WorldWideScience

Sample records for ribosomal fragment abundance

  1. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Milbury Coren A

    2010-09-01

    Full Text Available Abstract Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.

  2. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    Science.gov (United States)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-01

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  3. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B., E-mail: garber@vega.protres.ru [Institute of Protein Research RAS (Russian Federation)

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  4. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  5. Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

    Directory of Open Access Journals (Sweden)

    Paula Eveline Ribeiro D’Anunciação

    2013-01-01

    Full Text Available In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture. There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use.

  6. Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.

    Science.gov (United States)

    Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R

    2013-10-01

    Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.

  7. Composition and abundance of small mammal communities in forest fragments and vegetation corridors in Southern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Andréa O. Mesquita

    2012-09-01

    Full Text Available Habitat fragmentation leads to isolation and reduce habitat areas, in addition to a series of negative effects on natural populations, affecting richness, abundance and distribution of animal species. In such a text, habitat corridors serve as an alternative for connectivity in fragmented landscapes, minimizing the effects of structural isolation of different habitat areas. This study evaluated the richness, composition and abundance of small mammal communities in forest fragments and in the relevant vegetation corridors that connect these fragments, located in Southern Minas Gerais, Southeastern Brazil. Ten sites were sampled (five forest fragments and five vegetation corridors using the capture-mark-recapture method, from April 2007-March 2008. A total sampling effort of 6 300 trapnights resulted in 656 captures of 249 individuals. Across the 10 sites sampled, 11 small mammal species were recorded. Multidimensional scaling (MDS ordinations and ANOSIM based on the composition of small mammal communities within the corridor and fragment revealed a qualitative difference between the two environments. Regarding abundance, there was no significant difference between corridors and fragments. In comparing mean values of abundance per species in each environment, only Cerradomys subflavus showed a significant difference, being more abundant in the corridor environment. Results suggest that the presence of several small mammal species in the corridor environment, in relatively high abundances, could indicate corridors use as habitat, though they might also facilitate and/or allow the movement of individuals using different habitat patches (fragments.

  8. The impact of habitat fragmentation on tsetse abundance on the plateau of eastern Zambia.

    Science.gov (United States)

    Ducheyne, E; Mweempwa, C; De Pus, C; Vernieuwe, H; De Deken, R; Hendrickx, G; Van den Bossche, P

    2009-09-01

    Tsetse-transmitted human or livestock trypanosomiasis is one of the major constraints to rural development in sub-Saharan Africa. The epidemiology of the disease is determined largely by tsetse fly density. A major factor, contributing to tsetse population density is the availability of suitable habitat. In large parts of Africa, encroachment of people and their livestock resulted in a destruction and fragmentation of such suitable habitat. To determine the effect of habitat change on tsetse density a study was initiated in a tsetse-infested zone of eastern Zambia. The study area represents a gradient of habitat change, starting from a zone with high levels of habitat destruction and ending in an area where livestock and people are almost absent. To determine the distribution and density of the fly, tsetse surveys were conducted throughout the study area in the dry and in the rainy season. Landsat ETM+ imagery covering the study area were classified into four land cover classes (munga, miombo, agriculture and settlements) and two auxiliary spectral classes (clouds and shadow) using a Gaussian Maximum Likelihood Classifier. The classes were regrouped into natural vegetation and agricultural zone. The binary images were overlaid with hexagons to obtain the spatial spectrum of spatial pattern. Hexagonal coverage was selected because of its compact and regular form. To identify scale-specific spatial patterns and associated entomological phenomena, the size of the hexagonal coverage was varied (250 and 500 m). Per coverage, total class area, mean patch size, number of patches and patch size standard deviation were used as fragmentation indices. Based on the fragmentation index values, the study zone was classified using a Partitioning Around Mediods (PAM) method. The number of classes was determined using the Wilks' lambda coefficient. To determine the impact of habitat fragmentation on tsetse abundance, the correlation between the fragmentation indices and the index

  9. In Profile: Models of Ribosome Biogenesis Defects and Regulation of Protein Synthesis

    NARCIS (Netherlands)

    Essers, P.B.M.

    2013-01-01

    Ribosomes are the mediators of protein synthesis in the cell and therefore crucial to proper cell function. In addition, ribosomes are highly abundant, with ribosomal RNA making up 80% of the RNA in the cell. A large amount of resources go into maintaining this pool of ribosomes, so ribosome

  10. Edge disturbance drives liana abundance increase and alteration of liana-host tree interactions in tropical forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F

    2018-04-01

    Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative

  11. A First Survey on the Abundance of Plastics Fragments and Particles on Two Sandy Beaches in Kuching, Sarawak, Malaysia

    Science.gov (United States)

    Noik, V. James; Mohd Tuah, P.

    2015-04-01

    Plastic fragments and particles as an emerging environmental contaminant and pollutant are gaining scientific attention in the recent decades due to the potential threats on biota. This study aims to elucidate the presence, abundance and temporal change of plastic fragments and particles from two selected beaches, namely Santubong and Trombol in Kuching on two sampling times. Morphological and polymer identification assessment on the recovered plastics was also conducted. Overall comparison statistical analysis revealed that the abundance of plastic fragments/debris on both of sampling stations were insignificantly different (p>0.05). Likewise, statistical analysis on the temporal changes on the abundance yielded no significant difference for most of the sampling sites on each respective station, except STB-S2. Morphological studies revealed physical features of plastic fragments and debris were diverse in shapes, sizes, colors and surface fatigues. FTIR fingerprinting analysis shows that polypropylene and polyethylene were the dominant plastic polymers debris on both beaches.

  12. Crystal Structure of the 23S rRNA Fragment Specific to r-Protein L1 and Designed Model of the Ribosomal L1 Stalk from Haloarcula marismortui

    Directory of Open Access Journals (Sweden)

    Azat Gabdulkhakov

    2017-02-01

    Full Text Available The crystal structure of the 92-nucleotide L1-specific fragment of 23S rRNA from Haloarcula marismortui (Hma has been determined at 3.3 Å resolution. Similar to the corresponding bacterial rRNA fragments, this structure contains joined helix 76-77 topped by an approximately globular structure formed by the residual part of the L1 stalk rRNA. The position of HmaL1 relative to the rRNA was found by its docking to the rRNA fragment using the L1-rRNA complex from Thermus thermophilus as a guide model. In spite of the anomalous negative charge of the halophilic archaeal protein, the conformation of the HmaL1-rRNA interface appeared to be very close to that observed in all known L1-rRNA complexes. The designed structure of the L1 stalk was incorporated into the H. marismortui 50S ribosomal subunit. Comparison of relative positions of L1 stalks in 50S subunits from H. marismortui and T. thermophilus made it possible to reveal the site of inflection of rRNA during the ribosome function.

  13. Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest

    Directory of Open Access Journals (Sweden)

    Luiz dos Anjos

    2004-06-01

    Full Text Available Bird communities were studied in two types of fragmented habitat of Atlantic forest in the State of Paraná, southern Brazil; one consisted of forest fragments that were created as a result of human activities (forest remnants, the other consisted of a set of naturally occurring forest fragments (forest patches. Using quantitative data obtained by the point counts method in 3 forest patches and 3 forest remnants during one year, species richness and relative abundance were compared in those habitats, considering species groups according to their general feeding habits. Insectivores, omnivores, and frugivores presented similar general tendencies in both habitats (decrease of species number with decreasing size and increasing isolation of forest fragment. However, these tendencies were different, when considering the relative abundance data: the trunk insectivores presented the highest value in the smallest patch while the lowest relative abundance was in the smallest remnant. In the naturally fragmented landscape, time permitted that the loss of some species of trunk insectivores be compensated for the increase in abundance of other species. In contrast, the remnants essentially represented newly formed islands that are not yet at equilibrium and where future species losses would make them similar to the patches.Comunidades de aves foram estudadas em duas regiões fragmentadas de floresta Atlântica no Estado do Paraná, sul do Brasil; uma região é constituída de fragmentos florestais que foram criados como resultado de atividades humanas (remanescentes florestais e a outra de um conjunto de fragmentos florestais naturais (manchas de floresta. Usando dados quantitativos (o método de contagens pontuais previamente obtidos em 3 manchas de floresta e em 3 remanescentes florestais durante um ano, a riqueza e a abundância relativa de aves foram comparadas naqueles habitats considerando as espécies pelos seus hábitos alimentares. Inset

  14. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  15. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Science.gov (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  16. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  17. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    Science.gov (United States)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  18. Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli

    International Nuclear Information System (INIS)

    Gravel, M.; Melancon, P.; Barkier-Gingras, L.

    1987-01-01

    [ 3 H]Dihydrostreptomycin was cross-linked to the 30S ribosomal subunit from Escherichia coli with the bifunctional reagent nitrogen mustard. The cross-linking primarily involved the 16S RNA. To localize the site of cross-linking of streptomycin to the 16S RNA, the authors hybridized RNA labeled with streptomycin to restriction fragments of the 16S RNA gene. Labeled RNA hybridized to DNA fragments corresponding to bases 892-917 and bases 1394-1415. These two segments of the ribosomal RNA must by juxtaposed in the ribosome, since there is a single binding site for streptomycin. This region has been implicated both in the decoding site and in the binding of initiation factor IF-3, indicating its functional importance

  19. Abundance and survival rates of three leaf-litter frog species in fragments and continuous forest of the Mata Atlântica, Brazil

    Directory of Open Access Journals (Sweden)

    Henning Steinicke

    2018-04-01

    Full Text Available Habitat destruction and fragmentation alter the quality of habitats and put populations under the risk of extinction. Changes in population parameters can provide early warning signs of negative impacts. In tropical forests, where habitat loss and fragmentation are vast, such indicators are of high relevance for directing conservation efforts before effects are irreversible. Most of our knowledge from tropical ecosystems originates from community level surveys, whereas our understanding of the influence of habitat conversion on vital rates of species is limited. This study focused on the influence of anthropogenic habitat fragmentation on the survival probability and abundance of three leaf-litter frog species (Rhinella ornata, Ischnocnema guentheri and I. parva in forest patches of the Atlantic rainforest of South-east Brazil compared to a continuous forest. The species differ in their matrix tolerance: high for R. ornata and low for I. guentheri and I. parva and, thus, we examined whether their survival and abundance correspond to this classification. Ischnocnema guentheri showed highest abundances in all study sites and low mortality in the forest patches compared to the continuous forest; I. parva was encountered only in isolated fragments, with very low mortality in one isolated fragment; and the matrix tolerant species had generally low abundance and showed no clear pattern in terms of mortality in the different sites. Our counter-intuitive results show that even matrix sensitive amphibian species may show high abundance and low mortality in small forest patches. Therefore, these patches can be of high value for amphibian conservation regardless of their degree of matrix aversion. Landscape level conservation planning should not abandon small habitat patches, especially in highly fragmented tropical environments.

  20. Composition and abundance of small mammal communities in forest fragments and vegetation corridors in Southern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Andréa O. Mesquita

    2012-09-01

    Full Text Available Habitat fragmentation leads to isolation and reduce habitat areas, in addition to a series of negative effects on natural populations, affecting richness, abundance and distribution of animal species. In such a text, habitat corridors serve as an alternative for connectivity in fragmented landscapes, minimizing the effects of structural isolation of different habitat areas. This study evaluated the richness, composition and abundance of small mammal communities in forest fragments and in the relevant vegetation corridors that connect these fragments, located in Southern Minas Gerais, Southeastern Brazil. Ten sites were sampled (five forest fragments and five vegetation corridors using the capture-mark-recapture method, from April 2007-March 2008. A total sampling effort of 6 300 trapnights resulted in 656 captures of 249 individuals. Across the 10 sites sampled, 11 small mammal species were recorded. Multidimensional scaling (MDS ordinations and ANOSIM based on the composition of small mammal communities within the corridor and fragment revealed a qualitative difference between the two environments. Regarding abundance, there was no significant difference between corridors and fragments. In comparing mean values of abundance per species in each environment, only Cerradomys subflavus showed a significant difference, being more abundant in the corridor environment. Results suggest that the presence of several small mammal species in the corridor environment, in relatively high abundances, could indicate corridors use as habitat, though they might also facilitate and/or allow the movement of individuals using different habitat patches (fragments.La fragmentación del hábitat conduce al aislamiento y la reducción de los hábitats, además provoca una serie de efectos negativos sobre las poblaciones naturales, afectando la riqueza, abundancia y distribución de las especies de animales. Dentro de este contexto, los corredores biológicos sirven

  1. Abundance and fragmentation patterns of the ecosystem engineer Lithophyllum byssoides (Lamarck) Foslie along the Iberian Peninsula Atlantic coast. Conservation and management implications

    Science.gov (United States)

    Veiga, Puri; Rubal, Marcos; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-10-01

    The crustose calcareous red macroalgae Lithophyllum byssoides (Lamarck) Foslie is a common ecosystem engineer along the Atlantic and Mediterranean coast of the Iberian Peninsula. This species is threatened by several anthropogenic impacts acting at different spatial scales, such as pollution or global warming. The aim of this study is to identify scales of spatial variation in the abundance and fragmentation patterns of L. byssoides along the Atlantic coast of the Iberian Peninsula. For this aim we used a hierarchical sampling design considering four spatial scales (from metres to 100s of kilometres). Results of the present study indicated no significant variability among regions investigated whereas significant variability was found at the scales of shore and site in spatial patterns of abundance and fragmentation of L. byssoides. Variance components were higher at the spatial scale of shore for abundance and fragmentation of L. byssoides with the only exception of percentage cover and thus, processes acting at the scale of 10s of kilometres seem to be more relevant in shaping the spatial variability both in abundance and fragmentation of L. byssoides. These results provided quantitative estimates of abundance and fragmentation of L. byssoides at the Atlantic coast of the Iberian Peninsula establishing the observational basis for future assessment, monitoring and experimental investigations to identify the processes and anthropogenic impacts affecting L. byssoides populations. Finally we have also identified percentage cover and patch density as the best variables for long-term monitoring programs aimed to detect future anthropogenic impacts on L. byssoides. Therefore, our results have important implications for conservation and management of this valuable ecosystem engineer along the Atlantic coast of the Iberian Peninsula.

  2. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.

    Science.gov (United States)

    Shi, Zhen; Fujii, Kotaro; Kovary, Kyle M; Genuth, Naomi R; Röst, Hannes L; Teruel, Mary N; Barna, Maria

    2017-07-06

    Emerging studies have linked the ribosome to more selective control of gene regulation. However, an outstanding question is whether ribosome heterogeneity at the level of core ribosomal proteins (RPs) exists and enables ribosomes to preferentially translate specific mRNAs genome-wide. Here, we measured the absolute abundance of RPs in translating ribosomes and profiled transcripts that are enriched or depleted from select subsets of ribosomes within embryonic stem cells. We find that heterogeneity in RP composition endows ribosomes with differential selectivity for translating subpools of transcripts, including those controlling metabolism, cell cycle, and development. As an example, mRNAs enriched in binding to RPL10A/uL1-containing ribosomes are shown to require RPL10A/uL1 for their efficient translation. Within several of these transcripts, this level of regulation is mediated, at least in part, by internal ribosome entry sites. Together, these results reveal a critical functional link between ribosome heterogeneity and the post-transcriptional circuitry of gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hussmann

    2015-12-01

    Full Text Available Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.

  4. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    Science.gov (United States)

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  5. Effect of land cover, habitat fragmentation and ant colonies on the distribution and abundance of shrews in southern California

    Science.gov (United States)

    Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.

    2001-01-01

    Because effects of habitat fragmentation and anthropogenic disturbance on native animals have been relatively little studied in arid areas and in insectivores, we investigated the roles of different land covers, habitat fragmentation and ant colonies on the distribution and abundance of shrews, Notiosorex crawfordi and Sorex ornatus, in southern California.Notiosorex crawfordi was the numerically dominant species (trap-success rate 0·52) occurring in 21 of the 22 study sites in 85% of the 286 pitfall arrays used in this study.Sorex ornatus was captured in 14 of the sites, in 52% of the arrays with a total trap-success rate of 0·2. Neither of the species was found in one of the sites.The population dynamics of the two shrew species were relatively synchronous during the 4–5-year study; the peak densities usually occurred during the spring. Precipitation had a significant positive effect, and maximum temperature a significant negative effect on the trap-success rate of S. ornatus.Occurrence and abundance of shrews varied significantly between sites and years but the size of the landscape or the study site had no effect on the abundance of shrews. The amount of urban edge had no significant effect on the captures of shrews but increased edge allows invasion of the Argentine ants, which had a highly significant negative impact on the abundance of N. crawfordi.At the trap array level, the percentage of coastal sage scrub flora had a significant positive, and the percentage of other flora had a significant negative effect on the abundance of N. crawfordi. The mean canopy height and the abundance of N. crawfordi had a significant positive effect on the occurrence of S. ornatus.Our study suggests that the loss of native coastal sage scrub flora and increasing presence of Argentine ant colonies may significantly effect the distribution and abundance of N. crawfordi. The very low overall population densities of both shrew species in most study sites make both species

  6. Ribosomes slide on lysine-encoding homopolymeric A stretches

    Science.gov (United States)

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  7. Identification of planorbids from Venezuela by polymerase chain reaction amplification and restriction fragment length polymorphism of internal transcriber spacer of the RNA ribosomal gene

    Directory of Open Access Journals (Sweden)

    Caldeira Roberta L

    2000-01-01

    Full Text Available Snails of the genus Biomphalaria from Venezuela were subjected to morphological assessment as well as polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP analysis. Morphological identification was carried out by comparison of characters of the shell and the male and female reproductive apparatus. The PCR-RFLP involved amplification of the internal spacer region ITS1 and ITS2 of the RNA ribosomal gene and subsequent digestion of this fragment by the restriction enzymes DdeI, MnlI, HaeIII and MspI. The planorbids were compared with snails of the same species and others reported from Venezuela and present in Brazil, Cuba and Mexico. All the enzymes showed a specific profile for each species, that of DdeI being the clearest. The snails were identified as B. glabrata, B. prona and B. kuhniana.

  8. Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes.

    Science.gov (United States)

    Ehrmann, Steffen; Liira, Jaan; Gärtner, Stefanie; Hansen, Karin; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Scherer-Lorenzen, Michael

    2017-09-06

    The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Our findings suggest that the ecosystem disservices of tick-borne diseases, via the

  9. rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments

    OpenAIRE

    O?Connor, Patrick B. F.; Li, Gene-Wei; Weissman, Jonathan S.; Atkins, John F.; Baranov, Pavel V.

    2013-01-01

    Motivation: Ribosome profiling is a new technique that allows monitoring locations of translating ribosomes on mRNA at a whole transcriptome level. A recent ribosome profiling study demonstrated that internal Shine?Dalgarno (SD) sequences have a major global effect on translation rates in bacteria: ribosomes pause at SD sites in mRNA. Therefore, it is important to understand how SD sites effect mRNA movement through the ribosome and generation of ribosome footprints. Results: Here, we provide...

  10. Changes in abundance of birds in a Neotropical forest fragment over 25 years: a review

    Directory of Open Access Journals (Sweden)

    Robinson, W. D.

    2001-01-01

    Full Text Available Few data are available to evaluate the long term effects of habitat isolation on species richness or abundances in the tropics. Barro Colorado Island (BCI, Panama, has been studied for more than 80 years since its isolation from surrounding lowland forest when the Panama Canal was constructed. Thirty-five percent of the originally present 200 resident species have disappeared. Although the loss of species is well-studied, changes in abundance that might help predict future losses have not been evaluated. One study in 1970 and the present study conducted 25 years later estimated abundances of most bird species on BCI. Comparisons indicate at least 37 species have declined by at least 50%. Twenty-six species of edge habitats are expected to decline as forest maturation proceeds, yet 11 forest species that are now rare may be lost soon. All 26 species that were present in 1970 but not detected in the mid-1990s were rare in 1970. Thus, rarity appears to be a good predictor of extinction risk in this tropical habitat fragment.

  11. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library.

    Directory of Open Access Journals (Sweden)

    Yanan Sun

    Full Text Available Single chain variable fragments (scFvs against diethylstilbestrol (DES were selected from the splenocytes of non-immunized mice by ribosome display technology. A naive library was constructed and engineered to allow in vitro transcription and translation using an E. coli lysate system. Alternating selection in solution and immobilization in microtiter wells was used to pan mRNA-ribosome-antibody (ARM complexes. After seven rounds of ribosome display, the expression vector pTIG-TRX containing the selected specific scFv DNAs were transformed into Escherichia coli BL21 (DE3 for expression. Twenty-six positive clones were screened and five clones had high antibody affinity and specificity to DES as evidenced by indirect competitive ELISA. Sequence analysis showed that these five DES-specific scFvs had different amino acid sequences, but the CDRs were highly similar. Surface plasmon resonance (SPR analysis was used to determine binding kinetics of one clone (30-1. The measured K(D was 3.79 µM. These results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab fragments from a naive library; this study provides a methodological framework for the development of novel immunoassays for multiple environmental pollutants with low molecular weight detection using recombinant antibodies.

  12. 5SRNAdb: an information resource for 5S ribosomal RNAs.

    Science.gov (United States)

    Szymanski, Maciej; Zielezinski, Andrzej; Barciszewski, Jan; Erdmann, Volker A; Karlowski, Wojciech M

    2016-01-04

    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA-protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model

    Science.gov (United States)

    Meilijson, Isaac; Kupiec, Martin; Ruppin, Eytan

    2011-01-01

    We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these variables, better than alternative (‘non-physical’) approaches. In addition, we show that the RFM can be used for accurate inference of various other quantities including genes' initiation rates and translation costs. These quantities could not be inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the predictive power of the model with respect to experimental data. This result suggests that in all organisms that were analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes, testifying to the model's promising biotechnological value in predicting the abundance of heterologous proteins before expressing them in the desired host. PMID:21909250

  14. Accumulation of single-strand breaks doses not result in double-strand DNA breaks: peculiarity of transcribing fragment of human ribosomal operon that allows its detection in biological fluids at the death of various cells in organism

    International Nuclear Information System (INIS)

    Vejko, N.N.; Spitkovskij, D.M.

    2000-01-01

    The evidences of stability of the human ribosomal gene in the transcribing range (TR-rDNA) to fragmentation are presented in two groups of experiments: 1) in the case of availability of the fragments in the cells of sectional corpse material (necrosis and apoptosis) and by pathologies accompanied by the cells death through the apoptosis or necrosis mechanism; 2) in the model experiments, wherein the separated genomes DNA is subjected to the impact of nucleases initiating single-strand breaks (SB), or chemical introduction with a subsequent comparative analysis of stability to fragmentation of various DNA sequences including TR-rDNA. The DNA solutions were subjected to γ-radiation with the dose rate of 4.8 Gy/min. It is shown that in spite of the great number of the SBs the TR-rDNA is characterized by increased stability to fragmentation, which makes it possible to propose this DNA fragment for application as a cell death marker in biological fluids [ru

  15. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified from 18S ribosomal RNA gene of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanyo, A.; Majiwa, P.W.

    2006-01-01

    Oligonucleotide primers were designed from the conserved nucleotide sequences of 18S ribosomal RNA (18S rRNA) gene of protozoans: Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum. The primers were used in polymerace chain reaction (PCR) to generate PCR products of approximately 1 Kb using genomic DNA from T. brucei and the four genotypic groups of T. congolense as template. The five PCR products so produced were digested with several restriction enzymes and hybridized to a DNA probe made from T. brucei PCR product of the same 18S rRNA gene region. Most restriction enzyme digests revealed polymorphism with respect to the location of their recognition sites on the five PCR products. The restriction fragment length polymorphism (RFLP) pattern observed indicate that the 18S rRNA gene sequences of trypanosomes: T. brucei and the four genotypes of T.congolence group are heterogeneous. The results further demonstrate that the region that was amplified can be used in specific identification of trypanosomes species and subspecies.(author)

  16. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong

    2009-10-09

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969- 983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies. © 2009 Wang, Qian.

  17. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  18. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress.

    Science.gov (United States)

    Sloan, Katherine E; Bohnsack, Markus T; Watkins, Nicholas J

    2013-10-17

    Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14(ARF), a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    Science.gov (United States)

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).

  20. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Metelev, Mikhail; Osterman, Ilya A.; Ghilarov, Dmitry; Khabibullina, Nelli F.; Yakimov, Alexander; Shabalin, Konstantin; Utkina, Irina; Travin, Dmitry Y.; Komarova, Ekaterina S.; Serebryakova, Marina; Artamonova, Tatyana; Khodorkovskii, Mikhail; Konevega, Andrey L.; Sergiev, Petr V.; Severinov, Konstantin; Polikanov, Yury S.

    2017-08-28

    Whereas screening of the small-molecule metabolites produced by most cultivatable microorganisms often results in the rediscovery of known compounds, genome-mining programs allow researchers to harness much greater chemical diversity, and result in the discovery of new molecular scaffolds. Here we report the genome-guided identification of a new antibiotic, klebsazolicin (KLB), from Klebsiella pneumoniae that inhibits the growth of sensitive cells by targeting ribosomes. A ribosomally synthesized post-translationally modified peptide (RiPP), KLB is characterized by the presence of a unique N-terminal amidine ring that is essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosomes by interfering with translation elongation. Structural analysis of the ribosome–KLB complex showed that the compound binds in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramin-B. KLB adopts a compact conformation and largely obstructs the tunnel. Engineered KLB fragments were observed to retain in vitro activity, and thus have the potential to serve as a starting point for the development of new bioactive compounds.

  1. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI...... approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  2. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    Science.gov (United States)

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  3. The nuclear import of ribosomal proteins is regulated by mTOR

    Science.gov (United States)

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  4. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Small subunit ribosomal metabarcoding reveals extraordinary trypanosomatid diversity in Brazilian bats.

    Directory of Open Access Journals (Sweden)

    Maria Augusta Dario

    2017-07-01

    Full Text Available Bats are a highly successful, globally dispersed order of mammals that occupy a wide array of ecological niches. They are also intensely parasitized and implicated in multiple viral, bacterial and parasitic zoonoses. Trypanosomes are thought to be especially abundant and diverse in bats. In this study, we used 18S ribosomal RNA metabarcoding to probe bat trypanosome diversity in unprecedented detail.Total DNA was extracted from the blood of 90 bat individuals (17 species captured along Atlantic Forest fragments of Espírito Santo state, southeast Brazil. 18S ribosomal RNA was amplified by standard and/or nested PCR, then deep sequenced to recover and identify Operational Taxonomic Units (OTUs for phylogenetic analysis. Blood samples from 34 bat individuals (13 species tested positive for infection by 18S rRNA amplification. Amplicon sequences clustered to 14 OTUs, of which five were identified as Trypanosoma cruzi I, T. cruzi III/V, Trypanosoma cruzi marinkellei, Trypanosoma rangeli, and Trypanosoma dionisii, and seven were identified as novel genotypes monophyletic to basal T. cruzi clade types of the New World. Another OTU was identified as a trypanosome like those found in reptiles. Surprisingly, the remaining OTU was identified as Bodo saltans-closest non-parasitic relative of the trypanosomatid order. While three blood samples featured just one OTU (T. dionisii, all others resolved as mixed infections of up to eight OTUs.This study demonstrates the utility of next-generation barcoding methods to screen parasite diversity in mammalian reservoir hosts. We exposed high rates of local bat parasitism by multiple trypanosome species, some known to cause fatal human disease, others non-pathogenic, novel or yet little understood. Our results highlight bats as a long-standing nexus among host-parasite interactions of multiple niches, sustained in part by opportunistic and incidental infections of consequence to evolutionary theory as much as to

  6. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    Science.gov (United States)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  7. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    Science.gov (United States)

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  8. Domestic dogs in a fragmented landscape in the Brazilian Atlantic Forest: abundance, habitat use and caring by owners

    Directory of Open Access Journals (Sweden)

    PC. Torres

    Full Text Available This study aimed at estimating the population size and attitudes of residents towards caring for domestic dogs, through questionnaire surveys, as well as the frequency of these animals in different habitats (anthropic and forest patch, using scent stations. The study was conducted in a severely fragmented area of the Brazilian Atlantic Forest. A large number of unrestricted dogs was recorded, averaging 6.2 ind/km². These dogs have owners and are regularly fed. Dog records decreased from the anthropogenic matrix to the forest patch edge, which suggests that dogs act as an edge effect on forest patches. Encounters between domestic dog and wild animals can still be frequent in severely fragmented landscapes, mainly at the forest edges. However the fact that most dogs have an owner and are more frequent in the anthropic habitat suggests that their putative effects are less severe than expected for a carnivore of such abundance, but the reinforcement of responsible ownership is needed to further ameliorate such effects.

  9. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage.

    Science.gov (United States)

    Azpurua, Jorge; Ke, Zhonghe; Chen, Iris X; Zhang, Quanwei; Ermolenko, Dmitri N; Zhang, Zhengdong D; Gorbunova, Vera; Seluanov, Andrei

    2013-10-22

    The naked mole-rat (Heterocephalus glaber) is a subterranean eusocial rodent with a markedly long lifespan and resistance to tumorigenesis. Multiple data implicate modulation of protein translation in longevity. Here we report that 28S ribosomal RNA (rRNA) of the naked mole-rat is processed into two smaller fragments of unequal size. The two breakpoints are located in the 28S rRNA divergent region 6 and excise a fragment of 263 nt. The excised fragment is unique to the naked mole-rat rRNA and does not show homology to other genomic regions. Because this hidden break site could alter ribosome structure, we investigated whether translation rate and amino acid incorporation fidelity were altered. We report that naked mole-rat fibroblasts have significantly increased translational fidelity despite having comparable translation rates with mouse fibroblasts. Although we cannot directly test whether the unique 28S rRNA structure contributes to the increased fidelity of translation, we speculate that it may change the folding or dynamics of the large ribosomal subunit, altering the rate of GTP hydrolysis and/or interaction of the large subunit with tRNA during accommodation, thus affecting the fidelity of protein synthesis. In summary, our results show that naked mole-rat cells produce fewer aberrant proteins, supporting the hypothesis that the more stable proteome of the naked mole-rat contributes to its longevity.

  10. Emergence of robust growth laws from optimal regulation of ribosome synthesis.

    Science.gov (United States)

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-08-22

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  11. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    Science.gov (United States)

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  12. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells.

    Science.gov (United States)

    Wang, Hsiang-Tsui; Chen, Tzu-Ying; Weng, Ching-Wen; Yang, Chun-Hsiang; Tang, Moon-Shong

    2016-12-06

    Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.

  13. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells.

    Science.gov (United States)

    Tan, Thomas C J; Knight, John; Sbarrato, Thomas; Dudek, Kate; Willis, Anne E; Zamoyska, Rose

    2017-07-25

    Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.

  14. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  15. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    Science.gov (United States)

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  16. Low Abundance of Plastic Fragments in the Surface Waters of the Red Sea

    KAUST Repository

    Martí, Elisa

    2017-11-08

    The floating plastic debris along the Arabian coast of the Red Sea was sampled by using surface-trawling plankton nets. A total of 120 sampling sites were spread out over the near-shore waters along 1,500 km of coastline during seven cruises performed during 2016 and 2017. Plastic debris, dominated by millimeter-sized pieces, was constituted mostly of fragments of rigid objects (73%) followed by pieces of films (17%), fishing lines (6%), and foam (4%). These fragments were mainly made up by polyethylene (69%) and polypropylene (21%). Fibers, likely released from synthetic textiles, were ubiquitous and abundant, although were analyzed independently due to the risk of including non-plastic fibers and airborne contamination of samples in spite of the precautions taken. The plastic concentrations (excluding possible plastic fibers) contrasts with those found in other semi-closed seas, such as the neighboring Mediterranean. They were relatively low all over the Red Sea ( < 50,000 items km; mean ± SD = 3,546 ± 8,154 plastic item km, 1.1 ± 3.0 g km) showing no clear spatial relationship with the distribution of coastal population. Results suggests a low plastic waste input from land as the most plausible explanation for this relative shortage of plastic in the surface waters of the Red Sea; however, the additional intervention of particular processes of surface plastic removal by fish or the filtering activity of the extensive coral reefs along the coastline cannot be discarded. In addition, our study highlights the relevance of determining specific regional conversion rates of mismanaged plastic waste to marine debris, accounting for the role of near-shore activities (e.g., beach tourism, recreational navigation), in order to estimate plastic waste inputs into the ocean.

  17. Low Abundance of Plastic Fragments in the Surface Waters of the Red Sea

    Directory of Open Access Journals (Sweden)

    Elisa Martí

    2017-11-01

    Full Text Available The floating plastic debris along the Arabian coast of the Red Sea was sampled by using surface-trawling plankton nets. A total of 120 sampling sites were spread out over the near-shore waters along 1,500 km of coastline during seven cruises performed during 2016 and 2017. Plastic debris, dominated by millimeter-sized pieces, was constituted mostly of fragments of rigid objects (73% followed by pieces of films (17%, fishing lines (6%, and foam (4%. These fragments were mainly made up by polyethylene (69% and polypropylene (21%. Fibers, likely released from synthetic textiles, were ubiquitous and abundant, although were analyzed independently due to the risk of including non-plastic fibers and airborne contamination of samples in spite of the precautions taken. The plastic concentrations (excluding possible plastic fibers contrasts with those found in other semi-closed seas, such as the neighboring Mediterranean. They were relatively low all over the Red Sea (<50,000 items km−2; mean ± SD = 3,546 ± 8,154 plastic item km−2, 1.1 ± 3.0 g km−2 showing no clear spatial relationship with the distribution of coastal population. Results suggests a low plastic waste input from land as the most plausible explanation for this relative shortage of plastic in the surface waters of the Red Sea; however, the additional intervention of particular processes of surface plastic removal by fish or the filtering activity of the extensive coral reefs along the coastline cannot be discarded. In addition, our study highlights the relevance of determining specific regional conversion rates of mismanaged plastic waste to marine debris, accounting for the role of near-shore activities (e.g., beach tourism, recreational navigation, in order to estimate plastic waste inputs into the ocean.

  18. [Identification of Clonorchis sinensis metacercariae based on PCR targeting ribosomal DNA ITS regions and COX1 gene].

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong

    2014-06-01

    To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.

  19. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  20. In vitro degradation of ribosomes.

    Science.gov (United States)

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  1. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering

    International Nuclear Information System (INIS)

    Burkhardt, N.

    1997-01-01

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ( 1 H) for deuterium ( 2 H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [de

  2. Detection and Quantification of Ribosome Inhibition by Aminoglycoside Antibiotics in Living Bacteria Using an Orthogonal Ribosome-Controlled Fluorescent Reporter.

    Science.gov (United States)

    Huang, Shijie; Zhu, Xuechen; Melançon, Charles E

    2016-01-15

    The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome-controlled green fluorescent protein (GFP) reporter that produce fluorescent signal when the orthogonal ribosome is inhibited. As a proof of concept, we demonstrate that these strains, when coexpressing homogeneous populations of aminoglycoside resistant ribosomes, act as sensitive and quantitative detectors of ribosome inhibition by a set of 12 structurally diverse aminoglycoside antibiotics. We suggest that this strategy can be extended to quantifying ribosome inhibition by other drug classes.

  3. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    Science.gov (United States)

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  4. The ribosome can prevent aggregation of partially folded protein intermediates: studies using the Escherichia coli ribosome.

    Directory of Open Access Journals (Sweden)

    Bani Kumar Pathak

    Full Text Available BACKGROUND: Molecular chaperones that support de novo folding of proteins under non stress condition are classified as chaperone 'foldases' that are distinct from chaperone' holdases' that provide high affinity binding platform for unfolded proteins and prevent their aggregation specifically under stress conditions. Ribosome, the cellular protein synthesis machine can act as a foldase chaperone that can bind unfolded proteins and release them in folding competent state. The peptidyl transferase center (PTC located in the domain V of the 23S rRNA of Escherichia coli ribosome (bDV RNA is the chaperoning center of the ribosome. It has been proposed that via specific interactions between the RNA and refolding proteins, the chaperone provides information for the correct folding of unfolded polypeptide chains. RESULTS: We demonstrate using Escherichia coli ribosome and variants of its domain V RNA that the ribosome can bind to partially folded intermediates of bovine carbonic anhydrase II (BCAII and lysozyme and suppress aggregation during their refolding. Using mutants of domain V RNA we demonstrate that the time for which the chaperone retains the bound protein is an important factor in determining its ability to suppress aggregation and/or support reactivation of protein. CONCLUSION: The ribosome can behave like a 'holdase' chaperone and has the ability to bind and hold back partially folded intermediate states of proteins from participating in the aggregation process. Since the ribosome is an essential organelle that is present in large numbers in all living cells, this ability of the ribosome provides an energetically inexpensive way to suppress cellular aggregation. Further, this ability of the ribosome might also be crucial in the context that the ribosome is one of the first chaperones to be encountered by a large nascent polypeptide chains that have a tendency to form partially folded intermediates immediately following their synthesis.

  5. Season-modulated responses of Neotropical bats to forest fragmentation.

    Science.gov (United States)

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in

  6. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial

    Directory of Open Access Journals (Sweden)

    Shumeng Kou

    2018-03-01

    Full Text Available Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya, Desmonostoc muscorum, and Microcoleus steenstrupii. The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ; the most (relative abundant being uncharacterized species within the genera Methylobacillus, Solirubrobacter, and Ohtaekwangia. Three metal treatment alone resulted in identification of 22 OTUs (genera or species which were not detected in control soil, notably including Yonghaparkia alkaliphila, Pedobacter steynii, Pseudolabrys taiwanensis

  7. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial.

    Science.gov (United States)

    Kou, Shumeng; Vincent, Gilles; Gonzalez, Emmanuel; Pitre, Frederic E; Labrecque, Michel; Brereton, Nicholas J B

    2018-01-01

    Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs) identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya , Desmonostoc muscorum , and Microcoleus steenstrupii . The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ); the most (relative) abundant being uncharacterized species within the genera Methylobacillus , Solirubrobacter , and Ohtaekwangia . Three metal treatment alone resulted in identification of 22 OTUs (genera or species) which were not detected in control soil, notably including Yonghaparkia alkaliphila , Pedobacter steynii , Pseudolabrys taiwanensis , Methylophilus

  8. Seasonal Blowfly Distribution and Abundance in Fragmented Landscapes. Is It Useful in Forensic Inference about Where a Corpse Has Been Decaying?

    Science.gov (United States)

    Zabala, Jabi; Díaz, Beatriz; Saloña-Bordas, Marta I.

    2014-01-01

    Blowflies are insects of forensic interest as they may indicate characteristics of the environment where a body has been laying prior to the discovery. In order to estimate changes in community related to landscape and to assess if blowfly species can be used as indicators of the landscape where a corpse has been decaying, we studied the blowfly community and how it is affected by landscape in a 7,000 km2 region during a whole year. Using baited traps deployed monthly we collected 28,507 individuals of 10 calliphorid species, 7 of them well represented and distributed in the study area. Multiple Analysis of Variance found changes in abundance between seasons in the 7 analyzed species, and changes related to land use in 4 of them (Calliphora vomitoria, Lucilia ampullacea, L. caesar and L. illustris). Generalised Linear Model analyses of abundance of these species compared with landscape descriptors at different scales found only a clear significant relationship between summer abundance of C. vomitoria and distance to urban areas and degree of urbanisation. This relationship explained more deviance when considering the landscape composition at larger geographical scales (up to 2,500 m around sampling site). For the other species, no clear relationship between land uses and abundance was found, and therefore observed changes in their abundance patterns could be the result of other variables, probably small changes in temperature. Our results suggest that blowfly community composition cannot be used to infer in what kind of landscape a corpse has decayed, at least in highly fragmented habitats, the only exception being the summer abundance of C. vomitoria. PMID:24918607

  9. D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp.

    Science.gov (United States)

    Dagar, Sumit S; Kumar, Sanjay; Mudgil, Priti; Singh, Rameshwar; Puniya, Anil K

    2011-09-01

    This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation.

  10. A ribosome without RNA

    Directory of Open Access Journals (Sweden)

    Harold S Bernhardt

    2015-11-01

    Full Text Available It was Francis Crick who first asked why the ribosome contains so much RNA, and discussed the implications of this for the direct flow of genetic information from DNA to protein. Remarkable advances in our understanding of the ribosome and protein synthesis, including the recent publication of two mammalian mitochondrial ribosome structures, have shed new light on this intriguing aspect of evolution in molecular biology. We examine here whether RNA is indispensable for coded protein synthesis, or whether an all-protein ‘ribosome’ (or ‘synthosome’ might be possible, with a protein enzyme catalyzing peptide synthesis, and release factor-like protein adaptors able to read a message composed of deoxyribonucleotides. We also compare the RNA world hypothesis with the alternative ‘proteins first’ hypothesis in terms of their different understandings of the evolution of the ribosome, and whether this might have been preceded by an ancestral form of nonribosomal peptide synthesis catalyzed by protein enzymes.

  11. Characterization of Anti-Citrinin Specific ScFvs Selected from Non-Immunized Mouse Splenocytes by Eukaryotic Ribosome Display.

    Directory of Open Access Journals (Sweden)

    Haiwei Cheng

    Full Text Available Single chain variable fragments (scFvs against citrinin (CIT were selected from a scFv library constructed from the splenocytes of non-immunized mice by an improved eukaryotic ribosome display technology in this study. Bovine serum albumin (BSA/ CIT-BSA and ovalbumin (OVA/ CIT-OVA were used as the antigens to select specific anti-CIT scFvs. Eukaryotic in situ RT-PCR method was used to recover the selected mRNA after every affinity selection. After six rounds of ribosome display, expression vector pTIG-TRX carrying specific scFv DNAs were constructed and transformed into Escherichia coli BL21 (DE3 for protein expression. Thirteen positive clones were selected out of which three (designated 23, 68 and 109 showed high binding activity and specificity to CIT by indirect ELISA, while no clone showed binding activity with carrier proteins. The three scFvs showed high specificity to CIT and the cross reactivity with other mycotoxins was below 0.01% as determined by indirect competitive ELISA. These specific scFvs offer a potential novel immunoassay method for CIT residues. This study confirmed the effectiveness of the improved eukaryotic ribosome display system and could be used as a reference for the selection of scFvs specific to other small molecules using ribosome display.

  12. Does tropical forest fragmentation increase long-term variability of butterfly communities?

    Directory of Open Access Journals (Sweden)

    Allison K Leidner

    2010-03-01

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism, and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics.

  13. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    Science.gov (United States)

    Leidner, Allison K.; Haddad, Nick M.; Lovejoy, Thomas E.

    2010-01-01

    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics. PMID:20224772

  14. Use of a fragment of the tuf gene for phytoplasma 16Sr group/subgroup differentiation

    DEFF Research Database (Denmark)

    Contaldo, Nicoletta; Canel, Alessandro; Makarova, Olga

    2011-01-01

    The usefulness of RFLP analyses on a 435 bp fragment of the tuf gene for preliminary identification of phytoplasmas from a number of phytoplasma ribosomal groups and/or 'Candidatus. Phytoplasma' was verified. The strains employed belong to thirteen 16Sr DNA groups and 22 different subgroups...

  15. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1.

    Directory of Open Access Journals (Sweden)

    Monique N O'Leary

    Full Text Available Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/- mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/- mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1 expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.

  16. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...

  17. effect of habitat fragmentation on diversity and abundance of nesting

    African Journals Online (AJOL)

    cw

    Department of Zoology and Wildlife Conservation, University of Dar es ... Keywords: fragmentation, nesting birds, thickets, campus of the University of Dar es ... 43(1), 2017 ..... Yale University Press, ... bird species in urban parks: Effects of park.

  18. Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing

    Directory of Open Access Journals (Sweden)

    Rhoads Daniel D

    2012-11-01

    Full Text Available Abstract Background Chronic wounds affect millions of people and cost billions of dollars in the United States each year. These wounds harbor polymicrobial biofilm communities, which can be difficult to elucidate using culturing methods. Clinical molecular microbiological methods are increasingly being employed to investigate the microbiota of chronic infections, including wounds, as part of standard patient care. However, molecular testing is more sensitive than culturing, which results in markedly different results being reported to clinicians. This study compares the results of aerobic culturing and molecular testing (culture-free 16S ribosomal DNA sequencing, and it examines the relative abundance score that is generated by the molecular test and the usefulness of the relative abundance score in predicting the likelihood that the same organism would be detected by culture. Methods Parallel samples from 51 chronic wounds were studied using aerobic culturing and 16S DNA sequencing for the identification of bacteria. Results One hundred forty-five (145 unique genera were identified using molecular methods, and 68 of these genera were aerotolerant. Fourteen (14 unique genera were identified using aerobic culture methods. One-third (31/92 of the cultures were determined to be Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis with higher relative abundance scores were more likely to be detected by culture as demonstrated with regression modeling. Conclusion Discordance between molecular and culture testing is often observed. However, culture-free 16S ribosomal DNA sequencing and its relative abundance score can provide clinicians with insight into which bacteria are most abundant in a sample and which are most likely to be detected by culture.

  19. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?

    Science.gov (United States)

    Magnago, Luiz Fernando S; Magrach, Ainhoa; Laurance, William F; Martins, Sebastião V; Meira-Neto, João Augusto A; Simonelli, Marcelo; Edwards, David P

    2015-09-01

    Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer

  20. Bracken: estimating species abundance in metagenomics data

    Directory of Open Access Journals (Sweden)

    Jennifer Lu

    2017-01-01

    Full Text Available Metagenomic experiments attempt to characterize microbial communities using high-throughput DNA sequencing. Identification of the microorganisms in a sample provides information about the genetic profile, population structure, and role of microorganisms within an environment. Until recently, most metagenomics studies focused on high-level characterization at the level of phyla, or alternatively sequenced the 16S ribosomal RNA gene that is present in bacterial species. As the cost of sequencing has fallen, though, metagenomics experiments have increasingly used unbiased shotgun sequencing to capture all the organisms in a sample. This approach requires a method for estimating abundance directly from the raw read data. Here we describe a fast, accurate new method that computes the abundance at the species level using the reads collected in a metagenomics experiment. Bracken (Bayesian Reestimation of Abundance after Classification with KrakEN uses the taxonomic assignments made by Kraken, a very fast read-level classifier, along with information about the genomes themselves to estimate abundance at the species level, the genus level, or above. We demonstrate that Bracken can produce accurate species- and genus-level abundance estimates even when a sample contains multiple near-identical species.

  1. Quantification of DNA fragmentation in processed foods using real-time PCR.

    Science.gov (United States)

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. D1/D2 Domain of Large-Subunit Ribosomal DNA for Differentiation of Orpinomyces spp.▿

    Science.gov (United States)

    Dagar, Sumit S.; Kumar, Sanjay; Mudgil, Priti; Singh, Rameshwar; Puniya, Anil K.

    2011-01-01

    This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation. PMID:21784906

  3. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.

    Science.gov (United States)

    Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C

    2015-10-06

    The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Differences in a ribosomal DNA sequence of Strongylus species allows identification of single eggs.

    Science.gov (United States)

    Campbell, A J; Gasser, R B; Chilton, N B

    1995-03-01

    In the current study, molecular techniques were evaluated for the species identification of individual strongyle eggs. Adult worms of Strongylus edentatus, S. equinus and S. vulgaris were collected at necropsy from horses from Australia and the U.S.A. Genomic DNA was isolated and a ribosomal transcribed spacer (ITS-2) amplified and sequenced using polymerase chain reaction (PCR) techniques. The length of the ITS-2 sequence of S. edentatus, S. equinus and S. vulgaris ranged between 217 and 235 nucleotides. Extensive sequence analysis demonstrated a low degree (0-0.9%) of intraspecific variation in the ITS-2 for the Strongylus species examined, whereas the levels of interspecific differences (13-29%) were significantly greater. Interspecific differences in the ITS-2 sequences allowed unequivocal species identification of single worms and eggs using PCR-linked restriction fragment length polymorphism. These results demonstrate the potential of the ribosomal spacers as genetic markers for species identification of single strongyle eggs from horse faeces.

  5. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering; Strukturuntersuchungen am 70S-Ribosom von E.coli unter Anwendung von Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, N. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1997-12-31

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ({sup 1}H) for deuterium ({sup 2}H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [Deutsch] Ribosomen sind Ribonukleinsaeure-Protein Komplexe, die in allen lebenden Organismen die Proteinbiosynthese katalysieren. Strukturmodelle fuer das prokaryontische 70S-Ribosom beruhen derzeit vorwiegend auf elektronenmikroskopischen Untersuchungen und beschreiben im wesentlichen die aeussere Oberflaeche des Partikels. Informationen ueber die innere Struktur des Ribosoms koennen Messungen mit

  6. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering; Strukturuntersuchungen am 70S-Ribosom von E.coli unter Anwendung von Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, N [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1998-12-31

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ({sup 1}H) for deuterium ({sup 2}H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [Deutsch] Ribosomen sind Ribonukleinsaeure-Protein Komplexe, die in allen lebenden Organismen die Proteinbiosynthese katalysieren. Strukturmodelle fuer das prokaryontische 70S-Ribosom beruhen derzeit vorwiegend auf elektronenmikroskopischen Untersuchungen und beschreiben im wesentlichen die aeussere Oberflaeche des Partikels. Informationen ueber die innere Struktur des Ribosoms koennen Messungen mit

  7. Differential Stoichiometry among Core Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2015-11-01

    Full Text Available Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs, some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function.

  8. Control of ribosome formation in rat heart

    International Nuclear Information System (INIS)

    Russo, L.A.

    1987-01-01

    Diabetes of 9 days duration produced a 17% diminution in the rate of total protein synthesis in rat hearts perfused as Langendorff preparations supplied with glucose, plasma levels of amino acids, and 400 μU/ml insulin. This reduction was attributable to a decrease in efficiency of protein synthesis and total RNA content. Total messenger RNA content decreased in diabetic hearts in proportion to the reduction in total RNA. Diabetes also resulted in diminished ribosome content as reflected by the induction in total RNA. Ribosome production was investigated by monitoring incorporation of [ 3 H]phenylalanine into the proteins of cytoplasmic ribosomes. Rates of ribosome formation in diabetic hearts were as fast as control rates in the presence of insulin, and were faster than control rates in the absence of the hormone. These results indicated that ribosome content fell in diabetic hearts despite unchanged or faster rates of ribosome formation

  9. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution

    DEFF Research Database (Denmark)

    Greber, Basil J; Boehringer, Daniel; Godinic-Mikulcic, Vlatka

    2012-01-01

    additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter...... between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes......, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea....

  10. Comparison of habitat quality and diet of Colobus vellerosus in forest fragments in Ghana.

    Science.gov (United States)

    Wong, Sarah N P; Saj, Tania L; Sicotte, Pascale

    2006-10-01

    The forest fragments surrounding the Boabeng-Fiema Monkey Sanctuary (BFMS) in central Ghana shelter small populations of Colobus vellerosus. Little is known about these populations or the ability of the fragments to support them, despite the fact that these fragments represent potentially important habitat for the colobus in this region. We compared the diet of three groups of C. vellerosus in the fragments to two groups in BFMS. We also examined the differences in plant species composition and food abundance among fragments. The study took place from June to November 2003. Dietary data were collected using scan sampling. Plant species composition and food abundance were evaluated using tree plots and large tree surveys. As in BFMS groups, leaves constituted the highest proportion of the diet of fragment groups, yet the colobus in fragments fed on more lianas than did those in BFMS. Over 50% of all species observed eaten by colobus in the fragments were not consumed in BFMS groups during the same season. Food abundance was similar between fragments and BFMS, although species composition differed. There was no relationship between the density of colobus and the density of food trees or percentage of food species, suggesting that other factors may be influencing the number of colobus present. This study highlights the broad dietary range of C. vellerosus, which may be a factor allowing its survival in these fragments.

  11. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site.

    Science.gov (United States)

    Fuchs, Gabriele; Petrov, Alexey N; Marceau, Caleb D; Popov, Lauren M; Chen, Jin; O'Leary, Seán E; Wang, Richard; Carette, Jan E; Sarnow, Peter; Puglisi, Joseph D

    2015-01-13

    Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.

  12. Crystallization of ribosomes from Thermus thermophilus

    International Nuclear Information System (INIS)

    Karpova, E.A.; Serdyuk, I.N.; Tarkhovskii, Yu.S.; Orlova, E.V.; Borovyagin, V.L.

    1987-01-01

    An understanding of the molecular bases of the process of protein biosynthesis on the ribosome requires a knowledge of its structure with high three-dimensional resolution involving the method of x-ray crystallographic analysis. The authors report on the production of crystals of the 70S ribosomes from a new source - the highly thermophilic bacterium Thermus thermophilus. Ribosomes for crystallization were obtained from Th. thermophilus strain HB8 by two washings in buffer with high ionic strength. The ribosome preparation was investigated for homogeneity by the method of high-speed sedimentation in a buffer containing 15 mM MgCl 2 , 50 mM NH 4 Cl, and 10 MM Tris-HCl, pH 7.5. Analysis showed that the preparation if homogeneous. The same preparation was investigated for intactness of ribosomal RNA by the method of gel electrophoresis in 2.75% acrylamide 0.5% agarose gel in a buffer containing 30 mM Tris, 30 mM NaH 2 PO 4 , 10 mM EDTA, 1-2% SDS, and 6 M urea. Analysis showed that the preparation possesses intact 16S and 23S RNA. The latter did not degrade, at least in a week of exposure of the ribosomes in buffer solution at 5 0 C. The ribosome preparation had no appreciable RNase activity, which was verified by incubating 4.5 micrograms of ribosomes with 3 micrograms of 14 C-labeled 16S rRna (50 0 C, 90 min) in a buffer containing 10 mM MgCl 2 , 100 mM NH 4 Cl, and 10 mM Tris-HCl, pH/sub 20 0 / 7.5. The incubated nonhydrolyzed RNA was precipitated with 5% trichloroacetic acid and applied on a GF/C filter. The radioactivity was determined in a toluene scintillator on an LS-100C counter

  13. Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Liwei; Zhao, Wenting; Zheng, Quanhui; Chen, Tianda; Qi, Ji; Li, Guodong; Tong, Tanjun, E-mail: tztong@bjmu.edu.cn

    2016-01-15

    The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. The data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.

  14. Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence

    International Nuclear Information System (INIS)

    Ma, Liwei; Zhao, Wenting; Zheng, Quanhui; Chen, Tianda; Qi, Ji; Li, Guodong; Tong, Tanjun

    2016-01-01

    The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. The data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.

  15. Cryo-EM Structure of the Archaeal 50S Ribosomal Subunit in Complex with Initiation Factor 6 and Implications for Ribosome Evolution

    Science.gov (United States)

    Greber, Basil J.; Boehringer, Daniel; Godinic-Mikulcic, Vlatka; Crnkovic, Ana; Ibba, Michael; Weygand-Durasevic, Ivana; Ban, Nenad

    2013-01-01

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea. PMID:22306461

  16. Ribosomal history reveals origins of modern protein synthesis.

    Directory of Open Access Journals (Sweden)

    Ajith Harish

    Full Text Available The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17 and the oldest substructure (the ribosomal ratchet in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  17. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein.

    Science.gov (United States)

    Chandler, Josephine R; Truong, Thao T; Silva, Patricia M; Seyedsayamdost, Mohammad R; Carr, Gavin; Radey, Matthew; Jacobs, Michael A; Sims, Elizabeth H; Clardy, Jon; Greenberg, E Peter

    2012-12-18

    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e). Currently available antibiotics target surprisingly few cellular functions, and there is a need to identify novel antibiotic targets. We have been interested in the Burkholderia thailandensis bactobolins, and we sought to learn about the target of bactobolin activity by mapping spontaneous resistance mutations in the bactobolin-sensitive Bacillus subtilis. Our results indicate that the bactobolin target is the 50S ribosome-associated L2 protein or a region of the ribosome affected by L2. Bactobolin-resistant mutants are not resistant to other known ribosome inhibitors. Our evidence indicates that bactobolins

  18. Post-transcriptional regulation of ribosome biogenesis in yeast

    Directory of Open Access Journals (Sweden)

    Isabelle C. Kos-Braun

    2017-05-01

    Full Text Available Most microorganisms are exposed to the constantly and often rapidly changing environment. As such they evolved mechanisms to balance their metabolism and energy expenditure with the resources available to them. When resources become scarce or conditions turn out to be unfavourable for growth, cells reduce their metabolism and energy usage to survive. One of the major energy consuming processes in the cell is ribosome biogenesis. Unsurprisingly, cells encountering adverse conditions immediately shut down production of new ribosomes. It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA (rRNA. However, if pre-rRNA processing and ribosome assembly are regulated post-transcriptionally remains largely unclear. We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-rRNA processing pathways depending on the environmental conditions. Our findings reveal a new level of complexity in the regulation of ribosome biogenesis.

  19. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  20. Effect of primary and secondary radicals on chain breaks in ribosomal RNA in E. coli ribosomes

    International Nuclear Information System (INIS)

    Singh, H.; Bishop, J.

    1984-01-01

    It has been shown previously that, in dilute aerated solutions, ribosomes are inactivated by OH radicals and by secondary radicals produced from added alcohols (Singh and Vadasz 1983 a). In de-aerated solutions, both radicalH and e - sub(aq) also inactivate ribosomes (Singh and Vadasz 1983 b). The results of these studies and other on different systems (Adams et al. 1973, Aldrich and Cundall 1969, Dewey and Stein 1970, Masuda et al. 1971, Nabben et al. 1982, 1983, Samuni et al. 1980, Singh and Singh 1982) have shown that damage to biological systems occurs by diverse mechanisms. One of these mechanisms involves chain breaks in RNA (Pollard and Weller 1967). The purpose of this study was to determine which of the primary and secondary radicals cause chain breaks in ribosomal RNA (rRNA) within the ribosomes. (author)

  1. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    Science.gov (United States)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    Our understanding of environmental microbiology has been greatly enhanced by community genome sequencing of DNA recovered directly the environment. Community genomics provides insights into the diversity, community structure, metabolic function, and evolution of natural populations of uncultivated microbes, thereby revealing dynamics of how microorganisms interact with each other and their environment. Recent studies have demonstrated the potential for reconstructing near-complete genomes from natural environments while highlighting the challenges of analyzing community genomic sequence, especially from diverse environments. A major challenge of shotgun community genome sequencing is identification of DNA fragments from minor community members for which only low coverage of genomic sequence is present. We analyzed community genome sequence retrieved from biofilms in an acid mine drainage (AMD) system in the Richmond Mine at Iron Mountain, CA, with an emphasis on identification and assembly of DNA fragments from low-abundance community members. The Richmond mine hosts an extensive, relatively low diversity subterranean chemolithoautotrophic community that is sustained entirely by oxidative dissolution of pyrite. The activity of these microorganisms greatly accelerates the generation of AMD. Previous and ongoing work in our laboratory has focused on reconstrucing genomes of dominant community members, including several bacteria and archaea. We binned contigs from several samples (including one new sample and two that had been previously analyzed) by tetranucleotide frequency with clustering by Self-Organizing Maps (SOM). The binning, evaluated by comparison with information from the manually curated assembly of the dominant organisms, was found to be very effective: fragments were correctly assigned with 95% accuracy. Improperly assigned fragments often contained sequences that are either evolutionarily constrained (e.g. 16S rRNA genes) or mobile elements that are

  2. Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA.

    OpenAIRE

    Williams, D W; Wilson, M J; Lewis, M A; Potts, A J

    1995-01-01

    The PCR was used to amplify a targeted region of the ribosomal DNA from 84 Candida isolates. Unique product sizes were obtained for Candida guilliermondii, Candida (Torulopsis) glabrata, and Candida pseudotropicalis. Isolates of Candida albicans, Candida tropicalis, Candida stellatoidea, Candida parapsilosis, and Candida krusei could be identified following restriction digestion of the PCR products.

  3. Placeholder factors in ribosome biogenesis: please, pave my way

    Directory of Open Access Journals (Sweden)

    Francisco J. Espinar-Marchena

    2017-04-01

    Full Text Available The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as “placeholders”. Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.

  4. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Science.gov (United States)

    Braschler, Brigitte; Baur, Bruno

    2016-01-01

    Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to

  5. Landscape responses of bats to habitat fragmentation in Atlantic forest of paraguay

    Science.gov (United States)

    Gorresen, P.M.; Willig, M.R.

    2004-01-01

    Understanding effects of habitat loss and fragmentation on populations or communities is critical to effective conservation and restoration. This is particularly important for bats because they provide vital services to ecosystems via pollination and seed dispersal, especially in tropical and subtropical habitats. Based on more than 1,000 h of survey during a 15-month period, we quantified species abundances and community structure of phyllostomid bats at 14 sites in a 3,000-km2 region of eastern Paraguay. Abundance was highest for Artibeus lituratus in deforested landscapes and for Chrotopterus auritus in forested habitats. In contrast, Artibeus fimbriatus, Carollia perspicillata, Glossophaga soricina, Platyrrhinus lineatus, Pygoderma bilabiatum, and Sturnira lilium attained highest abundance in moderately fragmented forest landscapes. Forest cover, patch size, and patch density frequently were associated with abundance of species. At the community level, species richness was highest in partly deforested landscapes, whereas evenness was greatest in forested habitat. In general, the highest diversity of bats occurred in landscapes comprising moderately fragmented forest habitat. This underscores the importance of remnant habitat patches to conservation strategies.

  6. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong; Qian, Pei-Yuan

    2009-01-01

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions

  7. Responses of bats to forest fragmentation at Pozuzo, Peru

    Directory of Open Access Journals (Sweden)

    José Luis Mena

    2011-05-01

    Full Text Available Forest fragmentation and deforestation are among the major threats to Peruvian bats conservation. Unfortunately,information about the effects of these threats above 500 m elevation is lacking. In this study, I assessedbat responses to fragmentation in Pozuzo (Pasco at a landscape scale approach. I evaluate two hypothesesregarding the role of bats as indicators of habitat disturbance. The first prediction says that landscapes highlydisturbed will show higher abundances of habitat generalist species such as frugivorous bats belonging to thesubfamilies Stenodermatinae and Carollinae. The second prediction regards that landscapes with greater forestcover will show higher abundance of habitat specialist species such as animalivorous bat species belongingto the subfamily Phyllostominae, a guild sensitive to forest disturbance. I found evidence supporting the animalivoroushypothesis but it was partial to the frugivorous hypothesis. This study highlights the importance offorest fragments to bat conservation in human-modified landscapes.

  8. Defective ribosome assembly in Shwachman-Diamond syndrome.

    Science.gov (United States)

    Wong, Chi C; Traynor, David; Basse, Nicolas; Kay, Robert R; Warren, Alan J

    2011-10-20

    Shwachman-Diamond syndrome (SDS), a recessive leukemia predisposition disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, skeletal abnormalities and poor growth, is caused by mutations in the highly conserved SBDS gene. Here, we test the hypothesis that defective ribosome biogenesis underlies the pathogenesis of SDS. We create conditional mutants in the essential SBDS ortholog of the ancient eukaryote Dictyostelium discoideum using temperature-sensitive, self-splicing inteins, showing that mutant cells fail to grow at the restrictive temperature because ribosomal subunit joining is markedly impaired. Remarkably, wild type human SBDS complements the growth and ribosome assembly defects in mutant Dictyostelium cells, but disease-associated human SBDS variants are defective. SBDS directly interacts with the GTPase elongation factor-like 1 (EFL1) on nascent 60S subunits in vivo and together they catalyze eviction of the ribosome antiassociation factor eukaryotic initiation factor 6 (eIF6), a prerequisite for the translational activation of ribosomes. Importantly, lymphoblasts from SDS patients harbor a striking defect in ribosomal subunit joining whose magnitude is inversely proportional to the level of SBDS protein. These findings in Dictyostelium and SDS patient cells provide compelling support for the hypothesis that SDS is a ribosomopathy caused by corruption of an essential cytoplasmic step in 60S subunit maturation.

  9. Emerging functions of ribosomal proteins in gene-specific transcription and translation

    International Nuclear Information System (INIS)

    Lindstroem, Mikael S.

    2009-01-01

    Ribosomal proteins have remained highly conserved during evolution presumably reflecting often critical functions in ribosome biogenesis or mature ribosome function. In addition, several ribosomal proteins possess distinct extra-ribosomal functions in apoptosis, DNA repair and transcription. An increasing number of ribosomal proteins have been shown to modulate the trans-activation function of important regulatory proteins such as NF-κB, p53, c-Myc and nuclear receptors. Furthermore, a subset of ribosomal proteins can bind directly to untranslated regions of mRNA resulting in transcript-specific translational control outside of the ribosome itself. Collectively, these findings suggest that ribosomal proteins may have a wider functional repertoire within the cell than previously thought. The future challenge is to identify and validate these novel functions in the background of an often essential primary function in ribosome biogenesis and cell growth.

  10. Sequence of a cloned cDNA encoding human ribosomal protein S11

    Energy Technology Data Exchange (ETDEWEB)

    Lott, J B; Mackie, G A

    1988-02-11

    The authors have isolated a cloned cDNA that encodes human ribosomal protein (rp) S11 by screening a human fibroblast cDNA library with a labelled 204 bp DNA fragment encompassing residues 212-416 of pRS11, a rat rp Sll cDNA clone. The human rp S11 cloned cDNA consists of 15 residues of the 5' leader, the entire coding sequence and all 51 residues of the 3' untranslated region. The predicted amino acid sequence of 158 residues is identical to rat rpS11. The nucleotide sequence in the coding region differs, however, from that in rat in the first position in two codons and in the third position in 44 codons.

  11. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Directory of Open Access Journals (Sweden)

    Brigitte Braschler

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice in 12 small (1.5 m * 1.5 m and 12 large (4.5 m * 4.5 m fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in

  12. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response.

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    Full Text Available Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6-7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development.

  13. Eukaryotic ribosome display with in situ DNA recovery.

    Science.gov (United States)

    He, Mingyue; Edwards, Bryan M; Kastelic, Damjana; Taussig, Michael J

    2012-01-01

    Ribosome display is a cell-free display technology for in vitro selection and optimisation of proteins from large diversified libraries. It operates through the formation of stable protein-ribosome-mRNA (PRM) complexes and selection of ligand-binding proteins, followed by DNA recovery from the selected genetic information. Both prokaryotic and eukaryotic ribosome display systems have been developed. In this chapter, we describe the eukaryotic rabbit reticulocyte method in which a distinct in situ single-primer RT-PCR procedure is used to recover DNA from the selected PRM complexes without the need for prior disruption of the ribosome.

  14. Patch size effects on plant species decline in an experimentally fragmented landscape.

    Science.gov (United States)

    Collins, Cathy D; Holt, Robert D; Foster, Bryan L

    2009-09-01

    Understanding local and global extinction is a fundamental objective of both basic and applied ecology. Island biogeography theory (IBT) and succession theory provide frameworks for understanding extinction in changing landscapes. We explore the relative contribution of fragment size vs. succession on species' declines by examining distributions of abundances for 18 plant species declining over time in an experimentally fragmented landscape in northeast Kansas, U.S.A. If patch size effects dominate, early-successional species should persist longer on large patches, but if successional processes dominate, the reverse should hold, because in our system woody plant colonization is accelerated on large patches. To compare the patterns in abundance among patch sizes, we characterize joint shifts in local abundance and occupancy with a new metric: rank occupancy-abundance profiles (ROAPs). As succession progressed, statistically significant patch size effects emerged for 11 of 18 species. More early-successional species persisted longer on large patches, despite the fact that woody encroachment (succession) progressed faster in these patches. Clonal perennial species persisted longer on large patches compared to small patches. All species that persisted longer on small patches were annuals that recruit from the seed bank each year. The degree to which species declined in occupancy vs. abundance varied dramatically among species: some species declined first in occupancy, others remained widespread or even expanded their distribution, even as they declined in local abundance. Consequently, species exhibited various types of rarity as succession progressed. Understanding the effect of fragmentation on extinction trajectories requires a species-by-species approach encompassing both occupancy and local abundance. We propose that ROAPs provide a useful tool for comparing the distribution of local abundances among landscape types, years, and species.

  15. Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors.

    Science.gov (United States)

    Gerasimova, Yulia V; Yakovchuk, Petro; Dedkova, Larisa M; Hecht, Sidney M; Kolpashchikov, Dmitry M

    2015-10-01

    Mutations in ribosomal RNA (rRNA) have traditionally been detected by the primer extension assay, which is a tedious and multistage procedure. Here, we describe a simple and straightforward fluorescence assay based on binary deoxyribozyme (BiDz) sensors. The assay uses two short DNA oligonucleotides that hybridize specifically to adjacent fragments of rRNA, one of which contains a mutation site. This hybridization results in the formation of a deoxyribozyme catalytic core that produces the fluorescent signal and amplifies it due to multiple rounds of catalytic action. This assay enables us to expedite semi-quantification of mutant rRNA content in cell cultures starting from whole cells, which provides information useful for optimization of culture preparation prior to ribosome isolation. The method requires less than a microliter of a standard Escherichia coli cell culture and decreases analysis time from several days (for primer extension assay) to 1.5 h with hands-on time of ∼10 min. It is sensitive to single-nucleotide mutations. The new assay simplifies the preliminary analysis of RNA samples and cells in molecular biology and cloning experiments and is promising in other applications where fast detection/quantification of specific RNA is required. © 2015 Gerasimova et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY.

    Science.gov (United States)

    Bieri, Philipp; Leibundgut, Marc; Saurer, Martin; Boehringer, Daniel; Ban, Nenad

    2017-02-15

    Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo-EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid-specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid-specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light- and temperature-dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A-site and P-site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non-rotated state, in which the intersubunit bridges to the large subunit are stabilized. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  17. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments.

    Science.gov (United States)

    Lirman

    2000-08-23

    Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.

  18. Effect of sodium fluoride on the amount of polyribosomes, single ribosomes and ribosomal subunits in a cellular slime mold, Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, M; Ito, K; Iwabuchi, M

    1972-01-01

    In the slime mold, Dictyostelium discoideum, when the rate of protein synthesis was decreased by NaF, free 80-S ribosomes accumulated at the expense of polyribosomes, while 60-S and 40-S ribosomal subunits remained almost constant. The same level of ribosomal subunits was also maintained in cells after incubation with cycloheximide or at the stationary phase of growth.

  19. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

    Science.gov (United States)

    Fischer, Niels; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V; Stark, Holger

    2010-07-15

    The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.

  20. The Y4-RNA fragment, a potential diagnostic marker, exists in saliva

    Directory of Open Access Journals (Sweden)

    Tatsuya Ishikawa

    2017-06-01

    Full Text Available The 94-nt full-length Y4-RNA is thought to have roles in the initiation of DNA replication and RNA quality control. Although its 31/32-nt fragment also exists abundantly in plasma, little is known about its physiological role. Since the 31/32-nt Y4-RNA fragment in sera is reported to be more abundant in patients with coronary artery disease than healthy persons, the fragment may have a potential for a diagnostic and/or prognostic biomarker for some diseases regardless of its functionality. As a step toward further investigation of its potential utility, we examined if the 31/32-nt Y4-RNA fragment also exists in saliva that can be obtained noninvasively, and showed that, in addition to the 31/32-nt fragment, 14- and 11-nt Y4-RNA fragments are present in all saliva RNA samples from four healthy persons. We established a PCR method to accurately quantitate the amount of the 31/32-nt Y4-RNA fragment, and estimated its amount in saliva of healthy persons to be 0.06 ± 0.04 fmol per nanogram of saliva RNA. We also tried to develop an easier quantitation method using a DNA molecular beacon. Keywords: Y4-RNA fragment, Saliva RNA, Diagnostic/prognostic marker, Next-generation sequencing, RT-PCR, Molecular beacon

  1. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Science.gov (United States)

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.

  2. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae and its floral visitors (including both effective and non-effective pollinators at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i Does fragment size affect the structure of individual-based plant-pollinator networks? (ii Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in

  3. The Phosphorylation of Ribosomal Protein in Lemna minor

    Science.gov (United States)

    Trewavas, A.

    1973-01-01

    Sterile cultures of Lemna minor have been labeled with 32P1, and the ribosomal proteins have been examined for radioactivity. In relatively short term labeling a radioactive protein was found which ran as a single component in both urea/acetic acid and sodium lauryl sulfate gel electrophoresis. Acid hydrolysis of the labeled protein permitted the isolation of serine phosphate. After labeling to equilibrium with 32P1, calculation indicated only 0.6 to 0.75 atom of this protein phosphorus per ribosome. The phosphorylated protein is found in both polysomes and “derived” monomers and appears to be located in the ribosomal small subunit. Its apparent molecular weight is 42,000. Addition of growth-inhibiting concentrations of abscisic acid does not alter the apparent degree of labeling of this protein in 5 hours, but after 24 hours of treatment the total protein phosphorus was reduced from 0.75 atom of phosphorus per ribosome to 0.36 atom of phosphorus per ribosome. PMID:16658405

  4. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  5. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    OpenAIRE

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in ...

  6. A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly.

    Directory of Open Access Journals (Sweden)

    Brittany Burton

    Full Text Available Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20 with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17 tend to adopt more stable solution conformations than an RNA-embedded protein (S20. We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins.

  7. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  8. On the control of ribosomal protein biosynthesis in Escherichia coli

    International Nuclear Information System (INIS)

    Pichon, J.; Marvaldi, J.; Coeroli, C.; Cozzone, A.; Marchis-Mouren, G.

    1977-01-01

    The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel + and rel - cells, under valyl-tRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer of the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel + strain appear more labelled than those from the rel - strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene

  9. Meadow fragmentation and reproductive output of the S.E. Asian seagrass Enhalus acoroides

    NARCIS (Netherlands)

    Vermaat, J.E.; Rollon, R.N.; Lacap, C.D.A.; Billot, C.; Alberto, F.; Nacorda, H.M.E.; Wiegman, F.; Terrados, J.T.

    2004-01-01

    Flower and fruit production of the abundant, tall, long-lived, dioecious, surface-pollinating seagrass species Enhalus acoroides (L.) Royle were estimated at seven sites in the reef flats off Bolinao (NW Luzon, The Philippines) featuring different fragmentation of the seagrass meadows. Fragmentation

  10. Ribosomal RNA gene sequences confirm that protistan endoparasite of larval cod Gadus morhua is Ichthyodinium sp

    DEFF Research Database (Denmark)

    Skovgaard, Alf; Meyer, Stefan; Overton, Julia Lynne

    2010-01-01

    An enigmatic protistan endoparasite found in eggs and larvae of cod Gadus morhua and turbot Psetta maxima was isolated from Baltic cod larvae, and DNA was extracted for sequencing of the parasite's small Subunit ribosomal RNA (SSU rRNA) gene. The endoparasite has previously been suggested...... to be related to Ichthyodinium chabelardi, a dinoflagellate-like protist that parasitizes yolk sacs of embryos and larvae of a variety of fish species. Comparison of a 1535 bp long fragment of the SSU rRNA gene of the cod endoparasite showed absolute identify with I. chabelardi, demonstrating that the 2...

  11. The primary structures of ribosomal proteins S14 and S16 from the archaebacterium Halobacterium marismortui. Comparison with eubacterial and eukaryotic ribosomal proteins.

    Science.gov (United States)

    Kimura, J; Kimura, M

    1987-09-05

    The amino acid sequences of two ribosomal proteins, S14 and S16, from the archaebacterium Halobacterium marismortui have been determined. Sequence data were obtained by the manual and solid-phase sequencing of peptides derived from enzymatic digestions with trypsin, chymotrypsin, pepsin, and Staphylococcus aureus protease as well as by chemical cleavage with cyanogen bromide. Proteins S14 and S16 contain 109 and 126 amino acid residues and have Mr values of 11,964 and 13,515, respectively. Comparison of the sequences with those of ribosomal proteins from other organisms demonstrates that S14 has a significant homology with the rat liver ribosomal protein S11 (36% identity) as well as with the Escherichia coli ribosomal protein S17 (37%), and that S16 is related to the yeast ribosomal protein YS22 (40%) and proteins S8 from E. coli (28%) and Bacillus stearothermophilus (30%). A comparison of the amino acid residues in the homologous regions of halophilic and nonhalophilic ribosomal proteins reveals that halophilic proteins have more glutamic acids, asparatic acids, prolines, and alanines, and less lysines, arginines, and isoleucines than their nonhalophilic counterparts. These amino acid substitutions probably contribute to the structural stability of halophilic ribosomal proteins.

  12. Species Composition, Relative Abundance and Distribution of the ...

    African Journals Online (AJOL)

    Species Composition, Relative Abundance and Distribution of the Avian Fauna of Entoto Natural Park and Escarpment, Addis Ababa. ... Eucalyptus plantation, soil erosion, deforestation, habitat fragmentation, settlement and land degradation were the main threats for the distribution of birds in the present study area.

  13. Hypervariability of ribosomal DNA at multiple chromosomal sites in lake trout (Salvelinus namaycush).

    Science.gov (United States)

    Zhuo, L; Reed, K M; Phillips, R B

    1995-06-01

    Variation in the intergenic spacer (IGS) of the ribosomal DNA (rDNA) of lake trout (Salvelinus namaycush) was examined. Digestion of genomic DNA with restriction enzymes showed that almost every individual had a unique combination of length variants with most of this variation occurring within rather than between populations. Sequence analysis of a 2.3 kilobase (kb) EcoRI-DraI fragment spanning the 3' end of the 28S coding region and approximately 1.8 kb of the IGS revealed two blocks of repetitive DNA. Putative transcriptional termination sites were found approximately 220 bases (b) downstream from the end of the 28S coding region. Comparison of the 2.3-kb fragments with two longer (3.1 kb) fragments showed that the major difference in length resulted from variation in the number of short (89 b) repeats located 3' to the putative terminator. Repeat units within a single nucleolus organizer region (NOR) appeared relatively homogeneous and genetic analysis found variants to be stably inherited. A comparison of the number of spacer-length variants with the number of NORs found that the number of length variants per individual was always less than the number of NORs. Examination of spacer variants in five populations showed that populations with more NORs had more spacer variants, indicating that variants are present at different rDNA sites on nonhomologous chromosomes.

  14. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape.

    Science.gov (United States)

    Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J

    2018-02-28

    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.

  15. Hypoxic stress-induced changes in ribosomes of maize seedling roots

    International Nuclear Information System (INIS)

    Bailey-Serres, J.; Freeling, M.

    1990-01-01

    The hypoxic stress response of Zea mays L. seedling roots involves regulation of gene expression at transcriptional and posttranscriptional levels. We investigated the effect of hypoxia on the translational machinery of seedling roots. The levels of monoribosomes and ribosomal subunits increased dramatically within 1 hour of stress. Prolonged hypoxia resulted in continued accumulation of nontranslating ribosomes, as well as increased levels of small polyribosomes. The return of seedlings to normal aerobic conditions resulted in recovery of normal polyribosome levels. Comparison of ribosomal proteins from control and hypoxic roots revealed differences in quantity and electrophoretic mobility. In vivo labeling of roots with [ 35 S]methionine revealed variations in newly synthesized ribosomal proteins. In vivo labeling of roots with [ 32 P]orthophosphate revealed a major reduction in the phosphorylation of a 31 kilodalton ribosomal protein in hypoxic stressed roots. In vitro phosphorylation of ribosomal proteins by endogenous kinases was used to probe for differences in ribosome structure and composition. The patterns of in vitro kinased phosphoproteins of ribosomes from control and hypoxic roots were not identical. Variation in phosphoproteins of polyribosomes from control and hypoxic roots, as well as among polyribosomes from hypoxic roots were observed. These results indicate that modification of the translational machinery occurs in response to hypoxic stress

  16. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  17. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    Science.gov (United States)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  18. Strongylus asini (Nematoda, Strongyloidea): genetic relationships with other Strongylus species determined by ribosomal DNA.

    Science.gov (United States)

    Hung, G C; Jacobs, D E; Krecek, R C; Gasser, R B; Chilton, N B

    1996-12-01

    Genomic DNA was isolated from adult Strongylus asini collected from zebra. The second ribosomal transcribed spacer (ITS-2) was amplified and sequenced using polymerase chain reaction (PCR) based techniques. The DNA sequence was compared with previously published data for 3 related Strongylus species. A PCR-linked restriction fragment length polymorphism method allowed the 4 species to be differentiated unequivocally. The ITS-2 sequence of S. asini was found to be more similar to those of S. edentatus (87.1%) and S. equinus (95.3%) than to that of S vulgaris (73.9%). This result confirms that S. Asini and S vulgaris represent separate species and supports the retention of the 4 species within 1 genus.

  19. Unstable structure of ribosomal particles synthesized in. gamma. -irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H; Morita, K [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-06-01

    Stability of Escherichia coli ribosomes newly synthesized after ..gamma..-irradiation was compared with that of normal ribosomes. The ribosomal particles around 70-S synthesized in irradiated cells were more sensitive to digestion by pancreatic ribonuclease A. A larger number of the salt-unstable '50-S' precursor particles existed in the extract from irradiated cells than in the extract from unirradiated cells. These facts suggest that ribosomal particles, synthesized during an earlier stage in irradiated cells, maintain an incomplete structure even though they are not distinguishable from normal ribosomes by means of sucrose density-gradient centrifugation.

  20. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.

    Science.gov (United States)

    Schäkermann, Sina; Prochnow, Pascal; Bandow, Julia E

    2017-01-01

    Current research is focusing on ribosome heterogeneity as a response to changing environmental conditions and stresses, such as antibiotic stress. Altered stoichiometry and composition of ribosomal proteins as well as association of additional protein factors are mechanisms for shaping the protein expression profile or hibernating ribosomes. Here, we present a method for the isolation of ribosomes to analyze antibiotic-induced changes in the composition of ribosomes in Bacillus subtilis or other bacteria. Ribosomes and associated proteins are isolated by ultracentrifugation and proteins are identified and quantified using label-free mass spectrometry.

  1. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly

    International Nuclear Information System (INIS)

    Lott, Brittany Burton; Wang, Yongmei; Nakazato, Takuya

    2013-01-01

    Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear. We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction. However, the binding order of

  2. Architecture of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leitner, Alexander; Bieri, Philipp; Voigts-Hoffmann, Felix; Erzberger, Jan P; Leibundgut, Marc; Aebersold, Ruedi; Ban, Nenad

    2014-01-23

    Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.

  3. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    Science.gov (United States)

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  4. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data.

    Science.gov (United States)

    Szymanski, Maciej; Karlowski, Wojciech M

    2016-01-01

    In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.

  5. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  6. gamma. radiation effect on the functional properties of the cotton ribosomes

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, A P; Safarov, Sh

    1973-01-01

    A study is made of the action of radiation on the functional properties of ribosomes in irradiated organisms and on isolated ribosomes exposed to different doses. With increase in dose there occurs a reduction in the incorporation of labelled amino acids by the ribosomes released from irradiated sprouts and also during irradiation of isolated ribosomes. The study covered the functional activity of ribosomes irradiated at different doses with the use of synthetic poly-U and poly-A matrices synthesizing polyphenylalanine and polylysine, depending on the irradiation dose. The inhibition of the activity of the protein synthesis system at high doses is due to structural and functional changes in ribosomes and also to disturbance in the biosynthesis and functions of the messenger RNA.

  7. Molecular Characterization and Analysis of 16S Ribosomal DNA in Some Isolates of Demodex folicullorum.

    Science.gov (United States)

    Daneshparvar, Afrooz; Mowlavi, Gholamreza; Mirjalali, Hamed; Hajjaran, Homa; Mobedi, Iraj; Naddaf, Saeed Reza; Shidfar, Mohammadreza; Sadat Makki, Mahsa

    2017-01-01

    Demodicosis is one of the most prevalent skin diseases resulting from infestation by Demodex mites. This parasite usually inhabits in follicular infundibulum or sebaceous duct and transmits through close contact with an infested host. This study was carried from September 2014 to January 2016 at Tehran University of Medical Sciences, Tehran, Iran. DNA extraction and amplification of 16S ribosomal RNA was performed on four isolates, already obtained from four different patients and identified morphologically though clearing with 10% Potassium hydroxide (KOH) and microscopical examination. Amplified fragments from the isolates were compared with GeneBank database and phylogenetic analysis was carried out using MEGA6 software. A 390 bp fragment of 16S rDNA was obtained in all isolates and analysis of generated sequences showed high similarity with those submitted to GenBank, previously. Intra-species similarity and distance also showed 99.983% and 0.017, respectively, for the studied isolates. Multiple alignments of the isolates showed Single Nucleotide Polymorphisms (SNPs) in 16S rRNA fragment. Phylogenetic analysis revealed that all 4 isolates clustered with other D. folliculorum, recovered from GenBank database. Our accession numbers KF875587 and KF875589 showed more similarity together in comparison with two other studied isolates. Mitochondrial 16S rDNA is one of the most suitable molecular barcodes for identification D. folliculorum and this fragment can use for intra-species characterization of the most human-infected mites.

  8. Molecular Characterization and Analysis of 16S Ribosomal DNA in some Isolates of Demodex folliculorum

    Directory of Open Access Journals (Sweden)

    Afrooz DANESHPARVAR

    2017-06-01

    Full Text Available Background: Demodicosis is one of the most prevalent skin diseases resulting from infestation by Demodex mites. This parasite usually inhabits in follicular infundibulum or sebaceous duct transmitted through close contact with an infested host.Methods: This study was carried from September 2014 to January 2016 at Tehran University of Medical Sciences, Tehran, Iran. DNA extraction and amplification of 16S ribosomal RNA was performed on four isolates, obtained from four patients and identified morphologically through clearing with 10% Potassium hydroxide (KOH and microscopical examination. Amplified fragments from the isolates were compared with GenBank database and phylogenetic analysis was carried out using MEGA6 software.Results: A 390 bp fragment of 16S rDNA was obtained in all isolates and analysis of generated sequences showed high similarity with those submitted to GenBank, previously. Intra-species similarity and distance also showed 99.983% and 0.017, respectively, for the studied isolates. Multiple alignments of the isolates showed Single Nucleotide Polymorphisms (SNPs in 16S rRNA fragment. Phylogenetic analysis revealed that all 4 isolates clustered with other D. folliculorum, recovered from GenBank database. Our accession numbers KF875587 and KF875589 showed more similarity together in comparison with two other studied isolates. Conclusion: Mitochondrial 16S rDNA is one of the most suitable molecular barcodes for identification D. folliculorum and this fragment can use for intra-species characterization of the most human-infected mites.

  9. Macrolide antibiotic interaction and resistance on the bacterial ribosome.

    Science.gov (United States)

    Poehlsgaard, Jacob; Douthwaite, Stephen

    2003-02-01

    Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.

  10. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    Science.gov (United States)

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  11. Yeast ribosomal proteins

    International Nuclear Information System (INIS)

    Otaka, E.; Kobata, K.

    1978-01-01

    The cytoplasmic 80s ribosomal proteins from the cells of yeast Saccharomyces cerevisiae were analyzed by SDS two-dimensional polyacrylamide gel electrophoresis. Seventyfour proteins were identified and consecutively numbered from 1 to 74. Upon oxidation of the 80s proteins with performic acid, ten proteins (no. 15, 20, 35, 40, 44, 46, 49, 51, 54 and 55) were dislocated on the gel without change of the total number of protein spots. Five proteins (no. 8, 14, 16, 36 and 74) were phosphorylated in vivo as seen in 32 P-labelling experiments. The large and small subunits separated in low magnesium medium were analyzed by the above gel electrophoresis. At least forty-five and twenty-eight proteins were assumed to be in the large and small subunits, respectively. All proteins found in the 80s ribosomes, except for no. 3, were detected in either subunit without appearance of new spots. The acidic protein no. 3 seems to be lost during subunit dissociation. (orig.) [de

  12. Trapping the ribosome to control gene expression.

    Science.gov (United States)

    Boehringer, Daniel; Ban, Nenad

    2007-09-21

    Protein synthesis is often regulated by structured mRNAs that interact with ribosomes. In this issue of Cell, Marzi et al. (2007) provide insights into the autoregulation of protein S15 by visualizing the folded repressor mRNA on the ribosome stalled in the preinitiation state. These results have implications for our understanding of the mechanism of translation initiation in general.

  13. A Listeria monocytogenes RNA helicase essential for growth and ribosomal maturation at low temperatures uses its C terminus for appropriate interaction with the ribosome.

    Science.gov (United States)

    Netterling, Sakura; Vaitkevicius, Karolis; Nord, Stefan; Johansson, Jörgen

    2012-08-01

    Listeria monocytogenes, a Gram-positive food-borne human pathogen, is able to grow at temperatures close to 0°C and is thus of great concern for the food industry. In this work, we investigated the physiological role of one DExD-box RNA helicase in Listeria monocytogenes. The RNA helicase Lmo1722 was required for optimal growth at low temperatures, whereas it was dispensable at 37°C. A Δlmo1722 strain was less motile due to downregulation of the major subunit of the flagellum, FlaA, caused by decreased flaA expression. By ribosomal fractionation experiments, it was observed that Lmo1722 was mainly associated with the 50S subunit of the ribosome. Absence of Lmo1722 decreased the fraction of 50S ribosomal subunits and mature 70S ribosomes and affected the processing of the 23S precursor rRNA. The ribosomal profile could be restored to wild-type levels in a Δlmo1722 strain expressing Lmo1722. Interestingly, the C-terminal part of Lmo1722 was redundant for low-temperature growth, motility, 23S rRNA processing, and appropriate ribosomal maturation. However, Lmo1722 lacking the C terminus showed a reduced affinity for the 50S and 70S fractions, suggesting that the C terminus is important for proper guidance of Lmo1722 to the 50S subunit. Taken together, our results show that the Listeria RNA helicase Lmo1722 is essential for growth at low temperatures, motility, and rRNA processing and is important for ribosomal maturation, being associated mainly with the 50S subunit of the ribosome.

  14. Studies of the effects of ultraviolet radiation on the structural integrities of ribosomal RNA components of the Escherichia coli 50S ribosomal subunit

    International Nuclear Information System (INIS)

    Gorelic, L.; Parker, D.

    1978-01-01

    The effects of 254-nm radiation on the structural integrities of free and 50S ribosome-bound 5S and 23S ribosomal ribonucleic acids (rRNA) have been elucidated. Irradiation of aqueous solutions of Escherichia coli 50S ribosomes with 253.7-nm radiation results in the formation of single-strand breaks in double-stranded regions of the 23S rRNA component, but not in rRNA chain scission, and destabilization of the secondary structure of the 23S rRNA toward denaturation. The minimum doses of 253.7-nm radiation required for the first detection of the two effects are 7 x 10 19 quanta for the production of single-strand breaks in double-stranded regions of the 23S rRNA, and 19 quanta for destabilization of the 23S rRNA secondary structure. Free 23S rRNA is resistant toward photoinduced chain breakage at doses of 253.7-nm radiation up to at least 2.3 x 10 20 and is much less sensitive toward destabilization of secondary structure than ribosome-bound 23S rRNA. In contrast to the photosensitivity of 50S ribosome-bound 23S rRNA toward chain breakage, 50S ribosome-bound 5S rRNA is resistant toward chain breakage at doses of 253.7-nm radiation up to at least 2.3 x 10 20 quanta. Ribosome-bound 5S and 23S rRNA are also not photosensitive toward intermolecular 5S/23S rRNA cross-linkage

  15. cDNA, genomic sequence cloning and analysis of the ribosomal ...

    African Journals Online (AJOL)

    Ribosomal protein L37A (RPL37A) is a component of 60S large ribosomal subunit encoded by the RPL37A gene, which belongs to the family of ribosomal L37AE proteins, located in the cytoplasm. The complementary deoxyribonucleic acid (cDNA) and the genomic sequence of RPL37A were cloned successfully from giant ...

  16. Explosion-evaporation model for fragment production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.; Randrup, J.

    1981-01-01

    Nuclear collisions at intermediate energies may create transient systems of hot nuclear matter that decay into many nuclear fragments. The disassembly of such a nuclear fireball is described as a two-stage process. In the primary explosion stage the system quickly fragments into nucleons and composite nuclei according to the available phase space. The explosion produces excited nuclei with half-lives longer than the time associated with the breakup. In the secondary evaporation stage, these nuclei decay, first by sequential emission of light particles (neutrons, protons, alphas), later by electromagnetic radiation. The secondary stage in general changes the relative abundancies of the various fragment species. This general feature makes it essential to take account of the composite fragments before using d/p as a measure of the entropy of the initial source. The formation of unbound nuclei at the explosion stage also has the desirable effect of enhancing the final abundancies of particularly stable nuclei, e.g., 4 He. For neutron-excessive sources the presence of composite nuclei amplifies the ratio of observed neutrons and protons; this effect persists for heavier mirror systems. Predictions of the model are qualitatively compared to available experimental data. The model offers a convenient way to augment existing dynamical models, such as intra-nuclear cascade and nuclear fluid dynamics, to yield actual nuclear fragments rather than merely matter distributions

  17. Mites associated to Xylopia aromatica (Lam. Mart. (Annonaceae in urban and rural fragments of semidecidual forest

    Directory of Open Access Journals (Sweden)

    Felipe M. Nuvoloni

    2011-12-01

    Full Text Available Mites associated to Xylopia aromatica (Lam. Mart. (Annonaceae in urban and rural fragments of semidecidual forest. Native plants can shelter a great diversity of mites. Notwithstanding, the conservation of the forest fragments where the plants are located can influence the structure of the mites community. Generally, in homogenous environments the diversity is lower due to the dominance of one or a few species. In this work, we studied the mite community on Xylopia aromatica (Lam. Mart. (Annonaceae in two fragments of semidecidual forest: one on rural and other on urban area. Seven individuals of X. aromatica were monthly sampled from April 2007 to March 2008, in each of these fragments. Descriptive indexes of diversity, dominance and evenness were applied to verify the ecological patterns of the mite community, besides the Student's t-test to compare the abundance between the fragments. We collected 27,365 mites of 37 species belonging to 11 families. Calacarus sp. (Eriophyidae was the most abundant species, representing 73% of the total sampled. The abundance was greater in the urban fragment (67.7%, with the diversity index reaching only 25% of the theoretical maximum expected. Probably, these values might have been influenced by the location of this fragment in the urban area, being more homogeneous and submitted directly to the presence of atmospheric pollution. In this manner, X. aromatica is able to shelter a higher diversity of mites when inserted in preserved ecosystems, since the highest diversity of available resources allows the establishment of richer and most diverse mite community.

  18. Short-term effects of habitat fragmentation on the abundance and species richness of beetles in experimental alfalfa micro-landscapes Efectos a corto plazo de la fragmentación del hábitat sobre la abundancia y riqueza de especies de coleópteros en micro-paisajes experimentales de alfalfa

    Directory of Open Access Journals (Sweden)

    AUDREY A. GREZ

    2004-09-01

    Full Text Available Habitat loss and fragmentation are considered as the main causes of biodiversity depression. Habitat loss implies a reduction of suitable habitat for organisms, and habitat fragmentation is a change in the spatial configuration of the landscape, with the remaining fragments resulting more or less isolated. Recent theory indicates that the effects of habitat loss are more important than those of habitat fragmentation, however there are few experimental studies evaluating both processes separately. To test the effects of habitat fragmentation per se on the abundance, species richness and diversity of epigeal coleopterans, 15 (30 x 30 m alfalfa micro-landscapes, distributed in three blocks, were created. On twelve of them, 84 % of the habitat was removed, leaving in each landscape four or 16 fragments separated by 2 or 6 m of bare ground. From December 2002 to April 2003, before and after fragmentation, coleopterans were sampled using pitfall traps. In total, 8,074 coleopterans of 75 species belonging to 16 families were captured. Neither habitat fragmentation nor habitat loss affected the total abundance of coleopterans, with the exception of Anthicidae that was more abundant in the micro-landscapes composed by four fragments separated for 2 m. This family was also more abundant in the matrix of fragmented micro-landscapes, while most other beetle families were more abundant in the fragments, significantly Carabidae and Lathridiidae. Species richness (per trap and per landscape was higher in micro-landscapes with 16 fragments separated by 6 m. Contrary to what is described frequently in the literature, habitat fragmentation did not negatively affect the abundance or the species richness of epigeal coleopterans. Rather, smaller and more isolated alfalfa fragments seem to provide habitat to support greater biodiversity. These results agree with more recent findings where habitat fragmentation per se seems not to have deleterious effects on the fauna

  19. Abundance and Reproductive Biology of the Penaeid Prawns of ...

    African Journals Online (AJOL)

    Despite the high economic value attached to this resource, the biological information necessary for its sustainable exploitation is scanty and fragmented. The present study was therefore designed to investigate the species composition, population abundance and reproduction of the penaeid prawns in Bagamoyo coastal ...

  20. Control of ribosome traffic by position-dependent choice of synonymous codons

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Pedersen, Steen

    2013-01-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino...... acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby...... ribosomes by affecting the appearance of 'traffic jams' where multiple ribosomes collide and form queues. To test this 'context effect' further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated...

  1. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    Science.gov (United States)

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  2. GTPases and the origin of the ribosome

    Directory of Open Access Journals (Sweden)

    Smith Temple F

    2010-05-01

    Full Text Available Abstract Background This paper is an attempt to trace the evolution of the ribosome through the evolution of the universal P-loop GTPases that are involved with the ribosome in translation and with the attachment of the ribosome to the membrane. The GTPases involved in translation in Bacteria/Archaea are the elongation factors EFTu/EF1, the initiation factors IF2/aeIF5b + aeIF2, and the elongation factors EFG/EF2. All of these GTPases also contain the OB fold also found in the non GTPase IF1 involved in initiation. The GTPase involved in the signal recognition particle in most Bacteria and Archaea is SRP54. Results 1 The Elongation Factors of the Archaea based on structural considerations of the domains have the following evolutionary path: EF1→ aeIF2 → EF2. The evolution of the aeIF5b was a later event; 2 the Elongation Factors of the Bacteria based on the topological considerations of the GTPase domain have a similar evolutionary path: EFTu→ IF→2→EFG. These evolutionary sequences reflect the evolution of the LSU followed by the SSU to form the ribosome; 3 the OB-fold IF1 is a mimic of an ancient tRNA minihelix. Conclusion The evolution of translational GTPases of both the Archaea and Bacteria point to the evolution of the ribosome. The elongation factors, EFTu/EF1, began as a Ras-like GTPase bringing the activated minihelix tRNA to the Large Subunit Unit. The initiation factors and elongation factor would then have evolved from the EFTu/EF1 as the small subunit was added to the evolving ribosome. The SRP has an SRP54 GTPase and a specific RNA fold in its RNA component similar to the PTC. We consider the SRP to be a remnant of an ancient form of an LSU bound to a membrane. Reviewers This article was reviewed by George Fox, Leonid Mirny and Chris Sander.

  3. A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio.

    Science.gov (United States)

    Leung, Henry C M; Yiu, S M; Yang, Bin; Peng, Yu; Wang, Yi; Liu, Zhihua; Chen, Jingchi; Qin, Junjie; Li, Ruiqiang; Chin, Francis Y L

    2011-06-01

    With the rapid development of next-generation sequencing techniques, metagenomics, also known as environmental genomics, has emerged as an exciting research area that enables us to analyze the microbial environment in which we live. An important step for metagenomic data analysis is the identification and taxonomic characterization of DNA fragments (reads or contigs) resulting from sequencing a sample of mixed species. This step is referred to as 'binning'. Binning algorithms that are based on sequence similarity and sequence composition markers rely heavily on the reference genomes of known microorganisms or phylogenetic markers. Due to the limited availability of reference genomes and the bias and low availability of markers, these algorithms may not be applicable in all cases. Unsupervised binning algorithms which can handle fragments from unknown species provide an alternative approach. However, existing unsupervised binning algorithms only work on datasets either with balanced species abundance ratios or rather different abundance ratios, but not both. In this article, we present MetaCluster 3.0, an integrated binning method based on the unsupervised top--down separation and bottom--up merging strategy, which can bin metagenomic fragments of species with very balanced abundance ratios (say 1:1) to very different abundance ratios (e.g. 1:24) with consistently higher accuracy than existing methods. MetaCluster 3.0 can be downloaded at http://i.cs.hku.hk/~alse/MetaCluster/.

  4. Ribosomal trafficking is reduced in Schwann cells following induction of myelination

    Directory of Open Access Journals (Sweden)

    James M. Love

    2015-08-01

    Full Text Available Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body, but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following

  5. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape.

    Directory of Open Access Journals (Sweden)

    Luciana Coe Girão

    Full Text Available Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems in 10 fragments and 10 tracts of forest interior (control plots. As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated. The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores for pollination systems (-30.3%, floral types (-23.6%, and floral sizes (-20.8% in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and

  6. Expanding the ribosomal universe.

    Science.gov (United States)

    Dinman, Jonathan D; Kinzy, Terri Goss

    2009-12-09

    In this issue of Structure, Taylor et al. (2009) present the most complete model of an eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery.

  7. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    Science.gov (United States)

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  8. Short-term effects of habitat fragmentation on the abundance and species richness of beetles in experimental alfalfa micro-landscapes

    OpenAIRE

    GREZ, AUDREY A.; ZAVIEZO, TANIA; REYES, SUSANA

    2004-01-01

    Habitat loss and fragmentation are considered as the main causes of biodiversity depression. Habitat loss implies a reduction of suitable habitat for organisms, and habitat fragmentation is a change in the spatial configuration of the landscape, with the remaining fragments resulting more or less isolated. Recent theory indicates that the effects of habitat loss are more important than those of habitat fragmentation, however there are few experimental studies evaluating both processes separat...

  9. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome

    Directory of Open Access Journals (Sweden)

    Jendrik Hentschel

    2017-07-01

    Full Text Available The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics.

  10. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome.

    Science.gov (United States)

    Hentschel, Jendrik; Burnside, Chloe; Mignot, Ingrid; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad

    2017-07-05

    The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Control of ribosome traffic by position-dependent choice of synonymous codons

    International Nuclear Information System (INIS)

    Mitarai, Namiko; Pedersen, Steen

    2013-01-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby ribosomes by affecting the appearance of ‘traffic jams’ where multiple ribosomes collide and form queues. To test this ‘context effect’ further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated from experiments. We compare the ribosome traffic on wild-type (WT) sequences and sequences where the synonymous codons were swapped randomly. By simulating translation of 87 genes, we demonstrate that the WT sequences, especially those with a high bias in codon usage, tend to have the ability to reduce ribosome collisions, hence optimizing the cellular investment in the translation apparatus. The magnitude of such reduction of the translation time might have a significant impact on the cellular growth rate and thereby have importance for the survival of the species. (paper)

  12. Using the Ribodeblur pipeline to recover A-sites from yeast ribosome profiling data.

    Science.gov (United States)

    Wang, Hao; Kingsford, Carl; McManus, C Joel

    2018-03-15

    Ribosome profiling has emerged as a powerful technique to study mRNA translation. Ribosome profiling has the potential to determine the relative quantities and locations of ribosomes on mRNA genome wide. Taking full advantage of this approach requires accurate measurement of ribosome locations. However, experimental inconsistencies often obscure the positional information encoded in ribosome profiling data. Here, we describe the Ribodeblur pipeline, a computational analysis tool that uses a maximum likelihood framework to infer ribosome positions from heterogeneous datasets. Ribodeblur is simple to install, and can be run on an average modern Mac or Linux-based laptop. We detail the process of applying the pipeline to high-coverage ribosome profiling data in yeast, and discuss important considerations for potential extension to other organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Expression of ribosomal genes in pea cotyledons at the initial stages of germination

    International Nuclear Information System (INIS)

    Gumilevskaya, N.A.; Chumikhina, L.V.; Akhmatova, A.T.; Kretovich, V.L.

    1986-01-01

    The time of appearance of newly synthesized rRNAs and ribosomal proteins (r-proteins) in the ribosomes of pea cotyledons (Pisum sativum L.) during germination was investigated. The ribosomal fraction was isolated and analyzed according to the method of germination of the embryo in the presence of labeled precursors or after pulse labeling of the embryos at different stages of germination. For the identification of newly synthesized rRNAs in the ribosomes we estimated the relative stability of labeled RNAs to the action of RNase, the sedimentation rate, the ability to be methylated in vivo in the presence of [ 14 C]CH 3 -methionine, and the localization in the subunits of dissociated ribosomes. The presence of newly synthesized r-proteins in the ribosomes was judged on the basis of the electrophoretic similarity in SDS-disc electrophoresis of labeled polypeptides of purified ribosome preparations and of genuine r-proteins, as well as according to the localization of labeled proteins in the subunits of the dissociated ribosomes. It was shown that the expression of the ribosomal genes in highly specialized cells of pea cotyledons that have completed their growth occurs at very early stages of germination

  14. Could a Proto-Ribosome Emerge Spontaneously in the Prebiotic World?

    Directory of Open Access Journals (Sweden)

    Ilana C. Agmon

    2016-12-01

    Full Text Available An indispensable prerequisite for establishing a scenario of life emerging by natural processes is the requirement that the first simple proto-molecules could have had a realistic probability of self-assembly from random molecular polymers in the prebiotic world. The vestige of the proto-ribosome, which is believed to be still embedded in the contemporary ribosome, is used to assess the feasibility of such spontaneous emergence. Three concentric structural elements of different magnitudes, having a dimeric nature derived from the symmetrical region of the ribosomal large subunit, were suggested to constitute the vestige of the proto-ribosome. It is assumed to have materialized spontaneously in the prebiotic world, catalyzing non-coded peptide bond formation and simple elongation. Probabilistic and energetic considerations are applied in order to evaluate the suitability of the three contenders for being the initial proto-ribosome. The analysis points to the simplest proto-ribosome, comprised of a dimer of tRNA-like molecules presently embedded in the core of the symmetrical region, as the only one having a realistic statistical likelihood of spontaneous emergence from random RNA chains. Hence it offers a feasible starting point for a continuous evolutionary path from the prebiotic matter, through natural processes, into the intricate modern translation system.

  15. Phosphorylation of ribosomal proteins induced by auxins in maize embryonic tissues

    International Nuclear Information System (INIS)

    Perez, L.; Aguilar, R.; Mendez, A.P.; de Jimenez, E.S.

    1990-01-01

    The effect of auxin on ribosomal protein phosphorylation of germinating maize (Zea mays) tissues was investigated. Two-dimensional gel electrophoresis and autoradiography of [ 32 P] ribosomal protein patterns for natural and synthetic auxin-treated tissues were performed. Both the rate of 32 P incorporation and the electrophoretic patterns were dependent on 32 P pulse length, suggesting that active protein phosphorylation-dephosphorylation occurred in small and large subunit proteins, in control as well as in auxin-treated tissues. The effect of ribosomal protein phosphorylation on in vitro translation was tested. Measurements of poly(U) translation rates as a function of ribosome concentration provided apparent K m values significantly different for auxin-treated and nontreated tissues. These findings suggest that auxin might exert some kind of translational control by regulating the phosphorylated status of ribosomal proteins

  16. A Multi-Scale Perspective of the Effects of Forest Fragmentation on Birds in Eastern Forests

    Science.gov (United States)

    Frank R. Thompson; Therese M. Donovan; Richard M. DeGraff; John Faaborg; Scott K. Robinson

    2002-01-01

    We propose a model that considers forest fragmentation within a spatial hierarchy that includes regional or biogeographic effects, landscape-level fragmentation effects, and local habitat effects. We hypothesize that effects operate "top down" in that larger scale effects provide constraints or context for smaller scale effects. Bird species' abundance...

  17. The fragmentation of proto-globular clusters. I. Thermal instabilities

    International Nuclear Information System (INIS)

    Murray, S.D.; Lin, D.N.C.

    1989-01-01

    The metal abundances among the stars within a typical globular cluster are remarkably homogeneous. This indicates that star formation in these systems was a globally coordinated event which occurred over a time span less than or comparable to the collapse time scale of the cluster. This issue is addressed by assuming that the fragmentation of a proto-globular cluster cloud proceeded in two steps. In the first step, thermal instability led to the rapid growth of initial fluctuations. This led to a large contrast in the dynamical time scales between the perturbations and the parent cloud, and the perturbations then underwent gravitational instabilities on short time scales. This process is modeled using one-dimensional hydrodynamic simulations of clouds both with and without external heat sources and self-gravity. The models include the effects of a non-equilibrium H2 abundance. The results indicate that fragmentation can occur on time scales significantly less than the dynamical time scale of the parent cloud. 21 refs

  18. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase.

    Science.gov (United States)

    Jha, Sujata; Rollins, Madeline G; Fuchs, Gabriele; Procter, Dean J; Hall, Elizabeth A; Cozzolino, Kira; Sarnow, Peter; Savas, Jeffrey N; Walsh, Derek

    2017-06-29

    Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements. However, beyond differential subunit expression during development, evidence for regulated ribosome specification within individual cells has remained elusive. Here we report that a poxvirus kinase phosphorylates serine/threonine residues in the human small ribosomal subunit protein, receptor for activated C kinase (RACK1), that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs with 5' untranslated regions that contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analyses revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, in which these leaders act as translational enhancers. Phosphomimetics and inter-species chimaeras have shown that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase confer a translational advantage. Our findings provide insight into ribosome customization through trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie poxvirus polyA-leaders.

  19. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.

    Science.gov (United States)

    Alejo, Jose L; Blanchard, Scott C

    2017-10-10

    Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.

  20. Structure based hypothesis of a mitochondrial ribosome rescue mechanism

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2012-05-01

    Full Text Available Abstract Background mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1. Results Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site. Conclusions We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria. Reviewers This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann and Dr. Shamil Sunyaev.

  1. Predicting effects of rainforest fragmentation from live trapping studies of small mammals in Sri Lanka

    Directory of Open Access Journals (Sweden)

    M.R. Wijesinghe

    2012-06-01

    Full Text Available This paper examines the impact of forest fragmentation on small mammals inhabiting the rainforests of Sri Lanka. Fifteen forests ranging in size from 145 to 11000 ha were live-trapped for five to eight nights each in both interior and edge habitats, yielding a total of 18400 trap nights. A total of 444 individuals belonging to 10 species of small mammals were captured. Multiple-regression analysis incorporating three indicators of fragmentation: patch area, shape index (perimeter/area and degree of isolation, showed no significant effects on overall species richness of small mammals. This is likely because the decline of forest-adapted species from small forest fragments was accompanied by an increase in more tolerant and adaptive species. Patch size, however, had a significant positive effect on the abundance of small mammals. Of the two dominant species, the endemic Mus mayori was positively affected by patch area whilst Rattus rattus was not affected. Although no differences were evident between interior and edge habitats with respect to total species richness and abundance, endemics were more abundant in core areas while the reverse was true for the non-endemics. Core forest areas were significantly different from forest edges with respect to canopy cover, density of herbaceous vegetation, large trees and litter cover. These results suggest that forest fragmentation is detrimental to some forest specialists and beneficial to some generalists.

  2. Novel mRNA-specific effects of ribosome drop-off on translation rate and polysome profile.

    Directory of Open Access Journals (Sweden)

    Pierre Bonnin

    2017-05-01

    Full Text Available The well established phenomenon of ribosome drop-off plays crucial roles in translational accuracy and nutrient starvation responses during protein translation. When cells are under stress conditions, such as amino acid starvation or aminoacyl-tRNA depletion due to a high level of recombinant protein expression, ribosome drop-off can substantially affect the efficiency of protein expression. Here we introduce a mathematical model that describes the effects of ribosome drop-off on the ribosome density along the mRNA and on the concomitant protein synthesis rate. Our results show that ribosome premature termination may lead to non-intuitive ribosome density profiles, such as a ribosome density which increases from the 5' to the 3' end. Importantly, the model predicts that the effects of ribosome drop-off on the translation rate are mRNA-specific, and we quantify their resilience to drop-off, showing that the mRNAs which present ribosome queues are much less affected by ribosome drop-off than those which do not. Moreover, among those mRNAs that do not present ribosome queues, resilience to drop-off correlates positively with the elongation rate, so that sequences using fast codons are expected to be less affected by ribosome drop-off. This result is consistent with a genome-wide analysis of S. cerevisiae, which reveals that under favourable growth conditions mRNAs coding for proteins involved in the translation machinery, known to be highly codon biased and using preferentially fast codons, are highly resilient to ribosome drop-off. Moreover, in physiological conditions, the translation rate of mRNAs coding for regulatory, stress-related proteins, is less resilient to ribosome drop-off. This model therefore allows analysis of variations in the translational efficiency of individual mRNAs by accounting for the full range of known ribosome behaviours, as well as explaining mRNA-specific variations in ribosome density emerging from ribosome profiling

  3. Mechanism of recycling of post-termination ribosomal complexes in ...

    Indian Academy of Sciences (India)

    Madhu

    all pathway of ribosome recycling in eubacteria with especial reference to the important role of the initiation factor ... [Seshadri A and Varshney U 2006 Mechanism of recycling of post-termination ribosomal complexes in eubacteria: a new role of initiation factor 3 .... RRF binding results in a remarkable conformational change.

  4. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns that e...... in the nucleolus....

  5. Computational resources for ribosome profiling: from database to Web server and software.

    Science.gov (United States)

    Wang, Hongwei; Wang, Yan; Xie, Zhi

    2017-08-14

    Ribosome profiling is emerging as a powerful technique that enables genome-wide investigation of in vivo translation at sub-codon resolution. The increasing application of ribosome profiling in recent years has achieved remarkable progress toward understanding the composition, regulation and mechanism of translation. This benefits from not only the awesome power of ribosome profiling but also an extensive range of computational resources available for ribosome profiling. At present, however, a comprehensive review on these resources is still lacking. Here, we survey the recent computational advances guided by ribosome profiling, with a focus on databases, Web servers and software tools for storing, visualizing and analyzing ribosome profiling data. This review is intended to provide experimental and computational biologists with a reference to make appropriate choices among existing resources for the question at hand. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number

    Directory of Open Access Journals (Sweden)

    Katherine I. Farley-Barnes

    2018-02-01

    Full Text Available Ribosome biogenesis is a highly regulated, essential cellular process. Although studies in yeast have established some of the biological principles of ribosome biogenesis, many of the intricacies of its regulation in higher eukaryotes remain unknown. To understand how ribosome biogenesis is globally integrated in human cells, we conducted a genome-wide siRNA screen for regulators of nucleolar number. We found 139 proteins whose depletion changed the number of nucleoli per nucleus from 2–3 to only 1 in human MCF10A cells. Follow-up analyses on 20 hits found many (90% to be essential for the nucleolar functions of rDNA transcription (7, pre-ribosomal RNA (pre-rRNA processing (16, and/or global protein synthesis (14. This genome-wide analysis exploits the relationship between nucleolar number and function to discover diverse cellular pathways that regulate the making of ribosomes and paves the way for further exploration of the links between ribosome biogenesis and human disease.

  7. Faunal Communities Are Invariant to Fragmentation in Experimental Seagrass Landscapes.

    Directory of Open Access Journals (Sweden)

    Jonathan S Lefcheck

    Full Text Available Human-driven habitat fragmentation is cited as one of the most pressing threats facing many coastal ecosystems today. Many experiments have explored the consequences of fragmentation on fauna in one foundational habitat, seagrass beds, but have either surveyed along a gradient of existing patchiness, used artificial materials to mimic a natural bed, or sampled over short timescales. Here, we describe faunal responses to constructed fragmented landscapes varying from 4-400 m2 in two transplant garden experiments incorporating live eelgrass (Zostera marina L.. In experiments replicated within two subestuaries of the Chesapeake Bay, USA across multiple seasons and non-consecutive years, we comprehensively censused mesopredators and epifaunal communities using complementary quantitative methods. We found that community properties, including abundance, species richness, Simpson and functional diversity, and composition were generally unaffected by the number of patches and the size of the landscape, or the intensity of sampling. Additionally, an index of competition based on species co-occurrences revealed no trends with increasing patch size, contrary to theoretical predictions. We extend conclusions concerning the invariance of animal communities to habitat fragmentation from small-scale observational surveys and artificial experiments to experiments conducted with actual living plants and at more realistic scales. Our findings are likely a consequence of the rapid life histories and high mobility of the organisms common to eelgrass beds, and have implications for both conservation and restoration, suggesting that even small patches can rapidly promote abundant and diverse faunal communities.

  8. Technical Report: Algorithm and Implementation for Quasispecies Abundance Inference with Confidence Intervals from Metagenomic Sequence Data

    Energy Technology Data Exchange (ETDEWEB)

    McLoughlin, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-11

    This report describes the design and implementation of an algorithm for estimating relative microbial abundances, together with confidence limits, using data from metagenomic DNA sequencing. For the background behind this project and a detailed discussion of our modeling approach for metagenomic data, we refer the reader to our earlier technical report, dated March 4, 2014. Briefly, we described a fully Bayesian generative model for paired-end sequence read data, incorporating the effects of the relative abundances, the distribution of sequence fragment lengths, fragment position bias, sequencing errors and variations between the sampled genomes and the nearest reference genomes. A distinctive feature of our modeling approach is the use of a Chinese restaurant process (CRP) to describe the selection of genomes to be sampled, and thus the relative abundances. The CRP component is desirable for fitting abundances to reads that may map ambiguously to multiple targets, because it naturally leads to sparse solutions that select the best representative from each set of nearly equivalent genomes.

  9. DNA barcoding for identification of 'Candidatus Phytoplasmas' using a fragment of the elongation factor Tu gene.

    Directory of Open Access Journals (Sweden)

    Olga Makarova

    Full Text Available Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf gene for phytoplasma identification is reported.We designed a new set of primers and amplified a 420-444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX. Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter-/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases.This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification.

  10. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1993-01-01

    RNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S r......The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S r......)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there....

  11. The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera.

    Science.gov (United States)

    Grohmann, L; Brennicke, A; Schuster, W

    1992-01-01

    The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526

  12. Photoaffinity labeling of rat liver ribosomes by N-(2-Nitro-4-azidobenzoyl)puromycin

    International Nuclear Information System (INIS)

    Boehm, H.; Stahl, J.; Bielka, H.

    1979-01-01

    N-(2-nitro-4-azidobenzoyl)-[ 3 H]puromycin (NAB-puromycin) was synthesized as a photoreactive derivative of puromycin in order to detect ribosomal proteins located near the peptidyltransferase centre of rat liver ribosomes. Irradiation of ribosome-NAB-puromycin complexes leads to covalent attachment of the affinity label to proteins of the large ribosomal subunit, in particular to proteins L28/29, and, to a somewhat lower extent, to proteins L4, L6, L10 and L24. The results are discussed in the light of earlier studies performed with other affinity labels that attacked the peptidyltransferase region of rat liver ribosomes. (author)

  13. In vivo labelling of functional ribosomes reveals spatial regulation during starvation in Podospora anserina

    Directory of Open Access Journals (Sweden)

    Silar Philippe

    2000-11-01

    Full Text Available Abstract Background To date, in eukaryotes, ribosomal protein expression is known to be regulated at the transcriptional and/or translational levels. But other forms of regulation may be possible. Results Here, we report the successful tagging of functional ribosomal particles with a S7-GFP chimaeric protein, making it possible to observe in vivo ribosome dynamics in the filamentous fungus Podospora anserina. Microscopic observations revealed a novel kind of ribosomal protein regulation during the passage between cell growth and stationary phases, with a transient accumulation of ribosomal proteins and/or ribosome subunits in the nucleus, possibly the nucleolus, being observed at the beginning of stationary phase. Conclusion Nuclear sequestration can be another level of ribosomal protein regulation in eukaryotic cells.This may contribute to the regulation of cell growth and division.

  14. In vivo labelling of functional ribosomes reveals spatial regulation during starvation in Podospora anserina

    Science.gov (United States)

    Lalucque, Hervé; Silar, Philippe

    2000-01-01

    Background To date, in eukaryotes, ribosomal protein expression is known to be regulated at the transcriptional and/or translational levels. But other forms of regulation may be possible. Results Here, we report the successful tagging of functional ribosomal particles with a S7-GFP chimaeric protein, making it possible to observe in vivo ribosome dynamics in the filamentous fungus Podospora anserina. Microscopic observations revealed a novel kind of ribosomal protein regulation during the passage between cell growth and stationary phases, with a transient accumulation of ribosomal proteins and/or ribosome subunits in the nucleus, possibly the nucleolus, being observed at the beginning of stationary phase. Conclusion Nuclear sequestration can be another level of ribosomal protein regulation in eukaryotic cells.This may contribute to the regulation of cell growth and division. PMID:11112985

  15. Dietary ascorbic acid normalizes ribosomal efficiency for collagen production in skin of streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Schneir, M.; Imberman, M.; Ramamurthy, N.; Golub, L.

    1987-01-01

    The objective of this study was to quantify the contribution of both ribosome amount and ribosomal efficiency to decreased collagen production in skin of diabetic rats and diabetic rats treated with dietary ascorbic acid. Male Sprague-Dawley rats were distributed equally into the following categories: non-diabetic controls; diabetics; ascorbic acid-treated diabetics. On day-20, all rats were injected with ( 3 H)proline and killed after 2 h. Absolute rate of collagen production, ribosome content, and ribosomal efficiency of collagen production were quantified. Also ribosomal efficiency was quantified for ribosomes in sucrose-gradient fractionated post-mitochondrial supernatants. The results indicate that decreased ribosomal efficiency was responsible for 70% of the decreased collagen production with 30% caused by decreased ribosome content, when measured for total skin or sucrose gradient-isolated ribosomes. At both levels of analysis, ascorbic acid treatment normalized ribosomal efficiency, indicating diabetes-mediated decreased ribosomal efficiency for collagen production is related to a co-translational event, such as procollagen underhydroxylation

  16. Differential antibiotic sensitivity determined by the large ribosomal subunit in thermophilic archaea.

    OpenAIRE

    Ruggero, D; Londei, P

    1996-01-01

    Hybrid ribosomes obtained by mixing the ribosomal subunits of the extremely thermophilic archaea Sulfolobus solfataricus and Desulfurococcus mobilis were tested for their sensitivity to selected antibiotics. It is shown that structural differences in the large ribosomal subunits determine qualitatively and quantitatively the patterns of response to alpha-sarcin and paromomycin in these species.

  17. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  18. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  19. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.

    Science.gov (United States)

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-12-23

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.

  20. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  1. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2017-01-01

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  2. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    Directory of Open Access Journals (Sweden)

    Arava Yoav

    2007-08-01

    Full Text Available Abstract Background The yeast ribosomal protein S9 (S9 is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4 has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.

  3. Characterization of four species of Trichuris (Nematoda: Enoplida) by their second internal transcribed spacer ribosomal DNA sequence.

    Science.gov (United States)

    Oliveros, R; Cutillas, C; De Rojas, M; Arias, P

    2000-12-01

    Adult worms of Trichuris ovis and T. globulosa were collected from Ovis aries (sheep) and Capra hircus (goats). T. suis was isolated from Sus scrofa domestica (swine) and T. leporis was isolated from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and a ribosomal internal transcribed spacer (ITS2) was amplified and sequenced using polymerase-chain-reaction (PCR) techniques. The ITS2 of T. ovis and T. globulosa was 407 nucleotides in length and had a GC content of about 62%. Furthermore, the ITS2 of T. suis and T. leporis was 534 and 418 nucleotides in length and had a GC content of about 64.8% and 62.4%, respectively. There was evidence of slight variation in the sequence within individuals of all species analyzed, indicating intraindividual variation in the sequence of different copies of the ribosomal DNA. Furthermore, low-level intraspecific variation was detected. Sequence analyses of ITS2 products of T. ovis and T. globulosa demonstrated no sequence difference between them. Nevertheless, differences were detected between the ITS2 sequences of T. suis, T. leporis, and T. ovis, indicating that Trichuris species can reliably be differentiated by their ITS2 sequences and PCR-linked restriction-fragment-length polymorphism (RFLP).

  4. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein-RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice.

    Science.gov (United States)

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-02-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. © 2014 British Society for Immunology.

  5. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein–RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice

    Science.gov (United States)

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-01-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. PMID:25255895

  6. The Complex Stratigraphy of the Highland Crust in the Serenitatis Region of the Moon Inferred from Mineral Fragment Chemistry

    Science.gov (United States)

    Ryder, Graham; Norman, Marc D.; Taylor, G. Jeffrey

    1997-01-01

    Large impact basins are natural drill holes into the Moon, and their ejecta carries unique information about the rock types and stratigraphy of the lunar crust. We have conducted an electron microprobe study of mineral fragments in the poikilitic melt breccias collected from the Taurus Mountains at the Apollo 17 landing site. These breccias are virtually unanimously agreed to be impact melt produced in the Serenitatis impact event. They contain lithic fragments and much more abundant mineral fragments of crustal origin. We have made precise microprobe analyses of minor element abundances in fragments of olivine, pyroxene, and plagioclase to provide new information on the possible source rocks and the crustal stratigraphy in the Serenitatis region. These data were also intended to elucidate the nature of the cryptic geochemical component in breccias such as these with low-K Fra Mauro basalt compositions. We chose the finest-grained (i.e., most rapidly quenched) breccias for study, to avoid reacted and partly assimilated fragments as much as possible. Most of the mineral fragments appear to have been derived from rocks that would fall into the pristine igneous Mg-suite as represented by lithic fragments in the Apollo collection, or reasonable extensions of it. Gabbroic rocks were more abundant in the target stratigraphy than is apparent from the Apollo sample collection. Some pyroxene and plagiociase, but probably not much olivine, could be derived from feldspathic granulites, which are metamorphosed polymict breccias. Some mineral fragments are from previously unknown rocks. These include highly magnesian olivines (up to Fo(sub 94)), possibly volcanic in origin, that exacerbate the difficulty in explaining highly magnesian rocks in the lunar crust. It appears that some part of the lunar interior has an mg*(= 100 x Mg/(Mg/Fe) atomic) greater than the conventional bulk Moon value of 80-84. Other volcanic rocks, including mare basalts, and rapidly- cooled impact melt

  7. Proto-ribosome: a theoretical approach based on RNA relics

    OpenAIRE

    Demongeot, Jacques

    2017-01-01

    We describe in this paper, based on already published articles, a contribution to the theory postulating the existence of a proto-ribosome, which could have appeared early at the origin of life and we discuss the interest of this notion in an evolutionary perspective, taking into account the existence of possible RNA relics of this proto-ribosome.

  8. DNA Barcoding for Identification of "Candidatus Phytoplasmas" Using a Fragment of the Elongation Factor Tu Gene

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta

    2012-01-01

    Background Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from...... different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported. Methodology....../Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed...

  9. Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lu

    2011-01-01

    Full Text Available Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator.

  10. Human impacts affect tree community features of 20 forest fragments of a vanishing neotropical hotspot.

    Science.gov (United States)

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  11. The activity of the acidic phosphoproteins from the 80 S rat liver ribosome.

    Science.gov (United States)

    MacConnell, W P; Kaplan, N O

    1982-05-25

    The selective removal of acidic phosphoproteins from the 80 S rat liver ribosome was accomplished by successive alcohol extractions at low salt concentration. The resulting core ribosomes lost over 90% of their translation activity and were unable to support the elongation factor 2 GTPase reaction. Both activities were partially restored when the dialyzed extracts were added back to the core ribosome. The binding of labeled adenosine diphosphoribosyl-elongation factor 2 to ribosomes was also affected by extraction and could be reconstituted, although not to the same extent as the GTPase activity associated with elongation factor 2 in the presence of the ribosome. The alcohol extracts of the 80 S ribosome contained mostly phosphoproteins P1 and P2 which could be dephosphorylated and rephosphorylated in solution by alkaline phosphatase and protein kinase, respectively. Dephosphorylation of the P1/P2 mixture in the extracts caused a decrease in the ability of these proteins to reactivate the polyphenylalanine synthesis activity of the core ribosome. However, treatment of the dephosphorylated proteins with the catalytic subunit of 3':5'-cAMP-dependent protein kinase in the presence of ATP reactivated the proteins when compared to the activity of the native extracts. Rabbit antisera raised against the alcohol-extracted proteins were capable of impairing both the polyphenylalanine synthesis reaction and the elongation factor 2-dependent GTPase reaction in the intact ribosomes.

  12. Diversity and abundance of nitrate assimilation genes in the northern South china sea.

    Science.gov (United States)

    Cai, Haiyuan; Jiao, Nianzhi

    2008-11-01

    Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.

  13. Plant diversity in hedgerows amidst Atlantic Forest fragments

    Directory of Open Access Journals (Sweden)

    Carolina C. C. Oliveira

    2015-06-01

    Full Text Available Hedgerows are linear structures found in agricultural landscapes that may facilitate dispersal of plants and animals and also serve as habitat. The aim of this study was to investigate the relationships among diversity and ecological traits of woody plants, hedgerow characteristics (size, age, and origin, and the structure of the surrounding Atlantic Forest landscape. Field data were collected from 14 hedgerows, and landscape metrics from 1000-m buffers surrounding hedgerows were recorded from a thematic map. In all sampled hedgerows, arboreal species were predominantly zoochoric and early-succession species, and hedgerow width was an important factor explaining the richness and abundance of this group of species. Connection with forest vegetation did not explain richness and abundance of animal-dispersed species, but richness of non-zoochoric species increased in more connected hedgerows. These results suggest that hedgerows are probably colonized by species arriving from nearby early-succession sites, forest fragment edges, and isolated trees in the matrix. Nonetheless, hedgerows provide resources for frugivorous animals and influence landscape connectivity, highlighting the importance of these elements in the conservation of biodiversity in fragmented and rural landscapes.

  14. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes.

    Science.gov (United States)

    Arn, P H; Li, X; Smith, C; Hsu, M; Schwartz, D C; Jabs, E W

    1991-01-01

    Pulsed electrophoresis was used to study the organization of the human centromeric region. Genomic DNA was digested with rare-cutting enzymes. DNA fragments from 0.2 to greater than 5.7 Mb were separated by electrophoresis and hybridized with alphoid and simple DNA repeats. Rare-cutting enzymes (Mlu I, Nar I, Not I, Nru I, Sal I, Sfi I, Sst II) demonstrated fewer restriction sites at centromeric regions than elsewhere in the genome. The enzyme Not I had the fewest restriction sites at centromeric regions. As much as 70% of these sequences from the centromeric region are present in Not I DNA fragments greater than 5.7 and estimated to be as large as 10 Mb in size. Other repetitive sequences such as short interspersed repeated segments (SINEs), long interspersed repeated segments (LINEs), ribosomal DNA, and mini-satellite DNA that are not enriched at the centromeric region, are not enriched in Not I fragments of greater than 5.7 Mb in size.

  15. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    International Nuclear Information System (INIS)

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi

    2016-01-01

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.

  16. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Shigeno, Yuta [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan); Uchiumi, Toshio [Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan)

    2016-04-22

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.

  17. Senescent changes in the ribosomes of animal cells in vivo and in vitro

    Science.gov (United States)

    Miquel, J.; Johnson, J. E., Jr.

    1979-01-01

    The paper examines RNA-ribosomal changes observed in protozoa and fixed postmitotic cells, as well as the characteristics of intermitotic cells. Attention is given to a discussion of the implications of the reported ribosomal changes as to the senescent deterioration of protein synthesis and physiological functions. A survey of the literature suggests that, while the data on ribosomal change in dividing cells both in vivo and in vitro are inconclusive, there is strong histological and biochemical evidence in favor of some degree of quantitative ribosomal loss in fixed postmitotic cells. Since these decreases in ribosomes are demonstrated in differential cells from nematodes, insects and mammals, they may represent a universal manifestation of cytoplasmic senescence in certain types of fixed postmitotic animal cells. The observed variability in ribosomal loss for cells belonging to the same type suggests that this involution phenomenon is rather related to the wear and tear suffered by a particular cell.

  18. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  19. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  20. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  1. Extracellular matrix fragmentation in young, healthy cartilaginous tissues.

    Science.gov (United States)

    Craddock, R J; Hodson, N W; Ozols, M; Shearer, T; Hoyland, J A; Sherratt, M J

    2018-02-09

    Although the composition and structure of cartilaginous tissues is complex, collagen II fibrils and aggrecan are the most abundant assemblies in both articular cartilage (AC) and the nucleus pulposus (NP) of the intervertebral disc (IVD). Whilst structural heterogeneity of intact aggrecan ( containing three globular domains) is well characterised, the extent of aggrecan fragmentation in healthy tissues is poorly defined. Using young, yet skeletally mature (18-30 months), bovine AC and NP tissues, it was shown that, whilst the ultrastructure of intact aggrecan was tissue-dependent, most molecules (AC: 95 %; NP: 99.5 %) were fragmented (lacking one or more globular domains). Fragments were significantly smaller and more structurally heterogeneous in the NP compared with the AC (molecular area; AC: 8543 nm2; NP: 4625 nm2; p tissue-invariant. Molecular fragmentation is considered indicative of a pathology; however, these young, skeletally mature tissues were histologically and mechanically (reduced modulus: AC: ≈ 500 kPa; NP: ≈ 80 kPa) comparable to healthy tissues and devoid of notable gelatinase activity (compared with rat dermis). As aggrecan fragmentation was prevalent in neonatal bovine AC (99.5 % fragmented, molecular area: 5137 nm2) as compared with mature AC (95.0 % fragmented, molecular area: 8667 nm2), it was hypothesised that targeted proteolysis might be an adaptive process that modified aggrecan packing (as simulated computationally) and, hence, tissue charge density, mechanical properties and porosity. These observations provided a baseline against which pathological and/or age-related fragmentation of aggrecan could be assessed and suggested that new strategies might be required to engineer constructs that mimic the mechanical properties of native cartilaginous tissues.

  2. γ-irradiated ribosomes from Micrococcus radiodurans in a cell-free protein synthesizing system

    International Nuclear Information System (INIS)

    Suessmuth, R.; Widmann, A.

    1979-01-01

    γ-irradiation inactivation of isolated ribosomes of Micrococcus radiodurans was studied by examining poly U directed synthesis of polyphenylalanine. Ribosomes of M. radiodurans did not show significant γ-radiation sensitivity up to a dose of approx. 11.6 k Gy. Cells of M. radiodurans take up more magnesium than E. coli cells under the same conditions. The magnesium content of ribosomes of M. radiodurans was 18% higher than that of E.coli ribosomes. A possible relation between Mg 2+ -content and γ-resistance is discussed. (orig.) [de

  3. A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death

    Directory of Open Access Journals (Sweden)

    Bruce R. Levin

    2017-02-01

    Full Text Available We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE, is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures.

  4. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DEFF Research Database (Denmark)

    Østrup, Olga; Hyttel, Poul; Klærke, Dan Arne

    2011-01-01

    Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression....... This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling...... and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation...

  5. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.

    Science.gov (United States)

    Poma, A; Miranda, M; Spanò, L

    1998-10-01

    The cytotoxicity and inhibitory effect on proliferation of the type 1 ribosome-inactivating protein luffin purified from the seeds of Luffa aegyptiaca were investigated both in human metastatic melanoma cells and in murine Ehrlich ascites tumour cells. Results indicate that luffin from the seeds of Luffa aegyptiaca is cytotoxic to the cell lines tested, with approximately 10 times greater potency in Ehrlich cells. Luffin was found to induce an increase in cytosolic oligonucleosome-bound DNA in both melanoma and Ehrlich ascites tumour cells, the level of DNA fragmentation in the former cell line being higher than in the latter. Experiments with melanoma cells indicate that an increase in cytosolic nucleosomes could be supportive of apoptosis as the type of cell death induced by luffin.

  6. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  7. Studies on the catalytic rate constant of ribosomal peptidyltransferase.

    Science.gov (United States)

    Synetos, D; Coutsogeorgopoulos, C

    1987-02-20

    A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.

  8. HDP2: a ribosomal DNA (NTS-ETS) sequence as a target for species-specific molecular diagnosis of intestinal taeniasis in humans.

    Science.gov (United States)

    Flores, María D; Gonzalez, Luis M; Hurtado, Carolina; Motta, Yamileth Monje; Domínguez-Hidalgo, Cristina; Merino, Francisco Jesús; Perteguer, María J; Gárate, Teresa

    2018-02-27

    Taenia solium, T. asiatica and T. saginata tapeworms cause human taeniasis and are the origin of porcine and bovine cysticercosis. Furthermore, T. solium eggs can cause human cysticercosis, with neurocysticercosis being the most serious form of the disease. These helminth infections are neglected tropical diseases and are endemic in several countries in the Americas, Asia and Africa. As a result of globalization, migration in particular, the infections have been extending to non-endemic territories. Species-specific diagnosis of taeniasis is subject to drawbacks that could be resolved using molecular approaches. In the present study, conventional and real-time amplification protocols (cPCR and qPCR) based on the T. saginata HDP2 sequence were applied in the differential diagnosis of taeniasis (T. saginata, T. solium) in both fecal samples and proglottids expelled by patients. The HDP2 homolog in T. solium was cloned and characterized. Semi-nested cPCR and qPCR (Sn-HDP2 cPCR and Sn-HDP2 qPCR) amplified T. saginata and T. solium DNA, with an analytical sensitivity of 40 and 400 fg, respectively, and identically in both protocols. Eighteen taeniasis patients were diagnosed directly with T. saginata or T. solium, either from proglottids or fecal samples with/without eggs (detected using microscopy), based on the optimized Sn-HDP2 qPCR. After cloning, the T. solium HDP2 homolog sequence was confirmed to be a ribosomal sequence. The HDP2 fragment corresponded to a non-transcribed sequence/external transcribed repeat (NTS/ETS) of ribosomal DNA. Compared with the T. saginata HDP2 homolog, the T solium HDP2 sequence lacked the first 900 nt at the 5' end and showed nucleotide substitutions and small deletions. Sn-HDP2 cPCR and Sn-HDP2 qPCR were set up for the diagnosis of human taeniasis, using proglottids and fecal samples from affected patients. The new Sn-HDP2 qPCR protocol was the best option, as it directly differentiated T. saginata from T. solium. The diagnosis of

  9. Relative abundance of mesopredators and size of oak patches in the cross-timbers ecoregion

    Science.gov (United States)

    Disney, M.R.; Hellgren, E.C.; Davis, C.A.; Leslie, David M.; Engle, David M.

    2008-01-01

    Mesopredators (e.g., raccoon Procyon lotor, Virginia opossum Didelphis virginiana, striped skunk Mephitis mephitis) have received considerable attention because of links to population declines in birds via increased nest predation, especially in landscapes fragmented by anthropogenic forces. Relationships of abundance of mesopredators to size of habitat patches have received less attention than relationships to other metrics of fragmentation, particularly edge characteristics. We tested the hypothesis that relative abundance of mesopredators (e.g., raccoons and Virginia opossums) was related negatively to size of forest patch. We delineated 15 patches of oak (Quercus) forest ranging from 0.2 to 55.3 ha within a grassland-woodland mosaic in the cross-timbers ecoregion of Oklahoma. Scent stations and live traps within these patches were used to index relative abundance of mesopredators in summers 2003 and 2004. Both indices of relative abundance were related weakly and negatively to area of forest patch. However, rate of capture and visitation to scent station were not correlated consistently throughout the study. Our results suggested that the two methods to index abundance provided separate information on functional and numerical responses to size of patch. Our evidence that mesopredators within the cross timbers were more likely to be in smaller patches of oak forest may have implications to success of avian nesting in these patches.

  10. Linezolid-Dependent Function and Structure Adaptation of Ribosomes in a Staphylococcus epidermidis Strain Exhibiting Linezolid Dependence

    Science.gov (United States)

    Kokkori, Sofia; Apostolidi, Maria; Tsakris, Athanassios; Pournaras, Spyros

    2014-01-01

    Linezolid-dependent growth was recently reported in Staphylococcus epidermidis clinical strains carrying mutations associated with linezolid resistance. To investigate this unexpected behavior at the molecular level, we isolated active ribosomes from one of the linezolid-dependent strains and we compared them with ribosomes isolated from a wild-type strain. Both strains were grown in the absence and presence of linezolid. Detailed biochemical and structural analyses revealed essential differences in the function and structure of isolated ribosomes which were assembled in the presence of linezolid. The catalytic activity of peptidyltransferase was found to be significantly higher in the ribosomes derived from the linezolid-dependent strain. Interestingly, the same ribosomes exhibited an abnormal ribosomal subunit dissociation profile on a sucrose gradient in the absence of linezolid, but the profile was restored after treatment of the ribosomes with an excess of the antibiotic. Our study suggests that linezolid most likely modified the ribosomal assembly procedure, leading to a new functional ribosomal population active only in the presence of linezolid. Therefore, the higher growth rate of the partially linezolid-dependent strains could be attributed to the functional and structural adaptations of ribosomes to linezolid. PMID:24890589

  11. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    Science.gov (United States)

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  12. Further characterization of ribosome binding to thylakoid membranes

    International Nuclear Information System (INIS)

    Hurewitz, J.; Jagendorf, A.T.

    1987-01-01

    Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation, and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of [ 3 H]leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins

  13. Structure of Vibrio cholerae ribosome hibernation promoting factor

    International Nuclear Information System (INIS)

    De Bari, Heather; Berry, Edward A.

    2013-01-01

    The X-ray crystal structure of ribosome hibernation promoting factor from V. cholerae has been determined at 2.0 Å resolution. The crystal was phased by two-wavelength MAD using cocrystallized cobalt. The X-ray crystal structure of ribosome hibernation promoting factor (HPF) from Vibrio cholerae is presented at 2.0 Å resolution. The crystal was phased by two-wavelength MAD using cocrystallized cobalt. The asymmetric unit contained two molecules of HPF linked by four Co atoms. The metal-binding sites observed in the crystal are probably not related to biological function. The structure of HPF has a typical β–α–β–β–β–α fold consistent with previous structures of YfiA and HPF from Escherichia coli. Comparison of the new structure with that of HPF from E. coli bound to the Thermus thermophilus ribosome [Polikanov et al. (2012 ▶), Science, 336, 915–918] shows that no significant structural changes are induced in HPF by binding

  14. The N-terminal sequence of ribosomal protein L10 from the archaebacterium Halobacterium marismortui and its relationship to eubacterial protein L6 and other ribosomal proteins.

    Science.gov (United States)

    Dijk, J; van den Broek, R; Nasiulas, G; Beck, A; Reinhardt, R; Wittmann-Liebold, B

    1987-08-01

    The amino-terminal sequence of ribosomal protein L10 from Halobacterium marismortui has been determined up to residue 54, using both a liquid- and a gas-phase sequenator. The two sequences are in good agreement. The protein is clearly homologous to protein HcuL10 from the related strain Halobacterium cutirubrum. Furthermore, a weaker but distinct homology to ribosomal protein L6 from Escherichia coli and Bacillus stearothermophilus can be detected. In addition to 7 identical amino acids in the first 36 residues in all four sequences a number of conservative replacements occurs, of mainly hydrophobic amino acids. In this common region the pattern of conserved amino acids suggests the presence of a beta-alpha fold as it occurs in ribosomal proteins L12 and L30. Furthermore, several potential cases of homology to other ribosomal components of the three ur-kingdoms have been found.

  15. Ribosomes: Ribozymes that Survived Evolution Pressures but Is Paralyzed by Tiny Antibiotics

    Science.gov (United States)

    Yonath, Ada

    An impressive number of crystal structures of ribosomes, the universal cellular machines that translate the genetic code into proteins, emerged during the last decade. The determination of ribosome high resolution structure, which was widely considered formidable, led to novel insights into the ribosomal function, namely, fidelity, catalytic mechanism, and polymerize activities. They also led to suggestions concerning its origin and shed light on the action, selectivity and synergism of ribosomal antibiotics; illuminated mechanisms acquiring bacterial resistance and provided structural information for drug improvement and design. These studies required the pioneering and implementation of advanced technologies, which directly influenced the remarkable increase of the number of structures deposited in the Protein Data Bank.

  16. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.

    Science.gov (United States)

    Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C

    2016-04-01

    Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.

  17. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    A casein kinase was isolated and purifed from rabbit reticulocytes. About 90% of the enzyme activity co-sedimented with the ribosomal fraction, whereas about 10% of the enzyme activity was found in the ribosome-free supernatant. Both casein kinases (the ribosome-bound enzyme as well as the free...... suggested that the casein kinase is a dimer composed of subunits of identical molecular weight. The enzyme utilizes GTP as well as ATP as a phosphoryl donor. It preferentially phosphorylates acidic proteins, in particular the model substrates casein and phosvitin. Casein kinase is cyclic AMP...

  18. Simulation and analysis of single-ribosome translation

    International Nuclear Information System (INIS)

    Tinoco, Ignacio Jr; Wen, Jin-Der

    2009-01-01

    In the cell, proteins are synthesized by ribosomes in a multi-step process called translation. The ribosome translocates along the messenger RNA to read the codons that encode the amino acid sequence of a protein. Elongation factors, including EF-G and EF-Tu, are used to catalyze the process. Recently, we have shown that translation can be followed at the single-molecule level using optical tweezers; this technique allows us to study the kinetics of translation by measuring the lifetime the ribosome spends at each codon. Here, we analyze the data from single-molecule experiments and fit the data with simple kinetic models. We also simulate the translation kinetics based on a multi-step mechanism from ensemble kinetic measurements. The mean lifetimes from the simulation were consistent with our experimental single-molecule measurements. We found that the calculated lifetime distributions were fit in general by equations with up to five rate-determining steps. Two rate-determining steps were only obtained at low concentrations of elongation factors. These analyses can be used to design new single-molecule experiments to better understand the kinetics and mechanism of translation

  19. Rapid decay of tree-community composition in Amazonian forest fragments

    Science.gov (United States)

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  20. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples.

    Science.gov (United States)

    Vaarala, M H; Porvari, K S; Kyllönen, A P; Mustonen, M V; Lukkarinen, O; Vihko, P T

    1998-09-25

    A cDNA library specific for mRNA over-expressed in prostate cancer was generated by subtractive hybridization of transcripts originating from prostatic hyperplasia and cancer tissues. cDNA encoding ribosomal proteins L4, L5, L7a, L23a, L30, L37, S14 and S18 was found to be present among 100 analyzed clones. Levels of ribosomal mRNA were significantly higher at least in one of the prostate-cancer cell lines, LNCaP, DU-145 and PC-3, than in hyperplastic tissue, as determined by slot-blot hybridization. Furthermore, L23a- and S14-transcript levels were significantly elevated in PC-3 cells as compared with those in the normal prostate epithelial cell line PrEC. Generally, dramatic changes in the mRNA content of the ribosomal proteins were not detected, the most evident over-expression being that of L37 mRNA, which was 3.4 times more abundant in LNCaP cells than in hyperplastic prostate tissue. The over-expression of L7a and L37 mRNA was confirmed in prostate-cancer tissue samples by in situ hybridization. Elevated cancer-related expression of L4 and L30 has not been reported, but levels of the other ribosomal proteins are known to be increased in several types of cancers. These results therefore suggest that prostate cancer is comparable with other types of cancers, in that a larger pool of some ribosomal proteins is gained during the transformation process, by an unknown mechanism.

  1. Isomeric signatures in the fragmentation of pyridazine and pyrimidine induced by fast ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Montenegro, Eduardo C. [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil)

    2015-07-28

    We present fast proton impact induced fragmentations of pyrimidine and pyridazine as an experimental resource to investigate isomeric signatures. Major isomeric imprints are identified for few fragment ions and differences of more than an order of magnitude for the cross sections of fragments of the same mass were measured. The observation of the molecular structure of these isomers gives no apparent indication for the reasons for such substantial differences. It is verified that the simple displacement of the position of one nitrogen atom strongly inhibits or favors the production of some ionic fragment species. The dependency of the fragmentation cross sections on the proton impact energy, investigated by means of time of flight mass spectroscopy and of a model calculation based in first order perturbation theory, allows us to disentangle the complex collision dynamics of the ionic fragments. The proton-induced fragmentation discriminates rather directly the association between a molecular orbital ionization and the fragment-ions creation and abundance, as well as how the redistribution of the energy imparted to the molecules takes place, triggering not only single but also double vacancy and leads to specific fragmentation pathways.

  2. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA

    Science.gov (United States)

    Andreeva, Irena

    2018-01-01

    During translation, consecutive ribosomes load on an mRNA and form a polysome. The first ribosome binds to a single-stranded mRNA region and moves toward the start codon, unwinding potential mRNA structures on the way. In contrast, the following ribosomes can dock at the start codon only when the first ribosome has vacated the initiation site. Here we show that loading of the second ribosome on a natural 38-nt-long 5′ untranslated region of lpp mRNA, which codes for the outer membrane lipoprotein from Escherichia coli, takes place before the leading ribosome has moved away from the start codon. The rapid formation of this standby complex depends on the presence of ribosomal proteins S1/S2 in the leading ribosome. The early recruitment of the second ribosome to the standby site before translation by the leading ribosome and the tight coupling between translation elongation by the first ribosome and the accommodation of the second ribosome can contribute to high translational efficiency of the lpp mRNA. PMID:29632209

  3. Extracellular matrix fragmentation in young, healthy cartilaginous tissues

    Directory of Open Access Journals (Sweden)

    RJ Craddock

    2018-02-01

    Full Text Available Although the composition and structure of cartilaginous tissues is complex, collagen II fibrils and aggrecan are the most abundant assemblies in both articular cartilage (AC and the nucleus pulposus (NP of the intervertebral disc (IVD. Whilst structural heterogeneity of intact aggrecan ( containing three globular domains is well characterised, the extent of aggrecan fragmentation in healthy tissues is poorly defined. Using young, yet skeletally mature (18-30 months, bovine AC and NP tissues, it was shown that, whilst the ultrastructure of intact aggrecan was tissue-dependent, most molecules (AC: 95 %; NP: 99.5 % were fragmented (lacking one or more globular domains. Fragments were significantly smaller and more structurally heterogeneous in the NP compared with the AC (molecular area; AC: 8543 nm2; NP: 4625 nm2; p < 0.0001. In contrast, fibrillar collagen appeared structurally intact and tissue-invariant. Molecular fragmentation is considered indicative of a pathology; however, these young, skeletally mature tissues were histologically and mechanically (reduced modulus: AC: ≈ 500 kPa; NP: ≈ 80 kPa comparable to healthy tissues and devoid of notable gelatinase activity (compared with rat dermis. As aggrecan fragmentation was prevalent in neonatal bovine AC (99.5 % fragmented, molecular area: 5137 nm2 as compared with mature AC (95.0 % fragmented, molecular area: 8667 nm2, it was hypothesised that targeted proteolysis might be an adaptive process that modified aggrecan packing (as simulated computationally and, hence, tissue charge density, mechanical properties and porosity. These observations provided a baseline against which pathological and/or age-related fragmentation of aggrecan could be assessed and suggested that new strategies might be required to engineer constructs that mimic the mechanical properties of native cartilaginous tissues.

  4. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lydie Michaillat

    Full Text Available The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  5. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation.

    Science.gov (United States)

    Rodnina, Marina V; Wintermeyer, Wolfgang

    2011-04-01

    Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.

  6. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    Science.gov (United States)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D.

    2016-01-01

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides whose members target proteases with potent reversible inhibition. The product structure is constructed by three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here, we describe the detailed structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases, MdnC and MdnB, interact with a conserved α-helix of the precursor peptide using a novel precursor peptide recognition mechanism. The results provide insight into the unique protein/protein interactions key to the chemistry, suggest an origin of the natural combinatorial synthesis of microviridin peptides and provide a framework for future engineering efforts to generate designed compounds. PMID:27669417

  7. Structural basis for precursor protein-directed ribosomal peptide macrocyclization.

    Science.gov (United States)

    Li, Kunhua; Condurso, Heather L; Li, Gengnan; Ding, Yousong; Bruner, Steven D

    2016-11-01

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein-protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  8. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba.

    Science.gov (United States)

    Galián, J A; Rosato, M; Rosselló, J A

    2012-06-01

    In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S-5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S-5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S-5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S-5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary.

  9. Impacts of macro - and microplastic on macrozoobenthos abundance in intertidal zone

    Science.gov (United States)

    Bangun, A. P.; Wahyuningsih, H.; Muhtadi, A.

    2018-02-01

    Plastics pollution in coastal areas is one of the topics that have received more attention over the past few years. The intertidal zone is a waters area that is directly affected by contamination of plastic waste from land and sea. The purpose of this study was to analyze the types and abundance of plastic waste in the intertidal zone and its impact on macrozoobenthos abundance. This research was conducted at Pesisir Desa Jaring Halus in February-April 2017. Macrozoobenthos and macro - micro plastic were collected by using quadratic transect. Sediments were collected with a core, to a depth of 30 cm. Microplastic and macroplastic abundances were analyzed using separation of sediment density and hand sorting. The dominant micro plastic types were film (52.30%), fiber (24.88%), fragments (22.74%), followed by pellets (0.1%). The total number of microplastics were 326,33 items and macro plastic were 308 items. Macroplastic abundance is positively correlated with microplastic (0.765). The abundance of macrozoobenthos is negatively correlated with microplastic abundance (-0.368) and with macro plastic abundance (-0.633). The management strategies were suggested clean up marine debris, decrease plastic using and built up the station of debris processing.

  10. Terrestrial salamander abundance on reclaimed mountaintop removal mines

    Science.gov (United States)

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Mountaintop removal mining, a large-scale disturbance affecting vegetation, soil structure, and topography, converts landscapes from mature forests to extensive grassland and shrubland habitats. We sampled salamanders using drift-fence arrays and coverboard transects on and near mountaintop removal mines in southern West Virginia, USA, during 2000–2002. We compared terrestrial salamander relative abundance and species richness of un-mined, intact forest with habitats on reclaimed mountaintop removal mines (reclaimed grassland, reclaimed shrubland, and fragmented forest). Salamanders within forests increased in relative abundance with increasing distance from reclaimed mine edge. Reclaimed grassland and shrubland habitats had lower relative abundance and species richness than forests. Characteristics of reclaimed habitats that likely contributed to lower salamander abundance included poor soils (dry, compacted, little organic matter, high rock content), reduced vertical structure of vegetation and little tree cover, and low litter and woody debris cover. Past research has shown that salamander populations reduced by clearcutting may rebound in 15–24 years. Time since disturbance was 7–28 years in reclaimed habitats on our study areas and salamander populations had not reached levels found in adjacent mature forests.

  11. The complete structure of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leibundgut, Marc; Bieri, Philipp; Leitner, Alexander; Schmitz, Nikolaus; Aebersold, Ruedi; Ban, Nenad

    2014-11-13

    Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.

  12. Organization of proteins in mammalian mitochondrial ribosomes: accessibility to lactoperoxidase-catalyzed radioiodination

    International Nuclear Information System (INIS)

    Denslow, N.D.; O'Brien, T.W.

    1984-01-01

    To assess the relative exposure of individual ribosomal proteins (r-proteins) in the large and small subunits of the bovine mitochondrial ribosome, double label iodination technique was used. Regions of r-proteins exposed in purified ribosomal subunits were labeled with 131 I using the lactoperoxidase-catalyzed iodination system, and additional reactive groups available upon denaturing the r-proteins in urea were labeled with 125 I using the chloramine-T mediated reaction. The ratio of 131 I to 125 I incorporated into individual proteins under these conditions is representative of the degree of exposure for each of the proteins in the subunits. In this manner, the r-proteins have been grouped into 3 classes depending on their degree of exposure: high exposure, intermediate exposure, and essentially buried. While both subunits have a few proteins in the highly exposed group, and a large number of proteins in the intermediate exposure group, only the large ribosomal subunit has an appreciable number of proteins which appear essentially buried. The more buried proteins may serve mainly structural roles, perhaps acting as assembly proteins, since many from this group bind to ribosomal RNA. The more superficially disposed proteins may comprise binding sites for macromolecules that interact with ribosomes during protein synthesis, as well as stabilizing the association of the large and small subribosomal particles

  13. Molecular dynamics simulation of ribosome jam

    KAUST Repository

    Matsumoto, Shigenori; Takagi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2011-01-01

    We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We

  14. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates.

    Science.gov (United States)

    Pringle, Märit; Poehlsgaard, Jacob; Vester, Birte; Long, Katherine S

    2004-12-01

    The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.

  15. Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes

    Directory of Open Access Journals (Sweden)

    Nicholas T. Ingolia

    2014-09-01

    Full Text Available Ribosome profiling suggests that ribosomes occupy many regions of the transcriptome thought to be noncoding, including 5′ UTRs and long noncoding RNAs (lncRNAs. Apparent ribosome footprints outside of protein-coding regions raise the possibility of artifacts unrelated to translation, particularly when they occupy multiple, overlapping open reading frames (ORFs. Here, we show hallmarks of translation in these footprints: copurification with the large ribosomal subunit, response to drugs targeting elongation, trinucleotide periodicity, and initiation at early AUGs. We develop a metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions, which validates the vast majority of footprints outside of coding regions. We present evidence for polypeptide production beyond annotated genes, including the induction of immune responses following human cytomegalovirus (HCMV infection. Translation is pervasive on cytosolic transcripts outside of conserved reading frames, and direct detection of this expanded universe of translated products enables efforts at understanding how cells manage and exploit its consequences.

  16. Ribosome slowed by mutation to streptomycin resistance. [Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Galas, D J; Branscomb, E W

    1976-08-12

    The effect of mutation to streptomycin resistance on the speed of polypeptide elongation in Escherichia coli was investigated. Translation speed was determined by measuring the time required for the first newly synthesized ..beta..-galactosidase molecules to appear after induction of the lactose operon. The results showed that ribosome speed is not a fixed parameter inherent to the protein synthetic apparatus, but a variable determined by the kinetics of translation and ultimately by the structure of the ribosome. (HLW)

  17. Technical Report on Modeling for Quasispecies Abundance Inference with Confidence Intervals from Metagenomic Sequence Data

    Energy Technology Data Exchange (ETDEWEB)

    McLoughlin, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-11

    The overall aim of this project is to develop a software package, called MetaQuant, that can determine the constituents of a complex microbial sample and estimate their relative abundances by analysis of metagenomic sequencing data. The goal for Task 1 is to create a generative model describing the stochastic process underlying the creation of sequence read pairs in the data set. The stages in this generative process include the selection of a source genome sequence for each read pair, with probability dependent on its abundance in the sample. The other stages describe the evolution of the source genome from its nearest common ancestor with a reference genome, breakage of the source DNA into short fragments, and the errors in sequencing the ends of the fragments to produce read pairs.

  18. Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.

    Science.gov (United States)

    Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel

    2012-02-01

    Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.

  19. Analysis of the first and second internal transcribed spacer sequences of the ribosomal DNA in Biomphalaria tenagophila complex (Mollusca: Planorbidae

    Directory of Open Access Journals (Sweden)

    Teofânia HDA Vidigal

    2004-03-01

    Full Text Available The first and second internal transcribed spacer regions (ITS1 and ITS2 of the ribosomal DNA of Biomphalaria tenagophila complex (B. tenagophila, B. occidentalis, and B. t. guaibensis were sequenced and compared. The alignment lengths of these regions were about 655 bp and 481 bp, respectively. Phylogenetic relationships among the Biomphalaria species were inferred by Maximum Parsimony and Neighbor-joining methods. The phylogenetic trees produced, in most of the cases, were in accordance with morphological systematics and other molecular data previously obtained by polymerase chain reaction and restriction fragment length polymorphism analysis. The present results provide support for the proposal that B. tenagophila represents a complex comprising B. tenagophila, B. occidentalis and B. t. guaibensis.

  20. Normalization and microbial differential abundance strategies depend upon data characteristics.

    Science.gov (United States)

    Weiss, Sophie; Xu, Zhenjiang Zech; Peddada, Shyamal; Amir, Amnon; Bittinger, Kyle; Gonzalez, Antonio; Lozupone, Catherine; Zaneveld, Jesse R; Vázquez-Baeza, Yoshiki; Birmingham, Amanda; Hyde, Embriette R; Knight, Rob

    2017-03-03

    Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses. Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size. Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average

  1. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  2. Fluctuations in protein synthesis from a single RNA template: stochastic kinetics of ribosomes.

    Science.gov (United States)

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T V

    2009-01-01

    Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them--namely, the dwell time distribution--has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

  3. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    Science.gov (United States)

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  4. The ribosome-associated complex antagonizes prion formation in yeast.

    Science.gov (United States)

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.

  5. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  6. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached...

  7. sORFs.org: a repository of small ORFs identified by ribosome profiling.

    Science.gov (United States)

    Olexiouk, Volodimir; Crappé, Jeroen; Verbruggen, Steven; Verhegen, Kenneth; Martens, Lennart; Menschaert, Gerben

    2016-01-04

    With the advent of ribosome profiling, a next generation sequencing technique providing a "snap-shot'' of translated mRNA in a cell, many short open reading frames (sORFs) with ribosomal activity were identified. Follow-up studies revealed the existence of functional peptides, so-called micropeptides, translated from these 'sORFs', indicating a new class of bio-active peptides. Over the last few years, several micropeptides exhibiting important cellular functions were discovered. However, ribosome occupancy does not necessarily imply an actual function of the translated peptide, leading to the development of various tools assessing the coding potential of sORFs. Here, we introduce sORFs.org (http://www.sorfs.org), a novel database for sORFs identified using ribosome profiling. Starting from ribosome profiling, sORFs.org identifies sORFs, incorporates state-of-the-art tools and metrics and stores results in a public database. Two query interfaces are provided, a default one enabling quick lookup of sORFs and a BioMart interface providing advanced query and export possibilities. At present, sORFs.org harbors 263 354 sORFs that demonstrate ribosome occupancy, originating from three different cell lines: HCT116 (human), E14_mESC (mouse) and S2 (fruit fly). sORFs.org aims to provide an extensive sORFs database accessible to researchers with limited bioinformatics knowledge, thus enabling easy integration into personal projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6.

    Science.gov (United States)

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.

  9. Species richness and abundance of bats in fragments of the stational semidecidual forest, Upper Paraná River, southern Brazil

    Directory of Open Access Journals (Sweden)

    H. Ortêncio-Filho

    Full Text Available The Upper Paraná River floodplain is inserted in a region of the Mata Atlântica biome, which is a critical area to preserve. Due to the scarcity of researches about the chiropterofauna in this region, the present study investigated species richness and abundance of bats in remnants from the stational semidecidual forest of the Upper Paraná River, southern Brazil. Samplings were taken every month, from January to December 2006, using 32 mist nets with 8.0 x 2.5 m, resulting in 640 m²/h and totaling a capture effort of 87,040 m²/h. In order to estimate the species richness, the following estimators were employed Chao1 and Jack2. During the study, a total of 563 individuals belonging to 17 species (Artibeus planirostris, Artibeus lituratus, Carollia perspicillata, Platyrrhinus lineatus, Sturnira lilium, Artibeus fimbriatus, Myotis nigricans, Desmodus rotundus, Artibeus obscurus, Noctilio albiventris, Phylostomus discolor, Phylostomus hastatus, Chrotopterus auritus, Lasiurus ega, Chiroderma villosum, Pygoderma bilabiatum and Lasiurus blossevillii were captured. The estimated richness curves tended to stabilize, indicating that most of the species were sampled. Captured species represented 10% of the taxa recorded in Brazil and 28% in Paraná State, revealing the importance of this area for the diversity of bats. These findings indicate the need to determine actions aiming to restrict human activities in these forest fragments, in order to minimize anthropogenic impacts on the chiropterofauna.

  10. Fragment screening for drug leads by weak affinity chromatography (WAC-MS).

    Science.gov (United States)

    Ohlson, Sten; Duong-Thi, Minh-Dao

    2018-02-23

    Fragment-based drug discovery is an important tool for design of small molecule hit-to-lead compounds against various biological targets. Several approved drugs have been derived from an initial fragment screen and many such candidates are in various stages of clinical trials. Finding fragment hits, that are suitable for optimisation by medicinal chemists, is still a challenge as the binding between the small fragment and its target is weak in the range of mM to µM of K d and irrelevant non-specific interactions are abundant in this area of transient interactions. Fortunately, there are methods that can study weak interactions quite efficiently of which NMR, surface plasmon resonance (SPR) and X-ray crystallography are the most prominent. Now, a new technology based on zonal affinity chromatography, weak affinity chromatography (WAC), has been introduced which has remedied many of the problems with other technologies. By combining WAC with mass spectrometry (WAC-MS), it is a powerful tool to identify binders quantitatively in terms of affinity and kinetics either from fragment libraries or from complex mixtures of biological extracts. As WAC-MS can be multiplexed by analysing mixtures of fragments (20-100 fragments) in one sample, this approach yields high throughput, where a whole library of e.g. >2000 fragments can be analysed quantitatively within a day. WAC-MS is easy to perform, where the robustness and quality of HPLC is fully utilized. This review will highlight the rationale behind the application of WAC-MS for fragment screening in drug discovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?

    Science.gov (United States)

    Zabel, Jörg; Tscharntke, Teja

    1998-09-01

    Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations.

  12. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    Directory of Open Access Journals (Sweden)

    Sayaka Tsuji

    2017-07-01

    Full Text Available Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species.

  13. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants.

    Science.gov (United States)

    Krystal, M; D'Eustachio, P; Ruddle, F H; Arnheim, N

    1981-01-01

    The distributions of three human ribosomal gene polymorphisms among individual chromosomes containing nucleolus organizers were analyzed by using mouse--human hybrid cells. Different nucleolus organizers can contain the same variant, suggesting the occurrence of genetic exchanges among ribosomal gene clusters on nonhomologous chromosomes. Such exchanges appear to occur less frequently in mice. This difference is discussed in terms of the nucleolar organization and chromosomal location of ribosomal gene clusters in humans and mice. Images PMID:6272316

  14. De novo analysis of electron impact mass spectra using fragmentation trees

    International Nuclear Information System (INIS)

    Hufsky, Franziska; Rempt, Martin; Rasche, Florian; Pohnert, Georg; Böcker, Sebastian

    2012-01-01

    Highlights: ► We present a method for de novo analysis of accurate mass EI mass spectra of small molecules. ► This method identifies the molecular ion and thus the molecular formula where the molecular ion is present in the spectrum. ► Fragmentation trees are constructed by automated signal extraction and evaluation. ► These trees explain relevant fragmentation reactions. ► This method will be very helpful in the automated analysis of unknown metabolites. - Abstract: The automated fragmentation analysis of high resolution EI mass spectra based on a fragmentation tree algorithm is introduced. Fragmentation trees are constructed from EI spectra by automated signal extraction and evaluation. These trees explain relevant fragmentation reactions and assign molecular formulas to fragments. The method enables the identification of the molecular ion and the molecular formula of a metabolite if the molecular ion is present in the spectrum. These identifications are independent of existing library knowledge and, thus, support assignment and structural elucidation of unknown compounds. The method works even if the molecular ion is of very low abundance or hidden under contaminants with higher masses. We apply the algorithm to a selection of 50 derivatized and underivatized metabolites and demonstrate that in 78% of cases the molecular ion can be correctly assigned. The automatically constructed fragmentation trees correspond very well to published mechanisms and allow the assignment of specific relevant fragments and fragmentation pathways even in the most complex EI-spectra in our dataset. This method will be very helpful in the automated analysis of metabolites that are not included in common libraries and it thus has the potential to support the explorative character of metabolomics studies.

  15. Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation

    Science.gov (United States)

    Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.

    2016-01-01

    Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435

  16. Site-specific fluorescent labeling of nascent proteins on the translating ribosome.

    Science.gov (United States)

    Saraogi, Ishu; Zhang, Dawei; Chandrasekaran, Sandhya; Shan, Shu-ou

    2011-09-28

    As newly synthesized proteins emerge from the ribosome, they interact with a variety of cotranslational cellular machineries that facilitate their proper folding, maturation, and localization. These interactions are essential for proper function of the cell, and the ability to study these events is crucial to understanding cellular protein biogenesis. To this end, we have developed a highly efficient method to generate ribosome-nascent chain complexes (RNCs) site-specifically labeled with a fluorescent dye on the nascent polypeptide. The fluorescent RNC provides real-time, quantitative information on its cotranslational interaction with the signal recognition particle and will be a valuable tool in elucidating the role of the translating ribosome in numerous biochemical pathways.

  17. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  18. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  19. Definition of a RACK1 Interaction Network in Drosophila melanogaster Using SWATH-MS.

    Science.gov (United States)

    Kuhn, Lauriane; Majzoub, Karim; Einhorn, Evelyne; Chicher, Johana; Pompon, Julien; Imler, Jean-Luc; Hammann, Philippe; Meignin, Carine

    2017-07-05

    Receptor for Activated protein C kinase 1 (RACK1) is a scaffold protein that has been found in association with several signaling complexes, and with the 40S subunit of the ribosome. Using the model organism Drosophila melanogaster , we recently showed that RACK1 is required at the ribosome for internal ribosome entry site (IRES)-mediated translation of viruses. Here, we report a proteomic characterization of the interactome of RACK1 in Drosophila S2 cells. We carried out Label-Free quantitation using both Data-Dependent and Data-Independent Acquisition (DDA and DIA, respectively) and observed a significant advantage for the Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) method, both in terms of identification of interactants and quantification of low abundance proteins. These data represent the first SWATH spectral library available for Drosophila and will be a useful resource for the community. A total of 52 interacting proteins were identified, including several molecules involved in translation such as structural components of the ribosome, factors regulating translation initiation or elongation, and RNA binding proteins. Among these 52 proteins, 15 were identified as partners by the SWATH strategy only. Interestingly, these 15 proteins are significantly enriched for the functions translation and nucleic acid binding. This enrichment reflects the engagement of RACK1 at the ribosome and highlights the added value of SWATH analysis. A functional screen did not reveal any protein sharing the interesting properties of RACK1, which is required for IRES-dependent translation and not essential for cell viability. Intriguingly however, 10 of the RACK1 partners identified restrict replication of Cricket paralysis virus (CrPV), an IRES-containing virus. Copyright © 2017 Kuhn et al.

  20. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    Science.gov (United States)

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  1. Gamebird responses to anthropogenic forest fragmentation and degradation in a southern Amazonian landscape

    Directory of Open Access Journals (Sweden)

    Fernanda Michalski

    2017-06-01

    Full Text Available Although large-bodied tropical forest birds are impacted by both habitat loss and fragmentation, their patterns of habitat occupancy will also depend on the degree of forest habitat disturbance, which may interact synergistically or additively with fragmentation effects. Here, we examine the effects of forest patch and landscape metrics, and levels of forest disturbance on the patterns of persistence of six gamebird taxa in the southern Brazilian Amazon. We use both interview data conducted with long-term residents and/or landowners from 129 remnant forest patches and 15 continuous forest sites and line-transect census data from a subset of 21 forest patches and two continuous forests. Forest patch area was the strongest predictor of species persistence, explaining as much as 46% of the overall variation in gamebird species richness. Logistic regression models showed that anthropogenic disturbance—including surface wildfires, selective logging and hunting pressure—had a variety of effects on species persistence. Most large-bodied gamebird species were sensitive to forest fragmentation, occupying primarily large, high-quality forest patches in higher abundances, and were typically absent from patches 10,000 ha, relatively undisturbed forest patches to both maximize persistence and maintain baseline abundances of large neotropical forest birds.

  2. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology

    Science.gov (United States)

    Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris

    2009-08-01

    For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.

  3. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    Directory of Open Access Journals (Sweden)

    Giulio Donati

    2013-07-01

    Full Text Available Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.

  4. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    Science.gov (United States)

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    Science.gov (United States)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  6. Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale.

    Directory of Open Access Journals (Sweden)

    Franziska Peter

    Full Text Available Forest fragmentation and plant diversity have been shown to play a crucial role for herbivorous insects (herbivores, hereafter. In turn, herbivory-induced leaf area loss is known to have direct implications for plant growth and reproduction as well as long-term consequences for ecosystem functioning and forest regeneration. So far, previous studies determined diverging responses of herbivores to forest fragmentation and plant diversity. Those inconsistent results may be owed to complex interactive effects of both co-occurring environmental factors albeit they act on different spatial scales. In this study, we investigated whether forest fragmentation on the landscape scale and tree diversity on the local habitat scale show interactive effects on the herbivore community and leaf area loss in subtropical forests in South Africa. We applied standardized beating samples and a community-based approach to estimate changes in herbivore community composition, herbivore abundance, and the effective number of herbivore species on the tree species-level. We further monitored leaf area loss to link changes in the herbivore community to the associated process of herbivory. Forest fragmentation and tree diversity interactively affected the herbivore community composition, mainly by a species turnover within the family of Curculionidae. Furthermore, herbivore abundance increased and the number of herbivore species decreased with increasing tree diversity in slightly fragmented forests whereas the effects diminished with increasing forest fragmentation. Surprisingly, leaf area loss was neither affected by forest fragmentation or tree diversity, nor by changes in the herbivore community. Our study highlights the need to consider interactive effects of environmental changes across spatial scales in order to draw reliable conclusions for community and interaction patterns. Moreover, forest fragmentation seems to alter the effect of tree diversity on the herbivore

  7. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  8. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome.

    Science.gov (United States)

    Pech, Markus; Spreter, Thomas; Beckmann, Roland; Beatrix, Birgitta

    2010-06-18

    Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.

  9. Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments.

    Science.gov (United States)

    Korsak, N; Taminiau, B; Leclercq, M; Nezer, C; Crevecoeur, S; Ferauche, C; Detry, E; Delcenserie, V; Daube, G

    2015-06-01

    Milk kefir is produced by fermenting milk in the presence of kefir grains. This beverage has several benefits for human health. The aim of this experiment was to analyze 5 kefir grains (and their products) using a targeted metagenetic approach. Of the 5 kefir grains analyzed, 1 was purchased in a supermarket, 2 were provided by the Ministry of Agriculture (Namur, Belgium), and 2 were provided by individuals. The metagenetic approach targeted the V1-V3 fragment of the 16S ribosomal (r)DNA for the grains and the resulting beverages at 2 levels of grain incorporation (5 and 10%) to identify the bacterial species population. In contrast, the 26S rDNA pyrosequencing was performed only on kefir grains with the aim of assessing the yeast populations. In parallel, pH measurements were performed on the kefir obtained from the kefir grains using 2 incorporation rates. Regarding the bacterial population, 16S pyrosequencing revealed the presence of 20 main bacterial species, with a dominance of the following: Lactobacillus kefiranofaciens, Lactococcus lactis ssp. cremoris, Gluconobacter frateurii, Lactobacillus kefiri, Acetobacter orientalis, and Acetobacter lovaniensis. An important difference was noticed between the kefir samples: kefir grain purchased from a supermarket (sample E) harbored a much higher proportion of several operational taxonomic units of Lactococcus lactis and Leuconostoc mesenteroides. This sample of grain was macroscopically different from the others in terms of size, apparent cohesion of the grains, structure, and texture, probably associated with a lower level of Lactobacillus kefiranofaciens. The kefir (at an incorporation rate of 5%) produced from this sample of grain was characterized by a lower pH value (4.5) than the others. The other 4 samples of kefir (5%) had pH values above 5. Comparing the kefir grain and the kefir, an increase in the population of Gluconobacter in grain sample B was observed. This was also the case for Acetobacter orientalis

  10. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation

    Science.gov (United States)

    Xie, Ping

    2014-12-01

    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30 S and large 50 S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  11. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    suggested the dynamic movement of ribosomal proteins. The L2 protein (a .... Such kinds of interactions are important in elucidating the evolution of RNA .... Tamura K 2009 Molecular handedness of life: significance of RNA aminoacylation.

  12. Is there a channel in the ribosome for nascent peptide. Labellimg of translating ribosomes with atomar tritium

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, V A; Kammer, A A; Spirin, A S

    1987-01-01

    The method of tritium bombardment was applied to investigate exposure of growing peptide on the surface of ribsome E.coli. Distribution of radioactivity by fractions is presented. Tritium inclusion in all the aminoacid residues of heteropeptide testifies to its exposure on the surface of the ribosome.

  13. Variability in Abundances of Meteorites in the Ordovician

    Science.gov (United States)

    Heck, P. R.; Schmitz, B.; Kita, N.

    2017-12-01

    The knowledge of the flux of extraterrestrial material throughout Earth's history is of great interest to reconstruct the collisional evolution of the asteroid belt. Here, we present a review of our investigations of the nature of the meteorite flux to Earth in the Ordovician, one of the best-studied time periods for extraterrestrial matter in the geological record [1]. We base our studies on compositions of extraterrestrial chromite and chrome-spinel extracted by acid dissolution from condensed marine limestone from Sweden and Russia [1-3]. By analyzing major and minor elements with EDS and WDS, and three oxygen isotopes with SIMS we classify the recovered meteoritic materials. Today, the L and H chondrites dominate the meteorite and coarse micrometeorite flux. Together with the rarer LL chondrites they have a type abundance of 80%. In the Ordovician it was very different: starting from 466 Ma ago 99% of the flux was comprised of L chondrites [2]. This was a result of the collisional breakup of the parent asteroid. This event occurred close to an orbital resonance in the asteroid belt and showered Earth with >100x more L chondritic material than today during more than 1 Ma. Although the flux is much lower at present, L chondrites are still the dominant type of meteorites that fall today. Before the asteroid breakup event 467 Ma ago the three groups of ordinary chondrites had about similar abundances. Surprisingly, they were possibly surpassed in abundance by achondrites, materials from partially and fully differentiated asteroids [3]. These achondrites include HED meteorites, which are presumably fragments released during the formation of the Rheasilvia impact structure 1 Ga ago on asteroid 4 Vesta. The enhanced abundance of LL chondrites is possibly a result of the Flora asteroid family forming event at 1 Ga ago. The higher abundance of primitive achondrites was likely due to smaller asteroid family forming events that have not been identified yet but that did

  14. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes.

    Directory of Open Access Journals (Sweden)

    Renata Pardini

    Full Text Available Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-modified landscapes is the total amount of remnant native vegetation. In a seminal study Andrén proposed the existence of a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions--that patch-area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa, ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches within a single framework

  15. DISCRIMINATION 28S RIBOSOMAL GENE OF TREMATODE CERCARIAE IN SNAILS FROM CHIANG MAI PROVINCE, THAILAND.

    Science.gov (United States)

    Wongsawad, Chalobol; Wongsawad, Pheravut; Sukontason, Kom; Phalee, Anawat; Noikong-Phalee, Waraporn; Chai, Jong Yil

    2016-03-01

    Trematode cercariae are commonly found in many freshwater gastropods. These cercariae can serve to identify the occurrence of such trematodes as Centrocestus formosanus, Haplorchis taichui, Haplorchoides sp, and Stellantchasmus falcatus, which are important parasites in Chiang Mai Province, Thailand. As the species of these cercariae cannot be identified accurately based on morphology, this study employed sequencing of a fragment of 28S ribosomal DNA and phylogenetic analysis to identify the trematode cercariae found in freshwater gastropods in Chiang Mai Province. Eight types of trematode cercariae were identified, namely, distome cercaria (grouped with Philophthalmus spp clade), echinostome cercaria (grouped with Echinostoma spp clade), furcocercous cercaria (grouped with Posthodiplostomum sp/Alaria taxideae/Hysteromorpha triloba clade), monostome cercaria (grouped with Catatropis indicus clade), parapleurolophocercous cercaria (grouped with Haplorchoides sp clade), pleurolophocercous cercaria (grouped with Centrocestusformosanus clade), transversotrema cercaria (grouped with Transversotrema spp clade), and xiphidiocercaria (grouped with Prosthodendrium spp clade). These results provide important information that can be used for identifying these parasites in epidemiological surveys.

  16. The 70S ribosome modulates the ATPase activity of Escherichia coli YchF.

    Science.gov (United States)

    Becker, Marion; Gzyl, Katherine E; Altamirano, Alvin M; Vuong, Anthony; Urban, Kirstin; Wieden, Hans-Joachim

    2012-10-01

    YchF is one of two universally conserved GTPases with unknown cellular function. As a first step toward elucidating YchF's cellular role, we performed a detailed biochemical characterization of the protein from Escherichia coli. Our data from fluorescence titrations not only confirmed the surprising finding that YchFE.coli binds adenine nucleotides more efficiently than guanine nucleotides, but also provides the first evidence suggesting that YchF assumes two distinct conformational states (ATP- and ADP-bound) consistent with the functional cycle of a typical GTPase. Based on an in vivo pull-down experiment using a His-tagged variant of YchF from E. coli (YchFE.coli), we were able to isolate a megadalton complex containing the 70S ribosome. Based on this finding, we report the successful reconstitution of a YchF•70S complex in vitro, revealing an affinity (KD) of the YchFE.coli•ADPNP complex for 70S ribosomes of 3 μM. The in vitro reconstitution data also suggests that the identity of the nucleotide-bound state of YchF (ADP or ATP) modulates its affinity for 70S ribosomes. A detailed Michaelis-Menten analysis of YchF's catalytic activity in the presence and the absence of the 70S ribosome and its subunits revealed for the first time that the 70S ribosome is able to stimulate YchF's ATPase activity (~10-fold), confirming the ribosome as part of the functional cycle of YchF. Our findings taken together with previously reported data for the human homolog of YchF (hOLA1) indicate a high level of evolutionary conservation in the enzymatic properties of YchF and suggest that the ribosome is the main functional partner of YchF not only in bacteria.

  17. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  18. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031

  19. Three-dimensional crystals of ribosomes and their subunits from eu- and archaebacteria.

    Science.gov (United States)

    Glotz, C; Müssig, J; Gewitz, H S; Makowski, I; Arad, T; Yonath, A; Wittmann, H G

    1987-11-01

    Ordered three-dimensional crystals of 70S ribosomes as well as of 30S and 50S ribosomal subunits from various bacteria (E. coli, Bacillus stearothermophilus, Thermus thermophilus and Halobacterium marismortui) have been grown by vapour diffusion in hanging drops using mono- and polyalcohols. A new compact crystal form of 50S subunits has been obtained, and it is suitable for crystallographic studies at medium resolution. In addition, from one crystal form large crystals could be grown in X-ray capillaries. In all cases the crystals were obtained from functionally active ribosomal particles, and the particles from dissolved crystals retained their integrity and biological activity.

  20. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem.

    Directory of Open Access Journals (Sweden)

    Peng Yuan

    Full Text Available Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen.A total of 103 unique fragments of polygalacturonase (PF00295 and pectate lyase (PF00544 and PF09492 genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (<65% with known sequences. Phylogenetic tree building separated the PF00295, PF00544, and PF09492 sequences into five, three, and three clades, respectively. Cellulolytic and noncellulolytic Butyrivibrio, Prevotella, and Fibrobacter species were the major sources of the pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles.This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions.

  1. IN SITU PLASMA MEASUREMENTS OF FRAGMENTED COMET 73P SCHWASSMANN–WACHMANN 3

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Lepri, S. T.; Combi, M.; Zurbuchen, T. H.; Rubin, M.

    2015-01-01

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann–Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16–18 amu e −1 , indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C + /O + , and water-group ions

  2. In Situ Plasma Measurements of Fragmented Comet 73P Schwassmann-Wachmann 3

    Science.gov (United States)

    Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Combi, M.; Zurbuchen, T. H.

    2015-12-01

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16-18 amu e-1, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C+/O+, and water-group ions.

  3. IN SITU PLASMA MEASUREMENTS OF FRAGMENTED COMET 73P SCHWASSMANN–WACHMANN 3

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, J. A.; Lepri, S. T.; Combi, M.; Zurbuchen, T. H. [University of Michigan, Ann Arbor, MI 48109 (United States); Rubin, M., E-mail: jagi@umich.edu [Universität Bern, Bern (Switzerland)

    2015-12-10

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann–Wachmann 3, discovered in 1930, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 major pieces in 2006. In 2006 May and June, recently ionized cometary particles originating from fragments including and surrounding some of these major objects were collected with the ACE/SWICS and Wind/STICS sensors. Due to a combination of the instrument characteristics and the close proximity of the fragments passing between those spacecraft and the Sun, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during that time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16–18 amu e{sup −1}, indicating that while these fragments are small, they are still actively sublimating. We present an analysis of cometary composition, spatial distribution, and heliospheric interactions, with a focus on helium, C{sup +}/O{sup +}, and water-group ions.

  4. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  5. Diamond Blackfan Anemia at the Crossroad between Ribosome Biogenesis and Heme Metabolism

    Directory of Open Access Journals (Sweden)

    Deborah Chiabrando

    2010-01-01

    Full Text Available Diamond-Blackfan anemia (DBA is a rare, pure red-cell aplasia that presents during infancy. Approximately 40% of cases are associated with other congenital defects, particularly malformations of the upper limb or craniofacial region. Mutations in the gene coding for the ribosomal protein RPS19 have been identified in 25% of patients with DBA, with resulting impairment of 18S rRNA processing and 40S ribosomal subunit formation. Moreover, mutations in other ribosomal protein coding genes account for about 25% of other DBA cases. Recently, the analysis of mice from which the gene coding for the heme exporter Feline Leukemia Virus subgroup C Receptor (FLVCR1 is deleted suggested that this gene may be involved in the pathogenesis of DBA. FLVCR1-null mice show a phenotype resembling that of DBA patients, including erythroid failure and malformations. Interestingly, some DBA patients have disease linkage to chromosome 1q31, where FLVCR1 is mapped. Moreover, it has been reported that cells from DBA patients express alternatively spliced isoforms of FLVCR1 which encode non-functional proteins. Herein, we review the known roles of RPS19 and FLVCR1 in ribosome function and heme metabolism respectively, and discuss how the deficiency of a ribosomal protein or of a heme exporter may result in the same phenotype.

  6. Structural and functional organization of ribosomal genes within the mammalian cell nucleolus.

    Science.gov (United States)

    Derenzini, Massimo; Pasquinelli, Gianandrea; O'Donohue, Marie-Françoise; Ploton, Dominique; Thiry, Marc

    2006-02-01

    Data on the in situ structural-functional organization of ribosomal genes in the mammalian cell nucleolus are reviewed here. Major findings on chromatin structure in situ come from investigations carried out using the Feulgen-like osmium ammine reaction as a highly specific electron-opaque DNA tracer. Intranucleolar chromatin shows three different levels of organization: compact clumps, fibers ranging from 11 to 30 nm, and loose agglomerates of extended DNA filaments. Both clumps and fibers of chromatin exhibit a nucleosomal organization that is lacking in the loose agglomerates of extended DNA filaments. In fact, these filaments constantly show a thickness of 2-3 nm, the same as a DNA double-helix molecule. The loose agglomerates of DNA filaments are located in the fibrillar centers, the interphase counterpart of metaphase NORs, therefore being constituted by ribosomal DNA. The extended, non-nucleosomal configuration of this rDNA has been shown to be independent of transcriptional activity and characterizes ribosome genes that are either transcribed or transcriptionally silent. Data reviewed are consistent with a model of control for ribosome gene activity that is not mediated by changes in chromatin structure. The presence of rDNA in mammalian cells always structurally ready for transcription might facilitate a more rapid adjustment of the ribosome production in response to the metabolic needs of the cell.

  7. Structural basis for ribosome protein S1 interaction with RNA in trans-translation of Mycobacterium tuberculosis.

    Science.gov (United States)

    Fan, Yi; Dai, Yazhuang; Hou, Meijing; Wang, Huilin; Yao, Hongwei; Guo, Chenyun; Lin, Donghai; Liao, Xinli

    2017-05-27

    Ribosomal protein S1 (RpsA), the largest 30S protein in ribosome, plays a significant role in translation and trans-translation. In Mycobacterium tuberculosis, the C-terminus of RpsA is known as tuberculosis drug target of pyrazinoic acid, which inhibits the interaction between MtRpsA and tmRNA in trans-translation. However, the molecular mechanism underlying the interaction of MtRpsA with tmRNA remains unknown. We herein analyzed the interaction of the C-terminal domain of MtRpsA with three RNA fragments poly(A), sMLD and pre-sMLD. NMR titration analysis revealed that the RNA binding sites on MtRpsA CTD are mainly located in the β2, β3 and β5 strands and the adjacent L3 loop of the S1 domain. Fluorescence experiments determined the MtRpsA CTD binding to RNAs are in the micromolar affinity range. Sequence analysis also revealed conserved residues in the mapped RNA binding region. Residues L304, V305, G308, F310, H322, I323, R357 and I358 were verified to be the key residues influencing the interaction between MtRpsA CTD and pre-sMLD. Molecular docking further confirmed that the poly(A)-like sequence and sMLD of tmRNA are all involved in the protein-RNA interaction, through charged interaction and hydrogen bonds. The results will be beneficial for designing new anti-tuberculosis drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  9. A streamlined ribosome profiling protocol for the characterization of microorganisms

    DEFF Research Database (Denmark)

    Latif, Haythem; Szubin, Richard; Tan, Justin

    2015-01-01

    Ribosome profiling is a powerful tool for characterizing in vivo protein translation at the genome scale, with multiple applications ranging from detailed molecular mechanisms to systems-level predictive modeling. Though highly effective, this intricate technique has yet to become widely used...... in the microbial research community. Here we present a streamlined ribosome profiling protocol with reduced barriers to entry for microbial characterization studies. Our approach provides simplified alternatives during harvest, lysis, and recovery of monosomes and also eliminates several time-consuming steps...

  10. Is The Ribosome Targeted By Adaptive Mutations

    DEFF Research Database (Denmark)

    Jimenez Fernandez, Alicia; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    Introduction: RNA polymerase and ribosomes, composing the macromolecular synthesis machinery (MMSM), carry out the central processes of transcription and translation, but are usually seen as mechanical elements with no regulatory function. Extensive investigations of gene regulation and the high ...

  11. Bird communities in two fragments of semideciduos forest in rural São Paulo state

    Directory of Open Access Journals (Sweden)

    D. D. Pozza

    Full Text Available A quali-quantitative survey was done in two fragments (75 and 100 ha of semideciduous forest in rural São Paulo State. The aim was to characterize the bird community according to richness, abundance, and occurrence frequency in these areas. The qualitative survey showed 145 species in the Estação Ecológica de São Carlos - EESCar (Brotas - and 173 in the Fazenda Santa Cecília - FSC (Patrocínio Paulista, while the quantitative survey showed the presence of 60 and 72 species in EESCar and FSC respectively. The isolation and the lower environmental quality of the EESCar fragment may be responsible for the lower number of species in this area compared to that of FSC. Abundance index value analysis (IPA showed that both areas have a large number of species with low IPA and few species with intermediate or high IPA compared to the pattern observed in other surveys. At FSC, a larger number of occurrences of species in danger of extinction in São Paulo State was also observed. Apparently, the FSC fragment had better environmental quality for sheltering a larger number of species, including the endangered ones. The study of the community of birds is important in planning management and conservation of natural areas.

  12. Bird communities in two fragments of semideciduos forest in rural São Paulo state

    Directory of Open Access Journals (Sweden)

    Pozza D. D.

    2003-01-01

    Full Text Available A quali-quantitative survey was done in two fragments (75 and 100 ha of semideciduous forest in rural São Paulo State. The aim was to characterize the bird community according to richness, abundance, and occurrence frequency in these areas. The qualitative survey showed 145 species in the Estação Ecológica de São Carlos - EESCar (Brotas - and 173 in the Fazenda Santa Cecília - FSC (Patrocínio Paulista, while the quantitative survey showed the presence of 60 and 72 species in EESCar and FSC respectively. The isolation and the lower environmental quality of the EESCar fragment may be responsible for the lower number of species in this area compared to that of FSC. Abundance index value analysis (IPA showed that both areas have a large number of species with low IPA and few species with intermediate or high IPA compared to the pattern observed in other surveys. At FSC, a larger number of occurrences of species in danger of extinction in São Paulo State was also observed. Apparently, the FSC fragment had better environmental quality for sheltering a larger number of species, including the endangered ones. The study of the community of birds is important in planning management and conservation of natural areas.

  13. Simulating movement of tRNA through the ribosome during hybrid-state formation.

    Science.gov (United States)

    Whitford, Paul C; Sanbonmatsu, Karissa Y

    2013-09-28

    Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the

  14. The CCA-end of P-tRNA Contacts Both the Human RPL36AL and the A-site Bound Translation Termination Factor eRF1 at the Peptidyl Transferase Center of the Human 80S Ribosome.

    Science.gov (United States)

    Hountondji, Codjo; Bulygin, Konstantin; Créchet, Jean-Bernard; Woisard, Anne; Tuffery, Pierre; Nakayama, Jun-Ichi; Frolova, Ludmila; Nierhaus, Knud H; Karpova, Galina; Baouz, Soria

    2014-01-01

    We have demonstrated previously that the E-site specific protein RPL36AL present in human ribosomes can be crosslinked with the CCA-end of a P-tRNA in situ. Here we report the following: (i) We modeled RPL36AL into the structure of the archaeal ortholog RPL44E extracted from the known X-ray structure of the 50S subunit of Haloarcula marismortui. Superimposing the obtained RPL36AL structure with that of P/E tRNA observed in eukaryotic 80S ribosomes suggested that RPL36AL might in addition to its CCA neighbourhood interact with the inner site of the tRNA elbow similar to an interaction pattern known from tRNA•synthetase pairs. (ii) Accordingly, we detected that the isolated recombinant protein RPL36AL can form a tight binary complex with deacylated tRNA, and even tRNA fragments truncated at their CCA end showed a high affinity in the nanomolar range supporting a strong interaction outside the CCA end. (iii) We constructed programmed 80S complexes containing the termination factor eRF1 (stop codon UAA at the A-site) and a 2',3'-dialdehyde tRNA (tRNAox) analog at the P-site. Surprisingly, we observed a crosslinked ternary complex containing the tRNA, eRF1 and RPL36AL crosslinked both to the aldehyde groups of tRNAox at the 2'- and 3'-positions of the ultimate A. We also demonstrated that, upon binding to the ribosomal A-site, eRF1 induces an alternative conformation of the ribosome and/or the tRNA, leading to a novel crosslink of tRNAox to another large-subunit ribosomal protein (namely L37) rather than to RPL36AL, both ribosomal proteins being labeled in a mutually exclusive fashion. Since the human 80S ribosome in complex with P-site bound tRNAox and A-site bound eRF1 corresponds to the post-termination state of the ribosome, the results represent the first biochemical evidence for the positioning of the CCA-arm of the P-tRNA in close proximity to both RPL36AL and eRF1 at the end of the translation process.

  15. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  16. Molecular mechanism and structure of Trigger Factor bound to the translating ribosome

    Science.gov (United States)

    Merz, Frieder; Boehringer, Daniel; Schaffitzel, Christiane; Preissler, Steffen; Hoffmann, Anja; Maier, Timm; Rutkowska, Anna; Lozza, Jasmin; Ban, Nenad; Bukau, Bernd; Deuerling, Elke

    2008-01-01

    Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome–nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors. PMID:18497744

  17. Virtual fragment preparation for computational fragment-based drug design.

    Science.gov (United States)

    Ludington, Jennifer L

    2015-01-01

    Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.

  18. Nuclear targeting by fragmentation of the Potato spindle tuber viroid genome

    International Nuclear Information System (INIS)

    Abraitiene, Asta; Zhao Yan; Hammond, Rosemarie

    2008-01-01

    Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus

  19. Seed predation by mammals in forest fragments in Monteverde, Costa Rica

    Directory of Open Access Journals (Sweden)

    Federico A Chinchilla

    2009-09-01

    Full Text Available Few studies have evaluated seed predation in fragmented landscapes, in which lower species diversity is expected to modifying ecological interactions. The rates of seed removal by mammals were investigated in a continuous forest and two fragmented patches of Premontane Tropical Moist Forest, in Monteverde, Costa Rica. The composition of mammalian seed-predators in each site was recorded during 16 months. The removal of four native tree species of experimental seeds: Ocotea valeriana and Ocotea whitei (Lauraceae, Panopsis costaricensis (Proteaceae and Billia colombiana (Hippocastanaceae in forest understories was followed during two annual fruiting seasons for each species. Results indicated similar species composition of seed-predators between continuous forest, the largest fragment (350 ha. However the smaller fragment (20 ha, had fewer seed predators. In this fragment, the specialized seed predator Heteromys desmarestianus (Rodentia was more abundant. Unexpectedly, seed-predation in the two forest fragments and the continuous forest did not differ statistically for any of the seed species. Apparently, the higher abundance of small seed-predators in the fragments was compensated by the absence of medium and large seed-predators, like Agouti paca, Dasyprocta punctata (both Rodentia and Pecari tajacu (Artiodactyla recorded in continuous forest. Removal of experimentally-placed seeds was higher when the number of naturally occurring seeds in the sites was lower. This result could best be attributed to differential satiation of seed predators rather than differences in richness or abundance of seed predators. Rev. Biol. Trop. 57 (3: 865-877. Epub 2009 September 30.Pocos estudios han evaluado la depredación de semillas en ambientes fragmentados, en éstos la menor diversidad de especies debe estar modificando las interacciones ecológicas. Se investigó la remoción de semillas por mamíferos en un bosque continuo y dos fragmentos en Monteverde

  20. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C J; Nassif, Xavier; Armengaud, Jean

    2013-09-01

    Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640-12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. © 2013 Elsevier B.V. All rights reserved.

  1. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Palm, Denise; Simm, Stefan; Darm, Katrin; Weis, Benjamin L; Ruprecht, Maike; Schleiff, Enrico; Scharf, Christian

    2016-01-01

    Ribosome biogenesis is an essential process initiated in the nucleolus. In eukaryotes, multiple ribosome biogenesis factors (RBFs) can be found in the nucleolus, the nucleus and in the cytoplasm. They act in processing, folding and modification of the pre-ribosomal (r)RNAs, incorporation of ribosomal proteins (RPs), export of pre-ribosomal particles to the cytoplasm, and quality control mechanisms. Ribosome biogenesis is best established for Saccharomyces cerevisiae. Plant ortholog assignment to yeast RBFs revealed the absence of about 30% of the yeast RBFs in plants. In turn, few plant specific proteins have been identified by biochemical experiments to act in plant ribosome biogenesis. Nevertheless, a complete inventory of plant RBFs has not been established yet. We analyzed the proteome of the nucleus and nucleolus of Arabidopsis thaliana and the post-translational modifications of these proteins. We identified 1602 proteins in the nucleolar and 2544 proteins in the nuclear fraction with an overlap of 1429 proteins. For a randomly selected set of proteins identified by the proteomic approach we confirmed the localization inferred from the proteomics data by the localization of GFP fusion proteins. We assigned the identified proteins to various complexes and functions and found about 519 plant proteins that have a potential to act as a RBFs, but which have not been experimentally characterized yet. Last, we compared the distribution of RBFs and RPs in the various fractions with the distribution established for yeast.

  2. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Jetzt, Amanda E. [Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520 (United States); Li, Xiao-Ping; Tumer, Nilgun E. [Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520 (United States); Cohick, Wendie S., E-mail: cohick@aesop.rutgers.edu [Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520 (United States)

    2016-11-01

    Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarly to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication. - Highlights: • Arginines 193 and 235 of RTA are critical for binding to the mammalian ribosome. • R193A/R235A has full catalytic activity on RNA but not on mammalian ribosomes. • R193A/R235A is less toxic than a mutant that targets the active site. • The toxin-ribosome interaction is a therapeutic target for ricin intoxication.

  3. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling

    DEFF Research Database (Denmark)

    Kristensen, Janni; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2005-01-01

    We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23...... therefore purified rpL23-GFP-His, rpL23-His and GFP from E. coli recombinants using affinity, ion exchange and hydrophobic interaction chromatography. These proteins could be purified with yields of 150, 150 and 1500 microg per gram cellular wet weight, respectively. However, rpL23-GFP-His could only...... proteolytic cleavage sites. We conclude that the generated antibodies can be used to evaluate ribosomal coupling of recombinant target proteins as well as the efficiency of their separation from the ribosome....

  4. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii

    Institute of Scientific and Technical Information of China (English)

    Zhifei Li; Qiang Guo; Lvqin Zheng; Yongsheng Ji; Yi-Ting Xie; De-Hua Lai; Zhao-Rong Lun; Xun Suo; Ning Gao

    2017-01-01

    As an indispensable molecular machine universal in all living organisms,the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors.High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes.With cryo-electron microscopy technique,we have determined structures of the cytosolic ribosomes from two human parasites,Trichomonas vaginalis and Toxoplasma gondii,at resolution of 3.2-3.4,(A).Although the ribosomal proteins from both pathogens are typical members of eukaryotic families,with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments,the sizes of their rRNAs are sharply different.Very interestingly,rRNAs of T.vaginalis are in size comparable to prokaryotic counterparts,with nearly all the eukaryote-specific rRNA expansion segments missing.These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs,and may aid in design of novel translation inhibitors.

  5. Hirudinella ventricosa (Pallas, 1774) Baird, 1853 represents a species complex based on ribosomal DNA.

    Science.gov (United States)

    Calhoun, Dana M; Curran, Stephen S; Pulis, Eric E; Provaznik, Jennifer M; Franks, James S

    2013-10-01

    Digeneans in the genus Hirudinella de Blainville, 1828 (Hirudinellidae) from three species of pelagic fishes, Acanthocybium solandri (Cuvier), Makaira nigricans Lacépède and Thunnus albacares (Bonnaterre), and one benthic fish, Mulloidichthys martinicus (Cuvier), from the Gulf of Mexico are investigated using comparison of ribosomal DNA. Four species are identified based on molecular differences: Hirudinella ventricosa (Pallas, 1774) Baird, 1853 from A. solandri, Hirudinella ahi Yamaguti, 1970 from T. albacares, and two unidentified but distinct species of Hirudinella, herein referred to as Hirudinella sp. A (from both M. nigricans and M. martinicus) and Hirudinella sp. B from M. nigricans. Additionally, H. ahi, based tentatively on morphological identification, is reported from Thunnus thynnus (Linnaeus). This represents the first record of a hirudinellid from M. martinicus and the first record of H. ahi from T. thynnus. A phylogeny of some Hemiurata Skrjabin & Guschanskaja, 1954 using partial fragments of the 28S rDNA sequences is consistent with earlier phylogenies and the position of the Hirudinellidae Dollfus, 1932 is well-supported as a derived group most closely related to the Syncoeliidae Looss, 1899.

  6. Patterns of bird functional diversity on land-bridge island fragments.

    Science.gov (United States)

    Ding, Zhifeng; Feeley, Kenneth J; Wang, Yanping; Pakeman, Robin J; Ding, Ping

    2013-07-01

    The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on functional diversity remains relatively poorly understood. We conducted bird functional diversity studies on a set of 41 recently isolated land-bridge islands in the Thousand Island Lake, China. We analysed differences in bird species richness and a recently developed suite of complementary functional diversity indices (FRic, volume of functional space occupied; FEve, evenness of abundance distribution in the functional trait space; FDiv, divergence in the distribution of abundance in the trait volume) across different gradients (island area and isolation). We found no correlations between FRic and FEve or FEve and FDiv, but negative correlations between FRic and FDiv. As predicted, island area accounted for most of the variation in bird species richness, whereas isolation explained most of the variation in species evenness (decreasing species evenness with increasing isolation). Functional diversity appears to be more strongly influenced by habitat filtering as opposed to limiting similarity. More specifically, across all islands, both FRic and FEve were significantly lower than expected for randomly assembled communities, but FDiv showed no clear patterns. FRic increased with island area, FEve decreased with island area and FDiv showed no clear patterns. Our finding that FEve decreases with island area at TIL may indicate low functional stability on such islands, and as such large islands and habitat patches may deserve extra attention and/or protection. These results help to demonstrate the importance of considering the effects of fragmentation on functional diversity in habitat management and reserve design plans. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  7. Evidence for alteration of the membrane-bound ribosomes in Micrococcus luteus cells exposed to lead

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, W; Himmel, M; Squire, P G; Tornabene, T G

    1978-01-01

    Micrococcus luteus cells exposed to Pb(NO/sub 3/)/sub 2/ contained cytosol ribosomal particles and disaggregated membranal ribosomal particles as determined by ultracentrifugation and spectral studies. Approximately 60% of the membrane ribosome fraction from lead exposed cells had a sedimentation value of 8.4S. Cytosol ribosome from lead exposed cells as well as membranal and cytosol ribosomes from control cells were comparable by their contents of predominantly the 70S type with the 50S and 100S present in relatively small amounts. The lead content of the 8.4S components was more than 200 times higher than the components with higher sedimentation coefficients from lead exposed cells and approximately 650 times more than that of control cell ribosomes. The cells exposed to lead, however, showed no adverse effects from the lead in respect to their growth rates and cellular yields. These results indicate that lead is interacting only at specific sites of the membrane and is inducing events initiated only in strategic cellular regions. These data further substantiate that subtle changes do occur in lead exposed cells that show no obvious effects. It is assumed that these minor alterations are, in toto, biologically significant. 24 references, 2 figures, 1 table.

  8. Assembly constraints drive co-evolution among ribosomal constituents.

    Science.gov (United States)

    Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip

    2015-06-23

    Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center

    DEFF Research Database (Denmark)

    Long, K. S.; Hansen, L. K.; Jakobsen, L.

    2006-01-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design...... mutant strain is resistant to tiamulin and pleuromutilin, but not valnemulin, implying that valnemulin is better able to withstand an altered rRNA binding surface around the mutilin core. This is likely due to additional interactions made between the valnemulin side chain extension and the rRNA binding...

  10. Production of RNA-protein cross links in γ irradiated E. Coli ribosomes

    International Nuclear Information System (INIS)

    Ekert, Bernard; Giocanti, Nicole

    1976-01-01

    γ irradiation in de-aerated conditions of E. coli MRE 600 ribosomes, labelled with 14 C uracil, leads to a decrease of extractibility of 14 C RNA by lithium chloride 4 M-urea 8 M. On the other hand, the radioactivity of the protein fraction increases with irradiation. These results strongly suggest that RNA-protein cross links are formed in irradiated ribosomes [fr

  11. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O

    2000-01-01

    The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light...... forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins....

  12. Ribosomal binding region for the antibiotic tiamulin: stoichiometry, subunit location, and affinity for various analogs.

    Science.gov (United States)

    Högenauer, G; Ruf, C

    1981-01-01

    Equilibrium dialysis experiments with a highly purified preparation of labeled tiamulin, a semisynthetic derivative of the antibiotic pleuromutilin, and Escherichia coli ribosomes allowed the determination of two binding sites for the drug. The binding reaction showed a cooperative effect. Of the two subunits, the 50S particle was able to bind the antibiotic in a 1:1 stoichiometry. Hence, the 50S subunit contributed predominantly to the binding energy which held the antibiotic to the ribosomes. The 30S subunit, showing no strong affinity for the drug, may be needed for the generation of the second binding site in the 70S particle. If depleted of ammonium ions, 70S ribosomes lost their binding capacity for the antibiotic. The attachment sites for tiamulin could be restored by heating the ribosomes to 40 degrees C in the presence of either ammonium ions or the antibiotic. Other pleuromutilin derivatives displaced labeled tiamulin from its ribosomal binding sites. By quantifying this competition, the relative affinity of various pleuromutilin derivatives for E. coli ribosomes was determined. The binding correlated with the minimal inhibitory concentrations of these compounds against E. coli. When compared with the minimal inhibitory concentrations of these compounds against E. coli. When compared with the minimal inhibitory concentrations against E. coli. When compared with the minimal inhibitory concentrations against Staphylococcus aureus, the correlation was less strict, but the same trend prevailed. These results suggest that the antibacterial activities of various pleuromutilin derivatives on a given test organism are mainly determined by the strength of binding to the ribosomes within the bacterial cell. PMID:6751216

  13. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    Science.gov (United States)

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  14. Photoaffinity labeling of the pactamycin binding site on eubacterial ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.

    1985-01-01

    Pactamycin, an inhibitor of the initial steps of protein synthesis, has an acetophenone group in its chemical structure that makes the drug a potentially photoreactive molecule. In addition, the presence of a phenolic residue makes it easily susceptible to radioactive labeling. Through iodination, one radioactive derivative of pactamycin has been obtained with biological activities similar to the unmodified drug when tested on in vivo and cell-free systems. With the use of [ 125 I]iodopactamycin, ribosomes of Escherichia coli have been photolabeled under conditions that preserve the activity of the particles and guarantee the specificity of the binding sites. Under these conditions, RNA is preferentially labeled when free, small ribosomal subunits are photolabeled, but proteins are the main target in the whole ribosome. This indicates that an important conformational change takes place in the binding site on association of the two subunits. The major labeled proteins are S2, S4, S18, S21, and L13. These proteins in the pactamycin binding site are probably related to the initiation step of protein synthesis

  15. MetaBAT: Metagenome Binning based on Abundance and Tetranucleotide frequence

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dongwan; Froula, Jeff; Egan, Rob; Wang, Zhong

    2014-03-21

    Grouping large fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Here we developed automated metagenome binning software, called MetaBAT, which integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency. On synthetic datasets MetaBAT on average achieves 98percent precision and 90percent recall at the strain level with 281 near complete unique genomes. Applying MetaBAT to a human gut microbiome data set we recovered 176 genome bins with 92percent precision and 80percent recall. Further analyses suggest MetaBAT is able to recover genome fragments missed in reference genomes up to 19percent, while 53 genome bins are novel. In summary, we believe MetaBAT is a powerful tool to facilitate comprehensive understanding of complex microbial communities.

  16. Synthesis and methylation of ribosomal RNA in HeLa cells infected with the herpes virus pseudorabies virus

    International Nuclear Information System (INIS)

    Furlong, J.C.; Kyriakidis, S.; Stevely, W.S.

    1982-01-01

    The effects of infection with the herpes virus pseudorabies virus on the metabolism of HeLa cell ribosomal RNA were examined. There is a decline both in the synthesis of nucleolar 45S ribosomal precursor RNA and in its processing to mature cytoplasmic RNA. The methylated oligonucleotides in the ribosomal RNA species were studied. The methylation of cytoplasmic ribosomal RNA was essentially unchanged. However there was some undermethylation of the nucleolar precursor. If undermethylated RNA does not mature then this may partly explain the reduced processing in the infected cells. (Author)

  17. Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation.

    Science.gov (United States)

    Greber, Basil Johannes; Gerhardy, Stefan; Leitner, Alexander; Leibundgut, Marc; Salem, Michèle; Boehringer, Daniel; Leulliot, Nicolas; Aebersold, Ruedi; Panse, Vikram Govind; Ban, Nenad

    2016-01-14

    Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions.

    Science.gov (United States)

    Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra

    2018-02-01

    Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.

  19. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients.

    Science.gov (United States)

    Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H; Mills, Jason A; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M; Podsakoff, Gregory M; Gadue, Paul; French, Deborah L; Mason, Philip J; Bessler, Monica; Weiss, Mitchell J

    2013-08-08

    Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.

  20. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    International Nuclear Information System (INIS)

    Kurkcuoglu, Ozge; Doruker, Pemra; Jernigan, Robert L; Sen, Taner Z; Kloczkowski, Andrzej

    2008-01-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine–Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit

  1. Temporal Patterns in the Abundance of a Critically Endangered Marsupial Relates to Disturbance by Roads and Agriculture.

    Science.gov (United States)

    Yeatman, Georgina J; Wayne, Adrian F; Mills, Harriet R; Prince, Jane

    2016-01-01

    The aim of this study was to investigate how landscape disturbance associated with roads, agriculture and forestry influenced temporal patterns in woylie (Bettongia penicillata) abundance before, during and after periods of rapid population change. Data were collected from an area of approximately 140,000 ha of forest within the Upper Warren region in south-western Australia. Woylie abundance was measured using cage trapping at 22 grid and five transect locations with varying degrees of landscape disturbance between 1994 and 2012. We found evidence that the distribution and abundance of woylies over time appears to be related to the degree of fragmentation by roads and proximity to agriculture. Sites furthest from agriculture supported a greater abundance of woylies and had slower rates of population decline. Sites with fewer roads had a greater abundance of woylies generally and a greater rate of increase in abundance after the implementation of invasive predator control. The results of this study suggest that landscape disturbance is less important at peak population densities, but during times of environmental and population change, sites less dissected by roads and agriculture better support woylie populations. This may be due to the role these factors play in increasing the vulnerability of woylies to introduced predators, population fragmentation, weed species invasion, mortality from road collisions or a reduction in available habitat. Strategies that reduce the impact of disturbance on woylie populations could include the rationalisation of forest tracks and consolidation of contiguous habitat through the acquisition of private property. Reducing the impact of disturbance in the Upper Warren region could improve the resilience of this critically important woylie population during future environmental change.

  2. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  3. A new version of the RDP (Ribosomal Database Project)

    Science.gov (United States)

    Maidak, B. L.; Cole, J. R.; Parker, C. T. Jr; Garrity, G. M.; Larsen, N.; Li, B.; Lilburn, T. G.; McCaughey, M. J.; Olsen, G. J.; Overbeek, R.; hide

    1999-01-01

    The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.

  4. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  5. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics.

    Science.gov (United States)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-09-01

    Several groups of antibiotics inhibit bacterial growth by binding to bacterial ribosomes. Mutations in ribosomal protein L3 have been associated with resistance to linezolid and tiamulin, which both bind at the peptidyl transferase center in the ribosome. Resistance to these and other antibiotics also occurs through methylation of 23S rRNA at position A2503 by the methyltransferase Cfr. The mutations in L3 and the cfr gene have been found together in clinical isolates, raising the question of whether they have a combined effect on antibiotic resistance or growth. We transformed a plasmid-borne cfr gene into a uL3-depleted Escherichia coli strain containing either wild-type L3 or L3 with one of seven mutations, G147R, Q148F, N149S, N149D, N149R, Q150L, or T151P, expressed from plasmid-carried rplC genes. The L3 mutations are well tolerated, with small to moderate growth rate decreases. The presence of Cfr has a very minor influence on the growth rate. The resistance of the transformants to linezolid, tiamulin, florfenicol, and Synercid (a combination of quinupristin and dalfopristin [Q-D]) was measured by MIC assays. The resistance from Cfr was, in all cases, stronger than the effects of the L3 mutations, but various effects were obtained with the combinations of Cfr and L3 mutations ranging from a synergistic to an antagonistic effect. Linezolid and tiamulin susceptibility varied greatly among the L3 mutations, while no significant effects on florfenicol and Q-D susceptibility were seen. This study underscores the complex interplay between various resistance mechanisms and cross-resistance, even from antibiotics with overlapping binding sites. Copyright © 2017 American Society for Microbiology.

  6. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    DEFF Research Database (Denmark)

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonard G.

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.......7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions...... of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic...

  7. ACE-SWICS In Situ Plasma Composition of Fragmented Comet 73P/Schwassmann-Wachmann 3

    Science.gov (United States)

    Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Zurbuchen, T.

    2013-12-01

    The interiors of comets contain some of the most pristine material in the solar system. Comet 73P/Schwassmann-Wachmann 3, discovered in 1930 with a double nucleus, is a Jupiter-family comet with a 5.34-year period. This comet split into 5 fragments in 1995 and disintegrated into nearly 70 pieces in 2006. In May and June of 2006, recently ionized cometary particles originating from some of these fragments were collected with the ACE-SWICS sensor. Due to a combination of the close proximity of the fragments passing between ACE-SWICS and the Sun, and the instrument characteristics, unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during this time. The cometary material released from some of these fragments can be identified by the concentrations of water-group pick-up ions having a mass-per-charge of 16-18 amu/e. With a focus on Helium, Carbon, and water-group ions, we present an analysis of the cometary plasma. Charge state ratios of C+/O+ fall below 0.1 during detection of comet fragment plasma, and there is a clear increase in He+ during fragment crossings. The C/O ratio and He charge states are used to provide constraints on the activity of the cometary fragments and also the spatial distribution of the extended and ionized cometary tail.

  8. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

    Science.gov (United States)

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.

  9. Pactamycin binding site on archaebacterial and eukaryotic ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.G.

    1987-01-01

    The presence of a photoreactive acetophenone group in the protein synthesis inhibitor pactamycin and the possibility of obtaining active iodinated derivatives that retain full biological activity allow the antibiotic binding site on Saccharomyces cerevisiae and archaebacterium Sulfolobus solfataricus ribosomes to be photoaffinity labeled. Four major labeled proteins have been identified in the yeast ribosomes, i.e., YS10, YS18, YS21/24, and YS30, while proteins AL1a, AS10/L8, AS18/20, and AS21/22 appeared as radioactive spots in S. solfataricus. There seems to be a correlation between some of the proteins labeled in yeast and those previously reported in Escherichia coli indicating that the pactamycin binding sites of both species, which are in the small subunit close to the initiation factors and mRNA binding sites, must have similar characteristics

  10. Ribosome-catalyzed formation of an abnormal peptide analogue

    International Nuclear Information System (INIS)

    Roesser, J.R.; Chorghade, M.S.; Hecht, S.M.

    1986-01-01

    The peptidyl-tRNA analogue N-(chloracetyl) phenylalanyl-tRNA/sup Phe/ was prepared by chemical aminoacylation and prebound to the P site of Escherichia coli ribosomes in response to poly(uridylic acid). Admixture of phenylalanyl-tRNA/sup Phe/ to the A site resulted in the formation of two dipeptides, one of which was found by displacement of chloride ion from the peptidyl-tRNA. This constitutes the first example of ribosome-mediated formation of a peptide of altered connectivity and suggests a need for revision of the current model of peptide bond formation. Also suggested by the present finding is the feasibility of utilizing tRNAs to prepare polypeptides of altered connectivity in an in vitro protein biosynthesizing system. [ 32 P]-oligo(rA), [ 3 H]- and [ 14 C] phenylalanines were used in the assay of the peptidye-tRNA analogue

  11. Liquid chromatography, in combination with a quadrupole time-of-flight instrument (LC QTOF), with sequential window acquisition of all theoretical fragment-ion spectra (SWATH) acquisition: systematic studies on its use for screenings in clinical and forensic toxicology and comparison with information-dependent acquisition (IDA).

    Science.gov (United States)

    Roemmelt, Andreas T; Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas

    2014-12-02

    Forensic and clinical toxicological screening procedures are employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques with information-dependent acquisition (IDA) approaches more and more often. It is known that the complexity of a sample and the IDA settings might prevent important compounds from being triggered. Therefore, data-independent acquisition (DIA) methods should be more suitable for systematic toxicological analysis (STA). The DIA method sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which uses Q1 windows of 20-35 Da for data-independent fragmentation, was systematically investigated for its suitability for STA. Quality of SWATH-generated mass spectra were evaluated with regard to mass error, relative abundance of the fragments, and library hits. With the Q1 window set to 20-25 Da, several precursors pass Q1 at the same time and are fragmented, thus impairing the library search algorithms to a different extent: forward fit was less affected than reverse fit and purity fit. Mass error was not affected. The relative abundance of the fragments was concentration dependent for some analytes and was influenced by cofragmentation, especially of deuterated analogues. Also, the detection rate of IDA compared to SWATH was investigated in a forced coelution experiment (up to 20 analytes coeluting). Even using several different IDA settings, it was observed that IDA failed to trigger relevant compounds. Screening results of 382 authentic forensic cases revealed that SWATH's detection rate was superior to IDA, which failed to trigger ∼10% of the analytes.

  12. Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.

    Directory of Open Access Journals (Sweden)

    Christopher P Johnstone

    Full Text Available Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR, did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

  13. Evolutionary conservation of nuclear and nucleolar targeting sequences in yeast ribosomal protein S6A

    International Nuclear Information System (INIS)

    Lipsius, Edgar; Walter, Korden; Leicher, Torsten; Phlippen, Wolfgang; Bisotti, Marc-Angelo; Kruppa, Joachim

    2005-01-01

    Over 1 billion years ago, the animal kingdom diverged from the fungi. Nevertheless, a high sequence homology of 62% exists between human ribosomal protein S6 and S6A of Saccharomyces cerevisiae. To investigate whether this similarity in primary structure is mirrored in corresponding functional protein domains, the nuclear and nucleolar targeting signals were delineated in yeast S6A and compared to the known human S6 signals. The complete sequence of S6A and cDNA fragments was fused to the 5'-end of the LacZ gene, the constructs were transiently expressed in COS cells, and the subcellular localization of the fusion proteins was detected by indirect immunofluorescence. One bipartite and two monopartite nuclear localization signals as well as two nucleolar binding domains were identified in yeast S6A, which are located at homologous regions in human S6 protein. Remarkably, the number, nature, and position of these targeting signals have been conserved, albeit their amino acid sequences have presumably undergone a process of co-evolution with their corresponding rRNAs

  14. Identification of Nematodirus species (Nematoda: Molineidae) from wild ruminants in Italy using ribosomal DNA markers.

    Science.gov (United States)

    Gasser, R B; Rossi, L; Zhu, X

    1999-11-01

    The sequence of the second internal transcribed spacer of ribosomal DNA was determined for four species of Nematodirus (Nematodirus rupicaprae, Nematodirus oiratianus, Nematodirus davtiani alpinus and Nematodirus europaeus) from roe deer or alpine chamois. The second internal transcribed spacer of the four species varied in length from 228 to 236 bp, and the G + C contents ranged from 41 to 44%. While no intraspecific sequence variation was detected among multiple samples representing three of the taxa, sequence differences of 5.9-9.7% were detected among the four species, Nematodirus davtiani alpinus and N. rupicaprae were genetically most similar (94.1%), followed by N. oiratianus, N. europaeus and N. rupicaprae (91.1-91.5%), whereas N. oiratianus was genetically most different from N. davtiani alpinus. The interspecific sequence differences were exploited for the delineation of the four species by PCR-based restriction fragment length polymorphism (using two enzymes) and single-strand conformation polymorphism. The results have implications for diagnosis, epidemiology and for studying the systematics of the Nematodirinae.

  15. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.

    Science.gov (United States)

    Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel

    2007-12-07

    The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.

  16. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    Science.gov (United States)

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  17. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    Science.gov (United States)

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  18. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Shunfei Yan

    2017-01-01

    Full Text Available Overall survival for patients with ovarian cancer (OC has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC. HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose polymerase (PARP inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.

  19. Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction.

    Science.gov (United States)

    Herbert, Zachary T; Kershner, Jamie P; Butty, Vincent L; Thimmapuram, Jyothi; Choudhari, Sulbha; Alekseyev, Yuriy O; Fan, Jun; Podnar, Jessica W; Wilcox, Edward; Gipson, Jenny; Gillaspy, Allison; Jepsen, Kristen; BonDurant, Sandra Splinter; Morris, Krystalynne; Berkeley, Maura; LeClerc, Ashley; Simpson, Stephen D; Sommerville, Gary; Grimmett, Leslie; Adams, Marie; Levine, Stuart S

    2018-03-15

    Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them.

  20. Abelhas Euglossini (Apidae de áreas de Mata Atlântica: abundância, riqueza e aspectos biológicos Euglossine bees (Apidae from Atlantic Forest sites: abundance, richness, and biological aspects

    Directory of Open Access Journals (Sweden)

    Rui Carlos Peruquetti

    1999-01-01

    Full Text Available Collection data of Euglossinae males from Parque Estadual do Rio Doce (PERD and Viçosa, both areas with remnants of Atlantic Rain Forest (Mata Atlântica in Minas Gerais state, Brazil are presented. Comparisons made among three fragments with different sizes and states of disturbance from Viçosa showed differences in abundance of most common species and apparently, Eulaema nigrita Lepeletir, 1841 can be an useful indicator of disturbed sites. Some populations of euglossine bees seems to be restrict to a forest fragment, there being few or no flow of individuals or species of one fragment to another, even when they are only 1 km apart. 15 species of euglossines were sampled in PERD, and the most abundant was Eulaema cingulata (Fabricius, 1804. At Viçosa, 10 species were sampled, E. nigrita was the predominant one. Methyl salicylate attracted no males at both sites, in spite of large numbers of species and individuals sampled using this bait in other regions. The majority of species and individuals were collected in the rainy season. Only 0,58% of sampled males carried orchid pollinia (Catasetum Richard, Cycnoches Lindley and Coryanthes Hook on their bodies. Emergence data of four species of Euglossa Latreille, 1802 reared from trap nests suggest that sex ratio in Euglossini is not a constant within the tribe. A list of 57 euglossine species now known to occur in Mata Atlântica are offered.

  1. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae) in Fragmented Grassland?

    Science.gov (United States)

    Kalarus, Konrad; Nowicki, Piotr

    2015-01-01

    Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more

  2. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae in Fragmented Grassland?

    Directory of Open Access Journals (Sweden)

    Konrad Kalarus

    Full Text Available Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height; (ii factors associated with habitat spatial structure (patch size, patch isolation and fragmentation; and (iii features of patch surroundings (100-m buffers around patches that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and

  3. Effects of climate and forest structure on palms, bromeliads and bamboos in Atlantic Forest fragments of Northeastern Brazil.

    Science.gov (United States)

    Hilário, R R; Toledo, J J

    2016-01-01

    Palms, bromeliads and bamboos are key elements of tropical forests and understanding the effects of climate, anthropogenic pressure and forest structure on these groups is crucial to forecast structural changes in tropical forests. Therefore, we investigated the effects of these factors on the abundance of these groups in 22 Atlantic forest fragments of Northeastern Brazil. Abundance of bromeliads and bamboos were assessed through indexes. Palms were counted within a radius of 20 m. We also obtained measures of vegetation structure, fragment size, annual precipitation, precipitation seasonality and human population density. We tested the effects of these predictors on plant groups using path analysis. Palm abundance was higher in taller forests with larger trees, closed canopy and sparse understory, which may be a result of the presence of seed dispersers and specific attributes of local palm species. Bromeliads were negatively affected by both annual precipitation and precipitation seasonality, what may reflect adaptations of these plants to use water efficiently, but also the need to capture water in a regular basis. Bamboos were not related to any predictor variable. As climate and forest structure affected the abundance of bromeliads and palms, human-induced climatic changes and disturbances in forest structure may modify the abundance of these groups. In addition, soil properties and direct measurements of human disturbance should be used in future studies in order to improve the predictability of models about plant groups in Northeastern Atlantic Forest.

  4. Restriction Fragment Length Polymorphism Analysis Reveals High Levels of Genetic Divergence Among the Light Organ Symbionts of Flashlight Fish.

    Science.gov (United States)

    Wolfe, C J; Haygood, M G

    1991-08-01

    Restriction fragment length polymorphisms within the lux and 16S ribosomal RNA gene regions were used to compare unculturable bacterial light organ symbionts of several anomalopid fish species. The method of Nei and Li (1979) was used to calculate phylogenetic distance from the patterns of restriction fragment lengths of the luxA and 16S rRNA regions. Phylogenetic trees constructed from each distance matrix (luxA and 16S rDNA data) have similar branching orders. The levels of divergence among the symbionts, relative to other culturable luminous bacteria, suggests that the symbionts differ at the level of species among host fish genera. Symbiont relatedness and host geographic location do not seem to be correlated, and the symbionts do not appear to be strains of common, free-living, luminous bacteria. In addition, the small number of hybridizing fragments within the 16S rRNA region of the symbionts, compared with that of the free-living species, suggests a decrease in copy number of rRNA operons relative to free-living species. At this level of investigation, the symbiont phylogeny is consistent with the proposed phylogeny of the host fish family and suggests that each symbiont strain coevolved with its host fish species.

  5. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting.

    Science.gov (United States)

    Hulscher, Ryan M; Bohon, Jen; Rappé, Mollie C; Gupta, Sayan; D'Mello, Rhijuta; Sullivan, Michael; Ralston, Corie Y; Chance, Mark R; Woodson, Sarah A

    2016-07-01

    The assembly of the Escherichia coli ribosome has been widely studied and characterized in vitro. Despite this, ribosome biogenesis in living cells is only partly understood because assembly is coupled with transcription, modification and processing of the pre-ribosomal RNA. We present a method for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of nascent RNA to be probed over time. Together, these can be used to determine changes in the structures of ribosome assembly intermediates as they fold in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Characterization of Mycoplasma hyosynoviae strains by amplified fragment length polymorphism analysis, pulsed-field gel electrophoresis and 16S ribosomal DNA sequencing

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, N.F.; Ahrens, Peter

    2002-01-01

    , were investigated by analysis of amplified fragment length polymorphisms of the Bgl II and Mfe I restriction sites and by pulsed-field gel electrophoresis of a Bss HII digest of chromosomal DNA. Both methods allowed unambiguous differentiation of the analysed strains and showed similar discriminatory...

  7. Origins of the plant chloroplasts and mitochondria based on comparisons of 5S ribosomal RNAs

    Science.gov (United States)

    Delihas, N.; Fox, G. E.

    1987-01-01

    In this paper, we provide macromolecular comparisons utilizing the 5S ribosomal RNA structure to suggest extant bacteria that are the likely descendants of chloroplast and mitochondria endosymbionts. The genetic stability and near universality of the 5S ribosomal gene allows for a useful means to study ancient evolutionary changes by macromolecular comparisons. The value in current and future ribosomal RNA comparisons is in fine tuning the assignment of ancestors to the organelles and in establishing extant species likely to be descendants of bacteria involved in presumed multiple endosymbiotic events.

  8. Species Richness and Phenology of Cerambycid Beetles in Urban Forest Fragments of Northern Delaware

    Science.gov (United States)

    K. Handley; J. Hough-Goldstein; L.M. Hanks; J.G. Millar; V. D' amico

    2015-01-01

    Cerambycid beetles are abundant and diverse in forests, but much about their host relationships and adult behavior remains unknown. Generic blends of synthetic pheromones were used as lures in traps, to assess the species richness, and phenology of cerambycids in forest fragments in northern Delaware. More than 15,000 cerambycid beetles of 69 species were trapped over...

  9. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  10. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    Directory of Open Access Journals (Sweden)

    Vasco Elbrecht

    2016-04-01

    Full Text Available Cytochrome c oxidase I (COI is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate.

  11. Plastid ribosome pausing is induced by multiple features and is linked to protein complex assembly

    DEFF Research Database (Denmark)

    Gawroński, Piotr; Jensen, Poul Erik; Karpinski, Stanislaw

    2018-01-01

    Many mRNAs contain pause sites that briefly interrupt the progress of translation. Specific features that induce ribosome pausing have been described; however, their individual contributions to pause-site formation, and the overall biological significance of ribosome pausing, remain largely uncle...

  12. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  13. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    Science.gov (United States)

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  14. Moth species richness, abundance and diversity in fragmented urban woodlands: implications for conservation and management strategies

    OpenAIRE

    Lintott, P.; Bunnefeld, N.; Fuentes-Montemayor, E.; Minderman, J.; Blackmore, L.; Goulson, D.; Park, K.

    2014-01-01

    Urban expansion threatens global biodiversity through the destruction of natural and semi-natural habitats and increased levels of disturbance. Whilst woodlands in urban areas may reduce the impact of urbanisation on biodiversity, they are often subject to under or over-management and consist of small, fragmented patches which may be isolated. Effective management strategies for urban woodland require an understanding of the\\ud ecology and habitat requirements of all relevant taxa. Yet, littl...

  15. Comparison of Drosophilidae (Diptera assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies

    Directory of Open Access Journals (Sweden)

    R Cavasini

    Full Text Available Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA – Parque Municipal das Araucárias and the other a private property without any conservational policy (FBL – Fazenda Brandalise, in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H′ = 2.221 was approximately 40% higher than in FBL (H′ = 1.592. This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602 only 8% higher than FBL (Dmg = 6.128, which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  16. Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies.

    Science.gov (United States)

    Cavasini, R; Buschini, M L T; Machado, L P B; Mateus, R P

    2014-11-01

    Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA - Parque Municipal das Araucárias) and the other a private property without any conservational policy (FBL - Fazenda Brandalise), in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H' = 2.221) was approximately 40% higher than in FBL (H' = 1.592). This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602) only 8% higher than FBL (Dmg = 6.128), which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni) and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  17. Electron impact ionization of size selected hydrogen clusters (H2)N: ion fragment and neutral size distributions.

    Science.gov (United States)

    Kornilov, Oleg; Toennies, J Peter

    2008-05-21

    Clusters consisting of normal H2 molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H2)(N) (N=2-40), the relative intensities of the ion fragments Hn+ are measured with a mass spectrometer. H3+ is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H3+, H5+, H7+, and H9+ first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H11+ and H13+, respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H2 clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H3+ ions produced in the reaction H2+ + H2-->H3+ +H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment.

  18. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae).

    Science.gov (United States)

    Kolano, Bozena; Bednara, Edyta; Weiss-Schneeweiss, Hanna

    2013-10-01

    High heterogeneity was observed among conserved domains of reverse transcriptase ( rt ) isolated from quinoa. Only one Ty1- copia rt was highly amplified. Reverse transcriptase sequences were located predominantly in pericentromeric region of quinoa chromosomes. The heterogeneity, genomic abundance, and chromosomal distribution of reverse transcriptase (rt)-coding fragments of Ty1-copia and Ty3-gypsy long terminal repeat retrotransposons were analyzed in the Chenopodium quinoa genome. Conserved domains of the rt gene were amplified and characterized using degenerate oligonucleotide primer pairs. Sequence analyses indicated that half of Ty1-copia rt (51 %) and 39 % of Ty3-gypsy rt fragments contained intact reading frames. High heterogeneity among rt sequences was observed for both Ty1-copia and Ty3-gypsy rt amplicons, with Ty1-copia more heterogeneous than Ty3-gypsy. Most of the isolated rt fragments were present in quinoa genome in low copy numbers, with only one highly amplified Ty1-copia rt sequence family. The gypsy-like RNase H fragments co-amplified with Ty1-copia-degenerate primers were shown to be highly amplified in the quinoa genome indicating either higher abundance of some gypsy families of which rt domains could not be amplified, or independent evolution of this gypsy-region in quinoa. Both Ty1-copia and Ty3-gypsy retrotransposons were preferentially located in pericentromeric heterochromatin of quinoa chromosomes. Phylogenetic analyses of newly amplified rt fragments together with well-characterized retrotransposon families from other organisms allowed identification of major lineages of retroelements in the genome of quinoa and provided preliminary insight into their evolutionary dynamics.

  19. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA.

    Science.gov (United States)

    Hochstatter, Julia; Hölzel, Michael; Rohrmoser, Michaela; Schermelleh, Lothar; Leonhardt, Heinrich; Keough, Rebecca; Gonda, Thomas J; Imhof, Axel; Eick, Dirk; Längst, Gernot; Németh, Attila

    2012-07-13

    Ribosomal RNA gene transcription, co-transcriptional processing, and ribosome biogenesis are highly coordinated processes that are tightly regulated during cell growth. In this study we discovered that Mybbp1a is associated with both the RNA polymerase I complex and the ribosome biogenesis machinery. Using a reporter assay that uncouples transcription and RNA processing, we show that Mybbp1a represses rRNA gene transcription. In addition, overexpression of the protein reduces RNA polymerase I loading on endogenous rRNA genes as revealed by chromatin immunoprecipitation experiments. Accordingly, depletion of Mybbp1a results in an accumulation of the rRNA precursor in vivo but surprisingly also causes growth arrest of the cells. This effect can be explained by the observation that the modulation of Mybbp1a protein levels results in defects in pre-rRNA processing within the cell. Therefore, the protein may play a dual role in the rRNA metabolism, potentially linking and coordinating ribosomal DNA transcription and pre-rRNA processing to allow for the efficient synthesis of ribosomes.

  20. Kinase-Mediated Regulation of 40S Ribosome Assembly in Human Breast Cancer

    Science.gov (United States)

    2017-02-01

    and will assess if this resistance involves gain-of-function mutations in Ltv1, and if resistance can be overcome with drugs that direct...ribosome assembly factor Ltv1 in both yeast and TNBC cells, and that selective knockdown or silencing of CK1δ, or forced expression of Ltv1 mutant that...cannot be phosphorylated by CK1δ, blocks ribosome assembly in yeast and compromises the growth and survival of TNBC cells. Further, we have shown that

  1. The Ribosomal RNA is a Useful Marker to Visualize Rhizobia Interacting with Legume Plants

    Science.gov (United States)

    Rinaudi, Luciana; Isola, Maria C.; Giordano, Walter

    2004-01-01

    Symbiosis between rhizobia and leguminous plants leads to the formation of nitrogen-fixing root nodules. In the present article, we recommend the use of the ribosomal RNA (rRNA) isolated from legume nodules in an experimental class with the purpose of introducing students to the structure of eukaryotic and prokaryotic ribosomes and of…

  2. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  3. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  4. Effect of iTRAQ Labeling on the Relative Abundance of Peptide Fragment Ions Produced by MALDI-MS/MS

    NARCIS (Netherlands)

    Gandhi, Tejas; Puri, Pranav; Fusetti, Fabrizia; Breitling, Rainer; Poolman, Bert; Permentier, Hjalmar P.

    The identification of proteins in proteomics experiments is usually based on mass information derived from tandem mass spectrometry data. To improve the performance of the identification algorithms, additional information available in the fragment peak intensity patterns has been shown to be useful.

  5. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2015-01-01

    Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions.

  6. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes

    Directory of Open Access Journals (Sweden)

    Mickey R. Miller

    2014-09-01

    Full Text Available In bacteria, transfer-messenger RNA (tmRNA and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.

  7. Erupted frothy xenoliths may explain lack of country-rock fragments in plutons

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R.; Schmeling, Harro; Koyi, Hemin; Blythe, Lara

    2016-01-01

    Magmatic stoping is discussed to be a main mechanism of magma emplacement. As a consequence of stoping, abundant country-rock fragments should occur within, and at the bottom of, magma reservoirs as “xenolith graveyards”, or become assimilated. However, the common absence of sufficient amounts of both xenoliths and crustal contamination have led to intense controversy about the efficiency of stoping. Here, we present new evidence that may explain the absence of abundant country-rock fragments in plutons. We report on vesiculated crustal xenoliths in volcanic rocks that experienced devolatilisation during heating and partial melting when entrained in magma. We hypothesise that the consequential inflation and density decrease of the xenoliths allowed them to rise and become erupted instead of being preserved in the plutonic record. Our thermomechanical simulations of this process demonstrate that early-stage xenolith sinking can be followed by the rise of a heated, partially-molten xenolith towards the top of the reservoir. There, remnants may disintegrate and mix with resident magma or erupt. Shallow-crustal plutons emplaced into hydrous country rocks may therefore not necessarily contain evidence of the true amount of magmatic stoping during their emplacement. Further studies are needed to quantify the importance of frothy xenolith in removing stoped material. PMID:27804996

  8. Blow Flies from Forest Fragments Embedded in Different Land Uses: Implications for Selecting Indicators in Forensic Entomology.

    Science.gov (United States)

    de Souza, Mirian S; Pepinelli, Mateus; de Almeida, Eduardo C; Ochoa-Quintero, Jose M; Roque, Fabio O

    2016-01-01

    Given the general expectation that forest loss can alter biodiversity patterns, we hypothesize that blow fly species abundances differ in a gradient of native vegetation cover. This study was conducted in 17 fragments across different landscapes in central Brazil. Different land cover type proportions were used to represent landscape structure. In total, 2334 specimens of nine species of Calliphoridae were collected. We used principal component analysis (PCA) to reduce dimensionality and multicollinearity of the landscape data. The first component explained 70%, and it represented a gradient of forest-pasture land uses. Alien species showed a wide distribution in different fragments with no clear relationship between the abundance values and the scores of PCA axes, whereas native species occurred only in areas with a predominance of forest cover. Our study revealed that certain native species may be sensitive to forest loss at the landscape scale, and they represent a bioindicator in forensic entomology. © 2015 American Academy of Forensic Sciences.

  9. Structures of endothiapepsin-fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library.

    Science.gov (United States)

    Huschmann, Franziska U; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S; Mueller, Uwe

    2016-05-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein-ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin-fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity.

  10. Structures of endothiapepsin–fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library

    Science.gov (United States)

    Huschmann, Franziska U.; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S.; Mueller, Uwe

    2016-01-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein–ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin–fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity. PMID:27139825

  11. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    Science.gov (United States)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  12. Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome.

    Science.gov (United States)

    Jomaa, Ahmad; Fu, Yu-Hsien Hwang; Boehringer, Daniel; Leibundgut, Marc; Shan, Shu-Ou; Ban, Nenad

    2017-05-19

    During co-translational protein targeting, the signal recognition particle (SRP) binds to the translating ribosome displaying the signal sequence to deliver it to the SRP receptor (SR) on the membrane, where the signal peptide is transferred to the translocon. Using electron cryo-microscopy, we have determined the structure of a quaternary complex of the translating Escherichia coli ribosome, the SRP-SR in the 'activated' state and the translocon. Our structure, supported by biochemical experiments, reveals that the SRP RNA adopts a kinked and untwisted conformation to allow repositioning of the 'activated' SRP-SR complex on the ribosome. In addition, we observe the translocon positioned through interactions with the SR in the vicinity of the ribosome exit tunnel where the signal sequence is extending beyond its hydrophobic binding groove of the SRP M domain towards the translocon. Our study provides new insights into the mechanism of signal sequence transfer from the SRP to the translocon.

  13. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia.

    Science.gov (United States)

    Wang, Shuzhen; Zhang, Yubo; Liu, Honggao; He, Ying; Yan, Junjie; Wu, Zhihua; Ding, Yi

    2012-11-01

    Alpha-momorcharin (α-MC), a member of the ribosome-inactivating protein (RIP) family, has been used not only as antiviral, antimicrobial, and antitumor agents, but also as toxicant to protozoa, insects, and fungi. In this study, we expressed the protein in Escherichia coli Rosetta (DE3) pLysS strain and purified it by nickel-nitrilotriacetic acid affinity chromatography. A total of 85 mg of homogeneous protein was obtained from 1 l culture supernatant of Rosetta (DE3) pLysS, showing a high recovery rate of 73.9%. Protein activity assay indicated that α-MC had both N-glycosidase activity and DNA-nuclease activity, the former releasing RIP diagnostic RNA fragment (Endo's fragment) from rice rRNAs and the latter converting supercoiled circular DNA of plasmid pET-32a(+) into linear conformations in a concentration-dependent manner. Specially, we found that α-MC could inhibit the mycelial growth of Fusarium solani and Fusarium oxysporum with IC(50) values of 6.23 and 4.15 μM, respectively. Results of optical microscopy and transmission electron microscopy demonstrated that α-MC caused extensive septum formation, loss of integrity of the cell wall, separation of the cytoplasm from the cell wall, deformation of cells with irregular budding sites, and apoptosis in F. solani. Moreover, α-MC was active against Pseudomonas aeruginosa with an IC(50) value of 0.59 μM. The α-MC protein carries a high potential for the design of new antifungal drugs or the development of transgenic crops resistant to pathogens.

  14. Differences in seed rain composition in small and large fragments in the northeast Brazilian Atlantic Forest.

    Science.gov (United States)

    Knörr, U C; Gottsberger, G

    2012-09-01

    Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8-388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1-year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal-dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small-sized seeds (1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small-sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large-seeded tree species may facilitate the maintenance of species diversity. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    Science.gov (United States)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  16. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit.

    Directory of Open Access Journals (Sweden)

    Igor Ruvinsky

    Full Text Available BACKGROUND: Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable serine residues by alanines (rpS6(P-/-, are viable and fertile. However, phenotypic characterization of these mice and embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several cell types, as well as pancreatic beta-cell function and glucose homeostasis. A relatively passive behavior of these mice has raised the possibility that they suffer from muscle weakness, which has, indeed, been confirmed by a variety of physical performance tests. METHODOLOGY/PRINCIPAL FINDINGS: A large variety of experimental methodologies, including morphometric measurements of histological preparations, high throughput proteomic analysis, positron emission tomography (PET and numerous biochemical assays, were used in an attempt to establish the mechanism underlying the relative weakness of rpS6(P-/- muscles. Collectively, these experiments have demonstrated that the physical inferiority appears to result from two defects: a a decrease in total muscle mass that reflects impaired growth, rather than aberrant differentiation of myofibers, as well as a diminished abundance of contractile proteins; and b a reduced content of ATP and phosphocreatine, two readily available energy sources. The abundance of three mitochondrial proteins has been shown to diminish in the knockin mouse. However, the apparent energy deficiency in this genotype does not result from a lower mitochondrial mass or compromised activity of enzymes of the oxidative phosphorylation, nor does it reflect a decline in insulin-dependent glucose uptake, or diminution in storage of glycogen or triacylglycerol (TG in the muscle. CONCLUSIONS/SIGNIFICANCE: This study establishes rpS6 phosphorylation as a determinant of muscle strength through its role in regulation of myofiber growth and energy content. Interestingly, a similar

  17. (Brassicaceae) based on nuclear ribosomal ITS DNA sequences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 2. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Yan Li Yan Kong Zhe Zhang Yanqiang Yin Bin Liu Guanghui Lv Xiyong Wang. Research Article Volume 93 Issue 2 August 2014 pp 313-323 ...

  18. Architecture of the E.coli 70S ribosome

    DEFF Research Database (Denmark)

    Burkhardt, N.; Diedrich, G.; Nierhaus, K.H.

    1997-01-01

    The 70S ribosome from E.coli was analysed by neutron scattering focusing on the shape and the internal protein-RNA-distribution of the complex. Measurements on selectively deuterated 70S particles and free 30S and 50S subunits applying conventional contrast variation and proton-spin contrast...

  19. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  20. Reproduction of Amorpha canescens (Fabaceae) and diversity of its bee community in a fragmented landscape.

    Science.gov (United States)

    Slagle, Malinda W; Hendrix, Stephen D

    2009-10-01

    Loss of insect pollinators due to habitat fragmentation often results in negative effects on plant reproduction, but few studies have simultaneously examined variation in the bee community, site characteristics and plant community characteristics to evaluate their relative effects on plant reproduction in a fragmented habitat. We examined the reproduction of a common tallgrass prairie forb, Amorpha canescens (Fabaceae), in large (>40 ha) and small (level characteristics can influence the bee community visiting any one species. Site size, a common predictor of plant reproduction in fragmented habitats did not contribute to any models of fruit set and was only marginally related to bee diversity one year. Andrena quintilis, one of the three oligolectic bee species associated with A. canescens, was abundant at all sites, suggesting it has not been significantly affected by fragmentation. Our results show that the diversity of bees visiting A. canescens is important for maintaining fruit set and that bee visitation is still sufficient for at least some fruit set in all populations, suggesting these small remnants act as floral resource oases for bees in landscapes often dominated by agriculture.

  1. Anthropogenic influence on the distribution, abundance and diversity of sandfly species (Diptera: Phlebotominae: Psychodidae, vectors of cutaneous leishmaniasis in Panama

    Directory of Open Access Journals (Sweden)

    Anayansi Valderrama

    2011-12-01

    Full Text Available In Panama, species of the genus Lutzomyia are vectors of American cutaneous leishmaniasis (ACL. There is no recent ecological information that may be used to develop tools for the control of this disease. Thus, the goal of this study was to determine the composition, distribution and diversity of Lutzomyia species that serve as vectors of ACL. Sandfly sampling was conducted in forests, fragmented forests and rural environments, in locations with records of ACL. Lutzomyia gomezi, Lutzomyia panamensis and Lutzomyia trapidoi were the most widely distributed and prevalent species. Analysis of each sampling point showed that the species abundance and diversity were greatest at points located in the fragmented forest landscape. However, when the samples were grouped according to the landscape characteristics of the locations, there was a greater diversity of species in the rural environment locations. The Kruskal Wallis analysis of species abundance found that Lu. gomezi and Lu. trapidoi were associated with fragmented environments, while Lu. panamensis, Lutzomyia olmeca bicolor and Lutzomyia ylephiletor were associated with forested environments. Therefore, we suggest that human activity influences the distribution, composition and diversity of the vector species responsible for leishmaniasis in Panama.

  2. Universal elements of fragmentation

    International Nuclear Information System (INIS)

    Yanovsky, V. V.; Tur, A. V.; Kuklina, O. V.

    2010-01-01

    A fragmentation theory is proposed that explains the universal asymptotic behavior of the fragment-size distribution in the large-size range, based on simple physical principles. The basic principles of the theory are the total mass conservation in a fragmentation process and a balance condition for the energy expended in increasing the surface of fragments during their breakup. A flux-based approach is used that makes it possible to supplement the basic principles and develop a minimal theory of fragmentation. Such a supplementary principle is that of decreasing fragment-volume flux with increasing energy expended in fragmentation. It is shown that the behavior of the decreasing flux is directly related to the form of a power-law fragment-size distribution. The minimal theory is used to find universal asymptotic fragment-size distributions and to develop a natural physical classification of fragmentation models. A more general, nonlinear theory of strong fragmentation is also developed. It is demonstrated that solutions to a nonlinear kinetic equation consistent with both basic principles approach a universal asymptotic size distribution. Agreement between the predicted asymptotic fragment-size distributions and experimental observations is discussed.

  3. p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion.

    Directory of Open Access Journals (Sweden)

    Kiran Hasygar

    2014-11-01

    Full Text Available Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs regulate larval growth by secreting insulin-like peptides (dILPs in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15, which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions.

  4. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  5. Anthropogenic Matrices Favor Homogenization of Tree Reproductive Functions in a Highly Fragmented Landscape.

    Science.gov (United States)

    Carneiro, Magda Silva; Campos, Caroline Cambraia Furtado; Beijo, Luiz Alberto; Ramos, Flavio Nunes

    2016-01-01

    Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to

  6. Ribosomal DNA internal transcribed spacer 1 and internal ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... in some East Asian countries such as China, Korea and. *Corresponding author. E-mail: soonkwan@kangwon.ac.kr. Tel: +82 33 250 6476. Fax: +82 33 250 6470. Abbreviations: nrDNA, Nuclear ribosomal DNA; ITS, internal transcribed spacer; PCR, polymerase chain reaction; BLAST, basic local alignment ...

  7. Reaction of some macrolide antibiotics with the ribosome. Labeling of the binding site components

    International Nuclear Information System (INIS)

    Tejedor, F.; Ballesta, J.P.

    1986-01-01

    Radioactive carbomycin A, niddamycin, tylosin, and spiramycin, but not erythromycin, can be covalently bound to Escherichia coli ribosomes by incubation at 37 degrees C. The incorporation of radioactivity into the particles is inhibited by SH- and activated double bond containing compounds but not by amino groups, suggesting that the reactions may take place by addition to the double bond present in the reactive antibiotics. This thermic reaction must be different from the photoreaction described for some of these macrolides [Tejedor, F., and Ballesta, J. P. G. (1985) Biochemistry 24, 467-472] since tylosin, which is not photoincorporated, is thermically bound to ribosomes. Most of the radioactivity is incorporated into the ribosomal proteins. Two-dimensional gel electrophoresis of proteins labeled by carbomycin A, niddamycin, and tylosin indicates that about 40% of the radioactivity is bound to protein L27; the rest is distributed among several other proteins such as L8, L2, and S12, to differing extents depending on the drug used. These results indicate, in accordance with previous data, that protein L27 plays an important role in the macrolide binding site, confirming that these drugs bind near the peptidyl transferase center of the ribosome

  8. Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients.

    Directory of Open Access Journals (Sweden)

    Virginie Marcel

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous disease. Prognosis is mainly influenced by patient age at diagnosis and cytogenetic alterations, two of the main factors currently used in AML patient risk stratification. However, additional criteria are required to improve the current risk classification and better adapt patient care. In neoplastic cells, ribosome biogenesis is increased to sustain the high proliferation rate and ribosome composition is altered to modulate specific gene expression driving tumorigenesis. Here, we investigated the usage of ribosome biogenesis factors as clinical markers in adult patients with AML. We showed that nucleoli, the nucleus compartments where ribosome production takes place, are modified in AML by analyzing a panel of AML and healthy donor cells using immunofluorescence staining. Using four AML series, including the TCGA dataset, altogether representing a total of about 270 samples, we showed that not all factors involved in ribosome biogenesis have clinical values although ribosome biogenesis is increased in AML. Interestingly, we identified the regulator of ribosome production nucleolin (NCL as over-expressed in AML blasts. Moreover, we found in two series that high NCL mRNA expression level was associated with a poor overall survival, particular in elderly patients. Multivariate analyses taking into account age and cytogenetic risk indicated that NCL expression in blast cells is an independent marker of reduced survival. Our study identifies NCL as a potential novel prognostic factor in AML. Altogether, our results suggest that the ribosome biogenesis pathway may be of interest as clinical markers in AML.

  9. Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics

    Science.gov (United States)

    Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R.; Allen, Rosalind J.

    2017-12-01

    Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance.

  10. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    Science.gov (United States)

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  11. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    DEFF Research Database (Denmark)

    Long, Katherine S.; Vester, Birte

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations...... to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation...... of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little...

  13. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    Science.gov (United States)

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. On the intracellular trafficking of mouse S5 ribosomal protein from cytoplasm to nucleoli.

    Science.gov (United States)

    Matragkou, Ch; Papachristou, H; Karetsou, Z; Papadopoulos, G; Papamarcaki, T; Vizirianakis, I S; Tsiftsoglou, A S; Choli-Papadopoulou, T

    2009-10-09

    The non-ribosomal functions of mammalian ribosomal proteins have recently attracted worldwide attention. The mouse ribosomal protein S5 (rpS5) derived from ribosomal material is an assembled non-phosphorylated protein. The free form of rpS5 protein, however, undergoes phosphorylation. In this study, we have (a) investigated the potential role of phosphorylation in rpS5 protein transport into the nucleus and then into nucleoli and (b) determined which of the domains of rpS5 are involved in this intracellular trafficking. In vitro PCR mutagenesis of mouse rpS5 cDNA, complemented by subsequent cloning and expression of rpS5 truncated recombinant forms, produced in fusion with green fluorescent protein, permitted the investigation of rpS5 intracellular trafficking in HeLa cells using confocal microscopy complemented by Western blot analysis. Our results indicate the following: (a) rpS5 protein enters the nucleus via the region 38-50 aa that forms a random coil as revealed by molecular dynamic simulation. (b) Immunoprecipitation of rpS5 with casein kinase II and immobilized metal affinity chromatography analysis complemented by in vitro kinase assay revealed that phosphorylation of rpS5 seems to be indispensable for its transport from nucleus to nucleoli; upon entering the nucleus, Thr-133 phosphorylation triggers Ser-24 phosphorylation by casein kinase II, thus promoting entrance of rpS5 into the nucleoli. Another important role of rpS5 N-terminal region is proposed to be the regulation of protein's cellular level. The repetitively co-appearance of a satellite C-terminal band below the entire rpS5 at the late stationary phase, and not at the early logarithmic phase, of cell growth suggests a specific degradation balancing probably the unassembled ribosomal protein molecules with those that are efficiently assembled to ribosomal subunits. Overall, these data provide new insights on the structural and functional domains within the rpS5 molecule that contribute to its

  15. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites

    DEFF Research Database (Denmark)

    Willcocks, Margaret M.; Zaini, Salmah; Chamond, Nathalie

    2017-01-01

    Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit...

  16. Absence of ribosomal DNA amplification in the meroistic (telotrophic) ovary of the large milkweed bug Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae)

    Science.gov (United States)

    1975-01-01

    In the typical meroistic insect ovary, the oocyte nucleus synthesizes little if any RNA. Nurse cells or trophocytes actively synthesize ribosomes which are transported to and accumulated by the oocyte. In the telotrophic ovary a morphological separation exists, the nurse cells being localized at the apical end of each ovariole and communicating with the ooocytes via nutritive cords. In order to determine whether the genes coding for ribosomal RNA (rRNA) are amplified in the telotrophic ovary of the milkweed bug Oncopeltus fasciatus, the percentages of the genome coding for ribosomal RNA in somatic cells, spermatogenic cells, ovarian follicles, and nurse cells were compared. The oocytes and most of the nurse cells of O. fasciatus are uninucleolate. DNA hybridizing with ribosomal RNA is localized in a satellite DNA, the density of which is 1.712 g/cm(-3). The density of main-band DNA is 1.694 g/cm(-3). The ribosomal DNA satellite accounts for approximately 0.2% of the DNA in somatic and gametogenic tissues of both males and females. RNA-DNA hybridization analysis demonstrates that approximately 0.03% of the DNA in somatic tissues, testis, ovarian follicles, and isolated nurse cells hybridizes with ribosomal RNA. The fact that the percentage of DNA hybridizing with rRNA is the same in somatic and in male and female gametogenic tissues indicates that amplification of ribosomal DNA does not occur in nurse cells and that if it occurs in oocytes, it represents less than a 50- fold increase in ribosomal DNA. An increase in total genome DNA accounted by polyploidization appears to provide for increasing the amount of ribosomal DNA in the nurse cells. PMID:1158969

  17. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus.

    Directory of Open Access Journals (Sweden)

    John N Griffin

    2015-03-01

    Full Text Available The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.

  18. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution....... stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5....

  19. Ribosomal DNA variation in finger millet and wild species of Eleusine (Poaceae).

    Science.gov (United States)

    Hilu, K W; Johnson, J L

    1992-04-01

    Finger millet is an important cereal crop in the semi-arid regions of Africa and India. The crop belongs to the grass genus Eleusine, which includes nine annual and perennial species native to Africa except for the New World species E. tristachya. Ribosomal DNA (rDNA) variation in finger millet and related wild species was used to provide information on the origin of the genomes of this tetraploid crop and point out genetic relationships of the crop to other species in the genus. The restriction endonucleases used revealed a lack of variability in the rDNA spacer region in domesticated finger millet. All the rDNA variants of the crop were found in the proposed direct tetraploid ancestor, E. coracana subsp. africana. Wild and domesticated finger millet displayed the phenotypes found in diploid E. indica. Diploid Eleusine tristachya showed some similarity to the crop in some restriction sites. The remaining species were quite distinct in rDNA fragment patterns. The study supports the direct origin of finger millet from subspecies africana shows E. indica to be one of the genome donors of the crop, and demonstrates that none of the other species examined could have donated the second genome of the crop. The rDNA data raise the possibility that wild and domesticated finger millet could have originated as infraspecific polyploid hybrids from different varieties of E. indica.

  20. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning.

    Science.gov (United States)

    Kupriyanova, Natalia S; Netchvolodov, Kirill K; Sadova, Anastasia A; Cherepanova, Marina D; Ryskov, Alexei P

    2015-11-10

    Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Bieri, Philipp; Leibundgut, Marc; Leitner, Alexander; Aebersold, Ruedi; Boehringer, Daniel; Ban, Nenad

    2015-04-17

    Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity. Copyright © 2015, American Association for the Advancement of Science.

  2. Controlled fragmentation

    International Nuclear Information System (INIS)

    Arnold, Werner

    2002-01-01

    Contrary to natural fragmentation, controlled fragmentation offers the possibility to adapt fragment parameters like size and mass to the performance requirements in a very flexible way. Known mechanisms like grooves inside the casing, weaken the structure. This is, however, excluded for applications with high accelerations during launch or piercing requirements for example on a semi armor piercing penetrator. Another method to achieve controlled fragmentation with an additional grid layer is presented with which the required grooves are produced 'just in time' inside the casing during detonation of the high explosive. The process of generating the grooves aided by the grid layer was studied using the hydrocode HULL with respect to varying grid designs and material combinations. Subsequent to this, a large range of these theoretically investigated combinations was contemplated in substantial experimental tests. With an optimised grid design and a suitable material selection, the controlled fragment admits a very flexible adaptation to the set requirements. Additional advantages like the increase of perforation performance or incendiary amplification can be realized with the grid layer

  3. Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.

    Science.gov (United States)

    Nikolaitchik, Olga A; Hu, Wei-Shau

    2014-04-01

    A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1

  4. Bird community in an Araucaria forest fragment in relation to changes in the surrounding landscape in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Scherer-Neto

    2012-12-01

    Full Text Available The dynamics of the bird community in a small forest fragment was evaluated along seven years in relation to changes in the surrounding landscape. The study area is an Araucaria forest fragment in Southern Brazil (state of Paraná. The sampling period covered the years 1988 through 1994 and the mark-release-recapture method was utilized. The landscape analysis was based on Landsat TM images, and changes in exotic tree plantations, native forest, open areas (agriculture, pasture, bare soil, and abandoned field, and "capoeira"(native vegetation < 2 m were quantified. The relationship between landscape changes and changes in abundance diversity of forest birds, open-area birds, forest-edge birds, and bamboo specialists was evaluated. Richness estimates were run for each year studied. The richness recorded in the study area comprised 96 species. The richness estimates were 114, 118 and 110 species for Chao 1, Jackknife 1 and Bootstrap, respectively. The bird community varied in species richness, abundance and diversity from year to year. As for species diversity, 1991, 1993 and 1994 were significantly different from the other years. Changes in the landscape contributed to the increase in abundance and richness for the groups of forest, open-area and bamboo-specialist species. An important factor discussed was the effect of the flowering of "taquara" (Poaceae, which contributed significantly to increasing richness of bamboo seed eaters, mainly in 1992 and 1993. In general, the results showed that landscape changes affected the dynamics and structure of the bird community of this forest fragment over time, and proved to have an important role in conservation of the avian community in areas of intensive forestry and agricultural activities.

  5. Timeframe Dependent Fragment Ions Observed in In-Source Decay Experiments with β-Casein Using MALDI MS.

    Science.gov (United States)

    Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo

    2015-09-01

    The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H(2)O, NH(3), CH(2)O (from serine), C2H4O (from threonine), and H(3)PO(4), whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H](+) and [M + H - H](-) within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.

  6. Timeframe Dependent Fragment Ions Observed in In-Source Decay Experiments with β-Casein Using MALDI MS

    Science.gov (United States)

    Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo

    2015-09-01

    The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H2O, NH3, CH2O (from serine), C2H4O (from threonine), and H3PO4, whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H]+ and [M + H - H]- within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.

  7. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  8. Universality of fragment shapes.

    Science.gov (United States)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  9. Molecular identification of similar species of the genus Biomphalaria (Mollusca: Planorbidae determined by a polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Caldeira Roberta Lima

    1998-01-01

    Full Text Available The freshwater snails Biomphalaria straminea, B. intermedia, B. kuhniana and B. peregrina, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex B. straminea. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: Dde I, Mnl I, Hae III, Rsa I, Hpa II e Alu I. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of Biomphalaria. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.

  10. Molecular dynamics simulation of ribosome jam

    KAUST Repository

    Matsumoto, Shigenori

    2011-09-01

    We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.

  11. Anomalous nuclear fragments

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1983-01-01

    Experimental data are given, the status of anomalon problem is discussed, theoretical approaches to this problem are outlined. Anomalons are exotic objects formed following fragmentation of nuclei-targets under the effect of nuclei - a beam at the energy of several GeV/nucleon. These nuclear fragments have an anomalously large cross section of interaction and respectively, small free path, considerably shorter than primary nuclei have. The experimental daa are obtained in accelerators following irradiation of nuclear emulsions by 16 O, 56 Fe, 40 Ar beams, as well as propane by 12 C beams. The experimental data testify to dependence of fragment free path on the distance L from the point of the fragment formation. A decrease in the fragment free path is established more reliably than its dependence on L. The problem of the anomalon existence cannot be yet considered resolved. Theoretical models suggested for explanation of anomalously large cross sections of nuclear fragment interaction are variable and rather speculative

  12. Birds communities of fragmented forest within highly urbanized landscape in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Mohd-Taib, F. S.; Rabiatul-Adawiyah, S.; Md-Nor, S.

    2014-09-01

    Urbanization is one form of forest modification for development purposes. It produces forest fragments scattered in the landscape with different intensity of disturbance. We want to determine the effect of forest fragmentation towards bird community in urbanized landscapes in Kuala Lumpur, namely Sungai Besi Forest Reserve (FR), Bukit Nenas FR and Bukit Sungei Puteh FR. We used mist-netting and direct observation method along established trails. These forests differ in size, vegetation composition and land use history. Results show that these forests show relatively low number of species compared to other secondary forest with only 39 bird species recorded. The largest fragment, Sg. Besi encompassed the highest species richness and abundance with 69% species but lower in diversity. Bukit Nenas, the next smallest fragment besides being the only remaining primary forest has the highest diversity index with 1.866. Bkt. Sg. Puteh the smallest fragment has the lowest species richness and diversity with Shanon diversity index of 1.332. The presence of introduced species such as Corvus splendens (House crow) in all study areas suggest high disturbance encountered by these forests. Nonetheless, these patches comprised of considerably high proportion of native species. In conclusion, different intensity of disturbance due to logging activities and urbanization surrounding the forest directly influenced bird species richness and diversity. These effects however can be compensated by maintaining habitat complexity including high vegetation composition and habitat structure at the landscape level.

  13. Using In Silico Fragmentation to Improve Routine Residue Screening in Complex Matrices

    Science.gov (United States)

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathryn; Walker, Stephan; Widmer, Mirjam

    2017-12-01

    Targeted residue screening requires the use of reference substances in order to identify potential residues. This becomes a difficult issue when using multi-residue methods capable of analyzing several hundreds of analytes. Therefore, the capability of in silico fragmentation based on a structure database ("suspect screening") instead of physical reference substances for routine targeted residue screening was investigated. The detection of fragment ions that can be predicted or explained by in silico software was utilized to reduce the number of false positives. These "proof of principle" experiments were done with a tool that is integrated into a commercial MS vendor instrument operating software (UNIFI) as well as with a platform-independent MS tool (Mass Frontier). A total of 97 analytes belonging to different chemical families were separated by reversed phase liquid chromatography and detected in a data-independent acquisition (DIA) mode using ion mobility hyphenated with quadrupole time of flight mass spectrometry. The instrument was operated in the MSE mode with alternating low and high energy traces. The fragments observed from product ion spectra were investigated using a "chopping" bond disconnection algorithm and a rule-based algorithm. The bond disconnection algorithm clearly explained more analyte product ions and a greater percentage of the spectral abundance than the rule-based software (92 out of the 97 compounds produced ≥1 explainable fragment ions). On the other hand, tests with a complex blank matrix (bovine liver extract) indicated that the chopping algorithm reports significantly more false positive fragments than the rule based software. [Figure not available: see fulltext.

  14. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    , of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site...... on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome....

  15. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis

    Directory of Open Access Journals (Sweden)

    O’Farrell Heather C

    2012-10-01

    Full Text Available Abstract Background The KsgA methyltransferase has been conserved throughout evolution, methylating two adenosines in the small subunit rRNA in all three domains of life as well as in eukaryotic organelles that contain ribosomes. Understanding of KsgA’s important role in ribosome biogenesis has been recently expanded in Escherichia coli; these studies help explain why KsgA is so highly conserved and also suggest KsgA’s potential as an antimicrobial drug target. Results We have analyzed KsgA’s contribution to ribosome biogenesis and cell growth in Staphylococcus aureus. We found that deletion of ksgA in S. aureus led to a cold-sensitive growth phenotype, although KsgA was not as critical for ribosome biogenesis as it was shown to be in E. coli. Additionally, the ksgA knockout strain showed an increased sensitivity to aminoglycoside antibiotics. Overexpression of a catalytically inactive KsgA mutant was deleterious in the knockout strain but not the wild-type strain; this negative phenotype disappeared at low temperature. Conclusions This work extends the study of KsgA, allowing comparison of this aspect of ribosome biogenesis between a Gram-negative and a Gram-positive organism. Our results in S. aureus are in contrast to results previously described in E. coli, where the catalytically inactive protein showed a negative phenotype in the presence or absence of endogenous KsgA.

  16. Habitat fragmentation impacts mobility in a common and widespread woodland butterfly: do sexes respond differently?

    Directory of Open Access Journals (Sweden)

    Bergerot Benjamin

    2012-04-01

    Full Text Available Abstract Background Theory predicts a nonlinear response of dispersal evolution to habitat fragmentation. First, dispersal will be favoured in line with both decreasing area of habitat patches and increasing inter-patch distances. Next, once these inter-patch distances exceed a critical threshold, dispersal will be counter-selected, unless essential resources no longer co-occur in compact patches but are differently scattered; colonization of empty habitat patches or rescue of declining populations are then increasingly overruled by dispersal costs like mortality risks and loss of time and energy. However, to date, most empirical studies mainly document an increase of dispersal associated with habitat fragmentation. We analyzed dispersal kernels for males and females of the common, widespread woodland butterfly Pararge aegeria in highly fragmented landscape, and for males in landscapes that differed in their degree of habitat fragmentation. Results The male and female probabilities of moving were considerably lower in the highly fragmented landscapes compared to the male probability of moving in fragmented agricultural and deciduous oak woodland landscapes. We also investigated whether, and to what extent, daily dispersal distance in the highly fragmented landscape was influenced by a set of landscape variables for both males and females, including distance to the nearest woodland, area of the nearest woodland, patch area and abundance of individuals in the patch. We found that daily movement distance decreased with increasing distance to the nearest woodland in both males and females. Daily distances flown by males were related to the area of the woodland capture site, whereas no such effect was observed for females. Conclusion Overall, mobility was strongly reduced in the highly fragmented landscape, and varied considerably among landscapes with different spatial resource distributions. We interpret the results relative to different cost

  17. The primary structures of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui.

    Science.gov (United States)

    Hatakeyama, T; Hatakeyama, T; Kimura, M

    1988-11-21

    The complete amino acid sequences of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui were determined. The sequences were established by manual sequencing of peptides produced with several proteases as well as by cleavage with dilute HCl. Proteins L16, L23 and L33 consist of 119, 154 and 69 amino acid residues, and their molecular masses are 13,538, 16,812 and 7620 Da, respectively. The comparison of their sequences with those of ribosomal proteins from other organisms revealed that L23 and L33 are related to eubacterial ribosomal proteins from Escherichia coli and Bacillus stearothermophilus, while protein L16 was found to be homologous to a eukaryotic ribosomal protein from yeast. These results provide information about the special phylogenetic position of archaebacteria.

  18. Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live Escherichia coli.

    Science.gov (United States)

    Mustafi, Mainak; Weisshaar, James C

    2018-01-16

    In bacteria, elongation factor Tu is a translational cofactor that forms ternary complexes with aminoacyl-tRNA (aa-tRNA) and GTP. Binding of a ternary complex to one of four flexible L7/L12 units on the ribosome tethers a charged tRNA in close proximity to the ribosomal A site. Two sequential tests for a match between the aa-tRNA anticodon and the current mRNA codon then follow. Because one elongation cycle can occur in as little as 50 ms and the vast majority of aa-tRNA copies are not cognate with the current mRNA codon, this testing must occur rapidly. We present a single-molecule localization and tracking study of fluorescently labeled EF-Tu in live Escherichia coli Imaging at 2 ms/frame distinguishes 60% slowly diffusing EF-Tu copies (assigned as transiently bound to translating ribosome) from 40% rapidly diffusing copies (assigned as a mixture of free ternary complexes and free EF-Tu). Combining these percentages with copy number estimates, we infer that the four L7/L12 sites are essentially saturated with ternary complexes in vivo. The results corroborate an earlier inference that all four sites can simultaneously tether ternary complexes near the A site, creating a high local concentration that may greatly enhance the rate of testing of aa-tRNAs. Our data and a combinatorial argument both suggest that the initial recognition test for a codon-anticodon match occurs in less than 1 to 2 ms per aa-tRNA copy. The results refute a recent study (A. Plochowietz, I. Farrell, Z. Smilansky, B. S. Cooperman, and A. N. Kapanidis, Nucleic Acids Res 45:926-937, 2016, https://doi.org/10.1093/nar/gkw787) of tRNA diffusion in E. coli that inferred that aa-tRNAs arrive at the ribosomal A site as bare monomers, not as ternary complexes. IMPORTANCE Ribosomes catalyze translation of the mRNA codon sequence into the corresponding sequence of amino acids within the nascent polypeptide chain. Polypeptide elongation can be as fast as 50 ms per added amino acid. Each amino acid

  19. Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome.

    Science.gov (United States)

    Hernández-Ortega, Karina; Garcia-Esparcia, Paula; Gil, Laura; Lucas, José J; Ferrer, Isidre

    2016-09-01

    Ribosomes and protein synthesis have been reported to be altered in the cerebral cortex at advanced stages of Alzheimer's disease (AD). Modifications in the hippocampus with disease progression have not been assessed. Sixty-seven cases including middle-aged (MA) and AD stages I-VI were analyzed. Nucleolar chaperones nucleolin, nucleophosmin and nucleoplasmin 3, and upstream binding transcription factor RNA polymerase I gene (UBTF) mRNAs are abnormally regulated and their protein levels reduced in AD. Histone modifications dimethylated histone H3K9 (H3K9me2) and acetylated histone H3K12 (H3K12ac) are decreased in CA1. Nuclear tau declines in CA1 and dentate gyrus (DG), and practically disappears in neurons with neurofibrillary tangles. Subunit 28 ribosomal RNA (28S rRNA) expression is altered in CA1 and DG in AD. Several genes encoding ribosomal proteins are abnormally regulated and protein levels of translation initiation factors eIF2α, eIF3η and eIF5, and elongation factor eEF2, are altered in the CA1 region in AD. These findings show alterations in the protein synthesis machinery in AD involving the nucleolus, nucleus and ribosomes in the hippocampus in AD some of them starting at first stages (I-II) preceding neuron loss. These changes may lie behind reduced numbers of dendritic branches and reduced synapses of CA1 and DG neurons which cause hippocampal atrophy. © 2015 International Society of Neuropathology.

  20. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  1. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    Science.gov (United States)

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  2. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...... are often organized in enzyme complexes. In these complexes, partner NRPSs interact via communication-mediating domains (COM domains). In order to test whether functional interaction between separate NRPS modules is possible in yeast we constructed a yeast strain expressing two modules with compatible COM...

  3. Nuclear fragmentation

    International Nuclear Information System (INIS)

    Chung, K.C.

    1989-01-01

    An introduction to nuclear fragmentation, with emphasis in percolation ideas, is presented. The main theoretical models are discussed and as an application, the uniform expansion approximation is presented and the statistical multifragmentation model is used to calculate the fragment energy spectra. (L.C.)

  4. Ribosomal protein S14 transcripts are edited in Oenothera mitochondria.

    Science.gov (United States)

    Schuster, W; Unseld, M; Wissinger, B; Brennicke, A

    1990-01-01

    The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci. Images PMID:2326162

  5. Free and membrane-bound ribosomes and polysomes in hippocampal neurons during a learning experiment.

    Science.gov (United States)

    Wenzel, J; David, H; Pohle, W; Marx, I; Matthies, H

    1975-01-24

    The ribosomes of the CA1 and CA3 pyramidal cells of hipocampus were investigated by morphometric methods after the acquisition of a shock-motivated brightness discrimination in rats. A significant increase in the total number of ribosomes was observed in CA1 cells of trained animals and in CA3 cells of both active controls and trained rats. A significant increase in membrane-bound ribosomes was obtained in CA1 and CA3 cells after training only. The results confirm the suggestion of an increased protein synthesis in hippocampal neurons during and after the acquisition of a brightness discrimination, as we have concluded from out previous investigations on the incorporation of labeled amino acids under identical experimental conditions. The results lead to the assumption that the protein synthesis in some neuronal cells may probably differ not only quantitatively, but also qualitatively in trained and untrained animals.

  6. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    Energy Technology Data Exchange (ETDEWEB)

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  7. Termite assemblages in five semideciduous Atlantic Forest fragments in the northern coastland limit of the biome

    Directory of Open Access Journals (Sweden)

    Heitor Bruno de Araújo Souza

    2012-03-01

    Full Text Available Termites are abundant organisms in tropical ecosystems and strongly influence the litter decomposition and soil formation. Despite their importance, few studies about their assemblage structures have been made in Brazilian Atlantic Forest fragments, especially in the area located north of the São Francisco River. This study aims to analyze the assemblage composition of five Atlantic Forest fragments located in the northern biome limit along the Brazilian coast. A standardized sampling protocol of termites was applied in each fragment. Thirty-three termite species belonging to twenty genera and three families were found in the forest fragments. The wood-feeder group was dominant both concerning to species richness and number of encounters in all areas. In sites northern to 7°S, there is an evident simplification of the termite assemblage composition regarding species richness and number of encounters by feeding group. This fact is apparently due to a higher sandy level in soils and to semideciduous character of the vegetation in the northern fragments. Thus, even on the north of São Francisco River, termite biodiversity is heterogeneously spread with highest density of species in the portion between 07°S and São Francisco River mouth (10°29'S.

  8. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    Science.gov (United States)

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Effects of matrix characteristics and interpatch distance on functional connectivity in fragmented temperate rainforests.

    Science.gov (United States)

    Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis

    2012-04-01

    The connectivity of remnant patches of habitat may affect the persistence of species in fragmented landscapes. We evaluated the effects of the structural connectivity of forest patches (i.e., distance between patches) and matrix class (land-cover type) on the functional connectivity of 3 bird species (the White-crested Elaenia [Elaenia albiceps], the Green-backed Firecrown Hummingbird [Sephanoides sephaniodes], and the Austral Thrush [Turdus falklandii]). We measured functional connectivity as the rate at which each species crossed from one patch to another. We also evaluated whether greater functional connectivity translated into greater ecological connectivity (dispersal of fruit and pollen) by comparing among forest patches fruit set of a plant pollinated by hummingbirds and abundance of seedlings and adults of 2 plants with bird- and wind-dispersed seeds. Interpatch distance was strongly associated with functional connectivity, but its effect was not independent of matrix class. For one of the bird-dispersed plants, greater functional connectivity for White-crested Elaenias and Austral Thrushes (both frugivores) was associated with higher densities of this plant. The lack of a similar association for the wind-dispersed species suggests this effect is linked to the dispersal vector. The abundance of the hummingbird-pollinated species was not related to the presence of hummingbirds. Interpatch distance and matrix class affect animal movement in fragmented landscapes and may have a cascading effect on the distribution of some animal-dispersed species. On the basis of our results, we believe effort should be invested in optimizing patch configuration and modifying the matrix so as to mitigate the effects of patch isolation in fragmented landscapes. ©2012 Society for Conservation Biology.

  10. No Observed Effect of Landscape Fragmentation on Pathogen Infection Prevalence in Blacklegged Ticks (Ixodes scapularis in the Northeastern United States.

    Directory of Open Access Journals (Sweden)

    Christine P Zolnik

    Full Text Available Pathogen prevalence within blacklegged ticks (Ixodes scapularis Say, 1821 tends to vary across sites and geographic regions, but the underlying causes of this variation are not well understood. Efforts to understand the ecology of Lyme disease have led to the proposition that sites with higher host diversity will result in lower disease risk due to an increase in the abundance of inefficient reservoir species relative to the abundance of species that are highly competent reservoirs. Although the Lyme disease transmission cycle is often cited as a model for this "dilution effect hypothesis", little empirical evidence exists to support that claim. Here we tested the dilution effect hypothesis for two pathogens transmitted by the blacklegged tick along an urban-to-rural gradient in the northeastern United States using landscape fragmentation as a proxy for host biodiversity. Percent impervious surface and habitat fragment size around each site were determined to assess the effect of landscape fragmentation on nymphal blacklegged tick infection with Borrelia burgdorferi and Anaplasma phagocytophilum. Our results do not support the dilution effect hypothesis for either pathogen and are in agreement with the few studies to date that have tested this idea using either a landscape proxy or direct measures of host biodiversity.

  11. Ribosome-Inactivating Proteins from Plants: A Historical Overview

    Directory of Open Access Journals (Sweden)

    Andrea Bolognesi

    2016-11-01

    Full Text Available This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs, starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.

  12. String fragmentation; La fragmentation des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.

  13. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Directory of Open Access Journals (Sweden)

    Abhishek Ghosh

    2014-10-01

    Full Text Available The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  14. Nuclear ribosomal DNA diversity of a cotton pest ( Rotylenchulus ...

    African Journals Online (AJOL)

    The reniform nematode (Rotylenchulus reniformis) has emerged as a major cotton pest in the United States. A recent analysis of over 20 amphimictic populations of this pest from the US and three other countries has shown no sequence variation at the nuclear ribosomal internal transcribed spacer (ITS) despite the region's ...

  15. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome

    DEFF Research Database (Denmark)

    Manuel Palacios Moreno, Juan; Andersen, Lars Dyrskjøt; Egebjerg Kristensen, Janni

    1999-01-01

    We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the factor...

  16. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome

    DEFF Research Database (Denmark)

    Manuel Palacios Moreno, Juan; Andersen, Lars Dyrskjøt; Egebjerg Kristensen, Janni

    1999-01-01

    We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the fact...

  17. Expression of a ribosome inactivating protein (curcin 2) in Jatropha ...

    Indian Academy of Sciences (India)

    Unknown

    mechanisms employed by a number of higher-plant species involve defensive ... of RIPs in the same plant species. ..... Lam C J, Ryals J A, Ward E R and Dixon R A 1992 Emerging ... against insect pests and diseases of plants: ribosome in-.

  18. Ribosome-inhibiting proteins from in vitro cultures of Phytolacca dodecandra

    DEFF Research Database (Denmark)

    Thomsen, S.; Hansen, Harald S.; Nyman, U.

    1991-01-01

    Phytolacca dodecandra (L'Herit) grown in cell cultures was investigated for content of ribosome-inhibiting proteins, which was evaluated hy measuring inhibition of protein synthesis in a cell-free rat liver extract. Calli initiated from leaf, cotyledon, radicle, and hypocotyl and suspension cells...

  19. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  20. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation

    Science.gov (United States)

    2016-02-11

    unlimited. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation The views, opinions and...into Dynamics and Regulation of Yeast Translation Report Title Ribosome-footprint profiling provides genome-wide snapshots of translation, but...tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was

  1. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.

    Science.gov (United States)

    Crossland, Hannah; Timmons, James A; Atherton, Philip J

    2017-12-01

    Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P IGF-1; P IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro. -Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes. © The Author(s).

  2. De novo design and engineering of non-ribosomal peptide synthetases

    Science.gov (United States)

    Bozhüyük, Kenan A. J.; Fleischhacker, Florian; Linck, Annabell; Wesche, Frank; Tietze, Andreas; Niesert, Claus-Peter; Bode, Helge B.

    2018-03-01

    Peptides derived from non-ribosomal peptide synthetases (NRPSs) represent an important class of pharmaceutically relevant drugs. Methods to generate novel non-ribosomal peptides or to modify peptide natural products in an easy and predictable way are therefore of great interest. However, although the overall modular structure of NRPSs suggests the possibility of adjusting domain specificity and selectivity, only a few examples have been reported and these usually show a severe drop in production titre. Here we report a new strategy for the modification of NRPSs that uses defined exchange units (XUs) and not modules as functional units. XUs are fused at specific positions that connect the condensation and adenylation domains and respect the original specificity of the downstream module to enable the production of the desired peptides. We also present the use of internal condensation domains as an alternative to other peptide-chain-releasing domains for the production of cyclic peptides.

  3. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    International Nuclear Information System (INIS)

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-01-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. 32 P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA

  4. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  5. An Amazonian rainforest and its fragments as a laboratory of global change.

    Science.gov (United States)

    Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W

    2018-02-01

    populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales. © 2017 Cambridge Philosophical Society.

  6. Azimuthal Anisotropies in Nuclear Fragmentation

    International Nuclear Information System (INIS)

    Dabrowska, A.; Szarska, M.; Trzupek, A.; Wolter, W.; Wosiek, B.

    2002-01-01

    The directed and elliptic flow of fragments emitted from the excited projectile nuclei has been observed for 158 AGeV Pb collisions with the lead and plastic targets. For comparison the flow analysis has been performed for 10.6 AGeV Au collisions with the emulsion target. The strong directed flow of heaviest fragments is found. Light fragments exhibit directed flow opposite to that of heavy fragments. The elliptic flow for all multiply charged fragments is positive and increases with the charge of the fragment. The observed flow patterns in the fragmentation of the projectile nucleus are practically independent of the mass of the target nucleus and the collision energy. Emission of fragments in nuclear multifragmentation shows similar, although weaker, flow effects. (author)

  7. RIBOSOMAL COMPLEX IN PROPHYLAXIS AND TREATMENT OF ACUTE RESPIRATORY INFECTIONS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A.A. Alekseeva

    2010-01-01

    Full Text Available Acute respiratory infections (ARI are widespread in children regardless of age and region of living; they are characterized with big amount of infectious agents and absence of a trend to morbidity decrease. Drugs for nonspecific prophylaxis (immunostimulators and immunomodulatory agents are frequently used for prevention of ARI. There are plenty of immunomodulating agents; the wellstudied medication with systemic action with good efficacy and safety in pediatric practice is ribosomal-proteoglycan complex. The article presents the description of clinical experience of treatment with this complex in pediatric practice.Key words: children, acute respiratory infections, prophylaxis, treatment, ribosomal complex.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(6:127-130

  8. Influence of hyperthermia on the phosphorylation of ribosomal protein S6 from human skin fibroblasts and meningioma cells

    DEFF Research Database (Denmark)

    Richter, W W; Zang, K D; Issinger, O G

    1983-01-01

    Skin fibroblasts and meningioma cells, derived from primary cultures of the same patients have been used to study the influence of hyperthermia on (i) cell morphology and (ii) phosphorylation pattern of ribosomal and ribosome-associated proteins. Incubation of tumour cells and fibroblasts up to 7...

  9. Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pardeep; Kaur, Harjeet [Guru Nanak Dev University, Department of Physics, Amritsar (India)

    2016-11-15

    The fission-fragment mass distribution is analysed for the {sup 208}Pb({sup 18}O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schroedinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process. (orig.)

  10. Increased Abundance and Transferability of Resistance Genes after Field Application of Manure from Sulfadiazine-Treated Pigs

    Science.gov (United States)

    Jechalke, Sven; Kopmann, Christoph; Rosendahl, Ingrid; Groeneweg, Joost; Weichelt, Viola; Krögerrecklenfort, Ellen; Brandes, Nikola; Nordwig, Mathias; Ding, Guo-Chun; Siemens, Jan; Heuer, Holger

    2013-01-01

    Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance. PMID:23315733

  11. Landscape distribution of food and nesting sites affect larval diet and nest size, but not abundance of Osmia bicornis.

    Science.gov (United States)

    Coudrain, Valérie; Rittiner, Sarah; Herzog, Felix; Tinner, Willy; Entling, Martin H

    2016-10-01

    Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they provide. Multiple-habitat users such as wild bees depend on both nesting and foraging habitat. Thus, they may be affected by the fragmentation of at least two habitat types. We investigated the effects of landscape-scale amount of and patch isolation from both nesting habitat (woody plants) and foraging habitat (specific pollen sources) on the abundance and diet of Osmia bicornis L. Trap-nests of O. bicornis were studied in 30 agricultural landscapes of the Swiss Plateau. Nesting and foraging habitats were mapped in a radius of 500 m around the sites. Pollen composition of larval diet changed as isolation to the main pollen source, Ranunculus, increased, suggesting that O. bicornis adapted its foraging strategy in function of the nest proximity to main pollen sources. Abundance of O. bicornis was neither related to isolation or amount of nesting habitat nor to isolation or abundance of food plants. Surprisingly, nests of O. bicornis contained fewer larvae in sites at forest edge compared to isolated sites, possibly due to higher parasitism risk. This study indicates that O. bicornis can nest in a variety of situations by compensating scarcity of its main larval food by exploiting alternative food sources. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  12. Classic metapopulations are rare among common beetle species from a naturally fragmented landscape.

    Science.gov (United States)

    Driscoll, Don A; Kirkpatrick, Jamie B; McQuillan, Peter B; Bonham, Kevin J

    2010-01-01

    1. The general importance of metacommunity and metapopulation theories is poorly understood because few studies have examined responses of the suite of species that occupy the same fragmented landscape. In this study, we examined the importance of spatial ecological theories using a large-scale, naturally fragmented landscape. 2. We measured the occurrence and abundance of 44 common beetle species in 31 natural rainforest fragments in Tasmania, Australia. We tested for an effect on beetle distribution of geographic variables (patch area, patch isolation and amount of surrounding habitat) and of environmental variables based on plant species, after first accounting for spatial autocorrelation using principal coordinates of neighbour matrices. The environmental variables described a productivity gradient and a post-fire succession from eucalypt-dominated forest to late-successional rainforest. 3. Few species had distributions consistent with a metapopulation. However, the amount of surrounding habitat and patch isolation influenced the occurrence or abundance of 30% of beetle species, implying that dispersal into or out of patches was an important process. 4. Three species showed a distribution that could arise by interactions with dominant competitors or predators with higher occurrence in small patches. 5. Environmental effects were more commonly observed than spatial effects. Twenty-three per cent of species showed evidence of habitat-driven, deterministic metapopulations. Furthermore, almost half of the species were influenced by the plant succession or productivity gradient, including effects at the within-patch, patch and regional scales. The beetle succession involved an increase in the frequency of many species, and the addition of new species, with little evidence of species turnover. Niche-related ecological theory such as the species-sorting metacommunity theory was therefore the most broadly applicable concept. 6. We conclude that classic and source

  13. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    Science.gov (United States)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  14. In Situ Detection, Isolation, and Physiological Properties of a Thin Filamentous Microorganism Abundant in Methanogenic Granular Sludges: a Novel Isolate Affiliated with a Clone Cluster, the Green Non-Sulfur Bacteria, Subdivision I

    OpenAIRE

    Sekiguchi, Yuji; Takahashi, Hiroki; Kamagata, Yoichi; Ohashi, Akiyoshi; Harada, Hideki

    2001-01-01

    We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280–1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non...

  15. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    RPS16 of eukaryote is a component of the 40S small ribosomal subunit encoded by RPS16 gene and is also a homolog of prokaryotic RPS9. The cDNA and genomic sequence of RPS16 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using reverse transcription-polymerase chain ...

  16. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli.

    Science.gov (United States)

    Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R

    2014-10-14

    Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3' domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3'-domain is unanchored and the 5'-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells.

  17. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution.

    Science.gov (United States)

    Quade, Nick; Boehringer, Daniel; Leibundgut, Marc; van den Heuvel, Joop; Ban, Nenad

    2015-07-08

    Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5'-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.9 Å resolution, determined by focused refinement of an 80S ribosome-HCV IRES complex. The structure reveals the molecular details of the interactions between the IRES and the 40S, showing that expansion segment 7 (ES7) of the 18S rRNA acts as a central anchor point for the HCV IRES. The structural data rationalizes previous biochemical and genetic evidence regarding the initiation mechanism of the HCV and other related IRESs.

  18. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A

    2014-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient...... recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1...

  19. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway.

    Science.gov (United States)

    Bailly, A; Perrin, A; Bou Malhab, L J; Pion, E; Larance, M; Nagala, M; Smith, P; O'Donohue, M-F; Gleizes, P-E; Zomerdijk, J; Lamond, A I; Xirodimas, D P

    2016-01-28

    The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.

  20. Development and evaluation of specific PCR primers targeting the ribosomal DNA-internal transcribed spacer (ITS) region of peritrich ciliates in environmental samples

    Science.gov (United States)

    Su, Lei; Zhang, Qianqian; Gong, Jun

    2017-07-01

    Peritrich ciliates are highly diverse and can be important bacterial grazers in aquatic ecosystems. Morphological identifications of peritrich species and assemblages in the environment are time-consuming and expertise-demanding. In this study, two peritrich-specific PCR primers were newly designed to amplify a fragment including the internal transcribed spacer (ITS) region of ribosomal rDNA from environmental samples. The primers showed high specificity in silico, and in tests with peritrich isolates and environmental DNA. Application of these primers in clone library construction and sequencing yielded exclusively sequences of peritrichs for water and sediment samples. We also found the ITS1, ITS2, ITS, D1 region of 28S rDNA, and ITS+D1 region co-varied with, and generally more variable than, the V9 region of 18S rDNA in peritrichs. The newly designed specific primers thus provide additional tools to study the molecular diversity, community composition, and phylogeography of these ecologically important protists in different systems.

  1. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome.

    Science.gov (United States)

    Ohtsuka, Hokuto; Takinami, Masahiro; Shimasaki, Takafumi; Hibi, Takahide; Murakami, Hiroshi; Aiba, Hirofumi

    2017-07-01

    Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1 + gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner. © 2017 John Wiley & Sons Ltd.

  2. Purification, crystallization and preliminary X-ray diffraction study of human ribosomal protein L10 core domain

    International Nuclear Information System (INIS)

    Nishimura, Mitsuhiro; Kaminishi, Tatsuya; Kawazoe, Masahito; Shirouzu, Mikako; Takemoto, Chie; Yokoyama, Shigeyuki; Tanaka, Akiko; Sugano, Sumio; Yoshida, Takuya; Ohkubo, Tadayasu; Kobayashi, Yuji

    2007-01-01

    A truncated variant of human ribosomal protien L10 was prepared and crystallized. Diffraction data were collected to 2.5 Å resolution. Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34–Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 Å resolution and belongs to space group P3 1 21 or P3 2 21

  3. Fragment capture device

    Science.gov (United States)

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  4. Structure and further fragmentation of significant [a3 + Na - H]+ ions from sodium-cationized peptides.

    Science.gov (United States)

    Wang, Huixin; Wang, Bing; Wei, Zhonglin; Zhang, Hao; Guo, Xinhua

    2015-01-01

    A good understanding of gas-phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium-cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na - H](+) ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na - H](+) ion needs to overcome several relatively high energetic barriers to form [b2 + Na - H](+) ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na - H](+) ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na - H](+) from the [a3 + Na - H](+) ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  6. Linezolid-Dependent Function and Structure Adaptation of Ribosomes in a Staphylococcus epidermidis Strain Exhibiting Linezolid Dependence

    OpenAIRE

    Kokkori, Sofia; Apostolidi, Maria; Tsakris, Athanassios; Pournaras, Spyros; Stathopoulos, Constantinos; Dinos, George

    2014-01-01

    Linezolid-dependent growth was recently reported in Staphylococcus epidermidis clinical strains carrying mutations associated with linezolid resistance. To investigate this unexpected behavior at the molecular level, we isolated active ribosomes from one of the linezolid-dependent strains and we compared them with ribosomes isolated from a wild-type strain. Both strains were grown in the absence and presence of linezolid. Detailed biochemical and structural analyses revealed essential differe...

  7. Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels

    Directory of Open Access Journals (Sweden)

    S. C. Oukouomi Noutchie

    2014-01-01

    Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.

  8. Land fragmentation and production diversification

    NARCIS (Netherlands)

    Ciaian, Pavel; Guri, Fatmir; Rajcaniova, Miroslava; Drabik, Dusan; Paloma, Sergio Gomez Y.

    2018-01-01

    We analyze the impact of land fragmentation on production diversification in rural Albania. Albania represents a particularly interesting case for studying land fragmentation as the fragmentation is a direct outcome of land reforms. The results indicate that land fragmentation is an important driver

  9. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin

    Directory of Open Access Journals (Sweden)

    Fucini Paola

    2004-04-01

    Full Text Available Abstract Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this r

  10. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  11. Cosmic-ray exposure ages of six chondritic Almahata Sitta fragments

    Science.gov (United States)

    Riebe, M. E. I.; Welten, K. C.; Meier, M. M. M.; Wieler, R.; Barth, M. I. F.; Ward, D.; Laubenstein, M.; Bischoff, A.; Caffee, M. W.; Nishiizumi, K.; Busemann, H.

    2017-11-01

    The Almahata Sitta strewn field is dominated by ureilites, but contains a large fraction of chondritic fragments of various types. We analyzed stable isotopes of He, Ne, Ar, Kr, and Xe, and the cosmogenic radionuclides 10Be, 26Al, and 36Cl in six chondritic Almahata Sitta fragments (EL6 breccia, EL6, EL3-5, CB, LL4/5, R-like). The cosmic-ray exposure (CRE) ages of five of the six samples have an average of 19.2 ± 3.3 Ma, close to the average of 19.5 ± 2.5 Ma for four ureilites. The cosmogenic radionuclide concentrations in the chondrites indicate a preatmospheric size consistent with Almahata Sitta. This corroborates that Almahata Sitta chondrite samples were part of the same asteroid as the ureilites. However, MS-179 has a lower CRE age of 11.0 ± 1.4 Ma. Further analysis of short-lived radionuclides in fragment MS-179 showed that it fell around the same time, and from an object of similar size as Almahata Sitta, making it almost certain that MS-179 is an Almahata Sitta fragment. Instead, its low CRE age could be due to gas loss, chemical heterogeneity that may have led to an erroneous 21Ne production-rate, or, perhaps most likely, MS-179 could represent the true 4π exposure age of Almahata Sitta (or an upper limit thereof), while all other samples analyzed so far experienced exposure on the parent body of similar lengths. Finally, MS-179 had an extraordinarily high activity of neutron-capture 36Cl, 600 dpm kg-1, the highest activity observed in any meteorite to date, related to a high abundance of the Cl-bearing mineral lawrencite.

  12. Ribosomal RNA in the salivary gland of Sciara ocellaris during larval development

    International Nuclear Information System (INIS)

    Dessen, E.M.B.; Perondini, A.L.P.

    1979-01-01

    Ribosomal RNA in the salivary gland of Sciara ocellaris during larval development. The molecular weights of the precursor and of the 28S and 18S mature fractions of the ribosomal RNA estimated by poliacrilamid gel electrophoresis are 2.6 X 10 6 D, 1.4 X 10 6 D and 0.68 X 10 6 D, respectively. The in vivo processing of pre-rRNA is very fast since radioactivity could be detected in the mature fractions fifteen minutes after incorporation. The processing rate of salivary pre-rRNA increases after the stage of metamorphosis induction. The in vitro processing of the pre-rRNA is less rapid when compared to that in vivo, and no differences were found in RNAs [pt

  13. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex.

    Science.gov (United States)

    Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel

    2003-08-01

    Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.

  14. Production of pions and anomalous projectile fragments in heavy ion collisions

    International Nuclear Information System (INIS)

    Noren, B.

    1988-05-01

    Results are presented from investigations of the mean free path (mfp) of multiply charged fragments, produced by 1.8 A GeV argon nuclei. The mfp's have been studied experimentally, and no dependence of the mfp on the distance from the preceeding collision is observed. In a Monte Carlo simulation, the mfp estimators are investigated for different statistics, with or without an enhanced reaction probability. Intermediate energy heavy ion collisions have been studied using the carbon beam produced at the CERN SC-accelerator. Cross-sections for pion + and pion - have been measured over a wide range of angles and targets. Also, coincidence measurements with projectile-like fragments have been performed. The pion - /pion + ratio has been studied for C+Li, C+C, C+Pb, C+ 116 Sn and C+ 124 Sn. Inconsistencies in the target mass dependence of the pion yield disappear if a correction for reabsorption in the target nucleus is included. The projectile breakup is significantly stronger for pion producing collisions than for the average collision, thus indicating a much stronger abundance of central collisions. (With 32 refs.) (author)

  15. Characterization of Biomphalaria orbignyi, Biomphalaria peregrina and Biomphalaria oligoza by polymerase chain reaction and restriction enzyme digestion of the internal transcribed spacer region of the RNA ribosomal gene

    Directory of Open Access Journals (Sweden)

    Spatz Linus

    2000-01-01

    Full Text Available The correct identification of Biomphalaria oligoza, B. orbignyi and B. peregrina species is difficult due to the morphological similarities among them. B. peregrina is widely distributed in South America and is considered a potential intermediate host of Schistosoma mansoni. We have reported the use of the polymerase chain reaction and restriction fragment length polymorphism analysis of the internal transcribed spacer region of the ribosomal DNA for the molecular identification of these snails. The snails were obtained from different localities of Argentina, Brazil and Uruguay. The restriction patterns obtained with MvaI enzyme presented the best profile to identify the three species. The profiles obtained with all enzymes were used to estimate genetic similarities among B. oligoza, B. peregrina and B. orbignyi. This is also the first report of B. orbignyi in Uruguay.

  16. Effect of single base changes and the absence of modified bases in 16S RNA on the reconstitution and function of Escherichia coli 30S ribosomes

    International Nuclear Information System (INIS)

    Denman, R.; Krzyzosiak, W.; Nurse, K.; Ofengand, J.

    1987-01-01

    The gene coding for E. coli 16S rRNA was placed in pUC19 under the control of the strong class III T7 promoter, phi 10, by ligation of the 1490 bp BclI/BstEII fragment of the rrnB operon with appropriate synthetic oligodeoxynucleotides. Such constructs allowed efficient in vitro synthesis of full-length transcripts (up to 900 mol RNA/mol template) free of modified bases. The synthetic RNA could be assembled into 30S subunits upon addition of E. coli 30S ribosomal proteins. The particles co-sedimented with authentic 30S particles and were electron microscopically indistinguishable from them. Upon addition of 50S subunits, codon-dependent P-site binding of tRNA and codon-dependent polypeptide synthesis were >80% of 30S reconstituted from natural 16S RNA and >50% of isolated 30S. UV-induced crosslinking of P-site bound AcVal-tRNA to residue C 1400 was preserved. Changing C 1400 to A had little effect on reconstitution, P-site binding, or polypeptide synthesis. However, the substitution of C 1499 by G markedly inhibited assembly. The effect on P-site binding and polypeptide synthesis is under study. These results show (1) none of the modified bases of 16S RNA are essential for protein synthesis, (2) substitution of A for C 1400 has little functional effect, and (3) position 1400 may be important for ribosome assembly

  17. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA.

    Science.gov (United States)

    Saraiya, Ashesh A; Lamichhane, Tek N; Chow, Christine S; SantaLucia, John; Cunningham, Philip R

    2008-02-22

    The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.

  18. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3.

    Science.gov (United States)

    Bøsling, Jacob; Poulsen, Susan M; Vester, Birte; Long, Katherine S

    2003-09-01

    The antibiotic tiamulin targets the 50S subunit of the bacterial ribosome and interacts at the peptidyl transferase center. Tiamulin-resistant Escherichia coli mutants were isolated in order to elucidate mechanisms of resistance to the drug. No mutations in the rRNA were selected as resistance determinants using a strain expressing only a plasmid-encoded rRNA operon. Selection in a strain with all seven chromosomal rRNA operons yielded a mutant with an A445G mutation in the gene coding for ribosomal protein L3, resulting in an Asn149Asp alteration. Complementation experiments and sequencing of transductants demonstrate that the mutation is responsible for the resistance phenotype. Chemical footprinting experiments show a reduced binding of tiamulin to mutant ribosomes. It is inferred that the L3 mutation, which points into the peptidyl transferase cleft, causes tiamulin resistance by alteration of the drug-binding site. This is the first report of a mechanism of resistance to tiamulin unveiled in molecular detail.

  19. Primary structures of ribosomal proteins from the archaebacterium Halobacterium marismortui and the eubacterium Bacillus stearothermophilus.

    Science.gov (United States)

    Arndt, E; Scholzen, T; Krömer, W; Hatakeyama, T; Kimura, M

    1991-06-01

    Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.

  20. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.