedrius; Pascasio, Mario Alberto; Kupcinskas, Limas; Berg, Douglas E.

    2002-01-01

    Tetracycline is useful in combination therapies against the gastric pathogen Helicobacter pylori. We found 6 tetracycline-resistant (Tetr) strains among 159 clinical isolates (from El Salvador, Lithuania, and India) and obtained the following four results: (i) 5 of 6 Tetr isolates contained one or two nucleotide substitutions in one part of the primary tetracycline binding site in 16S rRNA (AGA965-967 [Escherichia coli coordinates] changed to gGA, AGc, guA, or gGc [lowercase letters are used to represent the base changes]), whereas the sixth (isolate Ind75) retained AGA965-967; (ii) PCR products containing mutant 16S ribosomal DNA (rDNA) alleles transformed recipient strains to Tetr phenotypes, but transformants containing alleles with single substitutions (gGA and AGc) were less resistant than their Tetr parents; (iii) each of 10 Tetr mutants of reference strain 26695 (in which mutations were induced with metronidazole, a mutagenic anti-H. pylori agent) contained the normal AGA965-967 sequence; and (iv) transformant derivatives of Ind75 and of one of the Tetr 26695 mutants that had acquired mutant rDNA alleles were resistant to tetracycline at levels higher than those to which either parent strain was resistant. Thus, tetracycline resistance in H. pylori results from an accumulation of changes that may affect tetracycline-ribosome affinity and/or other functions (perhaps porins or efflux pumps). We suggest that the rarity of tetracycline resistance among clinical isolates reflects this need for multiple mutations and perhaps also the deleterious effects of such mutations on fitness. Formally equivalent mutations with small but additive effects are postulated to contribute importantly to traits such as host specificity and virulence and to H. pylori's great genetic diversity. PMID:12435699

  18. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.

    Science.gov (United States)

    Belew, Ashton T; Advani, Vivek M; Dinman, Jonathan D

    2011-04-01

    Although first discovered in viruses, previous studies have identified operational -1 ribosomal frameshifting (-1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast -1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five -1 RF signals. Ablation of the -1 RF signals or of NMD stabilizes this mRNA, and changes in -1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous -1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that -1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence -1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that -1 RF is a broadly used post-transcriptional regulator of gene expression.

  19. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae allotetraploids

    Directory of Open Access Journals (Sweden)

    Soltis Pamela S

    2010-09-01

    Full Text Available Abstract Background Tragopogon mirus and T. miscellus are allotetraploids (2n = 24 that formed repeatedly during the past 80 years in eastern Washington and adjacent Idaho (USA following the introduction of the diploids T. dubius, T. porrifolius, and T. pratensis (2n = 12 from Europe. In most natural populations of T. mirus and T. miscellus, there are far fewer 35S rRNA genes (rDNA of T. dubius than there are of the other diploid parent (T. porrifolius or T. pratensis. We studied the inheritance of parental rDNA loci in allotetraploids resynthesized from diploid accessions. We investigate the dynamics and directionality of these rDNA losses, as well as the contribution of gene copy number variation in the parental diploids to rDNA variation in the derived tetraploids. Results Using Southern blot hybridization and fluorescent in situ hybridization (FISH, we analyzed copy numbers and distribution of these highly reiterated genes in seven lines of synthetic T. mirus (110 individuals and four lines of synthetic T. miscellus (71 individuals. Variation among diploid parents accounted for most of the observed gene imbalances detected in F1 hybrids but cannot explain frequent deviations from repeat additivity seen in the allotetraploid lines. Polyploid lineages involving the same diploid parents differed in rDNA genotype, indicating that conditions immediately following genome doubling are crucial for rDNA changes. About 19% of the resynthesized allotetraploid individuals had equal rDNA contributions from the diploid parents, 74% were skewed towards either T. porrifolius or T. pratensis-type units, and only 7% had more rDNA copies of T. dubius-origin compared to the other two parents. Similar genotype frequencies were observed among natural populations. Despite directional reduction of units, the additivity of 35S rDNA locus number is maintained in 82% of the synthetic lines and in all natural allotetraploids. Conclusions Uniparental reductions of

  20. The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia.

    Science.gov (United States)

    Yan, Hongbin; Lou, Zhongzi; Li, Li; Ni, Xingwei; Guo, Aijiang; Li, Hongmin; Zheng, Yadong; Dyachenko, Viktor; Jia, Wanzhong

    2013-03-01

    Most species of the genus Taenia are of considerable medical and veterinary significance. In this study, complete nuclear 18S rRNA gene sequences were obtained from seven members of genus Taenia [Taenia multiceps, Taenia saginata, Taenia asiatica, Taenia solium, Taenia pisiformis, Taenia hydatigena, and Taenia taeniaeformis] and a phylogeny inferred using these sequences. Most of the variable sites fall within the variable regions, V1-V5. We show that sequences from the nuclear 18S ribosomal RNA gene have considerable promise as sources of phylogenetic information within the genus Taenia. Furthermore, given that almost all the variable sites lie within defined variable portions of that gene, it will be appropriate and economical to sequence only those regions for additional species of Taenia.

  1. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    Science.gov (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  2. Chaperoning 5S RNA assembly.

    Science.gov (United States)

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-07-01

    In eukaryotes, three of the four ribosomal RNAs (rRNAs)—the 5.8S, 18S, and 25S/28S rRNAs—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP), containing ribosomal proteins Rpl5/uL18 and Rpl11/uL5, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53. The nucleolar localization of the 5S RNP and its assembly into preribosomes are performed by a specialized complex composed of Rpf2 and Rrs1 in yeast or Bxdc1 and hRrs1 in humans. Here we report the structural and functional characterization of the Rpf2-Rrs1 complex alone, in complex with the 5S RNA, and within pre-60S ribosomes. We show that the Rpf2-Rrs1 complex contains a specialized 5S RNA E-loop-binding module, contacts the Rpl5 protein, and also contacts the ribosome assembly factor Rsa4 and the 25S RNA. We propose that the Rpf2-Rrs1 complex establishes a network of interactions that guide the incorporation of the 5S RNP in preribosomes in the initial conformation prior to its rotation to form the central protuberance found in the mature large ribosomal subunit. © 2015 Madru et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Absence of ribosomal DNA amplification in the meroistic (telotrophic) ovary of the large milkweed bug Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae)

    Science.gov (United States)

    1975-01-01

    In the typical meroistic insect ovary, the oocyte nucleus synthesizes little if any RNA. Nurse cells or trophocytes actively synthesize ribosomes which are transported to and accumulated by the oocyte. In the telotrophic ovary a morphological separation exists, the nurse cells being localized at the apical end of each ovariole and communicating with the ooocytes via nutritive cords. In order to determine whether the genes coding for ribosomal RNA (rRNA) are amplified in the telotrophic ovary of the milkweed bug Oncopeltus fasciatus, the percentages of the genome coding for ribosomal RNA in somatic cells, spermatogenic cells, ovarian follicles, and nurse cells were compared. The oocytes and most of the nurse cells of O. fasciatus are uninucleolate. DNA hybridizing with ribosomal RNA is localized in a satellite DNA, the density of which is 1.712 g/cm(-3). The density of main-band DNA is 1.694 g/cm(-3). The ribosomal DNA satellite accounts for approximately 0.2% of the DNA in somatic and gametogenic tissues of both males and females. RNA-DNA hybridization analysis demonstrates that approximately 0.03% of the DNA in somatic tissues, testis, ovarian follicles, and isolated nurse cells hybridizes with ribosomal RNA. The fact that the percentage of DNA hybridizing with rRNA is the same in somatic and in male and female gametogenic tissues indicates that amplification of ribosomal DNA does not occur in nurse cells and that if it occurs in oocytes, it represents less than a 50- fold increase in ribosomal DNA. An increase in total genome DNA accounted by polyploidization appears to provide for increasing the amount of ribosomal DNA in the nurse cells. PMID:1158969

  4. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    Science.gov (United States)

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  5. Emerging functions of ribosomal proteins in gene-specific transcription and translation

    International Nuclear Information System (INIS)

    Lindstroem, Mikael S.

    2009-01-01

    Ribosomal proteins have remained highly conserved during evolution presumably reflecting often critical functions in ribosome biogenesis or mature ribosome function. In addition, several ribosomal proteins possess distinct extra-ribosomal functions in apoptosis, DNA repair and transcription. An increasing number of ribosomal proteins have been shown to modulate the trans-activation function of important regulatory proteins such as NF-κB, p53, c-Myc and nuclear receptors. Furthermore, a subset of ribosomal proteins can bind directly to untranslated regions of mRNA resulting in transcript-specific translational control outside of the ribosome itself. Collectively, these findings suggest that ribosomal proteins may have a wider functional repertoire within the cell than previously thought. The future challenge is to identify and validate these novel functions in the background of an often essential primary function in ribosome biogenesis and cell growth.

  6. Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live Escherichia coli.

    Science.gov (United States)

    Mustafi, Mainak; Weisshaar, James C

    2018-01-16

    In bacteria, elongation factor Tu is a translational cofactor that forms ternary complexes with aminoacyl-tRNA (aa-tRNA) and GTP. Binding of a ternary complex to one of four flexible L7/L12 units on the ribosome tethers a charged tRNA in close proximity to the ribosomal A site. Two sequential tests for a match between the aa-tRNA anticodon and the current mRNA codon then follow. Because one elongation cycle can occur in as little as 50 ms and the vast majority of aa-tRNA copies are not cognate with the current mRNA codon, this testing must occur rapidly. We present a single-molecule localization and tracking study of fluorescently labeled EF-Tu in live Escherichia coli Imaging at 2 ms/frame distinguishes 60% slowly diffusing EF-Tu copies (assigned as transiently bound to translating ribosome) from 40% rapidly diffusing copies (assigned as a mixture of free ternary complexes and free EF-Tu). Combining these percentages with copy number estimates, we infer that the four L7/L12 sites are essentially saturated with ternary complexes in vivo. The results corroborate an earlier inference that all four sites can simultaneously tether ternary complexes near the A site, creating a high local concentration that may greatly enhance the rate of testing of aa-tRNAs. Our data and a combinatorial argument both suggest that the initial recognition test for a codon-anticodon match occurs in less than 1 to 2 ms per aa-tRNA copy. The results refute a recent study (A. Plochowietz, I. Farrell, Z. Smilansky, B. S. Cooperman, and A. N. Kapanidis, Nucleic Acids Res 45:926-937, 2016, https://doi.org/10.1093/nar/gkw787) of tRNA diffusion in E. coli that inferred that aa-tRNAs arrive at the ribosomal A site as bare monomers, not as ternary complexes. IMPORTANCE Ribosomes catalyze translation of the mRNA codon sequence into the corresponding sequence of amino acids within the nascent polypeptide chain. Polypeptide elongation can be as fast as 50 ms per added amino acid. Each amino acid

  7. Could a Proto-Ribosome Emerge Spontaneously in the Prebiotic World?

    Directory of Open Access Journals (Sweden)

    Ilana C. Agmon

    2016-12-01

    Full Text Available An indispensable prerequisite for establishing a scenario of life emerging by natural processes is the requirement that the first simple proto-molecules could have had a realistic probability of self-assembly from random molecular polymers in the prebiotic world. The vestige of the proto-ribosome, which is believed to be still embedded in the contemporary ribosome, is used to assess the feasibility of such spontaneous emergence. Three concentric structural elements of different magnitudes, having a dimeric nature derived from the symmetrical region of the ribosomal large subunit, were suggested to constitute the vestige of the proto-ribosome. It is assumed to have materialized spontaneously in the prebiotic world, catalyzing non-coded peptide bond formation and simple elongation. Probabilistic and energetic considerations are applied in order to evaluate the suitability of the three contenders for being the initial proto-ribosome. The analysis points to the simplest proto-ribosome, comprised of a dimer of tRNA-like molecules presently embedded in the core of the symmetrical region, as the only one having a realistic statistical likelihood of spontaneous emergence from random RNA chains. Hence it offers a feasible starting point for a continuous evolutionary path from the prebiotic matter, through natural processes, into the intricate modern translation system.

  8. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  9. Chromatin structure of ribosomal RNA genes in dipterans and its relationship to the location of nucleolar organizers.

    Science.gov (United States)

    Madalena, Christiane Rodriguez Gutierrez; Díez, José Luís; Gorab, Eduardo

    2012-01-01

    Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs) located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA), allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

  10. Chromatin structure of ribosomal RNA genes in dipterans and its relationship to the location of nucleolar organizers.

    Directory of Open Access Journals (Sweden)

    Christiane Rodriguez Gutierrez Madalena

    Full Text Available Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA, allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

  11. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center

    DEFF Research Database (Denmark)

    Long, K. S.; Hansen, L. K.; Jakobsen, L.

    2006-01-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design...... mutant strain is resistant to tiamulin and pleuromutilin, but not valnemulin, implying that valnemulin is better able to withstand an altered rRNA binding surface around the mutilin core. This is likely due to additional interactions made between the valnemulin side chain extension and the rRNA binding...

  12. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii

    Institute of Scientific and Technical Information of China (English)

    Zhifei Li; Qiang Guo; Lvqin Zheng; Yongsheng Ji; Yi-Ting Xie; De-Hua Lai; Zhao-Rong Lun; Xun Suo; Ning Gao

    2017-01-01

    As an indispensable molecular machine universal in all living organisms,the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors.High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes.With cryo-electron microscopy technique,we have determined structures of the cytosolic ribosomes from two human parasites,Trichomonas vaginalis and Toxoplasma gondii,at resolution of 3.2-3.4,(A).Although the ribosomal proteins from both pathogens are typical members of eukaryotic families,with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments,the sizes of their rRNAs are sharply different.Very interestingly,rRNAs of T.vaginalis are in size comparable to prokaryotic counterparts,with nearly all the eukaryote-specific rRNA expansion segments missing.These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs,and may aid in design of novel translation inhibitors.

  13. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    Science.gov (United States)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-10-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  14. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site.

    Science.gov (United States)

    Calviño, Fabiola R; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-04-07

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.

  15. Evolution of rDNA in Nicotiana Allopolyploids: A Potential Link between rDNA Homogenization and Epigenetics

    Science.gov (United States)

    Kovarik, Ales; Dadejova, Martina; Lim, Yoong K.; Chase, Mark W.; Clarkson, James J.; Knapp, Sandra; Leitch, Andrew R.

    2008-01-01

    Background The evolution and biology of rDNA have interested biologists for many years, in part, because of two intriguing processes: (1) nucleolar dominance and (2) sequence homogenization. We review patterns of evolution in rDNA in the angiosperm genus Nicotiana to determine consequences of allopolyploidy on these processes. Scope Allopolyploid species of Nicotiana are ideal for studying rDNA evolution because phylogenetic reconstruction of DNA sequences has revealed patterns of species divergence and their parents. From these studies we also know that polyploids formed over widely different timeframes (thousands to millions of years), enabling comparative and temporal studies of rDNA structure, activity and chromosomal distribution. In addition studies on synthetic polyploids enable the consequences of de novo polyploidy on rDNA activity to be determined. Conclusions We propose that rDNA epigenetic expression patterns established even in F1 hybrids have a material influence on the likely patterns of divergence of rDNA. It is the active rDNA units that are vulnerable to homogenization, which probably acts to reduce mutational load across the active array. Those rDNA units that are epigenetically silenced may be less vulnerable to sequence homogenization. Selection cannot act on these silenced genes, and they are likely to accumulate mutations and eventually be eliminated from the genome. It is likely that whole silenced arrays will be deleted in polyploids of 1 million years of age and older. PMID:18310159

  16. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase.

    Science.gov (United States)

    Jha, Sujata; Rollins, Madeline G; Fuchs, Gabriele; Procter, Dean J; Hall, Elizabeth A; Cozzolino, Kira; Sarnow, Peter; Savas, Jeffrey N; Walsh, Derek

    2017-06-29

    Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements. However, beyond differential subunit expression during development, evidence for regulated ribosome specification within individual cells has remained elusive. Here we report that a poxvirus kinase phosphorylates serine/threonine residues in the human small ribosomal subunit protein, receptor for activated C kinase (RACK1), that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs with 5' untranslated regions that contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analyses revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, in which these leaders act as translational enhancers. Phosphomimetics and inter-species chimaeras have shown that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase confer a translational advantage. Our findings provide insight into ribosome customization through trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie poxvirus polyA-leaders.

  17. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    DEFF Research Database (Denmark)

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonard G.

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.......7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions...... of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic...

  18. Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    Czech Academy of Sciences Publication Activity Database

    Stern, R. F.; Horák, Aleš; Andrew, R. L.; Coffroth, M. A.; Andersen, R. A.; Kupper, F. C.; Jameson, I.; Hoppenrath, M.; Véron, B.; Kasai, F.; Brand, J.; James, E. R.; Keeling, P. J.

    2010-01-01

    Roč. 5, č. 11 (2010), e13991 E-ISSN 1932-6203 Keywords : RIBOSOMAL-RNA GENE * FREE-LIVING STRAIN * SP-NOV DINOPHYCEAE * TOXIC DINOFLAGELLATE * MOLECULAR PHYLOGENY * COASTAL WATERS * NATURAL-ENVIRONMENT * RDNA SEQUENCES * SYMBIODINIUM Impact factor: 4.411, year: 2010

  19. Small-angle X-ray titration study on the complex formation between 5-S RNA and the L18 protein of the Escherichia coli 50-S ribosome particle

    International Nuclear Information System (INIS)

    Oesterberg, R.; Garrett, A.

    1977-01-01

    The 5-S RNA (A) and the L 18 protein (B) from Escherichia coli ribosomes form one single AB complex in the concentration ranges supposed to prevail in vivo; at concentrations of L 18 higher than 40 mM there is some indication for a minor species, most probably an AB 2 species. This is indicated from the X-ray scattering titration data of the 5-S RNA/L 18 system recorded at 21 0 C in ribosomal reconstitution buffer. As a result of the 1 : 1 complex formation, there is a relatively small but defined increase in the radius of gyration from 3.61 to 3.85 nm. This result as well as the experimental scattering curve can be explained by models where it is assumed that the elongated L 18 model is quite far from the electron density centre and where protein L 18 interacts with one or both of the minor arms of the supposed Y-shaped 5-S RNA molecule. (orig.) [de

  20. Effect of single base changes and the absence of modified bases in 16S RNA on the reconstitution and function of Escherichia coli 30S ribosomes

    International Nuclear Information System (INIS)

    Denman, R.; Krzyzosiak, W.; Nurse, K.; Ofengand, J.

    1987-01-01

    The gene coding for E. coli 16S rRNA was placed in pUC19 under the control of the strong class III T7 promoter, phi 10, by ligation of the 1490 bp BclI/BstEII fragment of the rrnB operon with appropriate synthetic oligodeoxynucleotides. Such constructs allowed efficient in vitro synthesis of full-length transcripts (up to 900 mol RNA/mol template) free of modified bases. The synthetic RNA could be assembled into 30S subunits upon addition of E. coli 30S ribosomal proteins. The particles co-sedimented with authentic 30S particles and were electron microscopically indistinguishable from them. Upon addition of 50S subunits, codon-dependent P-site binding of tRNA and codon-dependent polypeptide synthesis were >80% of 30S reconstituted from natural 16S RNA and >50% of isolated 30S. UV-induced crosslinking of P-site bound AcVal-tRNA to residue C 1400 was preserved. Changing C 1400 to A had little effect on reconstitution, P-site binding, or polypeptide synthesis. However, the substitution of C 1499 by G markedly inhibited assembly. The effect on P-site binding and polypeptide synthesis is under study. These results show (1) none of the modified bases of 16S RNA are essential for protein synthesis, (2) substitution of A for C 1400 has little functional effect, and (3) position 1400 may be important for ribosome assembly

  1. Association of protein C23 with rapidly labeled nucleolar RNA

    International Nuclear Information System (INIS)

    Herrera, A.H.; Olson, M.O.

    1986-01-01

    The association of nucleolar phosphoprotein C23 with preribosomal ribonucleoprotein (RNP) particles was examined in Novikoff hepatoma nucleoli. RNA was labeled with [ 3 H]uridine for various times in cell suspensions, and RNP particles were extracted from isolated nucleoli and fractionated by sucrose gradient ultracentrifugation. The majority of protein C23 cosedimented with fractions containing rapidly labeled RNA (RL fraction). To determine whether there was a direct association of RNA with protein C23, the RL fraction was exposed to ultraviolet (UV) light (254 nm) for short periods of time. After 2 min of exposure there was a 50% decrease in C23 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses, with no significant further decrease at longer times. When UV-treated fractions were subjected to phenol/chloroform extractions, as much as 30% of the labeled RNA was found in the phenol (protein) layer, indicating that RNA became cross-linked to protein. Similarly, there was an increase in protein C23 extracted into the water layer after irradiation. By SDS-PAGE analyses the cross-linked species migrated more slowly than protein C23, appearing as a smear detected either by [ 3 H]uridine radioactivity or by anti-C23 antibody. With anti-C23 antibodies, up to 25% of the labeled RNA was precipitated from the RL fraction. Dot-blot hybridizations, using cloned rDNA fragments as probes, indicated that the RNA in the RL fraction and the immunoprecipitated RNA contained sequences from 18S and 28S ribosomal RNA

  2. gamma. radiation effect on the functional properties of the cotton ribosomes

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, A P; Safarov, Sh

    1973-01-01

    A study is made of the action of radiation on the functional properties of ribosomes in irradiated organisms and on isolated ribosomes exposed to different doses. With increase in dose there occurs a reduction in the incorporation of labelled amino acids by the ribosomes released from irradiated sprouts and also during irradiation of isolated ribosomes. The study covered the functional activity of ribosomes irradiated at different doses with the use of synthetic poly-U and poly-A matrices synthesizing polyphenylalanine and polylysine, depending on the irradiation dose. The inhibition of the activity of the protein synthesis system at high doses is due to structural and functional changes in ribosomes and also to disturbance in the biosynthesis and functions of the messenger RNA.

  3. Characterisation of transcriptionally active and inactive chromatin domains in neurons

    NARCIS (Netherlands)

    A.S. Akhmanova (Anna); T. Verkerk (Ton); A. Langeveld (An); N.J. Galjart (Niels); F.G. Grosveld (Frank)

    2000-01-01

    textabstractThe tandemly organised ribosomal DNA (rDNA) repeats are transcribed by a dedicated RNA polymerase in a specialised nuclear compartment, the nucleolus. There appears to be an intimate link between the maintenance of nucleolar structure and the presence of

  4. Detection of mucormycetes and other pathogenic fungi in formalin fixed paraffin embedded and fresh tissues using the extended region of 28S rDNA.

    Science.gov (United States)

    Gade, Lalitha; Hurst, Steven; Balajee, S Arunmozhi; Lockhart, Shawn R; Litvintseva, Anastasia P

    2017-06-01

    Molecular methods of detection based on DNA-sequencing of the internal transcribed spacer 1 and 2 (ITS1 and ITS2) or 5΄ end region of 28S (D1-D2 region) of ribosomal RNA gene (rDNA) have been used extensively for molecular identification and detection of fungal infections. However, these regions are not always informative for identification of mucormycetes and other rare fungal pathogens as they often contain large introns, heterogenic regions, and/or cannot be PCR-amplified using broad range fungal PCR primers. In addition, because of the difficulties of recovering intact fungal DNA from human specimens, smaller regions of DNA are more useful for the direct detection of fungal DNA in tissues and fluids. In this study, we investigated the utility of 12F/13R PCR primers targeting a 200-230 bp region of the extended 28S region of rDNA for molecular identification of fungal DNA in formalin fixed paraffin embedded tissues and other clinical specimens. We demonstrated that this region can be successfully used for identification of all genera and some species of clinically relevant mucormycetes, as well as other medically important fungi, such as Aspergillus, Fusarium, Coccidioides, and Cryptococcus. We also demonstrated that PCR amplification and direct sequencing of the extended 28S region of rDNA was more sensitive compared to targeting the ITS2 region, as we were able to detect and identify mucormycetes and other fungal pathogens in tissues from patients with histopathological and/or culture evidence of fungal infections that were negative with PCR using ITS-specific primers. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.

    Science.gov (United States)

    Crossland, Hannah; Timmons, James A; Atherton, Philip J

    2017-12-01

    Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P IGF-1; P IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro. -Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes. © The Author(s).

  6. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    Science.gov (United States)

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix

  7. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA

    DEFF Research Database (Denmark)

    Vester, Birte; Garrett, Roger Antony

    1988-01-01

    in vivo on a plasmid-encoded rRNA (rrnB) operon and each one yielded dramatically altered phenotypes. Cells exhibiting A2060----C or A2450----C transversions were inviable and it was shown by inserting the mutated genes after a temperature-inducible promoter that the mutant RNAs were directly responsible...... into 50S subunits, but while the two lethal mutant RNAs were strongly selected against in 70S ribosomes, the plasmid-encoded A2503----C RNA was preferred over the chromosome-encoded RNA, contrary to current regulatory theories. The results establish the critical structural and functional importance...

  8. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae

    Directory of Open Access Journals (Sweden)

    Victor Manuel Gomez-Rodriguez

    2013-08-01

    Full Text Available Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in A. tequilana Weber, 1902 ‘Azul’, A. cupreata Trelease et Berger, 1915 and A. angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH was used for physical mapping of 5S and 18S ribosomal DNA (rDNA. All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies.

  9. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae).

    Science.gov (United States)

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country's economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 'Azul', Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies.

  10. Ribosomal DNA transcription in the dorsal raphe nucleus is increased in residual but not in paranoid schizophrenia.

    Science.gov (United States)

    Krzyżanowska, Marta; Steiner, Johann; Brisch, Ralf; Mawrin, Christian; Busse, Stefan; Braun, Katharina; Jankowski, Zbigniew; Bernstein, Hans-Gert; Bogerts, Bernhard; Gos, Tomasz

    2015-03-01

    The central serotonergic system is implicated in the pathogenesis of schizophrenia, where the imbalance between dopamine, serotonin and glutamate plays a key pathophysiological role. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in schizophrenia patients. The study was carried out on paraffin-embedded brains from 17 (8 paranoid and 9 residual) schizophrenia patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver-staining method. An increased rDNA transcriptional activity was found in schizophrenia patients in the cumulative analysis of all DRN subnuclei (t test, P = 0.02). Further subgroup analysis revealed that it was an effect specific for residual schizophrenia versus paranoid schizophrenia or control groups (ANOVA, P = 0.002). This effect was confounded neither by suicide nor by antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in schizophrenia, particularly in residual patients. An activation of the rDNA transcription in DRN neurons may represent a compensatory mechanism to overcome the previously described prefrontal serotonergic hypofunction in this diagnostic subgroup.

  11. Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation

    Science.gov (United States)

    Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.

    2016-01-01

    Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435

  12. Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna.

    Science.gov (United States)

    Volkov, Roman A; Panchuk, Irina I; Borisjuk, Nikolai V; Hosiawa-Baranska, Marta; Maluszynska, Jolanta; Hemleben, Vera

    2017-01-23

    Polyploid hybrids represent a rich natural resource to study molecular evolution of plant genes and genomes. Here, we applied a combination of karyological and molecular methods to investigate chromosomal structure, molecular organization and evolution of ribosomal DNA (rDNA) in nightshade, Atropa belladonna (fam. Solanaceae), one of the oldest known allohexaploids among flowering plants. Because of their abundance and specific molecular organization (evolutionarily conserved coding regions linked to variable intergenic spacers, IGS), 45S and 5S rDNA are widely used in plant taxonomic and evolutionary studies. Molecular cloning and nucleotide sequencing of A. belladonna 45S rDNA repeats revealed a general structure characteristic of other Solanaceae species, and a very high sequence similarity of two length variants, with the only difference in number of short IGS subrepeats. These results combined with the detection of three pairs of 45S rDNA loci on separate chromosomes, presumably inherited from both tetraploid and diploid ancestor species, example intensive sequence homogenization that led to substitution/elimination of rDNA repeats of one parent. Chromosome silver-staining revealed that only four out of six 45S rDNA sites are frequently transcriptionally active, demonstrating nucleolar dominance. For 5S rDNA, three size variants of repeats were detected, with the major class represented by repeats containing all functional IGS elements required for transcription, the intermediate size repeats containing partially deleted IGS sequences, and the short 5S repeats containing severe defects both in the IGS and coding sequences. While shorter variants demonstrate increased rate of based substitution, probably in their transition into pseudogenes, the functional 5S rDNA variants are nearly identical at the sequence level, pointing to their origin from a single parental species. Localization of the 5S rDNA genes on two chromosome pairs further supports uniparental

  13. Origins of the plant chloroplasts and mitochondria based on comparisons of 5S ribosomal RNAs

    Science.gov (United States)

    Delihas, N.; Fox, G. E.

    1987-01-01

    In this paper, we provide macromolecular comparisons utilizing the 5S ribosomal RNA structure to suggest extant bacteria that are the likely descendants of chloroplast and mitochondria endosymbionts. The genetic stability and near universality of the 5S ribosomal gene allows for a useful means to study ancient evolutionary changes by macromolecular comparisons. The value in current and future ribosomal RNA comparisons is in fine tuning the assignment of ancestors to the organelles and in establishing extant species likely to be descendants of bacteria involved in presumed multiple endosymbiotic events.

  14. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    International Nuclear Information System (INIS)

    Planello, R.; Martinez-Guitarte, J.L.; Morcillo, G.

    2007-01-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  15. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Martinez-Guitarte, J.L. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Morcillo, G. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain)]. E-mail: gmorcillo@ccia.uned.es

    2007-02-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  16. Resistance to linezolid in Staphylococcus spp. clinical isolates associated with ribosomal binding site modifications: novel mutation in domain V of 23S rRNA.

    Science.gov (United States)

    Musumeci, Rosario; Calaresu, Enrico; Gerosa, Jolanda; Oggioni, Davide; Bramati, Simone; Morelli, Patrizia; Mura, Ida; Piana, Andrea; Are, Bianca Maria; Cocuzza, Clementina Elvezia

    2016-10-01

    Linezolid is the main representative of the oxazolidinones, introduced in 2000 in clinical practice to treat severe Gram-positive infections. This compound inhibits protein synthesis by binding to the peptidyl transferase centre of the 50S bacterial ribosomal subunit. The aim of this study was to characterize 12 clinical strains of linezolid-resistant Staphylococcus spp. isolated in Northern Italy. All isolates of Staphylococcus spp. studied showed a multi-antibiotic resistance phenotype. In particular, all isolates showed the presence of the mecA gene associated with SSCmec types IVa, V or I. Mutations in domain V of 23S rRNA were shown to be the most prevalent mechanism of linezolid resistance: among these a new C2551T mutation was found in S. aureus, whilst the G2576T mutation was shown to be the most prevalent overall. Moreover, three S. epidermidis isolates were shown to have linezolid resistance associated only with alterations in both L3 and L4 ribosomal proteins. No strain was shown to harbor the previously described cfr gene. These results have shown how the clinical use of linezolid in Northern Italy has resulted in the selection of multiple antibiotic-resistant clinical isolates of Staphylococcus spp., with linezolid resistance in these strains being associated with mutations in 23S rRNA or ribosomal proteins L3 and L4.

  17. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway.

    Science.gov (United States)

    Rajput, Pallavi; Pandey, Vijaya; Kumar, Vijay

    2016-08-01

    The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified from 18S ribosomal RNA gene of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanyo, A.; Majiwa, P.W.

    2006-01-01

    Oligonucleotide primers were designed from the conserved nucleotide sequences of 18S ribosomal RNA (18S rRNA) gene of protozoans: Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum. The primers were used in polymerace chain reaction (PCR) to generate PCR products of approximately 1 Kb using genomic DNA from T. brucei and the four genotypic groups of T. congolense as template. The five PCR products so produced were digested with several restriction enzymes and hybridized to a DNA probe made from T. brucei PCR product of the same 18S rRNA gene region. Most restriction enzyme digests revealed polymorphism with respect to the location of their recognition sites on the five PCR products. The restriction fragment length polymorphism (RFLP) pattern observed indicate that the 18S rRNA gene sequences of trypanosomes: T. brucei and the four genotypes of T.congolence group are heterogeneous. The results further demonstrate that the region that was amplified can be used in specific identification of trypanosomes species and subspecies.(author)

  19. Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints.

    Science.gov (United States)

    Heuer, H; Hartung, K; Wieland, G; Kramer, I; Smalla, K

    1999-03-01

    Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.

  20. Morphology and rDNA phylogeny of a Mediterranean Coolia monotis (Dinophyceae strain from Greece

    Directory of Open Access Journals (Sweden)

    Nicolas P. Dolapsakis

    2006-03-01

    Full Text Available Sequences of LSU and SSU ribosomal RNA genes and phylogeny have not been widely investigated for the dinoflagellate Coolia monotis Meunier, and no information is available on the small and large rDNA subunits of Mediterranean strains. A strain isolated from the Thermaikos Gulf in northern Greece was identified as C. monotis—a new record for the Greek algal flora—using thecal morphology by light, epifluorescence and scanning electron microscopy. The small subunit and partial (D1/D2 large subunit sequences were analyzed and compared to other strains of C. monotis and dinoflagellates from various regions. Thecal architecture showed that the Greek strain of C. monotis was phenotypically similar, but not identical, to other strains reported in literature. The partial LSU sequence (700 bp was found to vary by 113 bp positions (16% from the C. monotis strain from New Zealand, whereas the SSU (1757 bp had 15 bp differences (0.85% from the strain from Norway. Phylogenetic tree construction showed that the Greek strain fell within the Coolia clade and had a close relationship with the families Ostreopsidaceae and Goniodomaceae of the order Gonyaulacales. Preliminary findings suggest the existence of different genotype strains of C. monotis with large intraspecific genetic variability and minimal morphological differentiation (similar phenotypes. Certain ecological and evolutionary implications of these findings are discussed.

  1. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2012-06-01

    Full Text Available Abstract Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement or, less commonly, linked to 35 S rDNA units (L-type. The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6 but not all species. Two species contained major L-type and minor S-type units (termed Ls-type. The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’ is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs.

  2. An automated procedure for covariation-based detection of RNA structure

    International Nuclear Information System (INIS)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs

  3. An automated procedure for covariation-based detection of RNA structure

    Energy Technology Data Exchange (ETDEWEB)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs.

  4. Is The Ribosome Targeted By Adaptive Mutations

    DEFF Research Database (Denmark)

    Jimenez Fernandez, Alicia; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    Introduction: RNA polymerase and ribosomes, composing the macromolecular synthesis machinery (MMSM), carry out the central processes of transcription and translation, but are usually seen as mechanical elements with no regulatory function. Extensive investigations of gene regulation and the high ...

  5. Nonviral Gene Targeting at rDNA Locus of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Youjin Hu

    2013-01-01

    Full Text Available Background. Genetic modification, such as the addition of exogenous genes to the MSC genome, is crucial to their use as cellular vehicles. Due to the risks associated with viral vectors such as insertional mutagenesis, the safer nonviral vectors have drawn a great deal of attention. Methods. VEGF, bFGF, vitamin C, and insulin-transferrin-selenium-X were supplemented in the MSC culture medium. The cells’ proliferation and survival capacity was measured by MTT, determination of the cumulative number of cells, and a colony-forming efficiency assay. The plasmid pHr2-NL was constructed and nucleofected into MSCs. The recombinants were selected using G418 and characterized using PCR and Southern blotting. Results. BFGF is critical to MSC growth and it acted synergistically with vitamin C, VEGF, and ITS-X, causing the cells to expand significantly. The neomycin gene was targeted to the rDNA locus of human MSCs using a nonviral human ribosomal targeting vector. The recombinant MSCs retained multipotential differentiation capacity, typical levels of hMSC surface marker expression, and a normal karyotype, and none were tumorigenic in nude mice. Conclusions. Exogenous genes can be targeted to the rDNA locus of human MSCs while maintaining the characteristics of MSCs. This is the first nonviral gene targeting of hMSCs.

  6. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae

    Directory of Open Access Journals (Sweden)

    Douzery Emmanuel JP

    2011-05-01

    Full Text Available Abstract Background Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres. In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus Mus which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres. Results The chromosomal distribution of rDNA clusters was determined by in situ hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus Mus: i rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii 24% of the observed breakpoints mapped near an rDNA cluster, and iv a substantial rate of rDNA cluster change (insertion, deletion also occurred in the absence of chromosomal rearrangements. Conclusions This study on the dynamics of rDNA clusters within the genus Mus has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus Mus, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome

  7. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2015-01-01

    Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions.

  8. Expression and RNA Interference of Ribosomal Protein L5 Gene in Nilaparvata lugens (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhu, Jiajun; Hao, Peiying; Lu, Chaofeng; Ma, Yan; Feng, Yalin; Yu, Xiaoping

    2017-05-01

    The ribosomal proteins play important roles in the growth and development of organisms. This study aimed to explore the function of NlRPL5 (GenBank KX379234), a ribosomal protein L5 gene, in the brown planthopper Nilaparvata lugens. The open reading frame of NlRPL5 was cloned from N. lugens based on a previous transcriptome analysis. The results revealed that the open reading frame of NlRPL5 is of 900 bp, encoding 299 amino acid residues. The reverse transcription quantitative PCR results suggested that the expression of NlRPL5 gene was stronger in gravid females, but was relatively low in nymphs, males, and newly emerged females. The expression level of NlRPL5 in the ovary was about twofolds of that in the head, thorax, or fat body. RNAi of dsNlRPL5 resulted in a significant reduction of mRNA levels, ∼50% decrease in comparison with the dsGFP control at day 6. Treatment of dsNlRPL5 significantly restricted the ovarian development, and decreased the number of eggs laid on the rice (Oryza sativa) plants. This study provided a new clue for further study on the function and regulation mechanism of NlRPL5 in N. lugens. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba.

    Science.gov (United States)

    Galián, J A; Rosato, M; Rosselló, J A

    2012-06-01

    In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S-5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S-5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S-5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S-5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary.

  10. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Bieri, Philipp; Leibundgut, Marc; Leitner, Alexander; Aebersold, Ruedi; Boehringer, Daniel; Ban, Nenad

    2015-04-17

    Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity. Copyright © 2015, American Association for the Advancement of Science.

  11. Architecture of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leitner, Alexander; Bieri, Philipp; Voigts-Hoffmann, Felix; Erzberger, Jan P; Leibundgut, Marc; Aebersold, Ruedi; Ban, Nenad

    2014-01-23

    Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.

  12. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients.

    Science.gov (United States)

    Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H; Mills, Jason A; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M; Podsakoff, Gregory M; Gadue, Paul; French, Deborah L; Mason, Philip J; Bessler, Monica; Weiss, Mitchell J

    2013-08-08

    Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.

  13. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    Science.gov (United States)

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.

  14. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    , of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site...... on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome....

  15. [Variability of nuclear 18S-25S rDNA of Gentiana lutea L. in nature and in tissue culture in vitro].

    Science.gov (United States)

    Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A

    2004-01-01

    18S-25S rDNA sequence in genomes of G. lutea plants from different natural populations and from tissue culture has been studied with blot-hybridization method. It was shown that ribosomal repeats are represented by the variants which differ for their size and for the presence of additional HindIII restriction site. Genome of individual plant usually possesses several variants of DNA repeats. Interpopulation variability according to their quantitative ratio and to the presence of some of them has been shown. Modifications of the range of rDNA repeats not exceeding intraspecific variability were observed in callus tissues in comparison with the plants of initial population. Non-randomness of genome modifications in the course of cell adaptation to in vitro conditions makes it possible to some extent to forecast these modifications in tissue culture.

  16. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins.

    Directory of Open Access Journals (Sweden)

    Lieke A van Gijtenbeek

    2016-12-01

    Full Text Available By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-expressed homologous membrane protein show membrane-proximal localization in a translation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with cessation of cell division, which is restored once these bodies are cleared. In addition, activation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed. We show that the presence of a native-like N-terminal domain is key to SRP-dependent membrane localization and successful production of membrane proteins. The work presented gives new insights and detailed understanding of aberrant membrane protein biogenesis, which can be used for strategies to optimize membrane protein production.

  17. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure

    DEFF Research Database (Denmark)

    Skou, Anne-Sofie; Tranebjærg, Lisbeth; Jensen, Tim

    2014-01-01

    A 19-month-old girl with the A1555G mitochondrial mutation in the 12S ribosomal RNA gene and acute myelogenous leukemia developed dilated cardiomyopathy and bilateral sensorineural hearing loss before undergoing allogeneic stem cell transplantation. She had received gentamicin during episodes of ...... of febrile neutropenia. Testing for the A1555G mutation is recommended in patients frequently treated with aminoglycosides....

  18. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    Science.gov (United States)

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  19. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    Science.gov (United States)

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  20. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel

    DEFF Research Database (Denmark)

    Wekselman, Itai; Zimmerman, Ella; Davidovich, Chen

    2017-01-01

    Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the β hairpin of ribosomal protein uL22, which is rather distal...... of the β hairpin of the mutated uL22 toward the interior of the exit tunnel, triggering a cascade of structural alterations of rRNA nucleotides that propagate to the erythromycin binding pocket. Our findings support recent studies showing that the interactions between uL22 and specific sequences within...

  1. Time of action of 4.5 S RNA in Escherichia coli translation

    DEFF Research Database (Denmark)

    Brown, S

    1989-01-01

    A new class of suppressor mutants helps to define the role of 4.5 S RNA in translation. The suppressors reduce the requirement for 4.5 S RNA by increasing the intracellular concentration of uncharged tRNA. Suppression probably occurs by prolonging the period in which translating ribosomes have...... translocated but not yet released the uncharged tRNA, indicating that this is the point at which 4.5 S RNA enters translation. The release of 4.5 S RNA from polysomes is affected by antibiotics that inhibit protein synthesis. The antibiotic-sensitivity of this release indicates that 4.5 S RNA exits...... the ribosome following translocation and prior to release of protein synthesis elongation factor G. These results indicate that 4.5 S RNA acts immediately after ribosomal translocation. A model is proposed in which 4.5 S RNA stabilizes the post-translocation state by replacing 23 S ribosomal RNA as a binding...

  2. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    Science.gov (United States)

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).

  3. The complete structure of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leibundgut, Marc; Bieri, Philipp; Leitner, Alexander; Schmitz, Nikolaus; Aebersold, Ruedi; Ban, Nenad

    2014-11-13

    Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.

  4. Molecular phylogenetic studies on an unnamed bovine Babesia sp. based on small subunit ribosomal RNA gene sequences.

    Science.gov (United States)

    Luo, Jianxun; Yin, Hong; Liu, Zhijie; Yang, Dongying; Guan, Guiquan; Liu, Aihong; Ma, Miling; Dang, Shengzhi; Lu, Bingyi; Sun, Caiqin; Bai, Qi; Lu, Wenshun; Chen, Puyan

    2005-10-10

    The 18S small subunit ribosomal RNA (18S rRNA) gene of an unnamed Babesia species (designated B. U sp.) was sequenced and analyzed in an attempt to distinguish it from other Babesia species in China. The target DNA segment was amplified by polymerase chain reaction (PCR). The PCR product was ligated to the pGEM-T Easy vector for sequencing. It was found that the length of the 18S rRNA gene of all B. U sp. Kashi 1 and B. U sp. Kashi 2 was 1699 bp and 1689 bp. Two phylogenetic trees were, respectively, inferred based on 18S rRNA sequence of the Chinese bovine Babesia isolates and all of Babesia species available in GenBank. The first tree showed that B. U sp. was situated in the branch between B. major Yili and B. bovis Shannxian, and the second tree revealed that B. U sp. was confined to the same group as B. caballi. The percent identity of B. U sp. with other Chinese Babesia species was between 74.2 and 91.8, while the percent identity between two B. U sp. isolates was 99.7. These results demonstrated that this B. U sp. is different from other Babesia species, but that two B. U sp. isolates obtained with nymphal and adultal Hyalomma anatolicum anatolicum tick belong to the same species.

  5. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua.

    Science.gov (United States)

    da Silva, Maelin; Barbosa, Patricia; Artoni, Roberto F; Feldberg, Eliana

    2016-01-01

    Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome. © 2016 S. Karger AG, Basel.

  6. Karyotype characterization of Mugil incilis Hancock, 1830 (Mugiliformes: Mugilidae, including a description of an unusual co-localization of major and minor ribosomal genes in the family

    Directory of Open Access Journals (Sweden)

    Anne Kathrin Hett

    Full Text Available This study reports the description of the karyotype of Mugil incilis from Venezuela. The chromosome complement is composed of 48 acrocentric chromosomes, which uniformly decrease in size. Therefore, the homologues can not be clearly identified, with the exception of one of the largest chromosome pairs, classified as number 1, whose homologues may show a subcentromeric secondary constriction, and of chromosome pair number 24, which is considerably smaller than the others. C-banding showed heterochromatic blocks at the centromeric/pericentromeric regions of all chromosomes, which were more conspicuous on chromosomes 1, given the C-positive signals include the secondary constrictions. AgNO3 and fluorescent in situ hybridization (FISH with 45S rDNA demonstrated that the nucleolus organizer regions are indeed located on the secondary constrictions of chromosome pair number 1. FISH with 5S rDNA revealed that the minor ribosomal genes are located on this same chromosome pair, near the NORs, though signals are closer to the centromeres and of smaller size, compared to those of the major ribosomal gene clusters. This is the first description of co-localization of major and minor ribosomal genes in the family. Data are discussed from a cytotaxonomic and phylogenetic perspective.

  7. The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events

    Science.gov (United States)

    Todd, Matthew A M; Huh, Michael S; Picketts, David J

    2016-01-01

    Ribosomal RNA synthesis occurs in the nucleolus and is a tightly regulated process that is targeted in some developmental diseases and hyperactivated in multiple cancers. Subcellular localization and immunoprecipitation coupled mass spectrometry demonstrated that a proportion of plant homeodomain (PHD) finger protein 6 (PHF6) protein is localized within the nucleolus and interacts with proteins involved in ribosomal processing. PHF6 sequence variants cause Börjeson–Forssman–Lehmann syndrome (BFLS, MIM#301900) and are also associated with a female-specific phenotype overlapping with Coffin–Siris syndrome (MIM#135900), T-cell acute lymphoblastic leukemia (MIM#613065), and acute myeloid leukemia (MIM#601626); however, very little is known about its cellular function, including its nucleolar role. HEK 293T cells were treated with RNase A, DNase I, actinomycin D, or 5,6-dichloro-β-D-ribofuranosylbenzimadole, followed by immunocytochemistry to determine PHF6 sub-nucleolar localization. We observed RNA-dependent localization of PHF6 to the sub-nucleolar fibrillar center (FC) and dense fibrillar component (DFC), at whose interface rRNA transcription occurs. Subsequent ChIP-qPCR analysis revealed strong enrichment of PHF6 across the entire rDNA-coding sequence but not along the intergenic spacer (IGS) region. When rRNA levels were quantified in a PHF6 gain-of-function model, we observed an overall decrease in rRNA transcription, accompanied by a modest increase in repressive promoter-associated RNA (pRNA) and a significant increase in the expression levels of the non-coding IGS36RNA and IGS39RNA transcripts. Collectively, our results demonstrate a role for PHF6 in carefully mediating the overall levels of ribosome biogenesis within a cell. PMID:27165002

  8. Raptor, a positive regulatory subunit of mTOR complex 1, is a novel phosphoprotein of the rDNA transcription machinery in nucleoli and chromosomal nucleolus organizer regions (NORs).

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Menendez, Javier A

    2011-09-15

    Raptor is the key scaffolding protein that recruits mTOR substrates to rapamycin-sensitive mTOR complex 1 (mTORC1), a molecular integrator of mitogenic and nutrient/energy environmental inputs into protein translation and cell growth. Although Raptor phosphorylation on various sites is pivotal in the regulation of mTORC1 activity, it remains to be elucidated whether site-specific phosphorylation differentially distributes Raptor to unique subcellular compartments. When exploring the spatiotemporal cell cycle dynamics of six different phospho (P)-Raptor isoforms (Thr ( 706) , Ser ( 722) , Ser ( 863) , Ser ( 792) and Ser ( 877) ), a number of remarkable events differentially defined a topological resetting of P-RaptorThr706 on interphasic and mitotic chromosomes. In interphase nuclei, P-Raptor (Thr706) co-localized with fibrillarin, a component of the nucleolar small nuclear ribonucleoprotein particle, as well as with RNA polymerase I, the enzyme that transcribes nucleolar rRNA. Upon Actinomycin D-induced nucleolar segregation and disaggregation, P-RaptorThr706 was excluded from the nucleolus to accumulate at discrete nucleoplasmic bodies. During mitosis, CDK1 inhibition-induced premature assembly of nucleoli relocated fibrillarin to the surrounding regions of chromosomal-associated P-Raptor (Thr706) , suggesting that a subpopulation of mitotic P-Raptor (Thr706) remained targeted at chromosomal loops of rDNA or nuclear organizer regions (NORs). At the end of mitosis and cytokinesis, when reassembly of incipient nucleoli begins upon NORs activation of rDNA transcription, fibrillarin spatially reorganized with P-Raptor (Thr706) to give rise to daughter nucleoli. Treatment with IGF1 exclusively hyperactivated nuclear P-Raptor (Ser706) and concomitantly promoted Ser ( 2481) autophosphorylation of mTOR, which monitors mTORC1-associated catalytic activity. Nucleolar- and NOR-associated P-Raptor (Ser706) may physically link mTORC1 signaling to ever-growing nucleolus

  9. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  10. Updating rDNA restriction enzyme maps of Tetrahymena reveals four new intron-containing species

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Simon, E M; Engberg, J

    1985-01-01

    an intron in the 26s rRNA coding region. The evolutionary relationship among the species of the T. pyriformis complex was examined on the basis of the rDNA maps with emphasis on similarities between two of the new species and the widely studied T. thermophila and T. pigmentosa. Examination of a large number...

  11. Stability of the 'L12 stalk' in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria.

    Science.gov (United States)

    Shcherbakov, D; Dontsova, M; Tribus, M; Garber, M; Piendl, W

    2006-01-01

    The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called 'L12 stalk' on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the 'L12 stalk'. The 'L12 stalk' plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L12(4) complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent.

  12. Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences.

    Directory of Open Access Journals (Sweden)

    Mona Hoppenrath

    2010-10-01

    Full Text Available Interrelationships among dinoflagellates in molecular phylogenies are largely unresolved, especially in the deepest branches. Ribosomal DNA (rDNA sequences provide phylogenetic signals only at the tips of the dinoflagellate tree. Two reasons for the poor resolution of deep dinoflagellate relationships using rDNA sequences are (1 most sites are relatively conserved and (2 there are different evolutionary rates among sites in different lineages. Therefore, alternative molecular markers are required to address the deeper phylogenetic relationships among dinoflagellates. Preliminary evidence indicates that the heat shock protein 90 gene (Hsp90 will provide an informative marker, mainly because this gene is relatively long and appears to have relatively uniform rates of evolution in different lineages.We more than doubled the previous dataset of Hsp90 sequences from dinoflagellates by generating additional sequences from 17 different species, representing seven different orders. In order to concatenate the Hsp90 data with rDNA sequences, we supplemented the Hsp90 sequences with three new SSU rDNA sequences and five new LSU rDNA sequences. The new Hsp90 sequences were generated, in part, from four additional heterotrophic dinoflagellates and the type species for six different genera. Molecular phylogenetic analyses resulted in a paraphyletic assemblage near the base of the dinoflagellate tree consisting of only athecate species. However, Noctiluca was never part of this assemblage and branched in a position that was nested within other lineages of dinokaryotes. The phylogenetic trees inferred from Hsp90 sequences were consistent with trees inferred from rDNA sequences in that the backbone of the dinoflagellate clade was largely unresolved.The sequence conservation in both Hsp90 and rDNA sequences and the poor resolution of the deepest nodes suggests that dinoflagellates reflect an explosive radiation in morphological diversity in their recent

  13. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome

    Directory of Open Access Journals (Sweden)

    Jendrik Hentschel

    2017-07-01

    Full Text Available The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics.

  14. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome.

    Science.gov (United States)

    Hentschel, Jendrik; Burnside, Chloe; Mignot, Ingrid; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad

    2017-07-05

    The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.

    Science.gov (United States)

    Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric

    2016-02-08

    Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Structure of the RNA m5C Methyltransferase YebU from Escherichia coli Reveals a C-terminal RNA-recruiting PUA Domain

    DEFF Research Database (Denmark)

    Hallberg, B. Martin; Ericsson, Ulrika B.; Johnson, Kenneth A

    2006-01-01

    potential that differ from other RNA-MTase structures, suggesting that YebU interacts with its RNA target in a different manner. Docking of YebU onto the 30 S subunit indicates that the PUA and MTase domains make several contacts with 16 S rRNA as well as with the ribosomal protein S12. The ribosomal...... protein interactions would explain why the assembled 30 S subunit, and not naked 16 S rRNA, is the preferred substrate for YebU....... by X-ray crystallography, and we present a molecular model for how YebU specifically recognizes, binds and methylates its ribosomal substrate. The YebU protein has an N-terminal SAM-binding catalytic domain with structural similarity to the equivalent domains in several other m(5)C RNA MTases including...

  17. CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis.

    Science.gov (United States)

    Bai, Baoyan; Moore, Henna M; Laiho, Marikki

    2013-01-01

    CRM1 is an export factor that together with its adaptor NMD3 transports numerous cargo molecules from the nucleus to cytoplasm through the nuclear pore. Previous studies have suggested that CRM1 and NMD3 are detected in the nucleolus. However, their localization with subnucleolar domains or participation in the activities of the nucleolus are unclear. We demonstrate here biochemically and using imaging analyses that CRM1 and NMD3 co-localize with nucleolar marker proteins in the nucleolus. In particular, their nucleolar localization is markedly increased by inhibition of RNA polymerase I (Pol I) transcription by actinomycin D or by silencing Pol I catalytic subunit, RPA194. We show that CRM1 nucleolar localization is dependent on its activity and the expression of NMD3, whereas NMD3 nucleolar localization is independent of CRM1. This suggests that NMD3 provides nucleolar tethering of CRM1. While inhibition of CRM1 by leptomycin B inhibited processing of 28S ribosomal (r) RNA, depletion of NMD3 did not, suggesting that their effects on 28S rRNA processing are distinct. Markedly, depletion of NMD3 and inhibition of CRM1 reduced the rate of pre-47S rRNA synthesis. However, their inactivation did not lead to nucleolar disintegration, a hallmark of Pol I transcription stress, suggesting that they do not directly regulate transcription. These results indicate that CRM1 and NMD3 have complex functions in pathways that couple rRNA synthetic and processing engines and that the rRNA synthesis rate may be adjusted according to proficiency in rRNA processing and export.

  18. The nucleolus—guardian of cellular homeostasis and genome integrity.

    Science.gov (United States)

    Grummt, Ingrid

    2013-12-01

    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  19. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution.

    Science.gov (United States)

    Quade, Nick; Boehringer, Daniel; Leibundgut, Marc; van den Heuvel, Joop; Ban, Nenad

    2015-07-08

    Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5'-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.9 Å resolution, determined by focused refinement of an 80S ribosome-HCV IRES complex. The structure reveals the molecular details of the interactions between the IRES and the 40S, showing that expansion segment 7 (ES7) of the 18S rRNA acts as a central anchor point for the HCV IRES. The structural data rationalizes previous biochemical and genetic evidence regarding the initiation mechanism of the HCV and other related IRESs.

  1. The effect of tRNA levels on decoding times of mRNA codons.

    Science.gov (United States)

    Dana, Alexandra; Tuller, Tamir

    2014-08-01

    The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (-0.38 to -0.66, all P values decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    OpenAIRE

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the ...

  3. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY.

    Science.gov (United States)

    Bieri, Philipp; Leibundgut, Marc; Saurer, Martin; Boehringer, Daniel; Ban, Nenad

    2017-02-15

    Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo-EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid-specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid-specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light- and temperature-dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A-site and P-site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non-rotated state, in which the intersubunit bridges to the large subunit are stabilized. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  4. Development and evaluation of specific PCR primers targeting the ribosomal DNA-internal transcribed spacer (ITS) region of peritrich ciliates in environmental samples

    Science.gov (United States)

    Su, Lei; Zhang, Qianqian; Gong, Jun

    2017-07-01

    Peritrich ciliates are highly diverse and can be important bacterial grazers in aquatic ecosystems. Morphological identifications of peritrich species and assemblages in the environment are time-consuming and expertise-demanding. In this study, two peritrich-specific PCR primers were newly designed to amplify a fragment including the internal transcribed spacer (ITS) region of ribosomal rDNA from environmental samples. The primers showed high specificity in silico, and in tests with peritrich isolates and environmental DNA. Application of these primers in clone library construction and sequencing yielded exclusively sequences of peritrichs for water and sediment samples. We also found the ITS1, ITS2, ITS, D1 region of 28S rDNA, and ITS+D1 region co-varied with, and generally more variable than, the V9 region of 18S rDNA in peritrichs. The newly designed specific primers thus provide additional tools to study the molecular diversity, community composition, and phylogeography of these ecologically important protists in different systems.

  5. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Science.gov (United States)

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  6. Focal accumulation of preribosomes outside the nucleolus during metaphase-anaphase in budding yeast.

    Science.gov (United States)

    Moriggi, Giulia; Gaspar, Sonia G; Nieto, Blanca; Bustelo, Xosé R; Dosil, Mercedes

    2017-09-01

    Saccharomyces cerevisiae contains one nucleolus that remains intact in the mother-cell side of the nucleus throughout most of mitosis. Based on this, it is assumed that the bulk of ribosome production during cell division occurs in the mother cell. Here, we show that the ribosome synthesis machinery localizes not only in the nucleolus but also at a center that is present in the bud side of the nucleus after the initiation of mitosis. This center can be visualized by live microscopy as a punctate body located in close proximity to the nuclear envelope and opposite to the nucleolus. It contains ribosomal DNA (rDNA) and precursors of both 40S and 60S ribosomal subunits. Proteins that actively participate in ribosome synthesis, but not functionally defective variants, accumulate in that site. The formation of this body occurs in the metaphase-to-anaphase transition when discrete regions of rDNA occasionally exit the nucleolus and move into the bud. Collectively, our data unveil the existence of a previously unknown mechanism for preribosome accumulation at the nuclear periphery in budding yeast. We propose that this might be a strategy to expedite the delivery of ribosomes to the growing bud. © 2017 Moriggi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3.

    Science.gov (United States)

    Bøsling, Jacob; Poulsen, Susan M; Vester, Birte; Long, Katherine S

    2003-09-01

    The antibiotic tiamulin targets the 50S subunit of the bacterial ribosome and interacts at the peptidyl transferase center. Tiamulin-resistant Escherichia coli mutants were isolated in order to elucidate mechanisms of resistance to the drug. No mutations in the rRNA were selected as resistance determinants using a strain expressing only a plasmid-encoded rRNA operon. Selection in a strain with all seven chromosomal rRNA operons yielded a mutant with an A445G mutation in the gene coding for ribosomal protein L3, resulting in an Asn149Asp alteration. Complementation experiments and sequencing of transductants demonstrate that the mutation is responsible for the resistance phenotype. Chemical footprinting experiments show a reduced binding of tiamulin to mutant ribosomes. It is inferred that the L3 mutation, which points into the peptidyl transferase cleft, causes tiamulin resistance by alteration of the drug-binding site. This is the first report of a mechanism of resistance to tiamulin unveiled in molecular detail.

  8. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases.

    Science.gov (United States)

    Tomecki, Rafal; Sikorski, Pawel J; Zakrzewska-Placzek, Monika

    2017-07-01

    Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans. © 2017 Federation of European Biochemical Societies.

  9. Morpholino spin-labeling for base-pair sequencing of a 3'-terminal RNA stem by proton homonuclear Overhauser enhancements: yeast ribosomal 5S RNA

    International Nuclear Information System (INIS)

    Lee, K.M.; Marshall, A.G.

    1987-01-01

    Base-pair sequences for 5S and 5.8S RNAs are not readily extracted from proton homonuclear nuclear Overhauser enhancement (NOE) connectivity experiments alone, due to extensive peak overlap in the downfield (11-15 ppm) proton NMR spectrum. In this paper, we introduce a new method for base-pair proton peak assignment for ribosomal RNAs, based upon the distance-dependent broadening of the resonances of base-pair protons spatially proximal to a paramagnetic group. Introduction of a nitroxide spin-label covalently attached to the 3'-terminal ribose provides an unequivocal starting point for base-pair hydrogen-bond proton NMR assignment. Subsequent NOE connectivities then establish the base-pair sequence for the terminal stem of a 5S RNA. Periodate oxidation of yeast 5S RNA, followed by reaction with 4-amino-2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO-NH2) and sodium borohydride reduction, produces yeast 5S RNA specifically labeled with a paramagnetic nitroxide group at the 3'-terminal ribose. Comparison of the 500-MHz 1H NMR spectra of native and 3'-terminal spin-labeled yeast 5S RNA serves to identify the terminal base pair (G1 . C120) and its adjacent base pair (G2 . U119) on the basis of their proximity to the 3'-terminal spin-label. From that starting point, we have then identified (G . C, A . U, or G . U) and sequenced eight of the nine base pairs in the terminal helix via primary and secondary NOE's

  10. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    Directory of Open Access Journals (Sweden)

    Sayaka Tsuji

    2017-07-01

    Full Text Available Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species.

  11. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera.

    Science.gov (United States)

    Campo, Daniel; García-Vázquez, Eva

    2012-01-01

    The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).

  12. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    Science.gov (United States)

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-05

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.

  13. Increased 5S rRNA oxidation in Alzheimer's disease.

    Science.gov (United States)

    Ding, Qunxing; Zhu, Haiyan; Zhang, Bing; Soriano, Augusto; Burns, Roxanne; Markesbery, William R

    2012-01-01

    It is widely accepted that oxidative stress is involved in neurodegenerative disorders such as Alzheimer's disease (AD). Ribosomal RNA (rRNA) is one of the most abundant molecules in most cells and is affected by oxidative stress in the human brain. Previous data have indicated that total rRNA levels were decreased in the brains of subjects with AD and mild cognitive impairment concomitant with an increase in rRNA oxidation. In addition, level of 5S rRNA, one of the essential components of the ribosome complex, was significantly lower in the inferior parietal lobule (IP) brain area of subjects with AD compared with control subjects. To further evaluate the alteration of 5S rRNA in neurodegenerative human brains, multiple brain regions from both AD and age-matched control subjects were used in this study, including IP, superior and middle temporal gyro, temporal pole, and cerebellum. Different molecular pools including 5S rRNA integrated into ribosome complexes, free 5S rRNA, cytoplasmic 5S rRNA, and nuclear 5S rRNA were studied. Free 5S rRNA levels were significantly decreased in the temporal pole region of AD subjects and the oxidation of ribosome-integrated and free 5S rRNA was significantly increased in multiple brain regions in AD subjects compared with controls. Moreover, a greater amount of oxidized 5S rRNA was detected in the cytoplasm and nucleus of AD subjects compared with controls. These results suggest that the increased oxidation of 5S rRNA, especially the oxidation of free 5S rRNA, may be involved in the neurodegeneration observed in AD.

  14. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).

    Science.gov (United States)

    Mahelka, Václav; Kopecky, David; Baum, Bernard R

    2013-09-01

    We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.

  15. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  16. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    Science.gov (United States)

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  17. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins

    International Nuclear Information System (INIS)

    Hoffman, D.W.; Query, C.C.; Golden, B.L.; White, S.W.; Keene, J.D.

    1991-01-01

    An RNA recognition motif (RRM) of ∼80 amino acids constitutes the core of RNA-binding domains found in a large family of proteins involved in RNA processing. The U1 RNA-binding domain of the A protein component of the human U1 small nuclear ribonucleoprotein (RNP), which encompasses the RRM sequence, was analyzed by using NMR spectroscopy. The domain of the A protein is a highly stable monomer in solution consisting of four antiparallel β-strands and two α-helices. The highly conserved RNP1 and RNP2 consensus sequences, containing residues previously suggested to be involved in nucleic acid binding, are juxtaposed in adjacent β-strands. Conserved aromatic side chains that are critical for RNA binding are clustered on the surface to the molecule adjacent to a variable loop that influences recognition of specific RNA sequences. The secondary structure and topology of the RRM are similar to those of ribosomal proteins L12 and L30, suggesting a distant evolutionary relationship between these two types of RNA-associated proteins

  18. An elongated model of the Xenopus laevis transcription factor IIIA-5S ribosomal RNA complex derived from neutron scattering and hydrodynamic measurements

    International Nuclear Information System (INIS)

    Timmins, P.A.; Langowski, J.; Brown, R.S.

    1988-01-01

    The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700±10,000 and 86,700±9,000 daltons from these two methods respectively. The observed match point of 54.4% D 2 O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. A simple elongated cylindrical model with dimensions of 140 angstrom length and 59 angstrom diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 angstrom in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA

  19. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    Science.gov (United States)

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  20. A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination.

    Science.gov (United States)

    Hellen, Christopher U T; de Breyne, Sylvain

    2007-06-01

    The 5' untranslated regions (UTRs) of the RNA genomes of Flaviviridae of the Hepacivirus and Pestivirus genera contain internal ribosomal entry sites (IRESs) that are unrelated to the two principal classes of IRESs of Picornaviridae. The mechanism of translation initiation on hepacivirus/pestivirus (HP) IRESs, which involves factor-independent binding to ribosomal 40S subunits, also differs fundamentally from initiation on these picornavirus IRESs. Ribosomal binding to HP IRESs requires conserved sequences that form a pseudoknot and the adjacent IIId and IIIe domains; analogous elements do not occur in the two principal groups of picornavirus IRESs. Here, comparative sequence analysis was used to identify a subset of picornaviruses from multiple genera that contain 5' UTR sequences with significant similarities to HP IRESs. They are avian encephalomyelitis virus, duck hepatitis virus 1, duck picornavirus, porcine teschovirus, porcine enterovirus 8, Seneca Valley virus, and simian picornavirus. Their 5' UTRs are predicted to form several structures, in some of which the peripheral elements differ from the corresponding HP IRES elements but in which the core pseudoknot, domain IIId, and domain IIIe elements are all closely related. These findings suggest that HP-like IRESs have been exchanged between unrelated virus families by recombination and support the hypothesis that RNA viruses consist of modular coding and noncoding elements that can exchange and evolve independently.

  1. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    DEFF Research Database (Denmark)

    Long, Katherine S.; Vester, Birte

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations...... to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation...... of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little...

  2. Architecture of the E.coli 70S ribosome

    DEFF Research Database (Denmark)

    Burkhardt, N.; Diedrich, G.; Nierhaus, K.H.

    1997-01-01

    The 70S ribosome from E.coli was analysed by neutron scattering focusing on the shape and the internal protein-RNA-distribution of the complex. Measurements on selectively deuterated 70S particles and free 30S and 50S subunits applying conventional contrast variation and proton-spin contrast...

  3. Evolution of blue-flowered species of genus Linum based on high-throughput sequencing of ribosomal RNA genes.

    Science.gov (United States)

    Bolsheva, Nadezhda L; Melnikova, Nataliya V; Kirov, Ilya V; Speranskaya, Anna S; Krinitsina, Anastasia A; Dmitriev, Alexey A; Belenikin, Maxim S; Krasnov, George S; Lakunina, Valentina A; Snezhkina, Anastasiya V; Rozhmina, Tatiana A; Samatadze, Tatiana E; Yurkevich, Olga Yu; Zoshchuk, Svyatoslav A; Amosova, Аlexandra V; Kudryavtseva, Anna V; Muravenko, Olga V

    2017-12-28

    The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the

  4. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid

    Directory of Open Access Journals (Sweden)

    Albert Victor A

    2011-09-01

    Full Text Available Abstract Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH studies using 5S and 25S ribosomal DNA (rDNA probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These

  5. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    Science.gov (United States)

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  6. Isolation and characterization of an RIP (ribosome-inactivating protein)-like protein from tobacco with dual enzymatic activity.

    Science.gov (United States)

    Sharma, Neelam; Park, Sang-Wook; Vepachedu, Ramarao; Barbieri, Luigi; Ciani, Marialibera; Stirpe, Fiorenzo; Savary, Brett J; Vivanco, Jorge M

    2004-01-01

    Ribosome-inactivating proteins (RIPs) are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a protein termed tobacco RIP (TRIP) was isolated from tobacco (Nicotiana tabacum) leaves and purified using ion exchange and gel filtration chromatography in combination with yeast ribosome depurination assays. TRIP has a molecular mass of 26 kD as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed strong N-glycosidase activity as manifested by the depurination of yeast rRNA. Purified TRIP showed immunoreactivity with antibodies of RIPs from Mirabilis expansa. TRIP released fewer amounts of adenine residues from ribosomal (Artemia sp. and rat ribosomes) and non-ribosomal substrates (herring sperm DNA, rRNA, and tRNA) compared with other RIPs. TRIP inhibited translation in wheat (Triticum aestivum) germ more efficiently than in rabbit reticulocytes, showing an IC50 at 30 ng in the former system. Antimicrobial assays using highly purified TRIP (50 microg mL(-1)) conducted against various fungi and bacterial pathogens showed the strongest inhibitory activity against Trichoderma reesei and Pseudomonas solancearum. A 15-amino acid internal polypeptide sequence of TRIP was identical with the internal sequences of the iron-superoxide dismutase (Fe-SOD) from wild tobacco (Nicotiana plumbaginifolia), Arabidopsis, and potato (Solanum tuberosum). Purified TRIP showed SOD activity, and Escherichia coli Fe-SOD was observed to have RIP activity too. Thus, TRIP may be considered a dual activity enzyme showing RIP-like activity and Fe-SOD characteristics.

  7. Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome.

    Science.gov (United States)

    Hernández-Ortega, Karina; Garcia-Esparcia, Paula; Gil, Laura; Lucas, José J; Ferrer, Isidre

    2016-09-01

    Ribosomes and protein synthesis have been reported to be altered in the cerebral cortex at advanced stages of Alzheimer's disease (AD). Modifications in the hippocampus with disease progression have not been assessed. Sixty-seven cases including middle-aged (MA) and AD stages I-VI were analyzed. Nucleolar chaperones nucleolin, nucleophosmin and nucleoplasmin 3, and upstream binding transcription factor RNA polymerase I gene (UBTF) mRNAs are abnormally regulated and their protein levels reduced in AD. Histone modifications dimethylated histone H3K9 (H3K9me2) and acetylated histone H3K12 (H3K12ac) are decreased in CA1. Nuclear tau declines in CA1 and dentate gyrus (DG), and practically disappears in neurons with neurofibrillary tangles. Subunit 28 ribosomal RNA (28S rRNA) expression is altered in CA1 and DG in AD. Several genes encoding ribosomal proteins are abnormally regulated and protein levels of translation initiation factors eIF2α, eIF3η and eIF5, and elongation factor eEF2, are altered in the CA1 region in AD. These findings show alterations in the protein synthesis machinery in AD involving the nucleolus, nucleus and ribosomes in the hippocampus in AD some of them starting at first stages (I-II) preceding neuron loss. These changes may lie behind reduced numbers of dendritic branches and reduced synapses of CA1 and DG neurons which cause hippocampal atrophy. © 2015 International Society of Neuropathology.

  8. Senescent changes in the ribosomes of animal cells in vivo and in vitro

    Science.gov (United States)

    Miquel, J.; Johnson, J. E., Jr.

    1979-01-01

    The paper examines RNA-ribosomal changes observed in protozoa and fixed postmitotic cells, as well as the characteristics of intermitotic cells. Attention is given to a discussion of the implications of the reported ribosomal changes as to the senescent deterioration of protein synthesis and physiological functions. A survey of the literature suggests that, while the data on ribosomal change in dividing cells both in vivo and in vitro are inconclusive, there is strong histological and biochemical evidence in favor of some degree of quantitative ribosomal loss in fixed postmitotic cells. Since these decreases in ribosomes are demonstrated in differential cells from nematodes, insects and mammals, they may represent a universal manifestation of cytoplasmic senescence in certain types of fixed postmitotic animal cells. The observed variability in ribosomal loss for cells belonging to the same type suggests that this involution phenomenon is rather related to the wear and tear suffered by a particular cell.

  9. Phylogenetic Analysis of Pasteuria penetrans by 16S rRNA Gene Cloning and Sequencing.

    Science.gov (United States)

    Anderson, J M; Preston, J F; Dickson, D W; Hewlett, T E; Williams, N H; Maruniak, J E

    1999-09-01

    Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.

  10. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation.

    Science.gov (United States)

    Cukras, Anthony R; Green, Rachel

    2005-05-27

    The ribosomal protein S13 is found in the head region of the small subunit, where it interacts with the central protuberance of the large ribosomal subunit and with the P site-bound tRNA through its extended C terminus. The bridging interactions between the large and small subunits are dynamic, and are thought to be critical in orchestrating the molecular motions of the translation cycle. S13 provides a direct link between the tRNA-binding site and the movements in the head of the small subunit seen during translocation, thereby providing a possible pathway of signal transduction. We have created and characterized an rpsM(S13)-deficient strain of Escherichia coli and have found significant defects in subunit association, initiation and translocation through in vitro assays of S13-deficient ribosomes. Targeted mutagenesis of specific bridge and tRNA contact elements in S13 provides evidence that these two interaction domains play critical roles in maintaining the fidelity of translation. This ribosomal protein thus appears to play a non-essential, yet important role by modulating subunit interactions in multiple steps of the translation cycle.

  11. Genetic variability of Echinococcus granulosus based on the mitochondrial 16S ribosomal RNA gene.

    Science.gov (United States)

    Wang, Ning; Wang, Jiahai; Hu, Dandan; Zhong, Xiuqin; Jiang, Zhongrong; Yang, Aiguo; Deng, Shijin; Guo, Li; Tsering, Dawa; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2015-06-01

    Echinococcus granulosus is the etiological agent of cystic echinococcosis, a major zoonotic disease of both humans and animals. In this study, we assessed genetic variability and genetic structure of E. granulosus in the Tibet plateau, using the complete mitochondrial 16 S ribosomal RNA gene for the first time. We collected and sequenced 62 isolates of E. granulosus from 3 populations in the Tibet plateau. A BLAST analysis indicated that 61 isolates belonged to E. granulosus sensu stricto (genotypes G1-G3), while one isolate belonged to E. canadensis (genotype G6). We detected 16 haplotypes with a haplotype network revealing a star-like expansion, with the most common haplotype occupying the center of the network. Haplotype diversity and nucleotide diversity were low, while negative values were observed for Tajima's D and Fu's Fs. AMOVA results and Fst values revealed that the three geographic populations were not genetically differentiated. Our results suggest that a population bottleneck or population expansion has occurred in the past, and that this explains the low genetic variability of E. granulosus in the Tibet Plateau.

  12. A Distinct Group of Hepacivirus/Pestivirus-Like Internal Ribosomal Entry Sites in Members of Diverse Picornavirus Genera: Evidence for Modular Exchange of Functional Noncoding RNA Elements by Recombination▿ †

    Science.gov (United States)

    Hellen, Christopher U. T.; de Breyne, Sylvain

    2007-01-01

    The 5′ untranslated regions (UTRs) of the RNA genomes of Flaviviridae of the Hepacivirus and Pestivirus genera contain internal ribosomal entry sites (IRESs) that are unrelated to the two principal classes of IRESs of Picornaviridae. The mechanism of translation initiation on hepacivirus/pestivirus (HP) IRESs, which involves factor-independent binding to ribosomal 40S subunits, also differs fundamentally from initiation on these picornavirus IRESs. Ribosomal binding to HP IRESs requires conserved sequences that form a pseudoknot and the adjacent IIId and IIIe domains; analogous elements do not occur in the two principal groups of picornavirus IRESs. Here, comparative sequence analysis was used to identify a subset of picornaviruses from multiple genera that contain 5′ UTR sequences with significant similarities to HP IRESs. They are avian encephalomyelitis virus, duck hepatitis virus 1, duck picornavirus, porcine teschovirus, porcine enterovirus 8, Seneca Valley virus, and simian picornavirus. Their 5′ UTRs are predicted to form several structures, in some of which the peripheral elements differ from the corresponding HP IRES elements but in which the core pseudoknot, domain IIId, and domain IIIe elements are all closely related. These findings suggest that HP-like IRESs have been exchanged between unrelated virus families by recombination and support the hypothesis that RNA viruses consist of modular coding and noncoding elements that can exchange and evolve independently. PMID:17392358

  13. Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Gerdes, Kenn

    2008-01-01

    Prokaryotic toxin-antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro bu...

  14. Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes.

    Science.gov (United States)

    Zhu, X Q; Gasser, R B

    1998-06-01

    In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.

  15. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    Science.gov (United States)

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  16. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation.

    Directory of Open Access Journals (Sweden)

    Saurav Mallik

    Full Text Available Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU. Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.

  17. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences.

    Science.gov (United States)

    Kim, C G; Zhou, H Z; Imura, Y; Tominaga, O; Su, Z H; Osawa, S

    2000-01-01

    Most of the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene and a part of nuclear 28S ribosomal RNA gene were sequenced for 14 species of ground beetles belonging to the genus Leptocarabus. In both the ND5 and the 28S rDNA phylogenetic trees of Leptocarabus, three major lineages were recognized: (1) L. marcilhaci/L. yokoael/Leptocarabus sp. from China, (2) L. koreanus/L. truncaticollis/L. seishinensis/L. semiopacus/L. canaliculatus/L. kurilensis from the northern Eurasian continent including Korea and Hokkaido, Japan, and (3) all of the Japanese species except L. kurilensis. Clustering of the species in the trees is largely linked to their geographic distribution and does not correlate with morphological characters. The species belonging to different species groups are clustered in the same lineages, and those in the same species group are scattered among the different lineages. One of the possible interpretations of the present results would be that morphological transformations independently took place in the different lineages, sometimes with accompanying parallel morphological evolution, resulting in the occurrence of the morphological species belonging to the same species group (= type) in the different lineages.

  18. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  19. The role of upstream sequences in selecting the reading frame on tmRNA

    Directory of Open Access Journals (Sweden)

    Dewey Jonathan D

    2008-06-01

    Full Text Available Abstract Background tmRNA acts first as a tRNA and then as an mRNA to rescue stalled ribosomes in eubacteria. Two unanswered questions about tmRNA function remain: how does tmRNA, lacking an anticodon, bypass the decoding machinery and enter the ribosome? Secondly, how does the ribosome choose the proper codon to resume translation on tmRNA? According to the -1 triplet hypothesis, the answer to both questions lies in the unique properties of the three nucleotides upstream of the first tmRNA codon. These nucleotides assume an A-form conformation that mimics the codon-anticodon interaction, leading to recognition by the decoding center and choice of the reading frame. The -1 triplet hypothesis is important because it is the most credible model in which direct binding and recognition by the ribosome sets the reading frame on tmRNA. Results Conformational analysis predicts that 18 triplets cannot form the correct structure to function as the -1 triplet of tmRNA. We tested the tmRNA activity of all possible -1 triplet mutants using a genetic assay in Escherichia coli. While many mutants displayed reduced activity, our findings do not match the predictions of this model. Additional mutagenesis identified sequences further upstream that are required for tmRNA function. An immunoblot assay for translation of the tmRNA tag revealed that certain mutations in U85, A86, and the -1 triplet sequence result in improper selection of the first codon and translation in the wrong frame (-1 or +1 in vivo. Conclusion Our findings disprove the -1 triplet hypothesis. The -1 triplet is not required for accommodation of tmRNA into the ribosome, although it plays a minor role in frame selection. Our results strongly disfavor direct ribosomal recognition of the upstream sequence, instead supporting a model in which the binding of a separate ligand to A86 is primarily responsible for frame selection.

  20. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb

    Czech Academy of Sciences Publication Activity Database

    Wang, W.; Ma, L.; Becher, H.; Garcia, S.; Kovaříková, Alena; Leitch, I. J.; Leitch, A. R.; Kovařík, Aleš

    2016-01-01

    Roč. 125, č. 4 (2016), s. 683-699 ISSN 0009-5915 R&D Projects: GA ČR GA13-10057S; GA ČR GBP501/12/G090 Institutional support: RVO:68081707 Keywords : ribosomal-rna gene * internal transcribed spacer * genome evolution Subject RIV: BO - Biophysics Impact factor: 4.414, year: 2016

  1. Phylogenetic systematics of Barn Owl (Tyto alba (Scopoli, 1769 complex inferred from mitochondrial rDNA (16S rRNA taxonomic implication

    Directory of Open Access Journals (Sweden)

    Mansour Aliabadian

    2012-09-01

    Full Text Available The Barn owl, Tyto alba (Scopoli, 1769, occurs worldwide and shows a considerable amount of morphological and geographical variations, leading to the recognition of many subspecies throughout the world. Yet, no comprehensive study has not been done on this species. Data from mitochondrial gene (16S Ribosomal RNA (16S with 569 bp length were analyzed for 41 individuals around the world. Maximum likelihood (ML, maximum parsimony (MP and Bayesian analysis showed two distinct clades including alba clad (old world and furcata clad (new world. The amount of genetic variation within each of these clades ranged from 0.5-1.7 but variation between clades was 3.7. This data may suggest that Barn owls of the Old World may be a separate species from those of the New World.

  2. TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus.

    Science.gov (United States)

    Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng

    2014-03-28

    Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis.

    Science.gov (United States)

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.

  4. Cofactors in the RNA World

    Science.gov (United States)

    Ditzler, Mark A.

    2014-01-01

    RNA world theories figure prominently in many scenarios for the origin and early evolution of life. These theories posit that RNA molecules played a much larger role in ancient biology than they do now, acting both as the dominant biocatalysts and as the repository of genetic information. Many features of modern RNA biology are potential examples of molecular fossils from an RNA world, such as the pervasive involvement of nucleotides in coenzymes, the existence of natural aptamers that bind these coenzymes, the existence of natural ribozymes, a biosynthetic pathway in which deoxynucleotides are produced from ribonucleotides, and the central role of ribosomal RNA in protein synthesis in the peptidyl transferase center of the ribosome. Here, we uses both a top-down approach that evaluates RNA function in modern biology and a bottom-up approach that examines the capacities of RNA independent of modern biology. These complementary approaches exploit multiple in vitro evolution techniques coupled with high-throughput sequencing and bioinformatics analysis. Together these complementary approaches advance our understanding of the most primitive organisms, their early evolution, and their eventual transition to modern biochemistry.

  5. Aggregation of Ribosomal Protein S6 at Nucleolus Is Cell Cycle-Controlled and Its Function in Pre-rRNA Processing Is Phosphorylation Dependent.

    Science.gov (United States)

    Zhang, Duo; Chen, Hui-Peng; Duan, Hai-Feng; Gao, Li-Hua; Shao, Yong; Chen, Ke-Yan; Wang, You-Liang; Lan, Feng-Hua; Hu, Xian-Wen

    2016-07-01

    Ribosomal protein S6 (rpS6) has long been regarded as one of the primary r-proteins that functions in the early stage of 40S subunit assembly, but its actual role is still obscure. The correct forming of 18S rRNA is a key step in the nuclear synthesis of 40S subunit. In this study, we demonstrate that rpS6 participates in the processing of 30S pre-rRNA to 18S rRNA only when its C-terminal five serines are phosphorylated, however, the process of entering the nucleus and then targeting the nucleolus does not dependent its phosphorylation. Remarkably, we also find that the aggregation of rpS6 at the nucleolus correlates to the phasing of cell cycle, beginning to concentrate in the nucleolus at later S phase and disaggregate at M phase. J. Cell. Biochem. 117: 1649-1657, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    Science.gov (United States)

    Long, Katherine S.

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms. PMID:22143525

  7. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation

    NARCIS (Netherlands)

    Fernandez, James; Yaman, Ibrahim; Huang, Charles; Liu, Haiyan; Lopez, Alex B.; Komar, Anton A.; Caprara, Mark G.; Merrick, William C.; Snider, Martin D.; Kaufman, Randal J.; Lamers, Wouter H.; Hatzoglou, Maria

    2005-01-01

    It was previously shown that the mRNA for the cat-1 Arg/Lys transporter is translated from an internal ribosome entry site (IRES) that is regulated by cellular stress. Amino acid starvation stimulated cat-1 translation via a mechanism that requires translation of an ORF in the mRNA leader and

  8. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units.

    Science.gov (United States)

    Lim, K Y; Kovarik, A; Matýăsek, R; Bezdĕk, M; Lichtenstein, C P; Leitch, A R

    2000-06-01

    We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nicotiana sylvestris (2n = 2x = 24) and N. tomentosiformis (2n = 2x = 24) and compared these with patterns in N. tabacum (tobacco, 2n = 4x = 48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N

  9. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  10. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    Science.gov (United States)

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  11. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein-RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice.

    Science.gov (United States)

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-02-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. © 2014 British Society for Immunology.

  12. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein–RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice

    Science.gov (United States)

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-01-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. PMID:25255895

  13. Regulatory RNPs: a novel class of ribonucleoproteins that potentially contribute to ribosome heterogeneity

    Directory of Open Access Journals (Sweden)

    Aaron R. Poole

    2017-09-01

    Full Text Available Many ribonucleoproteins (RNPs, which are comprised of noncoding RNA and associated proteins, are involved in essential cellular processes such as translation and pre-mRNA splicing. One class of RNP is the small Cajal body-specific RNP (scaRNP, which contributes to the biogenesis of small nuclear RNPs (snRNPs that are central components of the spliceosome. Three scaRNAs are internally processed, generating stable nucleolus-enriched RNAs of unknown function. Here, we provide data that show that these RNAs become part of RNPs we term regulatory RNPs (regRNPs. Most modifications within rRNA (predominantly pseudouridylation and ribose 2′-O-methylation are conducted by small nucleolar RNPs (snoRNPs, and we provide evidence that the activity of at least some of these snoRNPs is under the control of regRNPs. Because modifications within rRNA can vary in different physiological or pathological situations, rRNA modifications are thought to be the major source of ribosome heterogeneity. Our identification of regRNPs thus provides a potential mechanism for how ribosome heterogeneity may be accomplished. This work also provides additional functional connections between the Cajal body and the nucleolus.

  14. MATHEMATICAL AND COMPUTATIONAL MODELLING OF RIBOSOMAL MOVEMENT AND PROTEIN SYNTHESIS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Tobias von der Haar

    2012-04-01

    Full Text Available Translation or protein synthesis consists of a complex system of chemical reactions, which ultimately result in decoding of the mRNA and the production of a protein. The complexity of this reaction system makes it difficult to quantitatively connect its input parameters (such as translation factor or ribosome concentrations, codon composition of the mRNA, or energy availability to output parameters (such as protein synthesis rates or ribosome densities on mRNAs. Mathematical and computational models of translation have now been used for nearly five decades to investigate translation, and to shed light on the relationship between the different reactions in the system. This review gives an overview over the principal approaches used in the modelling efforts, and summarises some of the major findings that were made.

  15. Biochemistry and Function of the RNA Exosomes

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Chlebowski, Aleksander; Dziembowski, Andrzej

    2012-01-01

    Discovery of the evolutionary conserved RNA exosome was a milestone in RNA biology. First identified as an activity essential for the processing of ribosomal RNA, the exosome has since proved to be central for RNA processing and degradation in both the nucleus and the cytoplasm of eukaryotic cell...

  16. The efficacy of 16S ribosomal DNA sequencing in the diagnosis of bacteria from blood, bone and synovial fluid samples of children with musculoskeletal infections.

    Science.gov (United States)

    Hashavya, S; Gross, I; Michael-Gayego, A; Simanovsky, N; Lamdan, R

    2018-04-01

    Musculoskeletal infections are among the most common bacterial infections in children leading to hospitalization, invasive procedures and prolonged antibiotic administration. Blood, synovial and sometimes tissue cultures are essential for the diagnosis and treatment of musculoskeletal infections; 16S ribosomal DNA (rDNA) sequencing is a novel diagnostic tool for the detection of bacteria.While the yield of 16S rDNA sequencing in synovial fluid was previously assessed, data regarding the efficacy of this method from blood samples or partially treated children with suspected musculoskeletal infections is lacking.In this study we assessed the yield of 16S rDNA sequencing in blood, bone and synovial samples of children with musculoskeletal infections. Blood, synovial and bone samples were collected from children with suspected musculoskeletal infections and analyzed for the presence of 16S rDNA, the results were then compared with the benchmark microbial cultures. During the study period, 41 children (18 boys and 23 girls) with suspected acute musculoskeletal infection were enrolled. A positive blood culture was found in 6/31 cases (19.4%) with methicillin-susceptible Staphylococcus aureus being the most commonly isolated bacterium. No significant 16S rDNA detection in blood samples was recorded.Synovial fluid culture was positive in 6/28 samples (21%), Kingella kingae being the most common pathogen. When using the 16S rDNA sequencing method, the rate of positive results in synovial fluid was higher with bacterial detection in 12/23 (52%) samples. The 16S rDNA sequencing method was also able to identify pathogens in samples taken from partially treated children where cultures were negative with 16S rDNA detection in 5/5 samples. Although 16S rDNA sequencing may increase the yield of bacterial detection in synovial samples of patients with musculoskeletal infections, there is no benefit from applying this method on blood samples. The 16S rDNA sequencing method may be

  17. A Sensitive and Specific PCR Based Method for Identification of Cryptosporidium Sp. Using New Primers from 18S Ribosomal RNA

    Directory of Open Access Journals (Sweden)

    M Heydarnezhadi

    2011-09-01

    Full Text Available Background: The main goal of the present study was to develop a new sensitive and specific PCR based method for Identification of Cryptosporidium sp. using novel primers from 18S ribosomal RNA. Cryptosporidi­osis in high-risk host groups particularly in neonates and immuno-compromised individuals may result in death. To the best of our knowledge this is the first study regarding develop a new PCR based method to diagnose the cryptosporidiosis in Iran.Methods: A total of 850 human fecal samples from patients clinically suspected to cryptosporidiosis and 100 healthy and diarrheic cattle stool specimens were collected. The simplified formol-ether concentration method was carried out for all samples. They were then examined microscopically by modified Ziehl-Neel­sen staining method. Total DNA was extracted by QIA amp DNA stool mini kit was carried out by using designed prim­ers.Results: Twenty nine cases of cryptosporidiosis infection in human and 30 samples from cattle microscopi­cally were posi­tive. The described primary and nested PCR method could detect all Cryptospori­dium positive samples from human and cattle. Regards to suspected negative samples in pri­mary PCR examination, the Nested PCR could ap­prove two more positive results. Furthermore, Nested PCR analysis was able to detect one more case which was nega­tive in both microscopically examination and primary PCR. Specificity of the test was 100%. Sensitivity of Nested PCR in comparison to our gold standard; microscopy after Ridley concentration modified ziehl-Neelsen, was 100 %.Conclusion: Our developed PCR based method by using new primers devised from 18S ribosomal RNA revealed the ability for identification of the Cryptosporidium species such as C. parvum and C. huminis with high specificity and sensitivity.

  18. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Directory of Open Access Journals (Sweden)

    Abhishek Ghosh

    2014-10-01

    Full Text Available The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  19. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    Science.gov (United States)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  20. Locus-specific ribosomal RNA gene silencing in nucleolar dominance.

    Directory of Open Access Journals (Sweden)

    Michelle S Lewis

    2007-08-01

    Full Text Available The silencing of one parental set of rRNA genes in a genetic hybrid is an epigenetic phenomenon known as nucleolar dominance. We showed previously that silencing is restricted to the nucleolus organizer regions (NORs, the loci where rRNA genes are tandemly arrayed, and does not spread to or from neighboring protein-coding genes. One hypothesis is that nucleolar dominance is the net result of hundreds of silencing events acting one rRNA gene at a time. A prediction of this hypothesis is that rRNA gene silencing should occur independent of chromosomal location. An alternative hypothesis is that the regulatory unit in nucleolar dominance is the NOR, rather than each individual rRNA gene, in which case NOR localization may be essential for rRNA gene silencing. To test these alternative hypotheses, we examined the fates of rRNA transgenes integrated at ectopic locations. The transgenes were accurately transcribed in all independent transgenic Arabidopsis thaliana lines tested, indicating that NOR localization is not required for rRNA gene expression. Upon crossing the transgenic A. thaliana lines as ovule parents with A. lyrata to form F1 hybrids, a new system for the study of nucleolar dominance, the endogenous rRNA genes located within the A. thaliana NORs are silenced. However, rRNA transgenes escaped silencing in multiple independent hybrids. Collectively, our data suggest that rRNA gene activation can occur in a gene-autonomous fashion, independent of chromosomal location, whereas rRNA gene silencing in nucleolar dominance is locus-dependent.

  1. Simulation and analysis of single-ribosome translation

    International Nuclear Information System (INIS)

    Tinoco, Ignacio Jr; Wen, Jin-Der

    2009-01-01

    In the cell, proteins are synthesized by ribosomes in a multi-step process called translation. The ribosome translocates along the messenger RNA to read the codons that encode the amino acid sequence of a protein. Elongation factors, including EF-G and EF-Tu, are used to catalyze the process. Recently, we have shown that translation can be followed at the single-molecule level using optical tweezers; this technique allows us to study the kinetics of translation by measuring the lifetime the ribosome spends at each codon. Here, we analyze the data from single-molecule experiments and fit the data with simple kinetic models. We also simulate the translation kinetics based on a multi-step mechanism from ensemble kinetic measurements. The mean lifetimes from the simulation were consistent with our experimental single-molecule measurements. We found that the calculated lifetime distributions were fit in general by equations with up to five rate-determining steps. Two rate-determining steps were only obtained at low concentrations of elongation factors. These analyses can be used to design new single-molecule experiments to better understand the kinetics and mechanism of translation

  2. The nucleolus: a paradigm for cell proliferation and aging

    Directory of Open Access Journals (Sweden)

    Comai L.

    1999-01-01

    Full Text Available The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA genes are rapidly transcribed by RNA polymerase I (pol I molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.

  3. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  4. Trans-acting translational regulatory RNA binding proteins.

    Science.gov (United States)

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  5. Roles of the nucleolus in the CAG RNA-mediated toxicity.

    Science.gov (United States)

    Tsoi, Ho; Chan, Ho Yin Edwin

    2014-06-01

    The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.

    Science.gov (United States)

    Atkins, John F; Loughran, Gary; Bhatt, Pramod R; Firth, Andrew E; Baranov, Pavel V

    2016-09-06

    Genetic decoding is not 'frozen' as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational 'correction' of problem or 'savior' indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5' or 3' of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3' from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    Science.gov (United States)

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  8. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Czech Academy of Sciences Publication Activity Database

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D. T. J.

    2015-01-01

    Roč. 8, JUN 19 2015 (2015), s. 336 ISSN 1756-3305 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR(CZ) GA15-14198S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:60077344 Keywords : Diplostomum (Platyhelminthes: Trematoda) * fish pathogens * mitochondrial genome * ribosomal RNA * illumina next-generation sequencing * phylogeny Subject RIV: EG - Zoology Impact factor: 3.234, year: 2015

  9. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  10. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES.

    Science.gov (United States)

    Boehringer, Daniel; Thermann, Rolf; Ostareck-Lederer, Antje; Lewis, Joe D; Stark, Holger

    2005-11-01

    Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.

  11. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hussmann

    2015-12-01

    Full Text Available Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.

  12. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription

    International Nuclear Information System (INIS)

    Bergstralh, Daniel T.; Conti, Brian J.; Moore, Chris B.; Brickey, W. June; Taxman, Debra J.; Ting, Jenny P.-Y.

    2007-01-01

    Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1β) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF I 48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells

  13. The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis

    Czech Academy of Sciences Publication Activity Database

    Fiala, Ivan

    2006-01-01

    Roč. 36, č. 14 (2006), s. 1521-1534 ISSN 0020-7519 R&D Projects: GA MŠk LC522 Grant - others:Grantová agentura Jihočeské univerzity(CZ) 58/2002//P-BF Institutional research plan: CEZ:AV0Z60220518 Keywords : Myxosporea * SSU rDNA * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.337, year: 2006

  14. Evolutionary Conservation of the Ribosomal Biogenesis Factor Rbm19/Mrd1: Implications for Function

    OpenAIRE

    Kallberg, Yvonne; Segerstolpe, Åsa; Lackmann, Fredrik; Persson, Bengt; Wieslander, Lars

    2012-01-01

    Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs) and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs). We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, th...

  15. Characterization of Fasciola samples by ITS of rDNA sequences revealed the existence of Fasciola hepatica and Fasciola gigantica in Yunnan Province, China.

    Science.gov (United States)

    Shu, Fan-Fan; Lv, Rui-Qing; Zhang, Yi-Fang; Duan, Gang; Wu, Ding-Yu; Li, Bi-Feng; Yang, Jian-Fa; Zou, Feng-Cai

    2012-08-01

    On mainland China, liver flukes of Fasciola spp. (Digenea: Fasciolidae) can cause serious acute and chronic morbidity in numerous species of mammals such as sheep, goats, cattle, and humans. The objective of the present study was to examine the taxonomic identity of Fasciola species in Yunnan province by sequences of the first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA). The ITS rDNA was amplified from 10 samples representing Fasciola species in cattle from 2 geographical locations in Yunnan Province, by polymerase chain reaction (PCR), and the products were sequenced directly. The lengths of the ITS-1 and ITS-2 sequences were 422 and 361-362 base pairs, respectively, for all samples sequenced. Using ITS sequences, 2 Fasciola species were revealed, namely Fasciola hepatica and Fasciola gigantica. This is the first demonstration of F. gigantica in cattle in Yunnan Province, China using a molecular approach; our findings have implications for studying the population genetic characterization of the Chinese Fasciola species and for the prevention and control of Fasciola spp. in this province.

  16. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer).

    Science.gov (United States)

    Chelomina, Galina N; Rozhkovan, Konstantin V; Voronova, Anastasia N; Burundukova, Olga L; Muzarok, Tamara I; Zhuravlev, Yuri N

    2016-04-01

    Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.

  17. Molecular phylogenetic lineage of Plagiopogon and Askenasia (Protozoa, Ciliophora) revealed by their gene sequences

    Science.gov (United States)

    Liu, An; Yi, Zhenzhen; Lin, Xiaofeng; Hu, Xiaozhong; Al-Farraj, Saleh A.; Al-Rasheid, Khaled A. S.

    2015-08-01

    Prostomates and haptorians are two basal groups of ciliates with limited morphological characteristics available for taxonomy. Morphologically, the structures used to identify prostomates and haptorians are similar or even identical, which generate heavy taxonomic and phylogenetic confusion. In present work, phylogenetic positions lineage of two rare genera, Plagiopogon and Askenasia, were investigated. Three genes including small subunit ribosomal RNA gene (hereafter SSU rDNA), internal transcribed spacer region (ITS region), and large subunit ribosomal RNA gene (LSU rDNA) were analyzed, 10 new sequences five species each. Our findings included 1) class Prostomatea and order Haptorida are multiphyletic; 2) it may not be appropriate to place order Cyclotrichiida in subclass Haptoria, and the systematic lineage of order Cyclotrichiida needs to be verified further; 3) genus Plagiopogon branches consistently within a clade covering most prostomes and is basal of clade Colepidae, implying its close lineage to Prostomatea; and 4) Askenasia is phylogenetically distant from the subclass Haptoria but close to classes Prostomatea, Plagiopylea and Oligohymenophorea. We supposed that the toxicyst of Askenasia may be close to taxa of prostomes instead of haptorians, and the dorsal brush is a more typical morphological characteristics of haptorians than toxicysts.

  18. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites.

    Science.gov (United States)

    Willcocks, Margaret M; Zaini, Salmah; Chamond, Nathalie; Ulryck, Nathalie; Allouche, Delphine; Rajagopalan, Noemie; Davids, Nana A; Fahnøe, Ulrik; Hadsbjerg, Johanne; Rasmussen, Thomas Bruun; Roberts, Lisa O; Sargueil, Bruno; Belsham, Graham J; Locker, Nicolas

    2017-12-15

    Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  20. ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences.

    Science.gov (United States)

    Santamaria, Monica; Fosso, Bruno; Licciulli, Flavio; Balech, Bachir; Larini, Ilaria; Grillo, Giorgio; De Caro, Giorgio; Liuni, Sabino; Pesole, Graziano

    2018-01-04

    A holistic understanding of environmental communities is the new challenge of metagenomics. Accordingly, the amplicon-based or metabarcoding approach, largely applied to investigate bacterial microbiomes, is moving to the eukaryotic world too. Indeed, the analysis of metabarcoding data may provide a comprehensive assessment of both bacterial and eukaryotic composition in a variety of environments, including human body. In this respect, whereas hypervariable regions of the 16S rRNA are the de facto standard barcode for bacteria, the Internal Transcribed Spacer 1 (ITS1) of ribosomal RNA gene cluster has shown a high potential in discriminating eukaryotes at deep taxonomic levels. As metabarcoding data analysis rely on the availability of a well-curated barcode reference resource, a comprehensive collection of ITS1 sequences supplied with robust taxonomies, is highly needed. To address this issue, we created ITSoneDB (available at http://itsonedb.cloud.ba.infn.it/) which in its current version hosts 985 240 ITS1 sequences spanning over 134 000 eukaryotic species. Each ITS1 is mapped on the NCBI reference taxonomy with its start and end positions precisely annotated. ITSoneDB has been developed in agreement to the FAIR guidelines by enabling the users to query and download its content through a simple web-interface and access relevant metadata by cross-linking to European Nucleotide Archive. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. An internal ribosome entry site directs translation of the 3'-gene from Pelargonium flower break virus genomic RNA: implications for infectivity.

    Directory of Open Access Journals (Sweden)

    Olga Fernández-Miragall

    Full Text Available Pelargonium flower break virus (PFBV, genus Carmovirus has a single-stranded positive-sense genomic RNA (gRNA which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37 which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3'-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES. Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.

  2. An internal ribosome entry site directs translation of the 3'-gene from Pelargonium flower break virus genomic RNA: implications for infectivity.

    Science.gov (United States)

    Fernández-Miragall, Olga; Hernández, Carmen

    2011-01-01

    Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3'-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.

  3. Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis.

    Science.gov (United States)

    Hiramatsu, K; Harada, K; Tsuneyama, K; Sasaki, M; Fujita, S; Hashimoto, T; Kaneko, S; Kobayashi, K; Nakanuma, Y

    2000-07-01

    The etiopathogenesis of bile duct lesion in primary biliary cirrhosis is unknown, though the participation of bacteria and/or their components and products is suspected. In this study, we tried to detect and identify bacteria in the bile of patients with primary biliary cirrhosis by polymerase chain reaction using universal bacterial primers of the 16S ribosomal RNA gene. Gallbladder bile samples from 15 patients with primary biliary cirrhosis, 5 with primary sclerosing cholangitis, 5 with hepatitis C virus-related liver cirrhosis, 11 with cholecystolithiasis, and from 12 normal adult gallbladders were used. In addition to the culture study, partial bacterial 16S ribosomal RNA gene was amplified by polymerase chain reaction (PCR) taking advantage of universal primers that can amplify the gene of almost all bacterial species, and the amplicons were cloned and sequenced. Sequence homology with specific bacterial species was analyzed by database research. Bacterial contamination at every step of the bile sampling, DNA extraction and PCR study was avoided. Furthermore, to confirm whether bacterial DNA is detectable in liver explants, the same analysis was performed using 10 liver explants of patients with primary biliary cirrhosis. In primary biliary cirrhosis, 75% (p<0.0001) of 100 clones were identified as so-called gram-positive cocci while these cocci were positive in only 5% in cholecystolithiasis (p<0.0001). In cholecystolithiasis gram-negative rods were predominant instead. One bacterial species detected in a normal adult was not related to those detected in primary biliary cirrhosis and cholecystolithiasis patients. No bacterial DNA was detected by PCR amplification in 10 liver explants of patients with primary biliary cirrhosis. The present results raise several possible roles of gram-positive bacteria in bile in the etiopathogenesis of primary biliary cirrhosis. However, these results could also reflect an epiphenomenon due to decreased bile flow in the

  4. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Jetzt, Amanda E. [Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520 (United States); Li, Xiao-Ping; Tumer, Nilgun E. [Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520 (United States); Cohick, Wendie S., E-mail: cohick@aesop.rutgers.edu [Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520 (United States)

    2016-11-01

    Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarly to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication. - Highlights: • Arginines 193 and 235 of RTA are critical for binding to the mammalian ribosome. • R193A/R235A has full catalytic activity on RNA but not on mammalian ribosomes. • R193A/R235A is less toxic than a mutant that targets the active site. • The toxin-ribosome interaction is a therapeutic target for ricin intoxication.

  5. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli

    DEFF Research Database (Denmark)

    Aagaard, C; Rosendahl, G; Dam, M

    1991-01-01

    The preferred method for construction and in vivo expression of mutagenised Escherichia coli ribosomal RNAs (rRNAs) is via high copy number plasmids. Transcription of wild-type rRNA from the seven chromosomal rrn operons in strains harbouring plasmid-coded mutant rRNAs leads to a heterogeneous...

  6. Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses

    International Nuclear Information System (INIS)

    Firth, Andrew E.; Blitvich, Bradley J.; Wills, Norma M.; Miller, Cathy L.; Atkins, John F.

    2010-01-01

    Flaviviruses have a positive-sense, single-stranded RNA genome of ∼11 kb, encoding a large polyprotein that is cleaved to produce ∼10 mature proteins. Cell fusing agent virus, Kamiti River virus, Culex flavivirus and several recently discovered flaviviruses have no known vertebrate host and apparently infect only insects. We present compelling bioinformatic evidence for a 253-295 codon overlapping gene (designated fifo) conserved throughout these insect-specific flaviviruses and immunofluorescent detection of its product. Fifo overlaps the NS2A/NS2B coding sequence in the - 1/+ 2 reading frame and is most likely expressed as a trans-frame fusion protein via ribosomal frameshifting at a conserved GGAUUUY slippery heptanucleotide with 3'-adjacent RNA secondary structure (which stimulates efficient frameshifting in vitro). The discovery bears striking parallels to the recently discovered ribosomal frameshifting site in the NS2A coding sequence of the Japanese encephalitis serogroup of flaviviruses and suggests that programmed ribosomal frameshifting may be more widespread in flaviviruses than currently realized.

  7. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  8. Reconstruction of ribosomal RNA genes from metagenomic data.

    Directory of Open Access Journals (Sweden)

    Lu Fan

    Full Text Available Direct sequencing of environmental DNA (metagenomics has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data. Simulations showed that reconstructed 16S rRNA genes provided a true picture of the community diversity, had minimal rates of chimera formation and gave taxonomic resolution down to genus level. The strategy was furthermore compared to PCR-based methods to determine the microbial diversity in two marine sponges. This showed that about 30% of the abundant phylotypes reconstructed from metagenomic data failed to be amplified by PCR. Our approach is readily applicable to existing metagenomic datasets and is expected to lead to the discovery of new microbial phylotypes.

  9. Time spans and spacers : Molecular phylogenetic explorations in the Cladophora complex (Chlorophyta) from the perspective of rDNA gene and spacer sequences

    NARCIS (Netherlands)

    Bakker, Frederik Theodoor

    1995-01-01

    In this study, phylogenetic relationships among genera, species and biogeographic representatives of single Cladophora species within the Cladophorales were analyzed using rDNA gene and spacer sequences. Based on phylogenetic analysis of 18S rRNA gene sequences, the Cladophora complex is shown to be

  10. An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein

    Science.gov (United States)

    Jaag, Hannah Miriam; Kawchuk, Lawrence; Rohde, Wolfgang; Fischer, Rainer; Emans, Neil; Prüfer, Dirk

    2003-01-01

    Potato leafroll polerovirus (PLRV) genomic RNA acts as a polycistronic mRNA for the production of proteins P0, P1, and P2 translated from the 5′-proximal half of the genome. Within the P1 coding region we identified a 5-kDa replication-associated protein 1 (Rap1) essential for viral multiplication. An internal ribosome entry site (IRES) with unusual structure and location was identified that regulates Rap1 translation. Core structural elements for internal ribosome entry include a conserved AUG codon and a downstream GGAGAGAGAGG motif with inverted symmetry. Reporter gene expression in potato protoplasts confirmed the internal ribosome entry function. Unlike known IRES motifs, the PLRV IRES is located completely within the coding region of Rap1 at the center of the PLRV genome. PMID:12835413

  11. The origin of the 5S ribosomal RNA molecule could have been caused by a single inverse duplication: strong evidence from its sequences.

    Science.gov (United States)

    Branciamore, Sergio; Di Giulio, Massimo

    2012-04-01

    The secondary structure of the 5S ribosomal RNA (5S rRNA) molecule shows a high degree of symmetry. In order to explain the origin of this symmetry, it has been conjectured that one half of the 5S rRNA molecule was its precursor and that an indirect duplication of this precursor created the other half and thus the current symmetry of the molecule. Here, we have subjected to an empirical test both the indirect duplication model, analysing a total of 684 5S rRNA sequences for complementarity between the two halves of the 5S rRNA, and the direct duplication model analysing in this case the similarity between the two halves of this molecule. In intra- and inter-molecule and intra- and inter-domain comparisons, we find a high statistical support to the hypothesis of a complementarity relationship between the two halves of the 5S rRNA molecule, denying vice versa the hypothesis of similarity between these halves. Therefore, these observations corroborate the indirect duplication model at the expense of the direct duplication model, as reason of the origin of the 5S rRNA molecule. More generally, we discuss and favour the hypothesis that all RNAs and proteins, which present symmetry, did so through gene duplication and not by gradualistic accumulation of few monomers or segments of molecule into a gradualistic growth process. This would be the consequence of the very high propensity that nucleic acids have to be subjected to duplications.

  12. Initiation of ribosomal RNA synthesis in Escherichia coli

    NARCIS (Netherlands)

    Hamming, Jantina

    1981-01-01

    Het E. coli chromosoom is éên lang circulair dubbelstrengs DNA molecuul en beslaat ongeveer 3000 genen. Het enzym RNA polymerase is verantwoordelijk voor de transcriptie in RNA van alle genetische informatie in de ce1. Er zijn 2 soorten transcripten: de ribosomale en transfer RNAs die deel uitmaken

  13. Identification of tissue-embedded ascarid larvae by ribosomal DNA sequencing.

    Science.gov (United States)

    Ishiwata, Kenji; Shinohara, Akio; Yagi, Kinpei; Horii, Yoichiro; Tsuchiya, Kimiyuki; Nawa, Yukifumi

    2004-01-01

    Polymerase chain reaction (PCR) was applied to identify tissue-embedded ascarid nematode larvae. Two sequences of the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA), ITS1 and ITS2, of the ascarid parasites were amplified and compared with those of ascarid-nematodes registered in a DNA database (GenBank). The ITS sequences of the PCR products obtained from the ascarid parasite specimen in our laboratory were compatible with those of registered adult Ascaris and Toxocara parasites. PCR amplification of the ITS regions was sensitive enough to detect a single larva of Ascaris suum mixed with porcine liver tissue. Using this method, ascarid larvae embedded in the liver of a naturally infected turkey were identified as Toxocara canis. These results suggest that even a single larva embedded in tissues from patients with larva migrans could be identified by sequencing the ITS regions.

  14. Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity

    DEFF Research Database (Denmark)

    Porse, B T; Rodriguez-Fonseca, C; Leviev, I

    1996-01-01

    The present review attempts to deal with movement of tRNA substrates through the peptidyl transferase centre on the large ribosomal subunit and to explain how this movement is interrupted by antibiotics. It builds on the concept of hybrid tRNA states forming on ribosomes and on the observed movem...

  15. A Specific Hepatic Transfer RNA for Phosphoserine*

    Science.gov (United States)

    Mäenpää, Pekka H.; Bernfield, Merton R.

    1970-01-01

    Radioactive O-phosphoryl-L-serine was detected after alkaline deacylation of rat and rooster liver [3H]seryl-tRNA acylated in vitro with homologous synthetases. Ribonuclease treatment of this tRNA yielded a compound with the properties of phosphoseryl-adenosine. Benzoylated DEAE-cellulose chromatography of seryl-tRNA yielded four distinct peaks, only one of which contained phosphoserine. A unique fraction for phosphoserine was also found on chromatography of nonacylated tRNA. In ribosome binding studies, this fraction responded very slightly with poly(U,C), but not with any of the known serine trinucleotide codons. Substantial incorporation of [3H]-serine into protein from this tRNA species was observed in an aminoacyl-tRNA dependent polysomal system derived from chick oviducts. No phosphoserine was found in Escherichia coli or yeast seryl-tRNA acylated with homologous enzymes, nor in E. coli seryl-tRNA acylated with liver synthetase. In the absence of tRNA, free phosphoserine was not formed in reaction mixtures, which suggests that phosphoseryl-tRNA arises by phosphorylation of the unique seryl-tRNA species. These results demonstrate a discrete tRNASer species in rat and rooster liver containing phosphoserine and suggest that this tRNA is involved in ribosomal polypeptide synthesis. PMID:4943179

  16. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress.

    Science.gov (United States)

    Sloan, Katherine E; Bohnsack, Markus T; Watkins, Nicholas J

    2013-10-17

    Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14(ARF), a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Control of Ribosome Synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Molin, Søren; Meyenburg, K. von; Måløe, O.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue {alpha...... and to estimate the transcription time for the rRNA operon under different conditions. In steady states of growth with growth rates ranging from 0.75 to 2.3 doublings/h, as well as during the transition after a shift-down, the transcription time of the rRNA operon was constant. The rate of synthesis of r......RNA correlated during this transition – in contrast to the rate of accumulation (M. T. Hansen et al., J. Bacteriol. 122: 585-591, 1975) – with the ppGpp pool in the same way as has been observed during partial amino acid starvation....

  18. A Novel Association between Two Trypanosome-Specific Factors and the Conserved L5-5S rRNA Complex

    Science.gov (United States)

    Ciganda, Martin; Prohaska, Kimberly; Hellman, Kristina; Williams, Noreen

    2012-01-01

    P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis. PMID:22859981

  19. Organization of proteins in mammalian mitochondrial ribosomes: accessibility to lactoperoxidase-catalyzed radioiodination

    International Nuclear Information System (INIS)

    Denslow, N.D.; O'Brien, T.W.

    1984-01-01

    To assess the relative exposure of individual ribosomal proteins (r-proteins) in the large and small subunits of the bovine mitochondrial ribosome, double label iodination technique was used. Regions of r-proteins exposed in purified ribosomal subunits were labeled with 131 I using the lactoperoxidase-catalyzed iodination system, and additional reactive groups available upon denaturing the r-proteins in urea were labeled with 125 I using the chloramine-T mediated reaction. The ratio of 131 I to 125 I incorporated into individual proteins under these conditions is representative of the degree of exposure for each of the proteins in the subunits. In this manner, the r-proteins have been grouped into 3 classes depending on their degree of exposure: high exposure, intermediate exposure, and essentially buried. While both subunits have a few proteins in the highly exposed group, and a large number of proteins in the intermediate exposure group, only the large ribosomal subunit has an appreciable number of proteins which appear essentially buried. The more buried proteins may serve mainly structural roles, perhaps acting as assembly proteins, since many from this group bind to ribosomal RNA. The more superficially disposed proteins may comprise binding sites for macromolecules that interact with ribosomes during protein synthesis, as well as stabilizing the association of the large and small subribosomal particles

  20. Pactamycin binding site on archaebacterial and eukaryotic ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.G.

    1987-01-01

    The presence of a photoreactive acetophenone group in the protein synthesis inhibitor pactamycin and the possibility of obtaining active iodinated derivatives that retain full biological activity allow the antibiotic binding site on Saccharomyces cerevisiae and archaebacterium Sulfolobus solfataricus ribosomes to be photoaffinity labeled. Four major labeled proteins have been identified in the yeast ribosomes, i.e., YS10, YS18, YS21/24, and YS30, while proteins AL1a, AS10/L8, AS18/20, and AS21/22 appeared as radioactive spots in S. solfataricus. There seems to be a correlation between some of the proteins labeled in yeast and those previously reported in Escherichia coli indicating that the pactamycin binding sites of both species, which are in the small subunit close to the initiation factors and mRNA binding sites, must have similar characteristics