WorldWideScience

Sample records for rhythmic fictive feeding

  1. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    DEFF Research Database (Denmark)

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl

    2013-01-01

    (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb......Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay...

  2. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.

    Science.gov (United States)

    Rotstein, Horacio G; Schneider, Elisa; Szczupak, Lidia

    2017-09-20

    Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling ( crawling ). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit. SIGNIFICANCE STATEMENT Rhythmic movements of animals are controlled by neuronal networks that have been conceived as hierarchical structures. At the basis of this hierarchy, we find the motoneurons, few neurons at the top control global aspects of the behavior (e.g., onset, duration); and within these two ends, specific neuronal circuits control

  3. Organization of common synaptic drive to motoneurones during fictive locomotion in the spinal cat

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Conway, B.A.; Halliday, D.M.

    2005-01-01

    pairs to antagonistic pools) failed to reveal any short-lasting synchronization. These data demonstrate that short-term synchronization during fictive locomotion is relatively weak and is restricted to close synergists. In addition, coherence analysis failed to identify any specific rhythmic component......The basic locomotor rhythm in the cat is generated by a neuronal network in the spinal cord. The exact organization of this network and its drive to the spinal motoneurones is unknown. The purpose of the present study was to use time (cumulant density) and frequency domain (coherence) analysis...

  4. Fictive-friendship and the Fourth Gospel

    Directory of Open Access Journals (Sweden)

    Zeba A. Crook

    2011-10-01

    Full Text Available The phenomena of friendship and giftship in antiquity have been the focus of much anthropological interest, yet those terms are still used much too broadly, wherein any one can be friends and anything exchanged is a gift. This article argued that proper friendship requires equality of exchange and status. When inequality of exchange is present, we will almost always also have inequality of status. These two things together naturally and necessarily result in the absence of frank speech. At this point, proper friendship (defined by frank speech and the exchange of gifts (defined by equality of value are impossible, and we have fictivefriendship, a term I have introduced in this article. Fictive-friendship refers to the practice, often but not exclusively amongst elites, of using friendship language to mask relationships of dependence (patronage and clientage. I closed my argument by looking at two examples of fictive-friendship in the Gospel of John.

  5. Organization of common synaptic drive to motoneurones during fictive locomotion in the spinal cat.

    Science.gov (United States)

    Nielsen, J B; Conway, B A; Halliday, D M; Perreault, M-C; Hultborn, H

    2005-11-15

    The basic locomotor rhythm in the cat is generated by a neuronal network in the spinal cord. The exact organization of this network and its drive to the spinal motoneurones is unknown. The purpose of the present study was to use time (cumulant density) and frequency domain (coherence) analysis to examine the organization of the last order drive to motoneurones during fictive locomotion (evoked by application of nialamide and dihydroxyphenylalanine (DOPA)) in the spinal cat. In all cats, narrow central synchronization peaks (half-width synchronization was observed between the individual intracellular recordings and the ENGs recorded from nerves of the same pool and of close synergists. Recordings from 34 pairs of motoneurones (10 pairs belonged to the same motor pool, 11 pairs to close synergists and 13 pairs to antagonistic pools) failed to reveal any short-lasting synchronization. These data demonstrate that short-term synchronization during fictive locomotion is relatively weak and is restricted to close synergists. In addition, coherence analysis failed to identify any specific rhythmic component in the locomotor drive that could be associated with this synchronization. These results resemble findings obtained during human treadmill walking and imply that the spinal interneurones participating in the generation of the locomotor rhythm are themselves weakly synchronized. The restricted synchronization within the locomotor drive to motoneuronal pools may be a feature of the locomotor generating networks that is related to the ability of these networks to produce highly adaptive patterns of muscle activity during locomotion.

  6. Mondia whitei (Periplocaceae prevents and Guibourtia tessmannii (Caesalpiniaceae facilitates fictive ejaculation in spinal male rats

    Directory of Open Access Journals (Sweden)

    Watcho Pierre

    2013-01-01

    Full Text Available Abstract Background Mondia whitei and Guibourtia tessmannii are used in Cameroon traditional medicine as aphrodisiacs. The present study was undertaken to evaluate the pro-ejaculatory effects of the aqueous and organic solvent extracts of these plants in spinal male rats. Methods In spinal cord transected and urethane-anesthetized rats, two electrodes where inserted into the bulbospongiosus muscles and the ejaculatory motor pattern was recorded on a polygraph after urethral and penile stimulations, intravenous injection of saline (0.1 ml/100 g, dopamine (0.1 μM/kg, aqueous and organic solvent plant extracts (20 mg/kg. Results In all spinal rats, urethral and penile stimulations always induced the ejaculatory motor pattern. Aqueous or hexane extract of Mondia whitei (20 mg/kg prevented the expression of the ejaculatory motor pattern. The pro-ejaculatory effects of dopamine (0.1 μM/kg were not abolished in spinal rats pre-treated with Mondia whitei extracts. Aqueous and methanolic stem bark extracts of Guibourtia tessmannii (20 mg/kg induced fictive ejaculation characterized by rhythmic contractions of the bulbospongiosus muscles followed sometimes with expulsion of seminal plugs. In rats pre-treated with haloperidol (0.26 μM/kg, no ejaculatory motor pattern was recorded after intravenous injection of Guibourtia tessmannii extracts (20 mg/kg. Conclusion These results show that Mondia whitei possesses preventive effects on the expression of fictive ejaculation in spinal male rats, which is not mediated through dopaminergic pathway; on the contrary, the pro-ejaculatory activities of Guibourtia tessmannii require the integrity of dopaminergic system to exert its effects. The present findings further justify the ethno-medicinal claims of Mondia whitei and Guibourtia tessmannii.

  7. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    Science.gov (United States)

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  8. Fictive Interaction : The conversation frame in thought, language, and discourse

    NARCIS (Netherlands)

    Pascual, Esther

    2014-01-01

    Language is intimately related to interaction. The question arises: Is the structure of interaction somehow mirrored in language structure and use? This book suggests a positive answer to this question by examining the ubiquitous phenomenon of fictive interaction, in which non-genuine conversational

  9. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    Science.gov (United States)

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  10. Beyond Schweitzer and the psychiatrists: Jesus as fictive personality

    Directory of Open Access Journals (Sweden)

    Donald Capps

    2003-10-01

    Full Text Available Albert Schweitzer and the psychiatric studies of Jesus that he critiqued in 1913 shared the belief that Jesus identified himself as the coming Messiah. Unlike the psychiatrists, however, Schweitzer did not therefore judge Jesus to have been delusional. This article concurs with Schweitzer on the grounds that “ideas of reference” were a common feature of the religious milieu in which Jesus lived. It introduces the psychoanalytic concept of the “fictive personality” as relevant to Jesus’ identification of himself as the coming Messiah. In contrast to delusional theories, this concept emphasizes the positive uses of such identifications, especially as a means of self-empowerment.

  11. The evolution of locomotor rhythmicity in tetrapods.

    Science.gov (United States)

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  12. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  13. Unified approach for determining the enthalpic fictive temperature of glasses with arbitrary thermal history

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Potuzak, M.; Mauro, J. C.

    2011-01-01

    We propose a unified routine to determine the enthalpic fictive temperature of a glass with arbitrary thermal history under isobaric conditions. The technique is validated both experimentally and numerically using a novel approach for modeling of glass relaxation behavior. The technique is applic......We propose a unified routine to determine the enthalpic fictive temperature of a glass with arbitrary thermal history under isobaric conditions. The technique is validated both experimentally and numerically using a novel approach for modeling of glass relaxation behavior. The technique...... is applicable to glasses of any thermal history, as proved through a series of numerical simulations where the enthalpic fictive temperature is precisely known within the model. Also, we demonstrate that the enthalpic fictive temperature of a glass can be determined at any calorimetric scan rate in excellent...

  14. Rhythmic interaction in VR

    DEFF Research Database (Denmark)

    Erkut, Cumhur

    2017-01-01

    Cinematic virtual reality is a new and relatively unexplored area in academia. While research in guiding the spectator's attention in this new medium has been conducted for some time, a focus on editing in conjunction with spectator orientation is only currently emerging. In this paper, we consid...... in rhythm perception, and complement it with applications in traditional editing. Through the notion of multimodal listening we provide guidelines that can be used in rhythmic and sonic interaction design in VR....

  15. Rhythmic complexity and predictive coding

    DEFF Research Database (Denmark)

    Vuust, Peter; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events,has a remarkable capacity to move our minds and bodies. How does the cognitive systemenable our experiences of rhythmically complex music? In this paper, we describe somecommon forms of rhythmic complexity...

  16. Fictive locomotion in the adult decerebrate and spinal mouse in vivo

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Grøndahl, Lillian; Nielsen, Jens Bo

    2012-01-01

    Recently, transgenic mice have been created with mutations affecting the components of the mammalian spinal central pattern generator (CPG) for locomotion, however, it has currently only been possible to evoke fictive locomotion in mice, using neonatal in vitro preparations. Here, we demonstrate...... organisation and allowing for future results in transgenic mice to be extrapolated to existing knowledge of CPG components and circuitry obtained in larger species....

  17. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction.

    Science.gov (United States)

    Hari Babu, B; Lancry, Matthieu; Ollier, Nadege; El Hamzaoui, Hicham; Bouazaoui, Mohamed; Poumellec, Bertrand

    2016-09-20

    The impact of fictive temperature (Tf) on the evolution of point defects and optical attenuation in non-doped and Er3+-doped sol-gel silica glasses was studied and compared to Suprasil F300 and Infrasil 301 glasses before and after γ-irradiation. To this aim, sol-gel optical fiber preforms have been fabricated by the densification of erbium salt-soaked nanoporous silica xerogels through the polymeric sol-gel technique. These γ-irradiated fiber preforms have been characterized by FTIR, UV-vis-NIR absorption spectroscopy, electron paramagnetic resonance, and photoluminescence measurements. We showed that a decrease in the glass fictive temperature leads to a decrease in the glass disorder and strained bonds. This mainly results in a lower defect generation rate and thus less radiation-induced attenuation in the UV-vis range. Furthermore, it was found that γ-radiation "hardness" is higher in Er3+-doped sol-gel silica compared to un-doped sol-gel silica and standard synthetic silica glasses. The present work demonstrates an effective strategy to improve the radiation resistance of optical fiber preforms and glasses through glass fictive temperature reduction.

  18. Evidence for Multiple Rhythmic Skills.

    Directory of Open Access Journals (Sweden)

    Adam Tierney

    Full Text Available Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions.

  19. Evidence for Multiple Rhythmic Skills

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  20. Neural correlates of rhythmic expectancy

    Directory of Open Access Journals (Sweden)

    Theodore P. Zanto

    2006-01-01

    Full Text Available Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuroelectric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains,and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz activity (GBA plays an essential role in auditory rhythm processing. Evoked (phase-locked GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.

  1. Classifying Written Texts Through Rhythmic Features

    NARCIS (Netherlands)

    Balint, Mihaela; Dascalu, Mihai; Trausan-Matu, Stefan

    2016-01-01

    Rhythm analysis of written texts focuses on literary analysis and it mainly considers poetry. In this paper we investigate the relevance of rhythmic features for categorizing texts in prosaic form pertaining to different genres. Our contribution is threefold. First, we define a set of rhythmic

  2. Rhythmicity and plasticity of digestive physiology in a euryhaline teleost fish, permit (Trachinotus falcatus)

    DEFF Research Database (Denmark)

    Lazado, Carlo Cabacang; Pedersen, Per Bovbjerg; Nguyen, Huy Quang

    2017-01-01

    Digestive physiology is considered to be under circadian control, but there is little evidence in teleost fish. The present study explored the rhythmicity and plasticity to feeding schedules of enzymatic digestion in a candidate aquaculture fish, the permit (Trachinotus falcatus). The first...... experiment identified the rhythms of digestive factors throughout the light-dark (LD) cycle. Gastric luminal pH and pepsin activity showed significant daily variation albeit not rhythmic. These dynamic changes were likewise observed in several digestive enzymes, in which the activities of intestinal protease......, chymotrypsin and lipase exhibited significant daily rhythms. In the second experiment, the existence of feed anticipatory activity in the digestive factors was investigated by subjecting the fish to either periodic or random feeding. Anticipatory gastric acidification prior to feeding was identified...

  3. Two-photon calcium imaging during fictive navigation in virtual environments

    Directory of Open Access Journals (Sweden)

    Misha Benjamin Ahrens

    2013-06-01

    Full Text Available A full understanding of nervous system function requires recording from large populations of neurons during naturalistic behaviors. Here we enable paralyzed larval zebrafish to fictively navigate two-dimensional virtual environments while we record optically from many neurons with two-photon imaging. Electrical recordings from motor nerves in the tail are decoded into intended forward swims and turns, which are used to update a virtual environment displayed underneath the fish. Several behavioral features - such as turning responses to whole-field motion and dark avoidance - are well-replicated in this virtual setting. We readily observed neuronal populations in the hindbrain with laterally selective responses that correlated with right or left optomotor behavior. We also observed neurons in the habenula, pallium, and midbrain with response properties specific to environmental features. Beyond single-cell correlations, the classification of network activity in such virtual settings promises to reveal principles of brainwide neural dynamics during behavior.

  4. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation

    OpenAIRE

    Cohen, M.S.; Gulbinaite, R.

    2017-01-01

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differen...

  5. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation

    NARCIS (Netherlands)

    Cohen, M.S.; Gulbinaite, R.

    2017-01-01

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency

  6. Effects of Rhythmic and Melodic Alterations and Selected Musical Experiences on Rhythmic Processing.

    Science.gov (United States)

    Sink, Patricia E.

    1984-01-01

    Study showed that music listening habits and preferences and instrument training may affect ways an individual processes the multiple dimensions of rhythm. Apparent alterations in tempo, duration and pitch characteristics, rhythmic and melodic phrase patterning, and monotony may serve as organizers of rhythmic processing. (Author/RM)

  7. EPR reversible signature of self-trapped holes in fictive temperature-treated silica glass

    Science.gov (United States)

    Lancry, Matthieu; Ollier, Nadège; Babu, B. H.; Herrero, Christian; Poumellec, Bertrand

    2018-03-01

    Post-mortem electron paramagnetic resonance spectroscopy experiments have been carried out between room temperature and 20 K to examine the radiation-induced defects in fictive temperature (Tf) treated Heraeus F300 silica (0.1 ppm OH, 1500 ppm Cl2). In particular, we focus our attention on Self-Trapped Hole (STH) centers detected in 1000 °C, 1100 °C, and 1200 °C Tf treated samples irradiated at room temperature by gamma rays at 6 kGy. By repeating annealing cycles between 77 and 300 K on the same samples, we observed that the EPR signal attributed to STH decreases as the temperature increases but in a reversible manner. We evidenced a deviation from the Curie law for T > 70 K and suggested an interpretation based on the decrease in the "strain-assisted TH" population by reversible excitation of the trapped hole to a delocalized state with an activation energy of 7.8 meV. This also means that the precursors of hole trapping sites (a local strain atomic configuration) remain stable until 300 K at least.

  8. Ultras-stable Physical Vapor Deposited Amorphous Teflon Films with Extreme Fictive Temperature Reduction

    Science.gov (United States)

    McKenna, Gregory; Yoon, Heedong; Koh, Yung; Simon, Sindee

    In the present work, we have produced highly stable amorphous fluoropolymer (Teflon AF® 1600) films to study the calorimetric and relaxation behavior in the deep in the glassy regime. Physical vapor deposition (PVD) was used to produce 110 to 700 nm PVD films with substrate temperature ranging from 0.70 Tg to 0.90 Tg. Fictive temperature (Tf) was measured using Flash DSC with 600 K/s heating and cooling rates. Consistent with prior observations for small molecular weight glasses, large enthalpy overshoots were observed in the stable amorphous Teflon films. The Tf reduction for the stable Teflon films deposited in the vicinity of 0.85 Tg was approximately 70 K compared to the Tgof the rejuvenated system. The relaxation behavior of stable Teflon films was measured using the TTU bubble inflation technique and following Struik's protocol in the temperature range from Tf to Tg. The results show that the relaxation time decreases with increasing aging time implying that devitrification is occurring in this regime.

  9. Identifying with fictive characters: structural brain correlates of the personality trait 'fantasy'.

    Science.gov (United States)

    Cheetham, Marcus; Hänggi, Jürgen; Jancke, Lutz

    2014-11-01

    The perception of oneself as absorbed in the thoughts, feelings and happenings of a fictive character (e.g. in a novel or film) as if the character's experiences were one's own is referred to as identification. We investigated whether individual variation in the personality trait of identification is associated with individual variation in the structure of specific brain regions, using surface and volume-based morphometry. The hypothesized regions of interest were selected on the basis of their functional role in subserving the cognitive processing domains considered important for identification (i.e. mental imagery, empathy, theory of mind and merging) and for the immersive experience called 'presence'. Controlling for age, sex, whole-brain volume and other traits, identification covaried significantly with the left hippocampal volume, cortical thickness in the right anterior insula and the left dorsal medial prefrontal cortex, and with gray matter volume in the dorsolateral prefrontal cortex. These findings show that trait identification is associated with structural variation in specific brain regions. The findings are discussed in relation to the potential functional contribution of these regions to identification. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Rhythmic patterning in Malaysian and Singapore English.

    Science.gov (United States)

    Tan, Rachel Siew Kuang; Low, Ee-Ling

    2014-06-01

    Previous work on the rhythm of Malaysian English has been based on impressionistic observations. This paper utilizes acoustic analysis to measure the rhythmic patterns of Malaysian English. Recordings of the read speech and spontaneous speech of 10 Malaysian English speakers were analyzed and compared with recordings of an equivalent sample of Singaporean English speakers. Analysis was done using two rhythmic indexes, the PVI and VarcoV. It was found that although the rhythm of read speech of the Singaporean speakers was syllable-based as described by previous studies, the rhythm of the Malaysian speakers was even more syllable-based. Analysis of the syllables in specific utterances showed that Malaysian speakers did not reduce vowels as much as Singaporean speakers in cases of syllables in utterances. Results of the spontaneous speech confirmed the findings for the read speech; that is, the same rhythmic patterning was found which normally triggers vowel reductions.

  11. [Role of rhythmicity in infant development].

    Science.gov (United States)

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the

  12. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires

    International Nuclear Information System (INIS)

    Magagnosc, D.J.; Kumar, G.; Schroers, J.; Felfer, P.; Cairney, J.M.; Gianola, D.S.

    2014-01-01

    Ion irradiation of thermoplastically molded Pt 57.5 Cu 14.3 Ni 5.7 P 22.5 metallic glass nanowires is used to study the relationship between glass structure and tensile behavior across a wide range of structural states. Starting with the as-molded state of the glass, ion fluence and irradiated volume fraction are systematically varied to rejuvenate the glass, and the resulting plastic behavior of the metallic glass nanowires probed by in situ mechanical testing in a scanning electron microscope. Whereas the as-molded nanowires exhibit high strength, brittle-like fracture and negligible inelastic deformation, ion-irradiated nanowires show tensile ductility and quasi-homogeneous plastic deformation. Signatures of changes to the glass structure owing to ion irradiation as obtained from electron diffraction are subtle, despite relatively large yield strength reductions of hundreds of megapascals relative to the as-molded condition. To reconcile changes in mechanical behavior with glass properties, we adapt previous models equating the released strain energy during shear banding to a transit through the glass transition temperature by incorporating the excess enthalpy associated with distinct structural states. Our model suggests that ion irradiation increases the fictive temperature of our glass by tens of degrees – the equivalent of many orders of magnitude change in cooling rate. We further show our analytical description of yield strength to quantitatively describe literature results showing a correlation between severe plastic deformation and hardness in a single glass system. Our results highlight not only the capacity for room temperature ductile plastic flow in nanoscaled metallic glasses, but also processing strategies capable of glass rejuvenation outside of the realm of traditional thermal treatments

  13. Coordination of fictive motor activity in the larval zebrafish is generated by non-segmental mechanisms.

    Directory of Open Access Journals (Sweden)

    Timothy D Wiggin

    Full Text Available The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits.

  14. Does the road go up the mountain? Fictive motion between linguistic conventions and cognitive motivations.

    Science.gov (United States)

    Stosic, Dejan; Fagard, Benjamin; Sarda, Laure; Colin, Camille

    2015-09-01

    Fictive motion (FM) characterizes the use of dynamic expressions to describe static scenes. This phenomenon is crucial in terms of cognitive motivations for language use; several explanations have been proposed to account for it, among which mental simulation (Talmy in Toward a cognitive semantics, vol 1. MIT Press, Cambridge, 2000) and visual scanning (Matlock in Studies in linguistic motivation. Mouton de Gruyter, Berlin and New York, pp 221-248, 2004a). The aims of this paper were to test these competing explanations and identify language-specific constraints. To do this, we compared the linguistic strategies for expressing several types of static configurations in four languages, French, Italian, German and Serbian, with an experimental set-up (59 participants). The experiment yielded significant differences for motion-affordance versus no motion-affordance, for all four languages. Significant differences between languages included mean frequency of FM expressions. In order to refine the picture, and more specifically to disentangle the respective roles of language-specific conventions and language-independent (i.e. possibly cognitive) motivations, we completed our study with a corpus approach (besides the four initial languages, we added English and Polish). The corpus study showed low frequency of FM across languages, but a higher frequency and translation ratio for some FM types--among which those best accounted for by enactive perception. The importance of enactive perception could thus explain both the universality of FM and the fact that language-specific conventions appear mainly in very specific contexts--the ones furthest from enaction.

  15. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).

    Science.gov (United States)

    Böser, S; Dournon, C; Gualandris-Parisot, L; Horn, E

    2008-03-01

    During early periods of life, modifications of the gravitational environment affect the development of sensory, neuronal and motor systems. The vestibular system exerts significant effects on motor networks that control eye and body posture as well as swimming. The objective of the present study was to study whether altered gravity (AG) affects vestibuloocular and spinal motor systems in a correlated manner. During the French Soyuz taxi flight Andromède to the International Space Station ISS (launch: October 21, 2001; landing: October 31, 2001) Xenopus laevis embryos were exposed for 10 days to microgravity (microg). In addition, a similar experiment with 3g-hypergravity (3g) was performed in the laboratory. At onset of AG, embryos had reached developmental stages 24 to 27. After exposure to AG, each tadpole was tested for its roll-induced vestibuloocular reflex (rVOR) and 3 hours later it was tested for the neuronal activity recorded from the ventral roots (VR) during fictive swimming. During the post-AG recording periods tadpoles had reached developmental stages 45 to 47. It was observed that microgravity affected VR activity during fictive swimming and rVOR. In particular, VR activity changes included a significant decrease of the rostrocaudal delay and a significant increase of episode duration. The rVOR-amplitude was transiently depressed. Hypergravity was less effective on the locomotor pattern; occurring effects on fictive swimming were the opposite of microg effects. As after microgravity, the rVOR was depressed after 3g-exposure. All modifications of the rVOR and VR-activity recovered to normal levels within 4 to 7 days after termination of AG. Significant correlations between the rVOR amplitude and VR activity of respective tadpoles during the recording period have been observed in both tadpoles with or without AG experience. The data are consistent with the assumptions that during this period of life which is characterized by a progressive development

  16. A multiresolution model of rhythmic expectancy

    NARCIS (Netherlands)

    Smith, L.M.; Honing, H.; Miyazaki, K.; Hiraga, Y.; Adachi, M.; Nakajima, Y.; Tsuzaki, M.

    2008-01-01

    We describe a computational model of rhythmic cognition that predicts expected onset times. A dynamic representation of musical rhythm, the multiresolution analysis using the continuous wavelet transform is used. This representation decomposes the temporal structure of a musical rhythm into time

  17. Rhythmic Patterns in Ragtime and Jazz

    NARCIS (Netherlands)

    Odekerken, Daphne; Volk, A.; Koops, Hendrik Vincent

    2017-01-01

    This paper presents a corpus-based study on rhythmic patterns in ragtime and jazz. Ragtime and jazz are related genres, but there are open questions on what specifies the two genres. Earlier studies revealed that variations of a particular syncopation pattern, referred to as 121, are among the most

  18. Rhythmic walking interaction with auditory feedback

    DEFF Research Database (Denmark)

    Maculewicz, Justyna; Jylhä, Antti; Serafin, Stefania

    2015-01-01

    We present an interactive auditory display for walking with sinusoidal tones or ecological, physically-based synthetic walking sounds. The feedback is either step-based or rhythmic, with constant or adaptive tempo. In a tempo-following experiment, we investigate different interaction modes...

  19. Source localization of rhythmic ictal EEG activity

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana

    2013-01-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal...... EEG activity using a distributed source model....

  20. Rhythmic Characteristics of Colloquial and Formal Tamil

    Science.gov (United States)

    Keane, Elinor

    2006-01-01

    Application of recently developed rhythmic measures to passages of read speech in colloquial and formal Tamil revealed some significant differences between the two varieties, which are in diglossic distribution. Both were also distinguished from a set of control data from British English speakers reading an equivalent passage. The findings have…

  1. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.

    Science.gov (United States)

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-07

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

  2. Primate beta oscillations and rhythmic behaviors.

    Science.gov (United States)

    Merchant, Hugo; Bartolo, Ramón

    2018-03-01

    The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.

  3. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    Science.gov (United States)

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  5. Group Rhythmic Synchrony and Attention in Children

    Directory of Open Access Journals (Sweden)

    Alexander K Khalil

    2013-09-01

    Full Text Available Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD. Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child’s attentional behavior.

  6. Fictive Kinship as It Mediates Learning, Resiliency, Perseverance, and Social Learning of Inner-City High School Students of Color in a College Physics Class

    Science.gov (United States)

    Alexakos, Konstantinos; Jones, Jayson K.; Rodriguez, Victor H.

    2011-01-01

    In this hermeneutic study we explore how fictive kinship (kin-like close personal friendship) amongst high school students of color mediated their resiliency, perseverance, and success in a college physics class. These freely chosen, processual friendships were based on emotional and material support, motivation, and caring for each other, as well…

  7. Music Games: Potential Application and Considerations for Rhythmic Training

    OpenAIRE

    Valentin Bégel; Valentin Bégel; Ines Di Loreto; Antoine Seilles; Simone Dalla Bella; Simone Dalla Bella; Simone Dalla Bella; Simone Dalla Bella

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor pe...

  8. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  9. Effects of task complexity on rhythmic reproduction performance in adults.

    Science.gov (United States)

    Iannarilli, Flora; Vannozzi, Giuseppe; Iosa, Marco; Pesce, Caterina; Capranica, Laura

    2013-02-01

    The aim of the present study was to investigate the effect of task complexity on the capability to reproduce rhythmic patterns. Sedentary musically illiterate individuals (age: 34.8±4.2 yrs; M±SD) were administered a rhythmic test including three rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. For the quantification of subjects' ability in the reproduction of rhythmic patterns, qualitative and quantitative parameters were submitted to analysis. A stereophotogrammetric system was used to reconstruct and evaluate individual performances. The findings indicated a good internal stability of the rhythmic reproduction, suggesting that the present experimental design is suitable to discriminate the participants' rhythmic ability. Qualitative aspects of rhythmic reproduction (i.e., speed of execution and temporal ratios between events) varied as a function of the perceptual-motor requirements of the rhythmic reproduction task, with larger reproduction deviations in the walking task. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The development of rhythmic preferences by Dutch-learning infants

    NARCIS (Netherlands)

    Keij, B.M.; Kager, R.W.J.

    2016-01-01

    In this chapter the early acquisition of word stress is discussed. This study is aimed at examining rhythmic preferences for either strong-weak or weak-strong stress patterns of Dutch-learning infants between 4 and 8 months of age. It is complementary to previous rhythmic preference studies

  11. The development of rhythmic preferences by Dutch-learning infants

    NARCIS (Netherlands)

    Keij, B.M.|info:eu-repo/dai/nl/374786097; Kager, R.W.J.|info:eu-repo/dai/nl/072294124

    In this chapter the early acquisition of word stress is discussed. This study is aimed at examining rhythmic preferences for either strong-weak or weak-strong stress patterns of Dutch-learning infants between 4 and 8 months of age. It is complementary to previous rhythmic preference studies

  12. Decoding emotional valence from electroencephalographic rhythmic activity.

    Science.gov (United States)

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  13. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    of interactions based on varying the temporal characteristics of the output, using the sound of human walking as the input. The system either provides a direct synthesis of a walking sound based on the detected amplitude envelope of the user's footstep sounds, or provides a continuous synthetic walking sound...... as a stimulus for the walking human, either with a fixed tempo or a tempo adapting to the human gait. In a pilot experiment, the different interaction modes are studied with respect to their effect on the walking tempo and the experience of the subjects. The results tentatively outline different user profiles......Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds...

  14. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.

    Science.gov (United States)

    Cohen, Michael X; Gulbinaite, Rasa

    2017-02-15

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differential projection of neural activity to multiple electrodes or sensors. Our approach is a combination and extension of existing multivariate source separation methods. We demonstrate that RESS performs well on both simulated and empirical data, and outperforms conventional SSEP analysis methods based on selecting electrodes with the strongest SSEP response, as well as several other linear spatial filters. We also discuss the potential confound of overfitting, whereby the filter captures noise in absence of a signal. Matlab scripts are available to replicate and extend our simulations and methods. We conclude with some practical advice for optimizing SSEP data analyses and interpreting the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Proteomic identification of rhythmic proteins in rice seedlings.

    Science.gov (United States)

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  16. Situational influences on rhythmicity in speech, music, and their interaction.

    Science.gov (United States)

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Music Games: Potential Application and Considerations for Rhythmic Training.

    Science.gov (United States)

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson's disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  18. Music Games: Potential Application and Considerations for Rhythmic Training

    Directory of Open Access Journals (Sweden)

    Valentin Bégel

    2017-05-01

    Full Text Available Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson’s disease, dyslexia, or ADHD. Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  19. Situational influences on rhythmicity in speech, music, and their interaction

    Science.gov (United States)

    Hawkins, Sarah

    2014-01-01

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  20. Danish music education and the 'rhythmic music' concept

    DEFF Research Database (Denmark)

    Pedersen, Peder Kaj

    2014-01-01

    ' was avoided and the Danish phrase 'rytmisk musik' (rhythmic music) was created to emphasize the educational and pedagogical content. The aim was also to prevent the prejudicious idea associated with jazz, especially by opponents. The article intends to evaluate the situation of 'rhythmic music' in the context......The article reflects on Danish music education and the concept of 'rhythmic music'. It highligths the so-called "jazz-oratorio", a unique genre, created by the composer Bernhard Christensen (1906-2004) and the librettist Sven Møller Kristensen (1909-91). The article shows that the term 'jazz...... of Danish music education....

  1. Daily rhythmicity of body temperature in the dog.

    Science.gov (United States)

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  2. Differences between the sexes in technical mastery of rhythmic gymnastics.

    Science.gov (United States)

    Bozanic, Ana; Miletic, Durdica

    2011-02-01

    The aims of this study were to determine possible differences between the sexes in specific rhythmic gymnastics techniques, and to examine the influence of various aspects of technique on rhythmic composition performance. Seventy-five students aged 21 ± 2 years (45 males, 30 female) undertook four test sessions to determine: coefficients of asymmetry, stability, versatility, and the two rhythmic compositions (without apparatus and with rope). An independent-sample t-test revealed sex-based differences in technique acquisition: stability for ball (P rhythmic composition without apparatus (P analysis revealed that the variables for assessing stability (beta = 0.44; P rhythmic composition performance of females, and the variables for assessing asymmetry (beta = -0.38; P rhythmic composition performance of males. The results suggest that female students dominate in body skill technique, while male students have the advantage with apparatus. There was a lack of an expressive aesthetic component in performance for males. The need for ambidexterity should be considered in the planning of training programmes.

  3. 'Rhythmic Music' in Danish Music Education

    DEFF Research Database (Denmark)

    Pedersen, Peder Kaj

    In Danish state schools from elementary to upper secondary school music is part of curricula at all levels. It is widely accepted that both individuals and culture benefit from art subjects, creative activities etc. This type of motivation was sufficient support for maintaining music as a subject...... and to avoid what was associated with jazz, especially by its opponents. This paper aims at taking stock of the situation in Danish music education during the last decade and at specifying the situation of ‘rhythmic music’ within this context....... at all levels of the educational system from around 1960 to around 2000. This tradition dates back to the 1920s, when the first Social Democratic government in Danish history (1924-26), with Nina Bang as minister of education (probably the first female minister worldwide), in the field of music made...... genre of music, and in Denmark this interest manifested itself in attempts to integrate jazz in the musical education of the youth. A unique genre, the so-called ‘jazz oratorios’, was created by the composer Bernhard Christensen (1906-2004) and the librettist Sven Møller Kristensen (1909- 91...

  4. Unusual postero-inferior condylar movements that depend on the position of occlusal contact during fictive mastication in rabbits.

    Science.gov (United States)

    Morita, Takumi; Hiraba, Katsunari; Matsunaga, Tomoko; Ito, Yu; Maruo, Hisanobu; Kurita, Kenichi

    2015-03-01

    The mandible can be modelled as a triangular plate supported at two joints and the point of occlusion. The mandible is stable if the vector of the jaw-closing muscle forces lies within the triangle of support. If this vector lies outside of the triangle of support, one of the three contact points will tend to separate as the mandible rotates around a line connecting the other two points. Here, we examined whether postero-inferior condylar movements (Pi-Cm) due to mandibular rotation may occur during fictive mastication in anaesthetized rabbits. EMG activities of the masseter (MS) and lateral pterygoid (LP) muscles and movements of the condyle and incisal points were recorded. Condylar movements in the sagittal plane were recorded using a high speed CCD camera. Pi-Cm were observed on the working side during occlusal phase in half of the rabbits (altered-movement group), if the biting point was restricted at the posterior most tooth (M3) on the working side using a metal biting plate. Pi-Cm appeared in the period between the estimated maximum force of the MS and the LP during late occlusal phase. The MS EMG ratio between the working and balancing sides in the altered-movement group was significantly less than that in the unaltered-movement group. Since the space lying between the condyle and the articular eminence expanded during the Pi-Cm, it is likely that the posterior band of the articular disc tended to slip anteriorly. The clinical significance of the Pi-Cm is discussed concerning the anterior dislocation of the disc in patients with TMJ disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Rhythmic crowd bobbing on a grandstand simulator

    Science.gov (United States)

    Comer, A. J.; Blakeborough, A.; Williams, M. S.

    2013-01-01

    It is widely accepted that concerted human activity such as bouncing or bobbing can excite cantilever grandstands. Crowd coordination can be unwitting and may be exacerbated by structural motion caused by resonant structural response. This is an area of uncertainty in the design and analysis of modern grandstands. This paper presents experimental measurement and analysis of rhythmic crowd bobbing loads obtained from tests on a grandstand simulator with two distinct support conditions; (a) rigid, and; (b) flexible. It was found that significant structural vibration at the bobbing frequency did not increase the effective bobbing load. Structural motion at the bobbing frequency caused a reduction in the dynamic load factor (DLF) at the frequency of the second harmonic while those at the first and third harmonics were unaffected. Two plausible reasons for this are: (a) the bobbing group were unable to supply significant energy to the system at the frequency of the second harmonic; (b) the bobbing group altered their bobbing style to reduce the response of the grandstand simulator. It was deduced that the bobbing group did not absorb energy from the dynamic system. Furthermore, dynamic load factors for groups of test subjects bobbing on a rigid structure were typically greater than those of synthesised groups derived from individuals bobbing alone, possibly due to group effects such as audio and visual stimuli from neighbouring test subjects. Last, the vibration levels experienced by the test subjects appear to be below levels likely to cause discomfort. This is to be expected as the test subjects were themselves controlling the magnitude and duration of vibration for the bobbing tests considered.

  6. Judging the judges' performance in rhythmic gymnastics.

    Science.gov (United States)

    Flessas, Konstantinos; Mylonas, Dimitris; Panagiotaropoulou, Georgia; Tsopani, Despina; Korda, Alexandrea; Siettos, Constantinos; Di Cagno, Alessandra; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-03-01

    Rhythmic gymnastics (RG) is an aesthetic event balancing between art and sport that also has a performance rating system (Code of Points) given by the International Gymnastics Federation. It is one of the sports in which competition results greatly depend on the judges' evaluation. In the current study, we explored the judges' performance in a five-gymnast ensemble routine. An expert-novice paradigm (10 international-level, 10 national-level, and 10 novice-level judges) was implemented under a fully simulated procedure of judgment in a five-gymnast ensemble routine of RG using two videos of routines performed by the Greek national team of RG. Simultaneous recordings of two-dimensional eye movements were taken during the judgment procedure to assess the percentage of time spent by each judge viewing the videos and fixation performance of each judge when an error in gymnast performance had occurred. All judge level groups had very modest performance of error recognition on gymnasts' routines, and the best international judges reported approximately 40% of true errors. Novice judges spent significantly more time viewing the videos compared with national and international judges and spent significantly more time fixating detected errors than the other two groups. National judges were the only group that made efficient use of fixation to detect errors. The fact that international-level judges outperformed both other groups, while not relying on visual fixation to detect errors, suggests that these experienced judges probably make use of other cognitive strategies, increasing their overall error detection efficiency, which was, however, still far below optimum.

  7. RHYTHMIC MUSIC PEDAGOGY: A SCANDINAVIAN APPROACH TO MUSIC EDUCATION

    Directory of Open Access Journals (Sweden)

    Hauge Torunn Bakken

    2012-06-01

    Full Text Available Rhythmic music pedagogy is a relatively new Scandinavian approach to classroom music education that offers a variety of methods and strategies for teaching and learning music, especially within the performance of improvised and rhythmic music. This article is based on two earlier projects published in Norwegian, in which the concept of rytmisk musikkpedagogikk (or “rhythmic music pedagogy” as well as its applications and implications were thoroughly described. This research confirms that rhythmic music pedagogy may be an effective strategy for learning music in general, but most especially for learning skills associated with ensemble musicianship and playing by ear. In a multicultural and fluid society in which there are tendencies toward passivity and fragmentation, it may be more important than ever to maintain the idea of music as a collaborative creative process that extends across borders; in this context, rhythmic music pedagogy can play a central role in children’s social development. As a social medium, ensemble playing requires the participant to decentralize socially, since the perspectives of the other participants are necessary for a successful performance. The activity’s general potential for re-structuring social settings and moving boundaries in a positive way should not be underestimated.

  8. Predictive coding of music--brain responses to rhythmic incongruity.

    Science.gov (United States)

    Vuust, Peter; Ostergaard, Leif; Pallesen, Karen Johanne; Bailey, Christopher; Roepstorff, Andreas

    2009-01-01

    During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.

  9. Simple neural substrate predicts complex rhythmic structure in duetting birds

    Science.gov (United States)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  10. Fictive kinship as it mediates learning, resiliency, perseverance, and social learning of inner-city high school students of color in a college physics class

    Science.gov (United States)

    Alexakos, Konstantinos; Jones, Jayson K.; Rodriguez, Victor H.

    2011-12-01

    In this hermeneutic study we explore how fictive kinship (kin-like close personal friendship) amongst high school students of color mediated their resiliency, perseverance, and success in a college physics class. These freely chosen, processual friendships were based on emotional and material support, motivation, and caring for each other, as well as trust, common interests, and goals. Such close bonds contributed in creating a safe and supportive emotional space and allowed for friendly, cooperative competition within the physics classroom. Friends became the role models, source of support, and motivation for the fictive kinship group as well as for each other, as the group became the role model, source of support, and motivation for the individuals in it. Because of their friendships with one another, physics talk was extended and made part of their personal interactions outside the classroom. These social relationships and safe spaces helped the students cope and persevere despite their initial conflicting expectations of their success in physics. Our research thus expands on the concept of social learning by exploring student friendships and how they frame and mediate such a process.

  11. Time-frequency analysis of human motion during rhythmic exercises.

    Science.gov (United States)

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  12. Rhythmic Effects of Syntax Processing in Music and Language.

    Science.gov (United States)

    Jung, Harim; Sontag, Samuel; Park, YeBin S; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated-linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical

  13. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    OpenAIRE

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Green and colleagues perform a global analysis of circadian-controlled poly(A) tails and identify hundreds of mRNAs that display dynamic rhythmic polyadenylation states. They identify three distinct classes of mRNAs with rhythmic poly(A) tails. Interestingly, class III mRNAs are controlled not by transcription, but by rhythmic cytoplasmic polyadenylation, and are regulated by the components of the cytoplasmic polyadenylation machinery, CPEB2 in particular, which are themselves rhythmically ex...

  14. Scheduled feeding results in adipogenesis and increased acylated ghrelin

    OpenAIRE

    Verbaeys, I.; Tolle, V.; SWENNEN, Quirine; Zizzari, P.; Buyse, J.; Epelbaum, J.; Cokelaere, M.

    2011-01-01

    Ghrelin, known to stimulate adipogenesis, displays an endogenous secretory rhythmicity closely related to meal patterns. Therefore, a chronic imposed feeding schedule might induce modified ghrelin levels and consequently adiposity. Growing Wistar rats were schedule-fed by imposing a particular fixed feeding schedule of 3 meals/day without caloric restriction compared with total daily control intake. After 14 days, their body composition was measured by DEXA and compared with ad libitum-fed co...

  15. Rhythmic Engagement with Music in Early Childhood: A Replication and Extension

    Science.gov (United States)

    Ilari, Beatriz

    2015-01-01

    The purpose of this study was to replicate and extend previous findings on spontaneous movement and rhythmic engagement with music in infancy. Using the identical stimuli and procedures from the original study, I investigated spontaneous rhythmic movements in response to music, infant-directed speech, and contrasting rhythmic patterns in 30…

  16. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  17. Body composition and cardiac dimensions in elite rhythmic gymnasts.

    Science.gov (United States)

    Galetta, F; Franzoni, F; D'alessandro, C; Piazza, M; Tocchini, L; Fallahi, P; Antonelli, A; Cupisti, F; Santoro, G

    2015-09-01

    Rhythmic gymnasts are often believed to be a population at risk of malnutrition because of their tendency to keep a low weight and a lean appearance for better athletic performance, and because they start intensive training at a very young age. The purpose of this study was to evaluate in adolescent elite gymnasts the effects of physical activity on body composition and cardiac morphology and function. Sixteen national level rhythmic gymnasts and 16 control adolescent female underwent anthropometric measurements, bioelectric impedance and echocardiography to assess body composition and cardiac morphology and function. As compared to controls, gymnasts had lower body mass index (16.9±1.1 vs. 18.7±1.0, Panalysis showed a lower percentage of body fat in the gymnasts, together with a higher percentage of fat-free mass. Echocardiographic findings indicate that elite rhythmic gymnastics present left ventricular remodeling as training-induced cardiac adaptation. Intensive training, dietary attitude and evident leanness of rhythmic gymnasts are not associated with cardiac abnormalities, as it is the case of pathological leanness.

  18. Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners.

    Science.gov (United States)

    Ozernov-Palchik, Ola; Wolf, Maryanne; Patel, Aniruddh D

    2018-03-01

    A growing number of studies report links between nonlinguistic rhythmic abilities and certain linguistic abilities, particularly phonological skills. The current study investigated the relationship between nonlinguistic rhythmic processing, phonological abilities, and early literacy abilities in kindergarteners. A distinctive aspect of the current work was the exploration of whether processing of different types of rhythmic patterns is differentially related to kindergarteners' phonological and reading-related abilities. Specifically, we examined the processing of metrical versus nonmetrical rhythmic patterns, that is, patterns capable of being subdivided into equal temporal intervals or not (Povel & Essens, 1985). This is an important comparison because most music involves metrical sequences, in which rhythm often has an underlying temporal grid of isochronous units. In contrast, nonmetrical sequences are arguably more typical to speech rhythm, which is temporally structured but does not involve an underlying grid of equal temporal units. A rhythm discrimination app with metrical and nonmetrical patterns was administered to 74 kindergarteners in conjunction with cognitive and preliteracy measures. Findings support a relationship among rhythm perception, phonological awareness, and letter-sound knowledge (an essential precursor of reading). A mediation analysis revealed that the association between rhythm perception and letter-sound knowledge is mediated through phonological awareness. Furthermore, metrical perception accounted for unique variance in letter-sound knowledge above all other language and cognitive measures. These results point to a unique role for temporal regularity processing in the association between musical rhythm and literacy in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  20. The Acoustic Reality of the Kachruvian Circles: A Rhythmic Perspective

    Science.gov (United States)

    Low, Ee Ling

    2010-01-01

    This paper investigates whether the rhythmic properties of varieties of English found in each of the concentric circles of Kachru's model can, in any way, be elucidated by the "Three Circles" model. A measurement and comparison of the rhythm of three varieties of English: British English (from the Inner Circle), Singapore English (from…

  1. Modeling discrete and rhythmic movements through motor primitives: a review.

    Science.gov (United States)

    Degallier, Sarah; Ijspeert, Auke

    2010-10-01

    Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.

  2. Corpus-Based Rhythmic Pattern Analysis of Ragtime Syncopation

    NARCIS (Netherlands)

    Koops, Hendrik Vincent; Volk, A.; de Haas, W.B.

    2015-01-01

    This paper presents a corpus-based study on rhythmic patterns in the RAG-collection of approximately 11.000 symbolically encoded ragtime pieces. While characteristic musical features that define ragtime as a genre have been debated since its inception, musicologists argue that specific syncopation

  3. Rhythmic regularity revisited : Is beat induction indeed pre-attentive?

    NARCIS (Netherlands)

    Bouwer, F.; Honing, H.; Cambouropoulos, E.; Tsougras, C.; Mavromatis, P.; Pastiadis, K.

    2012-01-01

    When listening to musical rhythm, regularity in time is often perceived in the form of a beat or pulse. External rhythmic events can give rise to the perception of a beat, through a process known as beat induction. In addition, internal processes, like long-term memory, working memory and automatic

  4. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination.

    NARCIS (Netherlands)

    Ridderikhoff, A.; Peper, C.E.; Beek, P.J.

    2008-01-01

    Studies of rhythmic bimanual coordination under dual-task conditions revealed (1) a dependence of secondary task performance on the stability of coordinative tasks, in that secondary task performance was better during in-phase than antiphase coordination, and (2) a shift in the mean relative phasing

  5. Transitions between discrete and rhythmic primitives in a unimanual task

    Science.gov (United States)

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  6. Transitions between Discrete and Rhythmic Primitives in a Unimanual Task

    Directory of Open Access Journals (Sweden)

    Dagmar eSternad

    2013-07-01

    Full Text Available Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements, in order to stress the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: Starting at 2s the metronome intervals decreased by 36ms per cycle to 200ms, stayed at 200ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.

  7. Obesity Disrupts the Rhythmic Profiles of Maternal and Fetal Progesterone in Rat Pregnancy.

    Science.gov (United States)

    Crew, Rachael C; Mark, Peter J; Clarke, Michael W; Waddell, Brendan J

    2016-09-01

    Maternal obesity increases the risk of abnormal fetal growth, but the underlying mechanisms remain unclear. Because steroid hormones regulate fetal growth, and both pregnancy and obesity markedly alter circadian biology, we hypothesized that maternal obesity disrupts the normal rhythmic profiles of steroid hormones in rat pregnancy. Obesity was established by cafeteria (CAF) feeding for 8 wk prior to mating and throughout pregnancy. Control (CON) animals had ad libitum access to chow. Daily profiles of plasma corticosterone, 11-dehydrocorticosterone, progesterone, and testosterone were measured at Days 15 and 21 of gestation (term = 23 days) in maternal (both days) and fetal (Day 21) plasma. CAF mothers exhibited increased adiposity relative to CON and showed fetal and placental growth restriction. There was no change, however, in total fetal or placental mass due to slightly larger litter sizes in CAF. Nocturnal declines in progesterone were observed in maternal (39% lower) and fetal (45% lower) plasma in CON animals, but these were absent in CAF animals. CAF mothers were hyperlipidemic at both days of gestation, but this effect was isolated to the dark period at Day 21. CAF maternal testosterone was slightly lower at Day 15 (8%) but increased above CON by Day 21 (16%). Despite elevated maternal testosterone, male fetal testosterone was suppressed by obesity on Day 21. Neither maternal nor fetal glucocorticoid profiles were affected by obesity. In conclusion, obesity disrupts rhythmic profiles of maternal and fetal progesterone, preventing the normal nocturnal decline. Obesity subtly changed testosterone profiles but did not alter maternal and fetal glucocorticoids. © 2016 by the Society for the Study of Reproduction, Inc.

  8. The problem of the quality of judging in rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    V.V. Perederij

    2013-03-01

    Full Text Available The aim of the study is to develop a classification of factors influencing the quality of judging in rhythmic gymnastics. As a result of consolidation of theoretical information and practical experience was a list of the factors that negatively affect the behavior of judges in gymnastics, which were divided into two groups: the objective and non-objective (subjective. Objective factors include intense competition schedule, fatigue, especially memory, attention, competition rules, to the subjective: the ratio of judges to their gymnast (team or to the opposing team, the lack of interest in the performance, composition of the judging panel, the influence of authority and popularity sportswomen dependence on its management. Respondents were unanimous in that independent professional judges are needed in a rhythmic gymnastics. It is set that 64% respondent mark the presence of pressure on judges from the side of competitors.

  9. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    Science.gov (United States)

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    Science.gov (United States)

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  11. The Edit Distance as a Measure of Perceived Rhythmic Similarity

    Directory of Open Access Journals (Sweden)

    Olaf Post

    2012-07-01

    Full Text Available The ‘edit distance’ (or ‘Levenshtein distance’ measure of distance between two data sets is defined as the minimum number of editing operations – insertions, deletions, and substitutions – that are required to transform one data set to the other (Orpen and Huron, 1992. This measure of distance has been applied frequently and successfully in music information retrieval, but rarely in predicting human perception of distance. In this study, we investigate the effectiveness of the edit distance as a predictor of perceived rhythmic dissimilarity under simple rhythmic alterations. Approaching rhythms as a set of pulses that are either onsets or silences, we study two types of alterations. The first experiment is designed to test the model’s accuracy for rhythms that are relatively similar; whether rhythmic variations with the same edit distance to a source rhythm are also perceived as relatively similar by human subjects. In addition, we observe whether the salience of an edit operation is affected by its metric placement in the rhythm. Instead of using a rhythm that regularly subdivides a 4/4 meter, our source rhythm is a syncopated 16-pulse rhythm, the son. Results show a high correlation between the predictions by the edit distance model and human similarity judgments (r = 0.87; a higher correlation than for the well-known generative theory of tonal music (r = 0.64. In the second experiment, we seek to assess the accuracy of the edit distance model in predicting relatively dissimilar rhythms. The stimuli used are random permutations of the son’s inter-onset intervals: 3-3-4-2-4. The results again indicate that the edit distance correlates well with the perceived rhythmic dissimilarity judgments of the subjects (r = 0.76. To gain insight in the relationships between the individual rhythms, the results are also presented by means of graphic phylogenetic trees.

  12. Somatotype of top-level serbian rhythmic gymnasts.

    Science.gov (United States)

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-03-27

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies.

  13. Circadian remodeling of neuronal circuits involved in rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    María Paz Fernández

    2008-03-01

    Full Text Available Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.

  14. Rhythmic abilities and musical training in Parkinson's disease: do they help?

    Science.gov (United States)

    Cochen De Cock, V; Dotov, D G; Ihalainen, P; Bégel, V; Galtier, F; Lebrun, C; Picot, M C; Driss, V; Landragin, N; Geny, C; Bardy, B; Dalla Bella, S

    2018-01-01

    Rhythmic auditory cues can immediately improve gait in Parkinson's disease. However, this effect varies considerably across patients. The factors associated with this individual variability are not known to date. Patients' rhythmic abilities and musicality (e.g., perceptual and singing abilities, emotional response to music, and musical training) may foster a positive response to rhythmic cues. To examine this hypothesis, we measured gait at baseline and with rhythmic cues in 39 non-demented patients with Parkinson's disease and 39 matched healthy controls. Cognition, rhythmic abilities and general musicality were assessed. A response to cueing was qualified as positive when the stimulation led to a clinically meaningful increase in gait speed. We observed that patients with positive response to cueing ( n  = 17) were more musically trained, aligned more often their steps to the rhythmic cues while walking, and showed better music perception as well as poorer cognitive flexibility than patients with non-positive response ( n  = 22). Gait performance with rhythmic cues worsened in six patients. We concluded that rhythmic and musical skills, which can be modulated by musical training, may increase beneficial effects of rhythmic auditory cueing in Parkinson's disease. Screening patients in terms of musical/rhythmic abilities and musical training may allow teasing apart patients who are likely to benefit from cueing from those who may worsen their performance due to the stimulation.

  15. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  16. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.

    Directory of Open Access Journals (Sweden)

    Ji-Ae Yoon

    Full Text Available In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA, body temperature (BT, blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42% of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.

  17. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome.

    Science.gov (United States)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-12-01

    Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. Retrospective analysis of 77 infants born Rhythmic patterns were observed in 62.3% (ictal 1.3%, PEDs 44%, other waveforms 86.3%) with multiple patterns in 36.4%. Ictal discharges were only observed in one and excluded from further analyses. The EEG location of the other waveforms (pRhythmic waveforms related to head position are likely artefacts. Rhythmic EEG patterns may have a different significance in extremely preterm infants. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  19. Individualization of music-based rhythmic auditory cueing in Parkinson's disease.

    Science.gov (United States)

    Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen

    2018-06-04

    Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.

  20. Rate control and quality assurance during rhythmic force tracking.

    Science.gov (United States)

    Huang, Cheng-Ya; Su, Jyong-Huei; Hwang, Ing-Shiou

    2014-02-01

    Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. YOUNG LEARNERS’ RHYTHMIC AND INTONATION SKILLS THROUGH DRAMA

    Directory of Open Access Journals (Sweden)

    Olena Beskorsa

    2016-11-01

    Full Text Available The article is devoted to the problem of implementing drama techniques into the process of developing young learners’ rhythmic and intonation skills. The main task of learning the foreign language is using it as a mean of pupils’ communication in oral and written forms. The author proves that drama techniques integrate successfully all types of speech activities. It is specified that this method transfers the focus from teaching grammatically correct speech to training clear and effective communication. The author emphasizes on that sentence stress and speed of speech has the greatest influence on the rhythm. The application of these drama techniques are thought to increase primary school pupils’ level of motivation to master the language skills perfectly, it provides a positive psychological climate in English classes. The teachers’ role has a tendency to minimizing. They act as facilitators. In author’s opinion if they do impose the authority implementing drama activities into the classroom, the educational value of drama techniques will be never gained. It is also disclosed that rhythmic and intonation skills shouldn’t be formed spontaneously, the process of their development has to be conducted in certain stages (presentation and production to make pupils’ speech fluent and pronunciation clear, introducing the exercises based on drama techniques. At the stage of presentation the following exercises have the most methodological value: speed dictations, dictogloss, asking questions to practise recognizing word boundaries, matching phrases to stress patterns, marking stresses and weak forms, authentic listening. At production stage they suggest using exercises like play reading and play production. The following pieces of drama texts are recommended to be applied for teaching primary school children: jazz chants, poems, scripted plays and simple scenes from different movie genres. It is also proved that drama techniques and

  2. Sexual arousal and rhythmic synchronization: A possible effect of vasopressin

    DEFF Research Database (Denmark)

    Miani, Alessandro

    2016-01-01

    Music is ubiquitous. Yet, its biological relevance is still an ongoing debate. Supporting the view that music had an ancestral role in courtship displays, a pilot study presented here provides preliminary evidence on the link between music and sexual selection. The underlying hypothesis is based...... by vasopressin and its genes. Hence, to test this hypothesis, a rhythmic synchronization task was employed here on one male subject during sexual arousal. Results revealed a significant effect of sexual arousal on rhythm synchronization. This is the first report that empirically supports the hypothesis...

  3. Champagne experiences various rhythmical bubbling regimes in a flute.

    Science.gov (United States)

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  4. Judging in Rhythmic Gymnastics at Different Levels of Performance.

    Science.gov (United States)

    Leandro, Catarina; Ávila-Carvalho, Lurdes; Sierra-Palmeiro, Elena; Bobo-Arce, Marta

    2017-12-01

    This study aimed to analyse the quality of difficulty judging in rhythmic gymnastics, at different levels of performance. The sample consisted of 1152 difficulty scores concerning 288 individual routines, performed in the World Championships in 2013. The data were analysed using the mean absolute judge deviation from the final difficulty score, a Cronbach's alpha coefficient and intra-class correlations, for consistency and reliability assessment. For validity assessment, mean deviations of judges' difficulty scores, the Kendall's coefficient of concordance W and ANOVA eta-squared values were calculated. Overall, the results in terms of consistency (Cronbach's alpha mostly above 0.90) and reliability (intra-class correlations for single and average measures above 0.70 and 0.90, respectively) were satisfactory, in the first and third parts of the ranking on all apparatus. The medium level gymnasts, those in the second part of the ranking, had inferior reliability indices and highest score dispersion. In this part, the minimum of corrected item-total correlation of individual judges was 0.55, with most values well below, and the matrix for between-judge correlations identified remarkable inferior correlations. These findings suggest that the quality of difficulty judging in rhythmic gymnastics may be compromised at certain levels of performance. In future, special attention should be paid to the judging analysis of the medium level gymnasts, as well as the Code of Points applicability at this level.

  5. Rhythmic Density Affects Listeners' Emotional Response to Microtiming

    Directory of Open Access Journals (Sweden)

    Olivier Senn

    2017-10-01

    – Study A investigates the effect of fixed time displacements within and between the parts played by different musicians. Listeners (n = 160 reacted negatively to irregularities within the drum track, but the mutual displacement of bass vs. drums did not have an effect.– Study B develops three metrics to calculate the average microtiming magnitude in a musical excerpt. The experiment showed that listeners' (n = 160 emotional responses to expert performance microtiming aligned with each other across styles, when microtiming magnitude was adjusted for rhythmic density. This indicates that rhythmic density is a unifying moderator for listeners' emotional response to microtiming in swing and funk.– Study C used the data from both experiments in order to compare the effect of fixed microtiming displacements (from Study A with scaled versions of the originally performed microtiming patterns (from Study B. It showed that fixed snare drum displacements irritated expert listeners more than the more flexible deviations occurring in the original performances. This provides some evidence that listeners' emotional response to microtiming deviations not only depends on the magnitude of the deviations, but also on the kind and origin of the microtiming patterns (fixed lab displacements vs. flexible performance microtiming.

  6. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    Full Text Available Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD cycles and constant darkness (DD. We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  7. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Rhythmic Haptic Stimuli Improve Short-Term Attention.

    Science.gov (United States)

    Zhang, Shusheng; Wang, Dangxiao; Afzal, Naqash; Zhang, Yuru; Wu, Ruilin

    2016-01-01

    Brainwave entrainment using rhythmic visual and/or auditory stimulation has shown its efficacy in modulating neural activities and cognitive ability. In the presented study, we aim to investigate whether rhythmic haptic stimulation could enhance short-term attention. An experiment with sensorimotor rhythm (SMR) increasing protocol was performed in which participants were presented sinusoidal vibrotactile stimulus of 15 Hz on their palm. Test of Variables of Attention (T.O.V.A.) was performed before and after the stimulating session. Electroencephalograph (EEG) was recorded across the stimulating session and the two attention test sessions. SMR band power manifested a significant increase after stimulation. Results of T.O.V.A. tests indicated an improvement in the attention of participants who had received the stimulation compared to the control group who had not received the stimulation. The D prime score of T.O.V.A. reveals that participants performed better in perceptual sensitivity and sustaining attention level compared to their baseline performance before the stimulating session. These findings highlight the potential value of using haptics-based brainwave entrainment for cognitive training.

  9. Now you hear it: a predictive coding model for understanding rhythmic incongruity

    DEFF Research Database (Denmark)

    Vuust, Peter; Dietz, Martin; Witek, Maria

    2018-01-01

    Rhythmic incongruity in the form of syncopation is a prominent feature of many contemporary musical styles. Syncopations afford incongruity between rhythmic patterns and the meter, giving rise to mental models of differently accented isochronous beats. Syncopations occur either in isolation or as...

  10. The development of rhythmic abilities among of secondary school age pupils

    Directory of Open Access Journals (Sweden)

    Chaskina O. V.

    2016-07-01

    Full Text Available this article is aimed to examine the system of development of rhythmic abilities. It is also studied and analyzed systems of development of rhythmicity of Jacques Dalcroze, V.A. Griner. The definition of the concept «rhythm» is revealed.

  11. Strength Recovery Following Rhythmic or Sustained Exercise as a Function of Time.

    Science.gov (United States)

    Kearney, Jay T.

    The relative rates of strength recovery subsequent to bouts of rhythmic or sustained isometric exercise were investigated. The 72 undergraduates who served as subjects were tested seven times within the framework of a repeated measures design. Each testing session involved two bouts of either rhythmic or sustained isometric exercise separated by a…

  12. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    Science.gov (United States)

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    Science.gov (United States)

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.

  14. Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio.

    Science.gov (United States)

    Lin, Y-T; Wu, H-T; Tsao, J; Yien, H-W; Hseu, S-S

    2014-02-01

    Heart rate variability (HRV) may reflect various physiological dynamics. In particular, variation of R-R peak interval (RRI) of electrocardiography appears regularly oscillatory in deeper levels of anaesthesia and less regular in lighter levels of anaesthesia. We proposed a new index, non-rhythmic-to-rhythmic ratio (NRR), to quantify this feature and investigated its potential to estimate depth of anaesthesia. Thirty-one female patients were enrolled in this prospective study. The oscillatory pattern transition of RRI was visualised by the time-varying power spectrum and quantified by NRR. The prediction of anaesthetic events, including skin incision, first reaction of motor movement during emergence period, loss of consciousness (LOC) and return of consciousness (ROC) by NRR were evaluated by serial prediction probability (PK ) analysis; the ability to predict the decrease of effect-site sevoflurane concentration was also evaluated. The results were compared with Bispectral Index (BIS). NRR well-predicted first reaction (PK  > 0.90) 30 s ahead, earlier than BIS and significantly better than HRV indices. NRR well-correlated with sevoflurane concentration, although its correlation was inferior to BIS, while HRV indices had no such correlation. BIS indicated LOC and ROC best. Our findings suggest that NRR provides complementary information to BIS regarding the differential effects of anaesthetics on the brain, especially the subcortical motor activity. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Persistence of a circadian rhythmicity for thyroid hormones in plasma and thyroid of hibernating male Rana ridibunda.

    Science.gov (United States)

    Kühn, E R; Delmotte, N M; Darras, V M

    1983-06-01

    The presence and circadian rhythmicity of thyroid hormones was studied in plasma and the thyroid gland of male Rana ridibunda before and during hibernation. Hibernating January frogs do have a lower T3 and T4 content of their thyroid gland whereas plasma levels of T3 are maintained and of T4 increased compared to fed September or October frogs. It seems likely that the increased photoperiod in January will be responsible for this increased T4 secretion, since controlled laboratory experiments performed in December did not reveal any influence of low temperature on circulating T3 or T4 levels. Also feeding does not influence circulating levels and thyroid content of thyroid hormones in frogs kept at room temperature during the month of January. A circadian rhythmicity of T3 and T4 in the thyroid gland is present in fed October frogs and in non fed December frogs acclimated at 5 degrees C for 12 days with an acrophase for T3 at approximately 1500 h and for T4 at around 1900 h, whereas in plasma only T3 does have circadian variations (acrophase about midnight) but not T4. When December frogs are acclimated to room temperature for 12 days, frogs are active again, but do not eat and have a lower body weight than frogs hibernating at 5 degrees C. Their T3 content of the thyroid gland has disappeared, but T4 thyroid content and plasma levels of T3 and T4 are maintained. As in hibernating frogs, no circadian variations in T4 plasma concentrations are present whereas the circadian thyroid T4 rhythm disappears. At the same time a dampening in rhythmicity for plasma T3 as judged by the significantly lower amplitude occurs. It is concluded that the persistence of circulating levels of thyroid hormones and of a circadian cyclicity for T3 in plasma in non feeding hibernating frogs may reflect the special metabolic state e.g. availability of food reserves in these animals.

  16. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks

    Directory of Open Access Journals (Sweden)

    Paul de Goede

    2018-01-01

    Full Text Available The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT, but hardly in other metabolic tissues such as skeletal muscle (SM and brown adipose tissues (BAT. We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS diet in combination with time restricted feeding (TRF to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver.

  17. Theta oscillations locked to intended actions rhythmically modulate perception.

    Science.gov (United States)

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  18. Influence of Tempo and Rhythmic Unit in Musical Emotion Regulation.

    Science.gov (United States)

    Fernández-Sotos, Alicia; Fernández-Caballero, Antonio; Latorre, José M

    2016-01-01

    This article is based on the assumption of musical power to change the listener's mood. The paper studies the outcome of two experiments on the regulation of emotional states in a series of participants who listen to different auditions. The present research focuses on note value, an important musical cue related to rhythm. The influence of two concepts linked to note value is analyzed separately and discussed together. The two musical cues under investigation are tempo and rhythmic unit. The participants are asked to label music fragments by using opposite meaningful words belonging to four semantic scales, namely "Tension" (ranging from Relaxing to Stressing), "Expressiveness" (Expressionless to Expressive), "Amusement" (Boring to Amusing) and "Attractiveness" (Pleasant to Unpleasant). The participants also have to indicate how much they feel certain basic emotions while listening to each music excerpt. The rated emotions are "Happiness," "Surprise," and "Sadness." This study makes it possible to draw some interesting conclusions about the associations between note value and emotions.

  19. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data

    Directory of Open Access Journals (Sweden)

    Sarah Lück

    2014-10-01

    Full Text Available The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

  20. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats.

    Science.gov (United States)

    Formenti, Alessandro; Zocchi, Luciano

    2014-10-01

    Respiratory neuromuscular activity needs to adapt to physiologic and pathologic conditions. We studied the conditioning effects of sensory fiber (putative Ia and II type from neuromuscular spindles) stimulation on the fictive respiratory output to the diaphragm, recorded from C4 phrenic ventral root, of in-vitro brainstem-spinal cord preparations from rats. The respiratory burst frequency in these preparations decreased gradually (from 0.26±0.02 to 0.09±0.003 bursts(-1)±SEM) as the age of the donor rats increased from zero to 4 days. The frequency greatly increased when the pH of the bath was lowered, and was significantly reduced by amiloride. C4 low threshold, sensory fiber stimulation, mimicking a stretched muscle, induced a short-term facilitation of the phrenic output increasing burst amplitude and frequency. When the same stimulus was applied contingently on the motor bursts, in an operant conditioning paradigm (a 500ms pulse train with a delay of 700ms from the beginning of the burst) a strong and persistent (>1h) increase in burst frequency was observed (from 0.10±0.007 to 0.20±0.018 bursts(-1)). Conversely, with random stimulation burst frequency increased only slightly and declined again within minutes to control levels after stopping stimulation. A forward model is assumed to interpret the data, and the notion of error signal, i.e. the sensory fiber activation indicating an unexpected stretched muscle, is re-considered in terms of the reward/punishment value. The signal, gaining hedonic value, is reviewed as a powerful unconditioned stimulus suitable in establishing a long-term operant conditioning-like process. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    Science.gov (United States)

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  2. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  3. Megascale rhythmic shoreline forms on a beach with multiple bars

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2008-06-01

    Full Text Available The study, carried out in 2003 and 2006 at the Lubiatowo Coastal ResearchStation (Poland, located on the non-tidal southern Baltic coast(tidal range < 0.06 m, focused on larger rhythmic forms (mega-cusps withwavelengths in the interval 500 m > Lc > 20 m. Statistical analyses of detailed shoreline configurations were performed mostly with the Discrete Wavelet Transformmethod (DWT. The beach is composed of fine sand with grain diameter D50 ≈ 0.22 mm, which produces 4 longshore sandbars and a gently sloping seabed with β = 0.015. The analysis confirms the key role of bars in hydro- and morphodynamic surf zone processes.The hypothesis was therefore set up that, in a surf zone with multiple bars, the bars and mega-scale shoreline rhythmic forms form one integrated physical system; experimental evidence to substantiate this hypothesis was also sought.In such a system not only do self-regulation processes include swash zone phenomena, they also incorporate processes in offshore surf zone locations.The longshore dimensions of large cusps are thus related to the distances between periodically active large bed forms (bars. The spatial dimension of bar system activity (number of active bars depends, at a given time scale, on the associated hydrodynamic conditions. It was assumed that such a time scale could include either the development and duration of a storm, or a period of stable, yet distinct waves, capable of remodelling the beach configuration.The indentation to wavelength ratio of mega-cusps for the studied non-tidal dissipative environment may be one order of magnitude greater than for mesotidal, reflective beaches.

  4. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity.

    Science.gov (United States)

    Bruckner, James V; Ramanathan, Raghupathy; Lee, K Monica; Muralidhara, Srinivasa

    2002-01-01

    The toxicity of carbon tetrachloride (CCl(4)) and certain other chemicals varies over a 24-h period. Because the metabolism of some drugs follows a diurnal rhythm, it was decided to investigate whether the hepatic metabolic activation of CCl(4) was rhythmic and coincided in time with maximum susceptibility to CCl(4) hepatotoxicity. A related objective was to test the hypothesis that abstinence from food during the sleep cycle results in lipolysis and formation of acetone, which participates in induction of liver microsomal cytochrome P450IIE1 (CYP2E1), resulting in a diurnal increase in CCl(4) metabolic activation and acute liver injury. Groups of fed and fasted male Sprague-Dawley rats were given a single oral dose of 800 mg of CCl(4)/kg at 2- to 4-h intervals over a 24-h period. Serum enzyme activities, measured 24 h post dosing as indices of acute liver injury, exhibited distinct maxima in both fed and fasted animals dosed with CCl(4) near the beginning of their dark/active cycle. Blood acetone, hepatic CYP2E1 activity, and covalent binding of (14)CCl(4)/metabolites to hepatic microsomal proteins in untreated rats fed ad libitum followed circadian rhythms similar to that of susceptibility to CCl(4). Parallel fluctuations of greater amplitude were seen in rats fasted for 24 h. Hepatic glutathione levels were lowest at the time of greatest susceptibility to CCl(4). Acetone dose-response experiments showed high correlations between blood acetone levels, CYP2E1 induction, and CCl(4)-induced liver injury. Pretreatment with diallyl sulfide suppressed CYP2E1 and abolished the circadian rhythmicity of susceptibility to CCl(4). These findings provide additional support for acetone's physiological role in CYP2E1 induction and for CYP2E1's role in modulating CCl(4) chronotoxicity in rats.

  5. Different corticospinal control between discrete and rhythmic movement of the ankle.

    Science.gov (United States)

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.

  6. Rhythmic expression of DEC2 protein in vitro and in vivo.

    Science.gov (United States)

    Sato, Fuyuki; Muragaki, Yasuteru; Kawamoto, Takeshi; Fujimoto, Katsumi; Kato, Yukio; Zhang, Yanping

    2016-06-01

    Basic helix-loop-helix (bHLH) transcription factor DEC2 (bHLHE41/Sharp1) is one of the clock genes that show a circadian rhythm in various tissues. DEC2 regulates differentiation, sleep length, tumor cell invasion and apoptosis. Although studies have been conducted on the rhythmic expression of DEC2 mRNA in various tissues, the precise molecular mechanism of DEC2 expression is poorly understood. In the present study, we examined whether DEC2 protein had a rhythmic expression. Western blot analysis for DEC2 protein revealed a rhythmic expression in mouse liver, lung and muscle and in MCF-7 and U2OS cells. In addition, AMP-activated protein kinase (AMPK) activity (phosphorylation of AMPK) in mouse embryonic fibroblasts (MEFs) exhibited a rhythmic expression under the condition of medium change or glucose-depleted medium. However, the rhythmic expression of DEC2 in MEF gradually decreased in time under these conditions. The medium change affected the levels of DEC2 protein and phosphorylation of AMPK. In addition, the levels of DEC2 protein showed a rhythmic expression in vivo and in MCF-7 and U2OS cells. The results showed that the phosphorylation of AMPK immunoreactivity was strongly detected in the liver and lung of DEC2 knockout mice compared with that of wild-type mice. These results may provide new insights into rhythmic expression and the regulation between DEC2 protein and AMPK activity.

  7. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease.

    Science.gov (United States)

    te Woerd, Erik S; Oostenveld, Robert; Bloem, Bastiaan R; de Lange, Floris P; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways.

  8. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver

    NARCIS (Netherlands)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-01-01

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms

  9. Anatomy of Respiratory Rhythmic Systems in Brain Stem and Cerebellum of the Carp

    NARCIS (Netherlands)

    Jüch, P.J.W.; Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of two respiratory rhythmic loci in the dorsal mesencephalic tegmentum were studied by retrograde and anterograde transport of horseradish peroxidase. The injection areas were determined with extracellular activity recording using HRP filled glass micropipettes,

  10. The Performance of Bach: Study of Rhythmic Timing by Skilled Musicians.

    Science.gov (United States)

    Johnson, Christopher M.

    1999-01-01

    Analyzes 15 performances of "Bach's Suite Number 3 for Violoncello solo, Bourree Number 1" and determines what patterns of rhythmic variation (rubato) were used by soloists. Indicates that the soloists demonstrated four identifiable and similar trends in the performances. (CMK)

  11. Slowed EEG rhythmicity in patients with chronic pancreatitis: evidence of abnormal cerebral pain processing?

    DEFF Research Database (Denmark)

    Olesen, Søren Schou; Hansen, Tine Maria; Gravesen, Carina

    2011-01-01

    Intractable pain usually dominates the clinical presentation of chronic pancreatitis (CP). Slowing of electroencephalogram (EEG) rhythmicity has been associated with abnormal cortical pain processing in other chronic pain disorders. The aim of this study was to investigate the spectral distribution...

  12. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    Science.gov (United States)

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (partistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all partistic gymnasts had higher lean mass (partistic and the rhythmic gymnasts (partistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, partistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  13. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  14. Rhythmic speech and stuttering reduction in a syllable-timed language.

    Science.gov (United States)

    Law, Thomas; Packman, Ann; Onslow, Mark; To, Carol K-S; Tong, Michael C-F; Lee, Kathy Y-S

    2018-06-06

    Speaking rhythmically, also known as syllable-timed speech (STS), has been known for centuries to be a fluency-inducing condition for people who stutter. Cantonese is a tonal syllable-timed language and it has been shown that, of all languages, Cantonese is the most rhythmic (Mok, 2009). However, it is not known if STS reduces stuttering in Cantonese as it does in English. This is the first study to investigate the effects of STS on stuttering in a syllable-timed language. Nineteen native Cantonese-speaking adults who stutter were engaged in conversational tasks in Cantonese under two conditions: one in their usual speaking style and one using STS. The speakers' percentage syllables stuttered (%SS) and speech rhythmicity were rated. The rhythmicity ratings were used to estimate the extent to which speakers were using STS in the syllable-timed condition. Results revealed a statistically significant reduction in %SS in the STS condition; however, this reduction was not as large as in previous studies in other languages and the amount of stuttering reduction varied across speakers. The rhythmicity ratings showed that some speakers were perceived to be speaking more rhythmically than others and that the perceived rhythmicity correlated positively with reductions in stuttering. The findings were unexpected, as it was anticipated that speakers of a highly rhythmic language such as Cantonese would find STS easy to use and that the consequent reductions in stuttering would be great, even greater perhaps than in a stress-timed language such as English. The theoretical and clinical implications of the findings are discussed.

  15. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  16. Jazz drummers recruit language-specific areas for the processing of rhythmic structure.

    Science.gov (United States)

    Herdener, Marcus; Humbel, Thierry; Esposito, Fabrizio; Habermeyer, Benedikt; Cattapan-Ludewig, Katja; Seifritz, Erich

    2014-03-01

    Rhythm is a central characteristic of music and speech, the most important domains of human communication using acoustic signals. Here, we investigated how rhythmical patterns in music are processed in the human brain, and, in addition, evaluated the impact of musical training on rhythm processing. Using fMRI, we found that deviations from a rule-based regular rhythmic structure activated the left planum temporale together with Broca's area and its right-hemispheric homolog across subjects, that is, a network also crucially involved in the processing of harmonic structure in music and the syntactic analysis of language. Comparing the BOLD responses to rhythmic variations between professional jazz drummers and musical laypersons, we found that only highly trained rhythmic experts show additional activity in left-hemispheric supramarginal gyrus, a higher-order region involved in processing of linguistic syntax. This suggests an additional functional recruitment of brain areas usually dedicated to complex linguistic syntax processing for the analysis of rhythmical patterns only in professional jazz drummers, who are especially trained to use rhythmical cues for communication.

  17. Rhythmic Cognition in Humans and Animals: Distinguishing Meter and Pulse Perception

    Directory of Open Access Journals (Sweden)

    W Tecumseh eFitch

    2013-10-01

    Full Text Available This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or 'tactus' from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of 'strength', or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g. to dance. Rhythms, from this metrical perspective, constitute 'trees in time'. Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques. The results from this new animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

  18. Neural entrainment to the rhythmic structure of music.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  19. Familiarity with music increases walking speed in rhythmic auditory cuing.

    Science.gov (United States)

    Leow, Li-Ann; Rinchon, Cricia; Grahn, Jessica

    2015-03-01

    Rhythmic auditory stimulation (RAS) is a gait rehabilitation method in which patients synchronize footsteps to a metronome or musical beats. Although RAS with music can ameliorate gait abnormalities, outcomes vary, possibly because music properties, such as groove or familiarity, differ across interventions. To optimize future interventions, we assessed how initially familiar and unfamiliar low-groove and high-groove music affected synchronization accuracy and gait in healthy individuals. We also experimentally increased music familiarity using repeated exposure to initially unfamiliar songs. Overall, familiar music elicited faster stride velocity and less variable strides, as well as better synchronization performance (matching of step tempo to beat tempo). High-groove music, as reported previously, led to faster stride velocity than low-groove music. We propose two mechanisms for familiarity's effects. First, familiarity with the beat structure reduces cognitive demands of synchronizing, leading to better synchronization performance and faster, less variable gait. Second, familiarity might have elicited faster gait by increasing enjoyment of the music, as enjoyment was higher after repeated exposure to initially low-enjoyment songs. Future studies are necessary to dissociate the contribution of these mechanisms to the observed RAS effects of familiar music on gait. © 2015 New York Academy of Sciences.

  20. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    Science.gov (United States)

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  1. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    Science.gov (United States)

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  2. Rhythmic Auditory Cueing in Motor Rehabilitation for Stroke Patients: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Yoo, Ga Eul; Kim, Soo Ji

    2016-01-01

    Given the increasing evidence demonstrating the effects of rhythmic auditory cueing for motor rehabilitation of stroke patients, this synthesized analysis is needed in order to improve rehabilitative practice and maximize clinical effectiveness. This study aimed to systematically analyze the literature on rhythmic auditory cueing for motor rehabilitation of stroke patients by highlighting the outcome variables, type of cueing, and stage of stroke. A systematic review with meta-analysis of randomized controlled or clinically controlled trials was conducted. Electronic databases and music therapy journals were searched for studies including stroke, the use of rhythmic auditory cueing, and motor outcomes, such as gait and upper-extremity function. A total of 10 studies (RCT or CCT) with 356 individuals were included for meta-analysis. There were large effect sizes (Hedges's g = 0.984 for walking velocity; Hedges's g = 0.840 for cadence; Hedges's g = 0.760 for stride length; and Hedges's g = 0.456 for Fugl-Meyer test scores) in the use of rhythmic auditory cueing. Additional subgroup analysis demonstrated that although the type of rhythmic cueing and stage of stroke did not lead to statistically substantial group differences, the effect sizes and heterogeneity values in each subgroup implied possible differences in treatment effect. This study corroborates the beneficial effects of rhythmic auditory cueing, supporting its expanded application to broadened areas of rehabilitation for stroke patients. Also, it suggests the future investigation of the differential outcomes depending on how rhythmic auditory cueing is provided in terms of type and intensity implemented. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    OpenAIRE

    te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) ...

  4. Language dominance shapes non-linguistic rhythmic grouping in bilinguals.

    Science.gov (United States)

    Molnar, Monika; Carreiras, Manuel; Gervain, Judit

    2016-07-01

    To what degree non-linguistic auditory rhythm perception is governed by universal biases (e.g., Iambic-Trochaic Law; Hayes, 1995) or shaped by native language experience is debated. It has been proposed that rhythmic regularities in spoken language, such as phrasal prosody affect the grouping abilities of monolinguals (e.g., Iversen, Patel, & Ohgushi, 2008). Here, we assessed the non-linguistic tone grouping biases of Spanish monolinguals, and three groups of Basque-Spanish bilinguals with different levels of Basque experience. It is usually assumed in the literature that Basque and Spanish have different phrasal prosodies and even linguistic rhythms. To confirm this, first, we quantified Basque and Spanish phrasal prosody (Experiment 1a) and duration patterns used in the classification of languages into rhythm classes (Experiment 1b). The acoustic measurements revealed that regularities in phrasal prosody systematically differ across Basque and Spanish; by contrast, the rhythms of the two languages are only minimally dissimilar. In Experiment 2, participants' non-linguistic rhythm preferences were assessed in response to non-linguistic tones alternating in either intensity (Intensity condition) or in duration (Duration condition). In the Intensity condition, all groups showed a trochaic grouping bias, as predicted by the Iambic-Trochaic Law. In the Duration Condition the Spanish monolingual and the most Basque-dominant bilingual group exhibited opposite grouping preferences in line with the phrasal prosodies of their native/dominant languages, trochaic in Basque, iambic in Spanish. The two other bilingual groups showed no significant biases, however. Overall, results indicate that duration-based grouping mechanisms are biased toward the phrasal prosody of the native and dominant language; also, the presence of an L2 in the environment interacts with the auditory biases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Precise temperature compensation of phase in a rhythmic motor pattern.

    Directory of Open Access Journals (Sweden)

    Lamont S Tang

    2010-08-01

    Full Text Available Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD, Lateral Pyloric (LP, and Pyloric (PY neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10 approximately 2.3 as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10's of the input conductance, synaptic currents, transient outward current (I(A, and the hyperpolarization-activated inward current (I(h, all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10's close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10's of the processes that contribute to temperature compensation of neuronal circuits.

  6. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    Science.gov (United States)

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Spontaneous movement tempo is influenced by observation of rhythmical actions.

    Science.gov (United States)

    Bove, Marco; Tacchino, Andrea; Pelosin, Elisa; Moisello, Clara; Abbruzzese, Giovanni; Ghilardi, M Felice

    2009-09-28

    Observation of people performing movements facilitates motor planning, execution and memory formation. Tempo, a crucial aspect involved in the execution of rhythmic movements, is normally perceived and learned through auditory channels. In this work, we ascertained whether: first, the frequency of self-paced finger movements (SPMs), which in normal subjects is around 2 Hz, is modified by prior observation of movements performed at either 1 or 3 Hz; second, such changes are lasting; third, there is an effect of time interval between observation and performance. We finally determined the effect of providing explicit information about the upcoming motor task. Seventy-two normal subjects (12 groups) performed a simple finger sequence at different intervals after observation of videos of either landscapes or finger opposition movements. Both with and without information about the upcoming task, observation influenced the tempo of SPMs and led to memory formation. With knowledge of the upcoming task, such changes occurred at all observation-execution intervals, while without instructions, changes took place only when SPMs were performed immediately after observation. Compared to explicit instructions, the absence of instructions produced tempo's changes that more closely resembled the observed rhythms. We conclude that learning requires a prompt comparison between visual and sensorimotor representations of movements; moreover, learning with explicit instructions is more efficient, as activity in both the dorsal and ventral streams might be potentiated by the chatecholaminergic attentional systems that promote long-term potentiation. These results provide the bases for novel neurorehabilitation strategies in terms of temporal re-organization of movement.

  8. Temporal coherence of phenological and climatic rhythmicity in Beijing

    Science.gov (United States)

    Chen, Xiaoqiu; Zhang, Weiqi; Ren, Shilong; Lang, Weiguang; Liang, Boyi; Liu, Guohua

    2017-10-01

    Using woody plant phenological data in the Beijing Botanical Garden from 1979 to 2013, we revealed three levels of phenology rhythms and examined their coherence with temperature rhythms. First, the sequential and correlative rhythm shows that occurrence dates of various phenological events obey a certain time sequence within a year and synchronously advance or postpone among years. The positive correlation between spring phenophase dates is much stronger than that between autumn phenophase dates and attenuates as the time interval between two spring phenophases increases. This phenological rhythm can be explained by positive correlation between above 0 °C mean temperatures corresponding to different phenophase dates. Second, the circannual rhythm indicates that recurrence interval of a phenophase in the same species in two adjacent years is about 365 days, which can be explained by the 365-day recurrence interval in the first and last dates of threshold temperatures. Moreover, an earlier phenophase date in the current year may lead to a later phenophase date in the next year through extending recurrence interval. Thus, the plant phenology sequential and correlative rhythm and circannual rhythm are interacted, which mirrors the interaction between seasonal variation and annual periodicity of temperature. Finally, the multi-year rhythm implies that phenophase dates display quasi-periodicity more than 1 year. The same 12-year periodicity in phenophase and threshold temperature dates confirmed temperature controls of the phenology multi-year rhythm. Our findings provide new perspectives for examining phenological response to climate change and developing comprehensive phenology models considering temporal coherence of phenological and climatic rhythmicity.

  9. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study.

    Science.gov (United States)

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the

  10. Processing rhythmic pattern during Chinese sentence reading: An eye movement study

    Directory of Open Access Journals (Sweden)

    Yingyi eLuo

    2015-12-01

    Full Text Available Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010. Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2+1]; numbers standing for the number of syllables of the verb and the noun respectively and certain combinations preferred (e.g., [1+1] or [2+2]. This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader’s eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed, less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis

  11. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson's patients.

    Directory of Open Access Journals (Sweden)

    Michael J Hove

    Full Text Available Parkinson's disease (PD and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times--rather than the 1/f structure observed in healthy gait--and this randomness of stride times (low fractal scaling predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a no auditory stimulation, b fixed-tempo RAS, and c interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (reemergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients.

  12. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    learn a closed motor skill (technique acquisition of indoor rowing. One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds. For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill – even exceeding usually expected acoustic rhythmical effects on motor learning.

  13. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.

  14. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    Science.gov (United States)

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill—even exceeding usually expected acoustic rhythmic effects on motor learning. PMID:27303255

  15. Enhanced musical rhythmic perception in Turkish early and late learners of German

    Directory of Open Access Journals (Sweden)

    Maria Paula eRoncaglia-Denissen

    2013-09-01

    Full Text Available As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position may enhance musical rhythm perception. We investigated whether second language (L2 competence affects musical rhythm aptitude in Turkish early (TELG and late learners (TLLG of German in comparison to German monolingual speakers (GMC. To account for inter-individual differences, we measured participants’ short-term and working memory capacity, melodic aptitude, and time they spent listening to music. Both L2 speaker groups perceived rhythmic variations significantly better than monolinguals. No differences were found between early and late learners’ performances. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of cognitive share between language and music.

  16. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    Science.gov (United States)

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  17. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.

    Science.gov (United States)

    Sumbre, Germán; Muto, Akira; Baier, Herwig; Poo, Mu-ming

    2008-11-06

    The ability to process temporal information is fundamental to sensory perception, cognitive processing and motor behaviour of all living organisms, from amoebae to humans. Neural circuit mechanisms based on neuronal and synaptic properties have been shown to process temporal information over the range of tens of microseconds to hundreds of milliseconds. How neural circuits process temporal information in the range of seconds to minutes is much less understood. Studies of working memory in monkeys and rats have shown that neurons in the prefrontal cortex, the parietal cortex and the thalamus exhibit ramping activities that linearly correlate with the lapse of time until the end of a specific time interval of several seconds that the animal is trained to memorize. Many organisms can also memorize the time interval of rhythmic sensory stimuli in the timescale of seconds and can coordinate motor behaviour accordingly, for example, by keeping the rhythm after exposure to the beat of music. Here we report a form of rhythmic activity among specific neuronal ensembles in the zebrafish optic tectum, which retains the memory of the time interval (in the order of seconds) of repetitive sensory stimuli for a duration of up to approximately 20 s. After repetitive visual conditioning stimulation (CS) of zebrafish larvae, we observed rhythmic post-CS activities among specific tectal neuronal ensembles, with a regular interval that closely matched the CS. Visuomotor behaviour of the zebrafish larvae also showed regular post-CS repetitions at the entrained time interval that correlated with rhythmic neuronal ensemble activities in the tectum. Thus, rhythmic activities among specific neuronal ensembles may act as an adjustable 'metronome' for time intervals in the order of seconds, and serve as a mechanism for the short-term perceptual memory of rhythmic sensory experience.

  18. Different corticospinal control between discrete and rhythmic movement of the ankle

    OpenAIRE

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of t...

  19. A Rhythmic Musical Intervention for Poor Readers: A Comparison of Efficacy with a Letter-Based Intervention

    Science.gov (United States)

    Bhide, Adeetee; Power, Alan; Goswami, Usha

    2013-01-01

    There is growing evidence that children with reading difficulties show impaired auditory rhythm perception and impairments in musical beat perception tasks. Rhythmic musical interventions with poorer readers may thus improve rhythmic entrainment and consequently improve reading and phonological skills. Here we compare the effects of a musical…

  20. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    Science.gov (United States)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  1. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    Science.gov (United States)

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.

  2. The Beat Goes on: Rhythmic Modulation of Cortical Potentials by Imagined Tapping

    Science.gov (United States)

    Osman, Allen; Albert, Robert; Ridderinkhof, K. Richard; Band, Guido; van der Molen, Maurits

    2006-01-01

    A frequency analysis was used to tag cortical activity from imagined rhythmic movements. Participants synchronized overt and imagined taps with brief visual stimuli presented at a constant rate, alternating between left and right index fingers. Brain potentials were recorded from across the scalp and topographic maps made of their power at the…

  3. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    Science.gov (United States)

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  4. Separating bathymetric data representing multiscale rhythmic bed forms : a geostatistical and spectral method compared

    NARCIS (Netherlands)

    van Dijk, Thaiënne A.G.P.; Lindenbergh, Roderik C.; Egberts, Paul J.P.

    2008-01-01

    The superimposition of rhythmic bed forms of different spatial scales is a common and natural phenomenon on sandy seabeds. The dynamics of such seabeds may interfere with different offshore activities and are therefore of interest to both scientists and offshore developers. State-of-the-art echo

  5. An analysis of rhythmic ratios in scores of various kinds of music

    NARCIS (Netherlands)

    Sadakata, M.; Desain, P.W.M.; Honing, H.J.; Lipscomb, S.D.; Ashley, R.; Gjerdignen, R.O.; Webster, P.

    2004-01-01

    The aim of this study is to investigate our daily experience of rhythm. The frequency of occurrence of rhythmic patterns consisting of two intervals was counted in different music corpora. Only subdivisions of metrical units were considered. A very large corpus of diverse kinds of music (western

  6. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.

    Science.gov (United States)

    Lappe, Claudia; Lappe, Markus; Pantev, Christo

    2016-01-01

    Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Pott, F; Madsen, P

    1998-01-01

    The rate of metabolism in forearm flexor muscles (MO2) was derived from near-infrared spectroscopy (NIRS-O2) during ischaemia at rest rhythmic handgrip at 15% and 30% of maximal voluntary contraction (MVC), post-exercise muscle ischaemia (PEMI), and recovery in seven subjects. The MO2 was compared...

  8. Inter-limb coupling in bimanual rhythmic coordination in Parkinson's disease

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    2004-01-01

    Recently, it has been shown that rhythmic inter-limb coordination is disturbed in patients with Parkinson's disease (PD). The present study aims to investigate whether this coordination deficit is primarily the result of an impaired coupling, related to hypoactivation of the supplementary motor area

  9. Rhythmic EEG patterns in extremely preterm infants : Classification and association with brain injury and outcome

    NARCIS (Netherlands)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C.; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-01-01

    OBJECTIVE: Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. METHODS: Retrospective analysis of 77 infants born <28 weeks gestational age (GA) who had a 2-channel EEG during the first 72 h after birth. Patterns detected by the BrainZ seizure

  10. Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults.

    Science.gov (United States)

    De Guio, François; Jacobson, Sandra W; Molteno, Christopher D; Jacobson, Joseph L; Meintjes, Ernesta M

    2012-02-01

    This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Towards a Rhythmanalysis of Debt Dressage: Education as Rhythmic Resistance in Everyday Indebted Life

    Science.gov (United States)

    Wozniak, Jason Thomas

    2017-01-01

    Debt shapes subjectivity by rhythmically training indebted subjects. Stated slightly differently, there exists a debt dressage that produces indebted subjectivity. One of the principle aims of this article is to introduce rhythm into the debt analysis debates. Building on Henri Lefebvre's book "Rhythmanalysis: Space, Time and Everyday…

  12. The Relationship between Reduplicated Babble Onset and Laterality Biases in Infant Rhythmic Arm Movements

    Science.gov (United States)

    Iverson, Jana M.; Hall, Amanda J.; Nickel, Lindsay; Wozniak, Robert H.

    2007-01-01

    This study examined changes in rhythmic arm shaking and laterality biases in infants observed longitudinally at three points: just prior to, at, and just following reduplicated babble onset. Infants (ranging in age from 4 to 9 months at babble onset) were videotaped at home as they played with two visually identical audible and silent rattles…

  13. Some phonetic experiments on : Double stress and rhythmic variation in R.P. English

    NARCIS (Netherlands)

    Heuven, van V.J.J.P.

    1974-01-01

    This thesis examines the phonetic nature of so-called double-stressed words in English (also called equal- stressed or even-stressed), and the susceptibility of these words to rhythmic adjustment (stress clash avoidance). An acoustic analysis of stress correlates was made of disyllabic words

  14. Auditory Processing Interventions and Developmental Dyslexia: A Comparison of Phonemic and Rhythmic Approaches

    Science.gov (United States)

    Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha

    2013-01-01

    The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…

  15. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    Science.gov (United States)

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  16. Effects of Musicality on the Perception of Rhythmic Structure in Speech

    Directory of Open Access Journals (Sweden)

    Natalie Boll-Avetisyan

    2017-04-01

    Full Text Available Language and music share many rhythmic properties, such as variations in intensity and duration leading to repeating patterns. Perception of rhythmic properties may rely on cognitive networks that are shared between the two domains. If so, then variability in speech rhythm perception may relate to individual differences in musicality. To examine this possibility, the present study focuses on rhythmic grouping, which is assumed to be guided by a domain-general principle, the Iambic/Trochaic law, stating that sounds alternating in intensity are grouped as strong-weak, and sounds alternating in duration are grouped as weak-strong. German listeners completed a grouping task: They heard streams of syllables alternating in intensity, duration, or neither, and had to indicate whether they perceived a strong-weak or weak-strong pattern. Moreover, their music perception abilities were measured, and they filled out a questionnaire reporting their productive musical experience. Results showed that better musical rhythm perception ability was associated with more consistent rhythmic grouping of speech, while melody perception ability and productive musical experience were not. This suggests shared cognitive procedures in the perception of rhythm in music and speech. Also, the results highlight the relevance of considering individual differences in musicality when aiming to explain variability in prosody perception.

  17. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease

    NARCIS (Netherlands)

    Woerd, E.S. te; Oostenveld, R.; Bloem, B.R.; Lange, F.P. de; Praamstra, P.

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this

  18. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    Science.gov (United States)

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  19. Enhanced musical rhythmic perception in Turkish early and late learners of German

    NARCIS (Netherlands)

    Roncaglia-Denissen, M.P.; Schmidt-Kassow, M.; Heine, A.; Vuust, P.; Kotz, S.A.

    2013-01-01

    As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different

  20. Neurobiological Foundations of Neurologic Music Therapy: Rhythmic Entrainment and the Motor System

    Directory of Open Access Journals (Sweden)

    Michael eThaut

    2015-02-01

    Full Text Available AbstractEntrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks and biological systems (e.g. fire flies. However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al, 1999. Physiological, kinematic and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of Neurologic Music Therapy.

  1. Speak on time! Effects of a musical rhythmic training on children with hearing loss.

    Science.gov (United States)

    Hidalgo, Céline; Falk, Simone; Schön, Daniele

    2017-08-01

    This study investigates temporal adaptation in speech interaction in children with normal hearing and in children with cochlear implants (CIs) and/or hearing aids (HAs). We also address the question of whether musical rhythmic training can improve these skills in children with hearing loss (HL). Children named pictures presented on the screen in alternation with a virtual partner. Alternation rate (fast or slow) and the temporal predictability (match vs mismatch of stress occurrences) were manipulated. One group of children with normal hearing (NH) and one with HL were tested. The latter group was tested twice: once after 30 min of speech therapy and once after 30 min of musical rhythmic training. Both groups of children (NH and with HL) can adjust their speech production to the rate of alternation of the virtual partner. Moreover, while children with normal hearing benefit from the temporal regularity of stress occurrences, children with HL become sensitive to this manipulation only after rhythmic training. Rhythmic training may help children with HL to structure the temporal flow of their verbal interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rhythmic Rituals and Emergent Listening: Intra-Activity, Sonic Sounds and Digital Composing with Young Children

    Science.gov (United States)

    Wargo, Jon M.

    2017-01-01

    (Re)Entering data from a networked collaborative project exploring how sound operates as a mechanism for attuning towards cultural difference and community literacies, this article examines one primary grade classroom's participation to investigate the rhythmic rituals of 'emergent listening' in early childhood literacy. Thinking with sound…

  3. Gender Differences in Musical Aptitude, Rhythmic Ability and Motor Performance in Preschool Children

    Science.gov (United States)

    Pollatou, Elisana; Karadimou, Konstantina; Gerodimos, Vasilios

    2005-01-01

    Most of the preschool curricula involve integrated movement activities that combine music, rhythm and locomotor skills. The purpose of the current study was to examine whether there are any differences between boys and girls at the age of five concerning their musical aptitude, rhythmic ability and performance in gross motor skills. Ninety-five…

  4. Association of Periodic and Rhythmic Electroencephalographic Patterns With Seizures in Critically Ill Patients.

    Science.gov (United States)

    Rodriguez Ruiz, Andres; Vlachy, Jan; Lee, Jong Woo; Gilmore, Emily J; Ayer, Turgay; Haider, Hiba Arif; Gaspard, Nicolas; Ehrenberg, J Andrew; Tolchin, Benjamin; Fantaneanu, Tadeu A; Fernandez, Andres; Hirsch, Lawrence J; LaRoche, Suzette

    2017-02-01

    Periodic and rhythmic electroencephalographic patterns have been associated with risk of seizures in critically ill patients. However, specific features that confer higher seizure risk remain unclear. To analyze the association of distinct characteristics of periodic and rhythmic patterns with seizures. We reviewed electroencephalographic recordings from 4772 critically ill adults in 3 academic medical centers from February 2013 to September 2015 and performed a multivariate analysis to determine features associated with seizures. Continuous electroencephalography. Association of periodic and rhythmic patterns and specific characteristics, such as pattern frequency (hertz), Plus modifier, prevalence, and stimulation-induced patterns, and the risk for seizures. Of the 4772 patients included in our study, 2868 were men and 1904 were women. Lateralized periodic discharges (LPDs) had the highest association with seizures regardless of frequency and the association was greater when the Plus modifier was present (58%; odds ratio [OR], 2.00, P rhythmic delta activity (LRDA) were associated with seizures in a frequency-dependent manner (1.5-2 Hz: GPDs, 24%,OR, 2.31, P = .02; LRDA, 24%, OR, 1.79, P = .05; ≥ 2 Hz: GPDs, 32%, OR, 3.30, P rhythmic delta activity compared with no periodic or rhythmic pattern (13%, OR, 1.18, P = .26). Higher prevalence of LPDs and GPDs also conferred increased seizure risk (37% frequent vs 45% abundant/continuous, OR, 1.64, P = .03 for difference; 8% rare/occasional vs 15% frequent, OR, 2.71, P = .03, vs 23% abundant/continuous, OR, 1.95, P = .04). Patterns associated with stimulation did not show an additional risk for seizures from the underlying pattern risk (P > .10). In this study, LPDs, LRDA, and GPDs were associated with seizures while generalized rhythmic delta activity was not. Lateralized periodic discharges were associated with seizures at all frequencies with and without Plus modifier, but LRDA and GPDs were associated with

  5. Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Okada

    Full Text Available The pedunculopontine tegmental nucleus (PPTN has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson's disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey's attentional and vigilance state to perform the task.

  6. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat.

    Science.gov (United States)

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).

  7. Rhesus monkeys (Macaca mulatta detect rhythmic groups in music, but not the beat.

    Directory of Open Access Journals (Sweden)

    Henkjan Honing

    Full Text Available It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs in two rhesus monkeys (Macaca mulatta, probing a well-documented component in humans, the mismatch negativity (MMN to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1. Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2 and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3. In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm, the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group, but not to the induced beat (detecting a regularity from a varying rhythm.

  8. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Erik S. te Woerd

    2015-01-01

    Full Text Available The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i entrainment of slow oscillations, (ii the depth of beta power modulation, and (iii whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways.

  9. Feeding Your Baby

    Medline Plus

    Full Text Available ... care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your baby Family ... community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in ...

  10. Feeding Your Baby

    Medline Plus

    Full Text Available ... our online community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please ... been added to your dashboard . Time to eat! Feeding your baby helps her grow healthy and strong. ...

  11. Breastfeeding vs. Formula Feeding

    Science.gov (United States)

    ... for Educators Search English Español Breastfeeding vs. Formula Feeding KidsHealth / For Parents / Breastfeeding vs. Formula Feeding What's ... work with a lactation specialist. All About Formula Feeding Commercially prepared infant formulas are a nutritious alternative ...

  12. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  13. Animal Feeding Operations

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Animal Feeding Operations Recommend on Facebook Tweet Share Compartir ... of Concentrated Animal Feeding Operations (CAFOs) What are Animal Feeding Operations (AFOs)? According to the United States ...

  14. Study on the rhythmic variation of plasma cortisol levels in patients with essential hypertension (EH) and coronary heart disease (CHD)

    International Nuclear Information System (INIS)

    Zhu Mei; Wu Guo; Li Ying

    2007-01-01

    Objective: To study the rhythmic fluctuation of plasma cortisol levels in patients with EH and CHD. Methods: Plasma cortisol levels were determined with RIA at 8Am, 4Pm and midnight in 61 patients with EH, 46 patients with CHD and 36 controls. Results: The normal rhythmic fluctuation pattern of plasma cortisol levels was retained in the EH and CHD patients. However, the levels were all significantly higher in the patients than those in the controls, especially in the midnight specimens. Conclusion: Marked elevated plasma cortisol levels were observed in patients with EH and CHD, with the normal rhythmic fluctuation pattern retained. (authors)

  15. Improvement of technical training of sportswomen in rhythmic gymnastics by means of acrobatics at the stage of preliminary basic preparation

    Directory of Open Access Journals (Sweden)

    Petro Kyzim

    2016-10-01

    Full Text Available Purpose: to prove experimentally the technique of improvement of technical training of sportswomen in rhythmic gymnastics by means of acrobatics at the stage of preliminary basic preparation. Material & Methods: the following methods of the research were used: analysis and synthesis of references, pedagogical observations, pedagogical testing, pedagogical experiment, method of expert assessment (qualimetry, methods of mathematical statistics. Results: the level of technical skill of performance of pre-acrobatic elements by sportswomen of rhythmic gymnastics before carrying out the pedagogical experiment is determined. The dynamics of indicators of the level of technical preparedness of sportswomen of rhythmic gymnastics is defined. Conclusions: it is established that additional resources of acrobatics influence significantly the level of technical preparedness of sportswomen of rhythmic gymnastics at the stage of preliminary basic preparation.

  16. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    Science.gov (United States)

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  17. Analysis of rhythmic variance - ANORVA. A new simple method for detecting rhythms in biological time series

    Directory of Open Access Journals (Sweden)

    Peter Celec

    2004-01-01

    Full Text Available Cyclic variations of variables are ubiquitous in biomedical science. A number of methods for detecting rhythms have been developed, but they are often difficult to interpret. A simple procedure for detecting cyclic variations in biological time series and quantification of their probability is presented here. Analysis of rhythmic variance (ANORVA is based on the premise that the variance in groups of data from rhythmic variables is low when a time distance of one period exists between the data entries. A detailed stepwise calculation is presented including data entry and preparation, variance calculating, and difference testing. An example for the application of the procedure is provided, and a real dataset of the number of papers published per day in January 2003 using selected keywords is compared to randomized datasets. Randomized datasets show no cyclic variations. The number of papers published daily, however, shows a clear and significant (p<0.03 circaseptan (period of 7 days rhythm, probably of social origin

  18. Rhythmic synchronization tapping to an audio–visual metronome in budgerigars

    Science.gov (United States)

    Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa

    2011-01-01

    In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio–visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans. PMID:22355637

  19. Rhythmic synchronization tapping to an audio-visual metronome in budgerigars.

    Science.gov (United States)

    Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa

    2011-01-01

    In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio-visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans.

  20. Internal ribosomal entry site-mediated translation is important for rhythmic PERIOD1 expression.

    Directory of Open Access Journals (Sweden)

    Kyung-Ha Lee

    Full Text Available The mouse PERIOD1 (mPER1 plays an important role in the maintenance of circadian rhythm. Translation of mPer1 is directed by both a cap-dependent process and cap-independent translation mediated by an internal ribosomal entry site (IRES in the 5' untranslated region (UTR. Here, we compared mPer1 IRES activity with other cellular IRESs. We also found critical region in mPer1 5'UTR for heterogeneous nuclear ribonucleoprotein Q (HNRNPQ binding. Deletion of HNRNPQ binding region markedly decreased IRES activity and disrupted rhythmicity. A mathematical model also suggests that rhythmic IRES-dependent translation is a key process in mPER1 oscillation. The IRES-mediated translation of mPer1 will help define the post-transcriptional regulation of the core clock genes.

  1. Tempo discrimination of musical patterns: effects due to pitch and rhythmic structure.

    Science.gov (United States)

    Boltz, M G

    1998-11-01

    The purpose of this research was to investigate a set of factors that may influence the perceived rate of an auditory event. In a paired-comparison task, subjects were presented with a set of music-like patterns that differed in their relative number of contour changes and in the magnitude of pitch skips (Experiment 1) as well as in the compatibility of rhythmic accent structure with the arrangement of pitch relations (Experiment 2) Results indicated that, relative to their standard referents, comparison melodies were judged to unfold more slowly when they displayed more changes in pitch direction, greater pitch distances, and an incompatible rhythmic accent structure. These findings are suggested to stem from an imputed velocity hypothesis, in which people overgeneralize certain invariant relations that typically occur between melodic and temporal accent structure within Western music.

  2. Relations between female students' personality traits and reported handicaps to rhythmic gymnastics performance.

    Science.gov (United States)

    Ferrand, Claude; Champely, Stephane; Brunel, Philippe C

    2005-04-01

    The present study evaluated the relative contributions of Self-esteem, Trait anxiety, and Public Self-consciousness to self-handicapping on a sex-typed task, within a specific academic sport context. Prior to the competitive examination used to recruit French Physical Education Teachers, female sport students (N = 74) were asked to list and rate on a 7-point scale handicaps which could be disruptive to their Rhythmic Gymnastics performance. Self-esteem did not account for significant variance in any category of handicaps. Trait Anxiety was negatively related to handicaps related to Rhythmic Gymnastics and to Social and Work Commitments. Public Self-consciousness was significantly related to endorsement of Friends and Family Commitments handicaps. These results were discussed in relation to the literature.

  3. Facial Muscle Coordination in Monkeys During Rhythmic Facial Expressions and Ingestive Movements

    Science.gov (United States)

    Shepherd, Stephen V.; Lanzilotto, Marco; Ghazanfar, Asif A.

    2012-01-01

    Evolutionary hypotheses regarding the origins of communication signals generally, and primate orofacial communication signals in particular, suggest that these signals derive by ritualization of noncommunicative behaviors, notably including ingestive behaviors such as chewing and nursing. These theories are appealing in part because of the prominent periodicities in both types of behavior. Despite their intuitive appeal, however, there are little or no data with which to evaluate these theories because the coordination of muscles innervated by the facial nucleus has not been carefully compared between communicative and ingestive movements. Such data are especially crucial for reconciling neurophysiological assumptions regarding facial motor control in communication and ingestion. We here address this gap by contrasting the coordination of facial muscles during different types of rhythmic orofacial behavior in macaque monkeys, finding that the perioral muscles innervated by the facial nucleus are rhythmically coordinated during lipsmacks and that this coordination appears distinct from that observed during ingestion. PMID:22553017

  4. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data.

    Science.gov (United States)

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

  5. Classification of rhythmic locomotor patterns in electromyographic signals using fuzzy sets

    Directory of Open Access Journals (Sweden)

    Thrasher Timothy A

    2011-12-01

    Full Text Available Abstract Background Locomotor control is accomplished by a complex integration of neural mechanisms including a central pattern generator, spinal reflexes and supraspinal control centres. Patterns of muscle activation during walking exhibit an underlying structure in which groups of muscles seem to activate in united bursts. Presented here is a statistical approach for analyzing Surface Electromyography (SEMG data with the goal of classifying rhythmic "burst" patterns that are consistent with a central pattern generator model of locomotor control. Methods A fuzzy model of rhythmic locomotor patterns was optimized and evaluated using SEMG data from a convenience sample of four able-bodied individuals. As well, two subjects with pathological gait participated: one with Parkinson's Disease, and one with incomplete spinal cord injury. Subjects walked overground and on a treadmill while SEMG was recorded from major muscles of the lower extremities. The model was fit to half of the recorded data using non-linear optimization and validated against the other half of the data. The coefficient of determination, R2, was used to interpret the model's goodness of fit. Results Using four fuzzy burst patterns, the model was able to explain approximately 70-83% of the variance in muscle activation during treadmill gait and 74% during overground gait. When five burst functions were used, one function was found to be redundant. The model explained 81-83% of the variance in the Parkinsonian gait, and only 46-59% of the variance in spinal cord injured gait. Conclusions The analytical approach proposed in this article is a novel way to interpret multichannel SEMG signals by reducing the data into basic rhythmic patterns. This can help us better understand the role of rhythmic patterns in locomotor control.

  6. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  7. The properties and interrelationships of various force-time parameters during maximal repeated rhythmic grip.

    Science.gov (United States)

    Nakada, Masakatsu; Demura, Shinichi; Yamaji, Shunsuke

    2007-01-01

    The purpose of this study was to examine the properties and interrelationships of various force-time parameters including the inflection point for the rate of decline in force during a maximal repeated rhythmic grip. Fifteen healthy males (age M=21.5, SD=2.1 yr, height M=172.4, SD=5.7 cm, body mass M=68.2, SD=9.2 kg) participated in this study. Subjects performed a maximal repeated rhythmic grip with maximal effort with a target frequency of 30 grip.min(-1) for 6 min. The force value decreased linearly and markedly until about 70% of maximal strength for about 55 s after the onset of a maximal repeated rhythmic grip, and then decreased moderately. Because all parameters showed fair or good correlations between 3 min and 6 min, they are considered to be able to sufficiently evaluate muscle endurance for 3 min instead of 6 min. However, there were significant differences between 3 min and 6 min in the integrated area, the final force, the rate of the decrement constant (k) fitting the force decreasing data to y=ae(-kx)+b and the force of maximal difference between the force and a straight line from peak force to the final force. Their parameters may vary generally by the length of a steady state, namely, a measurement time. The final force value before finishing and the rate of the decrement constant (k) reflect the latter phase during a maximal repeated rhythmic grip. Although many parameters show relatively high mutual relationships, the rate constant (k) shows relatively low correlations with other parameters. We inferred that decreasing the time until 80% of maximal strength and the amount of the decrement force for the first 1 min reflect a linear decrease in the initial phase.

  8. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  9. The impact of the perception of rhythmic music on self-paced oscillatory movements.

    Science.gov (United States)

    Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel

    2014-01-01

    Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric

  10. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control

    OpenAIRE

    Blasiak, Anna; Gundlach, Andrew L.; Hess, Grzegorz; Lewandowski, Marian H.

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psych...

  11. The impact of the perception of rhythmic music on oscillatory self-paced movements

    Directory of Open Access Journals (Sweden)

    Mathieu ePeckel

    2014-09-01

    Full Text Available Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20s before a 2s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e. motor/perceptual resonance. In general, our results give support to the notion that rhythmic music is processed in a

  12. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    Science.gov (United States)

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  13. Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music

    Directory of Open Access Journals (Sweden)

    Peter eVuust

    2014-10-01

    Full Text Available Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of predictive coding, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a predictive coding model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (‘rhythm’ and the brain’s anticipatory structuring of music (‘meter’. Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the predictive coding theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  14. MEG time-frequency analyses for pre- and post-surgical evaluation of patients with epileptic rhythmic fast activity.

    Science.gov (United States)

    Sueda, Keitaro; Takeuchi, Fumiya; Shiraishi, Hideaki; Nakane, Shingo; Asahina, Naoko; Kohsaka, Shinobu; Nakama, Hideyuki; Otsuki, Taisuke; Sawamura, Yutaka; Saitoh, Shinji

    2010-02-01

    To evaluate the effectiveness of surgery for epilepsy, we analyzed rhythmic fast activity by magnetoencephalography (MEG) before and after surgery using time-frequency analysis. To assess reliability, the results obtained by pre-surgical MEG and intraoperative electrocorticography were compared. Four children with symptomatic localization-related epilepsy caused by circumscribed cortical lesion were examined in the present study using 204-channel helmet-shaped MEG with a sampling rate of 600Hz. One patient had dysembryoplastic neuroepithelial tumor (DNT) and three patients had focal cortical dysplasia (FCD). Aberrant areas were superimposed, to reconstruct 3D MRI images, and illustrated as moving images. In three patients, short-time Fourier transform (STFT) analyses of MEG showed rhythmic activities just above the lesion with FCD and in the vicinity of DNT. In one patient with FCD in the medial temporal lobe, rhythmic activity appeared in the ipsilateral frontal lobe and temporal lateral aspect. These findings correlate well with the results obtained by intraoperative electrocorticography. After the surgery, three patients were relieved of their seizures, and the area of rhythmic MEG activity disappeared or become smaller. One patient had residual rhythmic MEG activity, and she suffered from seizure relapse. Time-frequency analyses using STFT successfully depicted MEG rhythmic fast activity, and would provide valuable information for pre- and post-surgical evaluations to define surgical strategies for patients with epilepsy.

  15. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study.

    Science.gov (United States)

    Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung

    2014-01-01

    Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.

  16. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    Science.gov (United States)

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  17. Sequentially allocated clinical trial of rhythmic stabilization exercises and TENS in women with chronic low back pain.

    Science.gov (United States)

    Kofotolis, Nikolaos D; Vlachopoulos, Symeon P; Kellis, Eleftherios

    2008-02-01

    To examine the effectiveness of rhythmic stabilization exercises and transcutaneous electrical nerve stimulation (TENS) and their combination in treating women with chronic low back pain. Sequentially allocated, single-blinded and controlled study, with a two-month follow-up. The data were collected in a patient rehabilitation setting. A total of 92 women (34-46 years old) with chronic low back pain were studied. Sequential allocation was undertaken into four groups: ;rhythmic stabilization' (n=23), ;rhythmic stabilization - TENS' (n=23), TENS (n=23), and a placebo group (n = 23). Each programme lasted for four weeks. All outcome measures were assessed prior to, immediately after, four weeks and eight weeks post intervention. Data were obtained on functional disability, pain intensity, trunk extension range of motion, dynamic endurance of trunk flexion and static endurance of trunk extension. A total of 88 patients provided two-month follow-up data. The ;rhythmic stabilization' and the ;rhythmic stabilization - TENS' groups displayed statistically significant (Ppain intensity (ranging from 21.2 to 42.8%), trunk extension range of motion (ranging from 6.5 to 25.5%), dynamic endurance of trunk flexion and static endurance of trunk extension (ranging from 13.5 to 74.3%) compared with the remaining groups. The rhythmic stabilization programmes resulted in more gains in women with chronic low back pain regarding the present outcome variables compared with the other groups; therefore, its application in female chronic low back pain patients aged 34-46 years is recommended.

  18. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  19. Analysis of amplitude-phase disturbances of Wolf's numbers rhythmic structure

    International Nuclear Information System (INIS)

    Vojchishin, K.S.

    1978-01-01

    Statistical analysis of Wolf's number rhythmic structure has been carried out. Wolf's number time series is considered as a stochastic signal with irregular disturbances of rhythmic structure appearing because of random variability of single cycle parameters. A method and an algorythm for transforming the signal, to reduce all quasi-eleven-year cycles of mean-monthly Wolf's numbers to a signal mean duration, to find out and to eliminate rhythmic phase disturbances, are proposed. An estimate of the accuracy of the procedure is given. The results of calculations (on the mean duration range of cycles) of estimates of their mathematical expectation, dispersion and correlation function depending on time and its shift are given. The conclusion that Wolf's number time series may be treated as a sequence of stochastic cycles with randomly varying amplitude, duration and phase is grounded. A possibility for reducing the forecast of smoothed mean-monthly Wolf's numbers for one or more cycles ahead to the forecast of only three abovementioned parameters is pointed out

  20. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    Science.gov (United States)

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available Freezing of gait (FOG in Parkinson's disease (PD rises in prevalence when the effect of medications decays. It is known that auditory rhythmic stimulation improves gait in patients without FOG (PD-FOG, but its putative effect on patients with FOG (PD+FOG at the end of dose has not been evaluated yet. This work evaluates the effect of auditory rhythmic stimulation on PD+FOG at the end of dose. 10 PD+FOG and 9 PD-FOG patients both at the end of dose periods, and 10 healthy controls were asked to perform several walking tasks. Tasks were performed in the presence and absence of auditory sensory stimulation. All PD+FOG suffered FOG during the task. The presence of auditory rhythmic stimulation (10% above preferred walking cadence led PD+FOG to significantly reduce FOG. Velocity and cadence were increased, and turn time reduced in all groups. We conclude that auditory stimulation at the frequency proposed may be useful to avoid freezing episodes in PD+FOG.

  2. Rhythm, movement, and autism: Using rhythmic rehabilitation research as a model for autism

    Directory of Open Access Journals (Sweden)

    A. Blythe eLaGasse

    2013-03-01

    Full Text Available Recently, there has been increased focus on movement and sensory abnormalities in autism spectrum disorders (ASD. This has come from research demonstrating cortical and cerebellar difference in autism, with suggestion of early cerebellar dysfunction. As evidence for an extended profile of ASD grows, there are vast implications for treatment and therapy for individuals with autism. Persons with autism are often provided behavioral or cognitive strategies for navigating their environment; however, these strategies do not consider differences in motor functioning. One accommodation that has not yet been explored in the literature is the use of auditory rhythmic cueing to improve motor functioning in ASD. The purpose of this paper is to illustrate the potential impact of auditory rhythmic cueing for motor functioning in persons with ASD. To this effect, we review research on rhythm in motor rehabilitation, draw parallels to motor dysfunction in ASD, and propose a rationale for how rhythmic input can improve sensorimotor functioning, thereby allowing individuals with autism to demonstrate their full cognitive, behavioral, social, and communicative potential.

  3. A tapping device for recording and quantitative characterization of rhythmic/auditory sequences.

    Science.gov (United States)

    Piazza, Caterina; Cesareo, Ambra; Caccia, Martina; Reni, Gianluigi; Lorusso, Maria L

    2017-07-01

    The processing of auditory stimuli is essential for the correct perception of language and deficits in this ability are often related to the presence or development of language disorders. The motor imitation (e.g. tapping or beating) of rhythmic sequences can be a very sensitive correlate of deficits in auditory processing. Thus, the study of the tapping performance, with the investigation of both temporal and intensity information, might be very useful. The present work is aimed at the development and preliminary testing of a tapping device to be used for the imitation and/or the production of rhythmic sequences, allowing the recording of both tapping duration and intensity. The device is essentially made up of a Force Sensing Resistor and an Arduino UNO board. It was validated using different sampling frequencies (f s ) in a group of 10 young healthy adults investigating its efficacy in terms of touch and intensity detection by means of two testing procedures. Results demonstrated a good performance of the device when programmed with fs equal to 50 and 100Hz. Moreover, both temporal and intensity parameters were extracted, thus supporting the potential use of the device for the analysis of the imitation or production of rhythmic sequences. This work represents a first step for the development of a useful, low cost tool to support the diagnosis, training and rehabilitation of language disorders.

  4. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    Science.gov (United States)

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Model of rhythmic ball bouncing using a visually controlled neural oscillator.

    Science.gov (United States)

    Avrin, Guillaume; Siegler, Isabelle A; Makarov, Maria; Rodriguez-Ayerbe, Pedro

    2017-10-01

    The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. NEW & NOTEWORTHY The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment. Copyright © 2017 the American Physiological Society.

  6. Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.

    Science.gov (United States)

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  7. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    Science.gov (United States)

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  8. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    Science.gov (United States)

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  9. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P rhythmic auditory stimulation (P rhythmic auditory stimulation (P rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  10. Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing

    Directory of Open Access Journals (Sweden)

    Soo Ji Kim

    2017-09-01

    Full Text Available Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of

  11. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    Science.gov (United States)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Feeding Your Baby

    Medline Plus

    Full Text Available ... for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth ... for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth ...

  13. Feeding Your Baby

    Medline Plus

    Full Text Available ... questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your baby E- ... We're working to radically improve the health care they receive. We're pioneering research to find ...

  14. Feeding Your Baby

    Medline Plus

    Full Text Available ... fitness Prenatal care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your ... fitness Prenatal care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your ...

  15. Feeding Your Baby

    Medline Plus

    Full Text Available ... Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in all fields. Please enter a valid e-mail address. Your information: Your recipient's information: Your ...

  16. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  17. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  18. Feeding Your Baby

    Medline Plus

    Full Text Available ... Frequently asked questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in all fields. Please enter a ...

  19. Feeding Your Baby

    Medline Plus

    Full Text Available ... Frequently asked questions Email sign up Join our online community March for Babies Nacersano Share Your Story ... Frequently asked questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your ...

  20. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

    Science.gov (United States)

    Lappe, Claudia; Steinsträter, Olaf; Pantev, Christo

    2013-01-01

    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

  1. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics.

    Science.gov (United States)

    Donti, Olyvia; Bogdanis, Gregory C; Kritikou, Maria; Donti, Anastasia; Theodorakou, Kalliopi

    2016-06-01

    This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years) were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22) based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0), shoulder flexion (p=0.01, d=0.8), straight leg raise (p=0.004, d=0.9), sideways leg extension (p=0.002, d=0.9) and body fat (p=.021, d=0.7), but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, panalysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9%) of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers), physical fitness seems to have a greater effect on the technical execution score.

  2. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carlo C Lazado

    Full Text Available The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2, RAR-related orphan receptor A (rora and timeless (tim displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2, and period 2a and 2b (per2a and per2b. Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded domain-containing protein (npas1 and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock, npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1, and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5 and muscleblind-like 1 (mbnl1 strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.

  3. Source localization of rhythmic ictal EEG activity: a study of diagnostic accuracy following STARD criteria.

    Science.gov (United States)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana; Åkeson, Per; Pedersen, Birthe; Pinborg, Lars H; Ziebell, Morten; Jespersen, Bo; Fuglsang-Frederiksen, Anders

    2013-10-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal EEG activity using a distributed source model. Source localization of rhythmic ictal scalp EEG activity was performed in 42 consecutive cases fulfilling inclusion criteria. The study was designed according to recommendations for studies on diagnostic accuracy (STARD). The initial ictal EEG signals were selected using a standardized method, based on frequency analysis and voltage distribution of the ictal activity. A distributed source model-local autoregressive average (LAURA)-was used for the source localization. Sensitivity, specificity, and measurement of agreement (kappa) were determined based on the reference standard-the consensus conclusion of the multidisciplinary epilepsy surgery team. Predictive values were calculated from the surgical outcome of the operated patients. To estimate the clinical value of the ictal source analysis, we compared the likelihood ratios of concordant and discordant results. Source localization was performed blinded to the clinical data, and before the surgical decision. Reference standard was available for 33 patients. The ictal source localization had a sensitivity of 70% and a specificity of 76%. The mean measurement of agreement (kappa) was 0.61, corresponding to substantial agreement (95% confidence interval (CI) 0.38-0.84). Twenty patients underwent resective surgery. The positive predictive value (PPV) for seizure freedom was 92% and the negative predictive value (NPV) was 43%. The likelihood ratio was nine times higher for the concordant results, as compared with the discordant ones. Source localization of rhythmic ictal activity using a distributed source model (LAURA) for the ictal EEG signals selected with a standardized method

  4. Effect of rhythmic auditory cueing on gait in people with Alzheimer disease.

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-04-01

    To determine whether rhythmic music and metronome cues alter spatiotemporal gait measures and gait variability in people with Alzheimer disease (AD). A repeated-measures study requiring participants to walk under different cueing conditions. University movement laboratory. Of the people (N=46) who met study criteria (a diagnosis of probable AD and ability to walk 100m) at routine medical review, 30 (16 men; mean age ± SD, 80±6y; revised Addenbrooke's Cognitive Examination range, 26-79) volunteered to participate. Participants walked 4 times over an electronic walkway synchronizing to (1) rhythmic music and (2) a metronome set at individual mean baseline comfortable speed cadence. Gait spatiotemporal measures and gait variability (coefficient of variation [CV]). Data from individual walks under each condition were combined. A 1-way repeated-measures analysis of variance was used to compare uncued baseline, cued, and retest measures. Gait velocity decreased with both music and metronome cues compared with baseline (baseline, 110.5cm/s; music, 103.4cm/s; metronome, 105.4cm/s), primarily because of significant decreases in stride length (baseline, 120.9cm; music, 112.5cm; metronome, 114.8cm) with both cue types. This was coupled with increased stride length variability compared with baseline (baseline CV, 3.4%; music CV, 4.3%; metronome CV, 4.5%) with both cue types. These changes did not persist at (uncued) retest. Temporal variability was unchanged. Rhythmic auditory cueing at comfortable speed tempo produced deleterious effects on gait in a single session in this group with AD. The deterioration in spatial gait parameters may result from impaired executive function associated with AD. Further research should investigate whether these instantaneous cue effects are altered with more practice or with learning methods tailored to people with cognitive impairment. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights

  5. Synthesis of high-complexity rhythmic signals for closed-loop electrical neuromodulation.

    Science.gov (United States)

    Zalay, Osbert C; Bardakjian, Berj L

    2013-06-01

    We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs of similar waveform and complexity to the biological system. This has enabled CRG network models to be used as platforms for testing seizure control strategies. Presently, we take the application one step further, envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network, forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and high phase coherence in the network. The tuned therapeutic network generated a high-complexity, multi-banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation using complex, biomimetic signals may provide an improvement over conventional electrical stimulation techniques for treating neurological disorders such as epilepsy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    Donti Olyvia

    2016-06-01

    Full Text Available This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22 based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0, shoulder flexion (p=0.01, d=0.8, straight leg raise (p=0.004, d=0.9, sideways leg extension (p=0.002, d=0.9 and body fat (p=.021, d=0.7, but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, p<0.05, sideways leg extension (r=0.687, p<0.01, push ups (r=0.437, p<0.05 and body fat (r=0.642, p<0.01, while there was only one significant correlation with sideways leg extension (r=0.467, p<0.05 for the qualifiers. Multiple regression analysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9% of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers, physical fitness seems to have a greater effect on the technical execution score.

  7. Neural entrainment to rhythmically-presented auditory, visual and audio-visual speech in children

    Directory of Open Access Journals (Sweden)

    Alan James Power

    2012-07-01

    Full Text Available Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal ‘samples’ of information from the speech stream at different rates, phase-resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (‘phase locking’. Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase-locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically-developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate based on repetition of the syllable ba, presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a talking head. To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the ba stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a ba in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling

  8. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Rafael Chacolla-Huaringa

    2017-07-01

    Full Text Available Circadian rhythms are essential for temporal (~24 h regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.

  9. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection

    Directory of Open Access Journals (Sweden)

    Claudia eLappe

    2013-06-01

    Full Text Available The mismatch negativity (MMN, an event-related potential (ERP representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a mismatch negativity in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge.We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG, inferior frontal cortex (IFC, and the superior frontal (SFG and orbitofrontal (OFG gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilatral activation within the vicinity of auditory cortices and in the inferior parietal lobule, an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the the dual-pathway model of auditory processing.

  10. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  11. Breast-Feeding Twins: Making Feedings Manageable

    Science.gov (United States)

    ... Department of Health and Human Services Office on Women's Health. http://www.womenshealth.gov/publications/our-publications/breastfeeding-guide. Accessed March 11, 2015. Shelov SP, et al. Feeding your ...

  12. Feed safety in the feed supply chain

    Directory of Open Access Journals (Sweden)

    Pinotti, L.

    2011-01-01

    Full Text Available A number of issues have weakened the public's confidence in the quality and wholesomeness of foods of animal origin. As a result farmers, nutritionists, industry and governments have been forced to pay serious attention to animal feedstuff production processes, thereby acknowledging that animal feed safety is an essential prerequisite for human food safety. Concerns about these issues have produced a number of important effects including the ban on the use of processed animal proteins, the ban on the addition of most antimicrobials to farm animals diets for growth‐promotion purposes, and the implementation of feed contaminant regulations in the EU. In this context it is essential to integrate knowledge on feed safety and feed supply. Consequently, purchase of new and more economic sources of energy and protein in animal diets, which is expected to conform to adequate quality, traceability, environmental sustainability and safety standards, is an emerging issue in livestock production system.

  13. The influence of oxytocin on interpersonal rhythmic synchronization and social bonding

    DEFF Research Database (Denmark)

    Gebauer, Line; Witek, Maria; Hansen, Niels Chr.

    oxytocin. In this study we investigated the role of oxytocin on interpersonal rhythmic synchronization, and its relation to pro-social effects, using an interactive finger tapping setup. Pairs of two tapped together, and both participants in each pair received either oxytocin or a non-active placebo...... as nasal spray. Our preliminary analyses showed trends in which intranasally administered oxytocin improved interpersonal synchronization. In this poster we present the full data set and analysis of the effect of oxytocin on interpersonal synchronization and social bonding....

  14. Non-linear changes in rhythmic variability of European art music: Quantitative support for historical musicology

    DEFF Research Database (Denmark)

    Hansen, Niels Chr.; Sadakata, Makiko; Pearce, Marcus

    It is a long-held belief in historical musicology that the prosody of composers’ native languages is reflected in the rhythmic and melodic properties of their music. Applying the normalised Pairwise Variability Index (nPVI) to speech alongside musical scores, research has established quantitative...... music up until the mid-19th century, after which French music diverged into an Austro-German school and a French nationalist school. In sum, using musical nPVI analysis, we provide quantitative support for music-historical descriptions of an Italian-dominated Baroque (composer birth years: 1600...

  15. Ground Reaction Forces Generated During Rhythmical Squats as a Dynamic Loads of the Structure

    Science.gov (United States)

    Pantak, Marek

    2017-10-01

    Dynamic forces generated by moving persons can lead to excessive vibration of the long span, slender and lightweight structure such as floors, stairs, stadium stands and footbridges. These dynamic forces are generated during walking, running, jumping and rhythmical body swaying in vertical or horizontal direction etc. In the paper the mathematical models of the Ground Reaction Forces (GRFs) generated during squats have been presented. Elaborated models was compared to the GRFs measured during laboratory tests carried out by author in wide range of frequency using force platform. Moreover, the GRFs models were evaluated during dynamic numerical analyses and dynamic field tests of the exemplary structure (steel footbridge).

  16. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O

    2018-01-11

    The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

  17. Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury.

    Science.gov (United States)

    Kim, Soo Ji; Shin, Yoon-Kyum; Yoo, Ga Eul; Chong, Hyun Ju; Cho, Sung-Rae

    2016-12-01

    The effects of rhythmic auditory stimulation (RAS) on gait in adolescents with acquired brain injury (ABI) were investigated. A total of 14 adolescents with ABI were initially recruited, and 12 were included in the final analysis (n = 6 each). They were randomly assigned to the experimental (RAS) or the control (conventional gait training) groups. The experimental group received gait training with RAS three times a week for 4 weeks. For both groups, spatiotemporal parameters and kinematic data, such as dynamic motions of joints on three-dimensional planes during a gait cycle and the range of motion in each joint, were collected. Significant group differences in pre-post changes were observed in cadence, walking velocity, and step time, indicating that there were greater improvements in those parameters in the RAS group compared with the control group. Significant increases in hip and knee motions in the sagittal plane were also observed in the RAS group. The changes in kinematic data significantly differed between groups, particularly from terminal stance to mid-swing phase. An increase of both spatiotemporal parameters and corresponding kinematic changes of hip and knee joints after RAS protocol indicates that the use of rhythmic cueing may change gait patterns in adolescents with ABI. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  18. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    Science.gov (United States)

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  19. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices

    Directory of Open Access Journals (Sweden)

    Jean-Marc eIsrael

    2016-03-01

    Full Text Available Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  20. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  1. What is orgasm? A model of sexual trance and climax via rhythmic entrainment

    Science.gov (United States)

    Safron, Adam

    2016-01-01

    Orgasm is one of the most intense pleasures attainable to an organism, yet its underlying mechanisms remain poorly understood. On the basis of existing literatures, this article introduces a novel mechanistic model of sexual stimulation and orgasm. In doing so, it characterizes the neurophenomenology of sexual trance and climax, describes parallels in dynamics between orgasms and seizures, speculates on possible evolutionary origins of sex differences in orgasmic responding, and proposes avenues for future experimentation. Here, a model is introduced wherein sexual stimulation induces entrainment of coupling mechanical and neuronal oscillatory systems, thus creating synchronized functional networks within which multiple positive feedback processes intersect synergistically to contribute to sexual experience. These processes generate states of deepening sensory absorption and trance, potentially culminating in climax if critical thresholds are surpassed. The centrality of rhythmic stimulation (and its modulation by salience) for surpassing these thresholds suggests ways in which differential orgasmic responding between individuals—or with different partners—may serve as a mechanism for ensuring adaptive mate choice. Because the production of rhythmic stimulation combines honest indicators of fitness with cues relating to potential for investment, differential orgasmic response may serve to influence the probability of continued sexual encounters with specific mates. PMID:27799079

  2. Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate.

    Science.gov (United States)

    Gámez, Jorge; Yc, Karyna; Ayala, Yaneri A; Dotov, Dobromir; Prado, Luis; Merchant, Hugo

    2018-04-30

    Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli. However, it is still unknown whether monkeys can predictively entrain to dynamic tempo changes like humans. To address this question, we trained monkeys in three tapping tasks and compared their rhythmic entrainment abilities with those of humans. We found that, when immediate feedback about the timing of each movement is provided, monkeys can predictively entrain to an isochronous beat, generating tapping movements in anticipation of the metronome pulse. This ability also generalized to a novel untrained tempo. Notably, macaques can modify their tapping tempo by predicting the beat changes of accelerating and decelerating visual metronomes in a manner similar to humans. Our findings support the notion that nonhuman primates share with humans the ability of temporal anticipation during tapping to isochronous and smoothly changing sequences of stimuli. © 2018 New York Academy of Sciences.

  3. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    Science.gov (United States)

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  4. Rehabilitation of Aphasia: application of the Melodic-Rhythmic Therapy to the Italian Language

    Directory of Open Access Journals (Sweden)

    Maria Daniela eCortese

    2015-09-01

    Full Text Available Aphasia is a complex disorder, frequent after stroke (~38%, with a detailed pathophysiological characterization. Proper approaches are mandatory to devise an efficient rehabilitative strategy, in order to address the everyday life and professional disability. Several rehabilitative procedures are based on psycholinguistic, cognitive, psychosocial or pragmatic approaches, among these with neurobehavioral ratio, the Melodic Intonation Therapy (MIT .Van Eeckhout’s adaptation to the French language (Melodic-Rhythmic Therapy: MRT has implemented the training strategy by adding a rhythmic structure reproducing the French prosody.Purposes of this study were to adapt the MRT rehabilitation procedures to the Italian language and to verify its efficacy in a group of 6 chronic patients (5 males with severe non-fluent aphasia and without specific aphasic treatments at least from 9 months. The patients were treated 4 days a week for 16 weeks, with sessions of 30-40 min. They were assessed 6 months after the end of the treatment (follow-up. The patients showed a significant improvement at the Aachener Aphasie Test in different fields of spontaneous speech, with superimposable results at the follow-up. Albeit preliminary, these findings support the use of MRT in the rehabilitation after stroke. Specifically, MRT seems to benefit from its stronger structure than the available stimulation-facilitation procedures and allows a better quantification of the rehabilitation efficacy.

  5. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control.

    Science.gov (United States)

    Blasiak, Anna; Gundlach, Andrew L; Hess, Grzegorz; Lewandowski, Marian H

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the "control" of the "master biological clock" reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.

  6. Electrophysiological Study of Algorithmically Processed Metric/Rhythmic Variations in Language and Music

    Directory of Open Access Journals (Sweden)

    Magne Cyrille

    2007-01-01

    Full Text Available This work is the result of an interdisciplinary collaboration between scientists from the fields of audio signal processing, phonetics and cognitive neuroscience aiming at studying the perception of modifications in meter, rhythm, semantics and harmony in language and music. A special time-stretching algorithm was developed to work with natural speech. In the language part, French sentences ending with tri-syllabic congruous or incongruous words, metrically modified or not, were made. In the music part, short melodies made of triplets, rhythmically and/or harmonically modified, were built. These stimuli were presented to a group of listeners that were asked to focus their attention either on meter/rhythm or semantics/harmony and to judge whether or not the sentences/melodies were acceptable. Language ERP analyses indicate that semantically incongruous words are processed independently of the subject's attention thus arguing for automatic semantic processing. In addition, metric incongruities seem to influence semantic processing. Music ERP analyses show that rhythmic incongruities are processed independently of attention, revealing automatic processing of rhythm in music.

  7. Electrophysiological Study of Algorithmically Processed Metric/Rhythmic Variations in Language and Music

    Directory of Open Access Journals (Sweden)

    Richard Kronland-Martinet

    2007-12-01

    Full Text Available This work is the result of an interdisciplinary collaboration between scientists from the fields of audio signal processing, phonetics and cognitive neuroscience aiming at studying the perception of modifications in meter, rhythm, semantics and harmony in language and music. A special time-stretching algorithm was developed to work with natural speech. In the language part, French sentences ending with tri-syllabic congruous or incongruous words, metrically modified or not, were made. In the music part, short melodies made of triplets, rhythmically and/or harmonically modified, were built. These stimuli were presented to a group of listeners that were asked to focus their attention either on meter/rhythm or semantics/harmony and to judge whether or not the sentences/melodies were acceptable. Language ERP analyses indicate that semantically incongruous words are processed independently of the subject's attention thus arguing for automatic semantic processing. In addition, metric incongruities seem to influence semantic processing. Music ERP analyses show that rhythmic incongruities are processed independently of attention, revealing automatic processing of rhythm in music.

  8. Study on Quality Indicator System of Rhythmic Gymnasts in Analytic Hierarchy Process

    Science.gov (United States)

    Luo, Lin

    2017-08-01

    The rhythmic gymnastics (RG) is a sport item with the direct aim of winning as well as a good ornamental value. The scientific selection by the rhythmic gymnasts is necessary for the success, and also the beginning for the scientific training of the gymnasts in their special training stage. According to RG characteristics and the physical characteristics of the gymnasts, also in combination with the investigations & interviews to the coaches who have years of training experience in RG, the experts & scholars on RG study & teaching in universities, and by referring to relevant documents, this paper established the quality indicator system in analytic hierarchy process (AHP). We summarized and selected several indicators obviously influencing the RG training and divided them into the three types of factors: physical factors, flexibility & strength factors, and speed & dexterity factors, according to which 12 specific indicators, their weights and comprehensive evaluation coefficients. Based on these indicators, we established the quality indicator system of the gymnasts, and developed corresponding software system, providing scientific theoretical basis & practical application basis for the selection & evaluation of the gymnasts.

  9. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    Science.gov (United States)

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  10. Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster.

    Science.gov (United States)

    Beckwith, Esteban J; Hernando, Carlos E; Polcowñuk, Sofía; Bertolin, Agustina P; Mancini, Estefania; Ceriani, M Fernanda; Yanovsky, Marcelo J

    2017-10-01

    Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period ( per ) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model. Copyright © 2017 by the Genetics Society of America.

  11. Muscle Coactivation during Stability Exercises in Rhythmic Gymnastics: A Two-Case Study

    Directory of Open Access Journals (Sweden)

    Alicja Rutkowska-Kucharska

    2018-01-01

    Full Text Available Balance exercises in rhythmic gymnastics are performed on tiptoes, which causes overload of foot joints. This study aimed to evaluate the engagement of muscles stabilizing ankle and knee joints in balance exercises and determine exercises which may lead to ankle and knee joint injuries. It was hypothesized that long-term training has an influence on balance control and efficient use of muscles in their stabilizing function. Two rhythmic gymnasts (8 and 21 years old performed balances on tiptoes (side split with hand support, ring with hand support and on a flat foot (back split without hand support exercise. Surface electromyography, ground reaction forces, and kinematic parameters of movement were measured. The measuring systems applied were synchronized with the BTS SMART system. The results show the necessity to limit balance exercises on tiptoes in children because gastrocnemius medialis (GM and gastrocnemius lateralis (GL activity significantly exceeds their activity. Ankle joint stabilizing activity of GM and GL muscles in the younger gymnast was more important than in the older one. Performing this exercise, the younger gymnast distributed load on the anterior side of the foot while the older one did so on its posterior. Gymnastics coaches should be advised to exclude ring with hand support exercise from the training of young gymnasts.

  12. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    Science.gov (United States)

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes

    Directory of Open Access Journals (Sweden)

    Hualin Wang

    2018-04-01

    Full Text Available The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON, a high-fat diet (HFD group or a HFD supplemented with fish oil (FO group for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.

  14. Differentiation of PC12 Cells Results in Enhanced VIP Expression and Prolonged Rhythmic Expression of Clock Genes

    DEFF Research Database (Denmark)

    Pretzmann, C.P.; Fahrenkrug, J.; Georg, B.

    2008-01-01

    To examine for circadian rhythmicity, the messenger RNA (mRNA) amount of the clock genes Per1 and Per2 was measured in undifferentiated and nerve-growth-factor-differentiated PC12 cells harvested every fourth hour. Serum shock was needed to induce circadian oscillations, which in undifferentiated...... PC12 cultures lasted only one 24-h period, while in differentiated cultures, the rhythms continued for at least 3 days. Thus, neuronal differentiation provided PC12 cells the ability to maintain rhythmicity for an extended period. Both vasoactive intestinal polypeptide (VIP) and its receptor VPAC(2...

  15. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    Science.gov (United States)

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  16. Biogas feed analysis

    OpenAIRE

    Song, Yuan

    2008-01-01

    Biogas production is regarded as the best energy recovery process from wet organic solid wastes (WOSW). Feed composition, storage conditions and time will influence the compositions of feed to biogas processes. In this study, apple juice from Meierienes Juice factory was used as the model substrates to mimic the liquid phase that can be extracted from fruit or juice industry WOSW. A series of batch experiments were carried out with different initial feed concentrations (0, 1, 2, 5, 10 %) of a...

  17. Breastfeeding is best feeding.

    Science.gov (United States)

    Cutting, W

    1995-02-01

    The traditional practice of breast feeding is the best means to make sure infants grow up healthy. It costs nothing. Breast milk contains antibodies and other substances which defend against disease, especially those linked to poor food hygiene and inadequate water and sanitation. In developing countries, breast fed infants are at least 14 times less likely to die from diarrhea than those who are not breast fed. Urbanization and promotion of infant formula undermine breast feeding. Even though infants up to age 4-6 months should receive only breast milk to remain as healthy as possible, infants aged less than 4-6 months often receive other milks or gruels. Attendance of health workers at delivery and their contact with mother-infant pairs after delivery are ideal opportunities to encourage mothers to breast feed. In fact, if health workers provide mothers skilled support with breast feeding, mothers are more likely to breast feed well and for a longer time. Health workers need counseling skills and firm knowledge of techniques on breast feeding and of how to master common difficulties to help mothers with breast feeding. Listening skills and confidence building skills are also needed. Good family and work place support allows women in paid employment outside the home to continue breast feeding. Breast feeding is very important in emergency situations where access to water, sanitation, food, and health care is limited (e.g., refugee camps). In these situations, health workers should especially be aware of women's ability to breast feed and to support their breast feeding. HIV can be transmitted to nursing infants from HIV infected mothers. Yet one must balance this small risk against the possibility of contracting other serious infections (e.g., diarrhea) through alternative infant feeding, particularly if there is no access to potable water and sanitation.

  18. NUCLEOTIDES IN INFANT FEEDING

    Directory of Open Access Journals (Sweden)

    L.G. Mamonova

    2007-01-01

    Full Text Available The article reviews the application of nucleotides-metabolites, playing a key role in many biological processes, for the infant feeding. The researcher provides the date on the nucleotides in the women's milk according to the lactation stages. She also analyzes the foreign experience in feeding newborns with nucleotides-containing milk formulas. The article gives a comparison of nucleotides in the adapted formulas represented in the domestic market of the given products.Key words: children, feeding, nucleotides.

  19. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  20. 2. Rhythmical Creativity in Duple and Triple Meter of Students of Early-School Education in the Light of Their Stabilised Musical Aptitudes and Rhythm Readiness to Improvise

    Directory of Open Access Journals (Sweden)

    Kołodziejski Maciej

    2018-03-01

    Full Text Available The article presents the results of (author's own research on the students of earlyschool education imitation and the rhythmical improvisation in the light of their stabilised musical aptitudes measured with Edwin E. Gordon's AMMA test and also Edwin E. Gordon's readiness to rhythm improvisation readiness record (RIRR. In the first part of the research the students imitated some rhythmical patterns diversified in terms of difficulty in duple and triple meter and the subsequent part concerned guiding the oral rhythmical dialogue (on the BAH syllable by the teacher with the application of various rhythmical motives in different metres. The students' both imitative and improvising performances were rated by three competent judges. What was undertaken was searching for the relations between musical aptitudes, improvisation readiness and the pupils' rhythmical imitation and improvisation abilities.

  1. Selection of Feed Intake or Feed Efficiency

    DEFF Research Database (Denmark)

    Veerkamp, Roel F; Pryce, Jennie E; Spurlock, Diane

    2013-01-01

    . In February 2013, the co-authors discussed how information on DMI should be incorporated in the breeding decisions. The aim of this paper is to present the overall discussion and main positions taken by the group on four topics related to feed efficiency: i) breeding goal definition; ii) biological variation...

  2. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    Science.gov (United States)

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional

  3. Feeding Your Baby

    Medline Plus

    Full Text Available ... baby formula , find out how to choose the best one for your baby and how to make bottle-feeding safe. And then get ready for solid foods ! In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to ...

  4. Feeding Your Baby

    Medline Plus

    Full Text Available ... In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to breastfeed Keeping breast milk safe and healthy Problems and discomforts when breastfeeding Starting your baby on solid foods Using a breast pump Baby Feeding your baby ...

  5. Feeding Your Baby

    Medline Plus

    Full Text Available ... In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to breastfeed Keeping a breastfeeding log Keeping breast milk safe and healthy Problems and discomforts when breastfeeding Starting your baby on solid foods Using a breast pump Baby Feeding your baby ...

  6. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease

    NARCIS (Netherlands)

    Zhao, Yan; Nonnekes, Johan Hendrik; Storcken, Erik J.M.; Janssen, Sabine; van Wegen, Erwin E.H.; Bloem, Bastiaan R.; Dorresteijn, Lucille D.A.; van Vugt, Jeroen P.P.; Heida, Tjitske; van Wezel, Richard Jack Anton

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson’s disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  7. The Development of Rhythm at the Age of 6-11 Years: Non-Pitch Rhythmic Improvisation

    Science.gov (United States)

    Paananen, Pirkko

    2006-01-01

    In the statistical and transcriptional analyses reported in this exploratory study, original rhythms of 6-11-year-old children (N=36) were examined. The hypotheses were based on a new model of musical development, and tested empirically using non-pitch rhythmic improvisation in a MIDI-environment. Several representational types were found in…

  8. Where Is the Beat? The Neural Correlates of Lexical Stress and Rhythmical Well-formedness in Auditory Story Comprehension.

    Science.gov (United States)

    Kandylaki, Katerina D; Henrich, Karen; Nagels, Arne; Kircher, Tilo; Domahs, Ulrike; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina; Wiese, Richard

    2017-07-01

    While listening to continuous speech, humans process beat information to correctly identify word boundaries. The beats of language are stress patterns that are created by combining lexical (word-specific) stress patterns and the rhythm of a specific language. Sometimes, the lexical stress pattern needs to be altered to obey the rhythm of the language. This study investigated the interplay of lexical stress patterns and rhythmical well-formedness in natural speech with fMRI. Previous electrophysiological studies on cases in which a regular lexical stress pattern may be altered to obtain rhythmical well-formedness showed that even subtle rhythmic deviations are detected by the brain if attention is directed toward prosody. Here, we present a new approach to this phenomenon by having participants listen to contextually rich stories in the absence of a task targeting the manipulation. For the interaction of lexical stress and rhythmical well-formedness, we found one suprathreshold cluster localized between the cerebellum and the brain stem. For the main effect of lexical stress, we found higher BOLD responses to the retained lexical stress pattern in the bilateral SMA, bilateral postcentral gyrus, bilateral middle fontal gyrus, bilateral inferior and right superior parietal lobule, and right precuneus. These results support the view that lexical stress is processed as part of a sensorimotor network of speech comprehension. Moreover, our results connect beat processing in language to domain-independent timing perception.

  9. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    NARCIS (Netherlands)

    Woerd, E.S. te; Oostenveld, R.; Bloem, B.R.; Lange, F.P. de; Praamstra, P.

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this

  10. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos E.; Kiehn, Ole

    2006-01-01

    % of the recorded RCs fired in-phase with the ipsilateral L2 flexor-related rhythm, whereas the rest fired in the extensor phase. Each population of RCs fired throughout the corresponding locomotor phase. All RCs received both excitatory and inhibitory synaptic inputs during the locomotor-like rhythmic activity...

  11. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease

    NARCIS (Netherlands)

    Zhao, Y; Nonnekes, J.H.; Storcken, E.J.; Janssen, S.; Wegen, E. van; Bloem, B.R.; Dorresteijn, L.D.A.; Vugt, J.P.P. van; Heida, T.; Wezel, R.J.A. van

    2016-01-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  12. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease

    NARCIS (Netherlands)

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R.; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-01-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson’s disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory

  13. Rhythm and amplitude of rhythmic masticatory muscle activity during sleep in bruxers - comparison with gum chewing.

    Science.gov (United States)

    Matsuda, Shinpei; Yamaguchi, Taihiko; Mikami, Saki; Okada, Kazuki; Gotouda, Akihito; Sano, Kazuo

    2016-07-01

    The aim of this study was to elucidate characteristics of rhythmic masticatory muscle activity (RMMA) during sleep by comparing masseteric EMG (electromyogram) activities of RMMA with gum chewing. The parts of five or more consecutive phasic bursts in RMMA of 23 bruxers were analyzed. Wilcoxon signed-rank test for matched pairs and Spearman's correlation coefficient by the rank test were used for statistical analysis. Root mean square value of RMMA phasic burst was smaller than that during gum chewing, but correlates to that of gum chewing. The cycle of RMMA was longer than that of gum chewing due to the longer burst duration of RMMA, and variation in the cycles of RMMA was wider. These findings suggest that the longer but smaller EMG burst in comparison with gum chewing is one of the characteristics of RMMA. The relation between size of RMMA phasic bursts and gum chewing is also suggested.

  14. Krüppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity.

    Science.gov (United States)

    Fan, Liyan; Hsieh, Paishiun N; Sweet, David R; Jain, Mukesh K

    2018-04-01

    Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A critical review of rhythmic recitation of Charakasamhita as per Chhanda Shastra.

    Science.gov (United States)

    Panja, Asit

    2013-04-01

    Charakasamhita is one of the most important life lines of Ayurvedic classical knowledge. This supreme text of "science of life" has been composed nearly about 3000 years ago and before the well-established era of documentation. It is composed in the then language, style, and method. The ancient scholars of Ayurveda have presented it in such a way that all three kinds of pupil can get the matter easily. Nearly two thirds of the compendium is shaped in verse form according to rules and regulations of Chhandashastra of classical Sanskrit literature to retain in memory for a long time. With the advent of time this classical practice of recitation has been gradually losing its popularity and as a result the proper Ayurvedic learning cannot be completely possible in the current era. This review consists of methods of rhythmic recitation of all verses of Charakasamhita with notations and classical analysis.

  16. Neuromuscular-skeletal origins of predominant patterns of coordination in rhythmic two-joint arm movement.

    Science.gov (United States)

    de Rugy, Aymar; Riek, Stephan; Carson, Richard G

    2006-01-01

    The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination- (SP) at the elbow-joint complex. Participants (N=10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. The result provides evidence that the predominance of the in-phase pattern originates in the influence of neuromuscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.

  17. Eating disorders, energy intake, training volume, and menstrual function in high-level modern rhythmic gymnasts.

    Science.gov (United States)

    Sundgot-Borgen, J

    1996-06-01

    This study examined clinical and subclinical eating disorders (EDs) in young Norwegian modern rhythmic gymnasts. Subjects were 12 members of the national team, age 13-20 years, and individually matched nonathletic controls. All subjects participated in a structured clinical interview for EDs, medical examination, and dietary analysis. Two of the gymnasts met the DSM-III-R criteria for anorexia nervosa, and 2 met the criteria for anorexia athletica (a subclinical ED). All the gymnasts were dieting in spite of the fact that they were all extremely lean. The avoidance of maturity, menstrual irregularities, energy deficit, high training volume, and high frequency of injuries were common features among the gymnasts. Ther is a need to learn more about risk factors and the etiology of EDs in different sports. Coaches, parents, and athletes need more information about principles of proper nutrition and methods to achieve ideal body composition for optional health and athletic performance.

  18. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  19. Acquisition of speech rhythm in a second language by learners with rhythmically different native languages.

    Science.gov (United States)

    Ordin, Mikhail; Polyanskaya, Leona

    2015-08-01

    The development of speech rhythm in second language (L2) acquisition was investigated. Speech rhythm was defined as durational variability that can be captured by the interval-based rhythm metrics. These metrics were used to examine the differences in durational variability between proficiency levels in L2 English spoken by French and German learners. The results reveal that durational variability increased as L2 acquisition progressed in both groups of learners. This indicates that speech rhythm in L2 English develops from more syllable-timed toward more stress-timed patterns irrespective of whether the native language of the learner is rhythmically similar to or different from the target language. Although both groups showed similar development of speech rhythm in L2 acquisition, there were also differences: German learners achieved a degree of durational variability typical of the target language, while French learners exhibited lower variability than native British speakers, even at an advanced proficiency level.

  20. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Plomgaard, Peter; Krogh-Madsen, Rikke

    2006-01-01

    /P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control...... and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1......Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L...

  1. Self-Generated Auditory Feedback as a Cue to Support Rhythmic Motor Stability

    Directory of Open Access Journals (Sweden)

    Gopher Daniel

    2011-12-01

    Full Text Available A goal of the SKILLS project is to develop Virtual Reality (VR-based training simulators for different application domains, one of which is juggling. Within this context the value of multimodal VR environments for skill acquisition is investigated. In this study, we investigated whether it was necessary to render the sounds of virtual balls hitting virtual hands within the juggling training simulator. First, we recorded sounds at the jugglers’ ears and found the sound of ball hitting hands to be audible. Second, we asked 24 jugglers to juggle under normal conditions (Audible or while listening to pink noise intended to mask the juggling sounds (Inaudible. We found that although the jugglers themselves reported no difference in their juggling across these two conditions, external juggling experts rated rhythmic stability worse in the Inaudible condition than in the Audible condition. This result suggests that auditory information should be rendered in the VR juggling training simulator.

  2. Goal orientations and sport motivation, differences between the athletes of competitive and non-competitive rhythmic gymnastics.

    Science.gov (United States)

    Koumpoula, M; Tsopani, D; Flessas, K; Chairopoulou, C

    2011-09-01

    The present study examines the sport motivation and the goal orientations in the competitive and non-competitive structure of rhythmic gymnastics. Participation of individuals in one or the other structure of the sport differs in line with the goals they want to achieve and possibly also with respect to the factors that impulse them to take part in one or the other. The purpose of this study is to examine how individuals who participate in different structures of the sport of rhythmic gymnastics differentiate with regard to the type of motivation (intrinsic, extrinsic, amotivation) and goal orientations. The study involved 98 young female rhythmic gymnastics athletes (aged 14 years and up), out of which 40 were athletes of competitive clubs or members of national teams, and 58 were athletes of non-competitive clubs. For the evaluation of motivation and goal orientations the following tools were used: the Sport Motivation Scale (SMS) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ). Descriptive and inductive statistical data analysis was conducted. The results showed that the athletes of the non-competitive structure presented higher levels of introjected regulation (extrinsic motivation), amotivation and lower levels of ego orientation (PRhythmic gymnastics athletes' (regardless of the structure of the sport) presented high level in task orientation while the high levels of task orientation is positively associated with high levels of intrinsic motivation regardless of the levels of ego orientation. The intrinsic motivation of athletes participating in rhythmic gymnastics runs at high levels. The amotivation of rhythmic gymnastics athletes' is a phenomenon which is also presented in the the non-competitive sport structure. It is important that the two different structures of sports be determined with accurate criteria.

  3. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2018-01-01

    Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.

  4. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ghai S

    2017-12-01

    Full Text Available Shashank Ghai,1 Ishan Ghai,2 Alfred O. Effenberg1 1Institute for Sports Science, Leibniz University Hannover, Hannover, Germany; 2School of Life Sciences, Jacobs University, Bremen, Germany Abstract: Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge’s g=0.9, gait velocity (1.1, cadence (0.3, and stride length (0.5. This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to

  5. Effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability

    Directory of Open Access Journals (Sweden)

    Behrouz Ghorban Zadeh

    2015-10-01

    Full Text Available Objective: Fundamental motor skills are the foundation of special skills. The purpose of this study was to study the effectiveness of the teaching of perceptual-motor practices and rhythmic movement on motor development in children with intellectual disability. Materials & Methods: In this quasi-excremental study, 30 children aged 7 to 10 years old were selected through random cluster sampling method from elementary schools in Tabriz city. They were homogenized in two experimental groups (perceptual-motor practices and rhythmic movement and one control group based on their age and IQ. Programs were held in 9 weeks, two sessions per week, and each session was 45 minutes. Before beginning the training and at the end of the last session, pre-test and post-test were conducted. In order to assess motor development TGMD-2 test was used, and to analyze data covariance and bonferroni postdoc test were used. Results: The results showed that both perceptual-motor practices and rhythmic movement groups performed better in locomotors and object control skills than the control group (P&le 0.05 and there was no significant difference between these two groups  (P&ge0.05Perceptual-motor skills training group had a greater impact on the development of control object skills than rhythmic movement group. Program rhythmic movement group had a greater impact on the development of object control skills than the control group. Conclusion: According to the results, educational programs which are used can be as an appropriate experiencing motion for children. These programs can be used at schools to to provide suitable program and the opportunity for training and developing motor skills.

  6. Nonlinear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability

    Directory of Open Access Journals (Sweden)

    Philippe eTerrier

    2013-09-01

    Full Text Available It has been observed that times series of gait parameters (stride length (SL, stride time (ST and stride speed (SS, exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another nonlinear method estimates the degree of resilience of gait control to small perturbations, i.e. the local dynamic stability (LDS. The method makes use of the maximal Lyapunov exponent, which estimates how fast a nonlinear system embedded in a reconstructed state space (attractor diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST and SS from which the statistical persistence among consecutive strides can be assessed, and the trajectory of the center of pressure (from which the LDS can be estimated. In 20 healthy participants, the response to rhythmic auditory cueing (RAC of LDS and of statistical persistence (assessed with detrended fluctuation analysis (DFA was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor was strongly enhanced (relative change +47%. That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step was smaller (+3%. DFA results (scaling exponents confirmed an anti-persistent pattern in ST, SL and SS. Long-term LDS (but not short-term LDS and scaling exponents exhibited a significant correlation between them (r=0.7. Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.

  7. Relationship Between Dietary Factors and Bodily Iron Status Among Japanese Collegiate Elite Female Rhythmic Gymnasts.

    Science.gov (United States)

    Kokubo, Yuki; Yokoyama, Yuri; Kisara, Kumiko; Ohira, Yoshiko; Sunami, Ayaka; Yoshizaki, Takahiro; Tada, Yuki; Ishizaki, Sakuko; Hida, Azumi; Kawano, Yukari

    2016-04-01

    This cross-sectional study explored the prevalence of iron deficiency (ID) and associations between dietary factors and incidence of ID in female rhythmic gymnasts during preseason periods. Participants were 60 elite collegiate rhythmic gymnasts (18.1 ± 0.3 years [M ± SD]) who were recruited every August over the course of 8 years. Participants were divided into 2 groups according to the presence or absence of ID. Presence of ID was defined either by ferritin less than 12 μg/L or percentage of transferrin saturation less than 16%. Anthropometric and hematologic data, as well as dietary intake, which was estimated via a semiquantitative food frequency questionnaire, were compared. ID was noted in 48.3% of participants. No significant group-dependent differences were observed in physical characteristics, red blood cell counts, hemoglobin, hematocrit, haptoglobin, or erythropoietin concentrations. The ID group had a significantly lower total iron-binding capacity; serum-free iron; percentage of transferrin saturation; ferritin; and intake of protein, fat, zinc, vitamin B2, vitamin B6, beans, and eggs but not iron or vitamin C. The recommended dietary allowance for intake of protein, iron, zinc, and various vitamins was not met by 30%, 90%, 70%, and 22%-87% of all participants, respectively. Multiple logistic analysis showed that protein intake was significantly associated with the incidence of ID (odds ratio = 0.814, 95% confidence interval [0.669, 0.990], p = .039). Participants in the preseason's weight-loss periods showed a tendency toward insufficient nutrient intake and were at a high risk for ID, particularly because of lower protein intake.

  8. Low-Frequency Components in Rat Pial Arteriolar Rhythmic Diameter Changes.

    Science.gov (United States)

    Lapi, Dominga; Mastantuono, Teresa; Di Maro, Martina; Varanini, Maurizio; Colantuoni, Antonio

    2017-01-01

    This study aimed to analyze the frequency components present in spontaneous rhythmic diameter changes in rat pial arterioles. Pial microcirculation was visualized by fluorescence microscopy. Rhythmic luminal variations were evaluated via computer-assisted methods. Spectral analysis was carried out on 30-min recordings under baseline conditions and after administration of acetylcholine (Ach), papaverine (Pap), Nω-nitro-L-arginine (L-NNA) prior to Ach, indomethacin (INDO), INDO prior to Ach, charybdotoxin and apamin, and charybdotoxin and apamin prior to Ach. Under baseline conditions all arteriolar orders showed 3 frequency components in the ranges of 0.0095-0.02, 0.02-0.06, and 0.06-0.2 Hz, another 2 in the ranges of 0.2-2.0 and 2.5-4.5 Hz, and another ultra-low-frequency component in the range of 0.001-0.0095 Hz. Ach caused a significant increase in the spectral density of the frequency components in the range of 0.001-0.2 Hz. Pap was able to slightly increase spectral density in the ranges of 0.001-0.0095 and 0.0095-0.02 Hz. L-NNA mainly attenuated arteriolar responses to Ach. INDO prior to Ach did not affect the endothelial response to Ach. Charybdotoxin and apamin, suggested as endothelium-derived hyperpolarizing factor inhibitors, reduced spectral density in the range of 0.001-0.0095 Hz before and after Ach administration. In conclusion, regulation of the blood flow distribution is due to several mechanisms, one of which is affected by charibdotoxin and apamin, modulating the vascular tone. © 2017 S. Karger AG, Basel.

  9. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

    Directory of Open Access Journals (Sweden)

    Green Carla B

    2001-05-01

    Full Text Available Abstract Background Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. Results cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. Conclusion The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

  10. Storminess-related rhythmic ridge patterns on the coasts of Estonia

    Directory of Open Access Journals (Sweden)

    Ülo Suursaar

    2017-11-01

    Full Text Available Buried or elevated coastal ridges may serve as archives of past variations in sea level and climate conditions. Sometimes such ridges or coastal scarps appear in patterns, particularly on uplifting coasts with adequate sediment supply. Along the seacoasts of Estonia, where relative-to-geoid postglacial uplift can vary between 1.7 and 3.4 mm/yr, at least 27 areas with rhythmic geomorphic patterns have been identified from LiDAR images and elevation data. Such patterns were mainly found on faster emerging and well-exposed, tideless coasts. These are mostly located at heights between 1 and 21 m above sea level, the formation of which corresponds to a period of up to 7500 years. Up to approximately 150 individual ridges were counted on some cross-shore sections. Ten of these ridge patterns that formed less than 4500 years ago were chosen for detailed characterization and analysis in search of possible forcing mechanisms. Among these more closely studied cases, the mean ridge spacing varied between 19 and 28 m. Using land uplift rates from the late Holocene period, the timespans of the corresponding cross sections were calculated. The average temporal periodicity of the ridges was between 23 and 39 years with a gross mean value of 31 years. Considering the regular nature of the ridges, they mostly do not reflect single extreme events, but rather a decadal-scale periodicity in storminess in the region of the Baltic Sea. Although a contribution from some kind of self-organization process is possible, the rhythmicity in ancient coastal ridge patterns is likely linked to quasi-periodic 25−40-year variability, which can be traced to Estonian long-term sea level records and wave hindcasts, as well as in regional storminess data and the North Atlantic Oscillation index.

  11. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    Directory of Open Access Journals (Sweden)

    Yi-Huang eSu

    2014-12-01

    Full Text Available Both lower-level stimulus factors (e.g., temporal proximity and higher-level cognitive factors (e.g., content congruency are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently or upwards (incongruently to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  12. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams.

    Science.gov (United States)

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  13. Advantages of melodic over rhythmic movement sonification in bimanual motor skill learning.

    Science.gov (United States)

    Dyer, J F; Stapleton, P; Rodger, M W M

    2017-10-01

    An important question for skill acquisition is whether and how augmented feedback can be designed to improve the learning of complex skills. Auditory information triggered by learners' actions, movement sonification, can enhance learning of a complex bimanual coordination skill, specifically polyrhythmic bimanual shape tracing. However, it is not clear whether the coordination of polyrhythmic sequenced movements is enhanced by auditory-specified timing information alone or whether more complex sound mappings, such as melodic sonification, are necessary. Furthermore, while short-term retention of bimanual coordination performance has been shown with movement sonification training, longer term retention has yet to be demonstrated. In the present experiment, participants learned to trace a diamond shape with one hand while simultaneously tracing a triangle with the other to produce a sequenced 4:3 polyrhythmic timing pattern. Two groups of participants received real-time auditory feedback during training: melodic sonification (individual movements triggered a separate note of a melody) and rhythmic sonification (each movement triggered a percussive sound), while a third control group received no augmented feedback. Task acquisition and performance in immediate retention were superior in the melodic sonification group as compared to the rhythmic sonification and control group. In a 24-h retention phase, a decline in performance in the melodic sonification group was reversed by brief playback of the target pattern melody. These results show that melodic sonification of movement can provide advantages over augmented feedback which only provides timing information by better structuring the sequencing of timed actions, and also allow recovery of complex target patterns of movement after training. These findings have important implications for understanding the role of augmented perceptual information in skill learning, as well as its application to real-world training or

  14. Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes.

    Directory of Open Access Journals (Sweden)

    Kevin P Keegan

    2007-11-01

    Full Text Available Five independent groups have reported microarray studies that identify dozens of rhythmically expressed genes in the fruit fly Drosophila melanogaster. Limited overlap among the lists of discovered genes makes it difficult to determine which, if any, exhibit truly rhythmic patterns of expression. We reanalyzed data from all five reports and found two sources for the observed discrepancies, the use of different expression pattern detection algorithms and underlying variation among the datasets. To improve upon the methods originally employed, we developed a new analysis that involves compilation of all existing data, application of identical transformation and standardization procedures followed by ANOVA-based statistical prescreening, and three separate classes of post hoc analysis: cross-correlation to various cycling waveforms, autocorrelation, and a previously described fast Fourier transform-based technique. Permutation-based statistical tests were used to derive significance measures for all post hoc tests. We find application of our method, most significantly the ANOVA prescreening procedure, significantly reduces the false discovery rate relative to that observed among the results of the original five reports while maintaining desirable statistical power. We identify a set of 81 cycling transcripts previously found in one or more of the original reports as well as a novel set of 133 transcripts not found in any of the original studies. We introduce a novel analysis method that compensates for variability observed among the original five Drosophila circadian array reports. Based on the statistical fidelity of our meta-analysis results, and the results of our initial validation experiments (quantitative RT-PCR, we predict many of our newly found genes to be bona fide cyclers, and suggest that they may lead to new insights into the pathways through which clock mechanisms regulate behavioral rhythms.

  15. Analysis of a fictive active e- trailer

    NARCIS (Netherlands)

    Gudo Ebbers; ir. F.G. Rieck; Steven Boonstra

    2017-01-01

    Trucks, consume an enormous amount of diesel annually and contribute greatly to the total CO2 emission around the world. Electrification of these freight vehicles will lead to reduction of fuel consumption and CO2 emission. Trailers as part of heavy freight vehicles are a great opportunity for

  16. Fictive-friendship and the Fourth Gospel

    African Journals Online (AJOL)

    2011-10-03

    Oct 3, 2011 ... One example in which this is particularly evident is Paul Veyne's .... education, ethnicity, wealth, power, and freedom (or its .... degree in reality.7 .... Wolf's (1966) observation is reflected also in Latin American .... That Jesus, in view of John's high Christology, has a .... National Press Books, Palo Alto, CA.

  17. Organic Poultry Feeding

    Directory of Open Access Journals (Sweden)

    Arda Yıldırım

    2014-02-01

    Full Text Available Many people have led to the consumption of organic animal products in the event that the increase in sensitivity to a healthy diet in developed countries, and maintaining the safety of food of animal origin. Feeding and breeding in conventional production are emerged some of the negative effects and also it is more in organic production with new restrictions. Organic production is based on animal welfare. On the basis of behaviors such as feather-pecking and cannibalism known to be low in protein level of rations and unbalanced in terms of amino acids or minerals. As of 2015, organic poultry feed provided the appropriate conditions that will be 95% organic certified in Turkey and therefore, to create a balanced ration and feed hygiene in protecting brings serious challenges. Fodder supply of organic poultry feed raw materials that make up the quality, quantity and issue forms a significant effect on the health of the poultry additives permitted. The quality of the feed raw materials that constituent diets, quantity, feed supplying form and permitted feed additives significantly affects the health of poultry. Different physiological stages of the animal's nutritional requirements in order to ensure production of quality poultry products must be met from organically produced and very well-known with the contents of feedstuff digestibility. In this study, the problems encountered in feeding can be eliminated while performing economic production with considering animal welfare, following that balanced and adequate organic ration formulations and issues such as improving the production of feed raw materials are discussed.

  18. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects.

    Science.gov (United States)

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R; Jafari, Amir H

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate ( 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( P rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

  19. Gastrostomy feeding tube - pump

    Science.gov (United States)

    ... button, close the clamp on the feeding set, disconnect the extension set from the button, and close ... Copyright Privacy Accessibility Quality Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of ...

  20. Feeding Your Baby

    Medline Plus

    Full Text Available ... Our work Community impact Global programs Research Need help? Frequently asked questions Contact us Tools & Resources Born ... your dashboard . Time to eat! Feeding your baby helps her grow healthy and strong. It’s also a ...

  1. Feeding Your Baby

    Medline Plus

    Full Text Available ... baby Formula feeding How to breastfeed Keeping breast milk safe and healthy Problems and discomforts when breastfeeding ... health & safety ') document.write('') } Ask our experts! Have a ...

  2. Feeding Your Baby

    Medline Plus

    Full Text Available ... baby Feeding your baby E-mail to a friend Please fill in all fields. Please enter a ... for your baby during the first year of life. Learn how to breastfeed and why breast milk ...

  3. Feeding Your Baby

    Medline Plus

    Full Text Available ... Baby Caring for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & ... health research Prematurity research centers For providers NICU Family Support® Prematurity Campaign Collaborative Info for your patients ...

  4. Feeding Your Baby

    Medline Plus

    Full Text Available ... Global Map Premature Birth Report Cards Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & ... Caring for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature ...

  5. Feeding Your Baby

    Medline Plus

    Full Text Available ... discomforts . If you’re feeding your baby formula , find out how to choose the best one for ... care they receive. We're pioneering research to find solutions. We're empowering families with the knowledge ...

  6. Feeding Your Baby

    Medline Plus

    Full Text Available ... this page It's been added to your dashboard . Time to eat! Feeding your baby helps her grow healthy and strong. It’s also a great time for you and your partner to bond with ...

  7. Feeding Your Baby

    Medline Plus

    Full Text Available ... for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth The newborn intensive care unit (NICU) Birth defects & other health conditions Loss & grief Tools & Resources Frequently asked health questions ...

  8. Feeding Your Baby

    Medline Plus

    Full Text Available ... bond with her. Breast milk is the best food for your baby during the first year of ... feeding safe. And then get ready for solid foods ! In This Topic Breastfeeding help Breastfeeding is best ...

  9. Feeding Your Baby

    Medline Plus

    Full Text Available ... then get ready for solid foods ! In This Topic Breastfeeding help Breastfeeding is best Food allergies and ... breast pump Baby Feeding your baby Other Baby topics ') document.write(' Caring for your baby ') document.write('') } ') ...

  10. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.

    2018-02-26

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  11. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F

    2017-12-07

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host\\'s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host\\'s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  12. An Experimental Approach to Study Individual Differences in Infants' Intake and Satiation Behaviors during Bottle-Feeding.

    Science.gov (United States)

    Ventura, Alison K; Mennella, Julie A

    2017-02-01

    As a group, bottle-fed infants are at higher risk for rapid weight gain compared with breast-fed infants. However, little is known about individual differences in feeding behaviors of bottle-feeding infants, as well as maternal and infant characteristics associated with bottle-feeding outcomes. We conducted a 2-day, within-subject study of 21 formula-feeding dyads; the within-subject factor was feeding condition: mother-led (ML; mothers were given the instruction to feed their infants as they typically would) vs. infant-led (IL; the experimenter ensured feeding began when infants signaled hunger and ended when they rejected the bottle on three consecutive occasions). Intake was determined by bottle weight; feedings were video-recorded and later analyzed to determine feeding duration and types of satiation behaviors displayed. Percent difference scores were calculated for each outcome as [((ML - IL)/IL) × 100] to standardize differences among dyads. Mothers completed questionnaires of feeding styles and infant temperament. On average, infants consumed ∼42% more formula during the ML- than IL-condition (p = 0.03). However, notable variation existed in difference scores for intake (range = -52.8% to 268.9%; higher scores reflect greater intake during ML than IL). Stepwise regression illustrated that greater intakes during the ML-condition were predicted by the combination of: (1) higher infant age; (2) lower levels of infant rhythmicity and adaptability; (3) higher levels of infant positive mood; and (4) lower levels of maternal restrictive and responsive feeding styles. This objective, experimental approach illustrated that variation in bottle-feeding outcomes is associated with characteristics of both members of the dyad.

  13. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  14. Step-to-step variability in treadmill walking: influence of rhythmic auditory cueing.

    Directory of Open Access Journals (Sweden)

    Philippe Terrier

    Full Text Available While walking, human beings continuously adjust step length (SpL, step time (SpT, step speed (SpS = SpL/SpT and step width (SpW by integrating both feedforward and feedback mechanisms. These motor control processes result in correlations of gait parameters between consecutive strides (statistical persistence. Constraining gait with a speed cue (treadmill and/or a rhythmic auditory cue (metronome, modifies the statistical persistence to anti-persistence. The objective was to analyze whether the combined effect of treadmill and rhythmic auditory cueing (RAC modified not only statistical persistence, but also fluctuation magnitude (standard deviation, SD, and stationarity of SpL, SpT, SpS and SpW. Twenty healthy subjects performed 6 × 5 min. walking tests at various imposed speeds on a treadmill instrumented with foot-pressure sensors. Freely-chosen walking cadences were assessed during the first three trials, and then imposed accordingly in the last trials with a metronome. Fluctuation magnitude (SD of SpT, SpL, SpS and SpW was assessed, as well as NonStationarity Index (NSI, which estimates the dispersion of local means in the times series (SD of 20 local means over 10 steps. No effect of RAC on fluctuation magnitude (SD was observed. SpW was not modified by RAC, what is likely the evidence that lateral foot placement is separately regulated. Stationarity (NSI was modified by RAC in the same manner as persistent pattern: Treadmill induced low NSI in the time series of SpS, and high NSI in SpT and SpL. On the contrary, SpT, SpL and SpS exhibited low NSI under RAC condition. We used relatively short sample of consecutive strides (100 as compared to the usual number of strides required to analyze fluctuation dynamics (200 to 1000 strides. Therefore, the responsiveness of stationarity measure (NSI to cued walking opens the perspective to perform short walking tests that would be adapted to patients with a reduced gait perimeter.

  15. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    Science.gov (United States)

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from

  16. Rhymes in the development of rhythmic and speaking skills of preschool and early school age

    Directory of Open Access Journals (Sweden)

    Bjelobrk-Babić Ozrenka

    2017-01-01

    Full Text Available The paper discusses the concept, definition and classification of nursery rhymes, and how they are processed. Rhymes are 'short children's songs that serve to counting children at play, which at the same time can be very suitable for developing a sense of rhythm' (Pedagogical Lexicon, 1996, pp. 56. There are several types of nursery rhymes and their classification according to different criteria. They can be classified according to form and content, as well as whether their authors are children or adults. The criterion of understanding classifies them into rhymes rational sense, irrational - meaningless, and rhymes with a partial sense (see examples of rhymes at Milenkovic & Dragojevic, 2009. According to an embodiment - the musical component rhymes are classified in the speaking which develops a sense of rhythm and sung, whose melodic movement of the highest in the fourth volume. Treatment begins with teaching nursery rhymes by ear, then the symbols represents the rhythm of nursery rhymes (phases with the adoption rhymes see at: Milenkovic & Dragojevic, 2009. In addition to this term in the literature can be found other names for the same name forms: counting, beads, classifying. There are many advantages that rhymes processing brings: the development of speech and speech creativity, encourage foreign language learning, developing communication skills, emotional and social maturation, encouraging cultural‚ awareness, developing ethical and moral values, exploring the contents of nature and society. In selecting the nursery rhymes, it is necessary to pay attention to mental and physical development of children and to adjust the selected rhymes to their age. The paper presents the characteristics of rhythmic development and speaking skills of preschool and early school age. To this end are designed examples rhythmic rhymes and pointed to the need for interdisciplinary nature of the teaching subjects, and the correlation of teaching Serbian

  17. INFLUENCE OF COMPETITIVE EXPERIENCE ON STATIC POSTURAL BALANCE IN A GROUP OF RHYTHMIC GYMNASTICS OF HIGH LEVEL

    Directory of Open Access Journals (Sweden)

    Isabella Scursatone

    2015-05-01

    Full Text Available Rhythmic gymnastics is the unique female sport which includes aspects of both artistic gymnastics and dance and is characterized by the use of small apparatuses (e.g., rope, clubs, ribbon, hoop and ball. Many studies compared the balance ability of athletes from different sports, underlying that gymnasts tended to have the best balance ability (Hrysomallis, 2011; Bressel, Yonker, Kras & Heath, 2007. No literature analysed the influence of  the competitive experience of rhytmic gymnasts on the static postural balance.Objective: The purpose of the study is to evaluate the influence of years of competitive experience, hours of physical training and competition level on static postural balance in elite rhythmic gymnastics female athletes.  

  18. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD......) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...

  19. Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms.

    Science.gov (United States)

    Zhang, Yili; Golowasch, Jorge

    2011-11-01

    The pyloric network of decapods crustaceans can undergo dramatic rhythmic activity changes. Under normal conditions the network generates low frequency rhythmic activity that depends obligatorily on the presence of neuromodulatory input from the central nervous system. When this input is removed (decentralization) the rhythmic activity ceases. In the continued absence of this input, periodic activity resumes after a few hours in the form of episodic bursting across the entire network that later turns into stable rhythmic activity that is nearly indistinguishable from control (recovery). It has been proposed that an activity-dependent modification of ionic conductance levels in the pyloric pacemaker neuron drives the process of recovery of activity. Previous modeling attempts have captured some aspects of the temporal changes observed experimentally, but key features could not be reproduced. Here we examined a model in which slow activity-dependent regulation of ionic conductances and slower neuromodulator-dependent regulation of intracellular Ca(2+) concentration reproduce all the temporal features of this recovery. Key aspects of these two regulatory mechanisms are their independence and their different kinetics. We also examined the role of variability (noise) in the activity-dependent regulation pathway and observe that it can help to reduce unrealistic constraints that were otherwise required on the neuromodulator-dependent pathway. We conclude that small variations in intracellular Ca(2+) concentration, a Ca(2+) uptake regulation mechanism that is directly targeted by neuromodulator-activated signaling pathways, and variability in the Ca(2+) concentration sensing signaling pathway can account for the observed changes in neuronal activity. Our conclusions are all amenable to experimental analysis.

  20. Playing-related musculoskeletal disorders among icelandic music students: differences between students playing classical vs rhythmic music.

    Science.gov (United States)

    Arnason, Kári; Arnason, Arni; Briem, Kristín

    2014-06-01

    Most research studies investigating the prevalence of musculoskeletal disorders affecting musicians and music students have focused on classical music, while less is known about their prevalence in other music genres. The purpose of this study was to document cumulative and point prevalence of playing-related musculoskeletal disorders (PRMD) among music students in Iceland and, specifically, to identify differences between those studying classical vs rhythmic music. We hypothesized that students of classical music would report more frequent and more severe musculoskeletal disorders than students involved in rhythmic music, as classical instruments and composition typically require more demanding, sustained postures during practice and performance. A total of 74 students from two classical music schools (schools A and B) and 1 rhythmic school (school C) participated in the study by answering a questionnaire assessing PRMDs. The results showed that 62% of participants had, at some point in their musical career, suffered a PRMD. The cumulative prevalence was highest in music school A (71.4%) and lowest in music school C (38.9%). A statistically significant difference was identified between the cumulative prevalence of PRMD from schools A and B combined compared to music school C (p=0.019). Over 40% of participants reported a "current PRMD," and a significant difference was identified between the three schools (p=0.011), with the highest point prevalence being registered in music school A (66.6%) and the lowest in music school C (22.2%). The prevalence of PRMDs among Icelandic music students was high. The difference found between students who play classical vs rhythmic music may be explained by different demands of the instruments and composition on playing posture.

  1. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Madeleine Eve Hackney

    2015-12-01

    Full Text Available Parkinson’s Disease (PD is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, tai chi have shown improvements to motor symptoms, lower limb control and postural stability in people with PD (Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell et al., 2013; Earhart, 2009; M. E. Hackney & Earhart, 2008; Kadivar, Corcos, Foto, & Hondzinski, 2011; Morris, Iansek, & Kirkwood, 2009; Ridgel, Vitek, & Alberts, 2009. However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG and externally guided (EG movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG versus EG designs. Because of the potential task specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging (fMRI and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training and highlight research gaps. We believe better understanding of lower limb neural

  2. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Anita, E-mail: anita.balakrishnan@doctors.org.uk [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); School of Clinical Sciences, Division of Gastroenterology, University of Liverpool, Liverpool L69 3GE (United Kingdom); Stearns, Adam T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 2JD (United Kingdom); Park, Peter J. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Harvard Medical School, Center for Biomedical Informatics, Boston, MA 02115 (United States); Dreyfuss, Jonathan M. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ashley, Stanley W. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Rhoads, David B. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Pediatric Endocrine Unit, MassGeneral Hospital for Children, Boston, MA 02114 (United States); Tavakkolizadeh, Ali, E-mail: atavakkoli@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States)

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  3. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    International Nuclear Information System (INIS)

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-01-01

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  4. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements.

    Science.gov (United States)

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  5. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

    Directory of Open Access Journals (Sweden)

    Riccardo eBravi

    2014-09-01

    Full Text Available A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014. Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a twofold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  6. Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing.

    Directory of Open Access Journals (Sweden)

    Alexander eJones

    2015-01-01

    Full Text Available Selective attention to a spatial location has shown enhance perception and facilitate behaviour for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of synch with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either colour or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late with the rhythmic cue. The results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced

  7. Establishing breast feeding in hospital.

    OpenAIRE

    Levi, J

    1988-01-01

    The experience and practice of the author is described in her appointment as a breast feeding advisor to the paediatric and obstetric units at University College Hospital with special responsibility for supervising infant feeding, especially breast feeding in the maternity unit. During 1980-5 there were 13,185 mothers whose babies fed. The feeding method of 12,842 mothers was recorded on discharge from the postnatal wards and 77% were breast feeding; only 3% of these mothers gave complement f...

  8. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  9. Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson's disease--what is the evidence?

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-01-01

    To investigate whether synchronising over-ground walking to rhythmic auditory cues improves temporal and spatial gait measures in adults with neurological clinical conditions other than Parkinson's disease. A search was performed in June 2011 using the computerised databases AGELINE, AMED, AMI, CINAHL, Current Contents, EMBASE, MEDLINE, PsycINFO and PUBMED, and extended using hand-searching of relevant journals and article reference lists. Methodological quality was independently assessed by two reviewers. A best evidence synthesis was applied to rate levels of evidence. Fourteen studies, four of which were randomized controlled trials (RCTs), met the inclusion criteria. Patient groups included those with stroke (six studies); Huntington's disease and spinal cord injury (two studies each); traumatic brain injury, dementia, multiple sclerosis and normal pressure hydrocephalus (one study each). The best evidence synthesis found moderate evidence of improved velocity and stride length of people with stroke following gait training with rhythmic music. Insufficient evidence was found for other included neurological disorders due to low study numbers and poor methodological quality of some studies. Synchronising walking to rhythmic auditory cues can result in short-term improvement in gait measures of people with stroke. Further high quality studies are needed before recommendations for clinical practice can be made.

  10. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Science.gov (United States)

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers

    Directory of Open Access Journals (Sweden)

    Tal-Chen Rabinowitch

    2017-06-01

    Full Text Available The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior and cooperation (a goal-directed collaborative endeavor. Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  12. Cannabis and Breast feeding

    Energy Technology Data Exchange (ETDEWEB)

    Garry, A [Department dIngenierie Biologique, Ecole Polytechnique de Universite de Nice - Sophia Antipolis, 1645 Route des Lucioles, 06410 Biot (France); Virginie Rigourd, V; Aubry, S [Lactarium d' Ile de France, Institut de Puericulture et de Perinatalogie, 26 Boulevard Brune, 75014 Paris (France); Amirouche, A; Fauroux, V [Centre de Recherche Clinique Paris Centre, 89 rue d' Assas, 75006 Paris (France); Serreau, R [Centre de Recherche Clinique Paris Centre EA 3620, 89 rue d' Assas 75006 Paris (France)

    2009-07-01

    Cannabis is a drug derived from hemp plant, Cannabis sativa, used both as a recreational drug or as medicine. It is a widespread illegal substance, generally smoked for its hallucinogenic properties. Little is known about the adverse effects of postnatal cannabis exposure throw breast feeding because of a lack of studies in lactating women. The active substance of cannabis is the delta 9 Tetrahydrocannabinol (THC). Some studies conclude that it could decrease motor development of the child at one year of age. Therefore, cannabis use and abuse of other drugs like alcohol, tobacco, or cocaine must be contraindicated during breast feeding. Mothers who use cannabis must stop breast feeding, or ask for medical assistance to stop cannabis use in order to provide her baby with all the benefits of human milk.

  13. Cannabis and Breast feeding

    International Nuclear Information System (INIS)

    Garry, A.; Virginie Rigourd, V.; Aubry, S.; Amirouche, A.; Fauroux, V.; Serreau, R.

    2009-01-01

    Cannabis is a drug derived from hemp plant, Cannabis sativa, used both as a recreational drug or as medicine. It is a widespread illegal substance, generally smoked for its hallucinogenic properties. Little is known about the adverse effects of postnatal cannabis exposure throw breast feeding because of a lack of studies in lactating women. The active substance of cannabis is the delta 9 Tetrahydrocannabinol (THC). Some studies conclude that it could decrease motor development of the child at one year of age. Therefore, cannabis use and abuse of other drugs like alcohol, tobacco, or cocaine must be contraindicated during breast feeding. Mothers who use cannabis must stop breast feeding, or ask for medical assistance to stop cannabis use in order to provide her baby with all the benefits of human milk.

  14. Feed and organic matter

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang

    2011-01-01

    impact on the receiving water body by reducing dissolved oxygen concentrations and increasing sedimentation. Within aquaculture systems, a high organic load may affect fish health and performance directly (e.g., gill disease) as well as indirectly (proliferation of pathogenic bacteria and parasites......, reduction of dissolved oxygen concentrations, etc.). In recirculating aquaculture systems (RAS), a high organic load caused by limited water exchange may affect biofilter performance by favouring heterotrophic bacteria at the expense of autotrophic, nitrifying bacteria. Organic waste in RAS primarily...... originates from undigested feed, but also metabolic losses, mucus, dead tissue, feed waste and intake water may contribute. The nutrient composition of the feed affects the quantity and composition of the organic (undigested) waste, and including for example plant protein ingredients may affect...

  15. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons.

    Science.gov (United States)

    Wang, Yangyang; Rubin, Jonathan E

    2017-12-01

    Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.

  16. Speech rhythm analysis with decomposition of the amplitude envelope: characterizing rhythmic patterns within and across languages.

    Science.gov (United States)

    Tilsen, Sam; Arvaniti, Amalia

    2013-07-01

    This study presents a method for analyzing speech rhythm using empirical mode decomposition of the speech amplitude envelope, which allows for extraction and quantification of syllabic- and supra-syllabic time-scale components of the envelope. The method of empirical mode decomposition of a vocalic energy amplitude envelope is illustrated in detail, and several types of rhythm metrics derived from this method are presented. Spontaneous speech extracted from the Buckeye Corpus is used to assess the effect of utterance length on metrics, and it is shown how metrics representing variability in the supra-syllabic time-scale components of the envelope can be used to identify stretches of speech with targeted rhythmic characteristics. Furthermore, the envelope-based metrics are used to characterize cross-linguistic differences in speech rhythm in the UC San Diego Speech Lab corpus of English, German, Greek, Italian, Korean, and Spanish speech elicited in read sentences, read passages, and spontaneous speech. The envelope-based metrics exhibit significant effects of language and elicitation method that argue for a nuanced view of cross-linguistic rhythm patterns.

  17. Retained primitive reflexes: Perceptions of parents who have used Rhythmic Movement Training with their children.

    Science.gov (United States)

    Grigg, Tessa M; Fox-Turnbull, Wendy; Culpan, Ian

    2018-01-01

    This article reports on a qualitative phenomenological research project that investigated the use of Rhythmic Movement Training (RMT) as an intervention for retained primitive reflexes. Participants were from seven families who each had a child between the ages of 7 years and 12 years. Through semi-structured interviews, parents described their reasons for seeking additional help with their child's development issues. They talked about finding RMT, using RMT within their family routine and their views on the costs and the benefits they experienced, both financial and time. While there has been a small amount of research into movement programmes targeting retained primitive reflexes, to date there appears to have been no studies completed on RMT. The data collected described searches for help, the stress and frustrations associated with the search and the range of interventions these parents tried. The families in this research found that RMT was easy to use within their daily routine and that it was a cost-effective, low-impact intervention. The families noticed a range of benefits for children who had completed the movements. The findings provide encouraging evidence to proceed with further study that will investigate the academic, social and emotional development of children using RMT.

  18. Measuring Coupling of Rhythmical Time Series Using Cross Sample Entropy and Cross Recurrence Quantification Analysis

    Directory of Open Access Journals (Sweden)

    John McCamley

    2017-01-01

    Full Text Available The aim of this investigation was to compare and contrast the use of cross sample entropy (xSE and cross recurrence quantification analysis (cRQA measures for the assessment of coupling of rhythmical patterns. Measures were assessed using simulated signals with regular, chaotic, and random fluctuations in frequency, amplitude, and a combination of both. Biological data were studied as models of normal and abnormal locomotor-respiratory coupling. Nine signal types were generated for seven frequency ratios. Fifteen patients with COPD (abnormal coupling and twenty-one healthy controls (normal coupling walked on a treadmill at three speeds while breathing and walking were recorded. xSE and the cRQA measures of percent determinism, maximum line, mean line, and entropy were quantified for both the simulated and experimental data. In the simulated data, xSE, percent determinism, and entropy were influenced by the frequency manipulation. The 1 : 1 frequency ratio was different than other frequency ratios for almost all measures and/or manipulations. The patients with COPD used a 2 : 3 ratio more often and xSE, percent determinism, maximum line, mean line, and cRQA entropy were able to discriminate between the groups. Analysis of the effects of walking speed indicated that all measures were able to discriminate between speeds.

  19. Improving Reading Skills in Students with Dyslexia: The Efficacy of a Rhythmic Training

    Directory of Open Access Journals (Sweden)

    Alessandro eAntonietti

    2015-10-01

    Full Text Available The core deficit underlying developmental dyslexia (DD has been identified in difficulties in dynamic and rapidly changing auditory information processing, which contribute to the development of impaired phonological representations for words. It has been argued that enhancing basic musical rhythm perception skills in children with DD may have a positive effect on reading abilities because music and language share common mechanisms and thus transfer effects from the former to the latter are expected to occur. A computer-assisted training, called Rhythmic Reading Training (RRT, was designed in which reading exercises are combined with rhythm background. Fourteen junior high school students with DD took part to 9 biweekly individual sessions of 30 minutes in which RRT was implemented. Reading improvements after the intervention period were compared with ones of a matched control group of 14 students with DD who received no intervention. Results indicated that RRT had a positive effect on both reading speed and accuracy, and significant effects were found on short pseudo-words reading speed, long pseudo-words reading speed, high frequency long words reading accuracy, and text reading accuracy. No difference in rhythm perception between the intervention and control group were found. Findings suggest that rhythm facilitates the development of reading skill because of the temporal structure it imposes to word decoding.

  20. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    Science.gov (United States)

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  1. Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities

    International Nuclear Information System (INIS)

    Wang, L; Liu, L; Magome, N; Agladze, K; Chen, Y

    2013-01-01

    In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell cluster homogeneity and the beating regularity, patterned topographic features were used to guide the cellular growth and the cell layer formation. On the substrate with an array of broadly spaced cross features made of photoresist, cells grew on the places that were not occupied by the crosses and thus formed a cell layer with interconnected cell clusters. Accordingly, spatially coordinated regular beating could be recorded over the whole patterned area. In contrast, when cultured on the substrate with broadly spaced but inter-connected cross features, the cardiac cell layer showed beatings which were neither coordinated in space nor regular in time. Finally, when cultured on the substrate with narrowly spaced features, the cell beating became spatially coordinated but still remained irregular. Our results suggest a way to improve the rhythmic property of cultured cardiac cell layers which might be useful for further investigations. (paper)

  2. Analysis of the influence of plyometric training in improving the performance of athletes in rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    Barbara Raquel Agostini

    2017-11-01

    Full Text Available Rhythmic gymnastics (RG athletes need high-performance training since a high degree of precision is required in their exercises. Plyometric training (PT has been used to improve athletes' neuromuscular function, explosive performance and strength in competition. The object of this study was to assess the efficiency of PT in improving the performance of RG athletes in the juvenile and adult categories over 12 months, by incorporating PT into two training macrocycles. Thirty athletes were selected; they were divided randomly into a control group (CG and an experimental group (EG of 15 athletes each. Two 6-month training macrocycles were drawn up for the EG in which they maintained normal training with the addition of PT. The CG maintained its normal training. Three tests were used for the assessment: vertical jump, horizontal jump and agility, assessed at 5 different moments. After 12 months it was observed an improvement in test performance in both groups, with a more significant improvement in the EG when compared to the CG. The addition of PT to normal training improved the performance of athletes by developing greater power in the lower limbs, increasing their capacity in vertical jump, horizontal jump and agility.

  3. Promoting artistic quality in rhythmic gymnastics: a didactic analysis from high performance to school practice

    Directory of Open Access Journals (Sweden)

    Monique LOQUET

    2016-03-01

    Full Text Available Abstract In France, the curricula for physical education (PE place gymnastic activities in a set of competences named “Achieving a corporal performance for artistic and acrobatic aims”, alongside dance and circus arts. What place does Artistic occupy in gymnastic activities? Is an aesthetic gesture sufficient to be considered as part of an artistic activity? Defining the term «Artistic» is difficult in the field of sports, as descriptions usually come from the technique/Artistic dichotomy. Our analysis focuses on rhythmic gymnastics (RG, which is precisely seen as emblematic of this technique/Artistic division: on the one hand, technical rigor, prescriptions and rules; on the other hand, grace, creation and self-expression. We believe such compartmentalized categories are too schematic to define gymnasts’ and students’ activities, so we will examine their articulation points. We first present an overview of RG as a school practice in ordinary forms of teaching, then an historical analysis of RG as a sports practice, to highlight the unbridgeable gap between both school and sports practices, regarding technique/Artistic connections. We then propose three significant points of articulation (called games closely combining technical requirements and artistic commitment. We consider that the variation of the three games played in GR (creating, making beautiful, representing is the product of historical dynamics of this sport we call artistic. Finally, on this basis, we propose a learning game for novice students promoting the artistic quality of RG practice.

  4. Pedagogical Conditions for Coordination Development in Girls of Primary School Age through Rhythmic Gymnastics

    Directory of Open Access Journals (Sweden)

    С. І. Марченко

    2015-06-01

    Full Text Available The research objective is to experimentally verify the effectiveness of the use of rhythmic gymnastics means that have been systematized to develop coordination abilities in girls of primary school age. Research methods: method of theoretical analysis and generalization of literary sources, method of control studies, pedagogical experiment, methods of mathematical statistics. Research results. The coordination readiness level evaluation demonstrated that at the beginning of the pedagogical experiment the level of the majority of the second-grade girls was low (22.85%, below average (39.97%, and average (11.42%; that of the third-grade girls was below average (57.1%, average (34.26%; and that of the fourth-grade — below average (29.3%, and average (62.06%. After the pedagogical experiment the number of the second-, third- and fourth-grade girls with the low level decreased by 19%, 13.4%, 10.4% in the experimental groups and by 16.3%, 11.8%, 9.8% in the control groups respectively; the number of the girls with the below-average level decreased by 14.7%, 32.7%, 23.1% in the experimental groups and by 12.4%, 21%, 19.1% in the control groups. The positive changes in the level of coordination abilities occurred both in the control and the experimental groups, with the results improved in favor of the experimental groups.

  5. The speed of progress in the apparatus handling technique in rhythmic gymnastics

    Directory of Open Access Journals (Sweden)

    Moskovljević Lidija

    2013-01-01

    Full Text Available Specificity of rhythmic gymnastics as a sport and as a teaching device are apparatus routines. Considering lack of researches, the aim of our study was to determine ages of maturity when the development in apparatus routines performance is greater. Development in essential rope, hoop and ball routine performance was examined two times per year, through four years experimental period. The evaluation is carried out three-member RG-expert committee on a scale of 1 to 10. A total of twenty-seven competitors, examined at ages seven to fourteen, participate in this study. Based on data, we can notice that speed of progress in apparatus handling technique was not equal during observing maturity period. There was not significant development in most of examined routines between seven to nine years of ages. Significant development in this period has been achieved only in two rope routines (Vij1 i Vij2R and one ball routine to (Lop2R. From eleven to twelve years of ages, significant development has been achieved for most of routines, except basic running with rope (Vij1 and hoop routine performed with weaker arm (Obr2L. At 12 to 13 years of ages, development of routines performance has not been statistically significant.

  6. When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination.

    Science.gov (United States)

    Zhu, Qin; Mirich, Todd; Huang, Shaochen; Snapp-Childs, Winona; Bingham, Geoffrey P

    2017-08-01

    Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice. The information provided via the two different modalities may be same (amodal) or different (modality specific). If it is different, then learning with both is a dual task, and one source of information might be used in preference to the other in performing the task when both are available. In the current study, participants learned a novel 90° bimanual coordination pattern without or with visual information in addition to kinesthesis. In posttest, all participants were tested without and with visual information in addition to kinesthesis. When tested with visual information, all participants exhibited performance that was significantly improved by practice. When tested without visual information, participants who practiced using only kinesthetic information showed improvement, but those who practiced with visual information in addition showed remarkably less improvement. The results indicate that (1) the information is not amodal, (2) use of a single type of information was preferred, and (3) the preferred information was visual. We also hypothesized that older participants might be more likely to acquire dual task performance given their greater experience of the two sensory modes in combination, but results were replicated with both 20- and 50-year-olds.

  7. The effect of stereotype threat on performance of a rhythmic motor skill.

    Science.gov (United States)

    Huber, Meghan E; Seitchik, Allison E; Brown, Adam J; Sternad, Dagmar; Harkins, Stephen G

    2015-04-01

    Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. This study tested the effect of stereotype threat on a rhythmic ball bouncing task, where previous analyses of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. (c) 2015 APA, all rights reserved.

  8. Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.

    Science.gov (United States)

    Kwak, Eunmi Emily

    2007-01-01

    The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.

  9. Dyslexic children fail to comply with the rhythmic constraints of handwriting.

    Science.gov (United States)

    Pagliarini, Elena; Guasti, Maria Teresa; Toneatto, Carlo; Granocchio, Elisa; Riva, Federica; Sarti, Daniela; Molteni, Bruna; Stucchi, Natale

    2015-08-01

    In this study, we sought to demonstrate that deficits in a specific motor activity, handwriting, are associated to Developmental Dyslexia. The linguistic and writing performance of children with Developmental Dyslexia, with and without handwriting problems (dysgraphia), were compared to that of children with Typical Development. The quantitative kinematic variables of handwriting were collected by means of a digitizing tablet. The results showed that all children with Developmental Dyslexia wrote more slowly than those with Typical Development. Contrary to typically developing children, they also varied more in the time taken to write the individual letters of a word and failed to comply with the principles of isochrony and homothety. Moreover, a series of correlations was found among reading, language measures and writing measures suggesting that the two abilities may be linked. We propose that the link between handwriting and reading/language deficits is mediated by rhythm, as both reading (which is grounded on language) and handwriting are ruled by principles of rhythmic organization. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish.

    Science.gov (United States)

    Elbaz, Idan; Foulkes, Nicholas S; Gothilf, Yoav; Appelbaum, Lior

    2013-01-01

    The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.

  11. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish

    Directory of Open Access Journals (Sweden)

    Idan eElbaz

    2013-02-01

    Full Text Available The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.

  12. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.

    Science.gov (United States)

    Arnardottir, Erna S; Nikonova, Elena V; Shockley, Keith R; Podtelezhnikov, Alexei A; Anafi, Ron C; Tanis, Keith Q; Maislin, Greg; Stone, David J; Renger, John J; Winrow, Christopher J; Pack, Allan I

    2014-10-01

    To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Sleep laboratory. Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Thirty-eight hours of continuous wakefulness. We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. © 2014 Associated Professional Sleep Societies, LLC.

  13. Temporal modification in cardiac rhythmicity of Nephrops norvegicus (Crustacea: Decapoda in relation to trawl capture stress

    Directory of Open Access Journals (Sweden)

    Jacopo Aguzzi

    2005-09-01

    Full Text Available The effects of trawling on cardiac rhythmicity of Nephrops norvegicus (L. are still mostly unknown. Ultradian rhythms reported in previous studies may result from trawling capture stress, thus disappearing following acclimatisation to laboratory conditions. To test this hypothesis, 34 time series of cardiac activity data recorded in constant darkness were studied by Fourier analysis. Spectral decomposition of time series was obtained by defining the fundamental or circadian harmonic (CH in 24-h together with 9 submultiples of this period. The power content (PC of each harmonic was estimated in data segments of 24-h duration (days, giving graphic matrices of PC values over consecutive days. Values of PC for 9 submultiples were summed and studied in a block named ultradian band (UB. The modification in the PC of the CH and of the UB was evaluated during laboratory acclimatisation. A significant increase in the PC of the circadian harmonic component (CH over consecutive days of testing was observed. These findings suggest that, rather than being a product of dim light environmental fluctuations experienced by the animals from the deep waters of the continental slope, ultradian periodicity could well be caused by the stress of capture.

  14. Xanthophylls in Poultry Feeding

    Science.gov (United States)

    Breithaupt, Diemar R.

    Since most consumers associate an intense colour of food with healthy animals and high food quality, xanthophylls are widely used as feed additives to generate products that meet consumers' demands. An important large-scale application is in poultry farming, where xanthophylls are added to feed to give the golden colour of egg yolk that is so much appreciated. Now, with numerous new applications in human food, in the pharmaceutical industry, and in cosmetic products, there is an increasing demand for xanthophylls on the international market (Volume 5, Chapter 4).

  15. Creep feeding nursing beef calves.

    Science.gov (United States)

    Lardy, Gregory P; Maddock, Travis D

    2007-03-01

    Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.

  16. Feeding of Diarmis Proboscis

    Science.gov (United States)

    Young, Jocelyn

    2005-01-01

    The feeding of Diarmis proboscis is an exciting outdoor laboratory activity that demonstrates a single concept of adaptations--cryptic colorations. The students are "transformed" into D. proboscis (no Harry Potter magic needed) in order to learn how adaptations work in the natural world. Prior to beginning this activity, students should have a…

  17. Feeding Your Baby

    Medline Plus

    Full Text Available ... mail was sent. Save to my dashboard Sign in or Sign up to save this page. Saving Just a moment, please. You've saved this page It's been added to your dashboard . Time to eat! Feeding your baby helps her grow ...

  18. Interactive baby feeding bottle

    NARCIS (Netherlands)

    2013-01-01

    An interactive baby bottle with an electronic unit is disclosed. The electronic unit comprises a sensor unit configured to sense the heart beat of a person bottle feeding a baby and an actuator unit configured to transmit the sensed heart beat to the baby. The disclosed interactive baby bottle can

  19. Feed sources for livestock

    NARCIS (Netherlands)

    Zanten, van H.H.E.

    2016-01-01

    Production of food has re-emerged at the top of the global political agenda, driven by two contemporary challenges: the challenge to produce enough nutritious food to feed a growing and more prosperous human population, and the challenge to produce this food in an environmentally sustainable way.

  20. Feeding Your Baby

    Medline Plus

    Full Text Available ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? ... Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth The newborn intensive ...

  1. Low Emission Feed

    NARCIS (Netherlands)

    Klop, G.

    2016-01-01

    Research into manipulating methane (CH4) production as a result of enteric fermentation in ruminants currently receives global interest. Using feed additives may be a feasible strategy to mitigate CH4 as they are supplied in such amounts that the basal diet composition will not be largely

  2. New feed ingredients

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Fels-Klerx, van der H.J.; Jong, de J.

    2017-01-01

    In the framework of sustainability and a circular economy, new ingredients for feed are desired and, to this end, initiatives for implementing such novel ingredients have been started. The initiatives include a range of different sources, of which insects are of particular interest. Within the

  3. Effect of feed presentation on feeding patterns of dairy calves.

    Science.gov (United States)

    Miller-Cushon, E K; Bergeron, R; Leslie, K E; Mason, G J; DeVries, T J

    2013-01-01

    The objectives of this study were to determine the effect of feed presentation on meal frequency and duration, as well as diurnal feeding patterns of dairy calves, and to assess any longer-term differences in feeding patterns resulting from previous experience. Twenty Holstein bull calves were exposed from wk 1 to 8 of life to 1 of 2 feed presentation treatments: concentrate and chopped grass hay (Feed was provided ad libitum. Calves received 8L/d of milk replacer (1.2 kg of dry matter), with the amount progressively reduced after 5 wk to facilitate weaning by the end of wk 7. At the beginning of wk 9, all calves received the MIX diet and remained on trial for an additional 3 wk. Feeding behavior was recorded from video for 4d during wk 6, 8, 9, and 11. In wk 6, calves fed MIX spent more time feeding than calves fed COM (56.7 vs. 46.8 min/d). In wk 8, calves fed MIX spent more time feeding (174.0 vs. 139.1 min/d) and had a lower rate of intake (11.5 vs. 14.7 g/min) compared with calves fed COM. Meal frequency was similar between treatments (12.2 meals/d). Diurnal feeding patterns in wk 8 were also affected by feed presentation, with calves fed MIX spending less time feeding at time of feed delivery and more time feeding throughout the rest of the daylight hours than calves fed COM. Diurnal feeding patterns of hay and concentrate in wk 8 differed for calves fed COM, with more time spent consuming hay at time of feed delivery and less time spent consuming hay throughout the rest of the day. Once calves previously fed COM were transitioned to the MIX diet in wk 9, meal frequency, meal duration, and diurnal feeding patterns were similar between treatments: both treatments spent similar amounts of time feeding (173.9 min/d) and had similar peaks in feeding activity at time of feed delivery, sunrise, and sunset. Provision of hay and concentrate to young calves as a mixed ration, compared with separate components, increases time spent feeding and results in more evenly

  4. Role of tonic inhibition in associative reward conditioning in Lymnaea

    Directory of Open Access Journals (Sweden)

    Vincenzo Marra

    2010-09-01

    Full Text Available Changes in the strength of excitatory synaptic connections are known to underlie associative memory formation in the molluscan nervous system but less is known about the role of synaptic inhibition. Tonic or maintained synaptic inhibition has an important function in controlling the Lymnaea feeding system and is known to suppress feeding in the absence of food or in satiated animals. Tonic inhibition to the feeding network is provided by the N3t interneuron that has inhibitory monosynaptic connection with the central pattern generator interneuron, the N1M. Here we asked whether a reduction in the level of tonic inhibition provided by the N3t cell could play a role in reward conditioning? Semi-intact preparations made from hungry snails were conditioned using a previously-developed one-trail chemical conditioning paradigm. We recorded electrical activity in a feeding motoneuron, the B3, at various time-points after conditioning. This allowed us to measure the frequency of spike activity in the N3t interneuron and monitor fictive feeding patterns that generate the rhythmic movements involved in food ingestion. We show that there is a reduction in N3t spiking at 1, 2, 3 and 4 hours after conditioning but not at 10 minutes and 30 minutes and the reduction in N3t firing inversely correlates with an increase in the conditioned fictive feeding response. Computer simulation of N3t-N1M interactions suggests that changes in N3t firing are sufficient to explain the increase in the fictive feeding activity produced by conditioning. A network model is presented that summarizes evidence suggesting that reward conditioning in Lymnaea is due to the combined effects of reduced tonic inhibition and enhanced excitatory synaptic connections between the CS pathway and feeding command neurons.

  5. Effect of feeding frequency and feeding rate on growth of ...

    African Journals Online (AJOL)

    Effect of feeding frequency and feeding rate on growth of Oreochromis mossambicus (Teleostei: Cichlidae) fry. ... Weight gain, specific growth rate and gross food conversion ratio were significantly affected by ... AJOL African Journals Online.

  6. Genetic variance components for residual feed intake and feed ...

    African Journals Online (AJOL)

    Feeding costs of animals is a major determinant of profitability in livestock production enterprises. Genetic selection to improve feed efficiency aims to reduce feeding cost in beef cattle and thereby improve profitability. This study estimated genetic (co)variances between weaning weight and other production, reproduction ...

  7. Age, lighting treatment, feed allocation and feed form influence ...

    African Journals Online (AJOL)

    During a broiler breeder trial with 3200 Cobb 500 hens, the effects of lighting treatment after 20 weeks' feed allocation and of feed form on the length of time taken to consume the daily allocation of feed were measured. Pullets were reared on 8-hour photoperiods to 20 weeks, then transferred to one of four lighting ...

  8. Prospects of complete feed system in ruminant feeding: A review

    Directory of Open Access Journals (Sweden)

    Yasir Afzal Beigh

    2017-04-01

    Full Text Available Effective utilization of available feed resources is the key for economical livestock rearing. Complete feed system is one of the latest developments to exploit the potential of animal feed resources in the best possible way. The complete feed is a quantitative mixture of all dietary ingredients, blended thoroughly to prevent separation and selection, fed as a sole source of nutrients except water and is formulated in a desired proportion to meet the specific nutrient requirements. The concentrate and roughage levels may vary according to the nutrient requirement of ruminants for different production purposes. The complete feed with the use of fibrous crop residue is a noble way to increase the voluntary feed intake and thus animal's production performance. In this system of feeding, the ruminant animals have continuous free choice availability of uniform feed mixture, resulting in more uniform load on the rumen and less fluctuation in release of ammonia which supports more efficient utilization of ruminal non-protein nitrogen. Feeding complete diet stabilizes ruminal fermentation, thereby improves nutrient utilization. This feeding system allows expanded use of agro-industrial byproducts, crop residues and nonconventional feeds in ruminant ration for maximizing production and minimizing feeding cost, thus being increasingly appreciated. However, to extend the concept extensively to the field and make this technology successful and viable for farmers, more efforts are needed to be taken.

  9. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  10. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    Science.gov (United States)

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  11. Do suicide attempts occur more frequently in the spring too? A systematic review and rhythmic analysis.

    Science.gov (United States)

    Coimbra, Daniel Gomes; Pereira E Silva, Aline Cristine; de Sousa-Rodrigues, Célio Fernando; Barbosa, Fabiano Timbó; de Siqueira Figueredo, Diego; Araújo Santos, José Luiz; Barbosa, Mayara Rodrigues; de Medeiros Alves, Veronica; Nardi, Antonio Egidio; de Andrade, Tiago Gomes

    2016-05-15

    Seasonal variations in suicides have been reported worldwide, however, there may be a different seasonal pattern in suicide attempts. The aim of this study was to perform a systematic review on seasonality of suicide attempts considering potential interfering variables, and a statistical analysis for seasonality with the collected data. Observational epidemiological studies about seasonality in suicide attempts were searched in PubMed, Web of Science, LILACS and Cochrane Library databases with terms attempted suicide, attempt and season. Monthly or seasonal data available were evaluated by rhythmic analysis softwares. Twenty-nine articles from 16 different countries were included in the final review. It was observed different patterns of seasonality, however, suicide attempts in spring and summer were the most frequent seasons reported. Eight studies indicated differences in sex and three in the method used for suicide attempts. Three articles did not find a seasonal pattern in suicide attempts. Cosinor analysis identified an overall pattern of seasonal variation with a suggested peak in spring, considering articles individually or grouped and independent of sex and method used. A restricted analysis with self-poisoning in hospital samples demonstrated the same profile. Grouping diverse populations and potential analytical bias due to lack of information are the main limitations. The identification of a seasonal profile suggests the influence of an important environmental modulator that can reverberate to suicide prevention strategies. Further studies controlling interfering variables and investigating the biological substrate for this phenomenon would be helpful to confirm our conclusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rhythmic Interlimb Coordination Impairments and the Risk for Developing Mobility Limitations.

    Science.gov (United States)

    James, Eric G; Leveille, Suzanne G; Hausdorff, Jeffrey M; Travison, Thomas; Kennedy, David N; Tucker, Katherine L; Al Snih, Soham; Markides, Kyriakos S; Bean, Jonathan F

    2017-08-01

    The identification of novel rehabilitative impairments that are risk factors for mobility limitations may improve their prevention and treatment among older adults. We tested the hypothesis that impaired rhythmic interlimb ankle and shoulder coordination are risk factors for subsequent mobility limitations among older adults. We conducted a 1-year prospective cohort study of community-dwelling older adults (N = 99) aged 67 years and older who did not have mobility limitations (Short Physical Performance Battery score > 9) at baseline. Participants performed antiphase coordination of the right and left ankles or shoulders while paced by an auditory metronome. Using multivariable logistic regression, we determined odds ratios (ORs) for mobility limitations at 1-year follow-up as a function of coordination variability and asymmetry. After adjusting for age, sex, body mass index, Mini-Mental State Examination score, number of chronic conditions, and baseline Short Physical Performance Battery score, ORs were significant for developing mobility limitations based on a 1 SD difference in the variability of ankle (OR = 1.88; 95% confidence interval [CI]: 1.16-3.05) and shoulder (OR = 1.96; 95% CI: 1.17-3.29) coordination. ORs were significant for asymmetry of shoulder (OR = 2.11; 95% CI: 1.25-3.57), but not ankle (OR = 0.95; 95% CI: 0.59-1.55) coordination. Similar results were found in unadjusted analyses. The results support our hypothesis that impaired interlimb ankle and shoulder coordination are risk factors for the development of mobility limitations. Future work is needed to further examine the peripheral and central mechanisms underlying this relationship and to test whether enhancing coordination alters mobility limitations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  14. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick.

    Science.gov (United States)

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2017-08-01

    To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Automatic Imitation in Rhythmical Actions: Kinematic Fidelity and the Effects of Compatibility, Delay, and Visual Monitoring

    Science.gov (United States)

    Eaves, Daniel L.; Turgeon, Martine; Vogt, Stefan

    2012-01-01

    We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping), or when the dominant plane of movement was different (horizontal vs. vertical). In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane) the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action’s impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams. PMID:23071623

  16. Automatic imitation in rhythmical actions: kinematic fidelity and the effects of compatibility, delay, and visual monitoring.

    Directory of Open Access Journals (Sweden)

    Daniel L Eaves

    Full Text Available We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping, or when the dominant plane of movement was different (horizontal vs. vertical. In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action's impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams.

  17. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    Science.gov (United States)

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  18. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.

    Science.gov (United States)

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Hindersson, Peter; Gräs, Søren

    2006-08-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  19. Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus.

    Directory of Open Access Journals (Sweden)

    Daniel A Nagode

    Full Text Available Acetylcholine (ACh influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2, was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs, and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs of local field potentials (LFPs were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach

  20. The role of alternative Polyadenylation in regulation of rhythmic gene expression.

    Science.gov (United States)

    Ptitsyna, Natalia; Boughorbel, Sabri; El Anbari, Mohammed; Ptitsyn, Andrey

    2017-08-04

    Alternative transcription is common in eukaryotic cells and plays important role in regulation of cellular processes. Alternative polyadenylation results from ambiguous PolyA signals in 3' untranslated region (UTR) of a gene. Such alternative transcripts share the same coding part, but differ by a stretch of UTR that may contain important functional sites. The methodoogy of this study is based on mathematical modeling, analytical solution, and subsequent validation by datamining in multiple independent experimental data from previously published studies. In this study we propose a mathematical model that describes the population dynamics of alternatively polyadenylated transcripts in conjunction with rhythmic expression such as transcription oscillation driven by circadian or metabolic oscillators. Analysis of the model shows that alternative transcripts with different turnover rates acquire a phase shift if the transcript decay rate is different. Difference in decay rate is one of the consequences of alternative polyadenylation. Phase shift can reach values equal to half the period of oscillation, which makes alternative transcripts oscillate in abundance in counter-phase to each other. Since counter-phased transcripts share the coding part, the rate of translation becomes constant. We have analyzed a few data sets collected in circadian timeline for the occurrence of transcript behavior that fits the mathematical model. Alternative transcripts with different turnover rate create the effect of rectifier. This "molecular diode" moderates or completely eliminates oscillation of individual transcripts and stabilizes overall protein production rate. In our observation this phenomenon is very common in different tissues in plants, mice, and humans. The occurrence of counter-phased alternative transcripts is also tissue-specific and affects functions of multiple biological pathways. Accounting for this mechanism is important for understanding the natural and engineering

  1. Feed the dogs

    DEFF Research Database (Denmark)

    Knudsen, Gry Høngsmark; Bajde, Domen

    2016-01-01

    MedieKultur | Journal of media and communication research | ISSN 1901-9726Article – Open sectionPublished by SMID | Society of Media researchers In Denmark | www.smid.dkTh e online version of this text can be found open access at www.mediekultur.dk196Feed the dogsA case of humanitarian communicat......MedieKultur | Journal of media and communication research | ISSN 1901-9726Article – Open sectionPublished by SMID | Society of Media researchers In Denmark | www.smid.dkTh e online version of this text can be found open access at www.mediekultur.dk196Feed the dogsA case of humanitarian...

  2. Radiation technology and feed production

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1986-01-01

    The use of radiation technology to prepare feeds and feed additions for cattle of non-feed vegetable blends is considered.Physicochemical foundations of radiation-chemical processes, possibilities of the use of various radiation devices are given. Data on practical realization of the technology are presented and prospects of its introduction to solve the tasks put forward by the USSR program on feed production are analyzed

  3. Feed sources for livestock

    OpenAIRE

    Zanten, van, H.H.E.

    2016-01-01

    Production of food has re-emerged at the top of the global political agenda, driven by two contemporary challenges: the challenge to produce enough nutritious food to feed a growing and more prosperous human population, and the challenge to produce this food in an environmentally sustainable way. Current levels of production of especially animal-source food (ASF), pose severe pressure on the environment via their emissions to air, water, and soil; and their use of scarce resources, such as la...

  4. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats.

    Science.gov (United States)

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, Andries

    2018-02-15

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.

  5. Emerging issues in complementary feeding

    DEFF Research Database (Denmark)

    Michaelsen, Kim F.; Grummer-Strawn, Laurence; Bégin, France

    2017-01-01

    the complementary feeding period is summarized. The increased availability of sugar-containing beverages and unhealthy snack foods and its negative effect on young child's diet is described. Negative effects of nonresponsive feeding and force feeding are also discussed, although few scientific studies have...

  6. Enteral feeding without pancreatic stimulation

    DEFF Research Database (Denmark)

    Kaushik, Neeraj; Pietraszewski, Marie; Holst, Jens Juul

    2005-01-01

    OBJECTIVE: All forms of commonly practiced enteral feeding techniques stimulate pancreatic secretion, and only intravenous feeding avoids it. In this study, we explored the possibility of more distal enteral infusions of tube feeds to see whether activation of the ileal brake mechanism can result...

  7. Overview of FEED, the feeding experiments end-user database.

    Science.gov (United States)

    Wall, Christine E; Vinyard, Christopher J; Williams, Susan H; Gapeyev, Vladimir; Liu, Xianhua; Lapp, Hilmar; German, Rebecca Z

    2011-08-01

    The Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.

  8. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects

    Directory of Open Access Journals (Sweden)

    Ahmadreza Keihani

    2018-05-01

    Full Text Available Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects.Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25 and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35 were chosen. A hardware setup with low THD rate (<0.1% was designed to present these patterns on LED. Twenty two normal subjects (aged 23–30 (25 ± 2.1 yrs were enrolled. Visual analog scale (VAS was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated.Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s. High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24% than simple patterns group (98.48%. Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005. Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63. Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65] as well as least individual pattern VAS (P25

  9. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    Science.gov (United States)

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP. Copyright © 2015 the American Physiological Society.

  10. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    Science.gov (United States)

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  11. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.

    Science.gov (United States)

    Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio

    2018-04-01

    Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease.

    Science.gov (United States)

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-06-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory cueing in a laboratory setting with a custom-made application for the Google Glass. Twelve participants (mean age = 66.8; mean disease duration = 13.6 years) were tested at end of dose. We compared several key gait parameters (walking speed, cadence, stride length, and stride length variability) and freezing of gait for three types of external cues (metronome, flashing light, and optic flow) and a control condition (no-cue). For all cueing conditions, the subjects completed several walking tasks of varying complexity. Seven inertial sensors attached to the feet, legs and pelvis captured motion data for gait analysis. Two experienced raters scored the presence and severity of freezing of gait using video recordings. User experience was evaluated through a semi-open interview. During cueing, a more stable gait pattern emerged, particularly on complicated walking courses; however, freezing of gait did not significantly decrease. The metronome was more effective than rhythmic visual cues and most preferred by the participants. Participants were overall positive about the usability of the Google Glass and willing to use it at home. Thus, smartglasses like the Google Glass could be used to provide personalized mobile cueing to support gait; however, in its current form, auditory cues seemed more effective than rhythmic visual cues.

  13. Overload and neovascularization of Achilles tendons in young artistic and rhythmic gymnasts compared with controls: an observational study.

    Science.gov (United States)

    Notarnicola, A; Maccagnano, G; Di Leo, M; Tafuri, S; Moretti, B

    2014-08-01

    The incidence of Achilles tendinopathy is very high in young female gymnasts (17.5 %). According to literature, ecography screenings show the tendons thickening, but at the same time it does not reveal a direct link to the clinical picture. The neovessels are involved in the pathophysiological process of Achilles tendinopathy. For this reason, we wanted to verify there between perfusion tendon values and the type of sport activity. We performed a clinical observational study monitoring the oximetry of the Achilles tendon and the epidemiological data of 52 elite female (artistic and rhythmic) gymnasts versus 21 age-matched controls. Analyzing the main limb, we revealed statistically higher oximetry values in the artistic gymnasts group (69.5 %) compared to the rhythmic gymnasts group (67.1 %) (t = 2.13; p = 0.01) and the sedentary group (66.2 %) (t = 2.70; p = 0.004), but we did not find any differences between rhythmic gymnasts group and the sedentary group (t = 0.68; p = 0.24). The multiple logistic regression model highlighted that the oximetry value of the main limb is not influenced by age, knowledge of the main limb, years of general and gymnastic sports activity (p > 0.05). We discovered an increase of Achilles tendon perfusion in the main limb in the artistic gymnast group. We hypothesize that specific figures of artistic sports activity are responsible for muscle overload and gastrocnemius-soleus group and, at the same time, these figures cause hyperperfusion of the tendon. Prospective longitudinal studies could explain if this could become a predictive sign of the next Achilles tendinopathy onset.

  14. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...

  15. Circadian Rhythmicity in the Activities of Phenylalanine Ammonia-Lyase from Lemna perpusilla and Spirodela polyrhiza 1

    Science.gov (United States)

    Gordon, William R.; Koukkari, Willard L.

    1978-01-01

    The oscillations in phenylalanine ammonia-lyase activity from Spirodela polyrhiza and phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities from Lemna perpusilla displayed a circadian rhythm under continuous light. Rhythmicity in enzymic activity could not be detected in continuous darkness since under this condition phenylalanine ammonia-lyase activity remains at a fairly constantly low level. Results from our studies of the oscillatory pattern of the respective activities of phenylalanine and tyrosine ammonia-lyase support their “inseparability.” PMID:16660569

  16. First feeding of larval herring

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Munk, Peter; Støttrup, Josianne

    1985-01-01

    The transition period from endogenous to exogenous feeding by larval herring was investigated in the laboratory for four herring stocks in order to evaluate the chances of survival at the time of fiest feeding. Observations on larval activity, feeding and growth were related to amount of yolk......, visual experience with potential prey organisms prior to first feeding and prey density. Herring larvae did not initiate exogenous feeding until around the time of yolk resorption. The timing of first feeding was not influenced by prior exposure to potential prey organisms during the yolk sac stage....... In the light of these observations, the ecological significance of the yolk sac stage is discussed. Initiation of exogenous feeding was delayed by 1-4 days at a low (7.5 nauplii .cntdot. l-1) compared to a high (120 nauplii .cntdot. l-1) prey density, but even at prey densities corresponding to the lower end...

  17. Daily rhythmicity of the thermoregulatory responses of locally adapted Brazilian sheep in a semiarid environment

    Science.gov (United States)

    da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista

    2017-07-01

    The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m2 h-1). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at

  18. Wideband feeds for the upgraded GMRT

    International Nuclear Information System (INIS)

    Bandari, Hanumanth Rao; Sankarasubramanian, G; Kumar, A Praveen

    2013-01-01

    This paper describes the existing feeds in use at the GMRT Observatory and details the ongoing development of next generation wideband feeds for the upgraded GMRT. The existing feeds include: feed with folded thick dipoles (for 150 MHz), dipole-disc feed (for 325 MHz), dual-band coaxial feed (for 233 MHZ and 610 MHz), and corrugated horn feed (for 1400–1450 MHz). The new broadband feeds covered in this paper are: cone-dipole feeds for 250–500 and 500–1000 MHz, wideband horn feed for 550–900 MHz, and dual ring feed for 130–260 MHz. Design techniques and performance results for these are described.

  19. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    Science.gov (United States)

    Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.

    2018-01-01

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860

  20. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    Science.gov (United States)

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Advanced Liquid Feed Experiment

    Science.gov (United States)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  2. [Puppy feeding in Switzerland].

    Science.gov (United States)

    Liesegang, A; Füglistaller, C; Wichert, B

    2009-11-01

    In this study breeders and owners of 8 different dog breeds (Beagle, Bernese Mountain Dog, Cavalier King Charles Spaniel, Great Dane, German Shepherd (GS), Labrador, Papillon, Sheltie) were interviewed to obtain information on puppy feeding in Switzerland. Besides answering a questionnaire (husbandry and feeding of the puppies), the participation in this study included weekly weighing of the animals as well as exact documentation of the amount fed to the animals. Totally 67 dog breeders and 131 new owners of puppies participated. The weight development of the puppies was mostly parallel to the growth curve in the GS, Labradors and Shelties. There were some substantial differences to the ideal growth curve within the other breeds. The daily mean energy requirement was estimated too high, when including the growth curves. 80 - 90 % of the recommendations would be sufficient for most animals. The calcium supply was in the range of tolerance in all breeds. Nearly all breeders used commercially available complete food while raising the puppies. No breed-specific differences could be shown.

  3. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease.

    Science.gov (United States)

    Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza

    2014-10-01

    Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The appreciation of artistic aspects of the Code of Points in rhythmic gymnastics: an analysis of the last three decades

    Directory of Open Access Journals (Sweden)

    Eliana de TOLEDO

    2016-03-01

    Full Text Available Abstract In pursuit of promoting the artistic aspects, the current Rhythmic Gymnastics Code of Points (RGCP has been submeted significant changes that motivated this research, documentary and historical in character, which aimed to analyze the last eight Olympic cycles of RGCP. The research method used in this study is documentary and characterized by the information found in documents (RGCP that had not received any scientific treatment. From the analysis of different RGCP cycles, we found artistic aspects, and their connection with RG technical requirements. We observed that the RG has distinct stages (technical aspects, flexibility etc. While retaining its artistic roots (from Dance and Rhythm, in pursuit of sportivization and systematization of the sport, the first stage was characterized by a search for the sportivization and standardization of the modality based on the inclusion of new body elements in the RGCP . The second stage confirms our previous hypothesis, that in the last RGCP the artistic component had undergone few changes. We noticed, in an overview, that at the present time the current RGCP brings back the relationship between RG and its origins, influenced by Aesthetic Gymnastics (Swedish, Rhythmic and Dance. Condition observed once the current Code of Points (2013-2016 marks the story of sports, by two aspects: the permissiveness of routines with singing wich has not allowed since since the creation the RGCP and significant changes to the appreciation of the routines’ artistic aspects.

  5. Anthropometric and physical differences of the gymnasts from the talent identification program of the artistic and rhythmic specialties

    Directory of Open Access Journals (Sweden)

    Leyton Román, Marta

    2012-01-01

    Full Text Available The aim of our research was to describe the physical and anthropometric characteristics of 25 gymnasts from the talent identification program of the Extremeña Gymnastics Federation. Subjects were classified according to their specialty: women‘s artistic gymnastic (WAG and rhythmic gymnastics (RG. The dependent variables include body fat percentage through an electronic scale column with stadiometer (SECA 220cm; body circumferences through a plicometer (Holtain; body diameters and specific tests of flexibility through a tape (CM 3m; a heart rate through Ruffier test and a heart rate monitor (Polar F6; isometric strength of lower extremities through a load cell (SSMAJ 5000N; and jumping ability through a contact mat (Lafayette CVP A73. The results concluded that the WAG group got the best results in flexibility tests (p<.05. Also, the RG group had lower body fat percentage and greater SJ jump ability (r=-.774; p<.01 and CMJ (r=-.600; p<.05. However, the WAG group showed a negative relation between body mass index and flexibility (p<.01. We conclude that there are differences in body composition and physical tests between the specialties/styles of women’s artistic gymnastics and female rhythmic gymnastics; we also found relationships between the performance of such tests and anthropometric variables.

  6. Therapeutic riding followed by rhythmic auditory stimulation to improve balance and gait in a subject with orthopedic pathologies.

    Science.gov (United States)

    Ungermann, Cathryn M; Gras, Laura Z

    2011-12-01

    The study objectives were to investigate the effect of therapeutic riding with a subject who had an orthopedic diagnosis. This is a single-subject case report. The study was conducted at an equestrian facility with an indoor riding arena. The subject was a 59-year-old woman with grade I spondylolisthesis at L4/L5 and multilevel lumbar spinal stenosis in central and foraminal canals. The subject had an anterior cervical fusion of C3-C7. The subject has been ambulating with a straight cane due to her history of frequent falls. Gait, agility, strength, range of motion, and balance testing were performed. The subject had impairments of bilateral lower extremities with an ataxic gait pattern and was at risk for continued falls according to the balance measures. The intervention comprised therapeutic riding sessions 3 times a week for 20 minutes for 4 weeks. Each riding session was immediately followed by a 10-minute independent walking program with a metronome for rhythmic auditory stimulation. The outcome measures were as follows: Manual muscle testing and range of motion of the lower extremities, Gait Speed Test, Dynamic Gait Index, Four-Square Step Test, Chair Stand Test, Single Leg Stance. Improvements were seen in lower extremity strength and range of motion and balance. The subject improved on balance scores, placing her out of the risk for falls category. Therapeutic riding followed by rhythmic auditory stimulation improved lower extremity range of motion, strength, and balance with this subject.

  7. Effects of rhythmic exercise performed to music on the rheological properties of blood in women over 60 years of age.

    Science.gov (United States)

    Marchewka, Anna; Filar-Mierzwa, Katarzyna; Dąbrowski, Zbigniew; Teległó, Aneta

    2015-01-01

    The aim of this study was to analyze the effects of motor rehabilitation, in the form of rhythmic exercise to music, on the rheological characteristics of blood in older women. The study included 30 women (65-80 years of age), and the control group was comprised of 10 women of corresponding age. Women from the experimental group were subjected to a five-month rehabilitation program, in the form of rhythmic exercise performed to music (three 30-minute sessions per week); women from the control group were not involved in any regular physical activity. Blood samples from all the women were examined for hematological, rheological, and biochemical parameters prior to the study and five months thereafter. The rehabilitation program was reflected by a significant improvement of erythrocyte count and hematocrit. Furthermore, an improvement of erythrocyte deformability was observed by lower shear stress levels, while no significant changes were noted by the higher shear stress values. The rehabilitation resulted in a marked decrease of the aggregation amplitude while no significant changes were observed in aggregation index and total aggregation half-time. Additionally, the training regimen was reflected by a significant increase in the plasma viscosity, while no significant changes in fibrinogen levels were noted.

  8. Automatic liquid nitrogen feeding device

    International Nuclear Information System (INIS)

    Gillardeau, J.; Bona, F.; Dejachy, G.

    1963-01-01

    An automatic liquid nitrogen feeding device has been developed (and used) in the framework of corrosion tests realized with constantly renewed uranium hexafluoride. The issue was to feed liquid nitrogen to a large capacity metallic trap in order to condensate uranium hexafluoride at the exit of the corrosion chambers. After having studied various available devices, a feeding device has been specifically designed to be robust, secure and autonomous, as well as ensuring a high liquid nitrogen flowrate and a highly elevated feeding frequency. The device, made of standard material, has been used during 4000 hours without any problem [fr

  9. Feeding premature neonate

    DEFF Research Database (Denmark)

    Dam, Mie S.; Juhl, Sandra M.; Sangild, Per T.

    2017-01-01

    Kinship, understood as biogenetic proximity, between a chosen animal model and a human patient counterpart, is considered essential to the process of ‘translating’ research from the experimental animal laboratory to the human clinic. In the Danish research centre, NEOMUNE, premature piglets are fed...... a novel milk diet (bovine colostrum) to model the effects of this new diet in premature infants. Our ethnographic fieldwork in an experimental pig laboratory and a neonatal intensive care unit (NICU) in 2013–2014 shows that regardless of biogenetics, daily practices of feeding, housing, and clinical care...... the researchers refer to as the ‘translatability’ of the results. In the NICU, parents of premature infants likewise imagine a kind of interspecies kinship when presented with the option to supplement mother's own milk with bovine colostrum for the first weeks after birth. However, in this setting the NICU...

  10. Breast feeding in Kelantan.

    Science.gov (United States)

    Balakrishnan, S; Hussein, H B

    1977-04-01

    The incidence of breastfeeding is investigated in relation to duration of breastfeeding without supplementation and the age when solids were first introduced in the infant's diet. The study also evaluates the awareness of the mothers of the benefits of breast milk. 461 mothers were interviewed in May 1976 by 3 doctors including the author. 95% (438) were found to breastfeed their babies at least once or twice a day. However, only 18% (86) of the mothers were fully breastfeeding up to 3 months and 9% (45) were breastfeeding without added solids up to 6 months. A disappointing finding was the introduction of solid foods by 78% (351) of the mothers before the end of the 3rd month; of these, 117 or 25% have introduced the solids as early as the 1st 6 months. Only 5% (23) were artificially feeding their infants. 86% (399) agreed that breast milk was the best milk for their children but only 277 (59%) agreed that infection occurs less frequently in breastfed than bottlefed children. 65% (302) were aware that solids should be introduced after 6 months to the infant's diet. Only 48% (222) were aware that a well-balanced diet is essential for an adequate supply of breast milk. Although 50% (232) reported that they were advised by nurses or bidans to breastfeed their children, only 37% (172) were given instructions on the technique of breastfeeding. Breastfeeding programs launched by the Ministry of Health should promote breastfeeding for at least 4-6 months duration and discourage early complement feeding and introduction of solids to infants less than 6 months of age.

  11. Effect of feeding frequency and feeding rate on growth performance ...

    African Journals Online (AJOL)

    Fish fed at higher feeding rates accumulated significantly more lipid within the body and had associated decreases in moisture, protein, and ash content, but carcass composition was unaffected by feeding frequency. Juvenile pompano show better growth performance when fed 10% BW/day 3 and 6 times a day.

  12. Feed intake, growth and feed utilization patterns of pigs highly ...

    African Journals Online (AJOL)

    Mean daily live mass gain was, however, 174 g/day (20,5%) more for the Large White boars and feed conversion16,5% ... of protein and fat in genetically lean and obese pigs, and showed that feed ..... regulation of growth and production.

  13. AUTOMATION OF IN FEED CENTERLESS GRINDING MACHINE

    OpenAIRE

    Piyusha P. Jadhav*, Sachin V. Lomte, Sudhir Surve

    2017-01-01

    In-feed centerless grinding technique offers a major contribution to the industries. This is the alternative in-feed centerless grinding technique using regulating wheel. Mainly centerless grinding is divided in three types, and those are End feed, in-feed and through feed Centerless grinding. This paper mainly deals with low cost automation on in-feed Centerless grinding machine using regulating wheel suitable for multiple in-feed type jobs. It deals with the development of a Centerless grin...

  14. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes.

    Science.gov (United States)

    Maboreke, Hazel R; Feldhahn, Lasse; Bönn, Markus; Tarkka, Mika T; Buscot, Francois; Herrmann, Sylvie; Menzel, Ralph; Ruess, Liliane

    2016-08-12

    Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. The results highlight that gene response patterns of plants to biotic interactions, both

  15. Discrimination of Rhythmic Pattern at 4 Months and Language Performance at 5 Years: A Longitudinal Analysis of Data from German-Learning Children

    Science.gov (United States)

    Höhle, Barbara; Pauen, Sabina; Hesse, Volker; Weissenborn, Jürgen

    2014-01-01

    In this article we report on early rhythmic discrimination performance of children who participated in a longitudinal study following children from birth to their 6th year of life. Thirty-four children including 8 children with a family risk for developmental language impairment were tested on the discrimination of trochaic and iambic disyllabic…

  16. Superior short-term learning effect of visual and sensory organisation ability when sensory information is unreliable in adolescent rhythmic gymnasts.

    Science.gov (United States)

    Chen, Hui-Ya; Chang, Hsiao-Yun; Ju, Yan-Ying; Tsao, Hung-Ting

    2017-06-01

    Rhythmic gymnasts specialise in dynamic balance under sensory conditions of numerous somatosensory, visual, and vestibular stimulations. This study investigated whether adolescent rhythmic gymnasts are superior to peers in Sensory Organisation test (SOT) performance, which quantifies the ability to maintain standing balance in six sensory conditions, and explored whether they plateaued faster during familiarisation with the SOT. Three and six sessions of SOTs were administered to 15 female rhythmic gymnasts (15.0 ± 1.8 years) and matched peers (15.1 ± 2.1 years), respectively. The gymnasts were superior to their peers in terms of fitness measures, and their performance was better in the SOT equilibrium score when visual information was unreliable. The SOT learning effects were shown in more challenging sensory conditions between Sessions 1 and 2 and were equivalent in both groups; however, over time, the gymnasts gained marginally significant better visual ability and relied less on visual sense when unreliable. In conclusion, adolescent rhythmic gymnasts have generally the same sensory organisation ability and learning rates as their peers. However, when visual information is unreliable, they have superior sensory organisation ability and learn faster to rely less on visual sense.

  17. Best-feeding the baby

    African Journals Online (AJOL)

    Enrique

    Best-feeding the baby. Human infants should be fed their own mothers' breast- milk. Where this is unavailable, replacement feeding becomes necessary. Through the ages and right up to the present, human milk has been supplied by other lactating women within or from outside the family. Donated breast-milk has been ...

  18. A History of Infant Feeding

    Science.gov (United States)

    Stevens, Emily E; Patrick, Thelma E; Pickler, Rita

    2009-01-01

    The historical evolution of infant feeding includes wet nursing, the feeding bottle, and formula use. Before the invention of bottles and formula, wet nursing was the safest and most common alternative to the natural mother's breastmilk. Society's negative view of wet nursing, combined with improvements of the feeding bottle, the availability of animal's milk, and advances in formula development, gradually led to the substitution of artificial feeding for wet nursing. In addition, the advertising and safety of formula products increased their popularity and use among society. Currently, infant formula-feeding is widely practiced in the United States and appears to contribute to the development of several common childhood illnesses, including atopy, diabetes mellitus, and childhood obesity. PMID:20190854

  19. Radiation sterilization of livestock feeds

    International Nuclear Information System (INIS)

    Kawashima, Koji

    1984-01-01

    The radiation sterilization of livestock feeds is not much used presently because the process is not known well, and the cost is relatively high. However, its effect of sterilization is absolute, the radiation-sterilized feeds are safe in both nutrition and toxicity, and do not affect the appetite of livestocks, and the radiation energy required is small. In the future, as in the sterilization of medical supplies, feed radiation sterilization plants should be established, to stabilize livestock industry and to contribute to the health control of experimental animals. The following matters are described: radiation, comparison between radiation sterilization and other sterilization methods, the practice of feed radiation sterilization, the adverse effects of radiation sterilization, economic aspect, and the situation of feed radiation sterilization in various countries. (Mori, K.)

  20. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    Science.gov (United States)

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  1. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Kjaerulff, O; Tresch, M C

    2000-01-01

    Motor neurons are endowed with intrinsic and conditional membrane properties that may shape the final motor output. In the first half of this paper we present data on the contribution of I(h), a hyperpolarization-activated inward cation current, to phase-transition in motor neurons during rhythmic...... firing. Motor neurons were recorded intracellularly during locomotion induced with a mixture of N-methyl-D-aspartate (NMDA) and serotonin, after pharmacological blockade of I(h). I(h) was then replaced by using dynamic clamp, a computer program that allows artificial conductances to be inserted into real...... neurons. I(h) was simulated with biophysical parameters determined in voltage clamp experiments. The data showed that electronic replacement of the native I(h) caused a depolarization of the average membrane potential, a phase-advance of the locomotor drive potential, and increased motor neuron spiking...

  2. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus

    Directory of Open Access Journals (Sweden)

    Aloysius Y.T. Low

    2018-02-01

    Full Text Available The deep cerebellar nuclei (DCN represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA. We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements.

  3. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    Science.gov (United States)

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  4. Elite level rhythmic gymnasts have significantly more and stronger pain than peers of similar age: a prospective study.

    Science.gov (United States)

    Sabeti, Manuel; Jeremian, Lusine; Graf, Alexandra; Kandelhart, Robert

    2015-01-01

    Rhythmic gymnastics (RG) unites aesthetic, ballet-like motion, and all aspects of gymnastics. To reach elite level, girls begin at early age the intensive training. To date it is unclear if such demanding training influences the incidence and intensity of painful overuse injuries. The purpose of this study is to analyze anatomical painful regions and pain intensity in elite level rhythmic gymnasts (elRG) and compare results with an age-matched control group (CG). This prospective field study was carried out at the European Championship in RG 2013 (218 participating athletes, Vienna, Austria). Volunteering athletes were interviewed according to a preformed questionnaire. As CG secondary school pupils without any competitive sports experience were analyzed accordingly. Overall, 243 young females (144 elRG/66 % of all participants and 99 CG) were observed. ElRGs were significantly (s.) smaller, lighter, and had s. stronger pain (p < 0.001). A total of 72 % of athletes reported to have at least one painful body region compared with 52 % of CG (p < 0.001). ElRG had nearly three times more serious injuries than the CG. In all 23 % off all elRG reported to have had no access to professional medical care. ElRGs were s. more frequently (25 vs 9 %) affected at the lumbar spine and the ankle joint (17.4 vs 7 %). To our knowledge, this trial analyzes the largest cohort of elRG to date. Hence, it is clearly alluded that intensive training in RG is a significant factor causing more and stronger pain than in a CG.

  5. Circadian rhythmicity of the urinary excretion of mercury, potassium and catecholamines in unconventional shift-work systems.

    Science.gov (United States)

    Vokac, Z; Gundersen, N; Magnus, P; Jebens, E; Bakka, T

    1980-09-01

    The round the clock urinary excretion rates of mercury were assessed for two series of unconventional patterns of activity and sleep in subjects who were not exposed to occupational, medical, or other obvious sources of mercury. In the first series the urine was collected in 3-h periods from six subjects during the first and last 2 d of a four-week, continuous 6-h shift (car ferry, watches either 0800--1400 and 2000--0200 or 1400--2000 and 0200--0800). In the second series the urine was collected in 4-h periods from five subjects working an 8-h experimental rotation shift compressed into 5 d (work two mornings--8-h interval--work two nights--8-h interval--work two afternoons). The mean daily excretion rate of the 11 subjects (48 investigation days, 334 urine samples) was 14.5 pmol of mercury/min (range 5.5--24.4 pmol of mercury/min). The mercury excretion oscillated regularly during 24 h by +/- 20--25% of the individual's daily mean excretion rates. The peak excretion rates were found at 0652 in the first and 0642 in the second series (cosinor treatment). Due to the circadian rhythm the mean 24-h excretion rates were best represented (correlation coefficient 0.92) by analyses of urine produced around noon (spot samples, collection periods 1100--1400 and 1000-1400, respectively). The circadian oscillations of mercury excretion were not influenced by the widely different and varying activity-sleep patterns of the two series. The rhythmicity of potassium excretion (peaks at around 1400) was more irregular. The stable oscillations of mercury excretion contrasted most with the excretion of adrenaline and noradrenaline, which, without losing the basic 24-h rhythmicity, closely followed the unconventional patterns of activity and sleep.

  6. Rhythmicity in mice selected for extremes in stress reactivity: behavioural, endocrine and sleep changes resembling endophenotypes of major depression.

    Directory of Open Access Journals (Sweden)

    Chadi Touma

    Full Text Available Dysregulation of the hypothalamic-pituitary-adrenal (HPA axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD. Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR mouse model consists of three separate breeding lines selected for either high (HR, intermediate (IR, or low (LR corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period, resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new

  7. Foraging response and acclimation of ambush feeding and feeding-current feeding copepods to toxic dinoflagellates

    DEFF Research Database (Denmark)

    Xu, Jiayi; Nielsen, Lasse Tor; Kiørboe, Thomas

    2018-01-01

    reticulatum. We hypothesize (1) that ambush feeders are less affected by toxic algae than feeding-current feeders, (2) that copepods acclimate to the toxic algae, and (3) that phytoplankton cells previously exposed to copepod cues elicit stronger responses. Both copepod species consumed the toxic algae...... to examine the response and temporal acclimation (5 d) of two copepods with different foraging behaviors to toxic dinoflagellates. Feeding-current feeding Temora longicornis and ambush feeding Acartia tonsa were offered three strains of toxic Alexandrium tamarense and a nontoxic control Protoceratium...... at a reduced rate and there was no difference in their net-response, but the mechanisms differed. T. longicornis responded in strain-specific ways by reducing its feeding activity, by rejecting captured algae, or by regurgitating consumed cells. A. tonsa reduced its consumption rate, jump frequency, and jump...

  8. Radiation pasteurization of mink feed

    International Nuclear Information System (INIS)

    Passey, C.A.; Roy, D.; Savoie, L.; Wilson, J.

    1990-01-01

    No significant differences were observed in the net birth rate of mink kits/female between the 7 breeding groups. However, there was reduced incidence (P=0.05) of kit deaths among the females receiving irradiated feed, and larger kit size (P<0.0001) at birth particularly for the litter size of 5-8 kits. The second generation minks born to parents receiving feed irradiated to a planned dose of 1 kGy weighed on average about 2.5% more, and their fur was on average about 1±0.26 cm longer (12% more males making the top length grade). Moreover, there was no effect of irradiated feed on fur quality. Irradiation of mink feed with subsequent frozen storage of the meat component improved the microbiological quality by decreasing the incidence of Pseudomonas sp. and Salmonella sp. Radiation pasteurization of mink feed (frozen meat to 1 kGy, and dry feed to 2 kGy or more) should therefore help improve feed utilization, keep animals healthier, and reproducing better without affecting fur quality. (author)

  9. Effects of feed forms, levels of quantitative feed restriction on ...

    African Journals Online (AJOL)

    Nigerian Journal of Animal Production ... Data were collected on growth performance, carcass characteristics, and cost benefits were calculated. Data were subjected to ... Keywords: Broilers, carcass, performance, quantitative feed restriction ...

  10. Food and Feed Commodity Vocabulary

    Science.gov (United States)

    Food and Feed Vocabulary was developed to consolidate all the major OPP Commodity Vocabularies into one standardized vocabulary. The EPA-preferred term is the only term that can be used in setting tolerances.

  11. Feeding device for rotary retorts

    Energy Technology Data Exchange (ETDEWEB)

    Hutchins, T W.S.

    1923-04-25

    A horizontal rotary retort is heated externally with a feeding-worm or the like for distilling coal, oil shale, etc. It is characterized in that the shaft of the feeder moves adjustably lengthwise, so that, under the hopper more or less of the worm comes for action on the feed, so that the hopper is withdrawn through the retort while it projects into the retort and is secured in a position against the rotation.

  12. Social theory and infant feeding

    Science.gov (United States)

    2011-01-01

    Clinicians, public health advisors, nutritionists and others have been attempting to increase breastfeeding rates for the last few decades, with varying degrees of success. We need social science researchers to help us understand the role of infant feeding in the family. Some researchers in the area of food and nutrition have found Pierre Bourdieu's theoretical framework helpful. In this editorial, I introduce some of Bourdieu's ideas and suggest researchers interested in infant feeding should consider testing these theories. PMID:21676218

  13. Infant feeding practices in Malaysia.

    Science.gov (United States)

    Chen, S T

    1978-12-01

    Retrospective nutritional data on 100 children, aged 6 months to 2 1/2 years, who were admitted to the University Hospital in Kuala Lumpur, Malaysia, was obtained by interviewing the mothers of the children. Analysis of the data revealed that 1) only 49% of the children were breast-fed as infants; 2) 50% of the mothers who did breast-feed discontinued breast-feeding before the children were 3 months old; and 3) the weaning diet of at least 1/3 of the children was inadequate. 18% of the children were Malays, 49% were Chinese, and 33% were Indian. The proportion of breast-fed children was highest among the Malays and lowest among the Chinese. Mothers with higher incomes tended to stop breast-feeding earlier than mothers with lower incomes. 67% of the women said they stopped breast-feeding due to inadequate lactation. Most of the children received supplementary foods at relatively early ages. 50% of the infants received starchy foods by the time they were 3 1/2 months old, and 50% received fruit or fruit juice by the time they were 3 1/2 months old. Vegetable products, meat, fish, and eggs were not added to the diet until the children were considerably older. Recommendations, based on the study findings, were 1) hospitals should discontinue the practice of deferring breast-feeding initiation for 24 hours after delivery; 2) mothers should be encouraged to breast-feed fully; and 3) health personnel should discourage the widespread use of costly precooked cereals for supplementary feeding. Tables depicted 1) the frequency distribution of the 100 children by income and by milk feeding patterns according to ethnic affiliation and 2) the cost of serving precooked cereals as compared to the cost of serving home cooked meals.

  14. Feed quality in swine diet

    Directory of Open Access Journals (Sweden)

    Živković Branislav

    2002-01-01

    Full Text Available The paper will demonstrate the quality of some feed used in swine diet. The emphasis will be on feed whose incorporation into mixes could result in unfavorable effects on production, health and economic production of swine. Data will be presented on maize and its possible negative effects, having in mind toxins. Soybean meal, or genetically modified soybean meal, will also be observed. The next feed which will be discussed will be soybean whey obtained by different procedures and the potential dangers of its use in swine diet rations. Sunflower meal, feed of animal origin, with emphasis on fish flour and meat-bone flour will also be covered in the work. A feed which has been attracting particular attention lately is yeast imported from Italy. Its quality characteristics will be discussed, the so-called non-protein nitrogen. Analyses of mineral feed will include sources of phosphorus, phosphates (monocalciumphosphate, dicalcium phosphate phytases and resolving the problem of phosphorus in swine rations. Finally, an inevitable segment are synthetic amino acids, especially lysine and its role in swine diet.

  15. Enteral Feeding Set Handling Techniques.

    Science.gov (United States)

    Lyman, Beth; Williams, Maria; Sollazzo, Janet; Hayden, Ashley; Hensley, Pam; Dai, Hongying; Roberts, Cristine

    2017-04-01

    Enteral nutrition therapy is common practice in pediatric clinical settings. Often patients will receive a pump-assisted bolus feeding over 30 minutes several times per day using the same enteral feeding set (EFS). This study aims to determine the safest and most efficacious way to handle the EFS between feedings. Three EFS handling techniques were compared through simulation for bacterial growth, nursing time, and supply costs: (1) rinsing the EFS with sterile water after each feeding, (2) refrigerating the EFS between feedings, and (3) using a ready-to-hang (RTH) product maintained at room temperature. Cultures were obtained at baseline, hour 12, and hour 21 of the 24-hour cycle. A time-in-motion analysis was conducted and reported in average number of seconds to complete each procedure. Supply costs were inventoried for 1 month comparing the actual usage to our estimated usage. Of 1080 cultures obtained, the overall bacterial growth rate was 8.7%. The rinse and refrigeration techniques displayed similar bacterial growth (11.4% vs 10.3%, P = .63). The RTH technique displayed the least bacterial growth of any method (4.4%, P = .002). The time analysis in minutes showed the rinse method was the most time-consuming (44.8 ± 2.7) vs refrigeration (35.8 ± 2.6) and RTH (31.08 ± 0.6) ( P refrigerating the EFS between uses is the next most efficacious method for handling the EFS between bolus feeds.

  16. Feeding the Monster

    Science.gov (United States)

    2005-10-01

    Near-infrared images of the active galaxy NGC 1097, obtained with the NACO adaptive optics instrument on ESO's Very Large Telescope, disclose with unprecedented detail a complex central network of filamentary structure spiralling down to the centre of the galaxy. These observations provide astronomers with new insights on how super-massive black holes lurking inside galaxies get fed. "This is possibly the first time that a detailed view of the channelling process of matter, from the main part of the galaxy down to the very end in the nucleus is released," says Almudena Prieto (Max-Planck Institute, Heidelberg, Germany), lead author of the paper describing these results. Located at a distance of about 45 million light-years in the southern constellation Fornax (the Furnace), NGC 1097 is a relatively bright, barred spiral galaxy seen face-on. At magnitude 9.5, and thus just 25 times fainter than the faintest object that can be seen with the unaided eye, it appears in small telescopes as a bright, circular disc. NGC 1097 is a very moderate example of an Active Galactic Nucleus (AGN), whose emission is thought to arise from matter (gas and stars) falling into oblivion in a central black hole. However, NGC 1097 possesses a comparatively faint nucleus only, and the black hole in its centre must be on a very strict "diet": only a small amount of gas and stars is apparently being swallowed by the black hole at any given moment. Astronomers have been trying to understand for a long time how the matter is "gulped" down towards the black hole. Watching directly the feeding process requires very high spatial resolution at the centre of galaxies. This can be achieved by means of interferometry as was done with the VLTI MIDI instrument on the central parts of another AGN, NGC 1068 (see ESO PR 17/03), or with adaptive optics [1]. Thus, astronomers [2] obtained images of NGC 1097 with the adaptive optics NACO instrument attached to Yepun, the fourth Unit Telescope of ESO's VLT

  17. Newborn First Feed and Prelacteal Feeds in Mansoura, Egypt

    Directory of Open Access Journals (Sweden)

    Abdel-Hady El-Gilany

    2014-01-01

    Full Text Available Background. Prelacteal feed (feeding any other substance before first breastfeeding appears to be common despite its harmful effects. By definition a child provided with prelacteal feed (PLF is not exclusively breastfed and PLF has many implications for the success and early initiation of breastfeeding. Objectives. To describe the prevalence of, nature of, and reasons for and factors associated with PLF. Methods. 647 mother-infant dyads were studied. Data was collected about the sociodemographic features of the family and baby, maternity care, the type of first feed before suckling, and causes of PLF. Maternal weight and height were measured and body mass index was calculated. Results. About 58% of newborns received prelacteal feeds. The commonest PLF was sugar/glucose water (39.6%. The most frequent reasons for giving PLF are tradition (61.0% and mother’s/mother in law’s advice (58.3%. The logistic regression revealed that the independent predictors of PLF are urban residence; maternal education; father’s education; low, middle, and high social class; maternal obesity; receiving antenatal care at private clinics and no antenatal care; Caesarean section; female babies; low birth weight; and admission to neonatal intensive care. Conclusion. Indiscriminate use of PLF should be discouraged in medical education and in antenatal maternal health education.

  18. Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents

    Directory of Open Access Journals (Sweden)

    Szabó Henriette

    2005-12-01

    Full Text Available Abstract Background Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. Results The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P IA current and a sustained IK delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium – free saline and so is likely to be carried by sodium ions. 10 μM octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P Conclusion We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense.

  19. EARLY ENTERAL FEEDING AND DELAYED ENTERAL FEEDING- A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Alli Muthiah

    2017-03-01

    Full Text Available BACKGROUND Nutrients form the fuel for the body, which comes in the form of carbohydrates, proteins and lipids. The body is intended to burn fuels in order to perform work. Starvation with malnutrition affects the postoperative patients and patients with acute pancreatitis. There is an increased risk of nosocomial infections and a delay in the wound healing may be noted. They are more prone for respiratory tract infections. Enteral Nutrition (EN delivers nutrition to the body through gastrointestinal tract. This also includes the oral feeding. This study will review the administration, rationale and assess the pros and cons associated with the early initiation of enteral feeding. The aim of this study is to evaluate if early commencement of enteral nutrition compared to traditional management (delayed enteral feeding is associated with fewer complications and improved outcome-  In patients undergoing elective/emergency gastrointestinal surgery.  In patients with acute pancreatitis. It is also used to determine whether a period of starvation (nil by mouth after gastrointestinal surgery or in the early days of acute pancreatitis is beneficial in terms of specific outcomes. MATERIALS AND METHODS A prospective cohort interventional study was conducted using 100 patients from July 2012 to November 2012. Patients satisfying the inclusion and exclusion criteria were included in the study. Patients admitted in my unit for GIT surgeries or acute pancreatitis constituted the test group, while patients admitted in other units for similar disease processes constituted the control group. RESULTS Our study concluded that early enteral feeding resulted in reduced incidence of surgical site infections. When the decreased length of stay, shorter convalescent period and the lesser post-interventional fatigue were taken into account, early enteral feeding has a definite cost benefit.CONCLUSION Early enteral feeding was beneficial associated with fewer

  20. High-Fibre feeding in gestation

    NARCIS (Netherlands)

    Meunier-Salaün, M.C.; Bolhuis, J.E.

    2015-01-01

    Gestating sows are usually fed low levels of feed, which may not provide sufficient satiety, and does not allow sows to fully fulfil their motivation to express foraging and feeding behaviours. Feed restriction may therefore lead to high occurrences of non-feeding oral activities, including

  1. Increased Prevalence of Intermittent Rhythmic Delta or Theta Activity (IRDA/IRTA) in the Electroencephalograms (EEGs) of Patients with Borderline Personality Disorder

    OpenAIRE

    Tebartz van Elst, Ludger; Fleck, Max; Bartels, Susanne; Altenm?ller, Dirk-Matthias; Riedel, Andreas; Bubl, Emanuel; Matthies, Swantje; Feige, Bernd; Perlov, Evgeniy; Endres, Dominique

    2016-01-01

    Introduction: An increased prevalence of pathological electroencephalography (EEG) signals has been reported in patients with borderline personality disorder (BPD). In an elaborative case description of such a patient with intermittent rhythmic delta and theta activity (IRDA/IRTA), the BPD symptoms where linked to the frequency of the IRDAs/IRTAs and vanished with the IRDAs/IRTAs following anticonvulsive therapy. This observation raised a question regarding the prevalence of such EEG abnormal...

  2. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  3. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  4. Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity.

    Science.gov (United States)

    Soeda, Junpei; Cordero, Paul; Li, Jiawei; Mouralidarane, Angelina; Asilmaz, Esra; Ray, Shuvra; Nguyen, Vi; Carter, Rebeca; Novelli, Marco; Vinciguerra, Manlio; Poston, Lucilla; Taylor, Paul D; Oben, Jude A

    2017-06-01

    We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis.

  5. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  6. Breast feeding: is it vital?

    Science.gov (United States)

    Alnasir, F A

    1990-12-01

    Human milk is the natural food of infants. It is a naturally balanced diet which meets the needs of the newborn. No artificial food can compare with human milk's natural, nutritional, and anti-infective properties. Various agencies have therefore strongly advocated every infant's right to be breast fed. For example, the International Confederation of Midwives at their 1984 meeting recommended that breast feeding be undertaken for at least 6 months especially in areas of the world where the incidence of infant mortality, morbidity, and malnutrition is high. The majority of women should be able to breast feed even if malnourished, and providing food for a lactating woman is less expensive than providing artificial formula for her baby. In some Western countries, breasts are seen more as sex symbols than sources of nourishment for infants. Women in developing countries should instead retain their tradition of breast feeding in the best interest of both their children and society.

  7. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate......-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude......; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet...

  8. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.

  9. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    Science.gov (United States)

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  10. Music Perception Influences Language Acquisition: Melodic and Rhythmic-Melodic Perception in Children with Specific Language Impairment

    Science.gov (United States)

    Sallat, Stephan; Jentschke, Sebastian

    2015-01-01

    Language and music share many properties, with a particularly strong overlap for prosody. Prosodic cues are generally regarded as crucial for language acquisition. Previous research has indicated that children with SLI fail to make use of these cues. As processing of prosodic information involves similar skills to those required in music perception, we compared music perception skills (melodic and rhythmic-melodic perception and melody recognition) in a group of children with SLI (N = 29, five-year-olds) to two groups of controls, either of comparable age (N = 39, five-year-olds) or of age closer to the children with SLI in their language skills and about one year younger (N = 13, four-year-olds). Children with SLI performed in most tasks below their age level, closer matching the performance level of younger controls with similar language skills. These data strengthen the view of a strong relation between language acquisition and music processing. This might open a perspective for the possible use of musical material in early diagnosis of SLI and of music in SLI therapy. PMID:26508812

  11. Automatic detection of rhythmic and periodic patterns in critical care EEG based on American Clinical Neurophysiology Society (ACNS) standardized terminology.

    Science.gov (United States)

    Fürbass, F; Hartmann, M M; Halford, J J; Koren, J; Herta, J; Gruber, A; Baumgartner, C; Kluge, T

    2015-09-01

    Continuous EEG from critical care patients needs to be evaluated time efficiently to maximize the treatment effect. A computational method will be presented that detects rhythmic and periodic patterns according to the critical care EEG terminology (CCET) of the American Clinical Neurophysiology Society (ACNS). The aim is to show that these detected patterns support EEG experts in writing neurophysiological reports. First of all, three case reports exemplify the evaluation procedure using graphically presented detections. Second, 187 hours of EEG from 10 critical care patients were used in a comparative trial study. For each patient the result of a review session using the EEG and the visualized pattern detections was compared to the original neurophysiology report. In three out of five patients with reported seizures, all seizures were reported correctly. In two patients, several subtle clinical seizures with unclear EEG correlation were missed. Lateralized periodic patterns (LPD) were correctly found in 2/2 patients and EEG slowing was correctly found in 7/9 patients. In 8/10 patients, additional EEG features were found including LPDs, EEG slowing, and seizures. The use of automatic pattern detection will assist in review of EEG and increase efficiency. The implementation of bedside surveillance devices using our detection algorithm appears to be feasible and remains to be confirmed in further multicenter studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Paired Synchronous Rhythmic Finger Tapping without an External Timing Cue Shows Greater Speed Increases Relative to Those for Solo Tapping.

    Science.gov (United States)

    Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi

    2017-03-09

    In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners' tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing.

  13. Music Perception Influences Language Acquisition: Melodic and Rhythmic-Melodic Perception in Children with Specific Language Impairment.

    Science.gov (United States)

    Sallat, Stephan; Jentschke, Sebastian

    2015-01-01

    Language and music share many properties, with a particularly strong overlap for prosody. Prosodic cues are generally regarded as crucial for language acquisition. Previous research has indicated that children with SLI fail to make use of these cues. As processing of prosodic information involves similar skills to those required in music perception, we compared music perception skills (melodic and rhythmic-melodic perception and melody recognition) in a group of children with SLI (N = 29, five-year-olds) to two groups of controls, either of comparable age (N = 39, five-year-olds) or of age closer to the children with SLI in their language skills and about one year younger (N = 13, four-year-olds). Children with SLI performed in most tasks below their age level, closer matching the performance level of younger controls with similar language skills. These data strengthen the view of a strong relation between language acquisition and music processing. This might open a perspective for the possible use of musical material in early diagnosis of SLI and of music in SLI therapy.

  14. Music Perception Influences Language Acquisition: Melodic and Rhythmic-Melodic Perception in Children with Specific Language Impairment

    Directory of Open Access Journals (Sweden)

    Stephan Sallat

    2015-01-01

    Full Text Available Language and music share many properties, with a particularly strong overlap for prosody. Prosodic cues are generally regarded as crucial for language acquisition. Previous research has indicated that children with SLI fail to make use of these cues. As processing of prosodic information involves similar skills to those required in music perception, we compared music perception skills (melodic and rhythmic-melodic perception and melody recognition in a group of children with SLI (N=29, five-year-olds to two groups of controls, either of comparable age (N=39, five-year-olds or of age closer to the children with SLI in their language skills and about one year younger (N=13, four-year-olds. Children with SLI performed in most tasks below their age level, closer matching the performance level of younger controls with similar language skills. These data strengthen the view of a strong relation between language acquisition and music processing. This might open a perspective for the possible use of musical material in early diagnosis of SLI and of music in SLI therapy.

  15. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking.

    Science.gov (United States)

    Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole

    2011-11-29

    Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.

  16. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.

    Science.gov (United States)

    Low, Aloysius Y T; Thanawalla, Ayesha R; Yip, Alaric K K; Kim, Jinsook; Wong, Kelly L L; Tantra, Martesa; Augustine, George J; Chen, Albert I

    2018-02-27

    The deep cerebellar nuclei (DCN) represent output channels of the cerebellum, and they transmit integrated sensorimotor signals to modulate limb movements. But the functional relevance of identifiable neuronal subpopulations within the DCN remains unclear. Here, we examine a genetically tractable population of neurons in the mouse interposed anterior nucleus (IntA). We show that these neurons represent a subset of glutamatergic neurons in the IntA and constitute a specific element of an internal feedback circuit within the cerebellar cortex and cerebello-thalamo-cortical pathway associated with limb control. Ablation and optogenetic stimulation of these neurons disrupt efficacy of skilled reach and locomotor movement and reveal that they control positioning and timing of the forelimb and hindlimb. Together, our findings uncover the function of a distinct neuronal subpopulation in the deep cerebellum and delineate the anatomical substrates and kinematic parameters through which it modulates precision of discrete and rhythmic limb movements. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    Science.gov (United States)

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  18. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus

    Science.gov (United States)

    Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.

    2014-01-01

    The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131

  19. infant feeding issues implications of formula feeding to reduce hiv

    African Journals Online (AJOL)

    2004-08-03

    Aug 3, 2004 ... exclusive bottle-feeding is, in theory, negligible. However, .... †Independent sample t-tests; categorical variables were tested using the X2-test. TABLE I. RESULTS FOR FIT ... increase the risk of diarrhoeal events.9. Frequent ...

  20. Feeding habits and comparative feeding rates of three southern ...

    African Journals Online (AJOL)

    Food utilization by three arboreal squirrels was studied with regard to feeding habits and efficiency, food preferences and chemical analyses of the food. Food selected in the field by the two forest subspecies the Ngoye red squirrel Paraxerus palliatus ornatus and the Tonga red squirrel, P. p. tongensis are listed.

  1. Prey perception in feeding-current feeding copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Goncalves, Rodrigo J.; Florian Couespel, Damien

    2016-01-01

    We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey concentrati......We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey...... cells have short intense leakage burst, only a very small fraction of prey cells would be available to the copepod at any instance in time and, thus would be inefficient at low prey concentration. Finally, we report a few new observations of prey capture in two species of copepods, Temora longicornis...... and Centropages hamatus, offered a 45-μm sized dinoflagellate at very low concentration. The observed short prey detection distances, up to a few prey cell radii, are consistent with mechanoreception and we argue briefly that near-field mechanoreception is the most likely and common prey perception mechanism...

  2. The influence of supplementary feeding to ewes and creep feeding ...

    African Journals Online (AJOL)

    KARIN KOEP

    2015-03-24

    Mar 24, 2015 ... Condition of use: The user may copy, distribute, transmit and adapt the work, but must recognise the authors and the South African. Journal of Animal Science. .... mix (lick) supplied to producing SA. Mutton Merino ewes and creep feed for suckling lambs grazing wheat stubble during the dry summer period.

  3. Static feed water electrolysis module

    Science.gov (United States)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  4. Salmonella Radicidation of Dry Mixed Feeds and Feed Ingredients

    Energy Technology Data Exchange (ETDEWEB)

    Mossel, D. A.A. [Central Institute for Nutrition and Food Research TNO, Zeist (Netherlands); San Marcos University, Lima (Peru)

    1967-11-15

    Feed components contaminated with salmonellae act as vehicles in the transmission of these bacteria to slaughter animals and hence to meat and poultry. Terminal decontamination of ingredients or mixed feed seems required because sanitary improvements in processing, bagging and storage do not always appear effective in considerably reducing salmonella contamination rates. Experiments were carried out to assay the decontamination effect of pelletization of mixed feed. Enumeration of enterobacteriaceae was used as the analytical criterion. It appeared that a temperature over 80 Degree-Sign C generally led to five decimal reductions in enterobacteriaceae counts; however, also currently used lower temperatures may bring about two decimal reductions only. Following earlier experiments with fish meal, range finding tests on the decontamination of mixed feed with {sup 60}Co gamma rays were also performed. To achieve five decimal reductions in the counts of the most resistant enterobacteriaceae which were encountered about 0.5 Mrad was required; survival curves were generally not linear, so that overall effective dose had to be used as a parameter. Feeding experiments with rats, using 35% fish meal irradiated at 0.8 Mrad in the diet for two years, demonstrated that neither losses of nutritive value nor the occurrence of orally toxic factors is effected by such an irradiation treatment. It is recommended that pilot plant tests be carried out. In these tests an attempt should be made to combine improved sanitation and pelletizing with a terminal radiation treatment of the bagged material with the lowest dose required. Such tests should preferably be carried out in suitable areas of countries like Peru or Chile. A brief outline is given of the development work and training of scientific and technical staff that should be carried out during the installation of such a pilot plant. (author)

  5. Flemingia macrophylla in goat feeding

    Directory of Open Access Journals (Sweden)

    Isabel das Neves Oiticica

    2015-09-01

    Full Text Available ABSTRACTThe objective of this work was to evaluate the inclusion of Fabaceae Flemingia macrophylla (Willd. Kuntze ex Merr. in the diet of lactating dairy goats arranged in a 5 × 5 Latin square. The diets were composed of 40% of concentrate and 60% of roughage, and the dietary treatments were defined by the level of Flemingia hay inclusion (0%, 8%, 16%, 24%, and 32% in the diet dry matter replacing Cynodon dactyloncv. Tifton 85 hay. The diets were isonitrogenous, with 14% crude protein. Feed intake, nutrient digestibility, feeding behavior, and ruminal pH and ammonia nitrogen were evaluated. There was no difference in dry matter intake with the inclusion of Flemingia hay in the diet. The digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and total carbohydrates decreased with the inclusion of Flemingia in the diet. The diet did not change rumen ammonia nitrogen concentration or ruminal pH. There were no differences in the feeding behavior or feed and rumination efficiencies. Flemingia macrophylla can be used up to the level of 32% in the dry matter in diets for lactating goats.

  6. Parental concerns about complementary feeding

    DEFF Research Database (Denmark)

    Nielsen, Annemette; Michaelsen, Kim F.; Holm, Lotte

    2013-01-01

    Background/objectives:To investigate and analyze differences in parental concerns during earlier and later phases of complementary feeding.Subject/methods:Eight focus group interviews were conducted with 45 mothers of children aged 7 or 13 months. Deductive and inductive coding procedures were ap......:10.1038/ejcn.2013.165....

  7. Food and feed safety assessment

    NARCIS (Netherlands)

    Kuiper, H.A.; Paoletti, Claudia

    2015-01-01

    The general principles for safety and nutritional evaluation of foods and feed and the potential health risks associated with hazardous compounds are described as developed by the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) and further elaborated in the

  8. International trade of animal feed

    NARCIS (Netherlands)

    Wang, Jingmeng; Liu, Qian; Hou, Yong; Qin, Wei; Lesschen, Jan Peter; Zhang, Fusuo; Oenema, Oene

    2018-01-01

    International trade of food and feed has facilitated the specialization and agglomeration of agricultural production systems in many countries. Confined animals in specialized production systems are increasingly supplied with soybean and maize, imported from other countries. This has increased

  9. Feeding on dispersed vs. aggregated particles: The effect of zooplankton feeding behavior on vertical flux

    DEFF Research Database (Denmark)

    Koski, Marja; Boutorh, Julia; De La Rocha, Christina L.

    2017-01-01

    Zooplankton feeding activity is hypothesized to attenuate the downward flux of elements in the ocean. We investigated whether the zooplankton community composition could influence the flux attenuation, due to the differences of feeding modes (feeding on dispersed vs. aggregated particles) and of ......Zooplankton feeding activity is hypothesized to attenuate the downward flux of elements in the ocean. We investigated whether the zooplankton community composition could influence the flux attenuation, due to the differences of feeding modes (feeding on dispersed vs. aggregated particles...

  10. Child feeding and human rights

    Directory of Open Access Journals (Sweden)

    Kent George

    2006-12-01

    Full Text Available Abstract Background The human right to adequate food needs to be interpreted for the special case of young children because they are vulnerable, others make the choices for them, and their diets are not diverse. There are many public policy issues relating to child feeding. Discussion The core of the debate lies in differences in views on the merits of infant formula. In contexts in which there is strong evidence and a clear consensus that the use of formula would be seriously dangerous, it might be sensible to adopt rules limiting its use. However, until there is broad consensus on this point, the best universal rule would be to rely on informed choice by mothers, with their having a clearly recognized right to objective and consistent information on the risks of using different feeding methods in their particular local circumstances. Summary The obligation of the state to assure that mothers are well informed should be viewed as part of its broader obligation to establish social conditions that facilitate sound child feeding practices. This means that mothers should not be compelled to feed in particular ways by the state, but rather the state should assure that mothers are supported and enabled to make good feeding choices. Thus, children should be viewed as having the right to be breastfed, not in the sense that the mother is obligated to breastfeed the child, but in the sense that no one may interfere with the mother's right to breastfeed the child. Breastfeeding should be viewed as the right of the mother and child together.

  11. Feed mechanism and method for feeding minute items

    Science.gov (United States)

    Stringer, Timothy Kent [Bucyrus, KS; Yerganian, Simon Scott [Lee's Summit, MO

    2009-10-20

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position one or more of the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  12. The expression of the clock gene cycle has rhythmic pattern and is affected by photoperiod in the moth Sesamia nonagrioides.

    Science.gov (United States)

    Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna

    2017-06-01

    To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we have cloned the circadian clock gene cycle (Sncyc) in the corn stalk borer, Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among insects for this gene. SnCYC consists of 667 amino acids and structural analysis showed that it contains a BCTR domain in its C-terminal in addition to the common domains found in Drosophila CYC, i.e. bHLH, PAS-A, PAS-B domains. The results revealed that the sequence of Sncyc showed a similarity to that of its mammalian orthologue, Bmal1. We also investigated the expression patterns of Sncyc in the brain of larvae growing under long-day 16L: 8D (LD), constant darkness (DD) and short-day 10L: 14D (SD) conditions using qRT-PCR assays. The mRNAs of Sncyc expression was rhythmic in LD, DD and SD cycles. Also, it is remarkable that the photoperiodic conditions affect the expression patterns and/or amplitudes of circadian clock gene Sncyc. This gene is associated with diapause in S. nonagrioides, because under SD (diapause conditions) the photoperiodic signal altered mRNA accumulation. Sequence and expression analysis of cyc in S. nonagrioides shows interesting differences compared to Drosophila where this gene does not oscillate or change in expression patterns in response to photoperiod, suggesting that this species is an interesting new model to study the molecular control of insect circadian and photoperiodic clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Use of Footstep Sounds as Rhythmic Auditory Stimulation for Gait Rehabilitation in Parkinson's Disease: A Randomized Controlled Trial.

    Science.gov (United States)

    Murgia, Mauro; Pili, Roberta; Corona, Federica; Sors, Fabrizio; Agostini, Tiziano A; Bernardis, Paolo; Casula, Carlo; Cossu, Giovanni; Guicciardi, Marco; Pau, Massimiliano

    2018-01-01

    The use of rhythmic auditory stimulation (RAS) has been proven useful in the management of gait disturbances associated with Parkinson's disease (PD). Typically, the RAS consists of metronome or music-based sounds (artificial RAS), while ecological footstep sounds (ecological RAS) have never been used for rehabilitation programs. The aim of this study was to compare the effects of a rehabilitation program integrated either with ecological or with artificial RAS. An observer-blind, randomized controlled trial was conducted to investigate the effects of 5 weeks of supervised rehabilitation integrated with RAS. Thirty-eight individuals affected by PD were randomly assigned to one of the two conditions (ecological vs. artificial RAS); thirty-two of them (age 68.2 ± 10.5, Hoehn and Yahr 1.5-3) concluded all phases of the study. Spatio-temporal parameters of gait and clinical variables were assessed before the rehabilitation period, at its end, and after a 3-month follow-up. Thirty-two participants were analyzed. The results revealed that both groups improved in the majority of biomechanical and clinical measures, independently of the type of sound. Moreover, exploratory analyses for separate groups were conducted, revealing improvements on spatio-temporal parameters only in the ecological RAS group. Overall, our results suggest that ecological RAS is equally effective compared to artificial RAS. Future studies should further investigate the role of ecological RAS, on the basis of information revealed by our exploratory analyses. Theoretical, methodological, and practical issues concerning the implementation of ecological sounds in the rehabilitation of PD patients are discussed. www.ClinicalTrials.gov, identifier NCT03228888.

  14. The occurrence of respiratory events in young subjects with a frequent rhythmic masticatory muscle activity: a pilot study.

    Science.gov (United States)

    Tsujisaka, Akiko; Haraki, Shingo; Nonoue, Shigeru; Mikami, Akira; Adachi, Hiroyoshi; Mizumori, Takahiro; Yatani, Hirofumi; Yoshida, Atsushi; Kato, Takafumi

    2018-02-21

    Concomitant occurrence of respiratory events can be often overlooked in the clinical practice of SB. This study assessed physiological characteristics of rhythmic masticatory muscle activity (RMMA) and concomitant respiratory events in young SB subjects asymptomatic to obstructive sleep apnea (OSA). Twenty-two subjects (age: 24.1±1.9years; F 8: M 14; BMI: 20.2±1.9kg/m 2 ) were polysomnographically diagnosed as moderate-severe SB. Sleep architecture, oromotor (RMMA and non-specific masseter activity [NSMA]) and apnea/hypopnea events were scored. All subjects showed normal sleep architecture whereas 6 exhibited respiratory events at a mild level of OSA. In all subjects, RMMA predominantly occurred in Stage N1+N2 while NSMA occurred in Stage N1+N2 (approximately 60 %) and in Stage R (up to 30 %). Up to 50% of respiratory events were scored in Stage R. RMMA occurred more frequently in close association (e.g., within 10s) with respiratory events in 6 subjects with OSA than those without. The percentage of RMMA occurring closely to respiratory events was positively correlated with apnea-hypopnea index (AHI) in Stage N1+N2 only while that of NSMA was positively correlated with AHI in Stage N1+N2 and Stage R. A sub-analysis in 6 subjects with OSA, RMMA after respiratory events was followed to arousals while those before respiratory events were mostly associated with central apnea. A subpopulation of young SB subjects can show concomitant respiratory events. Further large sample studies are needed to demonstrate that the occurrence of subclinical respiratory events represents a clinical subtype of SB. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Virtual reality as a tool for evaluation of repetitive rhythmic movements in the elderly and Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available This work presents an immersive Virtual Reality (VR system to evaluate, and potentially treat, the alterations in rhythmic hand movements seen in Parkinson's disease (PD and the elderly (EC, by comparison with healthy young controls (YC. The system integrates the subjects into a VR environment by means of a Head Mounted Display, such that subjects perceive themselves in a virtual world consisting of a table within a room. In this experiment, subjects are presented in 1(st person perspective, so that the avatar reproduces finger tapping movements performed by the subjects. The task, known as the finger tapping test (FT, was performed by all three subject groups, PD, EC and YC. FT was carried out by each subject on two different days (sessions, one week apart. In each FT session all subjects performed FT in the real world (FT(REAL and in the VR (FT(VR; each mode was repeated three times in randomized order. During FT both the tapping frequency and the coefficient of variation of inter-tap interval were registered. FT(VR was a valid test to detect differences in rhythm formation between the three groups. Intra-class correlation coefficients (ICC and mean difference between days for FT(VR (for each group showed reliable results. Finally, the analysis of ICC and mean difference between FT(VR vs FT(REAL, for each variable and group, also showed high reliability. This shows that FT evaluation in VR environments is valid as real world alternative, as VR evaluation did not distort movement execution and detects alteration in rhythm formation. These results support the use of VR as a promising tool to study alterations and the control of movement in different subject groups in unusual environments, such as during fMRI or other imaging studies.

  16. High post-movement parietal low-beta power during rhythmic tapping facilitates performance in a stop task.

    Science.gov (United States)

    Fischer, Petra; Tan, Huiling; Pogosyan, Alek; Brown, Peter

    2016-09-01

    Voluntary movements are followed by a post-movement electroencephalography (EEG) beta rebound, which increases with practice and confidence in a task. We hypothesized that greater beta modulation reflects less load on cognitive resources and may thus be associated with faster reactions to new stimuli. EEG was recorded in 17 healthy subjects during rhythmically paced index finger tapping. In a STOP condition, participants had to interrupt the upcoming tap in response to an auditory cue, which was timed such that stopping was successful only in ~ 50% of all trials. In a second condition, participants carried on tapping twice after the stop signal (CONTINUE condition). Thus the conditions were distinct in whether abrupt stopping was required as a second task. Modulation of 12-20 Hz power over motor and parietal areas developed with time on each trial and more so in the CONTINUE condition. Reduced modulation in the STOP condition went along with reduced negative mean asynchronies suggesting less confident anticipation of the timing of the next tap. Yet participants were more likely to stop when beta modulation prior to the stop cue was more pronounced. In the STOP condition, expectancy of the stop signal may have increased cognitive load during movement execution given that the task might have to be stopped abruptly. However, within this condition, stopping ability was increased if the preceding tap was followed by a relatively larger beta increase. Significant, albeit weak, correlations confirmed that increased post-movement beta power was associated with faster reactions to new stimuli, consistent with reduced cognitive load. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. KCC2-mediated regulation of respiration-related rhythmic activity during postnatal development in mouse medulla oblongata.

    Science.gov (United States)

    Okabe, Akihito; Shimizu-Okabe, Chigusa; Arata, Akiko; Konishi, Shiro; Fukuda, Atsuo; Takayama, Chitoshi

    2015-03-19

    GABA acts as inhibitory neurotransmitter in the adult central nervous system but as excitatory neurotransmitter during early postnatal development. This shift in GABA's action from excitation to inhibition is caused by a decrease in intracellular chloride concentration ([Cl(-)]i), which in turn is caused by changes in the relative expression levels of the K(+)-Cl(-) co-transporter (KCC2) and the Na(+), K(+)-2Cl(-) co-transporter (NKCC1) proteins. Previous studies have used slices containing the medullary pre-Bötzinger complex (pre-BötC) to record respiration-related rhythmic activity (RRA) from the hypoglossal nucleus (12 N). The role of GABAergic transmission in the regulation of medullary RRA neonatally, however, is yet to be determined. Here, we examined how GABA and chloride co-transporters contribute to RRA during development in the 12 N where inspiratory neurons reside. We recorded extracellular RRA in medullary slices obtained from postnatal day (P) 0-7 mice. RRA was induced by soaking slices in artificial cerebrospinal fluid (aCSF) containing 8mM-K(+). Application of GABA significantly increased the frequency of RRA after P3, whereas application of a KCC2 blocker (R (+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-indenyl-5-yl)oxy]acetic acid (DIOA)) significantly decreased the frequency of RRA after P1. In addition, dense KCC2 immunolabeling was seen in the superior longitudinalis (SL) of the 12 N, which is responsible for retraction of the tongue, from P0 and P7. These results indicate that GABA administration can increase RRA frequency during the first week following birth. This in turn suggests that decreasing [Cl(-)]i levels caused by increasing KCC2 levels in the 12 N could play important roles in regulating the frequency of RRA during development. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. EXAMINATION OF EFFECTS OF RHYTHMIC GYMNASTICS ON BALANCE DEVELOPMENT AT THE SCHOOL CLASES OF YOUNG ELEMENTARY SCHOOL FEMALE PUPILS

    Directory of Open Access Journals (Sweden)

    Dragana Aleksić

    2013-07-01

    Full Text Available Balance is, in this work, important to three different balances: elementary balance, defined as body ability to fix in assigned balance position at minimal lean area, visual difficult balance, defined as body ability to fix in assigned balance position without visual control, and dynamic difficult balance, defined as body ability to fix in assigned balance position with center of gravity above the lean area, in spite of external forces difficulties. The battery for the evaluation of balance consists of three following tests: MPSG, MHNG, MSJN. During the 2005/06 academic year, a research was conducted so as to determine the effects of rhythmic gymnastics` program of physical education teaching on balance of female pupils. The subjects (N=99 were classified in experimental and control groups. At the beginning of the academic year, initial (first measurement was performed, followed by experimental final (second measurement at the end of experiment. Research data was processed using the multi-variant procedures MANCOVA, MANOVA, and mono-variant procedures ANCOVA, ANOVA i interval of entrust in distinction declined mean. After the experimental treatment, it was concluded that there are significant differences between female pupils in experimental and control groups i interest of experimental group evaluation of balance. The basic conclusion is that the female pupils of experimental group achieved significantly higher teaching effects than the control group, in view of partly increased motor abilities, being the result of the effects of the experimental treatment, as well as other external and internal factors. The main conclusion was that experimental treatment contributed better results in balance estimation tests in female pupils experimental group.

  19. Live feed culture - Problems and perspectives

    Digital Repository Service at National Institute of Oceanography (India)

    Royan, J.P.

    The importance of live feed in aquaculture is stressed. Organisms currently cultured as live feed are microalgae, turbellarians, tanaidaceans, annelids, brine shrimps, fairy shrimps, rotifers, cladocerans and copepods. Their culture methods...

  20. Waste feed delivery test and evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    O' TOOLE, S.M.

    1999-09-30

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach.